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Abstract

Rolling bearings are the core components of rotating machinery, and their normal operation is crucial to entire

industrial applications. Most existing condition monitoring methods have been devoted to extracting discriminative

features from vibration signals that reflect bearing health status. However, the complex working conditions of rolling

bearings often make the fault-related information easily buried in noise and other interference. Therefore, it is

challenging for existing approaches to extract sufficient critical features in these scenarios. To address this issue,

this paper proposes a novel CNN-Transformer network, referred to as Dconformer, capable of extracting both local

and global discriminative features from noisy vibration signals. The main contributions of this research include: 1)

Developing a novel joint-learning strategy that simultaneously enhances the performance of signal denoising and fault

diagnosis, leading to robust and accurate diagnostic results; 2) Constructing a novel CNN-transformer network with

a multi-branch cross-cascaded architecture, which inherits the strengths of CNNs and transformers and demonstrates
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superior anti-interference capability. Extensive experimental results reveal that the proposed Dconformer outperforms

five state-of-the-art approaches, particularly in strong noisy scenarios.

Index Terms

Rolling bearing, fault diagnosis, vibration signal, Dconformer; complex working conditions, noisy scenarios.

I. INTRODUCTION

Rolling bearings play a vital role in supporting components in rotating machinery such as precision machine

tools, high-speed trains, aircraft engines, and other major equipment. The faults and failure of rolling bearings can

affect the normal operation of the equipment and even cause catastrophic accidents [1]. To ensure the safe operation

of machinery and equipment, it is necessary to implement real-time condition monitoring and fault diagnosis for

rolling bearings [2]–[4].

Conventional diagnostic approaches usually employ diverse signal analysis methods to extract fault frequencies

from the vibration signals provided, which heavily rely on expert knowledge and experience. [5]. Even though these

techniques have been widely employed, they still have the following limitations:

(1) The non-smooth and non-linear characteristics of mechanical signals make the traditional fault diagnosis

procedure time-consuming and laborious, as it requires a large amount of analysis and verification [6] [7].

(2) Critical information reflecting the equipment status can be easily overwhelmed in the measured vibration signals

with ambient noises and interference, making it challenging to extract valuable features using traditional methods

[8].

In recent years, deep learning has become a promising tool for bearing fault diagnosis, overcoming the deficiencies

of traditional data-driven algorithms [9]. In particular, due to their robust feature mapping capability, convolutional

neural networks (CNNs) have been widely utilized in automatic feature learning of mechanical signals [10]. Wang

et al. [11] proposed a novel CNN combined with symmetrized dot pattern representation, allowing the network to

capture the fault-related features effectively. Huang et al. [12] developed an improved complete ensemble empirical

mode decomposition method and utilized a 1-D CNN model to learn the high-frequency components of measured

signals. Chen et al. [13] constructed a multi-scale CNN with the feature alignment module to improve the feature

fusion performance of CNN. Ma et al. [14] presented a new CNN architecture with the probability confidence

module embedded, to identify the unknown faults. Gao et al. [15] developed a new algorithm by combining the

multi-strategy cuckoo search algorithm with a 1-D convolutional neural network for intelligent fault detection. Gao

et al. [16] proposed a hierarchical training convolution network for fault diagnosis under imbalanced data conditions.

Although CNN-based diagnostic approaches yield promising results, several studies have indicated that while

convolution-based networks are efficient in learning local features, they may fail to extract global long-distance

dependencies [17]. These deficiencies hinder CNN-based approaches from constructing a complete and comprehen-

sive representation of bearing health status, subsequently declining the performance of these architectures in fault

diagnosis tasks. Recent approaches have attempted to integrate various attention mechanisms into CNNs to address

the aforementioned deficiencies [18] [19] [20]. For instance, Zhao et al. [21] introduced a channel-wise attention
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mechanism to enhance feature representation in CNNs, thereby improving the diagnostic performance of these

networks for the dual active bridge converter. Similarly, Wang et al. [22] developed a discrete wavelet attention

mechanism, thereby enhancing the feature extraction capability of the convolution layer by mapping input time

domain signals to wavelet space. Different from the above plug-and-play attention mechanisms, Liao et al. [23]

developed a neuron-induced attention structure, termed qttention, which can efficiently facilitate the interpretable

bearing fault diagnosis. These improvements are promising but somewhat limited, as the primary function of these

attention mechanisms remains the enhancement or recalibration of local features in CNNs. They still lack the

capability of modeling global long-distance dependencies, which is crucial for constructing a comprehensive fault

representation.

In recent research on artificial intelligence and machine learning, the integration of the self-attention mechanism

into CNNs, i.e., CNN-transformer structures, demonstrates significant potential in capturing both complex global

feature dependencies and local information [19]. Based on this advancement, some approaches have developed

various multi-branch architectures that combine CNNs with the transformer. For instance, Bai et al. [24] utilized

a novel multi-branch vision transformer structure to facilitate the hyperspectral image classification. While, Liu et

al. [25] developed a dual-branch network integrating a lightweight CNN branch and a compact vision transformer

branch for high-resolution synthetic aperture radar image recognition tasks. Additionally, similar dual-branch CNN-

transformer networks have also demonstrated superior feature extraction capabilities in other domains, including

medical image segmentation [26]–[28], human face recognition [29], image fusion [30], and other areas [31]–[33]

[34]. However, the aforementioned CNN-transformer-based architectures are typically developed for various image

processing tasks, and their adaptation for vibration signals still requires in-depth research. Since the vibration signal is

an information carrier completely different from the image, it is necessary to explore a specialized CNN-transformer

architecture based on the unique characteristics of the signal in the fault diagnosis task.

Furthermore, mechanical systems often operate in harsh environments, bringing non-negligible interference to

mechanical signals [35] [36]. Multiple studies demonstrated that the interference information can greatly affect

the performance of deep learning-based models [37] . To enhance the noise resistance of the diagnostic model,

many robust methods have been proposed to learn features from noisy signals. Xu et al. [6] developed a novel

attention-based denoising network by stacking multiple multi-scale denoising modules. Yao et al. [38] proposed

a novel acoustic-based diagnosis method to remove the non-stationary noise components embedded in vibration

signals. Xiong et al. [39] developed an adaptive residual network to learn fault features using the long short-term

memory module, and utilized a nonlinear transform layer to reduce noise. Han et al. [40] utilized multiple non-

local fully convolutional blocks to formulate a novel robust denoising method. Zhi et al. [41] proposed a novel

denoising algorithm with a joint wavelet regional correlation threshold to learn enough important features under

noisy conditions. Zhao et al. [42] proposed a novel hybrid pre-training strategy to eliminate the interference of

noise on CNN’s diagnostic performance. Li et al. [43] constructed a graph wavelet denoising network to extract

features from multi-respective, and obtained superior diagnostic performance. Zhao et al. [44] developed a deep

rational attention-based network with a soft threshold unit to obtain outstanding diagnostic results. However, in

these aforementioned studies, the denoising process and fault diagnosis process are implemented separately, which
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may cause useful information to be filtered out, leading to the under-exploration of the measured signals. [45].

Consequently, efficiently integrating the denoising process with the fault diagnosis task remains worthy of further

exploration.

Based on the above discussions, there are two promising improvement directions in fault diagnosis:

(1) Specialized CNN-transformer architecture needs to be developed that can simultaneously extract both local

features and global dependency information from vibration signals.

(2) Effective integration of the signal denoising process with the fault diagnosis task is a promising method to

mutually enhance the performance of both.

To address these two challenges, we propose a novel CNN-transformer network, which will be referred to as

Dconformer in this study. First, an Attention-Guided Multi-Scale Branch (AMB) and a Signal Transformer Branch

(STB) are utilized to capture and fuse both local and global information. Subsequently, the proposed network

architecture can fuse the extracted local and global information, thereby facilitating the construction of rich and

comprehensive fault representations. Second, an encode-decode-based Signal Denoising Branch (SDB) is introduced

to incorporate anti-interference capability into the overall architecture by filtering out noisy information intelligently.

Finally, a Dynamic Weight Average (DWA) strategy is adopted to facilitate signal denoising and fault diagnosis

simultaneously. In summary, the main contributions of this paper can be summarized as follows:

(1) We propose a novel CNN-transformer network featuring a multi-branch cross-cascaded architecture, termed

Dconformer, which inherits the advantages of both CNNs and transformer structures and displays superior

anti-interference capability.

(2) We have developed a joint-learning approach for simultaneous intelligent signal denoising and fault identifica-

tion. Within joint-learning method, the adoption of a Dynamic Weight Average (DWA) strategy allows the dual

tasks to mutually enhance each other, enabling the architecture to achieve favorable diagnostic results.

(3) We conduct two case studies using the ABLT-1A bearing dataset (constant-speed dataset) and Spectra Quest

bearing dataset (variable-speed dataset) to validate the efficacy of the developed Dconformer. Extensive ex-

perimental results reveal that the Dconformer outperforms five state-of-the-art approaches, especially in noisy

scenarios.

The structure of the paper is as follows. Section II provides a detailed explanation of the proposed method. In

Section III, the performance of Dconformer is evaluated using the constant- and variable-speed bearing datasets. In

Section IV, the superiority of the Dconformer is further verified and discussed. Finally, the conclusion and future

research directions are discussed in Section V.

II. THE PROPOSED METHOD

A. Overview

In this paper, we propose a novel end-to-end CNN-transformer network, termed Dconformer, for fault diagnosis

of rotating machinery in various non-stationary scenarios. As illustrated in Fig. 1, this network captures and fuses

both local and global information from vibration signals and adaptively filters out irrelevant noise components.

Consequently, it achieves robust and satisfactory diagnostic results in harsh environments.
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Fig. 1. Overall framework of the proposed Dconformer.

Inspired by previous work [6], our study introduces more refined improvements, primarily including:

(1) Contrasted with the plug-and-play denoising mechanism utilized in AM-DRCN [6], our work incorporates

a specialized denoising branch structure into the overall architecture. This fashion enables a more efficient

integration of the denoising process with the fault diagnosis task.

(2) Compared to the single-backbone structure of AM-DRCN, we have further developed a more refined multi-

branch cross-cascaded architecture. This design allows for multiple branches to mutually communicate and

integrate the strengths of each branch.

To be specific, the proposed Dconformer consists of three parallel branches, namely, an Attention-guided Multi-

scale Branch (AMB), a Signal Denoising Branch (SDB), and a Signal Transformer Branch (STB). The AMB (light

green), serving as the backbone of Dconformer, is applied to extract multi-scale local features from vibration signals.

The STB (light blue) uses a self-attention mechanism to integrate global feature dependencies. The SDB (light red)

applies to encode and decode operations to denoise the mechanical signals intelligently. In addition, a Feature

Alignment Module (FAM), functioning as a bridge module, is developed to facilitate cross-cascaded connections

among the AMB, STB, and SDB. This connection fashion effectively fuses global information from the STB and

denoising features from the SDB into the backbone branch (AMB). Consequently, the integration of multi-scale

local features with global dependencies co-constructs rich and comprehensive fault representations. Meanwhile,

denoising features contribute to the removal of noise components within these representations. During the training
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phase, two loss functions are employed, supervising the denoising and diagnosis tasks separately. Furthermore, a

Dynamic Weight Average (DWA) strategy is adopted to assign dynamic weights to each loss function, thereby

controlling the balance between both tasks.

B. Attention-guided multi-scale branch

The Attention-guided Multi-Scale Branch (AMB) contains several Multi-Scale Attention (MSA) blocks, as shown

in Fig.2. Inspired by the structure of the retinal fovea in the human visual system, the MSA block consists of two

sub-modules: the multi-scale module and the squeeze-and-excitation (SE) attention module. The multi-scale module

employs Bconv (a combination of a convolutional layer), a BN layer, and a Leaky ReLU activation function (Conv

+ BN + Leaky ReLU). This module has five branches, denoted as bi, (i = 1, 2, . . . , 5). The first convolution layer

of all branches is set to 1× 1 to control the channel size to 16. In the second layer, Bconv is set with a kernel size

of 1× (2i− 1). Then, the concatenation operator is applied to the four branches, and the identity shortcut branch

is added to the concatenated feature vector using the elementwise summation operator. Finally, the whole module

is fed into an SE attention module.

The SE module is leveraged to enhance and calibrate the extracted features from the multi-scale module. The

structure of SE attention is given in Fig. 1. We use x ∈ RC×W to denote the input for the SE module. To begin,

the spatial information within each channel of the input is compressed into a scalar value by:

qi = Fsq(xi) =
1

W
[

W∑
k=1

xi(c, k)]
C
c=1, (1)

where xi(c, k) refers to the component of x ∈ RC×W , and qi ∈ RC×1 represents the squeezed feature map. Then,

we construct a fully connected layer that comprises two linear layers and their subsequent activation functions to

process the features aggregated by the previous squeeze operation, which can be expressed as:

zi = Fex(qi) = σSig(W2 · σReLU (W1qi)) (2)

where W1 ∈ R
C
r ×C , W2 ∈ RC×C

r , zi ∈ RC×1, and r denotes the channel reduction ratio. σSig(·) and σReLU (·)

are the sigmoid and ReLU activation functions, respectively.

Lastly, the output is produced through a scaling operation, which can be written as:

x∗i = Fscale(xi, zi) = [zi(c) · xi(c)]Cc=1, (3)

where zi(c) ∈ R1, xi(c) ∈ R1×W . The feature vector x∗i denotes the output of the MSA block. By simply stacking

Multiple MSAs, we enable the attention-guided multi-scale branch (AMB) to extract deep and advanced information

from vibration signals.

C. Signal transformer branch

Inspired by the Vision Transformer (ViT) [46], we developed the Signal Transformer Branch, which includes

a signal embedding layer and several stacked 1-D transformer encoders. These encoders have been specifically

modified to process 1-D vibration signals.
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Fig. 2. The structure of the MSA block in AMB.

As illustrated in Fig. 3(b), the input vibration signals are initially divided into N patch embeddings (denoted

as xi, i ∈ {1, 2, ..., N}). They are then subjected to the linear operation (denoted as Linear(·)) to produce

corresponding projected embeddings and an additional learnable position embedding p∗, formulated as follows:

{Mn}N+1
n=1 = Linear(x1, x2, ..., xN ) + p∗ (4)

Subsequently, these embeddings are fed into the modified transformer encoder, primarily composed of a multi-

head self-attention (MHSA) layer and a followed MLP layer. Layer Normalizations are applied before each layer,

and residual connections are implemented in both the MHSA and MLP layers, which can be formulated as follows:

M̂n = Norm(FMHSA(M
n)) +Mn, n = 1, 2, ..., N (5)

where Norm(·) denotes the layer normalization operation. FMHSA(·) represents the multi-head self-attention

operation and can be described as follows:

FMHSA(M
n) = FSoftmax(

q(Mn)k(Mn)T√
dk

)v(Mn) (6)

where q(·), k(·), and v(·) represent the linear projection operations that produce the corresponding query, key,

and value matrices, respectively. dk denotes the number of attention heads used for normalization. Subsequently,

an MLP layer is utilized to further aggregate the extracted long-range dependencies, formulated as follows:

Mn
mlp = Norm(FMLP (M̂n)) + M̂n (7)
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Fig. 3. (a) Structure of the Signal Transformer Branch. (b) Detailed structure of the 1-D transformer encoder. (c) Structure of the multi-head
self-attention block.

where, FMLP (·) is an MLP layer, can be formulated as:

FMLP (M̂n) = σReLU (Linear(σReLU (Linear(M̂n))) (8)

In our work, to tokenize the input, each input vibration signal is compressed into multiple 1×128 patch em-

beddings without overlap through a linear projection layer. Additionally, a class token is introduced to these patch

embeddings for the subsequent fault diagnosis task.

D. Signal denoising branch

The Signal Denoising Branch (SDB) aims to reduce the interference noise components in the signal and reconstruct

a noise-free vibration signal. Inspired by the deep learning-based denoising mechanism, we have designed a symmet-

rical encoder-decoder denoising network employing convolution and transposed convolution operations. Specifically,

the encoder structure is composed of multiple 1-D convolution layers, which are denoted as ci, (i = 1, 2, . . . , n−1),

and n is equal to the number of MFA blocks in the backbone branch. We set the kernel size of the convolution

layer in the encoder to 1 × 1, the number of channels to 32× 2i−1, and the stride to 2.

In the decoder structure, we replace the convolution layers with the transposed convolution operation, which

are denoted as ti, (i = 1, 2, . . . , n − 1). The kernel size, the number of channels, and the stride are set to 1 × 1,
C
2i (i > 1), and 2, respectively. In the last layer of the decoder, the dimension of the output feature map is set the

same as the input signal. Each convolution and transposed convolution layer is followed by an SE attention module

(as described in Section 2.2) and a Leaky ReLU activation function.

The encoder acts as a feature extractor, which encodes the main components of the signal while eliminating

noise components. Then, the decoder decodes the encoded features to reconstruct the signal details. We use an

SE attention module to enhance and calibrate useful signal details layer by layer, which helps the signal-denoising

branch reconstruct the crucial and elaborate features of the vibration signal accurately.
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Fig. 4. Structure of the signal denoising branch.

E. Multi-branch cross-cascaded connection via the feature alignment module

A simple yet effective bridge module, termed the Feature Alignment Module (FAM), has been developed to

facilitate cross-cascaded connections by eliminating feature misalignment among branches. The FAM consists of a

convolution layer (1 × 1) and a Global Average Pooling (GAP) layer in series. For instance, when we connect STB

with AMB, the feature maps from the transformer encoders first apply a 1×1 convolution to align the number of

channels. Then, we employ a GAP operation to align the spatial dimensions. Finally, we utilize the element-wise

summation operator to add the aligned features obtained in the previous step, as shown by the red circle in Fig.5(a).

The SDB and AMB are cross-cascaded and connected similarly as described above. The difference is that the

final feature vector from SDB is not directly input into the backbone branch (AMB), instead, it is fed into a

specialized loss function. This fashion significantly enhances the overall architecture’s capability of identifying

noisy characteristics during the denoising process.

Subsequently, a fused feature representation is employed for diagnostic classification. Specifically, let ON
t and ON

a

represent the final feature vectors extracted from the transformer branch and CNN branch, respectively. Notably, these

vectors respectively encompass the fault-related global long-distance feature dependencies and local information. We

first perform a concatenation operation to generate a fused feature representation, which is formulated as follows:

ON
c = Concat(F t→a

fam(ON
t ), ON

a ) (9)

where Concat(·) denotes the concatenation operation. F t→a
fam(·) indicates the use of the feature alignment module

to align the shapes of ON
t with the backbone output ON

a . Then, the output probability Lj for status category j can

be calculated as:

Lj =
exp(θj |Fc(Fgap(O

N
c )))∑J

j=1 exp(θ
j |Fc(Fgap(ON

c ))))
, j = 1, 2, ..., J (10)

where θj denotes the learned parameter of this fully connected classifier. Fc(·) represents the fully connected

operation. Fgap(·) is the global average pooling operation.
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Fig. 5. (a) Schematic of the cross-cascaded connection among the Signal Denoising Branch (SDB), the Attention-guided Multi-scale Branch
(AMB), and the Signal Transformer Branch (STB). (b) Feature alignment module that connects SDB with AMB. (c) Feature alignment module
that connects STB with AMB.

F. Joint-learning strategy

In this section, a joint-learning strategy is developed to train the proposed Dconformer architecture. Within

the joint-learning strategy, two loss functions, i.e., the Fast Fourier Transform-based Mean Squared Error (FFT-

MSE) loss and the Cross-Entropy loss, are utilized to independently supervise the denoising and diagnosis tasks.

Meanwhile, the joint-learning strategy also incorporates a Dynamic Weight Average (DWA) strategy to maintain a

balance between both tasks. Specifically, let xni ∈ RN×1 denote the input noisy signal with its corresponding raw

signal gni ∈ RN×1, and xsi ∈ RN×1 be the reconstructed denoised signal from the SDB. Within the designed FFT-

MSE loss, we initially perform a fast Fourier transform operation to the raw signal and denoised signal, respectively.

Followed by the use of mean squared error to calculate their similarity in the frequency domain. In summary, given

a mini-batch of Nt samples, the FFT-MSE loss can be formulated as:

Lfft−mse =
1

Nt

Nt∑
n=1

(Ffft(x
s
i )− Ffft(g

n
i ))

2 (11)

In addition, we perform the cross entropy loss (denoted as Lcross) to supervise the shift between the predicted

distribution yi and the real distribution ci, which can be formulated as:

Lcross = − 1

Nt

Nt∑
n=1

cilog(yi) (12)

Furthermore, we employ a simple yet effective Dynamic Weight Average (DWA) strategy to adaptively weigh the

two loss functions during the training phase. The DWA strategy is defined as follows:

L = ωfLfft−mse + ωcLcross (13)
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TABLE I
FLOPS AND PARAMETERS OF COMPARISON NETWORKS (%).

Indicator Dconformer MK-ResCNN MBSCNN Uniformer Convformer JL-CNN

FLOPS 1.35×109 7.5×108 6.2×108 1.7×109 4.8×107 1.5×109

where Lfft−mse and Lcross represent the loss functions supervising the denoising process and the diagnosis task,

respectively. ωi, i ∈ {f, c} are the weightings of the two loss functions. ωi, i ∈ {f, c} can be calculated by:

ωi(t) =
2× exp(αi(t− 1)/ψ)

exp(αf (t− 1)/ψ) + exp(αc(t− 1)/ψ)
, i ∈ {f, c} (14)

αf (t− 1) =
Lfft−mse(t− 1)

Lfft−mse(t− 2)
(15)

αc(t− 1) =
Lcross(t− 1)

Lcross(t− 2)
(16)

where, αi(·), i ∈ {f, c} calculates the relative decrease rate of each loss, i.e., Lfft−mse and Lcross. t denotes the

iteration index. ψ is a parameter that regulates the softness of task weighting. Given a sufficiently large ψ, resulting

in αi(·) ≈ 1, i ∈ {f, c}, which indicates the tasks are weighted equally. The developed joint learning strategy

facilitates mutual enhancement between the diagnostic and denoising tasks, realizing superior performance for both

tasks simultaneously, compared to a separate learning approach.

III. EXPERIMENTAL VALIDATION

A. Experimental settings

The code of Dconformer is implemented in Python3.9 and Pytorch 1.10 environment. All experiments are

conducted on a workstation with Windows 11 OS, Intel i5-12400F CPU, and GTX3060Ti GPU. Dconformer is

compared with five comparative models, namely a multi-kernel-based residual CNN model (MK-ResCNN) [47], a

multibranch and multiscale CNN model (MBSCNN) [48], an attention-guided joint learning CNN (JL-CNN) [49],

a lightweight CNN-transformer model (Convformer) [50], a CNN and self-attention-based model (Uniformer) [51].

The training strategies of these models are the same as Dconformer. The FLOPS, indicating the computational

complexity, of the comparison methods are presented in Table 1. In the training phase, the Adam optimization

algorithm with a learning rate of 0.0005 and a batch size of 128 is utilized.

B. Fault diagnosis of the constant-speed bearing dataset

1) Data description: The experimental data set was collected from the ABLT-1A bearing run-to-failure test

bench. As shown in Fig. 6, the main components of the ABLT-1A test rig include a loading apparatus, a bearing

test module, a driving system, and an electrical control system. The type HRB6205 of bearing is used as the rolling

bearing. The sampling frequency is set to 12 kHz, and the acquisition time is one second per set. During the

experiment, the motor speed is manually adjusted to 1500 rpm. A total of 7 health states are considered for the
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Fig. 6. Test bench of the ABLT-1A bearing.

TABLE II
A COMPREHENSIVE EXPLANATION OF THE ABLT-1A BEARING DATASET

Label Fault Type

H1 Normal condition

H2 Rolling element fault

H3 Inner ring fault

H4 Outer ring fault

H5 Compound fault of outer ring and rolling element

H6 Compound fault of inner and outer ring

H7 Compound fault of the inner-outer ring and rolling element

rolling bearings. There are 800 samples in each category, out of which 400 are allocated for training purposes,

while the remaining 400 samples are kept for testing. Consequently, the dataset contains a total of 5600 samples,

with 2800 samples reserved for training and another 2800 for testing. Each sample consists of 1024 data points.

For additional information regarding the rolling bearing datasets, please refer to Table 2.

2) Comparison with state-of-the-art approaches: In this section, the overall performance of Dconformer is

compared with five state-of-the-art methods. Each model is implemented five times to ensure the reliability of the

experimental results, and the results are shown in Fig. 7. The average diagnostic accuracy of the proposed model

reaches as high as 99.67%. In comparison with MK-ResCNN, MBSCNN, JL-CNN, Uniformer, and Convformer,

Dconformer improves the diagnostic accuracy by 1.19%, 0.33%, 0.28%, 2.84%, and 0.92%, respectively. Overall,

the proposed Dconformer demonstrates admirable diagnostic performance on the constant-speed bearing dataset.

This section further evaluates the performance of Dconformer in different noisy scenarios. We add different levels

of Gaussian white noise to the raw vibration signal to simulate the noise signal under industrial noisy conditions. We

set four SNR scenarios (-10, -6, 0, and 6 dB) to simulate extreme, strong, moderate, and weak noise, respectively.

As shown in Fig. 8. Dconformer obtains the optimal diagnostic performance in each SNR scenario.
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Fig. 7. Accuracy of the comparison methods for diagnosing faults in the ABLT-1A benchmark bearing dataset.

Even when SNR = -10 dB, Dconformer is still able to obtain 80.88% diagnostic accuracy. Compared with the

other five methods, Dconformer improves diagnostic accuracy by 16.47%, 9.73%, 17.95%, 17.19%, and 13.65%

in the strong noisy condition (SNR= -6 dB), respectively. The experiment result indicates that Dconformer has

robust anti-noise ability, and as the noise level increases, the superiority of the proposed method is more significant.

Notably, Dconformer outperforms Uniformer and Convformer significantly, indicating that by combining CNN and

transformer structure in a multi-branch cross-cascaded architecture, the developed Dconformer can extract abundant

local and global features. Dconformer outperforms JL-CNN in all noisy scenarios, indicating that the joint learning

strategy promotes the developed framework to obtain better diagnostic results.

Nevertheless, the proposed Dconformer has certain limitations. As depicted in Table 1, its computational com-

plexity, measured in FLOPS, is higher than that of MK-ResCNN, MBSCNN, and notably Convformer. This implies

that Dconformer may require more advanced hardware, potentially restricting its deployment in mobile or embedded

systems. Nevertheless, Dconformer still can be regarded as a promising network architecture due to its superior

and robust diagnostic and denoising performance. For instance, in extremely noisy conditions (SNR = -10 dB),

it demonstrates improvements of 24.46%, 16.75%, 26.47%, 27.46%, and 23.04% over the competing approaches,

respectively.

We utilize the t-SNE algorithm to visualize the distribution of the extracted features in two-dimensional space

under noisy conditions with SNR = -6 dB. As shown in Fig. 9, the features extracted by Dconformer have the best

discriminability, showcasing that the network structure of Dconformer can effectively deal with the interference of

strong noise and learn more effective fault information from the complex vibration signals.

3) Visualization of denoising results: In this section, the denoising performance of Dconformer is compared with

two traditional denoising methods, namely resonance-based sparsity signal decomposition (RSSD) and variational

mode decomposition (VMD). To demonstrate the performance of different methods, we perform a fast Fourier

transform on the denoised signals and show their square envelope spectrums.

Experiment results indicate that Dconformer can achieve admirable denoising performance, which shows substan-
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Fig. 8. Diagnostic results of the six models under four SNR scenarios.

Fig. 9. Visualization of features extracted by the comparative networks under strong noise conditions (SNR = -6 dB).

tial superiority compared to the RSSD and VMD. As shown in Fig. 10, the signals denoised by Dconformer display

more visible fault features in the frequency domain, and the waveforms are closer to the raw signals. In addition,

in the extreme noise scenario (SNR = -10 dB), the proposed Dconformer can effectively retain the fault-related

frequency, while RSSD and VMD excessively remove the fault-related characteristics in the denoising process, as

shown in Fig.10 (d).

The superior denoising performance of Dconformer benefits from the developed joint-learning strategy. This
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Fig. 10. Visualization of denoised signals by Dconformer, RSSD, and VMD on the ABLT-1A bearing dataset. Waveform and the square envelope
spectrum of raw signals, noise-added signals, and denoised signals are displayed. (a), (b), (c), and (d) indicate the results under noise conditions
SNR=+6 dB, SNR=0 dB, SNR=-6 dB, and SNR=-10 dB respectively. Blue denotes the raw signals without noise, purple denotes the signals
with Gaussian noise added, and red denotes the denoised signals by selected methods.

learning strategy combines the signal-denoising process with the fault diagnosis task, allowing the signal-denoising

process to reconstruct signal components that are critical for fault identification. Nevertheless, the denoising process

based on RSSD or VMD primarily relies on manually set parameters and operates independently from the diagnostic

task. Therefore, these approaches may remove some crucial fault-related features in diagnostic tasks.

C. Fault diagnosis of the variable-speed bearing dataset

1) Data description: The Spectra Quest Variable-Speed (SQV) dataset was obtained from the Spectra Quest

composite mechanical fault simulation test bench, as illustrated in Fig. 11. The test bench includes a motor, a rotor

system, and a load imposed by a tensioned belt. Vibration signals from the driven end of the motor were recorded

using an acceleration sensor and a data acquisition device. The fault simulation experiment used NSK6023 rolling

bearings. This dataset was collected during continuous variation of speed. Seven states of the bearing data were

selected and described in detail in Table 2. Each state includes a complete process of gradually accelerating from

a standstill to 3000rpm, then stabilizing for a period of time, and finally gradually decelerating until it stops. As

shown in Fig. 12, the minimum speed for sample acquisition is set to 1050 rpm to ensure that each sample contains

enough vibration points for one complete rotational period. The sampling frequency was set to 25.6 kHz in the

experiment. Following the previously established sample acquisition criterion, 800 samples were randomly chosen

from each state, with 400 samples designated for training and the remaining samples for testing. The dataset consists

of a total of 5600 samples, with 2800 samples designated for training and 2800 for testing. Each sample includes

1024 measured vibration points.

2) Comparison with state-of-the-art approaches: In this section, the overall performance of Dconformer is

compared with five methods on the variable-speed bearing dataset. Each model is implemented five times to ensure

the reliability of the experimental results, and the results are shown in Fig. 13. The overall diagnostic accuracy of
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Fig. 11. Spectra Quest Variable-Speed (SQV) bearing test bench.

TABLE III
COMPREHENSIVE INFORMATION REGARDING THE SQV BEARING DATASET

Label Fault Type

C1 Healthy status

C2 Mild inner race fault

C3 Moderate inner race fault

C4 Severe inner race fault

C5 Mild outer race fault

C6 Moderate outer race fault

C7 Severe outer race fault

Fig. 12. Detailed description and visualization of the SQV bearing dataset. The red-colored dashed rectangles indicate the ranges of data sample
acquisition.

the Dconformer model reaches as high as 99.49%. Compared with MK-ResCNN (96.71%), MBSCNN (96.95%),

Uniformer (96.84%), Convformer (94.53%), and JL-CNN (98.14%), Dconformer improves the diagnostic accuracy
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Fig. 13. Diagnostic accuracy of the comparison methods on the variable-speed bearing dataset.

Fig. 14. Diagnostic accuracy of the six comparison methods under the four SNR scenarios.

by 2.78%, 2.54%, 2.65%, 4.96%, and 1.35%, respectively. The standard deviation of Dconformer is 0.13, which is

lower than the other five state-of-art methods. This showcases that Dconformer maintains robust performance under

non-stationary speed conditions. In summary, the proposed Dconformer obtains the finest diagnostic performance

on the variable-speed bearing dataset.

We further study the performance of Dconformer on the variable-speed dataset in different noise scenarios (-10,

-6, 0, and 6 dB), and the result is shown in Fig. 14. Overall, the diagnostic accuracy of the proposed method on the

variable-speed dataset is better than that on the constant-speed dataset. The proposed Dconformer obtains the finest

performance among the six methods in each SNR scenario. Compared with MK-ResCNN (93.60%), MBSCNN

(93.96%), Uniformer (96.48%), Convformer (89.59%), and JL-CNN (94.73%), The proposed method (99.29%)

improves the diagnostic accuracy by 5.69%, 5.33%, 2.81%, 9.70%, and 4.56% in the weak noisy condition (SNR

= 6 dB), and by 16.61%, 9.59%, 11.13%, 21.49%, and 13.24% in the extreme noisy condition (SNR = -10 dB).
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Fig. 15. Visualization of features learned by the six approaches under strong noise conditions with SNR = -6 dB.

We employ the t-SNE algorithm to visualize the feature distribution extracted by six approaches from the

variable-speed dataset in a strong noise scenario (SNR=-6dB). As illustrated in Fig. 15, the features learned by

Dconformer have the best discriminability, showcasing that Dconformer effectively mitigates the interference of

strong noise under variable-speed conditions. It efficiently extracts both fault-related local features and global feature

dependencies from the vibration signals, thereby co-constructing a discriminative and comprehensive representation.

3) Visualization of denoising results: In this section, the denoising performance of Dconformer is compared with

two traditional denoising methods, i.e., RSSD and VMD. To demonstrate the denoising performance of different

methods, we perform a fast Fourier transform on the denoised signals and show their square envelope spectrums.

The experiment results indicate that Dconformer also achieves the finest denoising performance under variable-

speed conditions compared to RSSD and VMD. As shown in Fig. 10, the signals denoised by Dconformer display

more visible fault features in the frequency domain, and the waveforms are closer to the raw signals. In addition,

in the extreme noise scenario (SNR = -10 dB), the proposed Dconformer can effectively retain the fault-related

frequency, while RSSD and VMD excessively remove the fault-related characteristics in the denoising process, as

shown in Fig.10 (d).

IV. ABLATION STUDY

A. Validation of the signal transformer branch

In this section, we investigate the effectiveness of the signal transformer branch (STB) on the overall performance

improvements of the Dconformer. A new architecture termed DCNN is constructed for the experiment. The difference
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Fig. 16. Visualization of denoised signals by Dconformer, RSSD, and VMD on the SQV bearing dataset. Waveform and the square envelope
spectrum of raw signals, noise-added signals, and denoised signals are displayed. (a), (b), (c), and (d) indicate the results under noise conditions
SNR=+6 dB, SNR=0 dB, SNR=-6 dB, and SNR=-10 dB respectively. The blue line denotes the raw signals without noise, purple denotes the
signals with noise added, and red denotes the denoised signals by selected methods.

TABLE IV
FAULT DIAGNOSTIC ACCURACY OF DCONFORMER AND DCNN IN VARIOUS SCENARIOS [%].

Dataset Model Raw signal SNR = 6 dB SNR = 0 dB SNR = -6 dB SNR = -10 dB

ABLT-1A
DCNN 96.78 ± 0.54% 96.12 ± 0.25% 95.21 ± 0.82% 87.92 ± 0.54% 72.22 ± 0.82%

Dconformer 99.67 ± 0.15% 99.43 ± 0.09% 97.13 ± 0.16% 90.95 ± 0.94% 80.88 ± 0.55%

SQV
DCNN 97.11 ± 0.19% 96.57 ± 0.43% 96.01 ± 0.70% 78.24 ± 0.47% 55.80 ± 0.89%

Dconformer 99.49 ± 0.13% 99.29 ± 0.17% 97.61 ± 0.47% 79.66 ± 0.55% 57.77 ± 1.81%

between DCNN and Dconformer is that DCNN removes the STB in the architecture. The ABLT-1A and SQV bearing

datasets are utilized for this experiment, and the results are shown in Table 4. We can see that the Dconformer

outperforms DCNN by 2.89% and 2.38% on the constant- and variable-speed bearing datasets. We further evaluate

the performance of the two methods in different noisy scenarios. Specifically, on the constant-speed dataset, the

Dconformer outperforms DCNN by 3.31%, 1.92%, 3.03%, and 3.66% under the noisy conditions with SNR = 6

dB, SNR = 0 dB, SNR = -6 dB, and SNR = -10 dB, respectively. Similarly, on the variable-speed dataset, the

Dconformer outperforms DCNN by 2.38%, 2.72%, 1.60%, and 1.97% under the noisy conditions with SNR = 6

dB, SNR = 0 dB, SNR = -6 dB, and SNR = -10 dB, respectively. The results show that the specially designed

Signal Transformer Branch (STB) improves the diagnostic accuracy of the Dconformer across all noisy scenarios.

This suggests that the global feature dependencies extracted by the STB contribute to constructing a discriminative

representation, thereby yielding satisfactory results in harsh environments.
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TABLE V
FAULT DIAGNOSTIC ACCURACY OF DCONFORMER AND CONFORMER IN DIFFERENT SCENARIOS [%].

Dataset Model Raw signal SNR = 6 dB SNR = 0 dB SNR = -6 dB SNR = -10 dB

ABLT-1A
Conformer 99.12 ± 0.22% 98.52 ± 0.32% 95.62 ± 0.26% 85.89 ± 0.85% 75.39 ± 0.52%

Dconformer 99.67 ± 0.15% 99.43 ± 0.09% 97.13 ± 0.16% 90.95 ± 0.94% 80.88 ± 0.55%

SQV
Conformer 99.35 ± 0.45% 99.14 ± 0.91% 94.30 ± 0.45% 73.29 ± 0.43% 52.01 ± 1.34%

Dconformer 99.49 ± 0.13% 99.29 ± 0.17% 97.61 ± 0.47% 79.66 ± 0.55% 57.77 ± 1.81%

B. Validation of the signal-denoising branch

We further study the effectiveness of the signal denoising branch (SDB) on the overall performance improvements

of Dconformer. A new architecture termed Conformer is constructed in this experiment. The difference between

Conformer and Dconformer is that Conformer removes the SDB from the Dconformer architecture. We utilize the

constant-speed and variable-speed bearing datasets in this experiment, and the results are shown in Table 5.

We can see that the Dconformer outperforms Conformer by 0.55% and 0.14% on the constant-speed and variable-

speed datasets, respectively. We further test the performance of the Dconformer and Conformer in different noisy

scenarios. Specifically, on the constant-speed dataset, the Dconformer outperforms Conformer by 0.91%, 1.51%,

5.06%, and 5.49% under the noisy conditions with SNR = 6 dB, SNR = 0 dB, SNR = -6 dB, and SNR = -10 dB,

respectively. Similarly, on the variable-speed dataset, the Dconformer outperforms Conformer by 0.15%, 3.31%,

6.34%, and 5.76% under the noisy conditions with SNR = 6 dB, SNR = 0 dB, SNR = -6 dB, and SNR = -10 dB,

respectively. It can be seen that the SDB improves the anti-noise ability of Dconformer. The effect of SDB is more

pronounced as the noise level increases. The results indicate that SDB can reduce the irrelevant noise components

embedded in the signal and retain the crucial status signal details.

C. Validation of the joint-learning strategy

During the training phase, the proposed Dconformer architecture is trained using a developed joint-learning

strategy. This strategy integrates the signal-denoising task with the fault diagnosis task, simultaneously enhancing

the performance of both tasks. The core of the joint-learning strategy is the application of the Dynamic Weight

Average (DWA) strategy, which supervises the balance between dual tasks. To illustrate the effectiveness of the

DWA strategy, an experiment was conducted comparing it to the fixed weight (FW) strategy commonly employed in

related research [49]. Experimental results of the two strategies on the constant- and variable-speed bearing datasets

are shown in Table 5. For the FW strategy, we manually set the weights for the two loss functions. Specifically, we

test the performance of three types of FW strategy, termed Type1, Type2, and Type3, respectively. Type1 represents

the case where the fixed weights of the dual-loss values are set to 0.2 and 0.8 respectively; Type2 is the case

where the fixed weights of the dual-loss values are both set to 0.5; and Type3 corresponds to the case where the

fixed weights of the dual-loss values are set to 0.8 and 0.2 respectively. As indicated in Table 5, the DWA strategy

surpasses the Fixed Weight (FW) strategy in both constant- and variable-speed datasets. This suggests that the DWA

strategy enhances the training of the Dconformer more effectively through a more refined weighting fashion.
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TABLE VI
FAULT DIAGNOSTIC ACCURACY OF DWA AND DIFFERENT FW STRATEGIES IN SNR SCENARIOS [%].

Dataset Model Raw signal SNR = 6 dB SNR = 0 dB SNR = -6 dB SNR = -10 dB

ABLT-1A

DWA 99.67 ± 0.15% 99.43 ± 0.09% 97.13 ± 0.16% 90.95 ± 0.94% 80.88 ± 0.55%

Type1 98.49 ± 0.31% 98.38 ± 0.07% 96.74 ± 0.35% 87.60 ± 0.78% 78.64 ± 0.72%

Type2 99.43 ± 0.24% 98.32 ± 0.12% 96.91 ± 0.24% 89.01 ± 0.95% 78.85 ± 0.69%

Type3 96.73 ± 0.30% 95.74 ± 0.22% 92.66 ± 0.38% 84.43 ± 0.35% 75.20 ± 0.53%

SQV

DWA 99.49 ± 0.13% 99.29 ± 0.17% 97.61 ± 0.47% 79.66 ± 0.55% 57.77 ± 1.81%

Type1 99.20 ± 0.21% 98.19 ± 0.22% 95.88 ± 0.23% 76.91 ± 0.68% 55.46 ± 1.61%

Type2 98.45 ± 0.41% 98.96 ± 0.07% 97.12 ± 0.21% 78.79 ± 0.84% 56.51 ± 0.89%

Type3 97.32 ± 0.15% 96.22 ± 0.01% 93.69 ± 0.39% 74.92 ± 0.73% 55.37 ± 1.73%

V. CONCLUSION

This paper proposed a novel end-to-end CNN-transformer network, termed Dconformer, for intelligent fault

diagnosis of rolling bearings. First, an attention-guided multi-scale branch was developed to extract deep and

advanced local features from multiple scales. Meanwhile, a signal transformer branch (STB) was adopted to capture

global long-distance feature dependencies from the input signals. Further, a signal denoising branch (SDB) was

introduced to reduce the irrelevant noise components embedded in the signal and reconstruct the noise-free vibration

signal. Finally, a joint-learning strategy was utilized to facilitate mutual improvement between the diagnostic and

denoising tasks, leading to superior performance for both tasks simultaneously.

Two case studies, utilizing constant- and variable-speed bearing datasets, were conducted to validate the effec-

tiveness of the developed Dconformer. Experimental results indicate that Dconformer achieves overall accuracies

of 99.67% and 99.49% on these datasets, respectively. Furthermore, under noisy conditions with a signal-to-noise

ratio of -6 dB, Dconformer still maintains diagnostic accuracies of 90.95% and 79.66%, respectively. Extensive

experimental results showcase that Dconformer possesses exceptional diagnostic capabilities and noise robustness,

surpassing state-of-the-art competing approaches, particularly in strong noise scenarios. Additionally, this study

validates the effectiveness of the key components in the Dconformer, i.e., the signal transformer branch, the signal

denoising branch, and the joint-learning strategy.

Nevertheless, although the Dconformer shows significant potential in intelligent bearing fault diagnosis, it still

possesses certain limitations, such as high computational complexity, which need further improvement. Thereby,

future research aims to incorporate more lightweight designs into the current architecture and to extend the

application of this method to other industrial domains, including gears and robot reducers.
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