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Abstract: Railway turnout (RT) is a crucial component of railway infrastructure that consists of several 

components. Assessing the derailment probability of freight wagons passing through the turnout is crucial 

for quantifying failure risks and optimizing the performance of the freight wagon-turnout system (FWTS). 

However, existing assessment methods often require extensive model evaluations and impose substantial 

computational costs. To address this issue, an efficient reliability analysis method is established for assessing 

the derailment risk at RTs. Firstly, a dynamic model is developed to capture the wheel-rail dynamic 

interaction and the numerical model is validated by field tests. Secondly, to reduce the computational cost in 

the reliability analysis, an efficient adaptive Kriging method based on an error stopping criteria and a learning 

function is adopted to estimate the failure probabilities under multiple failure modes of wheel derailments. 

Based on the efficient learning function and convergence criterion, accurate failure probability results can 

be obtained with a small number of multibody and finite element coupled dynamic simulations. Furthermore, 

the prediction accuracy of the proposed method in capturing random characteristics for FWTS is evaluated. 

Finally, the influence of the evolution of rail wear on the failure probability is further discussed. 
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1 Introduction 

Railway turnouts play a crucial role in guiding trains from one track to another, enhancing the efficiency 

and flexibility of rail networks. Ensuring the safety and reliability of vehicle operations requires a thorough 

understanding of the uncertainty quantification (UQ) in the vehicle-turnout dynamic system, making it a 

subject of significant interest in academic research and engineering applications. When compared with the 

mainline, the dynamic interaction between the vehicle and turnout is more complicated. On the one hand, 

turnouts are constructed using multiple variable-section rails, resulting in discontinuous wheel-rail contact 

points. This discontinuity leads to high impact loads between the wheel and turnout [1]. On the other hand, 

sharp curves are widely set before or after the railway switch, increasing the likelihood of wheel flange 

contact. Shockingly, more than 30% of train derailments are related to the railway turnouts [2, 3]. Figure 1 

illustrates a freight wagon derailment that occurred at a #1:6 symmetrical turnout in China. Based on field 

observations, the leading wheelset initially began climbing the rail from the switch toe and subsequently 

rolled a short distance on the railhead. Finally, the freight wagon drops down on the sleepers at the heel of 

the switch rail. 

The long-term service of railway vehicles and turnout structures and high-density traffic loads would 

result in undesirable uncertainties, which in turn affects the dynamic interaction characteristics and safety of 

the freight wagon. These factors increase the derailment probabilities during railway vehicle passes through 

the RT, and increase the difficulty of random vibration analysis. For a comprehensive assessment and 

investigation of vehicle safety at RTs, it is crucial to carefully account for the uncertainties present in the 

FWTS. 

 
Figure 1. A derailed freight wagon at a #1:6 turnout. 

Some studies focus on the dynamic characteristics and passing performance during the railway vehicle 
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passes over the turnout. For instance, Kassa et al. [4] proposed a time-domain solution approach that 

addressed the general three-dimensional dynamic interaction between trains and turnouts (switches and 

crossings). Bruni et al. [5] compared different modelling approaches for the railway turnout system using 

finite element method (FEM) and multibody dynamics theory. Chang et al. [6] investigated the car-body 

shaking when high-speed train passes through the railway turnouts. Xu et al. [7] established an efficient 

method of time step variation to solve the matrix model for the vehicle-turnout model considering the multi-

point contact between the wheel and turnout rails. In order to study the effect of high frequency vibration of 

the vehicle-turnout system, Chen et al. [8, 9] developed a refined vehicle-turnout dynamics algorithm called 

SDITT and investigated the effect of flexible deformation of the wheelset on the system vibrations. Lai et al 

[10, 11, 12] built a freight wagon-turnout coupled dynamic model to study the dynamic derailment under 

complex conditions. 

However, the aforementioned studies did not account for uncertainties, which actually play a crucial 

role in understanding the dynamic behaviour of the FWTS comprehensively. Real-world scenarios involve 

uncertainties arising from manufacturing and assembly errors, variations in track geometries [13], train load 

variations, fluctuations in material properties, and degradation of vehicle suspension systems. Therefore, it 

is necessary to take this randomness into consideration, especially for complex track structures like turnouts. 

Recent researches have increasingly focused on the uncertainties of vehicle-track (main line) and 

vehicle-track-bridge systems, primarily investigating stochastic vibration responses of the system [14]. 

Various methods, such as first/second order reliability method [15], Monte Carlo simulation (MCS) [16], 

response surface method (RSM) [17], probability density evolution method (PDEM) [18], and metamodel 

approach [19] have been used for reliability analysis of vehicle-track systems. For example, Li et al. [20] 

used RSM to assess the service reliability of high-speed trains considering the randomness of the wavelength 

of the track irregularities. Wang et al. [21] derived the stochastic equations of the vehicle-track dynamic 

model and predicted the random responses of the railway vehicle. Xu and Zhai [22] developed a 

comprehensive model for stochastic analysis and reliability assessment of vehicle-track systems subjected 

to random earthquakes and track irregularities. 

Although the random finite element and multibody coupled dynamic simulation method can be 

employed to represent in vehicle and track parameters in the reliability analysis, they generally require a 

significant number of model evaluations and hence huge computational costs. To obtain accurate dynamic 
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response results, more complex structural models need to be constructed in the engineering practice. 

However, as the models become more refined, each numerical calculation can take several hours or longer, 

presenting challenges for structural reliability analysis and safety assessments under considering random 

parameters of freight wagon and RT. The conventional MCS method for uncertainty quantification has 

significant limitations due to its computational demands, especially for time-consuming numerical models 

in engineering problems. For cases with a low probability of failure, even more samples are required to 

ensure a desired level of accuracy. Unfortunately, for large-scale and complex nonlinear systems, the 

computational cost remains a challenge, limiting its practical implementation in real-world engineering 

problems. In order to reduce the computational effort, surrogate model based methods have attracted more 

focus for the reliability assessment of the large-scale mechanical systems and civil structures [23]. For 

example, Cremona et al. [24] combined Kriging technique and Archard wear model to predict the railway 

wheel considering the uncertainty of wear coefficient. Costa et al. [25] assessed the effect of track quality 

indices on the railway vehicle safety based on the surrogate model and multi-body dynamic simulation. In 

recent years, with the development of machine learning, the active learning Kriging surrogate method that 

combines with various active learning functions such as expected feasibility function (EFF) [26], U function 

[27, 28], and folded normal based expected improvement function (FNEIF) [29] has been proposed to 

improve the accuracy of the metamodel. 

To the best of the authors’ knowledge, there is no literature comprehensively addressing the reliability 

analysis and uncertainty quantification for the freight wagon-turnout system, particularly when considering 

multiple failure modes of wheel derailment, primarily due to the significant computational burden involved. 

To fill this apparent gap, this paper develops a research framework that uses an efficient adaptive Kriging 

surrogate and MCS method to study the reliability and the passing safety during freight wagon passing 

through railway turnouts. The research framework is shown in Figure 2. The initial samples are randomly 

selected in groups of 20. Then, the dynamic response results corresponding to the initial samples can be 

calculated by the freight wagon-turnout coupled dynamic model. They are used to construct the initial 

surrogate model. The candidate sample set is generated by MCS, which includes 5e05 random samples of 

the freight wagon-turnout system. Based on the initial surrogate model and candidate sample, the failure 

probability of train derailment can be calculated. Then, we need to determine the accuracy of the failure 

probability. If the computational accuracy is not enough, we need to select a new sample from the candidate 
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set based on active learning function and compute the vehicle-turnout dynamic response again, and then 

update the surrogate model. If the prediction accuracy of the derailment probability meets the thresholds, we 

can stop the loop. 

 

Figure 2. Research framework of adaptive dynamic reliability for a freight wagon-turnout system. 

2 Model and formulation of a freight wagon-turnout system 

2.1 Dynamic model of the freight wagon 

A single freight wagon with two typical K6 type bogies is modelled as a multi-body system including 

the nonlinear elements, such as dry friction contact and wheel-turnout contact. The dynamic model and 

formulation of a freight wagon-turnout system created based on the framework of vehicle-track coupled 

dynamics theory [30]. The freight wagon sub-system is composed of one car-body, two bolsters, four side 

frames, and four wheelsets. For the bogie, the elastic rubber pads are installed on the wheelset axle box in 

actual condition. Non-linear spring elements are used to collect connect the wheelsets and side frames in the 

X, Y, and Z directions. Dry friction is commonly employed to model the frictional forces in the wheelset and 

axle box gap. Consequently, the dry friction force is discontinuous when the speed is 0, leading to numerical 

instability in the simulation. Therefore, a non-linear function had to be used to replace the lower sliding 

speed, with v0 set to 0.01 m/s, as shown in Figure 3 (c), which is modelled as a nonlinear function in the 

dynamic model. The car-body of the freight wagon, depicted in Figure 3 (b), is supported by two bolsters 

connected through two center disks and four side bearings on the bolster. As shown in Figure 3 (d), the load 

on the bolster is transferred to the side frame through the secondary suspension spring. Friction wedges are 
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mounted on the side frame to achieve vibration attenuation. The degrees of freedom (DOFs) of each 

component of the freight wagon are listed in Table 1. The governing motion equation of the freight wagon 

model can be expressed as: 

fw fw fw fw fw fw fw+ + =M U C U K U F   (1) 

where Mfw, Cfw, Kfw are the mass matrix, damping matrix, and stiffness matrix of the freight wagon subsystem, 

respectively; fwU  , fwU  , and fwU   are the displacement vector, velocity vector and acceleration 

vector of the freight wagon subsystem, respectively. Ffw is the vector of load such as the wheel-rail 

contact force (WRCF). 

 
Figure 3. Diagram of dynamic model of freight wagon-turnout system. (a) front view, (b) side view, (c) 

modeling of the axle connection, and (d) variable friction damper model. 

For the sake of brevity, the complete derivation process of the motion equations will be omitted here to 

conserve space. Interested readers are encouraged to refer to the work by Zhai [31] for detailed information. 

Furthermore, the deterministic parameters utilized in the freight wagon model for this paper are adopted 

from the work conducted by [31]. 

Table 1. DOFs of the freight wagon model. 

Component 
Type of motion 

Longitudinal Lateral Vertical Roll Pitch Yaw 
Car-body / Yc Zc ϕc βc φc 

Side frame Xs Ys / / βs φs 
Bolster / / / / / φb 

Wheelset / Yw Zw ϕw βw φw 

2.2 Dynamic model of the turnout 

Through field investigations of train derailments at railway turnouts, it has been observed that the 
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likelihood of derailments is notably high at 1:6 turnouts in China. As a result, this study focuses on modeling 

these specific turnouts. To maintain brevity, other turnout types are not considered in this paper. The 

geometry and alignment of the turnout are illustrated in Figure 4. The turnout configuration consists of a 2 

m straight section, a 12 m curve, and a 40 m straight section preceding the switch toe. 

To accurately represent the discrete support of the rails and account for any variations in rail properties, 

the turnout is modelled as a two-layer sub-system using the FEM. All rails in the turnout area are simulated 

using a point-supported Euler-Bernoulli beam element. Each rail node is assigned four DOFs, encompassing 

lateral, vertical, yaw, and pitch movements. The mathematical formulation for the Euler-Bernoulli beam 

element is elaborated in the work of Ref. [8]. The bending stiffness and mass of the switch rail vary along 

its length in accordance with the actual geometric and cross-sectional dimensions. The sleepers beneath the 

turnout rails are treated as discretely supported Euler beams in the vertical direction, allowing for flexibility. 

However, in the lateral direction, the sleepers are treated as rigid bodies. The turnout sleeper is discretized 

into different elements based on its length, and each sleeper node has two DOFs, accounting for vertical and 

roll movements. 

 

Figure 4. Geometry of the turnout structure. 

 By applying Hamilton’s principle, the dynamic equation governing the turnout sub-system can be 

expressed as follows: 

2

1
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where T and U are the total kinetic energy and potential energy of the turnout system, respectively; W 
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the integration. 
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in which Nr and Ns are the number of the rail elements and sleeper elements; T
rj z−u and T

rj y−u denote the 

displacement vectors of the rail elements in the vertical and lateral directions; T
sj z−u and T

sj y−u denote the 

displacement vectors of the sleeper elements in the vertical and lateral directions; rjM and sjM are the mass 

matrix of the rails and sleepers. 

The potential energy of the turnout sub-system reads: 
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where zr jK  and zs jK  are the stiffness matrices of elements of rails and sleepers in the vertical direction, 

respectively; ryjK  is the stiffness matrices of elements of rails in the lateral direction. where Nf represents the 

total number of the rail fasteners; Np and Nm are the total number of sleeper nodes and number of sleepers, 

respectively; Krzj, Kryj, and r jK β  are the vertical, lateral, and pitching stiffness of the jth rail fastener, 

respectively; Kszj and Ksyj are the vertical and lateral stiffness of the jth sleeper; zrj, yrj, and βrj are the vertical, 

lateral and pitch movements of the rail nodes, respectively; zsj and ysj are the vertical and lateral displacement 

of sleeper nodes, respectively. 

The expression for the virtual work done by external loads is as follows: 
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 (5) 

where fj zC −  and fj yC −  are the vertical and lateral damping coefficients of the jth rail fastener, respectively; 

bj zC − and bj yC − are the vertical and lateral damping coefficients of the jth sleeper, respectively. 

The dynamic equation of the turnout subsystem can be derived based on Equation (6): 

t t t t t t t+ + =M u C u K u F 

 (6) 

where Mr, Kr, and Cr are the mass, stiffness, and damping matrix of the railway turnout sub-system, 
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respectively; Where tu , tu , and tu  represent the acceleration, velocity, and displacement vectors of the 

turnout sub-system, respectively; Fr denotes the load vector of contact forces between the wheel and the 

turnout rail. 

2.3 Wheel-turnout contact model 

When compared with straight track, the cross-sections of the switch rail and crossing rail are variable 

along with the longitudinal direction. Therefore, the 3D variable rail profiles are obtained by Bezier splines. 

For the ordinary track in front of the switch panel, contact trace method in Ref. [32] can be used to solve the 

contact position between the wheel and the rail. The contact trace indicating the potential contact positions 

on the left wheel profile can be obtained by 

2
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. Rw represents the wheel 

rolling radius; δr is the wheel-rail contact angle; θw and φw are the roll angle and yaw angle of the wheelset; 

yw represents the lateral displacement of the wheelset; dw represents the original y-coordinate vector of the 

wheel profile. 

It should be noted that in case the wheel rolls from the stock rail to the switch rail, two-point contact 

case can occur at the wheel load transition zone, as show in Figure 5 C-C. An improved method is used to 

deal with this problem [7], the elastic compression between the wheel and turnout can be calculated by 

0

0
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Q Z Z Z

Φ −

Φ −

 = −


= −





 (8) 

where Zw represents the vertical displacement of the wheelset; wr
trcZ denotes minimum distance in the vertical 

direction between the wheel and rail; Z0 is initial minimum distance in the vertical direction. When Qswitch is 

less than 0, it indicates that the wheel is in full contact with the stock rail; and when Qstock is less than 0, the 
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wheel simultaneously contacts with the stock rail and switch rail; when both Qswitch and Qstock are larger than 

0, the wheel is in contact with both the stock rail and switch rail. 

 

Figure 5. Wheel-turnout contact along with the railway switch. 

The non-linear Hertz contact model and FASTSIM algorithm are used to solve the normal force, and 

tangential force between the wheel and rail, respectively. They consider various factors such as friction, 

adhesion, and wheel-rail contact geometry to accurately calculate the WRCF. The vibration equation is 

solved by the combination of the Newmark-β and Park methods. Based on the Newmark-β method, the 

vibration responses of the first three iterations of the system are obtained. Then, the vibration differential 

equation is solved by Park method. 

2.4 Verification of freight wagon-turnout dynamic interaction model 

The validation of the freight wagon-turnout coupled dynamic interaction model is conducted by 

comparing the vertical displacement of the turnout sleeper between the field test and numerical simulation. 

In the field test, a C70 type freight wagon with two three-piece bogies is used, and the running speed of the 

freight wagon is set to be 20 km/h with a wheelset axle load of 20.5 tons. The symmetrical railway turnout 

with a 1:6 crossing angle is used for both the test and the simulation. The displacement sensor in the test site 

measured the relative displacement between the rail base and sleeper. In addition, we affixed strain gauges 

to the rail web at the switch rail point to measure WRCFs. Assessing the derailment coefficient at the switch 

rail point is crucial for evaluating dynamic performance and ensuring operational safety. As such, we utilized 

the WRCFs acquired from the field test to calculate the derailment coefficient, which is determined by the 

ratio of lateral to vertical wheel/rail contact forces. To ensure the reliability of our verification, we collected 

ten sets of data, covering speed ranges from 16 km/h to 21 km/h. 
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Figure 6. Field test for wheel-rail forces at switch rail point and sleeper vibration. 

Figure 7(a) shows the comparison of displacement of turnout sleeper between the field test and 

numerical simulation. It can be observed that the change trend of test results is consistent with the simulation 

results. There is a slight difference between the numerical model and the test results in terms of amplitude 

of displacements. The maximum of the displacement obtained by experiment is 0.45 mm. Besides, as can be 

seen from Figure 7(b), we observe that the derailment coefficient calculated by our numerical simulation 

model closely align with the field test results. The slight discrepancy between the numerical results and the 

test results is because the randomness of parameters is not considered in the numerical model. This is because 

the vehicle parameters provided here are based on the design values. In reality, suspension parameters may 

change with the long-term operation of the vehicle. Additionally, the randomness of the wheel-rail friction 

coefficient can also affect the test results. In general, the numerical simulation results are found to be in good 

agreement with the field test results. This proves that the proposed numerical model is well suited for freight 

wagon-track (turnout) interactions. 

  
(a) (b) 

Figure 7. Comparison between filed test and numerical simulation results: (a) Displacement of turnout 

sleeper, and (b) derailment coefficient at switch rail point. 
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In the long-term service of railway infrastructure, the mechanical parameters of the FWTS result in the 

randomness of the WRCFs and wheelset vibrations. Therefore, it is crucial to study the propagation of 

uncertainties in the FWTS. Since the safety of the freight wagon primarily depends on the wheel-rail contact 

relationships, this paper focuses more on the dynamic responses of two typical derailment criteria, namely 

the derailment coefficient and the wheel load reduction rate (WLRR). The definition of the derailment 

coefficient is presented in Sec 2.4. The wheel load reduction rate is defined as /P P∆ , as shown in Equation 

(10). 

Table 2. Random parameters of the freight wagon-turnout system. 

Item Random variable Unit Mean value COV Distribution 
type 

1 Vehicle speed km/h 17 0.05 Normal 

2 Wheel-rail friction coefficient / 0.4 0.1 Normal 

3 Wheelset axle load ton 15 0.1 Normal 

4 Width of track gauge mm 1435 1/1435 Normal 

5 Lateral stiffness of secondary 
suspension kN/m 2.5E03 0.1 Normal 

6 Vertical stiffness of secondary 
suspension kN/m 3.0E03 0.1 Normal 

7 Height of mass center m 1.4 0.05 Normal 

8 Lateral deviation of center of 
gravity position m 0 0.1 Normal 

9 Longitudinal deviation of center 
of gravity position m 0 0.4 Normal 

The input parameters that significantly influence the wheel-rail contact, including vehicle speed, wheel-

rail friction coefficient, wheelset axle load, rail gauge, suspension stiffness, and center of gravity position 

are considered as random variables. Since the focus of this study is on the validity and feasibility of using 

the adaptive Kriging surrogate model and ESC to deal with dynamic reliability of FWTS and derailment 

assessment, the random parameters are assumed to be normal distributions. The mean value and coefficient 

of variation (COV) for each random parameter are provided in Table 2. 

3.2 Performance functions of FWTS 

Reliability analysis for FWTS is to determine the probability of wheel derailment with considering 

uncertainties in system parameters. On the one hand, during the freight wagon enters the switch in an 
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unfavourable wheelset posture, a large impact may occur between the wheels and switch. The wheelset may 

jump up to the railhead of the switch. On the other hand, the small radius curves are widely set before and 

after the railway switch panel, resulting the large lateral wheel-rail force and further causing the wheels to 

climb up the railhead along the edge of the switch rail. Two primary failure modes of derailment exist: wheel 

climb derailment and wheel jump derailment. To assess these failure modes, the performance functions can 

be defined as follows: 

1( ) Qg
P

λ= −ξ  (9) 

2 ( ) Pg
P

γ ∆
= −ξ  (10) 

3 ( ) min ,  Q Pg
P P

λ γ ∆ = − − 
 

ξ  (11) 

where Q, and P are the lateral and vertical WRCF, respectively; ΔP represents the value of wheel load loss 

and P   is the average value of wheel loads P2 and P1 on two wheels; the value of wheel load loss is 

calculated by: ΔP=(P2-P1)/2, P2>P1. ξ is the vector of random input parameters, as illustrated in Section 3.1; 

where λ and γ are the limit values of the derailment coefficient and WLRR, respectively. 

The failure probability of wheel climb derailment is defined as: 

1 1Prob ( ) 0f
PP g
Q

ξ λ
 

= = − ≤ 
 

 (12) 

The failure probability of wheel jump derailment is defined as: 

2 2Prob ( ) 0f
PP g

P
ξ γ ∆ = = − ≤  

 (13) 

The failure probability of both types of derailment is defined as: 

3 1 2Prob ( ) 0    ( ) 0f
P PP g g
Q P

ξ λ ξ γ
 ∆

= = − ≤ ∪ = − ≤ 
 

 (14) 

where Prob represents the probability of failure; ∪  is the union of 
1( ) 0g ≤ξ  and 2 ( ) 0g ≤ξ . 

3.3 Adaptive Kriging model for reliability analysis of FWTS 

The Kriging surrogate model technique provides a means of predicting the output values of a complex 
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system, which is a Gaussian process-based regression method. The Kriging model g(ξ) can be expresses as 

( ) ( ) ( )Tg f Zξ ξ β ξ= +  (15) 

In the Kriging model, f(ξ) represents the basis function used for regression, and βT denotes the vector of 

regression coefficients associated with the basis function f(ξ); and Z(ξ) is a stationary Gaussian process with 

zero mean and covariance between two points of space ξi and ξj, and the covariance is written as 

2
,  ( ( ),  ( )) ( )i j i jcov Z Z Rθξ ξ σ ξ ξ=  (16) 

Where 2σ is the process variance and  ( , )i jRθ ξ ξ is the correlation function between two sample ξi and ξj. 

The Gaussian model is used in this study and it is expressed as in Eq. (17). 

( )2
 , ,

1

( , )= exp ( )
N

i j k i k j k
k

Rθ ξ ξ θ ξ ξ
=

− −∏  (17) 

Where θ represent correlation coefficient; ξi,k and ξi,k are the denote the kth of sample ξi and ξj. 

The performance functions 1( )g ξ , 2 ( )g ξ  and 3 ( )g ξ  are implicit and strongly nonlinear between the 

input variables ξ and vibration response results g(ξ). An accurate and efficient active learning Kriging model 

is integrated with theoretical model in Section 2 to train an initial Kriging surrogate model with small sample 

sets. In this paper, U learning function [27], known for its high efficiency, is utilized to update the training 

points for the rough surrogate model. The predicted mean ˆ( )kg ξ   and variance ˆ ( )kσ ξ   of performance 

functions g1(ξ), g2(ξ), and g3(ξ) are utilized to represent the response and uncertainty, respectively. Its form 

is defined as follows: 

ˆ ( )
( )

ˆ ( )
k

k
k

g
U

σ
=

ξ
ξ

ξ
 (18) 

In general, the stopping criteria for the U learning function is set as ( ) 2kU ≥ξ  during the construction 

of the final Kriging prediction model. However, the stopping criterion in the adaptive process is intentionally 

set to be overly conservative because the variable U does not directly reflect the error in the estimated failure 

probability of wheel derailment at each iteration. This conservative approach aims to ensure that the true 

error in the failure probability estimate remains within an acceptable range. Despite the significant reduction 

in computation time achieved by the adaptive Kriging method for reliability analysis of the nonlinear 

dynamic system, the U function still requires a large number of iterations for numerical computation. To 
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address this limitation, an ESC is given in the next section to overcome this limitation [33]. 

In the real case, the true failure probability for the FWTS is unknown. Therefore, the failure probability 

MCS
fP  that is estimated by MCS can be used as the benchmark for measuring the accuracy. The prediction 

failure probability by adaptive Kriging surrogate model is ˆ MCS
fP . Let's establish the definitions for the actual 

failure probabilities and the predicted failure probabilities as follows: 

= fMCS
f

MCS

N
P

N
 (19) 

ˆ
ˆ = fMCS

f
MCS

N
P

N
 (20) 

in which Nf and ˆ
fN   are the number of system failures determined by true performance function, and 

adaptive reliability assessment method, respectively; and NMCS represents the candidate samples for MCS. 

The relative error can be expresses as: 

  

ˆ ˆ
= 1 1

MCS
f f
MCS
f f

P N
P N

ε − = −  (21) 

Due to the unknown number of failures Nf, the true error ε  in Kriging surrogate model cannot be 

determined. To deal with this problem, we can represent the total number of candidate design points in ˆ fΩ

that belong to sΩ  as f̂S , and the total number of candidate design points in ˆ sΩ  that belong to fΩ  as 

ˆsS . The Nf is determined by: 

ˆ ˆˆ= +f f s fN N S S−  (22) 

With a confidence level of α, the confidence interval of Nf can be expressed as follows: 

ˆ ˆˆ ˆ= ,  u u
f f f f sN N S N S − +   (23) 

where ˆuS  and ˆu
sS  are the upper bound of the confidence interval of ˆ

sS  and ˆ
fS , respectively. 

The maximum error can be obtained by: 

 

ˆ ˆ ˆ
ˆ= 1 1 ,  1ˆ ˆˆ ˆ

f f f
maxu u

f f f f s

N N N
max

N N S N S
ε ε

 
 − ≤ − − =
 − + 

 (24) 

Since the distributions of ˆ
sS  and ˆ

fS  converge to the normal and Poisson distributions, respectively, 
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their upper bounds can be computed analytically. Adaptive reliability analysis stops when the following 

criterion is satisfied. 

ˆ ˆmax thrε ε≤  (25) 

where t̂hrε  is a given error threshold. 

4 Implementation procedure of the established method 

Figure 8 depicts the flowchart illustrating the implementation process of the established method. The 

steps for assessing the reliability under uncertainties during freight wagon passing through the railway 

turnout are described as follows: 

Step 1: Develop a freight wagon-turnout coupled dynamic simulation model and determine the statistical 

features of random parameters for the freight wagon and turnout structure. 

Step 2: Generate N0 initial samples ξini by Latin hypercube sampling method. Calculate the corresponding 

dynamic responses of WRCFs P and Q through executing the command in the MATLAB 

environment for calling freight wagon turnout dynamic interaction model. 

Step 3: Construct Kriging surrogate models for gi(ξ) with deterministic derailment criteria and ( )ig ξ  with 

random derailment criteria based on initial DoE and outputs in Step 2. 

Step 4: Obtain prediction results by Kriging model. Then, evaluate the failure probability with different 

performance functions based on. 

ˆˆ f
f

MCS

NP
N

=  (26) 

Step 5: Update the next best training sample point based on the active learning function in Equation (18). 

Calculate the corresponding dynamic responses of WRCF and obtain the maximum derailment 

coefficient and WLRR based on the freight wagon-turnout coupled dynamic interaction model. 
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Figure 8. The flowchart of reliability analysis for derailment using freight wagon-turnout dynamic 

simulation and ESC-based active learning Kriging surrogate model. 

Step 6: Compute the estimation error of reliability analysis using Equation (24), and verify whether ESC is 

met as indicated by Equation (25). If the stopping condition is satisfied, the adaptive iteration process 

ends. Instead, the current sample set is expanded with new samples until the stopping condition is 

satisfied. 

Step 7: Evaluate the size of the initial Monte Carlo sample pool. Estimate the ˆ fPCOV  based on Equation 

Module of freight wagon-turnout 
coupled dynamic simulation

Solve the numerical simulation model by
park and Newmark-β integration method

Obtain the dynamic response results of 
wheel-rail contact forces

Module of uncertainties in the FWTS 

Generate NMCS samples by MCS and select 
N0 initial random samples ξini based on LHS

Adaptive reliability analysis for FWTS using adaptive Kriging model and ESC

Calculate the limit values of g1, g2 and g3 by Eqs. 
(12-14) during wheelset passing through RT

Construct Kriging-based metamodel gi(ξ) for 
different limit state functions

Estimate failure probability through Eq. (26) with 
different failure modes

Estimate the maximum error 

ESC

COVpf ≤  COVthr
Add the sample size of 

MCS

Yes

No

End

Construct the deterministic dynamic 
simulation model for freight wagon-turnout 

Determine the statistical characteristics of 
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function by Eq. (18)

Update the training 
point 

Input

ˆmaxε
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(27). 

ˆ

ˆ1
ˆf

f

P
f MCS

PCOV
P N
−

=  (27) 

5 Results and discussion 

5.1 Reliability assessment using deterministic derailment criteria 

In this paper, the wheel derailment is considered as the failure event. Based on the simulation results 

obtain from the deterministic numerical analysis of the freight wagon-turnout dynamic model, the dynamic 

responses of the lateral and vertical WRCF, which represent the derailment risk at RT can be obtained. It 

should be noted that 20 initial samples are selected to construct the Kriging based surrogate model. Then, 

the reliability assessment for the freight wagon-turnout dynamic system is carried out by using the adaptive 

Kriging model and ESC. 

The derailment coefficient is used to evaluate the wheel climb derailment caused by large lateral WRCF. 

In contrast, WLRR is used to assess wheel jump derailment when the wheel load on the railhead is suddenly 

reduced or disappeared. According to the Chinese railway standard TB/T2360-93, a freight wagon is deemed 

unsafe if the derailment coefficient limit λ exceeds 1.2 or the dynamic WLRR limit γ exceeds 0.80. Figure 9 

(a-c) illustrate the convergence curves of failure probability when using different derailment criteria. In 

addition, the results using different error thresholds of 0.03, 0.04, and 0.05 are also compared. 
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Figure 9. The failure probability using deterministic derailment criteria: (a) case 1: g1(ξ) (b) case 2: g2(ξ), 

and (c) case 3: g3(ξ). 

The estimated failure probabilities of wheel climb derailment, wheel jump derailment, and both types 

of derailments with error threshold of 0.03, 0.04 and 0.05 are listed as Table 3 The results in Figure 9 and 

Table 3 show that the number of simulations of the freight wagon-turnout dynamic model for case 1 and 

case 3 increases significantly as the error threshold is reduced to 0.03. When compared with three 

performance functions, it shows that the failure probability of wheel jump derailment of case 2 is higher than 

that of wheel climb derailment. This is mainly due to the wheel impact on the switch rail when the freight 

wagon passes the switch toe; at the same time, the wheel load transition between the stock rail and the switch 

rail will lead to a direct and intense impact on the wheel, which in turn leads to a reduction in wheel load. 

The failure probability of Pf3 is 0.2259, which is smaller than the sum of Pf1 and Pf2. This indicates that in 

some running cases both the derailment coefficient and WLRR exceed the limit value. 

To validate the feasibility of the proposed research framework, the reliability of freight wagon passing 

over the a #1:6 symmetrical is analyzed by using the ESC-based adaptive Kriging model. Since the 

computational cost of each call to the performance function takes several hours, the results of the Kriging 

model including 500 sets samples instead of the conventional MCS are considered as the reference solution. 

When compared with the ESC-based adaptive Kriging method and Kriging method with Ncall=500, the 
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errors in the failure probabilities obtained by the two methods are quite small when different performance 

functions are used to assess the running reliability. The proposed method yields precise failure probability of 

wheel derailment while significantly reducing the number of additional training points required and 

computation time. This is particularly advantageous for large-scale vibration system involving multiple 

failure modes and randomized failure domains, as encountered in this study. 

Based on random inputs and reliability calculation results, as the wheel-rail friction coefficient and the 

lateral deviation of center of gravity position increase, the failure probability of wheel climb derailment at 

railway turnout increases significantly. For wheel jump derailment, the vehicle speed, wheelset axle load, 

and position of center of gravity have great influence on the failure probability related to wheel load loss. 

Table 3. Comparison of computation efficiency and failure probability under different thresholds 

Performance functions Stopping criteria Ncall Pf 𝜀𝜀̂max 

g1(ξ) 

ESC (𝜀𝜀̂thr= 0.03) 20+51 0.0235 0.0293 
ESC (𝜀𝜀̂thr= 0.04) 20+13 0.0233 0.0382 
ESC (𝜀𝜀̂thr= 0.05) 20+11 0.0226 0.0458 

Umin≥2 20+145 0.0230 / 

g2(ξ) 

ESC (𝜀𝜀̂thr= 0.03) 20+52 0.0301 0.0290 
ESC (𝜀𝜀̂thr= 0.04) 20+36 0.0364 0.0381 
ESC (𝜀𝜀̂thr= 0.05) 20+30 0.0392 0.0468 

Umin≥2 20+201 0.0322 / 

g3(ξ) 

ESC (𝜀𝜀̂thr= 0.03) 20+87 0.0446 0.0292 
ESC (𝜀𝜀̂thr= 0.04) 20+40 0.0462 0.0387 
ESC (𝜀𝜀̂thr= 0.05) 20+30 0.0475 0.0485 

Umin≥2 20+232 0.0468 / 

5.2 Reliability assessment using uncertain derailment criteria 

Sometimes when the derailment coefficient or WLRR exceeds its limit value, the freight wagon does 

not necessarily derail. This paper is the first attempt to explore the impact of derailment criteria uncertainty 

on the running safety of railway vehicles. Since we now lack statistical characteristics of the derailment 

coefficient and WLRR when the vehicle derails in the turnout area. It is assumed that the derailment 

coefficient limit obeys a normal distribution, and the mean value and COV are 1.2 and 0.05, respectively. 

The WLRR obeys the uniform distribution and the upper limit and lower limit are 1.0 and 0.65. Figure 9 (a-

c) show the convergence curves of failure probability with different evaluation criteria considering 

derailment criteria. 
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Figure 10. The failure probability using uncertain derailment criteria: (a) case 1: 1( )g ξ  (b) case 2: 2 ( )g ξ , 

and (c) case 3: 3 ( )g ξ . 

When compared with the deterministic derailment coefficient, the failure probability of wheel climb 

derailment is lower than the result that is simulated by the deterministic derailment coefficient. This 

observation suggests that from a probabilistic standpoint, freight wagon derailment may occur even if the 

limit of the derailment coefficient is not exceeded. For example, there are instances where the wheel suddenly 

jumps on the rail despite the presence of relatively small lateral WRCF. However, the failure probability of 

wheel jump derailment, when accounting for the uncertainty of the WLRR, is lower than the deterministic 

limit value. This is because the randomness of the WLRR is considered in this section and the freight wagon 

is still safe when the WLRR exceeds 0.65. Table 4 lists the main reliability analysis results when the 

uncertainty of the derailment criteria is considered. It can be seen from the results in Figure 10 that the failure 

probabilities calculated by ESC-based adaptive Kriging are more consistent with the results calculated by 

Kriging with Ncall=500. 

Table 4. Comparison of computation efficiency and failure probability under different failure modes. 

Performance functions Stopping criteria Ncall Pf 𝜀𝜀̂max 

1( )g ξ  

ESC (𝜀𝜀̂thr= 0.03) 20+172 0.0263 0.0282 
ESC (𝜀𝜀̂thr= 0.04) 20+145 0.0274 0.0393 
ESC (𝜀𝜀̂thr= 0.05) 20+105 0.0271 0.0475 

Umin≥2 20+252 0.0268 / 
ESC (𝜀𝜀̂thr= 0.03) 20+128 0.0956 0.0295 
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2 ( )g ξ  
ESC (𝜀𝜀̂thr= 0.04) 20+12 0.0959 0.0399 
ESC (𝜀𝜀̂thr= 0.05) 20+8 0.0984 0.0494 

Umin≥2 20+292 0.0971 / 

3 ( )g ξ  

ESC (𝜀𝜀̂thr= 0.03) 20+197 0.0830 0.0299 
ESC (𝜀𝜀̂thr= 0.04) 20+145 0.0909 0.0397 
ESC (𝜀𝜀̂thr= 0.05) 20+93 0.0907 0.0495 

Umin≥2 20+402 0.0916 / 

5.3 Reliability analysis considering rail wear evolution of the turnout 

To further verify the applicability of the research framework proposed in this study, the effect of rail 

wear evolution on the reliability of the FWTS was investigated. As the density of freight wagons is becoming 

more and more intensive, which leads to the increasingly prominent problem of rail wear at the turnouts. 

Rail wear would directly affect the running performance when the railway vehicle passes through the turnout. 

In this paper, the evolution of the rail profile of a new turnout with the change of operation time was tracked 

and tested, as shown in Figure 11. 

 

Figure 11. Measured rail profiles of the switch panel. 

The relationship between the derailment coefficient and failure probability Pf1 and the relationship 

between WLRR and failure probability Pf2 with the evolution of the rail wear are depicted in Figure 12(a) 

and (b). As can be seen from Figure 12, the failure probability of the FWTS increases with increasing 

derailment coefficient and WLRR for the rail profiles measured in different periods. The rail wear evolution 

has a significant impact on the failure probability of wheel climb derailment, as depicted in Figure 12(a). 

Under the same derailment criteria, the failure probability shows a positive correlation with the depth of rail 

wear, indicating that the safety of the freight wagon decreases with an increase in rail wear depth. The 
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relationship between the derailment criteria and the failure probability under different degrees of rail wear 

provides valuable insights for safety improvement and structural optimization design, applicable to both 

railway vehicles and turnouts. 

  
Figure 12. (a) Relationship between derailment coefficient and failure probability and (b) relationship 

between WLRR and failure probability. 

6 Conclusions 

 This paper presents an efficient active learning Kriging method to assess the safety and reliability of 

railway vehicle passing through railway turnouts when considering the nonlinear dynamic interactions 

between the vehicle and turnout. The influence of multiple sources of uncertainty, including turnout geometry 

uncertainty, vehicle suspension parameter variations and load variations, on the multiple failure modes of 

derailment is investigated. The main conclusions of this study are summarized as follows: 

1. The freight wagon-turnout coupled dynamic model that considers the multi-point contact situation 

between the wheels and turnout has been developed in detail. A field test was carried out to verify the 

vehicle-turnout dynamic interaction model. The simulation results are in good agreement with the field 

test data. 

2. Based on the adaptive reliability analysis framework for the FWTS, the derailment probabilities under 

multiple failure modes of wheel derailment are evaluated. The results indicate that the failure probability 

of wheel jump derailment caused by wheel load loss is higher than that of wheel climb derailment under 

large lateral wheel-rail force. This is mainly attributed to the presence of discontinuous tracks in the 

turnout area, which result in significant impacts on the wheels during the wheel-rail transition. 

Additionally, the presence of small radius curves before the turnout causes the wheelset to enter the 

turnout in an unfavourable posture, further leading to collisions with the switch rail. 
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3. This paper explores for the first time the influence of uncertain derailment criteria on the reliability of 

train derailment. When the randomness of the derailment coefficient limit is considered, it shows that 

the safety level might be underestimated by using the deterministic derailment coefficient to assess the 

running safety. In contrast, when the wheel load reduction ratio follows a uniform distribution between 

0.65 and 1, the probability of failure is lower when compared with the results calculated by deterministic 

limit. It can be concluded that it is necessary to consider the randomness of the derailment limit value 

when assessing the reliability of FWTS. 

4. The proposed approach is extended to assess the effect of the rail wear evolution on running reliability 

of the freight wagon. The results show that as the wear depth of the turnout rails increases, the probability 

of both wheel climb derailment and wheel jump derailment of the freight wagon increases. The risk of 

wheel climb derailment increases more significantly. The relationship between derailment index and 

derailment probability under different rail wear states has important guiding significance for the 

engineering application of turnout rail grinding. 

5. The adaptive Kriging model shows efficient and highly accurate approximation capability in dealing 

with the nonlinear contact between the wheel and the turnout. The convergence process of the reliability 

analysis for the stopping criterion Umin≥2 and ESC ( t̂hrε =0.05) is compared, and the results indicate that 

fewer iterations are required to achieve the desired accuracy when ESC is used as the stopping criteria. 

This approach provides valuable insight into the structural design and optimization of railway vehicles 

and turnouts. 

6. The research framework and corresponding codes developed in this study can be easily extended to the 

safety assessment of other weak parts of the track structure, such as sharp curves, rail joints, transition 

sections of subgrade. 
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