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Abstract—Multi-vehicle pursuit (MVP) such as autonomous
police vehicles pursuing suspects is important but very challeng-
ing due to its mission and safety-critical nature. While multi-
agent reinforcement learning (MARL) algorithms have been
proposed for MVP in structured grid-pattern roads, the existing
algorithms use random training samples in centralized learning,
which leads to homogeneous agents showing low collaboration
performance. For the more challenging problem of pursuing
multiple evaders, these algorithms typically select a fixed target
evader for pursuers without considering dynamic traffic situation,
which significantly reduces pursuing success rate. To address the
above problems, this paper proposes a Progression Cognition
Reinforcement Learning with Prioritized Experience for MVP
(PEPCRL-MVP) in urban multi-intersection dynamic traffic
scenes. PEPCRL-MVP uses a prioritization network to assess
the transitions in the global experience replay buffer according
to each MARL agent’s parameters. With the personalized and
prioritized experience set selected via the prioritization network,
diversity is introduced to the MARL learning process, which can
improve collaboration and task-related performance. Further-
more, PEPCRL-MVP employs an attention module to extract
critical features from dynamic urban traffic environments. These
features are used to develop a progression cognition method
to adaptively group pursuing vehicles. Each group efficiently
targets one evading vehicle. Extensive experiments conducted
with a simulator over unstructured roads of an urban area
show that PEPCRL-MVP is superior to other state-of-the-art
methods. Specifically, PEPCRL-MVP improves pursuing effi-
ciency by 3.95% over Twin Delayed Deep Deterministic policy
gradient-Decentralized Multi-Agent Pursuit and its success rate
is 34.78% higher than that of Multi-Agent Deep Deterministic
Policy Gradient. Codes are open-sourced.

Index Terms—autonomous driving, multi-agent reinforcement
learning, multi-vehicle pursuit, prioritized experience

I. INTRODUCTION

EMPOWERED by the self-learning ability of reinforce-
ment learning (RL) and significantly improved environ-

ment perception, autonomous driving (AD) [1]–[3] is growing
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with fast pace and great potentials to improve driving safety
and traffic efficiency [4]–[6]. Multi-vehicle pursuit (MVP)
is a specific application of AD technology, where multiple
autonomous pursuing vehicles chase one or more moving
vehicles. MVP problems have been attracting extensive re-
search attention due to their increasing applications, including
collision avoidance designs in intelligent transportation sys-
tems, sport/game strategies, the balance and game between
generators and loads in smart grid dispatch, disaster relief
strategies, autonomous police vehicles pursuing suspects, and
similar confrontation scenarios [7], [8]. The MVP tasks are
usually mission and safety-critical. Efficient multi-vehicle col-
laboration and comprehensive perception under complex and
dynamic traffic environments are important to successfully
complete the MVP tasks [9].

Cooperative multi-agent reinforcement learning (MARL)
has been widely studied for multiple agents collaboration and
connected-automated vehicles (CAVs), and could be applied to
MVP applications [10]–[12]. Many MARL-based cooperative
control schemes for CAVs have been proposed. Guan et
al. presented a centralized coordination framework [13] for
autonomous vehicles at intersections without traffic signals,
which significantly improved the road efficiency. [14] and [15]
studied distributed cooperation methods to realize the conflict-
free control of CAVs. [16] and [17] implemented a multi-
agent systems-based hierarchical controller to improve vertical
and horizontal cooperation among the automated vehicles.
It is noted that all the above MARL algorithms for CAVs
were designed to improve driving safety. However, the MVP
tasks have additional mission-critical requirements and require
strong collaboration and adaptation to dynamic environments,
which present significant new challenges to the design of
MARL algorithms.

In the literature, a few game theory-based and other classical
methods for MVP have been proposed [18]. Huang et al.
presented a decentralized control scheme [19] based on the
Voronoi partition of the game domain. Pan et al. designed
a region-based relay pursuit scheme [7] for the pursuers
to capture a single evader. A policy iteration method-based
continuous-time Markov decision process [20] was proposed
to optimize the pursuer strategy. [21] employed a graph-
theoretic approach to study the interactions of the agents
and obtain distributed control policies for pursuers. [9] and
[22] introduced curriculum RL to train pursuers to approach
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Fig. 1. Architecture of PEPCRL-MVP. Urban traffic environment for MVP (a) provides complex pursuit-evasion scenes and an interactive environment for
MARL. Attention-based progression cognition module (b) provides accurate urban traffic information with critical features and group attention. The critical
features and group attention are used to improve DQN-based path planning (c). Prioritization network and prioritized experience selection (d) are used to
improve diversity and personalization of MARL.

the evader. In order to improve the pursuing efficiency, [23]
weighted different evaders to encourage the pursuers to capture
the close evader. In addition, [24] designed cooperative multi-
agent schemes with a target prediction network. Yang et
al. design a graded-Q RL framework [25] to enhance the
coordination capacity of pursuing vehicles. [26] and [27]
adopted MARL to accomplish collaborative pursuit tasks in
simplified traffic scenes with structured grid-pattern roads.
However, these above methods did not consider the dynamic
urban pursuit-evasion environment and the fixed allocation of
pursuit tasks greatly affects the efficiency of the pursuit.

In the existing MARL algorithms for MVP and AD, deep
neural network parameters are shared among agents via cen-
tralized training with decentralized execution (CTDE), which
significantly improves learning efficiency and experience uti-
lization [28]–[30]. Many CTDE-based deep MARL methods
achieve state-of-the-art performance on some tasks, such as
group matching game and path finding [31]–[34]. Although
CTDE can accelerate training [35], it has poor performance
in complex and difficult tasks, such as Google Research
Football [36] and MVP. These complex tasks typically require
substantial exploration, diversified strategies, and efficient col-
laboration among agents [37]. But homogeneous agents tend
to behave similarly because of parameter sharing, limiting effi-
cient exploration and collaboration of MARL agents. Besides,
prioritized experience replay has been the focus of several
studies. Previous studies adopted the temporal-difference error

as priorities of experience [38]–[41] without considering their
variability among multiple agents. And they did not address
the problem of multi-agent homogenization.

According to the above analyses, it can be observed that low
adaptation to dynamic traffic environments and homogeneous
agents severely limit the collaborative pursuing performance.
To address these problems, this paper proposes a progression
cognition reinforcement learning with prioritized experience
(PEPCRL-MVP) for MVP in urban traffic scenes. A frame-
work of the PEPCRL-MVP is shown in Fig. 1. There are two
distinct modules in the new PEPCRL-MVP architecture. The
first is a proposed prioritization network, which is used to
select prioritized training set for each agent in MARL to adjust
its deep neural network parameters. Optimizing agents with
the personalized training set enables each agent to distinguish
itself from others, thereby encouraging efficient collaboration.
The proposed prioritization network can also be applied to a
wide range of multi-agent systems to improve collaboration. In
addition, an attention-based progression cognition module is
designed to adaptively group multiple pursuing vehicles con-
sidering dynamic traffic awareness. With the above designs,
the PEPCRL-MVP can address the problems of low adaptation
and homogeneous agents in the existing MVP approaches and
is expected to greatly improve pursuing performance.

The contributions of this paper can be summarized as
follows.

• This paper proposes a multi-agent reinforcement learning
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approach with prioritized experience for collaborative
multi-vehicle pursuit. A novel prioritization network is
proposed to diversify the optimization and strategies of
MARL, encouraging more efficient collaboration and
experience exploration.

• An attention-based progression cognition module is pro-
posed to divide pursuing vehicles into improvisational
groups according to dynamic urban traffic situations.
Critical features are extracted from the sensor data to
support the grouping process, which supports vehicles
more effectively focusing on one target evading vehicle
and greatly improves pursuing performance.

• This paper applies PEPCRL-MVP to the simulated urban
large-scale roads with 46 junctions and sets different pur-
suing difficulty levels with variable numbers of pursuing
vehicles and evading vehicles. In the three tested diffi-
culty levels, PEPCRL-MVP improves pursuing efficiency
by 3.95% on average compared with TD3-DMAP, and
improves pursuing success rate by 34.78% on average
compared with MADDPG. Codes are open sourced in
https://github.com/BUPT-ANTlab/PEPCRL-MVP.

The rest of this paper is organized as follows. Section II
describes multi-vehicle pursuit in an urban pursuit-evasion
scene and models MVP problem based on partially-observable
stochastic game (POSG). Section III presents MARL with
prioritized experience and its training process. Section IV
presents the reinforcement learning-based path planning algo-
rithm with progression cognition. Section V gives the perfor-
mance of the proposed method. Section VI draws conclusions.

II. MULTI-VEHICLE PURSUIT IN DYNAMIC URBAN
TRAFFIC

This section firstly illustrates the urban complex pursuit-
evasion environment and the constraints, bridging the ‘sim-to-
real’ gap. Section II-B formulates the MVP problem based on
POSG and introduces MARL-based solution to POSGs.

A. MVP in Large-Scale Urban Traffic

This paper focuses on the problem of multi-vehicle pursuit
under the complex urban traffic. We consider a closed large-
scale urban traffic scene with multi-intersection road structure
[42]. The considered scene basically retains the settings of
urban traffic, such as traffic lights and speed limits. Without
loss of generality, we assume there are N pursuing vehicles,
M evading vehicles (N > M ), B background vehicles, and L
lanes. The background vehicles and evading vehicles follow
the randomly selected routes. For the MVP task, an evading
vehicle is deemed captured if any pursuing vehicle is less
than a pre-configured distance dmin from its target evading
vehicles. If all evading vehicles are captured with a given st
time steps, the pursuit task is successfully Done.

In this paper, we have a few constraints for the MVP task.
• All vehicles in the scene (pursuing, evading, and back-

ground vehicles) follow traffic rules, such as obeying
traffic lights, and driving on the right lanes without
collisions.

• All pursuing vehicles and evading vehicles are initialized
at different diagonal points in the map with 0 m/s.

• The maximum speed vmax, maximum acceleration acmax

and maximum deceleration demax of all pursuing vehicles
and evading vehicles are set to be the same.

B. POSG-Based MVP Problem Formulation

In MVP, the decision-making process of a finite set of agents
I deployed in pursuing vehicles with partial observability can
be formalized as POSG, which can be defined as a tuple
MG := (I,S, [An], [On], T r, [Rn]) for n = 1, ..., N . In time
step t, the pursuing vehicle n receives a local observation
ont : S → On that is correlated with the underlying state of
the environment st ∈ S. ont is further processed to snt as
the state of the pursuing vehicle n, that takes an action
ant ∈ An according to snt . Consequently, the environment
evolves to a new state st+1 with the transition probability
Tr = P (st+1 | st, at) : S ×A1×...×AN → S and then the
agent receives a decentralized reward rnt : S ×An → R. [Rn]
is the rewards of all multiple agents. The probability distribu-
tion of actions at a given state is determined by the stochastic
policy πn. The goal of an optimal policy π∗

n is to generate
a distribution that maximizes the discounted sum of future
rewards over an infinite time horizon, which can be expressed
as

π∗
n := argmax

π
E(

∞∑
t=0

γtR(snt , π(s
n
t ))), (1)

in which, γ ∈ [0, 1) is the discount factor, indicating the
impact of future earnings on current expectation value. The
optimal policy maximizes the state-action value function, i.e.,
π∗
n(s

n
t ) = argmax

a
Qπ

n(s
n
t , a).

According to Bellman optimality equation, the optimal
state-action value function can then be derived as

Qπ
n(s

n
t , a

n
t ) = Est+1∼P (.| st,at)(r

n
t + γargmax

a
Qπ

n(s
n
t+1, a)).

(2)
As an emerging AI algorithm, MARL enables agents in

POSGs to make optimal strategies without exact state tran-
sition probability Tr and reward function R. It provides an
excellent solution to MVP with the dynamic and complex
environment. The agent n in MARL updates the Q value
function according to temporal difference error δ by off-policy
learning,

Qπ
n(s

n
t , a

n
t )← Qπ

n(s
n
t , a

n
t ) + αδ, (3)

in which,

δ = rnt + γ argmax
at+1

Qπ
n(s

n
t+1, a

n
t+1)−Qπ

n(s
n
t , a

n
t ), (4)

where α is the learning rate. For pursuing vehicle n, the func-
tion Qπ

n(s
n
t , a

n
t ) calculates the expectation values of turning

left, turning right and going straight according to the current
state snt to assist the vehicle to select the optimal route to
pursue the evading vehicle.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. X, XXXXX XXXX 4

III. MARL WITH PRIORITIZED EXPERIENCE

To introduce diversity among collaborative agents, we de-
sign a prioritized experience boosting MARL equipped with a
prioritization network. Subsection III-A describes the overall
framework and Subsection III-B presents the prioritization
network in detail. Finally, the training process is introduced.

A. Prioritized Experience Boosting MARL Framework

Emerging MARL algorithms, such as Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) [28] and QMIX
[43], adopt centralized training with randomly sampling ex-
perience to improve the utilization of experience and deploy
the same trained model to all the agents. Homogeneous
learning may lead agents to behave similarly. For example, two
pursuing vehicles choose to chase behind one evading vehicle
simultaneously, rather than one pursuing vehicle chasing and
the other intercepting. As a result, homogeneous learning
policy hinders collaboration among agents [44]. Moreover,
randomly sampling experience also affects the training effi-
ciency. Therefore, this paper proposes a prioritized experience
boosting MARL framework, as shown in Fig. 2, to introduce
diversity among agents. It employs a prioritization network
PN to select personalized training set Enper ∈ G by a
central server from the global experience replay buffer G =
{E1, E2, ..., Emax cap} for each agent. max cap represents the
maximum capacity of the global buffer, and E is the replay
experience collected by agent n′ in one epoch,

E = {(sn
′

1 , a
n′

1 , r
n′

1 , s
n′

2 ), ..., (sn
′

st , a
n′

st , r
n′

st , s
n′

st+1)}. (5)

In the prioritized experience boosting MARL framework,
all agents upload exploration experience to the central server.
Every agent samples prioritized experience for training and
updates parameters in the global experience buffer via the
prioritization network. The prioritization network is trained to
model the relationship between the training set features and the
reward change ∆r after updating parameters, thus assisting the
agents in selecting appropriate experience for efficient training
and improving decision performance.

The prioritized experience boosting MARL essentially op-
timizes the gradient descent and parameter update process
of RL-based agents. It differs from the conventional training
way of simply replaying experiences at the same frequency,
regardless of their importance. By prioritizing experiences
based on their significance, the framework enables agents
to train more efficiently with optimal replay transitions and
fosters better collaboration among the agents.

B. Prioritization Network and Annealing Priority

The prioritization network is responsible for assessing the
importance of experience replay transition Ei for all agents.
For a given agent n with parameters θn, the prioritization
network determines the priority and the sampling probability
Pn(i) of experience replay transition Ei. Thus, the prioritiza-
tion network is designed to estimate the performance gain of
the agent n after training with Ei. And, as for RL, the rewards

directly reflect the performance of an agent. Therefore, we use
the prioritization network to fit the reward change ∆rin after
training the agent n with experience replay transition Ei,

∆̂rin = PN(Ei, θn;ϑ), (6)

where ϑ is the parameters of the prioritization network PN .
Meanwhile, in order to improve the stability of the algorithm,
we use the average reward over k historical epochs as the base
reward to calculate the reward change ∆rin. We adopt gradient
back-propagation to update ϑ. The loss of PN is defined as,

J(ϑ) =
1

K

∑
k

[PN(Ei, θn;ϑ)−∆rin]
2
, (7)

where K is the batch size.
The prioritization network output ∆̂rin is used for stochastic

sampling. The prioritization network computes the gain of
each replay transition in the global experience replay buffer
according to the current parameters of agent n, which is de-
fined as {∆̂rin |i = 1, ..., max cap}. And then the maximum-
minimum normalization is performed on the sequence,

qi
n =

∆̂rin −min
j

(
ˆ

∆rjn)

max
j

(
ˆ

∆rjn)−min
j

(
ˆ

∆rjn)
+ ζ, (8)

where ζ is a small positive constant that prevents the sampling
probability becoming zero. However, reward prioritization
sampling may focus on a small subset of the experience that
makes the agent prone to over-fitting. Therefore, the annealing
priority is proposed to calculate sampling probabilities,

Pn(i) =
(qin)

β∑
j

(qjn)
β
, (9)

where the exponent β ∈ (0, 1] determines how much prioritiza-
tion is introduced. β = 0 corresponds to the uniform sampling.
In the early stage of training, uniform sampling is expected
to facilitate agents learning and the prioritization network
convergence. As training proceeds, the PN can gradually and
reliably compute the value of an experience replay transition
and guide the agents gradient decreasing. In practice, we
linearly anneal β from β0 to 1 to ensure stable MARL update
and continuous performance improvement.

C. Training Process of MARL with Prioritized Experience

Typical reinforcement learning utilizes random experience
replay to estimate the distribution of policy and states via
Monte Carlo. However, prioritized replay inevitably changes
the distribution and introduces bias [38]. And the optimal
solution that the estimates converge to is influenced by the
bias. Therefore, this paper adopts Importance Sampling (IS)
to abate the impact of the bias,

ωi
n

′
= (max cap× Pn(i))

−λ
, (10)

that fully compensates for the non-uniform probabilities Pn(i)
if λ = 1. And the weights is normalized by 1/max

j
ωj
n
′ for
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Fig. 2. Architecture of prioritized experience boosting MARL.

stability to get ωi
n. It is worth noting that the choice of hyper-

parameters λ interacts with β in annealing priority. Increasing
them both simultaneously encourages more aggressive priority
sampling. Considering IS, Eq. (3) can be reformulated as,

Qπ
n(s

n
t , a

n
t )← Qπ

n(s
n
t , a

n
t ) + αωi

n δ. (11)

Introducing IS into the training process has another benefit.
IS can reduce the step size of non-linear function approxi-
mation, e.g. deep neural networks. In prioritized experience
boosting MARL, experience replay transitions favored by the
prioritization network may be revisited many times, and the IS
correction reduces the gradient magnitude to ensure that the
agents converge to the globally optimal policy.

Distributed training is used in the proposed prioritized
experience boosting MARL. The overall training process
is shown in Algorithm 1. For every RL-based agent, the
prioritization network firstly evaluates the priority of each
experience transition according to the agent’s parameters. And
the annealing priority is obtained to help select personalized
training set Enper. Then the agent’s parameters are updated
with Enper via Eq. (11). After the parameters of all the agents
have been updated, the prioritized experience boosting MARL
is tested, and the gain of each agent’s reward is calculated.
Finally, the prioritization network is trained via Eq. (7). With
this training process, the prioritization network can accurately
compute the value of experience replay transitions for each
agent. Moreover, by training with personalized and optimal
experience, diverse multiple agents can largely improve col-
laboration and convergence efficiency.

IV. PROGRESSION COGNITION DQN-BASED
COOPERATIVE PATH PLANNING

This section will introduce a progression cognition DQN-
based cooperative path planning for pursuing vehicles. Firstly,

Algorithm 1: Training Process of Prioritized Experi-
ence Boosting MARL
Input: N agents, prioritization network PN , average

reward of each agent in k historical test epochs
[r̄1, r̄2, ..., r̄N ], and global experience replay
buffer G

1 for n=1:N do
2 for i=1:max cap do
3 Get the priority of Ei in G by PN considering

parameters θn of agent n;
4 end
5 Calculate the annealing priority Pn for each replay

transition via Eq. (8) and Eq. (9);
6 Sample personalized training set Enper for agent n

according to Pn;
7 Update parameters θn of agent n via Eq. (11);
8 end
9 Test the updated MARL and get distributed rewards

[r1, r2, ..., rN ] ;
10 Calculate the change of rewards [∆r1,∆r2, ...,∆rN ] ;
11 Calculate the loss of PN via Eq. (7) and update PN ;

the attention-based progression cognition module is presented
in Section IV-A. DQN-based path planning, as the core de-
cision making algorithm, is then described in Section IV-B.
Finally, Section IV-C introduces the decision-making and
training process of the proposed PEPCRL-MVP.

A. Attention-Based Progression Cognition Module

In complex urban traffic environments pursuing vehicles
need real-time and accurate sensing of driving environments
and the status of evading vehicles. We propose attention-
based progression cognition module to extract critical traffic
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features and assist pursuing vehicles to select suitable evading
vehicle as the target. It helps each pursuing vehicle focus
on only one evading vehicle and work with other pursuing
vehicles in a group to improve pursuit performance. Moreover,
the allocation of pursuing tasks with progression cognition
enhance collaboration among pursuing vehicles.

The locations of the pursuing and evading vehicles are
very important for collaboration and decision making of the
pursuing vehicles. In this paper, the location of vehicle i

is denoted by locit =
{
Cl, pos

i,l
t

}
. Cl denotes the binary

code of lane l where vehicle i is located, and posi,lt denotes
the distance between vehicle n and the starting of lane l at
time t. And the length of locit is denoted by lenloc. The
positions of pursuing and evading vehicles can be repre-
sented respectively as LOC Pt = {loc1t , loc2t , ..., locNt } and
LOC Et = {loc1t , loc2t , ..., locMt }. Moreover, the adjacency
matrix RT is used to represent the topology of roads. Assume
that there are L lanes in the pursuit-evasion environment. The
size of matrix RT is L × L. An element ei,j in row i and
column j of RT indicates whether the vehicles can drive
directly from lane i to lane j.

To choose an optimal pursuit route, the information of the
number of background vehicles in each lane is also utilized by
the progression cognition module. The number of background
vehicles in each lane forms a vector of size 1 × L, defined
as BVt. We use convolutional neural networks (CNNs) in
the module to extract key traffic features from RT and BVt.
Specifically, RT is fed into the convolutional layers. Then
its output combined with BVt is input to the fully connected
layers, and finally the urban traffic feature F is obtained.

As the core of progression cognition module, multi-head
attention is used to help pursuing vehicles focus on evading
vehicles. It simultaneously takes into account urban traffic
features F . All pursuing vehicles share their locations. And
F is attached to the vehicle position vectors locit, which
is a word embedding. Therefore, the query q of multi-head
attention is represented as [[loc1t , F ], ..., [loc

N
t , F ]] and the key

K is represented as [[loc1t , F ], ..., [loc
M
t , F ]]. Group attention

weights Wg can be derived as

Wg = ψlinear(Concact(W1,W2, ...,Wh)), (12)

in which,

Wi = Softmax(
qi K

T
i√

dK
). (13)

Here, h is the number of heads and dK is the dimension
of K’s features. The size of group attention weights Wg

finally obtained is N × M . The nth row of Wg represents
the attention weight of pursuing vehicle n on all evading
vehicles, where a larger value means more attention. Every
pursuing vehicle selects an evading vehicle with the maximum
attention weight as its target vehicle. Due to the high dynamic
of the urban traffic, the target evading vehicle selected by
pursuing vehicle n may vary from time steps. Therefore, the
progression cognition divides the pursuing vehicles adaptively
to collaborative groups according to the traffic situations.

Fig. 3. Architecture of DQN-based multi-vehicle pursuit path planning.

B. Multi-Vehicle Pursuit Path Planning

Deep Q-Network (DQN) is a popular reinforcement learn-
ing algorithm and has been applied for decision-making in
various scenarios. In DQN, artificial neural networks (ANNs)
are used to approximate Qπ

n(s
n
t , a

n
t ). DQN adopts a dual

network framework, consisting of online network and target
network, which have the same structure. The two ANNs are
parameterized by θn and θn

′. In MVP path planning, DQN
is utilized to evaluate the value Q of the pursuing vehicle’s
each action according to its real-time state snt , denoted as
Qπ

n(s
n
t |θn ). Qπ

n(s
n
t |θn ) is used as the policy for agent n to

select the appropriate action. The architecture of multi-vehicle
pursuit path planning algorithms is shown in Fig. 3.

In this paper, the action space of each pursuing vehicle
includes three actions, turning left, turning right, and going
straight. For agent n, the state snt consists of four parts,
including its own position locnt , the position of the target
evading vehicle being focused on locmt , the traffic critical
feature F and its attention weight vector Wn

g . Here, Wn
g

represents the attention weight of agent n on all evading
vehicles obtained via attention-based progression cognition
module, which is the nth row of Wg .

To motivate the capture of pursuing vehicles and incentivize
efficient training, a carefully designed reward rnt consists of
sparse reward and dense reward. Sparse Reward: Only when
a collaborative group successfully captures its target, all mem-
bers in the group obtain a positive reward V . Dense Reward:
Sparsity of reward hinders the exploration of optimal policy
by agents. Therefore, a dense reward is set for each pursuing
vehicle to address this problem. The dense reward contains the
following two components, 1) The pursuing vehicles which
do not capture the target vehicle are given a negative reward
of c at each time step; 2) A distance-sensitive reward is set
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to improve the pursuing efficiency. When a pursuing vehicle
reduces the distance from its current target compared to that
at the last time step, it will obtain a positive reward, and
conversely, it will be punished with a negative reward.

Therefore, the formulation of rnt is expressed as

rnt =

{
V if successful pursuit
c× t+ σ

(
dn,mt − dn,mt−1

)
else

,

(14)
where σ is a negative reward factor, and dn,mt denotes the
distance of the pursuing vehicle n from its target evading
vehicle m at time step t.

Adopting prioritized experience boosting MARL, we can
compute the following gradient by differentiating the loss
function with respect to the weights,

∇θn L(θn) = αωi
n δ∇θn Q

π
n(s

n′

t , a
n′

t ; θn), (15)

in which,

δ = rn
′

t + γmax
an′
t+1

Qπ′

n (sn
′

t+1, a
n′

t+1; θn
′)−Qπ

n(s
n′

t , a
n′

t ; θn),

(16)
(sn

′

t , a
n′

t , r
n′

t , s
n′

t+1) ∈ Enper, (17)

θn is updated via stochastic gradient descent and Eq. (15).
And target network performs soft update at each training step,

θn
′ ← τθn + (1− τ)θn′. (18)

C. PEPCRL-MVP Decision-Making and Training Process

The decision-making and training process of the proposed
PEPCRL-MVP is shown in Algorithm 2. N DQN-based path
planning agents and the prioritization network are initialized
firstly. At the beginning of each epoch, N agents are trained
distributedly with personalized and prioritized experience via
Algorithm 1, if the number of transitions in the global expe-
rience replay buffer G reaches max cap. Then the pursuit-
evasion environment is initialized to test PEPCRL-MVP. In
each time step of pursuit, attention-based progression cogni-
tion processing is invoked to get F and Wg . Then each agent
uses the partial observation to obtain optimal path planning
and the strategy of all agents is performed. At the end of
the epoch, experience of all pursuing vehicles is stored to G.
Finally, change of rewards is calculated and used to update
the prioritization network PN via Eq. (7).

In the decision-making and training process of PEPCRL-
MVP, collaboration among agents is performed in the follow-
ing three aspects. 1) Information Sharing: During the pursuit
process, the pursuing vehicles upload their own positions
and observation information to the central server for traffic
feature extraction and task allocation; 2) Task Allocation:
The proposed attention-based progression cognition module
dynamically calculates group attention to adaptively group
pursuing vehicles; 3) Experience Sharing: To increase the
utilization of experience, all agents upload their experience to
the global experience buffer. During the training process, every
agent selects prioritized experience from the global experience
buffer via the prioritization network for training and updates
its parameters.

Algorithm 2: PEPCRL-MVP Decision-making and
Online Training Algorithm

1 Initialize N DQN-based path planning agents and the
prioritization network PN ;

2 Initialize global experience replay buffer G ;
3 for e=1:max epoch do
4 if len(G) = max cap then
5 Train N agents via Algorithm 1, Eq. (15) ;
6 end
7 Initialize an urban pursuit-evasion environment and

obtain S1 = {LOC P1,LOC E1, BV1};
8 Get F and Wg by progression cognition;
9 for t=1:st do

10 for n=1:N do
11 snt ← [locnt , loc

m
t , F,W

n
g ];

12 Obtain ant by Qπ
n(s

n
t |θn );

13 end
14 Perform the strategy at and observe St+1;
15 Get F and Wg by progression cognition;
16 Append (snt , a

n
t , r

n
t , s

n
t+1) to En, n = 1, ..., N ;

17 St ← St+1 ;
18 if Done then
19 break;
20 end
21 end
22 Store En to G, n = 1, ..., N ;
23 Get per step average rewards [r1, r2, ..., rN ];
24 if len(G) = max cap then
25 Calculate change of rewards and update PN ;
26 end
27 Update mean rewards of k epochs [r̄1, r̄2, ..., r̄N ];
28 end

V. EXPERIMENTS AND RESULTS

A. The Simulator and Settings

As a MARL algorithm, PEPCRL-MVP collects training data
and updates parameters by interacting with the simulated urban
traffic environment. To comprehensively evaluate the proposed
PEPCRL-MVP, we build three urban traffic road scenes with
bidirectional two lanes based on SUMO [42], including 3× 3
and 4× 5 grid-pattern urban roads, and real map-based urban
roads. The real map-based urban roads simulate those in an
area inside the second ring road of Beijing, bridging the ‘sim-
to-real’ gap. And the real urban road map is obtained from an
open-sourced map website.1 During the simulation process,
the number of background vehicles remains constant, and the
background vehicles follow randomly selected routes. More-
over, to evaluate the robustness of PEPCRL-MVP, we design
three different difficulty levels of MVP tasks with variable
numbers of pursuing vehicles N and evading vehicles M ,
respectively, 6 pursuing vehicles chasing 3 evading vehicles
(denoted by P6-E3), 7 pursuing vehicles chasing 4 evading
vehicles (denoted by P7-E4) and 8 pursuing vehicles chasing
5 evading vehicles (denoted by P8-E5). All evading vehicles

1https://www.openstreetmap.org/
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randomly select escape routes. The simulation parameters are
shown in TABLE I and the PEPCRL-MVP parameters are
shown in TABLE II. The internal structure of DQN is shown
in TABLE III.

TABLE I
SIMULATOR SETTINGS

Parameters Values
maximum time steps st 800
capture distance dmin 5 m
maximum speed vmax 20 m/s

maximum acceleration acmax 0.5 m/s2

maximum deceleration demax 4.5 m/s2

3×3
urban roads

number of lanes L 48
length of location code lenloc 7

number of junctions 16
length of each lane 500 m

number of background vehicles 240

4×5
urban roads

number of lanes L 98
length of location code lenloc 8

number of junctions 30
length of each lane 400 m

number of background vehicles 500

real map-based
urban roads

number of lanes L 106
length of location code lenloc 8

number of junctions 46
number of background vehicles 300

TABLE II
PARAMETER SETTINGS

Parameters Values Parameters Values
α 10−4 V 400
γ 0.9 c 0.02
β0 0.01 σ 5
λ 0.5 τ 0.001

TABLE III
STRUCTURE OF THE DEEP Q NETWORK

Layers Deep Q Network
Input (batch size, 2× lenloc +M + 1)

Dense Layer 1 (2× lenloc +M + 1, 32 )
Activation Function Relu

Dense Layer 2 (32,48)
Activation Function Relu

Dense Layer 3 (48,32)
Activation Function Relu

Dense Layer 4 (32,16)
Activation Function Relu

Dense Layer 5 (16,3)
Activation Function SoftMax

Output (batch size, 3)

B. Ablation Experiments

We conduct 100 tests on every model and measure the
pursuit performance in terms of five metrics, which are average
reward (AR), the standard deviation of reward (SDR), average
time steps (ATS), the standard deviation of time steps (SDTS),
and the pursuing success rate (SR). Ablation experiments are
designed to investigate the effect of the proposed prioritized
experience selection and progression cognition modules in
PEPCRL-MVP. The ablation experiment results are shown
in columns 4 to 6 in TABLE IV. The results of A-MVP

correspond to a DQN-based path planning with progression
cognition without prioritized experience selection, and the
results of B-MVP correspond to a DQN-based path plan-
ning equipped with prioritized experience selection without
attention-based progression cognition.

PEPCRL-MVP shows the best performance in scenes with
different difficulty levels under the same urban traffic road
structure. In the real map-based urban road, compared with
A-MVP, the AR of PEPCRL-MVP increases 52.53%, 47.46%,
and 20.96%, respectively, and the ATS of PEPCRL-MVP
decreases 2.82%, 3.31%, and 3.24% in P6-E3, P7-E4, and
P8-E5 difficulty levels, respectively. Furthermore, the SDR and
SDTS of PEPCRL-MVP are comparable to those of A-MVP.
These results reveal that prioritized experience selection can
effectively promote cooperation among pursuing vehicles and
improve pursuing performance.

Given the pursuing difficulty level, PEPCRL-MVP also
substantially outperforms the other methods under different
urban traffic road scenes. Taking the P6-E3 as an example, the
SDTS of PEPCRL-MVP is 7.55%, 2.80% and 1.35% lower
than that of B-MVP under 3 × 3, 4 × 5, and real map-based
scenes, respectively. The results show the proposed method has
excellent robustness. The SDR is 10.72% lower than that of
B-MVP on average in the P7-E4 difficulty level. These results
can be explained by the fact that attention-based progression
cognition can considerably enhance the stability of pursu-
ing vehicles’ performance. Moreover, the proposed PEPCRL-
MVP has a better generalization and pursuing validity than
A-MVP and B-MVP. It is evident that in different scenes,
whether the urban road structure or the pursuing difficulty level
is different, PEPCRL-MVP has the greatest SR. Concretely,
the SR of PEPCRL-MVP is 19.67%, 11.92% higher than that
of A-MVP and B-MVP on average, respectively.

In addition, to investigate the impact of the prioritized expe-
rience selection on the PEPCRL-MVP’s training convergence,
we present the average reward with the P6-E3 setting in Fig.
4. Fig. 4 (a) shows the average reward with training epochs
under the 3× 3 grid pattern. It can be noticed that compared
with A-MVP, PEPCRL-MVP has a smaller fluctuation and a
more stable convergence in the late stage of training. For the
4×5 grid pattern, as shown in Fig. 4 (b), although the average
reward of A-MVP grows fast in the early training stage,
PEPCRL-MVP has a faster convergence speed and higher
convergence trend in the late training stage. In Fig. 4 (c),
under the real map-based urban road, PEPCRL-MVP shows
an obviously stronger convergence. According to the results
in Fig 4, it can be observed that the prioritized experience
selection greatly facilitates the convergence of agent learning,
and helps improve the pursuing performance.

The above results obtained from the ablation experiments
demonstrate that the prioritized experience selection network
can select appropriate training set for each agent, which
overcomes the problem of agent differentiation in the existing
MVP approaches. It can effectively promote the convergence
of agent learning, and enhance cooperation among agents.
Furthermore, the progression cognition module can decide
appropriate targets for each pursuing vehicle according to
the real-time traffic situation and MVP task, consequently
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TABLE IV
EVALUATION RESULTS

Road
Structure

N-M
Evaluate
Metrics

PEMARL-
MVP

A-MVP B-MVP C-MVP DQN DDPG MADDPG
TD3-

DMAP
PPO T3OMVP

3×3

P6-E3

AR 3.164 2.463 2.558 3.041 2.154 1.461 1.552 2.252 2.247 0.698
SDR 6.927 7.656 8.069 6.833 7.179 6.549 6.831 6.919 7.831 5.701
ATS 642.87 684.77 655.40 643.21 677.35 700.75 693.26 676.9 687.30 717.61

SDTS 175.410 173.669 189.742 176.495 179.388 166.467 171.972 176.389 181.518 136.882
SR 0.62 0.48 0.51 0.58 0.47 0.36 0.42 0.48 0.49 0.37

P7-E4

AR 2.183 1.407 1.915 1.890 1.372 0.554 0.974 0.608 1.365 0.746
SDR 6.694 6.482 7.004 6.702 6.152 5.889 5.740 5.617 6.082 5.711
ATS 684.50 692.77 688.13 687.79 695.89 738.15 726.81 735.03 696.56 700.54

SDTS 150.082 149.366 159.150 152.516 153.201 119.352 132.714 120.75 152.391 145.638
SR 0.55 0.46 0.49 0.52 0.45 0.35 0.37 0.36 0.47 0.38

P8-E5

AR 1.186 0.864 0.997 0.927 0.672 0.138 0.294 0.084 0.589 0.484
SDR 4.537 4.814 5.030 4.484 4.769 3.472 3.825 2.046 4.779 4.268
ATS 690.51 701.13 696.55 695.95 723.58 749.65 741.73 764.18 699.74 733.95

SDTS 148.869 133.648 148.770 149.458 123.537 102.634 109.840 101.720 139.037 111.974
SR 0.52 0.46 0.48 0.49 0.44 0.35 0.35 0.30 0.46 0.37

4×5

P6-E3

AR -0.176 -0.874 -0.628 -0.591 -1.249 -2.179 -1.979 -1.395 -1.903 -2.302
SDR 3.769 4.573 2.301 4.046 5.329 1.484 3.722 5.428 4.121 4.381
ATS 726.55 738.63 734.33 728.18 742.07 748.62 745.99 739.82 743.47 738.68

SDTS 126.891 124.957 130.540 125.084 124.271 109.798 115.423 130.294 113.959 122.204
SR 0.39 0.35 0.38 0.37 0.33 0.27 0.27 0.31 0.29 0.27

P7-E4

AR -1.728 -1.658 -1.643 -1.712 -1.842 -2.191 -1.916 -1.863 -2.100 -2.388
SDR 3.894 4.097 3.672 3.782 3.783 0.399 2.768 4.509 2.949 3.886
ATS 724.81 736.23 731.06 729.85 739.24 765.01 761.77 759.73 774.56 774.72

SDTS 130.391 118.947 114.458 128.493 127.289 111.900 124.328 132.343 74.837 78.892
SR 0.32 0.29 0.30 0.30 0.27 0.21 0.22 0.25 0.16 0.13

P8-E5

AR -1.892 -2.285 -1.972 -2.016 -2.314 -2.785 -2.735 -2.187 -2.026 -3.725
SDR 3.075 2.819 3.012 3.140 3.396 2.722 2.431 3.059 3.229 2.646
ATS 758.66 760.63 765.71 762.57 772.47 781.62 781.54 779.42 773.13 784.37

SDTS 79.871 85.183 78.258 80.492 83.856 23.915 37.835 35.683 76.244 12.699
SR 0.18 0.16 0.16 0.17 0.15 0.11 0.11 0.12 0.15 0.09

Real Map

P6-E3

AR -0.871 -1.835 -1.399 -1.035 -2.136 -2.903 -2.264 -2.115 -1.950 -2.567
SDR 1.194 0.941 1.394 1.218 0.856 0.769 0.971 0.832 1.326 0.983
ATS 617.48 635.37 624.46 622.74 645.53 663.81 651.74 647.91 633.82 644.35

SDTS 197.582 206.494 200.281 196.934 191.161 188.034 192.899 200.556 198.539 204.794
SR 0.68 0.59 0.62 0.65 0.55 0.49 0.50 0.51 0.58 0.47

P7-E4

AR -1.497 -2.849 -2.068 -2.107 -3.097 -3.773 -3.318 -3.019 -2.971 -3.416
SDR 0.835 0.954 1.261 1.192 0.751 0.662 0.892 0.767 0.946 0.596
ATS 635.90 657.62 643.58 642.19 665.49 674.75 660.97 668.32 677.15 685.13

SDTS 195.644 189.341 201.894 193.577 181.518 183.612 208.259 180.703 186.439 126.547
SR 0.62 0.48 0.53 0.55 0.45 0.41 0.47 0.43 0.39 0.30

P8-E5

AR -2.629 -3.326 -2.989 -3.017 -4.076 -4.698 -3.871 -3.809 -3.275 -3.984
SDR 0.801 0.592 0.836 0.763 0.410 0.470 0.837 0.966 0.714 0.241
ATS 662.33 684.54 671.44 670.53 701.88 694.29 684.16 678.16 684.61 707.06

SDTS 153.71 175.043 160.515 151.375 150.537 139.478 179.114 178.559 180.397 155.917
SR 0.56 0.41 0.48 0.50 0.36 0.34 0.41 0.37 0.38 0.27

improving pursuing efficiency and system stability.

To verify the necessity of inputting group attention to DQN,
we conducted an ablation experiment C-MVP, whose the DQN
inputs are the ego pursuing vehicle position, the position
of its target vehicle, and the urban traffic features without
group attention. TABLE IV shows the experiment results. In
the three urban traffic road scenes, the ATS of PEMARL-
MVP is 4.38 time steps less than that of C-MVP on average.
With increasing difficulty, the advantage of PEMARL-MVP in

pursuit efficiency becomes more and more apparent compared
with C-MVP. For example, in the real map urban traffic road,
the ATS of PEMARL-MVP decreases by 0.84%, 0.98%, and
1.2% in P6-E3, P7-E4, and P8-E5 difficulty levels, respec-
tively. Moreover, in all tested scenes, the SR of PEMARL-
MVP improves by 7.5% over that of C-MVP. The superiority
of PEMARL-MVP over C-MVP illustrates that adding group
attention to DQN can assist in the decision-making of pursuit
vehicles and improve the pursuit efficiency.
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Fig. 4. Training reward of P6-E3 in different scenes.

C. Comparison with Other Methods

We compare the PEPCRL-MVP to the other state-of-
the-art RL approaches for MVP, including DQN, DDPG,
MADDPG, Twin Delayed Deep Deterministic policy gradient-
Decentralized Multi-Agent Pursuit (TD3-DMAP) [9], Proxi-
mal Policy Optimization (PPO), and Transformer-based Time
and Team RL for Observation-constrained MVP (T3OMVP)
[26]. The comparison results are presented in the columns
beginning from column 7 in TABLE IV.

According to the comparison results, for any given pursuing
difficulty level, PEPCRL-MVP shows remarkable performance
improvement under all the traffic road scenes. For the setting
of P8-E5, the AR of PEPCRL-MVP is improved by 43.41%
and 42.5% on average, respectively, compared with DQN and
PPO under the 3×3, 4×5 and real map-based road structures,
which are the top two performances of all comparison methods
in general. And the ATS of PEPCRL-MVP decreases by
4.18% on average compared with other methods in the P8-
E5 difficulty level under the real map-based urban road.
The results show that the proposed PEPCRL-MVP approach
can highly improve pursuing efficiency and have excellent
adaptability to different road scenes and traffic situations.

Under the same urban traffic road scenes, PEPCRL-MVP
shows competitive robustness and pursuing effectiveness at
different pursuing difficulty levels. Under the 3×3 grid pattern
urban roads, as the pursuing difficulty level increases, the
ATS of PEPCRL-MVP is 6.46%, 1.73%, and 1.32% lower
than that of PPO which has the second-best performance, in
the P6-E3, P7-E4, and P8-E5 difficulty levels respectively.
Comprehensively, we evaluate the SR metric for all methods to
further compare PEPCRL-MVP to other methods. The SR of
PEPCRL-MVP is 51.09% higher than that of other methods on
average under the 4×5 scene, and 47.53% higher than that of
other methods on average for all scenes. These results indicate
that PEPCRL-MVP greatly improves pursuing efficiency and
has stronger robustness.

It is noted that there is no significant SR and SDTS
performance improvement by PEPCRL-MVP. This can be
explained by the fact that we set the maximum time steps
to 800, which leads to a higher standard deviation for the
methods with better performance in the 100 tests. Although

the SDR and SDTS do not obtain great results, there is a
considerable increase in AS, ATS, and SR for the PEPCRL-
MVP approach. Specifically, in the P7-E4 difficulty level under
the real map-based simulation environment, even if the SDR
and SDTS of PEPCRL-MVP are 11.16% and 7.78% higher
than those of DQN, the AR of PEPCRL-MVP is greatly
improved, increasing by 51.66%. The SDR and SDTS o f
PEPCRL-MVP are respectively 11.54% and 3.37% lower than
those of PPO, which has the second-best performance. At
the same time, the AR increases by 40.81%, and the ATS
decreases by 6.46% in the P6-E3 difficulty level under the
3×3 road scene. These results demonstrate that PEPCRL-MVP
can achieve great improvements both in algorithm stability
and pursuing efficiency in simple scenes, and sacrifices some
stability to obtain higher pursuing efficiency and better average
performance in some complex scenes.

Fig. 4 describes the convergence curve of average reward
with training epochs of the P6-E3 under different road struc-
tures. In Fig. 4 (a), both TD3-DMAP and PPO have large
fluctuations in the late stage of training under the 3× 3 road
structure scene, while TD3-DMAP shows a superior growth
trend and stable convergence. Fig. 4 (b) depicts the average
reward under the 4 × 5 urban road scene, presenting that
the PEPCRL-MVP has advantageous performances in both
convergence rate and convergence stability compared with
TD3-DMAP and PPO. For the real map-based urban road
scene, as shown in Fig. 4 (c), compared with other methods,
PERL has a better convergence trend and higher reward. In
conclusion, Fig. 4 illustrates that compared with TD3-DMAP
and PPO, which belong to the superior performance in all
comparison methods, PEPCRL-MVP makes the competitive
convergence trend and stability, demonstrating its superiority
and effectiveness.

D. Case Study
In this section, we analyze the PEPCRL-MVP pursuing

processes in a case study with a real map-based scene in
detail. Representative results are shown in Fig. 5. Fig. 5
(a) presents the distribution of background vehicles and the
pursuing routes, where, the number marked next to the lane
represents the average number of background vehicles per time



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. X, XXXXX XXXX 11

Fig. 5. Case study of P6-E3 in real map-based scene.

step in this lane during the pursuit. If the average number of
vehicles in a lane is greater than 10, it means that the lane
is congested. Also, Fig. 5 (a) shows the routes of pursuing
vehicles p2 and p5. Following the group attention weights, p2
and p5 form a group to capture e1 from A. From the routes of
p2 and p5, it can be seen that they predict the trajectory of the
target evading vehicle and collaboratively pursue and intercept
e1. It is worth noting that p5 plans the path to C while avoiding
the congested lane l1 and lane l2. Finally, p5 catches e1 at D.
This pursuit process shows the efficient cooperation of p2 and
p5.

Fig. 5 (b) shows the group attention weights in 260 time
steps during the pursuit. It can be observed that p2 and p5
both focus their attention on e1. Moreover, each pursuing
vehicle has its own target evading vehicle and each evading
vehicle may be pursued by one or more pursuing vehicles.
It indicates that the progression cognition module can select
suitable targets for pursuing vehicles according to the traffic
situation and the locations of evading vehicles. The PEPCRL-
MVP can achieve efficient and effective collaborative multi-
vehicle pursuit.

Fig. 6. Training loss of prioritization network in the real map-based scene.

To investigate the impact of the prioritization network, we
show the training loss of the prioritization network in the
real map-based scene in Fig. 6. The prioritization networks
with different numbers of pursuing and evading vehicles all
converge in 100 training epochs. The training of the priori-
tization network with a smaller number of agents converges
more easily, but the mean square error between the network
output and reward gain is larger. It is clear from Fig. 6 that as
the number of agents increases, the loss of the prioritization
network decreases. This suggests that extensive experience
collection greatly contributes to prioritized network perfor-
mance. It also demonstrates that the prioritization network can
effectively evaluate the global experience pool, thus facilitating
the learning and collaboration of multiple agents.

VI. CONCLUSION

The emerging MARL technology is promising for multi-
vehicle pursuit applications. However, the mission and safety-
critical MVP tasks present great challenges, especially for
the chasing of multiple target vehicles. While there are ex-
isting MARL algorithms proposed for MVP, they usually
applied centralized training with randomly selected experience
samples and did not adapt well to dynamically changing
traffic situations. To address the problems in the existing
MVP algorithm, in this paper we proposed a novel MVP
approach (called PEPCRL-MVP) to improve MARL learning,
collaboration, and MVP performance in dynamic urban traffic
scenes. There are two major new components included in
PEPCRL-MVP, a prioritization network and an attention-based
progression cognition module. The prioritization network was
introduced to effectively select training experience samples
and increase diversity for the optimization and behavior of
MARL, which improved agent collaboration and extensive
exploration of experience. The progression cognition module
was introduced to extract key traffic features from the sensor
data and support the pursuing vehicles to adaptive adjust
their target evading vehicles and path planning according to
the real-time traffic situations. A simulator was developed
for evaluation of the proposed PEPCRL-MVP approach and
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comparison with existing ones. Extensive experiments were
conducted over urban roads in an area inside the second ring
road of Beijing on PEPCRL-MVP and several approaches. Ex-
periment results demonstrate that PEPCRL-MVP significantly
outperforms the other methods for all the investigated road
scenes in terms of performance metrics including pursuing
success rate and average rewards. The results also demonstrate
the effectiveness of the proposed two components. Jointly they
largely improve collaboration and traffic awareness, leading to
improved MVP performance. In the future, we will investigate
the impact of additional factors in MVP, such as pedestrians,
social activities, and communication delay, on the design and
analysis of MVP approaches. We will also design smarter
MVP methods for more real scenes, such as evading vehicles
not following traffic rules.
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