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Abstract 

Optimising the statistical pipeline for quantitative proteomics 

Hayley Price 

Background 

Label-free quantitative proteomics utilises differential expression (DE) analysis of 
high-throughput methods for mass spectrometry, providing insight into disease 
biomarkers, protein involvement in metabolic pathways or facilitating drug discovery. 
Applying statistical techniques to assess the significance of proteins changing in 
abundance is complicated by the properties of the data. Small numbers of samples 
containing vast numbers of features result in large sample-to-sample variation where 
the comparison of means can be distorted by outliers. Limitations of benchmarking 
data and the complexity of the algorithms make software comparison challenging. Full 
optimisation of the proteomics workflow is difficult, and it is a daunting task for the 
biologist to intuitively obtain optimal results. The aim of this Industrial CASE PhD 
studentship, in collaboration with Nonlinear Dynamics, the developers of Progenesis QI 
for Proteomics (QIP), is to provide an improved statistical pipeline that could be 
implemented in the Progenesis QIP workflow. 

Methods 

Benchmarking of three existing statistical approaches: QPROT, ANOVA as implemented 
directly in Progenesis QIP, and MSstats, was conducted traditionally, using spike-in 
datasets, and through the implementation of a novel method, using biological data and 
applying pathway analysis as an evaluation metric. Normalisation methods and the 
optimal threshold for defining significance were also investigated.  

Following this, an optimised proteomics pipeline was developed and implemented 
using high performance computing cluster for parallelisation of multiple combinations 
of methods for DE analysis, normalisation, and significance threshold selection. 
Functional enrichment analysis of proteins defined as changing was used to assess the 
results and the optimal parameter combination returned to the user. Effectiveness of 
this approach was demonstrated by comparing the best results from the pipeline with 
enrichment analysis of the output from the current Progenesis QIP workflow. 

Results 

Overall, the results of benchmarking gave no consensus on best method for DE, 
normalisation method, or significance threshold and the correct combination of 
parameters appeared to be dependent on the characteristics of the individual datasets. 
The results also showed that the choice of an appropriate normalisation method is an 
important and underappreciated factor in differential expression analysis and that the 
optimal threshold for defining significance varied greatly from the generally accepted 
value of p < 0.05.  

The optimised pipeline’s performance was superior to a standard analysis using 
Progenesis QIP. To our knowledge, this is the only end-to-end pathway analysis 
pipeline designed for proteomics data, enabling users to iterate through multiple 
options for finding the best normalisation method and the best significance threshold 
for pathway analysis. 
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Chapter 1. Introduction 

The complicated and coordinated interactions of proteins are essential for 

living things to carry out dynamic life processes. By studying proteins and their 

functions, we can begin to understand not only how proteins work at a 

molecular level, but also how they are involved in things such as disease, ageing, 

and reproduction. Cellular regulation occurs through changing protein levels 

and cells adapt to new scenarios or stresses by changing gene expression 

through new transcription and translation. The amount of protein in a cell can 

be predicted to some extent using transcriptomic profiling techniques, i.e., the 

study of the mRNA molecules in a cell, which provides information about 

expression levels, transcription, and degradation. However, changes in protein 

levels occur as part of translation and depend on how quickly proteins are 

turned over. Therefore, mRNA levels are weakly correlated with the final 

abundance of proteins in the cell. The proteome is the aggregate of all of the 

proteins found in an organism, tissue or sample under investigation, and while 

the genome is a fixed and genetically determined code, the proteome is affected 

by the environment and changes over time with modifications, degradations, 

and interactions. The study of large-scale proteomics aims to understand the 

outcome of these changes. Through identifying and quantifying proteins 

changing under specific conditions, we can better understand the biological 

processes involved in the conditions. 

Every living system contains thousands of proteins, all with a diverse range of 

structures and functions. Proteins are an important class of macromolecules 

and are one of the most abundant organic molecules. Proteins have many 

cellular and organism-wide functions. For example, enzymatic, structural, 

transportation and signalling. The building blocks of proteins are amino acids, 

and their individual physical properties determine the structure, and therefore 

function of a protein. Amino acids have a common structure; all contain a 

central common carbon atom, plus an amino group, a carboxyl group, and a 

hydrogen atom. The 20 amino acids differ in their additional R group whose 

chemical properties determine the amino acid’s nature; acidic or basic, polar 

and hydrophilic or nonpolar and hydrophobic. Amino acids link together with 
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peptide bonds to form polypeptide chains whose sequence determines its 

conformation and folding into a specifically shaped protein. Protein structure 

determines function, for example, by providing binding sites in enzymes. 

Protein structure is defined by four levels. The primary structure is the unique 

linear sequence of amino acids that make up the protein. The secondary 

structure is how that sequence folds, often into an 𝛼-helix or 𝛽-pleated sheet. 

This structure is held together by hydrogen bonds, which are formed between 

the carbonyl oxygen of one amino acid and the amino hydrogen of another in 

the polypeptide sequence. A protein’s tertiary structure is due to the R group 

interactions, including hydrogen bonds, ionic bonds, dipole-dipole interactions, 

and London dispersion forces, along the polypeptide chain, creating the three-

dimensional structure of the protein, which defines its function. Finally, there 

are quaternary levels of protein structure, which are due to interactions 

between subunits of polypeptides or proteins. 

 

1.1. Quantitative proteomics 

The aim of quantitative proteomics experiments is to deliver insight and gain a 

better understanding of biological processes. Mass spectrometry (MS) 

proteomics provides identification and quantification of the molecular 

composition of proteins (Aebersold and Mann, 2003). Protein samples are 

extracted from experimental tissue and digested into ionisable peptides, which 

are separated according to their mass and quantified. This strategy has become 

the method of choice for large-scale proteomics studies (Nesvizhskii and 

Aebersold, 2005), and there have been impressive improvements in 

instrumentation, and therefore the quality of mass accuracy and resolution, and 

sensitivity of detection, over a short period of time (Aebersold, 2011). High-

resolution machines have improved confidence in the identification of peptides 

(Yates, 2019), and MS-based quantitative proteomics has become a powerful 

tool for gaining insight into the function and dynamics of biological systems 

(Ankney et al., 2016). 
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Differential expression (DE) experiments aim to discover proteins that change 

due to experimental conditions, for example, in the comparison of diseased and 

healthy tissue ( Figure 1.1.1). DE analysis can reveal protein involvement in 

disease processes, which can be used to facilitate research into drug discovery 

for treatment and prevention. It is also used to search for prognostic 

biomarkers, which are proteins, genes, metabolites, or components that are 

indicative of a disease state. They are valuable in diagnostics, where they can 

classify or characterise disease or can be used to detect disease at an early stage 

and allow predication of disease progression, recurrence, or response to 

treatment.  

 

 
 Figure 1.1.1; Quantitative proteomics experiment comparing three samples of healthy and diseased tissue. 

Proteins are extracted from the sample and digested to produce ionisable peptides. The detected mass 
spectrometric signal is used to calculate relative changes in protein abundance between the two samples, 

identifying those that change in the diseased state. Ion intensity map (NonlinearDynamics). 

 

Apart from proteomics, there are many other omics applications of MS. 

Metabolomics, the study of small molecular weight molecules produced by 

organisms as the end products of cellular regulatory processes (Fiehn, 2002) 

uses MS due to its sensitivity and specificity (Defossez et al., 2021). Lipidomics 

refers to the identification and quantification of lipids in a biological system and 

how the function of the system is affected by lipid metabolism and functional 

interactions (Blanksby and Mitchell, 2010). Plus there are further subfields of 

proteomics, such as proteogenomics, where proteomics MS data is used to 

provide protein-level supporting evidence for gene models (Nesvizhskii, 2014), 
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and in the study of post-translational modifications (PTMs), which is important 

in discovering cellular regulatory processes as modifications play a role in 

epigenetic gene modification, regulation of gene expression, and signal 

transduction. 

One method of proteomics experiment is referred to as ‘top-down’, proteomics 

where purified protein samples are subjected to direct fragmentation. It has the 

benefits of being fast, with straightforward sample preparation, and analysis of 

the intact protein can preserve valuable information about PTMs and 

alternative splicing isoforms. However, the procedure can be relatively 

insensitive (Melby et al., 2021), and fragmenting large sized analytes results in 

many different charges states (40+ to 60+) which produces overlapping signals, 

which are further overlapped with charge states of other forms of the protein 

(e.g. due to PTMs). This produces a very complex signal which requires high-

resolution instruments with a large mass range, and informatics algorithms to 

deconvolute the data cannot fully interpret signals fully (Cai et al., 2016). This 

project focuses on the more common approach in proteomics, ‘bottom-up’ 

proteomics, which employs mass analysis of peptides using methods described 

in the next section.  

 

1.2. Experimental workflow 

The liquid chromatography tandem mass spectrometry (LC-MS/MS) 

experimental workflow (Figure 1.2.1). 

 
Figure 1.2.1; Experimental liquid chromatography tandem mass spectrometry (LC-MS/MS) workflow. Proteins 

are extracted from the sample, digested into peptides and separated using chromatography in the sample 
preparation stage. Peptides are ionised and subjected to mass analysis. Under data dependent acquisition (DDA) 

scheme, the most intense ions are fragmented and mass analysis of these fragments is produced.  
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i. Sample preparation 

Extraction techniques are used to purify the sample; liquid/liquid extraction is a 

method where aqueous and organic solvents are used to exchange organic 

compounds that will be pulled from the aqueous layer into the organic layer. 

Solid-phase extraction: specific species are separated by passing the sample 

through a cartridge where the species is isolated through binding. Another 

technique is protein precipitation, where salt ions, acid, or alcohol is used to 

remove the water surrounding protein molecules, forcing them to precipitate. 

The protein sample is then digested enzymatically into peptides to create 

smaller fragments that are easier to ionise. Frequently, trypsin is used, although 

separate or subsequent digestion with other enzymes such as Lys-C can be 

performed to limit any missed cleavages. Digestion can be performed in-

solution for high-throughput analysis of small amounts of low-complexity 

samples, or using an in-gel workflow for larger, complex samples. 

The digested peptides are subject to separation, which limits the complexity of 

the analyte reaching the detector, resulting in improved sensitivity. This also 

limits ion suppression, where the components in the mixture interact and affect 

the ability to ionise. Previously, this was performed using two-dimensional 

electrophoresis (Klose, 1975, O'Farrell, 1975). However, limitations in 

separating low-abundant proteins led to the development of high-performance 

liquid chromatography (HPLC) methods for use on both volatile and non-

volatile samples.  

The process of HPLC consists of two phases: the mobile phase, where solvents 

with variable polarity are used to move sample compounds into an analytical 

column, which is a long tube. In the stationary phase, compounds adhere to the 

walls of the column. The properties of the column walls determine the binding 

affinity of the compounds. Compounds are slowly washed along the column at 

speeds controlled by the affinity of the sample to the solvent and column lining, 

with the goal being to separate the sample. This process thins the signal, 

reducing the flow rate of the peptides into the mass spectrometer. To further 

limit the flow, micro-flow and nano-flow HPLC are performed using an 
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increased column length and reduced column diameter, resulting in smaller 

sample droplets with higher charges per analyte, which are more easily ionised. 

Several properties of peptides can be exploited to bind samples to the column. 

For example, charge is used in ion exchange chromatography. Amino acids in 

peptides are zwitterionic; they contain positively and negatively charged 

functional groups, and different environmental pHs will change the net charge 

of the peptides. In ion exchange chromatography, different buffer pHs are used 

to control the flow of analytes based on their charge. Positively charged 

peptides bind to negatively charged stationary phases, allowing negatively 

charged analytes to be eluted by the solvent. Bound peptides are then eluted 

from the column by introducing a more positively charged particle to compete 

with the bound protein, and the rest of the analyte is eluted from the column. 

Size exclusion chromatography uses a column packed with a porous matrix of 

beads to filter molecules by their size. Polarity can also be used for separation in 

hydrophilic and hydrophobic interaction chromatography. Peptides display 

different polarities due to the different arrangements of functional groups. 

Stationary-phase molecules with similar polarity to the sample will attract 

those compounds and isolate them from the sample. In normal-phase 

chromatography, a hydrophilic column, such as silica or aluminium, is used in 

the stationary-phase to adsorb hydrophilic compounds. In reversed-phase (RP) 

HPLC, hydrophobic compounds are absorbed into a hydrophobic column such 

as alkylated silica. The analyte is then eluted from the column with a non-polar 

organic solvent. Elution can occur isocratically, where the composition of the 

solvent does not change, or using gradient elution, where the organic 

composition of the mobile phase increases over time. Solutes remain bound to 

the stationary phase until a specific concentration of organic solvent is 

introduced, causing elution and allowing a mixture of solutes with a wide range 

of retention factors to be eluted over time. RPHPLC is useful in proteomic MS 

due to the relatively hydrophobicity of peptides, and it uses volatile mobile 

phases that are compatible with MS. It provides good purification of the sample 

through its desalting and has high peak resolving power, allowing the 

separation of very similar peptides. 
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Capillary electrophoresis (Jorgenson and Lukacs, 1981) is another technique 

used to reduce the flow of analyte reaching the ion source. It uses an applied 

voltage to create an electric field, separating ions based on their electrophoretic 

mobility, which depends on the molecules’ charge, radius, and viscosity. Here, 

the flow is flat as opposed to the parabolic flow from HPLC, resulting in 

narrower peaks and better resolution. Another chromatography method, 

mostly used for small molecules, is gas chromatography, which also uses mobile 

and stationary phases for peptide separation.  

 

ii. Ionisation 

Peptides eluted from the chromatography column are ionised, and non-volatile 

samples are converted to the gas phase for mass spectrographic measurement. 

The most common methods are electrospray ionisation (ESI) (Fenn John et al., 

1989), which is the most common technique used in LC-MS/MS, and matrix-

assisted laser desorption ionisation (MALDI) (Karas and Hillenkamp, 1988, 

Tanaka et al., 1988), which is generally used in intact protein analysis. These 

processes allow molecules to remain intact during the ionisation process and 

are described as ‘soft ionisation techniques’ as they limit the amount of 

fragmentation that occurs.   

ESI is an atmospheric pressure ionisation technique (Figure 1.2.2). An aerosol is 

produced from the liquid peptide sample as it is forced through a narrow metal 

capillary, which has a large potential difference applied between its inlet and 

the outlet to the mass spectrometer. As the liquid travels through the capillary’s 

electric field, it becomes atomised into small, charged droplets, which are 

expelled from the capillary tip in a fine jet. As the solvent in the droplets 

evaporates, they reduce in size and become more highly charged. A gas, often 

nitrogen, is used as a nebuliser to aid evaporation, and when the droplets shrink 

so small that their surface tension cannot be maintained, they rip apart, 

producing even smaller droplets. Evaporation in the smaller droplets also 

occurs, and the process is repeated until no solvent is left and only charged 

sample ions remain.  
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Figure 1.2.2; Electrospray ionisation. The liquid peptide sample becomes charged as it passes through the 

capillary and forms sample ions as the solvent evaporates from the droplets. (Kicman et al., 2007) 

 

In MALDI MS (Figure 1.2.3), the non-volatile sample is mixed with a large 

quantity of an energy-absorbent organic chemical matrix, which crystallises as 

it dries, also crystallising the peptide sample within the matrix. Ultraviolet laser 

pulses irradiate and sublimate the matrix (desorption), which, being in a 

greater concentration than the sample, absorbs most of the energy, allowing the 

sample to remain intact. The dense gas cloud moves quickly towards a vacuum, 

and energy is transferred from the matrix to the sample, ionising and desorbing 

it.  

 

 

Figure 1.2.3; Matrix-assisted laser desorption ionisation. The sample and the matrix dry to form a crystalline 
structure that is targeted by a laser. The energy absorbed causes desorption and desolvation, allowing a 

charged sample ion to enter the mass analyser. (Kicman et al., 2007) 
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iii. Mass analysis and fragmentation 

Mass analysers 

Ionised particles are analysed by a mass analyser, which separates the ions 

according to their mass to charge ratio (m/z). There are three main types of 

mass analysers: quadrupole, time of flight (TOF) (Wolff and Stephens, 1953) 

and ion trap. Usually, MALDI techniques are coupled with TOF and ESI with ion 

traps or TOF analysers. They can also be connected together in series. For 

example, a Q-TOF is a quadrupole mass analyser connected with a TOF mass 

analyser. A quadrupole mass analyser has a column consisting of four rods 

arranged to have opposite polarity. The rods have a combination of direct and 

alternating current applied to them, which generates an oscillating electric field. 

Ions are emitted from the ion source and travel through the column where they 

become variably destabilised by the fluctuating electric field. A unit mass 

resolution window is created by fine-tuning the applied voltage, allowing only 

ions of a specific mass range to pass through the column and be detected. The 

full mass spectrum is measured by quadrupoles as a series of individual mass-

to-charge ratios. A TOF mass analyser separates ions by their velocity; the 

lighter the ion, the more quickly it will travel. Equally, charged ions are 

accelerated with an electric field until they have the same kinetic energy, and 

the time taken to reach the detector is used to calculate the mass of the ion. This 

allows all of the m/z to be measured simultaneously. The resolution of TOF 

analysers depends on all of the ions being equally charged and starting in the 

same direction, at the same time and from the same position. Resolution can be 

increased using a reflectron (Mamyrin et al., 1973) which is an ion mirror made 

of a retarding electric field that focuses ions of different kinetic energy. Ion trap 

analysers use a combination of alternating and direct current that produces 

electric fields to ‘trap’ and hold ions in place where measurements can be made.  

The Orbitrap (Hu et al., 2005), (Figure 1.2.4), is a more recent type of ion trap 

mass analyser that provides high-speed, full-scan analysis along with high 

resolution and mass accuracy (Zubarev and Makarov, 2013). It consists of 

tangentially injected ions, and three electrodes, one central and two outer, that 

allow for both mass analysis and detection. Measurement of these ions utilises 
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the cyclotron principle, which describes the circular motion of ions in a 

magnetic field. When a voltage is applied between the central and outer 

electrodes, a radial electric field is created which bends the ion trajectory 

towards the central electrode, opposing the centrifugal force created by the 

tangential velocity. The result is a circular-spiral electron beam within the trap 

whose axial oscillations can be detected by the outer electrodes in a smaller 

instrument. The oscillations are recorded as a detected image current, and 

using the knowledge of how a particular m/z responds to a known magnetic 

field strength, a Fourier transformation converts this information from the time 

domain to the frequency domain. Despite the high-throughput advantages, the 

data produced can be difficult to interpret as it can contain high peak density 

artefacts that do not correspond to actual ions. Although information from these 

artefacts can be used practically for improved precision, their presence 

increases the complexity of the data and, therefore, is removed using a pre-

processing algorithm. 

 
Figure 1.2.4; The Orbitrap mass analyser. Ions (depicted by green and red lines) oscillate both round and along 

the axis of a central spindle-like electrode. 1.) The detected oscillation is recorded as a transient signal, the axial 
ion oscillation frequency, which is unique for each m/z. 2.) Using Fourier transformation, the frequency is 

converted into a mass spectrum. (Savaryn et al., 2016) 
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The separated and fragmented ions are detected and counted under vacuum as 

they emerge from the mass analyser, and their m/z is calculated according to 

the properties of the ions. In ion trap and quadrupole mass analysers, only ions 

with a specific m/z reach the detector, depending on the electric field applied to 

the rods. In reflectron TOF instruments, ions deflected by electric fields are 

diverted to different degrees depending on their speed and charge; heavier ions 

move more slowly and are deflected less, while lighter ions have greater speed 

and greater deflection. Abundance is calculated using the flux of the detected 

electrically charged ions, which is converted into a proportional electrical 

current, with more abundant ions producing a greater signal. This is read by the 

data system and converted to digital information, which is displayed as a mass 

spectrum. Types of detectors include electron multipliers (Allen, 1947) and 

Faraday Cup detectors (Brown and Tautfest, 1956), which use secondary 

emission to induce amplified electron emissions from a single electron. In 

Orbitrap mass detectors, the axial ion oscillation frequency and Fourier 

transformation are used to calculate m/z.  

 

Fragmentation 

Fragmentation methods include collision-induced dissociation (CID) (Mitchell 

Wells and McLuckey, 2005), where the ions are fragmented in a collision cell 

where they are accelerated and collide with a neutral gas. In the so-called 

‘mobile proton model,’ which theorises that mobilisation of a proton to a 

carbonyl causes the peptide backbone to break, this increases the ion's internal 

energy, and fragmentation occurs when internal energy exceeds the critical 

energy of the bond. High-energy collision dissociation (Olsen et al., 2007), 

available for the Orbitrap, is a beam-type collisional activation dissociation 

method employing higher energy dissociations, enabling ion detection over a 

wider range of fragmentation pathways (Jedrychowski et al., 2011). The ion 

trap uses resonant CID where gas-phase collision-induced dissociation by 

resonant excitation occurs. Ions are excited to higher kinetic energy through 

resonance; a small supplementary AC potential resonant with the secular 

frequency of the mass-selected parent ion is applied between the end–cap 
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electrodes of the ion trap. The high-energy ions collide with a gas, such as 

helium or argon, and dissociate into fragments (Xu et al., 2014). Electron 

transfer dissociation (Syka et al., 2004) is another method where radical cations 

are produced from ions by electron transfer through bombardment of radical 

anions, again causing fragmentation by dissociation along the peptide 

backbone. This process is considered softer than CID, and is a technique useful 

for site localisation in phosphorylation due to the ability to preserve labile side 

chain modifications.  

 

Acquisition modes 

The resulting mass spectra (MS1) show peaks relating to mass/charge (m/z) 

versus intensity (ion counts) of intact peptides. Certain peptides are again 

subjected to fragmentation, producing a second mass spectrum (MS2). This 

process is tandem mass spectrometry (MS/MS). Data-dependent acquisition 

(DDA) is where the most intensely abundant peptides are selected for further 

fragmentation and mass spectrographic analysis, and the MS/MS results are 

used for peptide identification (Hunt et al., 1986, Eng et al., 1994). However, this 

can cause under-sampling as only a fraction of the detected ions are used 

(Johnson et al., 2013). To overcome this, data-dependent acquisition (DIA) 

(Venable et al., 2004) or sequential window acquisition of all theoretical 

fragment ion spectra (SWATHs) (Gillet et al., 2012) were developed. In DIA 

acquisition mode, all available precursor ions are subjected to fragmentation 

tandem mass spectrometric analysis, maximising peptide identification. Due to 

the increased dynamic range, the amount of data produced by DIA experiments 

has greatly increased, and the multiplex nature of the analysis is more 

challenging. While software and methodologies are improving for this emerging 

technique, this report focuses on DDA workflows. 
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iv. The mass spectrum 

The result of mass analysis is a mass spectrum (Figure 1.2.5), which shows the 

distribution of intensity (approximate ion counts) versus the m/z, for all 

molecular ions detected in a given scan of the MS.  

 
Figure 1.2.5; Example mass spectrum (Quinn et al., 2012) 

A combination of this information for all MS scans can be displayed as a two-

dimensional ion-intensity map (Figure 1.2.6) which allows visualisation of the 

data as bird’s eye view. Discrete data (scans over retention time) on the y-axis is 

stitched together to infer the continuous signal of molecules measured, with 

m/z on the x-axis, and feature intensity shown with highly abundant ions 

represented by darker areas. 

 
Figure 1.2.6; Ion intensity map from software analysis package Progenesis QI for Proteomics 

(http://www.nonlinear.com/progenesis/qi-for-proteomics/) 
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The same information is also displayed as a corresponding total ion 

chromatogram (TIC) (Figure 1.2.7) which shows the intensity of the same 

detected ions as a function of elution time. As the TIC is calculated by summing 

the intensities of all mass spectral peaks belonging to the same scan, it is not 

especially useful in quantitative proteomics, since peaks from complex mixtures 

would contain intensity information from many different features. 

 
Figure 1.2.7; Total ion chromatogram from software analysis package Progenesis QI for Proteomics 

(http://www.nonlinear.com/progenesis/qi-for-proteomics/) 

 

Isotopes 

Isotopes are naturally occurring versions of the same element. They have the 

same number of protons and electrons but have different number of neutrons, 

giving them different masses. The resulting mass spectrum of two isotopes of an 

element with the same charge will show two individual peaks separated by the 

difference in mass of the two isotopes (1 Da for a charge state of 1). In 

proteomics, the most common causes of isotopic peaks are the presence of 13C 

as opposed to 12C, along with a small amount of 15N rather than 14N. The 

resulting mass spectrum of a small peptide containing isotopes (Figure 1.2.8) is 

displayed as an isotopic cluster, a series of peaks, the largest being the most 

abundant monoisotopic peak, followed by smaller peaks at higher mass/charge 

ratios due to the presence of heavy isotopes. However, as peptides increase in 

size (approximately > 2000 Da), the monoisotopic peak is no longer the most 
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intense peak in the isotopic cluster, as there is a higher incidence of heavy 

isotopes due to the increased number of C and N atoms in the peptide molecule. 

As this number becomes larger across the population of molecules, there is a 

smaller probability (and thus proportion) that a given molecule will have purely 

C12 and N14. 

 
Figure 1.2.8; Mass spectrum of a peptide NVLPQRSTVW. The monoisotopic peak is the most abundant peak, 
with four additional peaks at higher mass/charge values, separated by 1 Da, due to the presence of naturally 

occurring heavy isotopes of the single-charged peptide (Sykes and Williamson, 2008) 

 

The presence of multiply charged ions, formed when a precursor ion interacts 

with additional atoms during ionisation, will be shown as an isotopic cluster 

separated by 1 Da divided by the charge state of the ion; a peptide of 2+ charge 

will have isotopic peaks separated by 0.5 Da and 3+ separated by 0.333 Da. 

 

v. Labelling 

Labelling is a technique used to differentiate and quantify proteins and peptides 

between samples, providing identification of proteins in complex mixtures and 

relative abundances. A defined mass is incorporated into the sample, or samples 

are enriched with different heavy, stable isotopes of amino acids or elements, 

then mixed and analysed as a single sample. Further benefits of labelling is the 

ability to perform multiplexing, where many different samples can be processed 

in one MS run, which is quick and efficient, and produces reliable data with 

limited variation. Labels can be applied at the cellular level in metabolic 

labelling where living cells are modified to include an identification tag, for 
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example in stable isotope labelling with amino acids in cell culture (SILAC) (Ong 

et al., 2002). Heavy isotopes such as 2H, 15N, 13C, and 18O are introduced using 

cell culture where the sample is grown, creating a ‘heavy’ labelled sample where 

the isotope is incorporated into the proteome. An identical sample is cultured 

using the natural growth medium without added isotopes to provide the ‘light’ 

sample. The heavy and light samples are then treated according to the 

experimental conditions, and equimolar ratios of the two cell populations are 

mixed before mass spectrometric analysis. The peaks of the heavy and light 

samples will show a defined number of Dalton mass shifts, allowing 

identification of the peak associated with the light or heavy sample. This 

technique can detect small relative changes in protein levels, but samples can be 

expensive or impossible to label. The process is time-consuming due to the 

growth period for incorporating isotopes, and as they are living samples, they 

must be maintained. 

A second labelling technique is by chemically labelling samples through the 

addition of stable isotopes where reagents react with functional groups of the 

polypeptide. Initially, this was applied to intact proteins in isotope-coded affinity 

tags (ICAT) (Gygi et al., 1999). However, this method could only be performed 

on proteins containing cysteine, and had other technical limitations meaning it 

is rarely used nowadays. Methods where digested peptides are labelled have 

also been developed; tandem mass tags (TMT) (Thompson et al., 2003) and 

isobaric tags for relative and absolute quantitation (iTRAQ) (Wiese et al., 2007), 

which provide identification of individual samples after secondary MS. Isobaric 

reagents are covalently bound to free amines, often lysines in iTRAQ and amine, 

cysteine, or carbonyl groups in TMT. Reagent kits are available to allow 4plex, 

8plex, 10plex, and up to 16 multiplexing. All have kits have the same total mass 

and differences between the labelling of the peptides is only observable after 

fragmentation. Reagents consist of charged reporter groups, each with a unique 

mass and used for the identification of samples, and a neutral balance group, 

which makes up the total mass to ensure it is constant across all of the reagents. 

The balance group is released during fragmentation in MS/MS, producing an ion 

with a known m/z, and the resulting sample peaks are separated by the specific 
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mass of the reporter group used to label the sample. The disadvantages of this 

technique are that it is expensive and the reagents are sensitive to salt 

contamination. In addition, the higher number of samples processed, the higher 

resolution MS required for processing the complex signal. There can also be 

variability introduced due to enzymatic digestion differences.  

An alternative to labelling is label-free (LF) methods, where samples are 

processed in separate MS runs and intensities are compared to investigate 

changes in protein levels between conditions. LF sample preparation is fast, 

cheap, and straightforward, and the study design is adaptable with no absolute 

limit to the number of comparisons that can be made. LF studies are suitable for 

large scale experiments have higher coverage and can identify highly abundant 

proteins. However, LF studies produce large quantities of data that require 

diverse techniques with complex computational workflows to interpret. Due to 

processing samples, separately there is increased running time and additional 

technical variance is introduced that requires downstream analysis to correct. 

The LF processing pipeline is described in the next section. 

 

vi. Top-down proteomics 

A further method of proteomics experiment is referred to as ‘top-down’, 

proteomics, where purified protein samples are subjected to direct 

fragmentation. It has the benefits of being fast, with straightforward sample 

preparation, and the analysis of the intact protein can preserve valuable 

information about PTMs and alternative splicing isoforms. However, the 

procedure can be relatively insensitive (Melby et al., 2021), and fragmenting 

large-sized analytes results in many different charge states (40+ to 60+) which 

produce overlapping signals that are further overlapped with charge states of 

other forms of the protein (e.g., due to PTMs). This produces a very complex 

signal that requires high-resolution instruments with a large mass range, and 

informatics algorithms to deconvolute the data (Cai et al., 2016). This project 

focuses on the more common approach in proteomics, ‘bottom-up’ proteomics, 

employing the mass analysis of peptides.  
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1.3. LCMS data processing pipeline 

i. Proteomics workflow 

The typical LF workflow consists of processing with specialised software. Raw 

mass spectrometric data is converted into peak data which must be aligned to 

account for retention time shifts between separately processed runs, identified 

using database searches, and quantified using the number of spectra identified 

or ion intensity values. Then, as during sample digestion, the link from peptide 

to protein is lost, identified peptides must be inferred back to the protein they 

are likely to have derived from before peptide quantities can be aggregated into 

protein abundances. Protein quantification can consist of relative 

quantification, where the fold change in protein expression between conditions 

is calculated, or absolute quantification, which calculates individual protein 

abundances within samples. Finally, statistical software is used to accurately 

select which proteins change due to experimental conditions 

 

ii. Proteomics software  

To address the challenge of extensive data processing required for LF 

workflows there is a multitude of proteomic software solutions. Some support 

the whole data analysis workflow; others focus on a specific stage of the process 

such as search engines for identification, applications for quantification or 

algorithms for statistical analysis (which is discussed further in the chapter). 

Most search engines work in a relatively similar principle, comparing 

fragmentation spectra against theoretical spectra generated from a peptide 

sequence database. There are commercial search engines, such as Mascot 

(Perkins et al., 1999) and PEAKS (Tran et al., 2019), free software, such as 

MaxQuant (Cox and Mann, 2008), and fully open source search engines such as 

Comet (Eng et al., 2013), X!Tandem (Bjornson et al., 2008) and MSGF+ (Kim et 

al., 2008, Kim and Pevzner, 2014). For quantitative software, the most popular 

free software is MaxQuant, which started as SILAC-based analysis for Thermo 

instrument data, but now supports label-free and TMT analysis, DIA analysis, 

and multiple instrument vendors.  
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Progenesis QI for Proteomics (QIP) is a commercial product that was designed 

for label-free quantitative proteomics but was adapted to support MSe (Waters) 

analysis, which is a type of DIA. Support for labelling data can be provided by an 

additional plugin called Proteolabels, which was developed by our team. 

Progenesis QIP provides a user-friendly, menu-guided, data-processing 

workflow with options for automated processing and support for all major 

instrument vendors. The software takes a unique approach to ‘quantify–then-

identify’ (described further in this chapter), which is intended to promote 

detection of low-abundant peptides that would have less chance of being 

detected in typical DDA workflows. 

This project began as an Industrial Cooperative Awards in Science and 

Technology (CASE) PhD studentship in collaboration with the software 

development company Nonlinear Dynamics, a subsidiary of the Waters 

Corporation, the developers of Progenesis QIP. The main aim of the project was 

to provide an improved statistical pipeline that can be implemented in the 

Progenesis QIP workflow. Therefore, this thesis focuses on Progenesis QIP data 

processing rather than other software such as MaxQuant that is more 

commonly used. The intention of the CASE studentship was that a period of 

time would be spent working at Nonlinear Dynamics. However, due to 

unforeseen circumstances, the expected work experience period did not occur, 

and the PhD was conducted solely under the supervision of the University of 

Liverpool supervisors. 
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1.4. Progenesis QI for Proteomics 

Proteomics QIP (https://www.nonlinear.com/progenesis/qi-for-proteomics/) 

is a software analysis package for processing raw MS data into quantitive 

protein group intensities. The Progenesis QIP data processing pipeline (Figure 

1.4.1) is described in detail in this section. 

 

Figure 1.4.1; Progenesis QIP bioinformatics workflow for processing label-free quantitative proteomics 
experiments; RAW data is imported and compressed into simplified modelled ion intensities. Normalisation and 
alignment allow the information from all experimental runs to be combined for analysis. Fragmented peptide 

ion information is used for database searches for peptide and protein identification. Protein grouping and 
abundance normalisation provide protein group intensity information for comparative analysis. 

 

i. Alignment 

Using a wavelet based approach, Progenesis QIP performs peak modelling for 

simplification and compression, converting the many-point peak data from the 

RAW MS files into peak models that retain all quantitative and positional 

information. In LF techniques, samples subjected to different experimental 

conditions and technical or biological replicates have separate MS analysis as 

opposed to combined analysis in labelled experiments. Variation in retention 

time is introduced due to different sample handling and separation procedures. 

Sample ions are aligned to compensate for this, allowing comparison of the 

peptide and protein abundances from different runs; an ion in run A, shown as 

the pink ion in Figure 1.4.2, will be in the same location as a matching ion, 

shown in green, in run B, giving retention times that are equivalent across all 

runs. The most appropriate run to use as a reference can be chosen 

https://www.nonlinear.com/progenesis/qi-for-proteomics/
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automatically by the software from all or a selection of runs; each run is 

compared to the other runs and assessed for similarity with the run most 

similar to the other runs selected as the reference run.  

 

 

a.)    b.) 

Figure 1.4.2; Alignment of a peptide ion in two overlaid runs (shown in pink and green) represented as m/z 
versus retention time. a.) Before alignment, due to retention time differences, the ions do not overlap. b.) After 

alignment, the ions are in the same location and combine to show a single feature 
(http://www.nonlinear.com/progenesis/qi-for-proteomics/v2.0/faq/why-is-alignment-so-important.aspx). 

 

Landmarks called alignment vectors are placed, connecting the location of a 

peptide in the reference run with the location of the same ion in the run being 

aligned. Each run is automatically aligned to the reference run separately, 

producing a rough initial alignment, which is used to produce an optimal 

alignment. The alignment quality can be visualised, reviewed, and edited with 

vectors being placed manually. Once placed, the vectors are used to calculate a 

non-linear mapping between the retention times of the reference run and those 

of the run being aligned. 

 

ii. Feature detection and ion abundance 

quantification 

Once alignment is complete, the software performs feature detection. During 

the peak modelling stage, the discrete data on the retention time axis, acquired 

through sampling every second or so, is converted into continuous 



Optimising the statistical pipeline for quantitative proteomics 

 

49 
 

measurement of intensity over time. A consensus map, which is an aggregate 

image of features, is produced from a single set of peptide ion outlines that 

includes information from all of the runs. Ion intensity is measured by summing 

the intensities of the isotopes of the peptide within a boundary. Features are a 

set of isotopic peaks separated by m/z interval of one Dalton; the most 

abundant is the monoisotopic peak, the second peak is the same peptide but 

containing an atom with an extra neutron, the third with two atoms with an 

extra neutron and so on. Figure 1.4.3 a.) is a two-dimensional ion-intensity map 

showing the red peptide ion boundary that surrounds the isotopes that form the 

same peptide ion (shown as black shaded areas). Figure 1.4.3 b.) shows the 

three-dimensional ion intensity maps of the peptide ion and its isotopes. 

Quantification is calculated using the total area under the peaks of all isotopes 

within the peptide ion boundary using the MS1 survey scan before any 

identification takes place. 

 

 
a.) b.) 

Figure 1.4.3; a.) Two-dimensional (taken from analysis software package Progenesis QI) and b.) Three-
dimensional ion intensity maps. Isotopes of the same peptide ion shown as black shaded areas (a) or peaks (b) 

within the red boundary line. Peptide ion abundance is calculated by summing the areas below the scan lines of 
each of the isotopes within the boundary (http://www.nonlinear.com/progenesis/qi-for-proteomics/how-it-

works/) 

Missing values 

Analysis of quantitative LCMS experiments can be hindered by missing values in 

the data, which can occur for biological and technical reasons. This can be 

because the peptide is present but its abundance is below the detection limit of 

the instrument or has been misidentified. They can also occur due to issues with 

experimental processing, such as incomplete ionisation and miscleavage of 

peptides. Alternatively, the peptide may truly be missing from the sample. 

Techniques to deal with missing data in proteomics include imputation of 
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missing values based on statistical estimations and removing incomplete data 

from analysis. However, statistical methods are more successful, depending on 

the reason for the missing value. Randomly missing values often arise from 

technical limitations, whereas non-randomly missing values tend to be 

abundance-dependent (Jin et al., 2021), and proteomics data is believed to 

constitute an unknown mixture of the two. In Progenesis QIP, there are very few 

missing values in the resulting data (Välikangas et al., 2017). This alignment 

technique allows for confident feature detection to maximise the amount of 

peptide ions quantified (Al Shweiki et al., 2017). 

 

1.5. Peptide identification and protein 

inference 

i. Peptide identification 

In shotgun proteomics, where the protein sample is digested into peptides early 

in the workflow, the direct link between peptides and proteins is lost and must 

be now inferred from the data. Using specific search engines such as Mascot 

(http://www.matrixscience.com/), the detected MS2 fragments can be 

compared against proteome-specific sequence databases (Eng et al., 1994). The 

Mascot search engine (Brosch et al., 2009) allows identification of peptides and 

proteins by comparing the experimental mass of MS2 ions to the calculated 

mass of peptides or fragment ions obtained by predicting peptide cleavage. 

Details of how a peptide breaks up into fragments are dependent on the method 

of fragmentation (Révész et al., 2021) and can be used to estimate the unique 

mass of the resulting fragments, which are stored as sequence databases. 

Database sequence fragments that match the experimental results provide a 

peptide spectrum match (PSM) and possible parent peptide sequences with an 

attached probability score (Nesvizhskii, 2010). Usually, the highest scoring 

peptide to PSM is considered a match, and completeness of the sequence 

database is essential to the reliability of the identifications. Accurate search 

parameters must also be supplied; fixed and variable modifications define what 

mass to consider for specific residues; parent and fragment ion mass tolerance 
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allows for a window of error on mass values; enzyme configuration specifies the 

location of digestion cleavage.  

 

ii. Protein inference 

Protein identification is made based on confidently identified peptides. 

Problems arise due to the peptide-centric nature of shotgun proteomics. Many 

peptides are not ‘unique’ to one protein; the same peptide sequence can be 

present in many different proteins, and database searches are unable to tell 

which protein the peptide could have derived from. They may share the same 

sequence of amino acids, be from the same gene and differ slightly due to 

alternative splicing, single- nucleotide polymorphisms, or posttranslational 

cleavage, be ancestrally related species, or from the same gene family 

(Rappsilber and Mann, 2002).  

For quantitative DE analysis, this is not ideal. For accurate quantitation, it is 

important to determine how strong the evidence for a protein being present is, 

and to reduce long lists of possible proteins for simplified analysis. Some 

peptides in the search will only be mapped to a single protein; these are labelled 

as ‘unique peptides’ and provide a definite identification of a ‘distinct protein’. If 

a search result shows a peptide mapped to two or more possible proteins, it is 

termed ‘shared’. Shared peptides cannot identify a single parent protein and 

therefore lead to identification of less specific protein groups of possible 

proteins. The reporting of excessive lists of questionable protein identifications 

damages the precision of a quantitative proteomics experiment (Keller et al., 

2002) and current workflows tend to employ the Parsimony Principle, where 

proteins are only reported if there is independent evidence of their presence in 

the sample. Protein inference software uses rules to define peptides based on 

how much evidence there is to support the mapping. These rules are described 

using worked examples in Figure 1.5.1 to Figure 1.5.4 based on the terms used 

by Jones (2017). Peptides are said to be reliable when they are only mapped to 

one possible protein sequence in the database. Proteins that do not have 

independent evidence for their presence in the sample are considered as a 



Optimising the statistical pipeline for quantitative proteomics 

 

52 
 

group of possibly identified proteins or removed from the analysis to give a 

parsimonious result.  

 

• A peptide mapped to only one protein is labelled as a unique peptide. 

• Proteins containing a unique peptide have independent evidence that 

they are present in the sample and are labelled as distinct proteins, 

which lead to protein groups. The distinct protein’s non-unique peptides 

that also map to other proteins that have independent evidence are 

labelled as conflicted peptides. 

• Proteins containing only peptides that belong to distinct proteins but 

have no unique peptides themselves are labelled as multiply subsumed 

and are not included in the analysis. 

 
Figure 1.5.1; Protein grouping example 1. Peptide 1 is only mapped to protein A; therefore, it is labelled unique 
and protein A is distinct. The same is true for peptide 4 and protein C. Peptides 2 and 3 are both mapped to two 
proteins, (A and B) and (B and C) respectively. These peptides are labelled as conflicted peptides. As there is no 
independent evidence that protein B is present in the sample, due to parsimony principle this protein is labelled 

multiply subsumed and will be discarded. 

 

Protein grouping example 1 (Figure 1.5.1). Peptide 1 is only mapped to protein 

A; therefore, it is labelled unique and protein A is distinct. The same is true for 

peptide 4 and protein C. Peptides 2 and 3 are both mapped to two proteins, (A 

and B) and (B and C) respectively. These peptides are labelled as conflicted 

peptides, since their intensity signal must derive from a mixture of more than 

one protein molecule. If one protein is going up in abundance in a comparison 

of two experimental groups, and the other protein is going down in abundance 

in the same comparison, it is clear to see that the signal we observe from these 

peptides would not be a useful proxy for determining what is happening at the 

protein-level. Due to parsimony principle, as there is no independent evidence 
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that protein B is present in the sample, this protein is labelled multiply 

subsumed and will be discarded (Figure 1.5.2).  

 

Figure 1.5.2; Protein grouping example 1 after rules of parsimony are applied; protein B is discarded and 
peptides 2 and 3 can now be called resolved. 

 

• If the protein contains a peptide that does not belong to a distinct 

protein, it will form a same set group (Figure 1.5.3). The head of the 

group will be the protein with the most evidence for its presence – the 

one with the largest number of identified peptides. 

 

Figure 1.5.3; Protein grouping example 2. Protein A is a distinct protein due to unique peptide 1. Proteins B and C 
both contain conflicted peptide 2 and resolved peptide 3. There is no independent evidence to support that one 

over the other is present in the sample, and so they form their own same-set protein group. 

 

• If a protein contains peptides that are mapped to more than one protein, 

but none of those proteins is distinct, if the peptides have not been 

labelled as conflicted, they are labelled as resolved (Figure 1.5.4). 

 
 a.)  
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b.) 

Figure 1.5.4; Protein grouping example 3. a.) The three proteins contain a combination of the same resolved 
peptides and so will form a resolved group. As protein A, has been identified by the most peptides, it will head 

the group, and proteins B and C will form a sub-set. b.) After applying parsimony rules; the evidence in the 
sample can be explained by a single protein (protein A), under the rules of parsimony, proteins B and C are 

discarded. 

 

iii. Peptide abundance summarisation methods 

In label-free proteomics, varying ionisation efficiencies mean that, rather than 

giving an absolute value to the quantities of proteins in a sample, relative 

changes in levels of a protein across samples are measured and used to 

calculate fold-changes between conditions. To compare levels between 

proteins, rather than across samples, absolute quantification is required. This is 

possible in LC-MS, but internal standards are required to perform the 

calculations. Most commonly, calculations of protein concentrations are 

performed using the abundance values of the ion current of their respective 

peptide ions. One method is to simply sum the average abundance of all the 

identified peptides belonging to the protein. Another uses only the most 

abundant peptides, known as the Hi-N method, and was demonstrated by Silva 

et al. (2006). This method utilises the finding that the average MS signal 

response for the three most intense tryptic peptides is correlated with the 

absolute concentration of the protein in the sample. 



Optimising the statistical pipeline for quantitative proteomics 

 

55 
 

1.6. Normalisation 

Once proteins and protein groups have been identified and quantified, a further 

step is required to accurately decipher proteins of biological interest from bias, 

systemic variation, and outliers. Abundances of the same protein from different 

runs may differ due to sample handling or ionisation fluctuations. Differences in 

environmental conditions, sample preparation, or instrument calibration of 

separately processed samples can introduce systemic bias. This variation can 

cause a change in signal between conditions obscuring signals of interest. 

Optimal normalisation methods allow the removal of undesirable systemic bias 

while preserving changes of abundances due to DE, and the success of 

subsequent analysis is dependent on the selection of appropriate normalisation 

(Park et al., 2003). A variety of methods for transforming the data or aligning 

different properties of the data, such as the probability distributions, the 

quantiles, or the medians are available. Parametric and non-parametric models 

used for microarray normalisation, such as central tendency, quantile, variance 

stabilising, and local and linear regression normalisations, have been applied to 

proteomics data due to the experiments’ having some of the same underlying 

assumptions. One run is selected as the reference run, or samples can be spiked 

with internal standards of a known quantity. This allows the calculation of a 

normalising factor, which can be used to scale to other runs, adjusting the 

intensities to make them even across all runs. Devised by Dudoit et al. (2002), 

the effectiveness of normalisation methods between two samples can be 

visualised using MA-plots (Figure 1.6.1). ‘A’ is displayed on the x-axis and 

represents the average of log expression values across a sample. ‘M’ is shown on 

the y-axis, displaying the difference in log expression value between samples. 

Normalisation methods often rely on the assumption that most protein levels 

do not change across the conditions, meaning the average ratio of expression 

values between two conditions is one (log ratio value of zero). In perfect data, 

the MA plot would show a horizontal line at zero.
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a.)  b.)

Figure 1.6.1; MA plots two samples of a.) raw and b.) normalised peptide abundances. ‘A’ on x-axis represents 
average log expression values, ‘M’ on y-axis shows difference in log expression values between samples. Linear 

modelling (shown in blue) shows a line more centred around y = 0 in the normalised data. 

 

A summary of different normalisation methods, the problems in the data that 

they address, and the software packages used to perform them, along with any 

issues, assumptions, and common usage, are shown in Table 1 and described in 

detail in this section.  
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Table 1; Summary of different normalisation methods with details of R packages used, assumptions, issues and uses. 

Normalisation method Problem addressed Software Assumptions Issues Example Uses 

Log transformation Variance log() in R Data follows a log-
normal distribution 

Cannot transform zero 
values 

Transforming data 
prior to statistical 

analysis 

Central tendency 
normalisation 

Bias Progenesis QI Correction factor is 
constant 

Cannot remove noise 
from variation in 

ionisation 

To correct variation 
due to sample 

loading 

Linear regression with 
ordinary least squares 

Bias lm() in R Correction factor is 
linearly dependent on 

intensity 

Affected by outliers Analysing highly 
abundant peptides 

Robust linear 
regression  with M-

estimation 

Bias rlm() in MASS package of R Correction factor is 
linearly dependent on 

intensity 

Low intensity peptides 
often do not fit the 

assumption of linear 
dependency 

Analysing long-
tailed distributions 

Local regression 
normalisation 

Bias lowess(), loess() in R Correction factor is non-
linearly dependent on 

intensity 

Best performed on 
smaller datasets 

Analysing peptides 
affected by ion 

suppression 

Variance stabilisation 
normalisation 

Variance and bias justvsn() in vsn package of 
R 

Correction factor is non-
linearly dependent on 

intensity 

Can be slow High density arrays 

Quantile normalisation Bias normalize.quantiles() in 
R 

Intensity distributions 
across samples are 

similar 

All runs could be given 
identical intensity 
values for proteins 

High density arrays 
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i. Variance normalisation 

Log transformation 

Variation tends to increase as abundance increases, but not linearly, with 

variance being greater in low abundance peptides compared to high abundance 

peptides. To overcome this, abundance values are often first log transformed. 

Further normalisation steps are then performed to remove bias and adjust 

intensities so that they are all on the same scale and can be compared.  

 

ii. Bias normalisation 

Central tendency normalisation 

Based on the assumption that protein distributions should be similar, global 

adjustment (Yang et al., 2002) or central tendency normalisation forces the 

distribution to centre around a constant. This is useful to correct for errors 

between samples due to different amounts of samples being injected (Tokareva 

et al., 2021), resulting in measurements being offset by a constant factor. 

Abundance variability is adjusted by subtracting a constant value or multiplying 

by a scaling factor according to the general equation: 

𝑦𝑖
′ = ∝𝑘 𝑦𝑖 

Where 
 𝑦𝑖  is the measured peptide abundance of the peptide ion 𝑖 in sample 𝑘 
 ∝𝑘 is the scaling factor for sample 𝑘 
 𝑦𝑖

′ is the normalised abundance of the peptide ion 𝑖 in sample 𝑘 

 

Various metrics can be used for centring: Total intensity normalisation (TIN) 

where the mean log ratio is used for centring; Intensities are divided by the sum 

of intensities of all runs within the sample and multiplied by the median of all 

samples’ sums of intensities then log2 transformed, scaling samples so they 

have the same median. Average intensity normalisation (AIN) which focuses on 

centring the mean; Intensities are divided by the mean of intensities of all runs 

within the sample and multiplied by the mean of all samples’ mean intensities 

then log2 transformed. Median intensity normalisation (MIN) where the median 
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is used for centring; Intensities are divided by the median of intensities of all 

runs within the sample and multiplied by the mean of all samples’ median 

intensities then log2 transformed.  

 

Progenesis QIP normalisation 

In this procedure, inbuilt ‘scalar normalisation’ of Progenesis QIP, a different 

scalar multiple for each run is applied to the feature abundances to readjust the 

runs so that they are all measured on the same scale as a reference run. First, 

the median and median absolute deviation (MAD) are used to filter outliers and 

the upper and lower robust estimation limits are calculated using: 

𝑀𝑒𝑑𝑖𝑎𝑛 + 3 × (1.4826 × 𝑀𝐴𝐷) 
𝑀𝑒𝑑𝑖𝑎𝑛 − 3 × (1.4826 × 𝑀𝐴𝐷) 

Where 
1.4826 × 𝑀𝐴𝐷 is an estimate of the standard deviation 

 

The peptides that fall within these boundaries are used to calculate the 

normalisation factor. An abundance ratio of each peptide is calculated 

compared to the same peptide from an automatically selected normalisation 

reference run, chosen by the software as being ‘least different’ to all the other 

runs: each sample is treated as a potential normalisation reference, and the 

robust standard deviation estimate (using equations above) is calculated for the 

other runs. A pooled variance is then calculated, which is a measure of how 

consistent the sample’s difference is across all features from the others. A 

consistent scalar shift from another sample will introduce the minimum 

possible propagated error when scaled together. The sample with the lowest 

value is then used as the reference run. A ratio is then calculated of each peptide 

abundance to the normalisation reference run abundance value: 

𝑅𝑖,𝑥 =
𝐴𝑏𝑖,𝑥

𝐴𝑏𝑖,𝑁𝑅

 

 
𝐴𝑏𝑖,𝑥  is the abundance of the peptide ion 𝑖 in the run 𝑥  

𝐴𝑏𝑖,𝑁𝑅  is the abundance of the peptide ion 𝑖 in the normalisation reference 𝑁𝑅.  

 

To correct for skewedness, a log transformation is applied to produce a normal 

distribution for ratio data of each run compared to the reference run. Ions with 



Optimising the statistical pipeline for quantitative proteomics 

 

60 
 

an abundance of zero are not used in the calculation. Log10 ratios are centred 

on the normalisation reference by adding or subtracting the value required to 

shift the sample distribution over the reference run distribution, equivalent to 

multiplying untransformed data by a scale factor. Log space scalar estimation is 

returned to ‘abundance-space ratio’ and applied to all samples in the run. By 

using a ratio calculation compared to total-abundance-based methods, the 

influence of absolute abundance is removed. 

 

Linear regression normalisation 

 
Figure 1.6.2; Protein intensities from one run are plotted against the median protein intensity across all runs and 

a linear model is fitted using ordinary least squares to provide the normalised protein intensities for that run, 
show in grey line. 

Linear regression normalisation assumes amount of bias is linearly dependent 

on peptide intensity (Park et al., 2003); the more abundant the peptide, the 

greater the bias and as a result greater correction must be applied. Figure 1.6.2 

shows linear regression normalisation where normalised intensity values for 

each are estimated by comparing the median protein intensity across all of the 

runs to the measured protein intensity in each run.   
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Figure 1.6.3; Residuals are the difference between the actual value, shown as a black dot, and the modelled 
value, shown as a red dot. The model that gives the lowest value when residuals are squared and summed is 

chosen as the best fit. 

Linear modelling is fitted using ordinary least squares where the amount of 

error between the modelled value and the actual value, the residual (shown in 

Figure 1.6.3), is minimised. The residuals are squared to remove negative 

values and then summed. The model is fitted to the values that give the smallest 

total squared sum of residuals.  

 

Figure 1.6.4; Linear regression normalisation where one data point, shown in red, has been replaced with an 
outlier. Original linear model is shown in grey and linear model including outlier is shown in red. Changes 

between models is created by changing a single data point. 

Problems can arise in data with outliers; squaring large residuals causes these 

data values to have a lot of influence on the model. Figure 1.6.4 shows the 

extent the model can be altered by changing one data point. 



Optimising the statistical pipeline for quantitative proteomics 

 

62 
 

 
Figure 1.6.5; Data from fig 6 modelled with robust linear regression (dark grey line). This brings the fit closer to 

the original model before the outlier was introduced (shown in grey) compared to linear modelling with ordinary 
least squares (red line). 

An alternative method to fit the linear model is robust regression, which is less 

affected by outliers. Using an M-estimator to weight observations based on the 

size of the residual, reduces the influence of these data points (Figure 1.6.5) and 

it can be a good option for analysis in long-tailed distributions. Each sample’s 

log2 transformed data is normalised to the median of all samples and using the 

‘rlm’ function in the in MASS package. Following this a linear model is fitted 

using robust regression through iterated re-weighted least squares (IRLS) 

(Venables and Ripley, 2002). 

 

Local regression normalisation 

In intensity dependent bias, the variance of samples increases with their mean 

abundance, and for high intensity proteins, the standard deviation roughly 

increases in a linear fashion. However, limitations of fitting a linear model arise 

with low-intensity peptides causing deviations from the straight line 

relationship and resulting in ‘banana-shaped’ plots. In these circumstances, 

global adjustment is not suitable. Local regression normalisation is a non-

parametric regression method suitable for non-linear bias such as measured 

peptide abundances affected by ion suppression or detector saturation. Locally 

weighted scatter plot smoothing (LOWESS) (Figure 1.6.6) uses weighted least 

squares for local fitting of polynomials to smooth scatter plots (Cleveland, 
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1979). By performing linear regression on localised subsets of the data, a point-

by-point function is built to describe the overall distribution of the data.  

 
Figure 1.6.6; Protein intensity values below approximately 40000 deviate from being linearly correlated (red, 

dashed line). Blue line shows non-parametric regression using weighted least squares (LOWESS) which better fits 
data. 

Local regression normalisation can be performed using the 

‘normalizeCyclicLoess’ function from the limma package (Ritchie et al., 2015) 

for gene expression analysis in R, which encompasses cyclic loess described by 

Ballman et al. (2004). The method combines a smoothing function with a simple 

linear model. Cyclic loess regression performs pairwise analysis of MA plots 

between Log2 transformed samples, correcting both sample intensities by the 

same factor in opposite directions at each individual points, iterations are 

repeated until the average ratio of expression converges to zero along the x axis, 

and each sample intensity is set to the average of all samples.  

 

Quantile normalisation 

Quantile normalisation is a non-parametric approach developed for high-

density arrays and uses the assumption that intensity distributions across 

samples will be similar and bias can be corrected by adjusting these 

distributions. First described by Bolstad et al. (2003) for microarray technology 

as a solution to variation introduced in experiments using multiple high density 
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oligonucleotide arrays, its goal was to make the distribution of the probe 

intensities for all arrays within a set of arrays the same. Based on the concept 

that the distribution of two data vectors is the same if the quantile-quantile plot 

shows a diagonal line and extending the theory to the nth dimension for n data 

vectors. A worked example is shown in Figure 1.6.7. The data is first sorted and 

then the mean quantile intensity is substituted as the protein intensity value. 

Then the data is put back into the original order but now all runs will have the 

same distribution. A potential problem with this method is that it is possible all 

the runs could be given identical intensity values for proteins. 

 

a.)  

b.)   c.)  
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d.) 

   

e.) 

  

f.) 

  

g.)

Figure 1.6.7; Worked example of quantile normalisation. a.) Mean protein abundance data of three proteins (A, 
B, and C) across three conditions (1, 2, and 3). b.) The mean value of the most highly abundant protein in each 
group is calculated. c.) Most abundant proteins are all assigned the mean abundance value. d.) The next most 

abundant proteins in each condition’s mean is calculated and e.) each are assigned that mean abundance 
values. f.) Mean of least abundant proteins is calculated to be assigned. g.) Quantile normalised protein 
abundances. Note that the values across groups are the same, but the original rank order of protein is 

preserved. 

 

QPROT normalisation 

The inbuilt normalisation method in the QPROT package utilises a version of 

Boltstad’s quantile normalisation where percentile points of the observed 

quantitative values were equalised across samples. The missing values are 

removed to form a trimmed set for each sample, and 0% to 100% percentile 

points are set to median value across the samples. Data points in between 

percentile points are interpolated to the nearest percentile point for each 

protein in each sample. 

 

 



Optimising the statistical pipeline for quantitative proteomics 

 

66 
 

iii. Combined bias and variance normalisation 

Variance stabilisation normalisation (VSN) 

A quadratic variance-versus-mean-dependent model was derived by Rocke and 

Durbin (2001) and further developed as VSN by Huber et al. (2002) by 

transforming measured intensities so they become approximately independent 

of the mean. Through parametric transformation and maximum likelihood 

estimation, VSN produces intensities with variance independent of the mean. 

VSN uses the generalised log2 (glog2) function, which provides a similar 

transformation to log2 in the high abundance range, but it is less steep for 

intensities closer to zero. Differences between the transformed values give a 

generalised log-ratio that is used to estimate the parameters of the data with a 

robust variant of maximum likelihood estimation (Figure 1.6.8), providing both 

bias and variance normalisation.  

 
Figure 1.6.8; Variance stabilisation normalisation. Raw abundances (shown in black) and normalised 

abundances (shown in red).  
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1.7. Differential expression analysis 

The aim of quantitative proteomics experiments is usually to discover proteins 

of interest that are changing due to the experimental conditions. Experimental 

design in proteomics can be complex involving time course events and 

multivariate factors. However, the main focus in this thesis is a pairwise 

comparison where statistical inference is used to define proteins that have 

changed in abundance between two or more experimental conditions. Due to 

similarities in data properties, small sample size, and large number of features, 

many software packages are based on algorithms originally created for the 

significance analysis of microarrays (Langley and Mayr, 2015). However, 

algorithms are often complex with many user-definable parameters, making 

software challenging to optimise (Gatto et al., 2016). This often leads to a 

default analysis using null-hypothesis significance testing (NHST) and a t-test. 

 

i. Hypothesis testing 

The basis of frequentist statistical inference is hypothesis testing. A hypothesis 

is a claim or a premise about something you are trying to prove. Using these 

frequentist statistical approaches, we cannot prove something to be true, so we 

try to disprove it and accept an alternative. To do this, we form the null 

hypothesis, 𝐻0, which is a description of the status quo. In proteomics, the null 

hypothesis is that is that there is no change in a single protein’s abundances 

between conditions. We then form an alternative hypothesis, 𝐻𝑎; that a protein 

is differentially expressed and is changing across experimental conditions. We 

can say that a protein is differentially expressed when we can prove the null 

hypothesis to be false (Guyatt et al., 1995). This process is then repeated for all 

confidently identified proteins. When we talk about proteins changing, we are 

looking at observing how a small sample of proteins behave in an experiment 

and using those observations to make predictions about how those proteins 

behave generally. This statistical process of using samples to make inferences 

about a population allows us to make measurements and describe otherwise 

unquantifiable data. 
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ii. Statistical significance 

The significance of a statistical test can be measured using p-values (Figure 

1.7.1). A p-value is the probability that we would observe this result if the null 

hypothesis was true; a small p-value means that we would be unlikely to get 

this result if the protein was not changing across conditions (Dorey, 2010). 

Conventionally, a p-value of less than 0.05 is defined as significant and referred 

to as alpha. An alpha of 0.05 means the percentage of samples that would be 

more extreme is 5%, or the probability of seeing something this extreme if there 

is no difference in mean expression is 0.05. A significant p-value gives us 

evidence that the null hypothesis is incorrect and allows us to reject it and 

accept the alternative hypothesis, the protein is changing across conditions. 

a.) b.) c.)

Figure 1.7.1; Graphical representation of the p-value calculation. a.) The observed experimental value (x) is 
compared to the reference value (µ) b.) µ is the mean of a null distribution, H0. c.) The p-value is the percentage 
of values from the null distribution that are more extreme than the observed value (shaded in black and grey) 

(Krzywinski and Altman, 2013b) 

 

iii. t-Test 

The t-test is a calculation to compare the means of two groups to see if there is 

more difference than would be expected by chance. A t-test is flexible; it can 

handle paired or independent samples and can also be extended to apply to 

mixed samples. The t-test is a parametric test that assumes the data to be 

normally distributed; to ensure there is no skewedness, a logarithmic 

transformation is often performed. A specific type of t-test is the Welch’s t-test 

(Welch, 1947), which allows a comparison of samples with different variances. 

This is often most appropriate for proteomic analysis as we cannot assume that 

conditions will have the same variance. The t-test can be one-tailed if 

expression is only expected in one direction, but usually we are looking at both 
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up-regulation and down-regulation, so a two-tailed t-test is used. The equation 

for Welch’s two-sample t-test is given by 

𝑡 =  
𝑚𝐴 − 𝑚𝐵

√
𝑠𝐴

2

𝑛𝐴
+

𝑠𝐵
2

𝑛𝐵

 

Where 

 𝑚𝐴 and 𝑚𝐵  are the sample means of the two groups A and B 

 𝑠𝐴
2 and 𝑠𝐵

2  are the sample variances of the two groups A and B 

 𝑛𝐴 and 𝑛𝐵 are the sample sizes of the two groups A and B 

 

The t-distribution is defined by a parameter called the degrees of freedom, 

which is dependent on the sample size and the variance of the samples. The 

number of degrees of freedom estimates the error of using the sample variation 

rather than the population variation and is calculated using the equation: 

𝑣 =  
(

1
𝑛1

+
𝑢
𝑛2

)
2

1
𝑛1

2(𝑛1 − 1) +  𝑛2
2(𝑛2 − 1)

 

Where 

 𝑢 =  
𝑠2

2

𝑠1
2 

 

The unequal variance calculation of degrees of freedom is usually non-integer 

and rounded down to the nearest integer. Figure 1.7.2 shows how the shape of 

the t-distribution is affected by the sample size; increasing the sample size 

increases the degrees of freedom, which decreases the area under the tails of 

the distribution. The result of this is that a more extreme test statistic is 

required for significance when the sample size is small. 
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Figure 1.7.2; Effect of number of degrees of freedom on t-distribution; as degrees of freedom increases, the t-

distribution approaches the normal distribution (Palkovic et al., 2020) 

 

iv. Multiple testing 

The success of statistical analysis is concerned with limiting two types of error: 

type 1 and type 2. A false positive is a significantly different result when there 

is no real difference in means. This is also referred to as a type I error in 

statistical inference and describes a situation where the null hypothesis is 

mistakenly rejected for the alternative hypothesis when the null hypothesis is 

true. As described above, the accepted cut-off p-value for significance is 0.05, 

which translates to a 5% risk of a false positive or type I error. A type II error is 

the situation where a protein that is changing is not detected and is also 

referred to as a false negative. Increasing the sample size of a test decreases 

the probability of this happening. The previous degrees of freedom calculation 

demonstrates how features with small differences need large sample sizes to 

have a good chance of being detected.  

By definition, a p-value of 0.05 states that only 5% of the observations from the 

null hypothesis would be this extreme. Therefore, when defining a protein as 

changing across conditions with a p-value of 0.05, there is a 5% chance that this 

observation is from the null hypothesis and the protein is not actually changing 

across conditions. In a quantitative proteomics experiment, there will likely be 

hundreds of identified proteins in the sample and a DE analysis will be 

performed on each of them separately. Repeating a test with an accepted 5% 

chance of giving an incorrect result 500 times would give an expected number 
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of 25 incorrect results. Multiple testing errors are described as the family-wise 

error rate (FWER), the probability of committing at least one type 1 error when 

repeating statistical analysis on the same sample of data, and it is calculated 

using the equation  

𝛼𝐹𝑊 = 1 − (1 − 𝛼𝑃𝐶)𝑐 

Where 
 𝑐 is the number of comparison performed 
 𝛼𝑃𝐶  is the per analysis alpha (usually 0.05) 

 

Statistical methods can be applied to correct p-values when performing 

multiple tests. The Bonferroni method (Dunn, 1961) divides the per analysis 

alpha by the number of multiple tests, which puts the overall FWER is equal to 

5%. The Bonferroni method is good at controlling type I errors, but it is also 

very conservative and will stringently limit the number of proteins called as 

differentially expressed, increasing the type II error rate.  

 

v. The false discovery rate  

A preferred method for multiple testing correction is the Benjamini and 

Hochberg procedure, which is described by (Benjamini and Hochberg, 1995) 

and controls the expected average type I errors over the rejections made at 

level q.  

(i) Sort the p-values of the m hypotheses 𝑝(1)  ≤  𝑝(2)  ≤ ⋯ 𝑝(𝑘)  ≤ ⋯ 𝑝(𝑚) 

(ii) Calculate the largest k for which 𝑝(𝑘) ≤  
𝑞𝑚

𝑘
  and reject the k hypotheses 

corresponding to 𝑝(1), … , 𝑝(𝑘). 

The correction is based on a procedure for estimating the q-values (Storey, 

2002) and is described in Figure 1.7.3. If p-values were repeatedly generated by 

comparing two samples which come from the same distribution, proteins that 

are not changing in abundance, a histogram of the p-values would be uniform 

(Figure 1.7.3 a.) with approximately 5% of them falling below 0.05, 

representing false positives. When p-values are generated by comparing 
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samples from different distributions, proteins that are changing in abundance, 

the histogram is skewed to the left with most of the p-values falling below 0.05 

(Figure 1.7.3 b.). The p-values above 0.05 are false negatives from where the 

distributions overlap. 

 

a.) 

 

b.)

Figure 1.7.3; a.) A uniform distribution of 100 000 simulated p-values obtained by comparing two samples 
drawn from the same distribution. 5% of the values have a p-value less than 0.05 and are false positives. b.) A 
skewed distribution of 100 000 simulated p-values obtained by comparing two samples drawn from different 

distributions. 78% of them have a p-value less than 0.05 and are true positives (Colquhoun, 2014). 

 

In a proteomics experiment, statistical analysis is performed to compare the 

abundance of each of the hundreds of proteins in the sample. Some proteins will 

be differentially expressed and affected by the experimental conditions, and 

some will be unaffected, their abundances not changing across conditions. A 

histogram of the p-values will be a combination of the two histograms; 

uniformly distributed p-values from the unchanging proteins and left-skewed p-

values from proteins changing in abundance. The level at the uniform 

distribution can be used to estimate the proportion of p-values below 0.05 that 

are due to false positives and how many are due to changing protein abundance, 

true positives. By only using the smallest p-values to represent the number of 

true positives, the FWER is limited. The aim of proteomics DE analysis is to be 

as sensitive as possible, detecting all differentially expressed proteins, but also 

to limit the number of false positives. However, the nature of proteomics data 

can make this process difficult, which is discussed in the next section. 



Optimising the statistical pipeline for quantitative proteomics 

 

73 
 

vi. Problems with null-hypothesis significance 

testing for proteomics data  

The problems of DE analysis through NHST have been discussed in literature; 

the t-test can produce significant p-values from only a very small difference in 

means (Tusher et al., 2001), and the t-test states that in the null hypothesis, the 

difference between the two sample means is exactly zero, meaning small, 

uninteresting fold-changes could be defined as very significant. It is also poor at 

estimating the variance when there is a departure from normality and there is 

variance heterogeneity between features and experimental conditions (De 

Hertogh et al., 2010). DE analysis has to decide if a protein is changing because 

it is affected by experimental conditions or if the abundance varies due to 

random chance. To do this accurately, the sample needs to be a true 

representation of population abundance. The t-test relies on normally 

distributed data, which, according to the central limit theorem (CLT), requires a 

large sampling distribution. However, the key assumption of a normal 

distribution cannot be made in proteomics experiments. Data matrices 

produced are sparse, with vast numbers of features and small numbers of 

samples. Small samples do not accurately reflect the population variation, and 

the comparison of means can be distorted by outliers (Krzywinski and Altman, 

2013). In this situation, small samples taken from the same population may 

show different variances, causing an occasional artificially large value to be 

incorrectly identified as DE, a false positive. This is demonstrated in  

Figure 1.7.4, where in two scenarios, a t-test compares the difference in means. 

Both scenarios show a significant difference. However, it is only the scenario 

where the biological variation is small that gives an accurate test statistic.  
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Figure 1.7.4; Two hypothetic distributions of protein abundances from two conditions, healthy and diseased 

tissue. There are two subjects (biological replicates) per condition, with three technical replicates per subject. 

The distribution and mean of the population abundances are represented by black curves and black squares. 

Observed abundances, mean subject abundances, and condition abundances are represented by black circles, 

solid dots, and stars, respectively. In plot A there is no difference in overall population abundances between 

conditions due to the  large biological variation, while plot B shows a difference in population abundances 

between conditions and a small biological variation. (Chang et al., 2012). 

 

Another problem is the use of the arbitrary p-value threshold, alpha, as a 

measure of rejecting the null hypothesis; an alpha of 0.05 leads to an artificial 

metric for defining significance and is a source of irreproducibility (Vyas et al., 

2015). Introduced by Fisher (1925), the p-value was never intended to be used 

in the practice of arbitrary definition of significance. It has since been adopted 

as a convenience (Kennedy-Shaffer, 2019). The convention of using 0.05 as a 

dichotomous threshold for alpha is subjective. The definition of a p-value gives 

no sharp distinction between significance and non-significance, only a gradual 

increase in evidence against the null hypothesis (Dahiru, 2008). The use of this 

boundary for significance means information can be lost and potentially 

interesting studies have been rejected due to results not being deemed 

significant (Berlin et al., 1989). The p-value is influenced by the effect size; a 

smaller difference in means produces a more significant p-value (Sullivan and 

Feinn, 2012), but a p-value alone gives no information about the effect size; 

statistical significance is no guarantee of clinical significance (Thiese et al., 

2016). The problems arising from applying NHST to proteomics data has led to 

the application of alternative statistical methods for DE analysis. 
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vii. Linear modelling for differential expression 

Moving away from the t-test to more generalised linear modelling structures 

allows the full use of the power of the experimental data (Brady et al., 2015). A 

linear mixed effects model for DE can include terms for fixed effects, which are 

constant across individuals, such as genotype and treatment. Fixed effects do 

not change, or they change constantly over time. Mixed-effects models also 

include terms for random effects, which are not under experimental control and 

vary. These effects are drawn at random from a larger population of 

possibilities, such as the patient effect. Using a mixed-effects model means we 

can incorporate information about the experimental design as factors and 

interactions to express the different sources of variation (Daly et al., 2008).  

Linear regression is used to test the linearity of the relationship between the 

response variable and the predictor variable. It can be employed using 

categorical predictors for performing DE analysis, where the t-test is 

represented by the linear model: 

𝑦𝑖 =  𝛽0 +  𝛽1𝑥𝑖   

Where  
  𝑥𝑖  is an indicator (0 or 1) of the comparison group 

 𝛽0 is the group 1 mean 
 𝛽0 +  𝛽1 is the group 2 mean 

 

and the null (ℋ0) and alternative (ℋA) hypothesis are: 

 ℋ0: 𝛽1 = 0 

 ℋA: 𝛽1 ≠ 0 

 

when ∆𝑥 = 1, the difference in the means is the slope. Based on the equation: 

𝑆𝑙𝑜𝑝𝑒 =  
∆𝑦

∆𝑥
=

∆𝑦

1
= ∆𝑦 

 

and if there is no significant difference between the means, then 𝛽1 = 0. This 

allows us to visualise the data; data points from group one are at x = 0 and data 

points from the second group are at x = 1, as shown in Figure 1.7.5.  
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Figure 1.7.5; Two-sample t-test using linear modelling. The mean abundance of group 1 is shown as a red line, 
and the mean abundance of group 2 is shown as a black line. The slope shown in grey is used to calculate the 

difference between the two means. 

The test statistic is calculated using the equation: 

𝑡 =  𝑏
𝑆𝐸𝑏

⁄  

where  
 𝑏 = coefficient estimate 

 𝑆𝐸𝑏 = standard error of the coefficient estimate 

Using the data from Figure 1.7.5, which is summarised in Table 2, the t-value is 

calculated as: 

𝑡 =  1
0.1155⁄  

=  8.660 

 

and the corresponding p-value for t = 8.660 with df = n – 2 = 10 is 5.84e-06. 

Therefore, there is a significant difference between the means of groups 1 and 2. 

Table 2; Summary of the linear model of the data from Figure 1.7.5 

 Coefficients Standard error t-value p-value 

Intercept -0.7 0.1826 -3.834 0.0033 

Abundance 1 0.1155 8.660 5.84e-06 
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This can be expanded to apply to three or more means compared in a one-way 

ANOVA shown in Figure 1.7.6 and using the equation: 

 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3+. . .      ℋ0: 𝛽1 = 0 

Where  
𝑥𝑖  is an indicator (𝑥 = 0 or 𝑥 = 1) based on a comparison matrix where one group is 1 
while the others are 0 

 

 
Figure 1.7.6; Four group one-way ANOVA using linear modelling. The intercept, β0 is Group1 mean and is shown 
in black. The means of the other groups ( β0 + β1 – Group 2 mean, β0 + β2 – Group 3 mean, β0 + β3 – Group 4 
mean) are shown in red. The difference in means is calculated using the slopes β1, β2 and β3  which are shown 

in grey. 

 

viii. Bayesian inference for differential expression 

 A problem with frequentist approaches, such as linear modelling, is that sample 

size is crucial to accuracy and consistency, as it is purely based on the observed 

data, which is assumed to be a representative sample (Alterovitz et al., 2007). 

Using a Bayesian approach to hypothesis testing allows the null hypothesis to 

be described as an interval rather than a single point, increasing the number of 

truly changing proteins detected (Millikin et al., 2020). Introducing a cut-off 

threshold for fold-change can improve the t-test approach, but there is still no 
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measure of uncertainty; a protein with a fold-change either side of the cut-off is 

defined as changing or it is not, and no degree of uncertainty is included in the 

test statistic. Bayesian inference (BI) uses a mathematical rule to incorporate 

existing knowledge and observations to calculate the likelihood of DE in terms 

of probabilities (Kruschke, 2013). The process of BI uses Bayes’ theorem to fit a 

probabilistic framework for reaching scientific conclusions based on how 

humans naturally make decisions (Baig, 2020), by applying a mathematical rule 

to incorporate existing knowledge and observation to update beliefs. The 

probability that an event will happen, the posterior, is scaled by the knowledge 

we have about the event, the likelihood, and our prior beliefs about how likely 

the event will happen (Figure 1.7.7).  

 

 

Figure 1.7.7; Probability distribution of prior beliefs (shown in red) is scaled by observing the evidence (shown in 
green) to give an updated probability distribution showing posterior beliefs in blue. 

 

The equation for Bayes’ theorem for two random variables, A and B: 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)  × 𝑃(𝐴)

𝑃(𝐵)
 

Where 
𝑃(𝐴|𝐵) is the probability of event A occurring given that B has occurred – the posterior 
belief updated after observing the evidence and scaling it with prior knowledge 
𝑃(𝐵|𝐴) is the probability of event B occurring given that A has occurred – the 
conditional likelihood function  
𝑃(𝐴) is the unconditional probability of event A – the prior belief of how likely it is 
event A will occur 
𝑃(𝐵) is the unconditional probability of event B – the marginal likelihood function is a 
constant normalising factor equal to the integral of all possible values of A 



Optimising the statistical pipeline for quantitative proteomics 

 

79 
 

Bayes theorem can also be written as: 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
 

 

Or by disregarding the normalisation constant: 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟 

 

This equation is the basis for Bayesian statistics and is used in tandem with 

statistical theory to quantify uncertainty. The result is a probability distribution 

where all possible values for the outcome are graded on how likely they are. Not 

all parameter values are always known and are approximated using parameter 

estimation into distributions. In terms of DE analysis, BI uses computational 

methodology to calculate conditional probabilities of the difference in sample 

means based on the observed values of protein intensities giving, complete 

information about the credible parameter values (Kruschke, 2013). 

The first stage of analysis is to specify prior probability distributions for the 

unknown parameters based on available information. In DE analysis, unknown 

parameters are the variance of the population protein intensities, the mean 

population protein intensity, and the magnitude of DE. Then a model for 

summarising the observed date is constructed in the form of a likelihood 

function and is conditioned on the prior distributions. The updated knowledge 

is represented by the resulting posterior distribution and this is used to 

simulate data many times over to produce representative samples of the 

unknown parameters, called a maximum likelihood estimate. In terms of DE, 

we calculate how likely different values for the mean intensities, amount of 

variance, and magnitude of DE are, given the protein intensities that have been 

observed. 
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1.8. Statistical software 

The current workflow in Progenesis QIP provides employs a comparison of 

means for DE analysis in the form of ANOVA. For pairwise comparison, this 

equates to a t-test. In this thesis, we investigate the use of linear modelling using 

a software package, MSstats and Bayesian approaches using QPROT software. 

MSstats software provides relative protein quantification and statistical DE 

analysis from peptide intensity data through a flexible family of mixed models. 

Published by Choi et al. (2014) from the Olga Vitek Lab, MSstats is based on 

statistical methods designed for quantitative measurement of gene expression 

(Lipshutz et al., 1999) and its implementation in the R package LIMMA (Smyth, 

2005, Ritchie et al., 2015). MSstats was initially developed by Clough et al. 

(2009) who used fixed and mixed effects ANOVA for DE analysis. The 

framework was then extended to handle more complex designs by Clough et al. 

(2012) before being released as an open-source R package (R Core Team, 

2020).  

Following technological advances that allowed the computational demand 

required for calculating posterior distributions to be met, BI has been used for 

the development of several proteomics software packages. As with linear 

modelling methods, many Bayesian techniques also adapt algorithms originally 

implemented for identifying differentially expressed genes in microarray 

experiments from the package LIMMA (Smyth, 2005). Margolin et al. (2009) 

explored using an empirical Bayes framework for the analysis of SILAC 

experiments. Booth et al. (2011) developed a Bayesian mixture model for 

spectral count data. Choi et al. (2008) implemented QSPEC, a model for spectral 

count data, and extended its application to intensity data, QPROT (Choi et al., 

2015). Koopmans et al. (2014) and Santra and Delatola (2016) investigated 

methods for dealing with missing data and using it to estimate prior 

probabilities for DE analysis. More recently, Millikin et al. (2020) implemented 

a version of the Bayesian t-test Kruschke (2013) for label-free data as FlashLFQ. 

In this thesis, we investigate the performance of the label-free package QPROT, 

which takes protein-level intensity data and applies a standardised Z-statistic 
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based on the posterior distribution of the log-fold change parameter as an 

alternative to the standard t-test. 

 

i. MSstats package 

Appropriate for multiple types of sample preparations, the MSstats is suitable 

for analysing MS data acquired in data-dependent and data-independent modes, 

along with SRM and SWATH. There are three analysis steps: i) data processing 

and visualisation, which includes logarithmic transformation and normalisation 

between samples as well as a workflow-specific summary of the run-level data; 

ii) statistical modelling and inference, which includes DE analysis; and iii) 

experimental design, which uses the variance of the data to provide advice on 

improving the statistical power of the experiment in subsequent investigations. 

MSstats considers each peptide feature aggregated over peptide ions separately, 

with averages and variances of experiments across the conditions used to 

estimate model parameters for calculating protein intensity. Quantitative 

experimental information from all the features and all of the conditions that 

pertain to a protein is summarised which the authors claim provides higher 

sensitivity of protein significance analysis and higher accuracy of protein 

quantification.  

The package takes as input identified and quantified peptide intensities with 

details of the proteins they are mapped to from upstream analysis packages. 

MSstats provides functions to convert the data to long format, where a list of 

peptides provides identification of the proteins they are mapped to and the 

peptide abundance. The peptide abundance appears in the list for every run it is 

detected in.  

Data processing and visualisation  

Log2 or log10 transformation is applied, and there is an option to normalise the 

data using quantile or equalisation of medians (normalisation methods will be 

investigated in Chapter Three and are not addressed in this chapter). Run-level 

protein summarisation is provided with the ability to select how many features 

are used; all features in the data, which is the default selection, and ‘top3’ which 
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uses the three features that have the most abundant average log2 intensities 

across runs. There is also an option called ‘topN’, which allows the user to input 

the number of most abundant features, and an option to filter poor quality 

features and outliers from protein quantification. Further discussed below, 

protein summarisation is performed with either Tukey’s median polish (TMP) 

(Tukey, 1977), an estimation method that is resistant to effects of outliers, or 

through a family of linear mixed models.  

Linear modelling for summarisation  

The log2 transformed data has statistical analysis performed separately for 

each unique protein name in the column of the dataset. Models of peptide 

abundance are fitted from all the peptides mapped to the protein across all runs 

using linear regression modelling by least squares. A worked example of 

protein quantitation from three peptides over three runs is shown in Figure 

1.8.1 and Table 3. Linear modelling for fitting peptide quantities is performed 

according to the R function:  

lm(Abundance ~ Peptide + Run) 

The protein intensity across all peptides is calculated by summing the fitted 

peptide value and dividing it by the number of peptides in the run. If it is known 

that variance across the peptides is heterogeneous, there is an option for the 

software to account for this with an iteratively re-weighted least squares 

method where features with a large error are down-weighted to have less 

influence on the parameter estimation. 
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Figure 1.8.1; Worked example of protein summarisation through linear modelling. Observed log2 abundances 

for three peptides mapped to a protein across three runs shown as colour to the left, fitted peptide abundances 
shown in black to the right. Resulting protein abundance for each run from the modelled peptide intensities is 

shown as colour. 

Table 3; Worked example of protein quantitation by linear modelling. Log2 transformed peptide abundances for 
3 example peptides mapped to a protein across 3 runs, fitted peptide abundances for 3 peptides following linear 

modelling and resulting protein summarisation values. 

 Log2 transformed peptide 
abundances 

 Fitted peptide abundances 
following linear modelling 

Protein 
summarisation 

values  Peptide 1 Peptide 1 Peptide 2  Peptide 3 Peptide 2 Peptide 3 

Run 1 22.18 22.18 21.27  24.6 21.27 24.6 22.68333 

Run 2 22.22 22.22 21.24  24.5 21.24 24.5 22.65333 

Run 3 22.27 22.27 21.42   24.35 21.42 24.35 22.68 

 

 

Tukey’s median polish for summarisation 

TMP uses the medpolish() R package which fits an additive model to all peptide 

intensities mapped to a protein to give robust decomposition of the row effect 

of different peptides mapped to the protein. The long formatted, untransformed 

input data is reshaped to give peptide intensities in columns and run numbers 

as rows to produce a two-way table to explore the variables across row factor 
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categories: peptides and runs. Row medians and column medians are removed 

iteratively until the proportional reduction in the sum of absolute residuals is 

less than 0.1. A simple worked example of a protein with 3 mapped peptides 

across 3 runs (Table 4), with runs are row name identifiers is shown in  and 

Figure 1.8.2. to Figure 1.8.8. Using median values produces a more robust 

estimation than using means that are sensitive to outliers. This method does not 

take into account whether the runs are technical or biological replicates. 

Table 4; Protein summarisation based on additive modelling using TMP. 

 Peptide 1 Peptide 2 Peptide 3 Protein  

Run 1 22.18 21.27 24.60 22.18 

Run 2 22.22 21.24 24.50 22.22 

Run 3 22.27 21.42 24.35 22.27 

 

22.22 0.0 0.0 0.0 

0.0 -0.04 -0.95 2.38 

0.0 0.00 -0.98 2.28 

0.0 0.05 -0.8 2.13 

Figure 1.8.2; The overall median for all values in the dataset is calculated as 22.22 and is assigned to the 
common effect cell in green. A residual table is created by calculating the difference between the original value 

and the median. Row (shown in orange) and column (shown in blue) are effect values and are initially set to 
zero. 

 

22.22 0.0 0.0 0.0 → 0.0 

0.0 -0.04 -0.95 2.38 → -0.04 

0.0 0.00 -0.98 2.28 → 0.00 

0.0 0.05 -1.02 2.13 → 0.05 

Figure 1.8.3; The row medians of the residual table are computed and are shown in red. 

 

22.22 0.0 0.0 0.0 

-0.04 0.00 -0.91 2.34 

0.00 0.00 -0.98 2.28 

0.05 0.00 -1.07 2.08 

Figure 1.8.4; A second residual table is created with row medians assigned to the row effects margin on the left 
(shown in blue), and the values are a subtraction of the row median from the value in the first residual table. 
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22.22 0.0 0.0 0.0 

-0.04 0.00 -0.91 2.42 

0.00 0.00 -0.98 2.28 

0.05 0.00 -0.85 2.08 

    

0.00 0.00 -0.91 2.28 

Figure 1.8.5; The column medians of the second residual table are calculated and are shown in red. 

 

22.22 0.0 -0.91 2.28 

-0.04 0.00 0.00 0.14 

0.00 0.00 -0.07 0.00 

0.05 0.00 0.06 -0.20 

Figure1.8.6; A third residual table is created with column medians assigned to the column effects margin shown 
in orange, and values are a subtraction of the column median from the value in the second residual table. The 
column effect median is added to the row effect margin (shown in blue) and the overall common effect cell 
(shown in green), but as the column effect median is zero, the value remains unchanged. This is the end of the 
first iteration. 

22.22 0.0 -0.91 2.28 → 0.00 

-0.04 0.00 0.00 0.14 → 0.00 

0.00 0.00 -0.07 0.00 → 0.00 

0.05 0.00 0.06 -0.20 → 0.00 

22.22 0.0 -0.91 2.28 

-0.04 0.00 0.00 0.14 

0.00 0.00 -0.07 0.00 

0.05 0.00 0.06 -0.20 

Figure 1.8.7; A second iteration; the row effect is calculated by computing the row medians (red) from the 
residuals and adding them to the common effect cell (green) and the row effects margin (blue), before 
subtracting the row medians (red) from the residuals to yield the values

  

22.22 0.0 -0.91 2.28 

-0.04 0.00 0.00 0.14 

0.00 0.00 -0.07 0.00 

0.05 0.00 0.06 -0.20 

    

0.00 0.00 0.00 0.00 

    

22.22 0.0 -0.91 2.28 

-0.04 0.00 0.00 0.14 

0.00 0.00 -0.07 0.00 

0.05 0.00 0.06 -0.20 

    

    

Figure 1.8.8; The second iteration continued; the column effects are calculated by computing the column 
medians (red) from the residuals and adding them to the common effect cell (green) and the column effects 
margin (orange), before subtracting the column medians (red) from the residuals to yield the values. This ends 
the second iteration. The proportional reduction in the sum of absolute residuals is zero on the second iteration, 
and so the analysis is ended. The overall common effect value is added to the row effects values to give the 
fitted protein intensity level in each run.
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The protein abundances resulting from linear modelling and additive modelling 

are compared in Figure 1.8.9. 

 

Figure 1.8.9; Comparison of the protein abundances from linear and additive modelling. 

 

The output from the data processing and visualisation step is run-level protein 

abundance. The summarised data is exported as plots (Figure 1.8.10) to identify 

potential sources of variation and systemic bias by examining the peptide-level, 

run-level, and condition-level variation of each protein abundance. 

 

a.) b.) 
 

c.)

Figure 1.8.10; Example plots from the MSstats dataProcessPlots() method are given for each protein. a.) Profile 

plot with summarisation - Log2 peptide intensities of the five peptides mapped to protein P08200|IDH are 

shown in grey, with the summarised log2 protein intensity shown in dark red across four conditions and twelve 

runs. Used to identify potential sources of variation. b.) QC plot – Log2 intensities for across all peptides used for 

quantification are shown for each run. Used to evaluate systemic bias between MS runs. c.) Condition plot – 

Log2 intensities for all peptides used for quantification are shown for each condition. Used to the illustrate mean 

and variability of each condition per protein. 
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Statistical modelling and inference 

The format of the input data allows MSstats to detect the experimental design 

and assign the appropriate model, which is fitted per protein. Samples from the 

same patient or technical replicates are subjected to the same variability. 

Therefore, in an experiment with only technical replicates and no biological 

replicates, a simple linear model is fitted to the run-level protein 

summarisations using the lm() function in R to give a one-way ANOVA analysis. 

The model coefficients, the scaled variance, and the degrees of freedom from 

the model are found, and these parameters are compared to the Students t 

distribution to estimate the test statistics and the log fold change between each 

of the pairwise comparisons in the experiment. 

For the analysis of biological data which will often have both technical and 

biological replicates in each condition. MSstats employs a mixed effects model 

using the lmer() function in R which includes all experimental factors that may 

affect DE. In terms of protein expression, fitting a mixed effects model accounts 

for the unequal measurability of peptides, which allows for a better estimation 

of the random variation giving a more precise significance value than the 

corresponding t value (Brady et al., 2015). Mixed effects linear modelling allows 

testing of multiple variables and their interactions: 

𝑦𝑖𝑗𝑘𝑙𝑚 = 𝑃𝑟𝑜𝑡𝑖 + 𝑃𝑒𝑝𝑖𝑗  +  𝐺𝑟𝑝𝑖𝑘 + 𝜀𝑖𝑗𝑘𝑙  

Where 
𝑦𝑖𝑗𝑘𝑙𝑚  is the log2 intensity for protein (i), and peptide (j), in comparison group (k), and 

sample (l),   
 𝑃𝑟𝑜𝑡𝑖  is overall mean intensity for protein i 
 𝑃𝑒𝑝𝑖𝑗  represents the effect of peptide j in protein i 

 𝐺𝑟𝑝𝑖𝑘  represents the effect of group k in protein i 
 𝜀𝑖𝑗𝑘𝑙  represents the random error 

Variation in protein intensity is partitioned into contributions of the factors and 

an F-test is used to determine significance, which compares how the variation in 

the average phenotype between the genotypes in the experiment compares to 

the random variation in the experiment.  

𝐹 =  
𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠
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Experimental design 

Following DE analysis, MSstats provides a further analysis phase which is 

intended to plan for future experiments. The analysis in this section is beyond 

the scope of this benchmarking exercise and was not included in the 

assessment. Briefly, the first two analysis steps, data processing and 

visualisation and statistical modelling and inference, are intended for early-stage 

screening experiments and the discovery of potentially changing proteins which 

require further investigation. Using biological and technical replication 

produces a higher sensitivity for detecting DE proteins, but statistical 

interpretations of the results must be restricted to the subjects in the study, 

reduced scope. To allow expanded scope and apply conclusions to underlying 

populations, the experiment must be modified to include minimal number of 

replicates to achieve pre-specified statistical power. This stage of analysis 

utilises variance components of the data to design future experiments. 

 

ii. QPROT package 

Developed by Choi et al. (2015) from the Alexey Nesvizhskii Lab, QPROT is a 

shell-based program for Linux operating systems. QPROT combines the use of 

false discovery rate (FDR) control with Bayesian modelling for the significance 

analysis of proteomics data. Initially presenting a statistical framework for 

spectral count data, Choi et al. (2008) addressed the issue of applying gene 

expression data models to proteomics data, which does not have the same 

standard distributional assumptions or the required number of samples for 

permutation-based generation of reference distributions. Because many 

proteomics experiments have small sample sizes, it is difficult to observe 

consistent evidence, making robust estimation and inference on model 

parameters difficult. Using Bayesian inference, unknown parameters are 

estimated with probability distributions; prior probability distributions are 

formed based on existing knowledge, data is observed, and the likelihood is 

calculated. The priors and likelihood are combined using Bayes theorem to 

produce the posterior distributions.  
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QPROT calculates the likelihood function using hierarchical Bayes estimation of 

generalised linear mixed effects model (GLMM) (Zeger and Karim, 1991). The 

term ‘mixed effect’ refers to the combination of fixed effects and random effects 

within the model. Hierarchical models are structured so they are nested within 

themselves. In DE analysis, run intensities are nested within conditions; 

samples taken from the same condition are not considered independent and 

allow pooling of information across the replicates. This effect of outliers from 

small samples is minimised by borrowing strength across the runs and mapping 

from one distribution to another.  

The statistical model, the Bayesian conditional likelihood, for QPROT is: 

𝑦𝑖𝑗~𝑁(𝜇𝑖 + 𝑑𝑖𝑇𝑗 ,  𝜎𝑖
2) 

Where  
𝑦𝑖𝑗  is the measurement of a protein 𝑖 in a sample 𝑗 for 𝑖 = 1,  2,  … ,  𝑃 and  

  𝑗 = 1,  2,  … ,  𝑁 
𝑇𝑗  is a binary indicator of the comparison group 

𝑑𝑖  is the magnitude of differential expression in log scale 
𝜎𝑖

2 is the protein variance across all runs 

 

The binary indicator 𝑇𝑗 , is the treatment effect and is defined as 𝑇𝑗= 1 if protein 

intensity is from the treatment group and 𝑇𝑗= 0 if the protein intensity comes 

from the control group, and will result in two distributions whose means are 

separated by the magnitude of DE, 𝑑𝑖. This framework is hierarchical because 

the set of parameters used as the priors, 𝜇𝑖, 𝑑𝑖 and 𝜎𝑖
2, for all proteins are 

specified as random variables from common distributions.  

(𝜇𝑖, 𝑑𝑖)~𝑁(0, 102) × 𝑁(0, 102) 

𝜎𝑖
2~𝐼𝐺(1, 0.1) 

Where  
𝑁(∙,∙) is the normal distribution with mean and standard deviation 
𝐼𝐺(∙,∙) is the inverse gamma distribution with shape and scale parameters 
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From the equation for Bayes theorem from section i: 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
 

 

The marginal likelihood is difficult to compute, and so the posterior distribution 

is inferred using a sampling algorithm and only the numerator of Bayes 

theorem.  

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟 

 

Metropolis Hastings algorithm 

For inferring the posterior distribution, QPROT uses the Metropolis Hastings 

(MH) algorithm (Hastings, 1970), a standard Markov chain Monte Carlo 

sampler. A Markov chain is a process for generating sequences of random 

variables where the probability of the next variable is dependent only on the 

current variable. A Monte Carlo simulation is the generation of a series of 

random numbers from distributions, similar to the concept of rolling a dice. The 

MH algorithm is used to decide if the proposed value is likely to fit the posterior 

distribution and whether to accept or reject it as the next sequence in the 

Markov chain. 

 
Figure 1.8.11; Illustration of Metropolis-Hastings algorithm (Lee et al., 2015). 

 

Illustrated in Figure 1.8.11, the MH algorithm allows us to sample from the 

target distribution even when the normalising constant is not known. A 

proposed candidate distribution is calculated using the observed values of the 
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data and arbitrary starting values for the unknown parameters from the priors, 

𝜃 and a random sample is taken from this distribution and is used for the next 

value of 𝜃. Probability density functions for each of the values of 𝜃 are 

calculated and then a ratio of the density functions are compared to a randomly 

sampled value u from the uniform distribution between 0 and 1. If the ratio is 

larger than u, the new value of 𝜃 is accepted and its distribution becomes the 

new proposed distribution (solid circle in Figure 1.8.11). If the ratio is smaller 

than u, the value of 𝜃 reverts to the previous value of 𝜃 (dotted circle in Figure 

1.8.11). By repeating this process a large number of times, 𝑁, the posterior 

distribution can be calculated by counting the number of samples at each 

interval. Because the starting number for 𝜃 is random, the beginning of the 

chain will not exactly follow the distribution, and so a specified number of initial 

iterations are discarded. This is described as the ‘burn-in period’ which is pre-

specified along with the value of 𝑁. Significance analysis for this package is 

based on the standardised Z-statistic where, similar to the t-test, the mean log 

fold change parameter, 𝑑𝑖, is normalised by the standard error of 𝑑𝑖. 

The log fold change parameter 𝑑𝑖 was recorded for every protein 𝑖 denoted by 

(𝑑𝑖
(1)

, … , 𝑑𝑖
(100,000)

)  and the mean 𝑑𝑖 was the resulting log fold change of the 

protein 𝑖. The significance statistic of the DE of protein, 𝑍𝑖 , was calculated using 

the equation: 

𝑍𝑖 =
𝑑𝑖̂

√var̂(𝑑̂𝑖)

 

Where  

𝑑𝑖̂ is the mean log fold change parameter 

√var̂(𝑑̂𝑖) is the standard deviation of the log fold change parameter 

 

FDR calculation 

QPROT employs a semi-parametric approach based on kernel estimators to 

estimate the local FDR. The global FDR, refers to the mean proportion of false 

positives in the data where the null hypothesis was rejected and describes the 
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data as a whole. The local FDR gives details of the reliability of specific 

hypothesis such as the probability that an individual protein is changing in 

abundance across conditions (Guedj et al., 2009). After calculating the 

significance statistics, (𝑍1, 𝑍2, … , 𝑍𝑃), QPROT fits a semi-parametric mixture 

model in which Z-statistics follow a mixture based distribution depending on 

the unobserved status of the hypothesis. By using the known distribution of the 

Z-statistic under the null hypothesis(𝑓0), a flexible non-parametric estimation of 

the alternative score distribution (𝑓1), can be made using a weighted kernel 

function (Robin et al., 2007).  

 

Let 𝜋1 = the proportion of DE proteins 

𝜋0 = 1 - 𝜋1 = the proportion of non-DE proteins 
and 

𝑓
1
(Z) = the density of Z for DE proteins 

𝑓
0
(Z) = the density of Z for non-DE proteins 

 

The mixture model of the two populations is: 

𝑓(𝑍) =  𝜋0𝑓0(Z) +  𝜋1𝑓1(Z) 

 

𝑓(𝑍) is the overall density of Z-scores and 𝑓0(𝑍) is the normal distribution of the 

null hypothesis. Therefore, for the values of i = 1, 2, …, P we can estimate: 

𝑓(𝑍𝑖) =  𝜋𝑓1(𝑍𝑖) + (1 −  𝜋)𝑓0(𝑍𝑖) 

=  𝜋𝑓1(𝑍𝑖) + (1 −  𝜋) ∑ 𝛾𝑘𝜑

𝐾

𝑘=1

(𝑍𝑖;  𝜂𝑘, 𝜏𝑘
2 ) 

Where 
𝜑 is the density of the normal distribution 

𝛾
𝑘
 is the mixing proportion of the 𝜅th-mixture component with mean and variance 

(𝜂
𝑘
, 𝜏𝑘

2 ) 

𝜋 is the mixing proportion of DE proteins 

K is the number of normal distributions consisting of the null distribution 𝑓
0
 (default 

value of 1) 

 

As 𝑓1 is completely unspecified, it is estimated non-parametrically using a one-

dimensional Gaussian kernel density estimation (KDE) (Silverman, 1986):  
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𝑓
ℎ̂
(𝑍) =  

1

ℎ𝑃
∑ 𝜑

𝑃

𝑖=1

(
𝑍 − 𝑍𝑖

ℎ
) 

Where 
𝜑() is the standard Gaussian density 

ℎ is the bandwidth which is selected as 2.12𝜏̂𝑃
−1

5⁄  for smoothness of the curve  

𝜏̂ is the standard deviation of the observed Z-statistics 

 

A KDE helps understand underlying probability distribution of the data. Similar 

to the concept of creating bins and counting the values in the bin to create a 

histogram (Figure 1.8.12).  

 

Figure 1.8.12; Histogram of Z-statistics from QPROT analysis of an example dataset 

 

KDE forms a smoothed out continuous version. A kernel function is calculated 

for each Z statistic, and then the functions are summed to form a kernel density 

estimate that is normalised using the number of points P to ensure the total 

area under the distribution is one. An example is demonstrated in Figure 1.8.13 

using Z-statistic from DE analysis using QPROT. 
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Figure 1.8.13; Overall density of Z-statistics from QPROT analysis of an example dataset. 

 

The distribution of the Z-statistics under the null hypothesis are calculated 

Figure 1.8.14. 

   
Figure 1.8.14; Overall density of Z-statistics (black) and known distribution of Z-score from the null hypothesis 

(red) from QPROT analysis of an example dataset. 

 

From this, the distribution of the Z-scores from the alternative hypothesis can 

be estimated (Figure 1.8.15). 
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Figure 1.8.15; Overall density of Z-statistics (black) and known distribution of Z-score from the null hypothesis 
(blue) with estimated distribution of Z-score from the alternative hypothesis (red) from QPROT analysis of an 

example dataset. 

The mixing proportion, 𝜋, is calculated using the Empirical Bayes method 

described by Efron et al. (2001): 

𝜋 = 1 − min
𝑍

{𝑓(𝑍)/𝑓0(𝑍)} 

 

After model estimation, the FDR for each cut-off 𝑍∗ is calculated for the DE 

proteins in group 1 and vice versa for the DE proteins in group 0 using: 

𝐹𝐷𝑅(𝑍∗) =  
(1 − 𝜋) ∫ 𝑓0(𝑍)𝑑𝑧

 

𝑍>𝑍∗

∫ 𝑓(𝑍)𝑑𝑧
 

𝑍>𝑍∗

 

 

Low abundance proteins 

The QPROT analysis also includes a method for the treatment of missing data 

and applies truncation rules for integrating likelihood over the low abundance 

range. A truncation point, ∅𝑖,𝑇𝑗
, is set: the smallest abundance value for a 

protein within a condition. If there are zero values in the condition, the 

truncation point is the smallest non-zero value. If all values in the condition are 

zero, the truncation point is set to the 10 percentile point of all observed values 

in the other condition. The density is integrated over (−∞, ∅𝑖,𝑇𝑗
) according to 

the notation:  
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𝑦𝑖𝑗 =  {
𝑦𝑖𝑗

(𝑜)
 if 𝑦𝑖𝑗 ≥  ∅𝑖,𝑇𝑗

𝑦𝑖𝑗
(𝑚)

 if 𝑦𝑖𝑗 <  ∅𝑖,𝑇𝑗

 

where 𝑦(𝑜) and 𝑦(𝑚) are the observed and missing values, respectively. The 

truncation point is then used to calculate the likelihood function for each 

protein, which is the probability of the observed values:  

𝑝(𝑌𝑖
(𝑜)

|𝜃𝑖 , ∅𝑖0, ∅𝑖1) 𝛼 ∫ 𝑝 (𝑌𝑖
(𝑜)

, 𝑌𝑖
(𝑚)

|𝜃𝑖 , ∅𝑖0, ∅𝑖1) 𝑑𝑌𝑖
(𝑚)

=  ∏ 𝜑(𝑦𝑖𝑗|𝜃𝑖)  ×  ∏ ∫ 𝜑(𝑦𝑖𝑗|𝜃𝑖)
 ∅𝑖,𝑇𝑗

−∞

 𝑑𝑦𝑖𝑗 

𝑗: 𝑦𝑖𝑗 < ∅𝑖,𝑇𝑗
 

 

𝑗: 𝑦𝑖𝑗 ≥ ∅𝑖,𝑇𝑗
 

 

where 𝜃𝑖 =  (𝜇𝑖, 𝑑𝑖,𝜎𝑖
2), and 𝑌𝑖

(𝑜)
 is a vector of observed intensities for protein i 

and 𝜑(𝑋|𝑎, 𝑏) indicates a normal density with a mean 𝑎 and variance 𝑏 

evaluated at 𝑋.  

 

1.9. Pathway analysis 

Pathway analysis is a computational approach that allows us to apply prior 

biological knowledge to groups of genes or proteins to assess their biologically 

meaningful context. It is useful for interpreting the results of proteomics data by 

associating the results with simplified models of processes within cells or 

tissues. One of the most commonly used resources is the Gene Ontology, which 

provides a structured common classification scheme for gene function 

developed from collaborative experimental knowledge across organisms 

(Ashburner et al., 2000) (2019). The ontology consists of a set of hierarchical 

classes (referred to as terms) with relations operating between them. There are 

three sub-ontologies describing biological domains: molecular functions 

representing activities performed, cellular components describing the locations 

where functions are performed, and biological processes undertaken by multiple 

molecular activities. Enrichment analysis queries the GO for annotated terms, 

comparing a sample set of genes with a larger background set. Enrichment 

methods calculate an enrichment factor using: 
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(
𝑎

𝑏
) / (

𝐴

𝐵
) 

Where 
 a = total number of DE proteins that map to a specific pathway 

b = total number of DE proteins mapped to all pathways 
 

A= all discovered proteins that map to a specific pathway 
B= all proteins discovered that map to all pathways 

 

A Fisher’s exact test (Fisher, 1935) is used to calculate the probability that the 

value would occur if there was no relationship between the changing protein 

and the given pathway in the form of a p-value. Terms with small p-values 

represent the most significantly associated GO terms with the sample set, 

providing a functional profile of the sample genes and offering insight into the 

cellular mechanisms relevant to them (Khatri and Drăghici, 2005).  

Pathway databases, where experimental evidence is curated and cross-

referenced from literature and other databases and structured into ‘knowledge 

databases’ are used to query the functional enrichment of experimental results. 

One such is the Database for Annotation, Visualisation and Integrated Discovery 

(DAVID) (https://david.ncifcrf.gov/home.jsp) which provides a tool for 

significance analysis of gene-enrichment and functional annotation (Huang da 

et al., 2009a, Huang da et al., 2009b). Results of DAVID analysis also provide 

details of fold enrichment which describes how enriched a term is in the query 

protein list compared to the background list. If 20 out of 200 proteins in the 

query list are related to a certain activity (10%), and out of the 1000 

background proteins only 50 are involved (5%), there would be a 2-fold 

enrichment of proteins related to the activity in the sample set. Enrichment 

analysis in DAVID allows the user to compare the annotation composition of the 

gene list against customised gene backgrounds. Default analysis is against the 

set genome-wide genes of the species in the gene list, creating a genome-wide 

scope. However, as many proteins involved in pathways such as glycolysis are 

often highly abundant and commonly identified, therefore comparing DE 

proteins against all proteins would produce functional enrichment profiles in 

almost every analysis, introducing experimental bias (Timmons et al., 2015). 

https://david.ncifcrf.gov/home.jsp
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Furthermore, using a background list of ‘all proteins’ from an ontology that is 

frequently updated means that replication of the experiment will be impossible. 

Instead, using a set list of all of the proteins identified in the experiment as the 

background set, a scenario is created where we can determine if proteins 

detected as DE are more functionally related to each other than to the rest of 

the proteins identified in the experiment.  

 

1.10. Aims of project 

The high-throughput methods employed in label-free quantitative proteomics 

experiments produce large quantities of complex and noisy data that require 

sophisticated software for analysis. The properties of proteomics data 

complicate the ability to assess the significance of proteins changing in 

abundance due to experimental conditions. Small sample sizes provide poor 

estimation of variation and problems when comparing means. Large amounts of 

biological variation mean outliers can cause false positives, and repeated testing 

of the large number of proteins makes it difficult to limit the number of false 

positives while maintaining low false negative rates. The limitations of the 

commonly used t-test could make it unsuitable for the analysis of this data, and 

the imperfections of an arbitrary p-value for defining significance further 

confound this. There is also the added problem of complicated software 

workflows being challenging to intuitively obtain optimal results.  

The main aim of this Industrial CASE PhD studentship, in collaboration with 

Nonlinear Dynamics, the developers of Progenesis QIP, is to provide an 

improved statistical pipeline that could be implemented in the Progenesis 

workflow. By benchmarking three existing statistical approaches: QPROT, 

ANOVA as implemented directly in Progenesis QIP, and MSstats traditionally, 

using spike-in datasets, and through the implementation of a novel method, 

using biological data and applying pathway analysis as an evaluation metric, we 

aim to develop and optimised statistical pipeline for quantitive proteomics.  
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Chapter 2. Differential expression analysis 

evaluation using ground-truth data 

2.1. Introduction 

i. Abstract 

The aim of this project is to develop optimised statistical pipelines for label-free 

quantitative proteomics, and in this chapter, through benchmarking existing 

packages with ‘ground truth’ data, we aimed to examine the best approach for 

DE analysis in a pairwise statistical design. In this context, ‘ground truth’ means 

artificially constructed samples with proteins spiked in, in assumed known 

different ratios, against a larger background of proteins with the same 

abundance, to test whether a software pipeline can detect as differentially 

expressed only the spiked in proteins. 

Benchmarking software was developed to allow the consistent evaluation of 

individual stages of the bioinformatic pipeline: the minimum number of unique 

peptides required for quantitation, the selection of peptide ions for protein 

inference, protein quantification, and DE analysis. Three existing statistical 

approaches (QPROT, Welch’s t-test as implemented directly in Progenesis QI for 

Proteomics, and MSstats) were evaluated using benchmarking datasets. Known 

concentrations of spike-in proteins simulated DE at expected fold changes 

against a background proteome kept at a constant level. Smoothed Precision-

Recall plots were used to visualise recall as a function of precision, using the 

area under the curve as an evaluation metric.  

Both MSstats and QPROT gave a better performance than the t-test e.g. 

delivering higher recall for the same false discovery proportion, with QPROT 

giving the best performance in most of the fold-change scenarios. The results 

highlighted data quality issues, the importance of normalisation, and the 

selection of a cut-off threshold for significance. Problems with accuracy and 

precision of the spike-in data undermined the results of benchmarking. This led 

to the development of a novel benchmarking method that does not rely on the 

use of artificial spike-in data.  
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ii. Benchmarking proteomics data analysis 

methods 

Ground truth data 

Analysis and comparison of statistical methods for DE are conducted with 

artificial datasets that simulate real-life biological situations. Benchmarking 

datasets, represented in Figure 2.1.1, typically consist of a complex mix of 

background proteins that remain constant across conditions and spike-in 

proteins, introduced at different abundances that represent proteins of interest 

that have been expressed due to experimental conditions. This allows a ‘ground 

truth’ to be used as an evaluation metric to assess how well methods correctly 

detect the spike-in proteins without incorrectly claiming background proteins 

are changing.  

 
Figure 2.1.1; Representation of a benchmarking dataset. The background proteome level, shown in green, 

remains constant in each sample. Different concentrations of spike-in proteins, shown in blue, allow simulated 
fold-change with pairwise comparison. 

 

 



Optimising the statistical pipeline for quantitative proteomics 

 

101 
 

Benchmarking software 

The benchmarking process requires reproducible results for streamlined 

comparison. The proteomics workflow has many stages where data can be 

potentially treated in a different way. Software often provides different 

workflows, making it difficult to compare specific stages of the analysis. In their 

review of testing and validation of computational methods, Gatto et al. (2016) 

highlight being able to assess individual statistical methods rather than a 

software’s whole workflow in order to make controlled comparisons. Yates et 

al. (2012) discuss objective evaluation of proteomics algorithms and highlight 

the need for uniform pathways. The need for accurate and consistent evaluation 

methods has led to the development of dedicated software to provide objective, 

unbiased comparisons. The issue of direct comparison when packages require 

or produce input and output data in different formats led to Kuharev et al. 

(2015) implementing a computational benchmarking framework for data-

independent acquisition workflows. In order to create defined metrics for 

consistent evaluation, Navarro et al. (2016) developed an R package LFQbench 

for assessing DIA software, and due to the multifaceted nature of evaluation 

criteria, Tang et al. (2019a) created an online workflow assessment tool. To 

ensure consistent evaluation of all stages of our benchmarking exercise and to 

create customised file formats for the different software packages being 

assessed, benchmarking software was created to complete stages of the label-

free workflow including options for the minimum number of unique peptides 

required for protein identification, the selection of peptide ions for protein 

inference, protein grouping, and protein quantification.  

 

Protein identification, inference, and grouping 

The ‘shotgun’ or ‘bottom-up’ approach to proteomics experiments involves 

peptide-centric MS analysis performed on the result of protein digestion. It has 

the advantages of simplicity and high throughput, as MS data on short peptides 

are easier to interpret that fragment spectra derived from larger molecules such 

as intact proteins. However, the comparison of protein abundances rather than 

peptide abundances is generally of biological interest (Nesvizhskii and 
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Aebersold, 2005), and a process is required to map peptide information back to 

the protein-level sample, i.e. protein inference. Chapter One discusses the 

technique for identifying peptides and mapping them to proteins through 

database sequence searches, where protein identification occurs through 

matching a subset of the peptide sequence fragments found in the sample. 

Often, database peptide sequences could have come from several proteins. The 

‘identified’ protein list, which includes all possible mappings, can potentially 

have high number of ambiguous or incorrect identifications in large datasets 

(Keller et al., 2002). Chapter One also describes the rules employed by protein 

inference software to provide concise lists of reliably classified proteins and 

protein groups.  

Consideration must also be given to the number of reliable peptides required as 

independent evidence for protein identification. Established practice is to only 

consider proteins confidently identified when they have more than one reliable 

peptides as evidence (Peng et al., 2003). This is the advice for showing evidence 

for a previously not seen protein issued by the Human Proteome Organisation 

(HUPO) (Hanash and Celis, 2002) in the most recent update of their MS Data 

Interpretation Guidelines 3.0 (Deutsch et al., 2019). The drawback of the two 

peptide rule is that a large number of potentially present proteins are 

eliminated from analysis. Gupta et al. (2007) performed a comparative 

proteogenomics study where MS data was used to map the sequenced genomes 

of three Shewanella bacteria species for improvement of gene predictions. They 

found that using the two-peptide rule decreased the number of genes confirmed 

as expressing proteins by over 20%. The et al. (2018) performed a 

benchmarking exercise for protein inference algorithms using a protein 

standard of known homologous content and found that the two-peptide rule 

performed poorly. Gupta and Pevzner (2009) evaluated the effect of the two-

peptide rule and concluded that it reduces the number of protein identifications 

in the target database, more significantly than in the decoy database resulting in 

increased false discovery rates and estimates. The question over the two-

peptide convention led us to include separate analysis for proteins identified by 

a minimum of both one and two peptides in this benchmarking exercise. 
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Peptide quantification and identification by database searching of MS/MS data 

were discussed in Chapter One. The resulting peptide ion abundances are 

characterised by three attributes: its primary amino acid sequence, charge 

state, and if there are any chemical modifications to its amino acids. Peptide 

ions have different charge states depending on how many protons were added 

in the ionisation stage. Peptide modifications can occur spontaneously or 

physiologically as post-translational modifications, accidentally through 

artefacts in sample handling, or on purpose as part of the experiment. 

Artefacual modifications occur as part of the sample preparation, either 

deliberately, such as carbamidomethylation of cysteine, or accidentally, such as 

oxidation of methionine. Accidental modifications can occur to different degrees 

between samples. Therefore, how peptide ions with artefactual modifications 

are dealt with when calculating protein abundance may affect the overall 

evaluation of DE. Therefore, we assessed how ion variants with the same 

primary amino acid sequence should be selected for inference in protein 

quantitation analysis, as defined in Table 5. 

Table 5; Summary of options for how ion variants with the same primary peptide sequence are treated for 
peptide roll-up. 

Name Intensities summed Intensities treated separately 

Summed charges Ions with same sequence and different 
charge state 

Ions with same sequence but 
with artefactual modifications 

Summed 
modifications 

Ions with same sequence regardless of 
artefactual modifications 

Ions with same sequence and 
different charge state 

Both summed Ions with same sequence regardless of 
charge state or artefactual modifications 

- 

All separate - All peptide ion intensities kept 
separate 

 

DE analysis in LC-MS relies on relative protein quantification where peptide 

level intensities are summarised to provide a comparative analysis across 

samples. One option is to use the summed intensity of all unique peptides 

mapped to a protein to establish the relative protein quantification here called 

‘sum-all’. Originally worked up for Waters’ MSe software for label-free ultra-

performance liquid chromatography, Silva et al. (2006) detected that the 

average integrated signal intensity of the top three most intense tryptic 

peptides is proportional to the absolute amount of protein present in a sample. 
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The ‘Hi-3’ method, uses the top three most abundant non-conflicted peptides 

mapped to the protein for quantification. If one of the peptides mapped to the 

protein is classed as conflicted, it will not be used for quantification and the next 

most abundant unique or resolved peptide will be used instead. Sticker et al. 

(2020) reported that this method removes information and introduces 

variability and bias. MaxLFQ (Cox et al., 2014), part of the MaxQuant software 

suite (Cox and Mann, 2008), uses ratio information from peptide signals to 

improve protein quantification accuracy and handle missing values. A matrix of 

pair-wise sample ratios is determined based on the two samples sharing the 

same two peptide ions belonging to a protein. These ratios are then used to 

calculate the protein intensity in that sample. If the sample does not share two 

common peptides with any other samples, its abundance value for that protein 

is set to zero. A further option in Progenesis QIP absolute quantitation makes 

use of previously discarded information in which the abundance of conflicted 

peptides is shared by the proteins to which they are mapped here called 

‘Progenesis Hi-3’. The average peptide abundance is calculated across all runs. 

For each protein, the top three most intense peptides mapped to it are used to 

provide relative protein quantification across the conditions. If the peptide is 

unique or resolved, its intensity is summed. If the peptide is conflicted, its 

abundance value is shared between the proteins that it is mapped to in a ratio 

estimated by the abundance of their respective unique and resolved peptides. A 

worked example of Progenesis Hi-3 with is shown in Figure 2.1.2. Abundance 

values are simulated with integers for simplicity and the same peptides were 

used in each of the runs.  
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a.) 

 
b.) 

 
                                                                                     c.) 

 
d.) 

 
e.) 

 
f.) 

 
 

g.) 

Figure 2.1.2; Worked example of protein quantification method utilising conflicted peptide information, abundance values are simulated with integers for simplicity. a.) Protein C 
holding only conflicted peptides is multiply subsumed. b.) Peptides 2 and 4 now become resolved and are suitable for quantitation. Peptide 3 remains conflicted as it is mapped to 

both protein A and protein B. c.) Peptide abundances shown in the blue boxes above the peptide identifications are used to estimate protein abundance using only unique and 
resolved peptides. d.) Protein A abundance (shown in yellow) is estimated using unique and resolved peptide abundances (shown in blue).e.) Protein B abundance (shown in yellow) 

is estimated using unique and resolved peptide abundances (shown in blue). As the ratio of estimated protein abundances was 1:2, peptide 3’s abundance is shared between the 
proteins in this ratio. f.) The abundance for conflicted peptide 3 is shared in a ratio between the two proteins it is mapped to. g) Final protein abundance calculation.
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In this benchmarking exercise we compared results from the three different 

methods for peptide to protein inference summarised in Table 6. 

 

Table 6; Summary of methods of which peptides mapped to the protein are used for protein quantification 

Name Type of 
peptides used 

Number of 
peptides used 

Method 

Sum all Non-conflicting All Abundance values summed 

Hi-3 Non-conflicting 3 most 
abundant 

Abundance values summed 

Progenesis 
Hi-3 

All 3 most 
abundant 

Non-conflicting peptide abundance values and 
share of conflicting peptide abundances summed 

 

iii. Aims of chapter 

Chapter One describes the conventional statistical approach to DE analysis and 

its drawbacks using a t-test for pairwise comparison. Research has focused on 

developing new ways to provide sensitive analysis, providing a minimal 

number of false positives while maintaining low false negative rates with the 

aim of providing optimal accuracy and precision. The aim of the thesis is to 

develop optimised statistical pipelines for label-free quantitative proteomics, 

and in this chapter, through benchmarking existing packages with ‘ground 

truth’ data, we aim to examine the best approach for DE analysis in a pairwise 

statistical design. Three datasets with constant background protein abundance 

and artificial DE proteins spiked-in at expected values were used. This 

simulates real experimental fold-change scenarios and is used to create a metric 

to assess how well methods correctly identify the simulated DE. 

To allow for specific parameters to be evaluated in isolation and to produce 

customised output formats for the external packages, benchmarking software 

was developed to allow for the consistent evaluation of individual stages of the 

bioinformatic pipeline. Options included the minimum number of unique 

peptides required for protein identification, the selection of peptide ions for 

protein inference, protein grouping, and protein quantification.  

Three different methods for DE analysis were compared; linear modelling, 

which is employed by MSstats, Bayesian inference techniques using QPROT, and 
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Welch’s t-test as implemented directly in Progenesis QIP. Performance of the 

software was optimised by parameter exploration at the protein inference stage 

using benchmarking software, and evaluation was conducted using smoothed 

Precision-Recall plots. 

 

2.2. Methods 

i. Spike-in datasets 

The methods for DE analysis were evaluated using three benchmarking 

datasets, as described below. Raw files were downloaded via the PRIDE partner 

repository from the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org/) (Vizcaíno et al., 2014).  

Escherichia coli spiked into human background 

PXD001385 (Shalit et al., 2015) 

Prepared in three replicates, 3, 7.5, 10 and 15 ng of E. coli digest were added to 

separate 200 ng of HeLa S3 cell samples to simulate 5-, 2-, and 1.5-fold change 

scenarios (Figure 2.2.1). 

 

Figure 2.2.1; Representation of simulated fold-changes in benchmarking dataset PXD001819. 3, 7.5, 10 and 15 
ng of E. coli digest was spiked-in to create the conditions of 5-, 2-, and 1.5-fold change. 

Human protein spiked into a yeast background 

PXD001819 (Ramus et al., 2016) 

Created by Ramus et al. for their evaluation of bioinformatics pipelines to allow 

for assessment of performances in terms of sensitivity and false discovery rate, 

48 human proteins (Sigma UPS1) were spiked in a background of yeast 

(Saccharomyces cerevisiae) cell lysate with concentrations of 50, 125, 250, and 

http://proteomecentral.proteomexchange.org/
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500 amol/µg, and 2.5, 5, 12.5, 25, and 50 fmol/µg of UPS1/µg of yeast lysate 

analysed in triplicate. The authors describe the use of the yeast proteome to 

provide a background with a relatively high complexity and dynamic range as a 

good surrogate for many real biological samples. The conditions of 5, 12.5, 25 

and 50 fmol/µg were used to simulate 10-, 4-, and 2-fold changes for our 

analysis (Figure 2.2.2). 

 
Figure 2.2.2; Representation of simulated fold-changes in benchmarking dataset PXD001819. 2.5, 5, 12.5, 25, 

and 50 fmol/µg of yeast lysate was spiked-in to create the conditions of 10-, 4-, and 2-fold change. 

 

Human protein spiked into a yeast background 

PXD002099 (Pursiheimo et al., 2015) 

Data from the experiment created by Pursiheimo et al., 2015 was used, where 

48 human proteins (Sigma UPS1) mixed with yeast cell digest at concentrations 

of 2, 4, 25, and 50 fmol/µL provide triplicate replicates of 25-, 12.5-, and 2-fold 

changes (Figure 2.2.3). 

 

Figure 2.2.3; Representation of simulated fold-changes in benchmarking dataset PXD002099. 5, 12.5, 25 and 50 
fmol/µL of 48 human proteins were spiked-in to create the conditions of 25-, 12.5-, and 2-fold change. 
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Properties of the datasets, with details of acquisition and experimental design 

are summarised in Table 7. 

Table 7; Summary of experimental conditions for each of the benchmarking datasets giving details of samples 
used, experimental design, parameters used for MS analysis, and number of proteins. Only the four largest 

spike-in conditions were used for benchmarking. Due to processing issues, the 10 fmol/µl spike-in condition was 
not used in dataset PXD002099. The number of spike-in proteins for PXD001385 was not provided in the paper 

and is based on this analysis. 

 PXD001385 PXD001819 PXD002099 

Spike in protein Bacteria (E.coli) massPrep 
digestion standard (Waters) 

Human (UPS1) Human (UPS1) 

Background protein Human (HeLa S3 cells) Yeast (S.cerevisiae) Yeast (S.cerevisiae) 

Number of samples 12 27 15 

Number of conditions 4 9* 5 

Spike-in protein levels 3, 7.5, 10, 15 ng 50, 125, 250, 500 amol/µg 2, 4, 10**, 25, 50 fmol/µl 

Background 
protein level 

200ng 2 µg 100ng 

Instrument Q Exactive Plus Orbitrap LTQ Orbitrap Velos LTQ Orbitrap Velos 

Enzyme Trypsin Trypsin Trypsin 

Search database Swiss-Prot human and E.coli UniprotKB yeast and UPS1 UniprotKB/Swiss-Prot 
yeast, UPS1 and cRAP 

Peptide tolerance 10 ppm 5 ppm 5ppm 

MS/MS tolerance 0.02 mmu 0.8 Da 0.5Da 

Fixed modifications Carbamidomethylation (C) Carbamidomethylation (C) Carbamidomethylation 
(C) 

Variable modifications Oxidation (M), 
carbamylation (N-term) 

Acetyl (Protein N-term), 
oxidation (M) 

Oxidation (M) 

Number of spike-in 
proteins 

234 48 48 

* Only the four largest spike-in conditions were used for benchmarking 

** This condition was not used due to processing issues 

 

ii. Benchmarking workflow 

The spike-in data was analysed with a pipeline summarised in  

Figure 2.2.4. Quantitative processing of the raw data was performed with 

Progenesis QI for Proteomics. Downloaded raw data was analysed and peptide 

ion intensities were exported for protein grouping and relative quantification 

with benchmarking software implemented in Java 

(https://github.com/HayleyPrice/ProteinGrouping). Resulting protein 

intensities were processed with existing DE analysis software and the results 

were evaluated by their ability to detect relative quantitative changes in protein 

https://github.com/HayleyPrice/ProteinGrouping
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levels. Three statistical packages were assessed: MSstats, QPROT, and a Welch’s 

t-test.  

 

Figure 2.2.4; Summary of stages of benchmarking pipeline. Quantitative processing was performed with 
Progenesis QIP, protein inference was performed with benchmarking software, DE analysis was performed 

through QPROT, MSstats and t-test analyses, and analysis of performance was calculated using the area under 
the curve. 

 

Quantitative processing  

Binary data in .raw files was imported into Progenesis QIP v4.2. Sample ions 

were aligned to the Progenesis QIP automatically selected reference run. Peak 

picking was performed using maximum sensitivity, as previous unpublished 

benchmarking work from the group demonstrated that this gives the best 

performance from Progenesis QIP. A single map of all peptides was created 

from an aggregated data set of all peak information from aligned sample files. 

Ion abundance was calculated by summing the intensities of the isotopes of the 

peptide. Quantified MS/MS spectra were exported for identification with 

Mascot, spectra with a rank greater than 3 were excluded from analysis. The 

rank is a value provided by Progenesis QIP for each MS/MS spectrum found by 

comparing its percentage value against all other spectra matched to the same 

peptide ion. Excluding higher ranked peptides from the analysis reduced the 

number of spectra being used for each peptide ion. Mascot search was 

performed according to the parameters of the datasets, as described in Table 7. 

The search was also conducted against a decoy database of reverse sequences 

and results with ion scores higher than required for peptide-spectrum match-

level FDR < 1% were included for further analysis. Peptide identification and 

mapping information was imported into Progenesis QIP and scalar 
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normalisation was performed. Identified and normalised peptide ion 

abundances were exported from Progenesis QIP for post-processing with the 

benchmarking protein inference pipeline. 

 

Protein inference software 

A protein inference algorithm was implemented in Java and summarised in  

Figure 2.2.5.  

 
Figure 2.2.5; Summary of the protein inference software pipeline; input data was identified and quantified 

peptide ion intensities, protein grouping and protein quantification was performed and output of protein 

intensities given. 

 

Protein grouping and quantification were performed by the benchmarking 

inference software. Identified and normalised peptide ion intensities were 

imported and the grouping methods described in the introduction were applied. 

Two separate analyses were performed for proteins identified by a minimum of 

two unique peptides and proteins identified by a single unique peptide. Four 

methods to treat peptide ions with the same primary amino acid sequence were 

performed, as described in Table 5 in the introduction. Three methods for 

protein quantification were employed, as described in Chapter 1. In this 

benchmarking exercise we compared results from the three different methods 

for peptide to protein inference summarised in Table 6. 

 

Table 6 As MSstats uses peptide intensities for input, the protein quantification 

options did not apply to this analysis. Instead, both methods for feature subset 

selection and summarisation within MSstats (as described in the Chapter 1) was 
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employed. As a result of these parameter options, there were 24 different sets 

of protein abundance data analysed using QPROT and t-test (summarised in  

Table 8) and 32 MSstats analyses (summarised in Table 9).  

Table 8; Summary of parameters producing protein abundance data analysed by QPROT and t-test. 

Number of unique peptides 
required for protein 

identification 

Peptide ion selection 
options 

Protein quantification 
options 

1 Summed charges Sum all 

1 Summed charges Hi-3 

1 Summed charges Progenesis Hi-3 

1 Summed modifications Sum all 

1 Summed modifications Hi-3 

1 Summed modifications Progenesis Hi-3 

1 Both summed Sum all 

1 Both summed Hi-3 

1 Both summed Progenesis Hi-3 

1 All separate Sum all 

1 All separate Hi-3 

1 All separate Progenesis Hi-3 

2 Summed charges Sum all 

2 Summed charges Hi-3 

2 Summed charges Progenesis Hi-3 

2 Summed modifications Sum all 

2 Summed modifications Hi-3 

2 Summed modifications Progenesis Hi-3 

2 Both summed Sum all 

2 Both summed Hi-3 

2 Both summed Progenesis Hi-3 

2 All separate Sum all 

2 All separate Hi-3 

2 All separate Progenesis Hi-3 
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Table 9; Summary of parameters producing protein abundance data analysed by MSstats. 

Number of unique 
peptides required for 
protein identification 

Peptide ion selection 
options 

Feature subset 
options 

Summarisation 
options 

1 Summed charges All Linear 

1 Summed charges All TMP 

1 Summed charges Hi-3 Linear 

1 Summed charges Hi-3 TMP 

1 Summed modifications All Linear 

1 Summed modifications All TMP 

1 Summed modifications Hi-3 Linear 

1 Summed modifications Hi-3 TMP 

1 Both summed All Linear 

1 Both summed All TMP 

1 Both summed Hi-3 Linear 

1 Both summed Hi-3 TMP 

1 All separate All Linear 

1 All separate All TMP 

1 All separate Hi-3 Linear 

1 All separate Hi-3 TMP 

2 Summed charges All Linear 

2 Summed charges All TMP 

2 Summed charges Hi-3 Linear 

2 Summed charges Hi-3 TMP 

2 Summed modifications All Linear 

2 Summed modifications All TMP 

2 Summed modifications Hi-3 Linear 

2 Summed modifications Hi-3 TMP 

2 Both summed All Linear 

2 Both summed All TMP 

2 Both summed Hi-3 Linear 

2 Both summed Hi-3 TMP 

2 All separate All Linear 

2 All separate All TMP 

2 All separate Hi-3 Linear 

2 All separate Hi-3 TMP 
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iii. Differential expression analysis 

Identified, quantified, and normalised peptide and protein abundances were exported 

from the protein inference software in the correct format for the DE analysis stage. Due 

to the Progenesis QIP software’s alignment method and their claim that analysed data 

contains no missing values, imputation was not a focus of this thesis. The comparison of 

DE analysis methods requires a level playing field of input data and any issue with the 

suitability of imputation method will be standard for each DE analysis. Substitution of 

zero values was performed to alleviate problems due to division of zeros. Therefore, all 

zero value abundances were changed to 0.0000001. 

 

QPROT  

Pairwise comparison of protein intensity data was analysed with the QPROT software 

package, which was downloaded from SourceForge 

(https://sourceforge.net/projects/qprot/) and executed using Unix shell. Normalisation 

within the software was disabled as this had been carried out during quantitative 

processing with Progenesis QIP. The protein abundances were log transformed and DE 

was carried out. For the burn-in, 100,000 samples were drawn, as were 100,000 

samples of each model parameter for the main iterations to ensure the software was 

run for a sufficient time. These values were based on a previous exploratory analysis 

(Supplementary material, ‘Chapter 2, QPROT_burnin.docx’).  

 

MSstats  

Group comparison of peptide intensity data was performed with the MSstats software 

package, which was installed from Bioconductor (Morgan, 2019) and executed using R 

(R Core Team, 2020). The software’s dataProcess method log transformed the peptide 

intensity data with base 2 and formatted it for model fitting and comparison. 

Normalisation was disabled as this had been carried out during quantitative processing 

with Progenesis QIP.  

https://sourceforge.net/projects/qprot/
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t-Test 

Pairwise comparison of protein intensity data was analysed with Welch’s two-sample t-

test (Welch, 1947), which uses modified degrees of freedom compared to the Student’s 

t-test to increase test power with unequal variance between groups. The analysis was 

performed using the t.test() function in R. 

 

iv. Analysis of performance 

Known concentrations of proteins spiked into an unchanging complex proteome 

background allowed pairwise comparison to simulate fold change. Prior knowledge of 

the expected proteins to be differentially expressed allowed us to assess the software’s 

performance. The output of the analysis was ordered by decreasing significance 

according to the software’s significance metric; p-value for MSstats and t-test, Z-statistic 

for QPROT, putting the proteins with most evidence of change in abundance at the top 

of the list. A running tally of the number of spike-in proteins correctly identified as 

changing in concentration was calculated to give the true positive rate. The recall for 

each protein was calculated by dividing the total number of true positives detected by 

the total number of spike-in proteins in the sample (234 for PXD001385 and 48 for 

PXD001819 and PXD002099).  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑁𝑜. 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒
 

 

The proportion of false positives among all proteins called significant, the false 

discovery proportion (FDP), was calculated for each protein using the equation: 

𝐹𝐷𝑃 = 1 − 
𝑁𝑜. 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑁𝑜. 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 + 𝑁𝑜. 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
 

 

Analysis of performance was evaluated using Precision–Recall curves, which are used to 

visualise and quantify the impact of a threshold on the trade-off between false positives 

and false negatives and plots sensitivity or recall as a function of FDP or 1-Precision. 



Optimising the statistical pipeline for quantitative proteomics 

 

116 
 

The area under the curve provided an evaluation metric of the performance of the 

software, with the aim of having a low FDP while maintaining good recall. The precision 

recall curve was smoothed using the minimum FDP for protein recall. 

 

Performance of protein inference parameters 

The effect of applying different parameters at the protein inference stage was compared 

using scatter plots. The total area the under smoothed Precision-Recall curve was 

shown against recall at 5% FDP for the different methods for peptide ion selection and 

protein quantification, with higher values indicating better performance. 

 

v. Imputation 

To assess the impact of imputation on DE analysis, t-test analysis with a BH corrected p-

value of 0.05 to indicate significance was used, and the number of DE proteins was 

compared for each dataset using the following methods to deal with zero values: 

• Imputation of 1 x e-7 

• Imputation of 1 x e-10 

• Removal of proteins with any zero values from the analysis 

Ions with the same primary peptide sequence and different charge states’ intensities 

were summed. Ions with the same primary peptide sequence but with artefactual 

modifications were treated separately. Protein quantification was based on the sum of 

the average intensities of all unique or resolved peptides that have been mapped to the 

protein, and proteins identified by one or more unique peptide were selected. 

 

vi. Assessment of benchmarking data 

The development of quality benchmarking data that allows the developer to 

demonstrate software’s performance in real-world utility is difficult (Peters et al., 

2018). Changing background protein levels will incur false positive results. Spike-in 
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quantities lower than stated will hide the signal, with intensity variation across 

technical replicates adding to this problem, causing false negatives and issues with 

normalisation. To validate the benchmarking exercise, analysis was performed to assess 

the precision and accuracy of the spike-in data-set used; accuracy being how close a 

measurement is to the actual value, and precision being how close together a group of 

measurements are. In using ground truth data for assessment, scientists are reliant on 

measured value being as expected. Each of the datasets was processed with Progenesis 

QIP as described above, and protein inference was performed using the summation of 

all non-conflicting peptides on the raw peptide abundances. The following analyses 

were performed to investigate and compare the properties of the three datasets.  

The coefficient of variation between protein intensities from technical replicates was 

examined to see if there was an acceptable level of precision across samples within the 

same condition. The coefficient of variation (CV) is a method to measure the dispersion 

about the mean. It normalises the standard deviation in order to allow for comparisons 

of variation as a measure of overall precision. A smaller CV indicates a more precise set 

of data. CV levels of over 20% are usually considered to be unacceptably imprecise 

(Jelliffe et al., 2015). It is calculated as the ratio of the standard deviation to the mean 

using the equation: 

𝐶𝑉 =  
𝜎

𝜇
 

Where 
 𝜎 is the standard deviation 
 𝜇 is the mean 

 

The log2 fold-changes of spike-in proteins were calculated to compare with the 

expected level to assess if there were errors in sample preparation. The coefficient of 

variation between background protein intensity values was calculated to see if they 

accurately represented the proteins unaffected by the experimental conditions.  
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2.3. Results and discussion 

i. Summary of DE analysis 

Table 10; Summary of quantities of proteins from analysis. Minimum and maximum values are given for proteins identified 
by a minimum of one or two unique proteins over all possible parameter options. A FDP of less than 0.05 was used as the 

significance threshold for classifying proteins as differentially expressed. 

Dataset 

 

Number 
of spike-

in 
proteins 

Unique 
peptides 

 

Total 
identified 

proteins 

Total 
identified 
spike-in 
proteins 

Number of proteins classified as DE 

MSstats QPROT t-Test 

   Min Max Min Max Min Max Min Max Min Max 

PXD001385 234 
1 1864 1864 234 234 108 222 227 245 81 216 

2 1334 1396 152 165 84 158 155 174 55 161 

PXD001819 48 
1 957 962 48 48 8 48 0 45 6 44 

2 603 675 43 46 25 47 26 47 6 45 

PXD002099 48 
1 1531 1531 47 47 0 3 0 1531 0 3 

2 832 916 47 47 0 3 0 916 0 3 

 

Table 10 gives a summary of the analysis of the benchmarking data. There were a 

maximum of 1864, 957, and 1531 proteins identified in datasets PXD001385, 

PXD001819, and PXD002099, respectively. In the analysis of PXD001385 and 

PXD001819, using a minimum of one unique peptide for protein identification allowed 

all of the spike-in proteins to be identified. Requiring a minimum of two unique 

peptides for protein identification resulted in not all of the spike-in proteins being 

identified; between 152 and 165 for dataset PXD001385 and between 43 and 46 for 

dataset PXD001819. For dataset PXD002099, only 47 of the 48 spike-in proteins were 

identified regardless, of whether one or two unique proteins were required for 

identification. Overall, there was a smaller number of identified proteins for all datasets 

when using the two peptide rule.
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ii. Performance of differential expression analysis 

PXD001385 
 

 

Figure 2.3.1; Smoothed Precision-Recall plots showing the performance of the different DE analysis and quantification methods for the dataset PXD001385 across 3 fold-change 
simulations (1.5X, 2X and 5X) using one or two unique peptides as minimum for protein identification. Recall is plotted as a function of 1 - Precision (FDP), method of peptide ion 

selection is shown as line-colour.
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Figure 2.3.1 shows the analysis of dataset PXD1385 where using a minimum of 

two unique peptides for identification resulted in not all of the spike-in proteins 

being identified (Table 10). This is reflected in the smoothed Precision-Recall 

plots where a smaller area under the curve was achieved for all analysis using 

the two peptide rule. Overall, QPROT gave the best performance in all fold 

change scenarios. MSstats gave similar performance to t-test in 5- and 2-fold 

change simulations (rows 3 – 6) and performed worse than t-test in the smaller 

1.5-fold change simulation (rows 1 and 2), and TMP was slightly superior to the 

linear method for protein quantification. Parameter option selection had less 

effect in this dataset, with all options performing similarly. 
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PXD001819 

  

Figure 2.3.2; Smoothed Precision-Recall plots showing the performance of the different DE analysis, summarisation methods and peptide selection for the dataset PXD001819 across 3 fold-
change (2X, 12.5X and 25X) simulations using one or two unique peptides as minimum for protein identification. Recall is plotted as a function of 1-Precision (FDP), method of peptide ion 

selection is shown as line-colour.
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On data set PXD001819, shown in Figure 2.3.2, QPROT appeared to perform 

best overall in the two higher fold change scenarios, with MSstats-TMP giving a 

similar performance. In the 2-fold change scenario, MSstats-TMP using all 

peptides mapped to the protein for quantification was the most effective 

analysis. While QPROT struggled to perform at low FDPs when only one peptide 

was used for quantification (some parameter combinations failed to give any 

significant DE proteins at a FDP of 0.05, Table 10). Overall, the performance of 

the t-test was less good than the other analysis methods, requiring a high FDP 

to give high recall. In the 2-fold change simulation, the parameter methods 

strongly affected how MSstats performed, with peptide ion selection making the 

most difference. At low FDPs, summing all peptide ions with the same primary 

amino acid sequence improved performance (for example Figure 2.3.2, column 

1, row 1), although at higher FDPs it sometimes gave worse recall than treating 

ions separately (for example Figure 2.3.2, column 1, row 2). As expected, the DE 

methods were more successful at identifying changing proteins when there was 

a larger fold change simulation. Using a minimum of two peptides for protein 

identification also gave more reliable results. 
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PXD002099 

  

Figure 2.3.3 Smoothed Precision-Recall plots showing the performance of the different DE analysis, summarisation methods and peptide selection for the dataset PXD002099 across 3 fold-
change  (2X, 12.5X and 25X) simulations using one or two unique peptides as minimum for protein identification. Recall is plotted as a function of 1 - Precision (FDP), method of peptide ion 

selection is shown as line-colour.
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Figure 2.3.3 shows the analysis of dataset PXD002099. The summary in Table 

10 showed many of the analysis combinations classified none or very few 

proteins as significantly changing. It also showed that, in some circumstances, 

all proteins were described as differentially expressed. The result of this was 

very poor performance on the smoothed Precision-Recall plots, with only a 

small area under the curve produced in the t-test analysis (Figure 2.3.3, 

columns 4, 6, and 7, rows 1 and 2).  

 

Summary of results 

Figure 2.3.1 to Figure 2.3.3 shows the performance of DE methods, protein 

quantification methods, peptide ion selection methods, and the number of 

unique proteins required for protein identification using all non-conflicting 

peptides for protein quantification over three fold change simulations for the 

datasets PXD001385, PXD001819, and PXD002099. 

Overall, QPROT gave better performance than the t-test in all fold change 

simulations in both of the datasets. MSstats gave better or similar performance 

to the t-test except for in the small fold-change simulation of dataset 

PXD001385. For dataset PXD001819, QPROT’s performance was dependent on 

the number of unique peptides used for identification and the fold-change 

scenario; MSstats was better when one unique peptide was used for 

identification in the 2-fold change scenario. QPROT’s performance in dataset 

PXD001385 was consistently the best. However, this is the dataset that was 

used in the software developer’s own paper. Peters et al. (2018) discuss the 

possibility of unconscious reporting bias when method development is done in 

conjunction with the benchmark that is used to show the improved 

performance of the tool. Of the two MSstats summarisation methods, TMP gave 

better results than linear modelling and both gave similar performances with 

dataset PXD001385. In dataset PXD01819, the effects of quantification method 

and peptide ion selection made more difference in dataset PXD001819. It was 

difficult to see clearly an overall best method, but it appeared that summing all 

non-conflicting peptides for protein quantification and summing peptide ions 
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with the same sequence and different charge state gave consistent performance. 

Due to the poor DE analysis results, dataset PXD002099 was excluded from the 

ranking of parameter methods and only MSstats- TMP was used to compare 

threshold selection in the next section of the results. 

In MSstats analysis, as the benchmarking data consists of only technical 

replicates without any biological replicates, in this chapter, a simple linear 

model is used for DE analysis. If the data had also biological replicates, it is 

considered to have random sources of variation, and a mixed model is applied 

to include random-effects accounting for variability between samples in the 

same condition. A limitation of benchmarking MSstats software with artificial 

‘ground truth’ data is that the full capabilities of the software are not assessed. A 

more accurate method for evaluating MSstats would be to use benchmarking 

data that has biological variability (covered in the following chapter), thereby 

utilising the mixed modelling algorithm provided by the software.  

 

iii. Performance of protein inference parameters 

Peptide ion selection 

Next, the effect of the method used to generate peptide-level data was explored 

i.e. summing charge states, summing signals from different peptidoforms due to 

modifications. 
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Figure 2.3.4 shows that peptide ion selection did not have much of an effect for 

dataset PXD001385 at a recall of 5% FDP. For dataset PXD001385, summing 

peptide ions with the same charge state and summing peptides with the same 

charge state regardless of modifications appeared to give the best result. The 

method of peptide ion selection made the greatest difference when using 

MSstats linear modelling as DE analysis, which is to be expected as the DE 

analysis is based directly off peptide signals unlike QPROT that works from 

values summarised up to the protein-level, which could cancel out differences 

in the method of summarising peptide intensity.  



Optimising the statistical pipeline for quantitative proteomics 

 

127 
 

a.)   

b.)    

Figure 2.3.4; Performance of DE methods, peptide ion selection methods, and number of unique peptides 
required for protein identification using all non-conflicting peptides for protein quantification over three fold 

change simulations for datasets a.) PXD001819 and b.) PXD001385. The total area under the smoothed 
Precision-Recall curve is shown against the recall at 5% FDP. The size of data point does not correspond to a 

numeric value and is used to display overlapping data points. 

Quantification method 

The effect of the quantitation method is shown in Figure 2.3.5 for datasets 

PXD001385 and PXD001819. Again, parameter options do not have a great 

effect on the results for PXD001819. For PXD001385, quantification by 

summing all peptides mapped to the protein appeared to give the best overall 

result.  Following this analysis, parameter options of summing peptide ions with 

the same charge state for peptide ion selection and summing all peptides 

mapped to the protein for quantification were used for the threshold selection 

comparison in the next section. Peptide ion selection and quantification method 
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affected MSstats performance the most, but the parameter comparison was not 

like for like. For t-test and QPROT, only the quantification method and peptide 

ion selection were compared; for MSstats, there was one fewer quantification 

method (no option to include information from non-conflicting peptides with 

the Progenesis Hi-3 method) and two methods for peptide to protein 

summarisation, linear and TMP. Overall, of the two options provided in MSstats 

DE analysis, using TMP for peptide summarisation appears to give the best 

results for (Figure 2.3.4 and Figure 2.3.5, comparison between columns 1 and 2, 

4 and 5, and 9 and 10).  

a.)   

b.)   

Figure 2.3.5; Performance of DE methods, quantification methods, and number of unique peptides required for 
protein identification using summed peptide ions with the same sequence and different charge state over three 

fold change simulations for datasets a.) PXD001819 and b.) PXD001385. The total area under the smoothed 
Precision-Recall curve is shown against the recall at 5% FDP. The size of a data point does not correspond to a 

numeric value and is used to display overlapping data points. 
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Threshold selection comparison 

Threshold = 0.01 

  

Threshold = 0.05 

  
Threshold = 0.1 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.6; Number of true positives, false positives, false negatives, and true negatives for each of the differential expression methods at significance thresholds of 0.01, 0.05, and 
0.1 over three fold change simulations for data set PXD001819. Progenesis normalised peptide ion abundances with ion intensities of the same sequence regardless of charge state 

and artefactual modifications summed, all non-conflicting peptides used for protein quantification and two unique peptides used for identification. MSstats performed TMP for 
summarisation.
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PXD001819 

Figure 2.3.6 shows the analysis for PXD001819. In the 2-fold change simulation, 

a threshold of q < 0.01 gave the best results for QPROT, and all TPs were 

detected. Decreasing the stringency of the threshold increased FPs; 7 for 0.01, 

12 for 0.05 and 0.1. At the same thresholds, MSstats had a similar true positive 

rate to QPROT but accrued more false positives; decreasing threshold 

stringency from 0.01 to 0.05 gave no increase in TPs but FPs increased from 9 

to 37; decreasing threshold to 0.1 allows detection of all true positives but the 

number of FPs increases to 83, the highest FP rate of the three methods. The t-

test required a significance threshold of 0.1 to detect 42 out of 43 TPs. But this 

also allows 30 FPs. The FP rate is better at 0.01 and 0.05 (2, 6) but only 17 and 

33 TPs were detected.  

In the 12.5-fold change simulation, QPROT and MSstats detected all 43 TPs at 

0.01, t-Test detected 42, with FPs of 6, 4, 6. Decreasing the threshold to 0.05 

allowed the t-test to detect all TPs but increased the number of FPs to 39 (40 for 

MSstats). A further decrease in threshold to 0.1 increased FPs to 69 and 79 for 

MSstats and t-test, respectively. QPROT’s total FPs remained at 4 for all three 

threshold cut-offs.  

In the 25-fold simulation, all TPs were detected at a threshold of 0.01 with FPs 

of 26, 4, and 12 for MSstats, QPROT, and t-test, respectively. FPs increased as 

threshold stringency decreased (59, 12, and 91 for 0.05 significance threshold 

and 87, 16, and 172 for the 0.1 significance threshold for MSstats, QPROT, and t-

test, respectively). QPROT was least susceptible to increased FPs as threshold 

stringency decreased. Overall, QPROT was best able to detect changing proteins 

at low threshold levels while limiting the amount of incorrectly labelling 

background proteins as changing. Threshold selection was important when 

spike-in proteins changed by a small amount, with the t-test requiring a less 

stringent significance to identify changing proteins. Increasing the significance 

threshold had the least impact on the false positive rate for QPROT. 
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Threshold = 0.01 

 

Threshold = 0.05 

 

Threshold = 0.1 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.7; Number of true positives, false positives, false negatives and true negatives for each of the differential expression methods at significance thresholds of 0.01, 0.05 and 0.1 over three fold 
change simulations for data set PXD001385 . Progenesis normalised peptide ion abundances with ion intensities with same sequence regardless of charge state and artefactual modifications summed, all 

non-conflicting peptides used for protein quantification and two unique peptides used for identification. MSstats performed TMP for summarisation
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PXD001835 

Dataset PXD001385 is shown in Figure 2.3.7. For the 1.5-fold change simulation, 

QPROT required the most stringent threshold of 0.01 to produce its optimal 

result, with 150 of 152 TPs detected. Decreasing the strictness in the cut-off 

increased QPROT’s FPs; 7 for 0.01, 12 for 0.05, and 19 for 0.1. For MSstats, 

decreasing threshold stringency increased the number of detected TPs (87, 115, 

and 122) but also increased the number of FPs (1, 8, and 20). At the 0.1 cut-off, 

not all TPs were detected by MSstats, with the FP rate almost the same as 

QPROT. Using t-test, at thresholds of 0.01 and 0.05, no changing proteins were 

detected. Decreasing the threshold to 0.1 detected 77 out of 152 TPS with only 4 

FPs. In this fold-change, decreasing the cut-off stringency further may have 

been more appropriate.  

In the 2-fold change simulation, at a threshold of 0.01, QPROT detected 151 of 

152 TPs. Decreasing the stringency of the threshold increased the number of 

FPs (4 for 0.01, 10 for 0.05, and 13 for 0.1) without detecting the remaining TP. 

Using MSstats, decreasing the threshold stringency increased the number of 

detected TPs (116, 130, and 133) but also increased FPs (1, 7, and 15). As with 

the 1.5-fold change simulation, not all TPs were detected at the least 

conservative significance threshold with a FP rate similar to QPROT. DE by t-

test gave no TPs or FPs at 0.01. Decreasing the threshold to 0.05 and 0.1 

detected 82 and 121 out of 152 TPS, respectively, with the lowest FP rates, 1 

and 3. As with the 1.5-fold change simulation, a more lenient significance 

threshold could have improved the results. 

In the 5-fold change scenario, a threshold of 0.01 was optimal for QPROT with 

detection of all 152 TPs. Decreasing the stringency of the threshold increased 

FPs; 6 for 0.01, 11 for 0.05, and 11 for 0.1. Using MSstats, decreasing threshold 

stringency increased the number of detected TPs 141, 145, and 147 but also 

increased FPs 2, 5,  and 12. Not all TPs were detected, but the FP rate was lower 

than QPROT for 0.01 and 0.05, and almost the same at 0.1. DE analysis with t-

Test gave 123 TPs and 6 FPs at 0.01. Decreasing to 0.05 and 0.1 detects 147 and 

150 out of 152 TPS with FPs of 11 and 21; decreased cut-off stringency was 

required to detect DEs but increased FPs.  
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Overall, QPROT performed best, detecting nearly all of the TPs at the low 

threshold. A less stringent threshold significance than 0.1 could have given 

better results for MSstats and t-test, particularly in the low fold change 

simulations, and a more stringent significance threshold could have limited 

QPROT’s FP rate even further. 

 

PXD002099 

Figure 2.3.8 shows the analysis of the PXD002099 dataset. Most TPs were 

detected by MSstats and t-test, but the FP rate was extremely high and most 

proteins were identified as changing in abundance. QPROT’s analysis produced 

the opposite; its results conclude that no proteins are detected as changing; 

both the TP and FP rates are zero. 
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Figure 2.3.8; Number of true positives, false positives, false negatives and true negatives for each of the differential expression methods at significance thresholds of 0.01, 0.05 and 
0.1 over three fold change simulations for data set PXD002099 . Progenesis normalised peptide ion abundances with ion intensities with same sequence regardless of charge state 

and artefactual modifications summed, all non-conflicting peptides used for protein quantification and two unique peptides used for identification. MSstats performed TMP for 
summarisation. 
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Overall, the FDP criteria of 0.1, 0.05, and 0.1 were chosen because biologists 

consider them to be standard FDP rates. QPROT's performance was improved 

by employing a more conservative cut-off, while MSstats and t-test required a 

more lenient approach. This demonstrates that an arbitrary significance 

threshold does not always get the best results. In ground truth experiment, 

information about what is changing is known; however, in a biological 

experiment, this information is not available, making it difficult to pick the 

appropriate significance threshold. Greenland et al. (2016) proposed that valid 

interpretation of data does not require arbitrary classification of results into 

‘significant’ and ‘non-significant’. Rather of categorising proteins as significant 

or non-significant, the purpose of DE experiments is to uncover potentially 

relevant proteins for biological settings. The p-value threshold for identifying 

significant results, as stated in Chapter One, is a mechanism for comparing an 

experiment's result to what would be predicted by chance. A p-value of 0.01 

indicates that there is a 1% possibility that the reported results could have 

happened by chance. However, in order to make this comparison, further 

information regarding the chance of the event occurring is required. In Chapter 

Three, we present a novel method for evaluating DE experiments that does not 

rely on arbitrary significance cut-offs. 
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iv. Imputation 

In dataset PXD001385, less than 1% of the total proteins were affected by 

missing abundance data in all of the conditions, and none of the proteins had 

missing values in dataset PXD001819 (Table 11). Changing the methods used to 

deal with the missing values had no effect on the FP or FN rate for any of the 

conditions in either dataset. 

 

Table 11; Comparison of effects of imputation. t-test analysis with a BH corrected p-value of 0.05 to indicate 
significance was used and number of DE proteins was compared for each dataset using different methods to 
deal with zero values. Ions with same primary peptide sequence and different charge state’s intensities were 

summed. Ions with same primary peptide sequence but with artefactual modifications were treated separately. 
Protein quantification was based on the sum of the average intensities of all unique or resolved peptides that 

have been mapped to the protein, and proteins identified by one or more unique peptide were selected. Impute 
1e-07, imputation of 0.0000001; Impute 1e-10, 0.0000000001; Remove, removal of proteins with any zero 

values from the analysis; FP rate, false positive rate; FN rate, false negative rate. 

Dataset 

 

Fold 
change 

Number of 
proteins 

with a zero 
value 

% of 
total 

proteins 

Imputation method 

Impute 

1e-07 

Impute 

1e-10 
Remove 

FP 
rate 

FN 
rate 

FP 
rate 

FN 
rate 

FP 
rate 

FN 
rate 

PXD001385 

5 12 0.64 0.01 0.12 0.01 0.12 0.01 0.12 

2 14 0.83 0 0.06 0 0.06 0 0.06 

1.5 16 0.95 0 0.06 0 0.06 0 0.06 

PXD001819 

25 0 0 0.16 0 0.16 0 0.16 0 

12.5 0 0 0.07 0 0.07 0 0.07 0 

2 0 0 0.01 0.25 0.01 0.25 0.01 0.25 
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v.  Assessment of benchmarking data 

 

Figure 2.3.9 ; Precision of spike-in data across technical replicates. The percentage coefficient of variance (CV) in protein abundances between technical replicates within conditions 
for each of the spike-in datasets PXD001385, PXD001819, and PXD002099. Progenesis normalised peptide ion abundances with ion intensities of the same sequence regardless of 
charge state and artefactual modifications summed, all non-conflicting peptides used for protein quantification and a minimum of two unique peptides required for identification. 

Only CVs below 100% are shown. Dataset PXD002099 had 7 outliers above 100%. 
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The precision and accuracy of the spike-in data-set employed were assessed to 

confirm the benchmarking exercise; accuracy refers to how near a 

measurement is to the actual value, while precision refers to how close a 

collection of measurements are together. The plots in Figure 2.3.9 demonstrate 

the precision of the spike-in datasets used for benchmarking. Using protein 

intensities for each condition, the percentage coefficient of variation (CV) of the 

data’s technical replicates was calculated. By examining the ratio of the 

standard deviation to the mean (expressed as a percentage), the level of 

dispersion within supposedly identical samples was demonstrated. CV levels of 

over 20% are usually considered to be unacceptably imprecise (Jelliffe et al., 

2015). PXD001385 had similar mean CV across conditions, with 75% of each 

condition’s CV values below 10%. However, certain outlying intensities had CV 

values of over 80%, indicating that while most duplicates were somewhat 

similar, there were some intensities that were substantially different. 

PXD001819 had mean CVs below 5% in conditions 1, 2, and 4, with an increased 

mean CV of 15% in condition 3. PXD001819 also had the smallest range of CVs 

(below 40%), making it the most precise dataset. However, it lacked 

consistency due to the increase in mean CV in condition 3. PXD002099 was the 

least precise dataset; it had a range of 10 – 20% of mean CVs across conditions 

with the largest range of CV values (maximum of 180%). Over 75% of the 

intensity levels for conditions 1 and 2 were acceptable, whereas only about half 

of the intensity values for conditions 3 and 4 were acceptable. 

Figure 2.3.10 shows the log2 fold changes created by the comparison of 

conditions A, B and C with condition D (5-, 2-, and 1.5 fold changes) with the 

expected log2 fold changes indicated in red. Dataset PXD001385 is precise in 5- 

and 2-fold changes, with the median fold change intensity values almost the 

same as the expected values. However, there is a wide dispersion in the values, 

particularly in the 5-fold change comparison, with the maximum values 

showing higher than a 32-fold change. The log2 values in the simulated 1.5-fold 

change comparison are less accurate, with 75% of the values higher than 

expected.  
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Figure 2.3.10; Accuracy of spike- in proteins demonstrated by log2 fold-change of spike in proteins for sample comparisons in each of the spike-in datasets. Red line shows the 
expected log2 fold-change. Progenesis normalised peptide ion abundances with ion intensities with same sequence regardless of charge state and artefactual modifications 

summed, all non-conflicting peptides used for protein quantification and two unique peptides used for identification. 
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Figure 2.3.11; Accuracy of the background proteins demonstrated with the percentage coefficient of variance of background protein intensity values across samples for each of the 
spike-in datasets used. Progenesis normalised peptide ion abundances with ion intensities with same sequence regardless of charge state and artefactual modifications summed, all 

non-conflicting peptides used for protein quantification and two unique peptides used for identification. 
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Dataset PXD001819 has a larger range of fold change simulations (10-, 4-, and 

2-fold change) but does not represent them as accurately as PXD001385; 

approximately 75% of the log2 values fall below the expected amount in the 10-

fold change, and 75% are too high in the 4- and 2-fold changes. However, there 

is less dispersion in the values than in PXD001385. The log2 results for dataset 

PXD002099 are poor; all the log2 fold change values are too low. The actual 25-

fold change values range between 2.8 and 11-fold change, while the 12.5-fold 

change values range between 2- and 8-fold change, with some protein 

intensities remaining constant across conditions in the 2-fold change 

comparison. 

Figure 2.3.11 depicts the CVs of the background protein intensities across all 

samples of the datasets. For the data to be effective in benchmarking, the 

background proteins should remain at the same level across the conditions. 

Datasets PXD003185 and PXD001819 have percentage CVs of just over 5 and 

10%, respectively, meaning that intensity values stay acceptably constant 

across samples. The background protein intensities in dataset PXD002099 are 

not acceptably remaining constant; there is a median CV of over 50% with a 

maximum value of 105%. None of the CV values fell below 15%, meaning that 

there is an unacceptable amount of change in the supposedly constant intensity 

level of background proteins for this dataset. 

Overall, the assessment of the benchmarking data showed that datasets 

PXD001385 and PXD001819 were reliable benchmarking data, but dataset 

PXD002099 was not. The precision of intensities across technical replicates 

(Figure 2.3.9) showed 75% of dataset PXD001385 had an acceptable level of 

precision, while PXD001819 was precise in three of its conditions and with an 

increased amount of error in the fourth. PXD002099 showed an unacceptable 

amount of variation between replicates, with two conditions having only half 

the intensity values that were acceptably precise. Analysis of fold-change 

accuracy (Figure 2.3.10) of the dataset PXD001385 showed a good level of 

accuracy in two conditions, with the smaller fold-change found to be imprecise. 

PXD001819 was less accurate, with 75% of the values incorrect across all 

conditions. PXD002099 was unable to adequately demonstrate the expected 
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fold-change of spike-in proteins, with not one of the fold-change values at the 

expected level. In ‘ground truth’ data, levels of background proteins should 

supposedly stay constant across conditions. The first two datasets had 

acceptable consistency across conditions, but in the third dataset, not one 

background intensity level remained the same across conditions. 

The results from PXD002099 show the difficulties all DE methods had analysing 

the data. None of the DE analyses were accurately able to detect the spike-in 

proteins as changing across conditions; either the results showed that all 

proteins were changing or that none of the proteins were changing. The 

properties of the data were examined to investigate the reason for the analysis 

problems.  

 

 

Figure 2.3.12; Comparison of the Progenesis QIP normalised and raw spike-in protein abundances for the 
dataset PXD002099 

 

Raw abundances and the Progenesis QIP normalised abundances for this 

dataset are compared in Figure 2.3.12; spike-in protein levels were affected by 

the normalisation procedure and the spike-in signal was lost. The process of 

normalisation aims to adjust for systemic bias introduced by the separate 
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processing of sample runs while preserving the signal of interest. With dataset 

PXD002099 this appears to have failed. Figure 2.3.13 shows spike-in protein 

abundances after normalisation and the raw protein abundances for datasets 

PXD001385 and PXD001819, where the spike-in signal is preserved. 

 

a.) b.)   

Figure 2.3.13; Comparison of the Progenesis QIP normalised and raw spike-in protein abundances for the 
datasets a.) PXD001385 and b.) PXD001819 

 

The analysis of dataset PXD002099 was repeated using raw peptide 

abundances and the inbuilt quantile normalisation methods within QPROT and 

MSstats shown in Figure 2.3.14. The results were still poor, particularly in the 

low fold change simulations, but showed much improvement due to the 

alternative normalisation procedure. This highlights the importance of applying 

correct normalisation for the data which will be investigated further in Chapter 

Three. 
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Figure 2.3.14; Smoothed Precision-Recall plots of reanalysed dataset PXD002099 using quantile normalisation 

features of MSstats and QPROT  

 

Progenesis normalisation caused the signal in dataset PXD002099 to be lost due 

to problems with accuracy and precision in the data. In two of the conditions, 

over 50% of the technical replicates had an unacceptable amount of difference 

between them (Figure 2.3.9). Furthermore, the fold change values were not 

accurate (Figure 2.3.10) there was a mean 7-fold change when there should 

have been a 25-fold change, a mean 4-fold change when the expected was a 

12.5-fold change, and in the 2-fold change, some of the values did not change at 

all. None of the background proteins remained acceptably constant across the 

conditions (Figure 2.3.11); some of them more than doubled in abundance. This 

analysis demonstrates the potential unreliability of the data used for 

benchmarking. In DE analysis using a t-test and a significant p-value of 0.05 

(Figure 2.3.8), the 2 fold condition of dataset PXD002099 fails to identify any of 

the spike-in proteins with the 25- and the 12.5- fold change simulations 

accruing false positive rates of 84% and 91% respectively. However, this 

dataset has been used as part of benchmarking of statistical analysis by Tang et 

al. (2019b), Välikangas et al. (2018) and (Välikangas et al., 2017). Milac et al. 

(2012) raised the question as to whether spike-in data is appropriate for 

benchmark case-control studies after finding the introduction of inaccurate 

protein quantities in the Clinical Proteomic Technologies for Cancer (CPTAC) 

data (Paulovich et al., 2010).  
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2.4. Conclusions 

The benchmarking exercise in this chapter revealed two DE analysis methods 

with superior performance compared to the t-test; linear modelling using 

MSstats and Bayesian inference using QPROT. The results showed that 

parameter options for peptide selection and protein summarisation did not 

have a great impact on results, but summing peptide ions with the same charge 

state and summing all peptides mapped to the protein appeared to be the most 

reliable choice of options. More importantly, applying the correct normalisation 

procedure appeared to rescue failed analysis. This previously underappreciated 

factor in the DE pipeline will be investigated further in the next chapter. 

The benchmarking exercise also revealed a number of flaws in the standard 

benchmarking procedure. The validity of the results is based on the precision 

and quality of the ground-truth data. However, benchmarking datasets are not 

always reliable and require their own validation methods. It also 

highlighted that assessing significance using an arbitrary cut-off criterion may 

not result in optimal software performance. In the following chapter, we define 

and test a proteome profiling-based alternative method for statistical analytical 

evaluation, as well as illustrate its potential to analyse biological data using 

experimental results from three cancer research. 
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Chapter 3. Differential expression analysis 

evaluation by pathway enrichment  

3.1. Introduction 

i. Abstract 

The use of spike-in benchmarking experiments is the established approach for 

validation of proteomics statistical analysis. Mimicking biological experiments, 

spike-in data allows ‘ground truth’ knowledge to be used as an evaluation 

metric to assess and compare how well software can detect proteins changing 

across conditions. However, problems with artificial data, such as sample 

preparation and the absence of inherent biological variation, cause problems 

with the comprehensiveness of a benchmarking experiment. Designing a 

benchmark dataset that accurately reflects real biological data is difficult as the 

proportion of true changing proteins in a biological scenario is not known. 

Moreover, authentic biological data cannot be used to benchmark statistical 

analysis in the traditional way as we do not know the true number of changing 

proteins with which to calculate sensitivity and specificity. The inconsistent 

results obtained in Chapter Two highlight these problems, and an analysis of 

the accuracy and precision of the benchmarking data demonstrates the 

unreliability of community-approved resources. 

The aim of quantitative proteomics experiments is to deliver insight and gain a 

better understanding of biological processes through the discovery of many 

functionally related groups within the changing proteome. In this chapter, we 

describe and validate a novel method for statistical analysis evaluation utilising 

proteomic profiling through enrichment analysis and demonstrate its ability to 

analyse biological data with experimental results from three cancer studies. We 

also investigate the effect of the normalisation method using the same 

evaluation. Overall the results showed no consensus on best method for DE, 

normalisation method or threshold cut-off and the correct combination of 

parameters appeared to be dependent on the characteristics of the individual 

datasets. 
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ii. Technical and statistical issues with using 

ground-truth data 

The use of spike-in benchmarking experiments is the established approach for 

validation of proteomics statistical analysis. Along with quantitative measures 

of performance, community-approved benchmarks can be tremendously useful 

for proper method comparison (2015). Fair and objective comparisons require 

the availability of a standard dataset that returns the same answers for every 

user (Yates et al., 2012). The aim of such datasets is to mimic a real-life 

biological experiment containing background proteins, simulating those that 

are unrelated to the biological question and remain the same across samples, 

and spike-in proteins that represent those that are affected by the conditions of 

the experiment and change in concentration.  

Historic software assessment relies on the need for ‘ground truth’ knowledge to 

apply an evaluation metric and utilises artificial benchmarking datasets 

generated to simulate real-life biological situations. The aim of DE 

benchmarking is to assess and compare how well methods correctly detect the 

spike-in proteins without incorrectly claiming background proteins are 

changing. The process is thought of as the gold standard evaluation technique, 

but the application of a metric derived from artificial data to a method that 

processes biological data is not a comprehensive assessment. Problems can 

arise due to the availability, adequacy, and selection bias of testing datasets 

(Gatto et al., 2016), and human error in sample preparation is a major source of 

error in protein quantitation (Zhang et al., 2009). In benchmarking datasets, 

background protein levels are not always kept constant, spike-in concentrations 

are not always precise, and there is often variation between sample replicates. 

This creates problems with evaluation where comparing the expected log fold 

changes of both spike-in and background proteins to the measured values is 

essential when assessing quantification accuracy (Tang et al., 2019b). The 

impact of these inconsistencies in sample handling and sample loading is rogue 

intensities and inaccurate fold-change values, leading to false positives or 

negatives. 
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Flaws occur with experimental design; low intensity spike-in proteins can take 

the ‘ground truth’ being searched for below the detection limit, therefore 

skewing the evaluation. Also, the spike-in proteome is frequently a minor 

proportion of the sample global proteome in benchmarking data. Due to 

dynamic range and sequencing speed, more abundant peptides are more 

successfully identified. Consideration should be given to the sparsity of the data; 

a low number of spike-in proteins compared to background proteins limits 

scope. A small number of regulated proteins impairs the statistical power of 

analysis and does not generate enough data points to derive valid statistics 

(Kuharev et al., 2015). Also, spike-ins are often only up-regulated (all proteins 

increase in the same direction across samples), which is not true in a biological 

scenario. While it is important to use data with an adequate proportion of DE 

proteins to background proteins, having too many proteins change in intensity 

can upset the normalisation procedure, which often assumes that most proteins 

remain unchanged across conditions. Designing a benchmark dataset that 

accurately reflects real biological data is difficult as the proportion of true 

changing proteins in a biological scenario is not known. 

In simulated datasets, experiments consist of technical replicates where 

repeated samples from the same condition are processed through the 

spectrometer in separate runs. This data lacks the inherent biological variation 

expected in real experiments. A real sample would have a much wider range of 

abundance changes, whereas benchmarking datasets have fixed ratios and fixed 

total abundances of each group of spike in proteins. Non-conformity of 

intensities compared to biological situations results in a poor estimate of the 

true variance. Replicate measurements are for performance monitoring; they 

are not independent tests and are unsuitable for the thorough testing of the 

validity of a scientific hypothesis or providing evidence of the reproducibility of 

the results (Vaux et al., 2012). Robust conclusions are supported by 

reproducible, significant observations from independent experiments 

(Pulverer, 2012). Variances, variance heterogeneities, and mean-variance 

relationships differ from those actually observed in biological data (De Hertogh 

et al., 2010). Due to the need for ‘ground truth’, authentic biological data cannot 



Optimising the statistical pipeline for quantitative proteomics 

 

149 
 

be used to benchmark statistical analysis in the traditional way as we do not 

know the true number of differentially expressed proteins from which to 

calculate sensitivity and specificity.  

Chapter Two of this thesis investigates statistical methods with the established 

approach using three benchmarking datasets. The results of the DE analysis 

were inconsistent, and the accuracy of the ground truth data was investigated 

and problems were found with the accuracy and precision of the spike-in 

datasets. This analysis demonstrates the potential unreliability of the data used 

for benchmarking. In DE analysis using a t-test and a significant p-value of 0.05, 

the 2 fold condition of dataset PXD002099 fails to identify any of the spike-in 

proteins, with the 25- and 12.5-fold change simulations accruing false positive 

rates of 84% and 91%, respectively. However, this dataset has been used as 

part of benchmarking of statistical analysis by Tang et al. (2019b), Välikangas et 

al. (2018), and Välikangas et al. (2017). In this chapter, we describe and validate 

an alternative method for statistical analysis evaluation utilising proteomic 

profiling and demonstrate its ability to analyse biological data with 

experimental results from three cancer studies. We also investigate the effect of 

the choice of normalisation method using the same evaluation. 

 

iii. Review of benchmarking studies 

Evaluations of LFQ software are performed using various metrics of optimal 

performance, counting the maximum number of quantified proteins or the 

smallest number of missing values. Assessments often focus on how precise or 

accurate the method is using ROC, volcano, and precision-recall plots or 

comparisons are made between the expected and measured logarithmic fold 

change (LogFC) of the proteins, all requiring the need for ground truth bench-

marking data. To overcome the limitations in statistical power of spike-in data, 

whole proteome datasets have been developed, allowing the assessment of 

hundreds of changing proteins as opposed to tens of changing proteins. 

Increasing the number of regulated proteins provides a greater number of data 

points for statistical evaluation. Kuharev et al. (2015) created a dataset for DIA 
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software benchmarking with pre-digested proteomes of three different species 

combined into two samples in different proportions. Analysis showed good in-

sample variances between technical replicates and although the statistical 

power of the test was improved by increasing the number of identified and 

quantified proteins, the study concedes that the complexity of the proteome 

samples exceeds that of typical label-free datasets and that the relative 

expression changes simulated by the combination of exactly defined ratios 

provides a scenario unlikely to be observed in a natural sample. Further use of 

the whole proteome for evaluation is shown by Ting et al. (2011), who created a 

two-proteome model sample to accurately measure the extent of the 

interference effect in isobaric labelling for multiplexed proteome quantification. 

However, to our knowledge, there has been no use of whole proteome 

benchmarking in label free LC-MS/MS studies. 

Based on the reproducibility-optimised test statistic (ROTS) for ranking genes 

in microarray studies (Elo et al., 2008), evaluation methods for LFQ have been 

developed that use a comparison of resampled analyses rather than ground 

truth. ROTS offers an alternative to spike-in studies by evaluating the 

reproducibility of the top-ranked DE proteins of a given method when repeated 

using bootstrapping and has been included in several assessments of 

proteomics DE analysis (Välikangas et al., 2018), (Pursiheimo et al., 2015), 

(Tang et al., 2019b), (Suomi and Elo, 2017), (Wang et al., 2017). The limitations 

of this method are that it is dependent on sample size and there is ambiguity in 

the optimal significance threshold. Furthermore, reproducing the order of 

ranking does not necessarily confirm the correct order, as there is no relation to 

practical measures of how accurately the ranking has been performed. 

Therefore the ROTS method does not completely remove the need for ground 

truth. It is the aim of this chapter to develop a novel method for analysis that 

does not rely on the use of benchmarking data.  

The aim of quantitative proteomics experiments is to deliver insight and gain a 

better understanding of biological processes. Proteins changing due to 

experimental conditions are likely to be functionally related, and it is expected 

that multiple proteins within a given pathway change at the same time. In their 
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study investigating the repeatability and reproducibility of proteomics 

experiments, Tabb et al. (2016) compared a pair of reference xenograph 

proteomes representing basal and luminal-B human breast cancer provided by 

the NCI Clinical Proteomic Tumour Analysis Consortium (CPTAC) on six mass 

spectrometers. The study aimed to test if various differential proteomics 

technologies see the same biological changes and found that although different 

methodologies produce different protein lists, pathway and network analysis of 

DE results was highly consistent across instruments. Kustatscher et al. (2019) 

discovered that proteins that function together tend to be up- and 

downregulated in similar patterns while assembling their protein covariation 

analysis data matrix, ProteomeHD. Detected relative changes in protein 

abundance between the conditions create differentially expressed proteomic 

profiles. These are evaluated with pathway analysis to identify enriched 

biological themes and to discover functional relations. In their proteomic 

analysis of colorectal cancer, Wiśniewski et al. (2012) used label-free 

quantitative analysis to gain insight into changes in signalling pathways due to 

gene mutations, noting that they are recognised drivers of cancer development. 

In their quantitative proteome profiling of the NCI-60 cell line, a widely used 

panel for the study of cellular mechanisms of cancer in multiple tissues, 

Gholami et al. (2013) found that hierarchical clustering of differentially 

expressed proteins provided enriched biological functions and biochemical 

pathways associated with the tissue of origin. We can rarely attribute discrete 

biological functions to an isolated protein, and instead we must look at the 

functional properties of groups of components to describe them (Hartwell et al., 

1999). Quantitative proteomics gives us a picture of protein-directed biological 

processes that can directly lead to understanding biological mechanisms (Ong 

and Mann, 2005). In their study of the protein-protein interaction networks 

between the yeast Saccaromyces cerevisiae and the bacterium Heliobacter pylori, 

Jeong et al. (2001), quantitatively demonstrated that the few most highly 

connected proteins in a network are the most essential, mediating interactions 

with numerous less connected proteins. 
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A desirable outcome of a quantitative proteomic experiment is the discovery of 

many functionally related groups within the changing proteome. The use of 

pathway analysis methods allows us to provide meaning to DE data analysis by 

attaching biological context to important isolated genes that are detected by 

their relation to other genes within the results (García-Campos et al., 2015). 

Based on this, in a more accurate DE analysis, we would expect there to be a 

higher number of proteins that are known to be linked through functionality. In 

this chapter, we use this principle to develop a novel method of benchmarking 

without the use of ground truth data. This concept has been introduced in 

previous studies; Stewart et al. (2017) use the pathway content from known 

SCC biomarkers produced by each of the methods as a way of measuring 

comparison. In their assessment of their ROTS for ranking genes in microarray 

studies, Elo et al. (2008) included a case study of DE analysis of peripheral 

blood lymphocytes from asthma patients. As the ground truth of this dataset 

was not known, performance was assessed using established experimental 

evidence. However, the examples given use known biomarkers from pilot 

studies, and an evaluation method without prior knowledge has yet to be 

created. By using existing knowledge of which proteins work together for 

particular functions, we provide an assessment of DE analysis based on the 

biological picture. Using the results of pathway analysis as a metric for 

successful statistical evaluation, we propose a novel technique for 

benchmarking quantitative proteomic experiments. 

 

iv. Normalisation 

In Chapter 2, the results of a failed DE analysis were partially rescued by 

providing an alternative normalisation methods. The separate processing of 

sample runs in LF-MS/MS introduces systemic bias due to experimental or 

technical conditions. Normalisation methods, described in Chapter 1, aim to 

remove variation caused by environmental conditions, sample preparation, or 

instrument calibration, while preserving true over- and under-expression. This 

chapter investigates the impact of normalisation methods on DE analysis, with 

the aim of discovering the optimal technique. A variety of claims have been 
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made regarding the best method of normalisation; Välikangas et al. (2016) 

found that VSN provided the biggest reduction in variation; Tokareva et al. 

(2021) preferred scaling methods; Wang et al. (2013) describe the success of 

regression models for normalising metabolomics data. However, there does not 

appear to be a consensus approach. Assumptions of statistical methods may be 

the cause; that DE between samples is symmetrical about zero, that there is no 

relationship between DE and expression abundance, and that variation in 

expression is the same in each sample. Some normalisation methods can be 

prone to overfitting or introducing bias into the data (Dabney and Storey, 

2007b). In proteomics data analysis, normalisation usually occurs in a separate 

step prior to DE analysis. In their review on the normalisation of LC-MS 

proteomics data, Karpievitch et al. (2012) describe the need for techniques to 

be flexible enough to remove appropriate bias but delicate enough not to 

remove any biological signal of interest. Dabney and Storey (2007a) describe 

how the strict assumptions required for conventional smoothing and global 

adjustment normalisation can cause spurious false positives and alteration of 

the degree and direction of true DE proteins, proposing a flexible model with 

more general assumptions. Park et al. (2003) found global adjustment to cause 

issues, but a similar performance was achieved with both linear and nonlinear 

methods. Interestingly, Callister et al. (2006) found that some normalisation 

techniques removed significant differences between the datasets. This was 

confirmed by Mecham et al. (2010), who also found that normalisation can 

‘introduce signal in the presence of asymmetrical biological variation’, and that 

the assumption that most genes are not differentially expressed is false in many 

settings. In their review of normalisation for proteome analysis workflows, 

O'Rourke et al. (2019) conclude that among the host of algorithmic techniques, 

no single algorithm is effective for all types of data.  
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v. Aims of chapter 

In Chapter Two we followed an established approach for evaluating DE analysis 

software using three spike-in benchmarking datasets. Due to the inconsistency 

of the results, the accuracy and precision of the simulated experiment was 

investigated. The analysis highlighted a lack of precision across technical 

replicates, inaccurate fold-change values and inconsistent background protein 

abundances, meaning the software evaluation produced from using such data 

would be flawed. A review of the literature revealed further problems with the 

established method of using artificial spike-in data as a ‘ground truth’ including 

sparsity of data, expression in only one direction, and lack of inherent biological 

variation and biological replicates. An alternative approach to evaluating the DE 

analysis software was sought but the literature review did not reveal any 

method that did not rely on ‘ground truth’. Therefore, in this chapter we aim to 

develop a method to provide evaluation of statistical techniques for quantitative 

proteomics that is transferable to real life experimental conditions. 

 

3.2. Methods 

i. Biological datasets 

A literature search was performed to identify label-free experiments with a 

large number of identified proteins. From these studies, those with a large 

proportion of differentially express proteins were selected for analysis. Raw 

files from three biological datasets were downloaded via the PRIDE partner 

repository from the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org/) (Vizcaíno et al., 2014). A 

summary of the experimental conditions for each of the benchmarking datasets 

is given in Table 12. 

 

http://proteomecentral.proteomexchange.org/
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Table 12; Summary of experimental conditions for each of the benchmarking datasets giving details of samples used, experimental design, parameters used for MS analysis and 
number of proteins 

 PXD004501 PXD004682 PXD007592 

Species Human ascite fluids Human lung tissue Cerebral metastases 

Disease Gastric cancer Lung cancer Malignant melanoma 

Experimental sample Stage IV gastric cancer ascites Squamous cell carcinoma MAPKi therapy good responders 

Number of experimental 
samples 

3 4 5* 

Number of technical 
replicates 

1 2** 2 

Control sample Liver cirrhosis ascites Tumour-adjacent tissue MAPKi therapy poor responders 

Number of control samples 3 3 13 

Number of technical 
replicates 

1 2 2 

Number of fractions 6 12*** NA 

Enzyme Trypsin Trypsin Trypsin 

Instrument Q Exactive Plus Orbitrap Q Exactive Plus Orbitrap Q Exactive Plus Orbitrap 

Search database UniProt Human UniProt Human UniProt Human 

Peptide tolerance 15 ppm 10 ppm 5 ppm 

MS/MS tolerance 20 mmu 0.5 Da 20 mmu 

Fixed modifications Carbamidomethylation (C) None Carbamidomethylation (C) 

Variable modifications Oxidation (M) Carbamidomethylation (C), Oxidation 
(M) 

Oxidation (M), Acetyl (Protein N-term) 

No. identified protein 
groups**** 

1719 6656 5977 

* Only 3 were used in analysis due to processing issues 
** One sample’s technical replicate was discarded due to poor alignment 
*** Only 9 were used in analysis due to processing issues 
**** Number of proteins is based on analysis from the publishing paper 
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Ascites from stage IV gastric cancer patients compared to liver cirrhosis 

patients -PXD004501 (Jin et al., 2018)  

The presence of malignant ascites in patients is associated with peritoneal 

seeding from incurable distant metastasis which has an extremely poor 

prognosis. Present diagnostic characterisations of ascites in gastric cancer are 

limited. The study aimed to develop understanding of the pathophysiology of 

peritoneal seeding which will have critical clinical implications in diagnosis, 

choice of treatment and active surveillance. Label-free quantitative proteomics 

methods were employed to identify candidates to differentiate between 

malignant and benign ascetic fluids and identified 299 differentially expressed 

proteins between the ascites fluids of the liver cirrhosis and gastric cancer 

patients. 

 

Lung tissue, squamous cell carcinoma compared to adjacent tissue - 

PXD004682 (Stewart et al., 2017)   

In an investigation to see if increased instrument time was justified for 

increasing protein identification, this study examined the utility of different 

methods of sample preparation and MS data acquisition in lung tumour 

proteomes using greatest coverage as a metric. Alternative methods for large 

scale studies were investigated to provide information for planning large-scale 

experiments where acquisition time is an important issue.  

Four datasets were used to make two comparisons. In a single-sample 

comparison, LC-MS/MS with data-dependent acquisition was compared to LC-

MS/MS with data-independent acquisition. The total acquisition time for both 

experiments was 2 days, with 3409 and 2219 proteins groups being discovered, 

respectively. In a fractionated experiment, label-free quantification (24 days 

acquisition time) was compared to relative quantification through chemically 

labelled peptides (tandem mass tags (TMT)) which took only 6 days to acquire 

the data. Label-free techniques generated 6656 unique protein groups whereas 

tagging methods identified 5535. The conclusion of the authors was that single-

sample experiments should be used as rapid tissue assessment tools, digestion 
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quality control or when there are limited quantities of clinical samples with LF 

or TMT methods recommended when larger amounts of tumour tissue was 

available. The data from the label-free fractionated experiment was 

downloaded and used for benchmarking in this study. 

 

Cerebral metastases from good responders to MAP kinase inhibitor (MAPKi) 

therapy compared to poor responders - PXD007592 (Zila et al., 2018)  

Brain metastases are the main cause of mortality in advanced melanoma 

patients with mutation of the BRAF gene present in approximately half of these 

cases (Cheng et al., 2018). Mitogen-activated protein kinase inhibitor (MAPKi) 

therapy can result in complete remission in more than 50% of these patients 

(Dummer et al., 2014), but resistance to the drug quickly develops. The study 

aimed to understand the mechanisms of resistance in order to identify possible 

alternative therapeutics. LC-MS analysis was performed on cerebral metastases 

from melanoma patients with samples classed as good responders to MAPKi 

therapy (progression-free survival ≥ 6 months) compared to poor responders 

(progression-free survival ≤ 3months) of the treatment. 5977 proteins were 

identified with 1636 proteins significantly changing in concentration between 

conditions. 

 

ii. Imputation 

To assess the impact of imputation on DE analysis, t-test analysis with a BH 

corrected p-value of 0.05 to indicate significance was used and number of DE 

proteins was compared for each dataset using the following methods to deal 

with zero values: 

• Imputation of 1 x e-7 

• Imputation of 1 x e-10 

• Removal of proteins with any zero values from the analysis 

Ions with the same primary peptide sequence and different charge states’ 

intensities were summed. Ions with the same primary peptide sequence but 
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with artefactual modifications were treated separately. Protein quantification 

was based on the sum of the average intensities of all unique or resolved 

peptides that have been mapped to the protein, and proteins identified by one 

or more unique peptides were selected. 

 

iii. Differential expression evaluation 

 

 

Figure 3.2.1; Processes completed in the three stages of benchmarking workflow with details of input data 
required.  

Figure 3.2.1 describes the three main stages in the evaluation; pre-processing of 

the raw data was performed using Progenesis QI for Proteomics (QIP). Protein 

grouping and quantification performed using protein inference software 

written in Java as described in Chapter Two. Methods for DE analysis, 

normalisation and correction for multiple testing significance thresholds were 

benchmarked using pathway analysis results as a metric to evaluate 

performance.  

 

Quantitative processing  

The .raw files of binary data were processed with Progenesis QIP v4.2. as 

described in Chapter Two, and according to the parameters described in Table 

12. Identified and normalised peptide abundances were exported from 

Progenesis QIP for post processing with benchmarking protein inference 

pipeline also described in Chapter Two. Ions with same primary peptide 

sequence and different charge state’s intensities were summed. Ions with same 

primary peptide sequence but with artefactual modifications were treated 

separately. Protein quantification was based on the sum of the average 
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intensities of all unique or resolved peptides that have been mapped to the 

protein, and proteins identified by one or more unique peptide were selected.  

 

Differential expression analysis 

Protein abundances were tested for DE using the following methods previously 

described: 

˗ QPROT  

˗ Welsh two sample t-test  

˗ MSstats*  

*DE analysis in MSstats is performed at the peptide intensity stage, therefore 

peptide intensities were exported from the protein inference software for 

processing. Protein grouping was kept consistent, but protein quantification 

was performed with MSstats through their summation of all non-conflicting 

peptides parameter option. 

 

Defining significant results 

Adjustments were made to the resulting test statistics to allow for correction 

for multiple testing using the inbuilt FDR calculation in the QPROT software and 

the Benjamini Hochberg calculation for adjusting p-values (BH p-value) 

(Benjamini and Hochberg, 1995). A range of cut-off values were used as a 

threshold of significance Table 13. 

Table 13; Summary of significance threshold ranges. Proteins passing the threshold are categorised as DE and 
go forward for enrichment analysis. Size of increment increases over iteration. 

DE method Correction for 
multiple testing 

Range Increment 

QPROT FDR 0.0001 - 0.05 

0.0001 (0.0001 – 0.0009) 

0.001 (0.001 – 0.009) 

0.01 (0.01 – 0.05) 

Welsh's two sample t-test BH p-value 0.001 - 0.05 
0.001 (0.001 – 0.009) 

0.01 (0.01 – 0.05) 

MSstats BH p-value 0.001 - 0.05 
0.001 (0.001 – 0.009) 

0.01 (0.01 – 0.05) 
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A review of statistical methods employed by the packages is included in Chapter 

1. Multiple testing correction was performed in QPROT using their calculation 

of false discovery rate and with Benjamini Hochberg adjusted p-values in the t-

test and MSstats. The normalisation stage in QPROT and MSstats processing 

was switched off for accurate comparison of performance at DE analysis stage. 

A detailed schematic of the benchmarking workflow is shown in Figure 3.2.2. 

 

Figure 3.2.2; Schematic of the benchmarking pipeline. Raw data is processed with Progenesis QIP and peptide 
ions are identified using Mascot. Resulting peptide abundances are summarised into protein group abundances 

using the benchmarking inference pipeline. DE analysis is performed and significant results at a variety of 
significance thresholds are evaluated using enrichment analysis terms. 

 

Analysis of performance 

Analysis of performance of DE analysis was conducted using enrichment 

analysis through the DAVID, the Database for Annotation, Visualisation and 

Integration Discovery (http://david.niaid.nih.gov/) using the R package 

RDAVIDWebService (Fresno and Fernández, 2013). Pathway analysis was 

performed using proteins classified as significantly changing in concentration 

between conditions as the search list. A range of thresholds was used to define 

the differentially expressed proteins in order to investigate the optimum cut-off 

point and to minimise the trade of between calling false positives and creating 

false negatives (Table 13). All identified proteins in the dataset were used as the 

background list. It was expected that proteins subject to change under the 

experimental conditions would have more known relations within pathways 

compared to the pathway analysis of the whole group of identified proteins in 

the data. Significant terms were defined as those with a BH p < 0.05 from GO; 

Biological Process, Molecular Function, and Cellular Component, and the 

Reactome and Kegg pathways. A higher number of significant terms within the 

http://david.niaid.nih.gov/
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differentially expressed group of proteins was used as a metric to determine the 

most effective method and significance threshold for DE analysis.  

 

iv. Evaluation of pathway analysis benchmarking 

method 

In order to validate the use of pathway analysis for benchmarking significant 

results from the t-test (p-value threshold < 0.05) analysis of dataset PXD004682 

was evaluated with pathway analysis using different proportions of proteins 

said to be significantly changing. On each iteration, 5% of true DE proteins were 

removed from the pathway analysis foreground list and replaced with proteins 

from the background list, simulating analysis with increasing false positive 

rates. This process was repeated 10 times. 

 

v. Normalisation across samples 

Table 14; Normalisation procedures performed by Normalyzer package with details of R functions and packages 
employed 

Normalisation Abbreviation  R function Package 

Loess normalisation (Loess)  normalizeCyclicLoess() limma 

Robust linear regression normalisation (RLR)  rlm() MASS 

Total intensity normalisation (TIN)  - NormalyzerDE 

Median intensity normalisation (MIN)  - NormalyzerDE 

Average intensity normalisation (AIN)  - NormalyzerDE 

Variance stabilisation normalisation (VSN)  justvsn() VSN 

 

For investigation into the effect of normalisation, data was processed according 

to the method described in Section 3.2, using raw peptide ion abundances from 

the Progenesis QIP output using a minimum of one unique peptide for 

identification. Normalisation was applied to quantified and identified protein 

group abundances. As MSstats requires peptide abundances as input and 

performs its own protein quantification, it was excluded from the normalisation 

benchmarking to ensure an accurate ‘like-for-like’ comparison of protein 
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abundances. Raw protein intensity data was processed with the open-source R 

tool ’Normalyzer’ (Chawade et al., 2014), which provided the normalisation 

methods described in Table 14. In all instances, ‘global normalisation’ was 

performed across all samples, where Normalyzer applies the method across all 

samples regardless of experimental groups, utilising the assumption that most 

protein levels will remain the same across conditions. This is as opposed to the 

‘local normalisation’ option offered by Normalyzer, wherein the replicate 

groups are normalised separately. Two methods for quantile normalisation 

were written in R: Quantile normalisation using mean values; the data was 

sorted, and the mean quantile intensity was substituted as the protein intensity 

value. The data was resorted into the original order, with the transformed data 

now having the same distribution with identical quantiles and the original 

ranking preserved. Quantile normalisation was also performed using median 

values rather than mean values. The in-built normalisation methods of the 

software packages Progenesis QIP and QPROT were also compared.  

Prior to DE analysis, all data were subjected to log transformation according to 

the process detailed in Figure 3.2.3. DE analysis results were evaluated using 

the pathway analysis method described in 3.2. Due to the calculation of 

significance in enrichment analysis, larger sets provide smaller p-values, 

meaning it is possible for terms to have a significant p-value with a small 

amount of enrichment. To account for this, and a minimum of two-fold 

enrichment threshold was also applied to identify significant enrichment terms. 
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Figure 3.2.3; Schematic diagram showing the process for each normalisation method prior to differential expression analysis.
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3.3. Results and discussion 

i. Pathway analysis benchmarking validation 

Table 15; Pathway analysis validation completed with dataset PXD004682. Different proportions of true DE 
proteins and randomly selected background proteins. Number of significant terms from DAVID enrichment 

analysis of DE proteins from t-test analysis, (Benjamini Hochberg adjusted p-value < 0.05). 

Proportion DE 
proteins 

Proportion of 
background 

proteins 

Mean number of 
terms 

Standard 
deviation 

Standard error 

100 0 158 0 0 

95 5 123.4 25.35 15.71 

90 10 78.7 35.98 22.30 

85 15 57.3 27.33 16.94 

80 20 26.3 16.12 9.99 

75 25 15.6 11.06 6.85 

70 30 7.3 5.42 3.36 

 

 

To validate the pathway analysis method, enrichment analysis was performed 

on foreground data that included an increasing amount of proteins from the 

background group (i.e. not classified as DE by t-test analysis using BH p-value of 

< 0.05 as significant), to simulate analyses that are incorrectly classifying 

proteins as DE when they are not. The results (Table 15 and Figure 3.3.1) 

demonstrate that by including an increasingly large proportion of not ‘true’ DE 

proteins in the search list, fewer significant terms are returned on functional 

enrichment analysis. Proteins that had been classified by statistical analysis as 

changing between conditions were more functionally similar to each other 

compared to the total pool of identified proteins. These results validate the 

pathway enrichment testing approach as an effective evaluation tool. Precise DE 

analysis produces more significant terms, and an increased false discovery rate 

‘dilutes’ the quality of the enrichment analysis. 

 



Optimising the statistical pipeline for quantitative proteomics 

 

165 
 

 

Figure 3.3.1; Pathway analysis validation completed with dataset PXD004682. Number of significant terms (t-
test analysis, Benjamini Hochberg adjusted p-value < 0.05) from DAVID enrichment analysis with different 
proportions of significantly differentially expressed proteins included in the search list repeated 10 times 

 

ii. Imputation 

In the biological dataset, the amount of proteins affected by missing abundance 

data ranged from were 3.3%, 1.6%, and 4.35% for datasets PXD004501, 

PXD04682, and PXD007592, respectively (Table 16). Changing the methods 

used to deal with the missing values had no effect on the total number of DE 

proteins in the analysis or the number of resulting significantly enriched 

pathways.
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Table 16; Comparison of effects of imputation. t-test analysis with a BH corrected p-value of 0.05 to indicate 
significance was used and number of DE proteins was compared for each dataset using different methods to 
deal with zero values. Ions with same primary peptide sequence and different charge state’s intensities were 

summed. Ions with same primary peptide sequence but with artefactual modifications were treated separately. 
Protein quantification was based on the sum of the average intensities of all unique or resolved peptides that 

have been mapped to the protein, and proteins identified by one or more unique peptide were selected. 
Enrichment analysis was performed using the DAVID webpage (https://david.ncifcrf.gov/tools.jsp) using the 

default parameters. Impute 1e-07, imputation of 0.0000001; Impute 1e-10, 0.0000000001; Remove, removal of 
proteins with any zero values from the analysis. 

Dataset 

 

Number 
of 

proteins 
with a 

zero value 

% of 
total 

proteins 

Imputation method 

Impute 

1e-07 

Impute 

1e-10 
Remove 

No. DE 
proteins 

No. 
enriched 

terms 

No. DE 
proteins 

No. 
enriched 

terms 

No. DE 
proteins 

No. 
enriched 

terms 

PXD004501 19 3.30 46 4 46 4 46 4 

PXD004682 45 1.60 1226 26 1225 26 1225 26 

PXD007592 135 4.35 9 2 9 2 9 2 

 

iii. Differential expression evaluation 

Summary of data analysis 

Table 17; Summary of DE analysis by QPROT, t-test, and MSstats of biological datasets PXD004501, PXD001682, 
and PXD007592. Protein group abundances were calculated using protein inference benchmarking software 

from Progenesis QIP normalised peptide ion abundances that had been identified by a minimum of one or two 
unique peptides.  

Dataset 

Minimum 
number of 

unique peptides 
for 

identification 

Number of 
identified 

protein 
groups 

Number of differentially expressed protein 
groups 

QPROT 

FDR < 0.01% 

t-Test 

BH adj.p < 
0.05 

MSstats 

BH adj.p < 
0.05 

PXD004501 
1 574 224 46 118 

2 542 187 40 110 

      
PXD004682 

1 2813 1044 1226 1329 

2 2716 595 1206 1314 

      
PXD007592 

1 3098 69 9 73 

2 3000 104 9 66 

 

A summary of the results from the DE analysis (Table 17) shows PXD007592 

had the largest number of identified proteins (3098, 3000). There was a small 

proportion of proteins identified as being differentially expressed by all 

methods (9 – 104 DE proteins). Dataset PXD004682 had a relatively high 

proportion of changing proteins compared to the total amount of protein 

groups identified (up to half of all proteins). PXD004501 had a relatively small 

https://david.ncifcrf.gov/tools.jsp


Optimising the statistical pipeline for quantitative proteomics 

 

167 
 

number of identified protein groups (574, 542) compared to the other two data 

sets, but a higher proportion of those were identified as differentially expressed 

compared with PXD007592. The criteria for the number of unique proteins 

required for confident identification made gave approximately 5% difference in 

the count of protein groups identified in all datasets.  

 

iv. Evaluation of DE methods by pathway analysis 

Overall analysis 

Overall, there was no consistently best method for DE analysis (summarised in 

Figure 3.3.2). MSstats achieved the best result on the small dataset with a large 

amount of proteins changing. However, all three DE methods were similar in 

performance. The t-test was best when there was a large dataset with a large 

proportion of changing proteins. MSstats’ performed similarly to the t-test, but 

with QPROT producing relatively few significant enrichment terms. In the 

largest dataset with smallest proportion of changing proteins, QPROT excelled 

compared to t-test, with MSstats not providing any significant terms at all. 

There was a large variation in optimal significance thresholds and differences 

between how many proteins each method called as DE at their optimal 

performance level.  
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Figure 3.3.2; Differential expression analysis of the datasets PXD004501, PXD004682, PXD007592 using 
statistical methods MSstats, QPROT and Welch t-test. Number of significant terms (Benjamini Hochberg 

adjusted p-value < 0.05 with DAVID analysis) shown for different threshold levels for significant differentially 
expressed proteins. Threshold values are Benjamini Hochberg adjusted p-values for MSstats and t-test and FDR 

for QPROT analysis. Proteins groups identified with 1 and 2 unique proteins 

PXD004501 

This dataset had the smallest number of identified protein groups, 574 when 

using a minimum of one unique peptide for identification. It also had the largest 

range of proportion of proteins identified as differentially expressed across the 

methods; 44 with QPROT FDR < 0.01 and 203 and 118 with t-test and MSstats 

at BH p-values < 0.05. QPROT provided a high number of significant terms at 

low threshold levels, over 50 terms at FDR > 0.001. As the significance 

threshold increased, MSstats performance was similar to QPROT. For 1 unique 

peptide, MSstats gave the highest number of total significant terms of 60 at a 
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significance threshold of p = 0.05, calling 118 proteins as DE, compared to a 

maximum of 46 terms from t-test (calling 39 proteins as DE at significance 

threshold of p = 0.05) and 53 for QPROT (calling 178 and 205 proteins as DE at 

significance thresholds of 0.0007 and 0.003 FDR). When using 2 unique 

peptides for identification MSstats gave the most terms (46) calling 18 proteins 

as DE at significance threshold of p = 0.008, with 43 maximum terms from 

QPROT (calling 176 proteins as DE significance threshold of 0.006 FDR) and 31 

from t-test (calling 31 proteins as DE cut off threshold p = 0.05). 

There was a small difference in the maximum number of terms produced by the 

different analysis methods, 39, 56, and 60 for protein data identified by one 

unique peptide and 31, 43, and 46 for protein data identified by at least two 

unique peptides. However, the cut-off significance level required to achieve 

these results was varied. MSstats gave the best performance at the conventional 

threshold level of 0.05 for protein data identified by one unique peptide (Table 

18), and it was only 0.008 for protein data identified by at least two unique 

peptides. 

Table 18; Summary of ’best’ analysis parameters where maximum number of terms are found during enrichment 
analysis of dataset PXD004501 using Progenesis normalised protein intensities. 

Number of unique peptides 
required for identification 

DE 
method 

Threshold Number of DE 
proteins 

Number of 
significant terms 

One unique peptide 

MSstats 0.05 118 60 

QPROT 0.0007 / 0.003 178 / 205 56 

t-Test 0.05 46 39 

Two unique peptides 

MSstats 0.008 18 46 

QPROT 0.006 176 43 

t-Test 0.04 31 31 

 

Stringent significance thresholds between 0.007 - 0.006 FDR were required for 

QPROT, with less conservative thresholds of 0.04 and 0.05 best for t-test 

analysis. Variation also occurred in the number of proteins being classified as 

DE for optimal results; MSstats had best performance by calling an extreme 

difference of 118 and 18 proteins DE, QPROT 178 or 205 and 176, and t-test just 

31, for protein data identified by one unique peptide and 46 for protein data 

identified by at least two unique peptides. 
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PXD004682 

This dataset had a large number of identified protein groups, 2813 when using a 

minimum of one unique peptide for identification. It also had the largest 

proportion of these protein groups being identified as differentially expressed 

by all of the methods; 1044 with QPROT FDR of less than 0.01 and 1226 and 

1329 with t-test and MSstats at BH p-values of less than 0.05.  

 

Table 19; Summary of ’best’ analysis parameters where maximum number of terms are found during enrichment 
analysis of dataset PXD004682 using Progenesis normalised protein intensities. 

Number of unique peptides 
required for identification 

DE 
method 

Threshold Number of DE 
proteins 

Number of 
significant terms 

One unique peptide 

MSstats 0.02 1017 168 

QPROT 0.0002 707 96 

t-Test 0.03 1035 178 

Two unique peptides 

MSstats 0.02 1019 160 

QPROT 0.0005 387 54 

t-Test 0.03 1021 173 

 

Overall the t-test gave the best results based on pathway analysis (Table 19), 

with a peak number of significant terms of 178 and 173 (both at a significance 

threshold p-value of 0.03) for protein data identified by one unique peptide and 

by at least two unique peptides, respectively. MSstats performance is similar to 

t-test, 168 and 160 significant terms (significance threshold p-value of 0.02) for 

protein data identified by one unique peptide and by at least two unique 

peptides, respectively.  The number of DE proteins was also similar, 1017 and 

1019 for MSstats and 1035 and 1021 for t-test for protein data identified by one 

unique peptide and by at least two unique peptides, respectively. Less effective 

was QPROT with only 96 and 54 significant terms. It performed better at low 

FDR thresholds (0.0002 and 0.0005 for protein data identified by one unique 

peptide and by at least two unique peptides, respectively) and classified 

relatively fewer proteins as DE (707 and 387 for protein data identified by one 

unique peptide and by at least two unique peptides, respectively). 
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PXD007592 

This dataset had the largest number of identified protein groups, 3098 when 

using a minimum of one unique peptide for identification, but it had the 

smallest proportion of proteins identified as differentially expressed.  

Table 20; Summary of ’best’ analysis parameters where maximum number of terms are found during enrichment 
analysis of dataset PXD007592 using Progenesis normalised protein intensities. 

Number of unique peptides 
required for identification 

DE 
method 

Threshold Number of DE 
proteins 

Number of 
significant terms 

One unique peptide 

MSstats - - - 

QPROT 0.04 137 88 

t-Test 0.009 2 1 

Two unique peptides 

MSstats - - - 

QPROT 0.015 118 58 

t-Test 0.008 2 1 

 

QPROT identified 104 proteins as being differentially expressed at the typical 

FDR threshold of 0.01 (Table 20). QPROT called the largest amount of proteins 

as being DE and also gave the best pathway analysis results of 88 and 58 

significant terms for protein data identified by one unique peptide and by at 

least two unique peptides, respectively. Both t-test and MSstats analysis gave 

poor results for this data. With only 9 protein groups being identified as 

differentially expressed at 0.05 p-value threshold, t-test analysis only produced 

one significant result from pathway analysis, with 2 DE proteins at a 

significance threshold of 0.009 and 0.008 for protein data identified by one 

unique peptide and by at least two unique peptides, respectively. While at p < 

0.05 MSstats identified 73 and 66 proteins significantly changing across 

conditions for protein data identified by one unique peptide and by at least two 

unique peptides, respectively, the analysis method was unable to produce 

results that gave significant terms in pathway analysis at any significance 

threshold. 
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v. Investigating the effect of normalisation method 

MSstats 

As the results of the DE analysis (Figure 3.3.2) showed that MSstats gave a 

similar performance to the t-test, and would require normalisation of peptide 

ion abundances rather than protein abundances, only QPROT and t-test analysis 

data was used for normalisation evaluation to ensure a comprehensive ‘like-for-

like’ comparison. It is possible that this benchmarking exercise did not provide 

the best way to demonstrate MSstats. The mixed-effect modelling could be more 

effective in label-based workflows, where peptide intensities are compared to 

isotopically labelled reference spike-in intensities. Known as blocking, technical 

variation between samples can be estimated by investigating changes in the 

difference between reference and target intensities across runs (Oberg and 

Vitek, 2009). The mixed-effects model incorporates a term for this method to 

reduce bias and variation (Chang et al., 2012). This aspect of MSstats will be 

redundant in a label-free experiment, perhaps accounting for its similar 

performance to the t-test. 

 

Fold enrichment threshold 

Analysis in Figure 3.3.2 was conducted using only a BH p < 0.05 to define 

significant terms. The investigation of the effect of additionally including a 

minimum threshold for enrichment is shown in Figure 3.3.3. The rationale for 

this is that for certain pathways or ontology terms for which a large number of 

proteins can be mapped, highly significant p-values might be obtained with 

trivially small enrichment factors, calling into question biological relevance. 
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Figure 3.3.3; Differential expression analysis of the datasets PXD004501, PXD004682, PXD007592 using 
statistical methods QPROT and Welch’s t-test. Number of significant terms (y-axis) colours represent the effect 
of different fold enrichment threshold cut-off values. Threshold values (x-axis) (Benjamini Hochberg adjusted p-

values for t-test and FDR for QPROT analysis.  

 

The analysis in Figure 3.3.3 demonstrates that there were a large number of 

terms assigned as significant that had small enrichment factors. As the 

significance cut-off threshold increased for the t-test analysis of PXD004682 

(rows 3 and 4, column 2, Figure 3.3.3), the difference between the numbers of 

significant terms widened depending on the fold enrichment threshold used. In 

their report regarding sources of bias in functional enrichment analysis, 

Timmons et al. (2015) highlight the need to avoid using marginal enrichments 

being relied upon to drive the interpretation of an experiment. Therefore, to 

prevent expanded counts based on reporting terms with a small effect size, for 

the evaluation of normalisation, a combination of minimum 2-fold enrichment 

was combined with the BH p < 0.05 for the identification of significant terms. 
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Overall analysis 

A summary of the overall results is shown in Figure 3.3.4. The different sub-

plots along the x-axis show the different normalisation methods used and the 

sub-plots along the y-axis show the different datasets. Pathway analysis was 

performed to look for functional enrichment in the DE proteins compared to all 

of the proteins identified in the sample. The number of proteins in the DE group 

at each threshold is shown as a solid line, and the number of significant terms 

produced from the pathway analysis is shown as points. Results from QPROT 

analysis are shown in orange and results from t-test analysis are shown in blue.  

The results are diverse; the effect of normalisation is different between datasets 

and DE analysis methods, and the optimal threshold for producing significant 

terms varies. There does not appear to be an obviously superior combination of 

methods; for example, QPROT DE analysis combined with quantile 

normalisation has excellent results with dataset PXD004501 (Figure 3.3.4; row 

1, column 10), but very poor results on dataset PXD007592 (Figure 3.3.4; row 3, 

column 10). Optimal threshold is also difficult to predict, t-test seems to need a 

less conservative threshold, see for example Figure 3.3.4; rows 1 and 3. 

However, for dataset PXD004682 there is better performance at a ‘medium’ 

stringency level, such as Figure 3.3.4; row 2. QPROT’s optimal results often arise 

from very stringent significance thresholds, but there are occasions, such as 

log2 transformation of PXD007592 data where a more lenient significance 

threshold may have provided a better output (Figure 3.3.4; rows 3, column 1).  
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Figure 3.3.4; Enrichment analysis to assess normalisation methods. DE analysis by QPROT (orange) and t-test (blue) of protein abundances (identified with by minimum of one 
unique peptide and normalised by the method shown in the x-axis strip) of three biological datasets PXD004501, PXD004682, and PXD007592 (y-axis strip). DE proteins identified 
using the significance threshold on the x-axis (number of proteins shown as solid line) were subjected to pathway analysis. Number of significant enrichment terms are shown as 

points. 
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PXD004501 

Table 21; Enrichment analysis of dataset PXD004501. Optimal combination of analysis parameters are shown 
for each of the DE methods QPRT and t-test. 

DE method Normalisation Threshold Number of DE 
proteins 

Number of 
significant terms 

QPROT Quantile - median 0.002 21 66 

t-Test Log2 transformed 0.04 60 48 

 

Optimal analysis of dataset PXD004501, the smallest of the three in terms of DE 

proteins, is summarised in Table 21. The optimal performance was obtained 

using QPROT at a significance threshold of 0.002 with quantile - median 

normalisation (66 significant enrichment terms with 21 DE proteins, details of 

GO terms shown in Table 22), (Figure 3.3.4; row 1, column 10). Overall, QPROT 

appears to perform better at stringent significance thresholds and investigating 

further with a lower threshold level may have improved the performance, 

(Figure 3.3.4; row 1, columns 1-5, 8, 9, and 11).  Analysis of the log2 

transformed abundances produced the highest number of terms when t-test 

was used for DE analysis (48 significant terms and 60 DE proteins at an optimal 

significance threshold of p < 0.04, details of GO terms shown in Table 23), 

(Figure 3.3.4; row 1, column 1). Even with the introduction of an enrichment 

threshold for the normalisation evaluation analysis, which limited the number 

of terms being defined as significant for all methods (Figure 3.3.4), the optimal 

QPROT output of 66 terms (Figure 3.3.4) was an still an improvement of the 

optimal output of MSstats (60 terms) using Progenesis QIP normalisation in the 

previous section (Figure 3.3.2). However, a limitation of this evaluation is that 

in QPROT analysis using several of the normalisation methods, it appears that 

the maxima is not captured. Future work should extend the range of 

significance threshold to address this.  Figure 3.3.5 summarises the distribution 

of the enrichment terms of the best parameter combinations for QPROT and t-

test. There was consistency in the composition of the enrichment results, with 

the same number of Reactome and Kegg pathway results, with an increase in GO 

terms in using QPROT analysis. 



Optimising the statistical pipeline for quantitative proteomics 

 

177 
 

 

Figure 3.3.5; Distribution of the optimal results of enrichment analysis for DE methods QPROT and t-test for 
dataset PXD004501.  

Overall in this dataset, t-test performs poorly; there are a small number of 

proteins being called DE at the thresholds below p < 0.05, and the number of 

terms increased as the threshold stringency decreased (Figure 3.3.4 row 1). 

Using raw abundance and AIN data at thresholds around 0.05, t-test analysis 

produces a small number of significant terms, suggesting that less conservative 

threshold may have been more appropriate for t-test analysis of this data. 

QPROT analysis provided more consistent results; along with Q-med 

normalisation, log2 transformed abundances, TIN and Progenesis normalised 

data provided the best combination with QPROT, with AIN, MIN, RLR, VSN, Q-

mean, and QPROT’s own normalisation providing a comparative amount of 

terms. In contrast, Loess normalisation with QPROT analysis provided the least 

amount of significant terms, interestingly with the largest amount of DE 

proteins. QPROT analysis was often optimal at lower FDR values, suggesting 

even more stringent significance threshold could be more appropriate for this 

dataset. The count of terms is reduced compared to the analysis Progenesis QIP 

normalised data from the previous section, where there was a maximum of 178 

significant enrichment terms due to the introduction of the enrichment 

threshold cut-off.  
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Table 22; Enrichment results for optimal QPROT analysis with quantile median normalisation and a significance threshold of 0.002 for dataset PXD004501. Access to the DAVID 
results for all parameter combinations is provided in the link in the Supplementary Material section. 

Category Term Fold 
Enrichment 

Benjamini 
p-value 

GOTERM_BP_ALL GO:0002757~immune response-activating signal transduction 5.78 0.00001 

GOTERM_BP_ALL GO:0002764~immune response-regulating signaling pathway 5.59 0.00001 

REACTOME_PATHWAY R-HSA-2168880~Scavenging of heme from plasma 6.14 0.00001 

GOTERM_BP_ALL GO:0002429~immune response-activating cell surface receptor signaling pathway 6.14 0.00002 

GOTERM_BP_ALL GO:0002768~immune response-regulating cell surface receptor signaling pathway 5.91 0.00002 

REACTOME_PATHWAY R-HSA-2871837~FCERI mediated NF-kB activation 6.33 0.00003 

REACTOME_PATHWAY R-HSA-2454202~Fc epsilon receptor (FCERI) signaling 6.59 0.00005 

REACTOME_PATHWAY R-HSA-2730905~Role of LAT2/NTAL/LAB on calcium mobilization 6.59 0.00005 

REACTOME_PATHWAY R-HSA-2871796~FCERI mediated MAPK activation 6.59 0.00005 

REACTOME_PATHWAY R-HSA-2871809~FCERI mediated Ca+2 mobilization 6.59 0.00005 

REACTOME_PATHWAY R-HSA-5690714~CD22 mediated BCR regulation 6.39 0.00005 

REACTOME_PATHWAY R-HSA-983695~Antigen activates B Cell Receptor (BCR) leading to generation of second messengers 6.39 0.00005 

GOTERM_BP_ALL GO:0038095~Fc-epsilon receptor signaling pathway 7.53 0.00006 

GOTERM_MF_ALL GO:0003823~antigen binding 5.88 0.00007 

REACTOME_PATHWAY R-HSA-2029481~FCGR activation 5.86 0.00008 

REACTOME_PATHWAY R-HSA-2029485~Role of phospholipids in phagocytosis 5.86 0.00008 

REACTOME_PATHWAY R-HSA-2029482~Regulation of actin dynamics for phagocytic cup formation 5.70 0.00009 

REACTOME_PATHWAY R-HSA-173623~Classical antibody-mediated complement activation 5.27 0.00016 

REACTOME_PATHWAY R-HSA-198933~Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 4.91 0.00027 

GOTERM_BP_ALL GO:0038093~Fc receptor signaling pathway 6.16 0.00031 

GOTERM_BP_ALL GO:0002433~immune response-regulating cell surface receptor signaling pathway involved in phagocytosis 6.78 0.00043 

GOTERM_BP_ALL GO:0038094~Fc-gamma receptor signaling pathway 6.78 0.00043 

GOTERM_BP_ALL GO:0002431~Fc receptor mediated stimulatory signaling pathway 6.78 0.00043 

GOTERM_BP_ALL GO:0038096~Fc-gamma receptor signaling pathway involved in phagocytosis 6.78 0.00043 

GOTERM_BP_ALL GO:0002253~activation of immune response 3.56 0.00054 
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REACTOME_PATHWAY R-HSA-166663~Initial triggering of complement 4.39 0.00059 

GOTERM_BP_ALL GO:0006958~complement activation, classical pathway 4.52 0.00062 

GOTERM_BP_ALL GO:0002455~humoral immune response mediated by circulating immunoglobulin 4.45 0.00062 

GOTERM_BP_ALL GO:0006909~phagocytosis 4.45 0.00062 

GOTERM_BP_ALL GO:0019724~B cell mediated immunity 4.32 0.00072 

GOTERM_BP_ALL GO:0016064~immunoglobulin mediated immune response 4.32 0.00072 

GOTERM_BP_ALL GO:0050778~positive regulation of immune response 3.26 0.00091 

GOTERM_BP_ALL GO:0002449~lymphocyte mediated immunity 4.14 0.00091 

GOTERM_BP_ALL 
GO:0002460~adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin 
superfamily domains 4.14 0.00091 

GOTERM_BP_ALL GO:0006898~receptor-mediated endocytosis 4.03 0.00112 

GOTERM_BP_ALL GO:0002443~leukocyte mediated immunity 3.87 0.00155 

GOTERM_BP_ALL GO:0006956~complement activation 3.77 0.00180 

GOTERM_BP_ALL GO:0002250~adaptive immune response 3.77 0.00180 

GOTERM_BP_ALL GO:0050776~regulation of immune response 2.91 0.00234 

GOTERM_BP_ALL GO:0002684~positive regulation of immune system process 2.77 0.00374 

GOTERM_BP_ALL GO:0006897~endocytosis 3.07 0.00374 

GOTERM_BP_ALL GO:0006959~humoral immune response 3.24 0.00620 

GOTERM_BP_ALL GO:0050851~antigen receptor-mediated signaling pathway 8.13 0.00731 

GOTERM_BP_ALL GO:0072376~protein activation cascade 3.14 0.00769 

GOTERM_BP_ALL GO:0007166~cell surface receptor signaling pathway 2.27 0.01068 

GOTERM_BP_ALL GO:0006955~immune response 2.26 0.01105 

GOTERM_BP_ALL GO:0050853~B cell receptor signaling pathway 10.43 0.01219 

GOTERM_MF_ALL GO:0004175~endopeptidase activity 3.17 0.01431 

GOTERM_MF_ALL GO:0004252~serine-type endopeptidase activity 3.28 0.01472 

GOTERM_MF_ALL GO:0017171~serine hydrolase activity 3.12 0.01472 

GOTERM_MF_ALL GO:0008236~serine-type peptidase activity 3.12 0.01472 

GOTERM_MF_ALL GO:0070011~peptidase activity, acting on L-amino acid peptides 2.77 0.01472 

GOTERM_MF_ALL GO:0034987~immunoglobulin receptor binding 8.74 0.01472 
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GOTERM_MF_ALL GO:0008233~peptidase activity 2.69 0.01472 

GOTERM_BP_ALL GO:0006910~phagocytosis, recognition 9.68 0.01484 

GOTERM_BP_ALL GO:0006911~phagocytosis, engulfment 9.68 0.01484 

GOTERM_BP_ALL GO:0010324~membrane invagination 9.68 0.01484 

GOTERM_BP_ALL GO:0002682~regulation of immune system process 2.30 0.01781 

GOTERM_BP_ALL GO:0002252~immune effector process 2.76 0.01781 

GOTERM_BP_ALL GO:0050871~positive regulation of B cell activation 9.04 0.01781 

GOTERM_BP_ALL GO:0050864~regulation of B cell activation 9.04 0.01781 

GOTERM_BP_ALL GO:0048584~positive regulation of response to stimulus 2.10 0.01924 

GOTERM_BP_ALL GO:0016192~vesicle-mediated transport 2.19 0.02555 

GOTERM_CC_ALL GO:0042571~immunoglobulin complex, circulating 9.91 0.04306 

GOTERM_CC_ALL GO:0019814~immunoglobulin complex 9.91 0.04306 

GOTERM_BP_ALL GO:0042113~B cell activation 6.78 0.04916 
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Table 23; Enrichment results for optimal t-test analysis with log2 transformed abundances and a significance threshold of 0.04 for dataset PXD004501. Access to the DAVID results 
for all parameter combinations is provided in the link in the Supplementary Material section. 

Category Term Fold 
Enrichment 

Benjamini p-
value 

REACTOME_PATHWAY R-HSA-2168880~Scavenging of heme from plasma 4.08 0.00000004 

REACTOME_PATHWAY R-HSA-2454202~Fc epsilon receptor (FCERI) signaling 4.59 0.00000004 

REACTOME_PATHWAY R-HSA-2730905~Role of LAT2/NTAL/LAB on calcium mobilization 4.59 0.00000004 

REACTOME_PATHWAY R-HSA-2871796~FCERI mediated MAPK activation 4.59 0.00000004 

REACTOME_PATHWAY R-HSA-2871809~FCERI mediated Ca+2 mobilization 4.59 0.00000004 

REACTOME_PATHWAY R-HSA-2871837~FCERI mediated NF-kB activation 4.19 0.00000004 

REACTOME_PATHWAY R-HSA-5690714~CD22 mediated BCR regulation 4.45 0.00000004 

REACTOME_PATHWAY R-HSA-983695~Antigen activates B Cell Receptor (BCR) leading to generation of second messengers 4.45 0.00000004 

REACTOME_PATHWAY R-HSA-173623~Classical antibody-mediated complement activation 3.87 0.00000019 

REACTOME_PATHWAY R-HSA-2029481~FCGR activation 4.08 0.00000019 

REACTOME_PATHWAY R-HSA-2029485~Role of phospholipids in phagocytosis 4.08 0.00000019 

REACTOME_PATHWAY R-HSA-2029482~Regulation of actin dynamics for phagocytic cup formation 3.97 0.00000029 

REACTOME_PATHWAY R-HSA-166663~Initial triggering of complement 3.40 0.00000064 

GOTERM_BP_ALL GO:0038095~Fc-epsilon receptor signaling pathway 5.05 0.00000137 

GOTERM_MF_ALL GO:0003823~antigen binding 3.99 0.00000155 

GOTERM_BP_ALL GO:0002433~immune response-regulating cell surface receptor signaling pathway involved in phagocytosis 4.77 0.00000309 

GOTERM_BP_ALL GO:0038094~Fc-gamma receptor signaling pathway 4.77 0.00000309 

GOTERM_BP_ALL GO:0038096~Fc-gamma receptor signaling pathway involved in phagocytosis 4.77 0.00000309 

GOTERM_BP_ALL GO:0002431~Fc receptor mediated stimulatory signaling pathway 4.77 0.00000309 

REACTOME_PATHWAY R-HSA-198933~Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 3.41 0.00000410 

GOTERM_BP_ALL GO:0002429~immune response-activating cell surface receptor signaling pathway 3.81 0.00000549 

GOTERM_BP_ALL GO:0038093~Fc receptor signaling pathway 4.13 0.00000852 

GOTERM_BP_ALL GO:0002768~immune response-regulating cell surface receptor signaling pathway 3.67 0.00000852 

GOTERM_BP_ALL GO:0006958~complement activation, classical pathway 3.21 0.00003851 

GOTERM_BP_ALL GO:0002455~humoral immune response mediated by circulating immunoglobulin 3.17 0.00004422 
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GOTERM_BP_ALL GO:0002757~immune response-activating signal transduction 3.31 0.00004422 

GOTERM_BP_ALL GO:0006898~receptor-mediated endocytosis 3.00 0.00004551 

GOTERM_BP_ALL GO:0019724~B cell mediated immunity 3.07 0.00005793 

GOTERM_BP_ALL GO:0016064~immunoglobulin mediated immune response 3.07 0.00005793 

GOTERM_BP_ALL GO:0002764~immune response-regulating signaling pathway 3.21 0.00005864 

GOTERM_BP_ALL GO:0002449~lymphocyte mediated immunity 2.95 0.00010260 

GOTERM_BP_ALL 
GO:0002460~adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin 
superfamily domains 2.95 0.00010260 

GOTERM_BP_ALL GO:0002250~adaptive immune response 2.81 0.00010260 

GOTERM_BP_ALL GO:0006956~complement activation 2.81 0.00010260 

GOTERM_BP_ALL GO:0006909~phagocytosis 3.01 0.00013275 

GOTERM_BP_ALL GO:0002443~leukocyte mediated immunity 2.75 0.00029090 

GOTERM_BP_ALL GO:0072376~protein activation cascade 2.44 0.00061751 

GOTERM_BP_ALL GO:0006897~endocytosis 2.29 0.00112161 

GOTERM_BP_ALL GO:0002253~activation of immune response 2.35 0.00121554 

GOTERM_BP_ALL GO:0006959~humoral immune response 2.41 0.00128297 

GOTERM_MF_ALL GO:0004175~endopeptidase activity 2.36 0.00293786 

GOTERM_MF_ALL GO:0004252~serine-type endopeptidase activity 2.44 0.00371493 

GOTERM_MF_ALL GO:0008236~serine-type peptidase activity 2.32 0.00477173 

GOTERM_MF_ALL GO:0017171~serine hydrolase activity 2.32 0.00477173 

GOTERM_BP_ALL GO:0050778~positive regulation of immune response 2.15 0.00528982 

GOTERM_MF_ALL GO:0070011~peptidase activity, acting on L-amino acid peptides 2.07 0.00915706 

GOTERM_MF_ALL GO:0008233~peptidase activity 2.01 0.01230922 

GOTERM_BP_ALL GO:0002252~immune effector process 2.06 0.01680846 
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PXD004682 

Table 24; Enrichment analysis of dataset PXD004682. Optimal combination of analysis parameters are shown 
for each of the DE methods QPRT and t-test. 

DE method Normalisation Threshold Number of DE 
proteins 

Total number of 
significant terms 

QPROT QPROT 0.0001 443 53 

t-Test AIN 0.001 706 104 

 

Summary of analysis of dataset PXD004682 is shown in Table 24. In this dataset 

there were the lowest number of identified protein groups with the largest 

proportion of proteins identified as differentially expressed. t-test DE analysis 

on AIN abundances and a cut-of threshold of 0.001 gave the optimal enrichment 

analysis output with 104 significant terms from 706 DE proteins at a 

significance threshold of p < 0.001 (GO terms shown in Table 26). The best 

combination of parameters for QPROT were using a cut-of threshold of 0.0001 

FDR and the inbuilt QPROT normalisation, giving 443 DE proteins and 53 

significant terms (GO terms shown in Table 25). Figure 3.3.6 shows the 

annotation terms of the two DE methods. There is a discrepancy to their 

distribution, although t-test has the most overall terms they are mostly 

concentrated as Reactome, with QPROT having a larger number of CC, MF and 

Kegg pathway terms.  

The count of DE proteins at the minimum t-test threshold of 0.001 for TIN was 

also relatively high and produced the optimal output for that normalisation 

method, (Figure 3.3.4; row 2, columns 2 and 4).  
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 Figure 3.3.6; Distribution of the optimal results of enrichment analysis for DE methods QPROT and t-test for 

dataset PXD004682.  

 

Overall the two DE analysis methods performed similarly with this dataset. 

Both identified a large number of proteins as being DE, and often produced a 

greater number of significant enrichment terms when the number of DEs were 

lower. Using VSN data produced some of the largest number of DE proteins 

(750-2000) and appeared to give the worst overall performance by both DE 

methods. Once again t-test’s optimal output was from raw abundance data, and 

QPROT performed best at low significance thresholds (t-test’s optimal 

significance threshold was consistently around 0.001). QPROT often called 

more proteins as DE than t-test, and apart from Loess and VSN, the 

normalisation method did not make a great difference to the quality of the 

results. 
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Table 25; Enrichment results for optimal QPROT analysis with QPROT normalisation and a significance threshold of 0.0001 for dataset PXD004682. Access to the DAVID results for 
all parameter combinations is provided in the link in the Supplementary Material section. 

Category Term Fold Enrichment Benjamini p-
value 

GOTERM_BP_ALL GO:0002757~immune response-activating signal transduction 5.78 0.00001 

GOTERM_BP_ALL GO:0002764~immune response-regulating signaling pathway 5.59 0.00001 

REACTOME_PATHWAY R-HSA-2168880~Scavenging of heme from plasma 6.14 0.00001 

GOTERM_BP_ALL GO:0002429~immune response-activating cell surface receptor signaling pathway 6.14 0.00002 

GOTERM_BP_ALL GO:0002768~immune response-regulating cell surface receptor signaling pathway 5.91 0.00002 

REACTOME_PATHWAY R-HSA-2871837~FCERI mediated NF-kB activation 6.33 0.00003 

REACTOME_PATHWAY R-HSA-2454202~Fc epsilon receptor (FCERI) signaling 6.59 0.00005 

REACTOME_PATHWAY R-HSA-2730905~Role of LAT2/NTAL/LAB on calcium mobilization 6.59 0.00005 

REACTOME_PATHWAY R-HSA-2871796~FCERI mediated MAPK activation 6.59 0.00005 

REACTOME_PATHWAY R-HSA-2871809~FCERI mediated Ca+2 mobilization 6.59 0.00005 

REACTOME_PATHWAY R-HSA-5690714~CD22 mediated BCR regulation 6.39 0.00005 

REACTOME_PATHWAY R-HSA-983695~Antigen activates B Cell Receptor (BCR) leading to generation of second messengers 6.39 0.00005 

GOTERM_BP_ALL GO:0038095~Fc-epsilon receptor signaling pathway 7.53 0.00006 

GOTERM_MF_ALL GO:0003823~antigen binding 5.88 0.00007 

REACTOME_PATHWAY R-HSA-2029481~FCGR activation 5.86 0.00008 

REACTOME_PATHWAY R-HSA-2029485~Role of phospholipids in phagocytosis 5.86 0.00008 

REACTOME_PATHWAY R-HSA-2029482~Regulation of actin dynamics for phagocytic cup formation 5.70 0.00009 

REACTOME_PATHWAY R-HSA-173623~Classical antibody-mediated complement activation 5.27 0.00016 

REACTOME_PATHWAY R-HSA-198933~Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 4.91 0.00027 

GOTERM_BP_ALL GO:0038093~Fc receptor signaling pathway 6.16 0.00031 

GOTERM_BP_ALL GO:0002433~immune response-regulating cell surface receptor signaling pathway involved in phagocytosis 6.78 0.00043 

GOTERM_BP_ALL GO:0038094~Fc-gamma receptor signaling pathway 6.78 0.00043 

GOTERM_BP_ALL GO:0002431~Fc receptor mediated stimulatory signaling pathway 6.78 0.00043 

GOTERM_BP_ALL GO:0038096~Fc-gamma receptor signaling pathway involved in phagocytosis 6.78 0.00043 

GOTERM_BP_ALL GO:0002253~activation of immune response 3.56 0.00054 
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REACTOME_PATHWAY R-HSA-166663~Initial triggering of complement 4.39 0.00059 

GOTERM_BP_ALL GO:0006958~complement activation, classical pathway 4.52 0.00062 

GOTERM_BP_ALL GO:0002455~humoral immune response mediated by circulating immunoglobulin 4.45 0.00062 

GOTERM_BP_ALL GO:0006909~phagocytosis 4.45 0.00062 

GOTERM_BP_ALL GO:0019724~B cell mediated immunity 4.32 0.00072 

GOTERM_BP_ALL GO:0016064~immunoglobulin mediated immune response 4.32 0.00072 

GOTERM_BP_ALL GO:0050778~positive regulation of immune response 3.26 0.00091 

GOTERM_BP_ALL GO:0002449~lymphocyte mediated immunity 4.14 0.00091 

GOTERM_BP_ALL 
GO:0002460~adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin 
superfamily domains 4.14 0.00091 

GOTERM_BP_ALL GO:0006898~receptor-mediated endocytosis 4.03 0.00112 

GOTERM_BP_ALL GO:0002443~leukocyte mediated immunity 3.87 0.00155 

GOTERM_BP_ALL GO:0006956~complement activation 3.77 0.00180 

GOTERM_BP_ALL GO:0002250~adaptive immune response 3.77 0.00180 

GOTERM_BP_ALL GO:0050776~regulation of immune response 2.91 0.00234 

GOTERM_BP_ALL GO:0002684~positive regulation of immune system process 2.77 0.00374 

GOTERM_BP_ALL GO:0006897~endocytosis 3.07 0.00374 

GOTERM_BP_ALL GO:0006959~humoral immune response 3.24 0.00620 

GOTERM_BP_ALL GO:0050851~antigen receptor-mediated signaling pathway 8.13 0.00731 

GOTERM_BP_ALL GO:0072376~protein activation cascade 3.14 0.00769 

GOTERM_BP_ALL GO:0007166~cell surface receptor signaling pathway 2.27 0.01068 

GOTERM_BP_ALL GO:0006955~immune response 2.26 0.01105 

GOTERM_BP_ALL GO:0050853~B cell receptor signaling pathway 10.43 0.01219 

GOTERM_MF_ALL GO:0004175~endopeptidase activity 3.17 0.01431 

GOTERM_MF_ALL GO:0004252~serine-type endopeptidase activity 3.28 0.01472 

GOTERM_MF_ALL GO:0017171~serine hydrolase activity 3.12 0.01472 

GOTERM_MF_ALL GO:0008236~serine-type peptidase activity 3.12 0.01472 

GOTERM_MF_ALL GO:0070011~peptidase activity, acting on L-amino acid peptides 2.77 0.01472 

GOTERM_MF_ALL GO:0034987~immunoglobulin receptor binding 8.74 0.01472 
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GOTERM_MF_ALL GO:0008233~peptidase activity 2.69 0.01472 

GOTERM_BP_ALL GO:0006910~phagocytosis, recognition 9.68 0.01484 

GOTERM_BP_ALL GO:0006911~phagocytosis, engulfment 9.68 0.01484 

GOTERM_BP_ALL GO:0010324~membrane invagination 9.68 0.01484 

GOTERM_BP_ALL GO:0002682~regulation of immune system process 2.30 0.01781 

GOTERM_BP_ALL GO:0002252~immune effector process 2.76 0.01781 

GOTERM_BP_ALL GO:0050871~positive regulation of B cell activation 9.04 0.01781 

GOTERM_BP_ALL GO:0050864~regulation of B cell activation 9.04 0.01781 

GOTERM_BP_ALL GO:0048584~positive regulation of response to stimulus 2.10 0.01924 

GOTERM_BP_ALL GO:0016192~vesicle-mediated transport 2.19 0.02555 

GOTERM_CC_ALL GO:0042571~immunoglobulin complex, circulating 9.91 0.04306 

GOTERM_CC_ALL GO:0019814~immunoglobulin complex 9.91 0.04306 

GOTERM_BP_ALL GO:0042113~B cell activation 6.78 0.04916 
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Table 26; Enrichment results for optimal t-test analysis with AIN abundances and a significance threshold of 0.001 for dataset PXD004682. Access to the DAVID results for all 
parameter combinations is provided in the link in the Supplementary Material section. 

Category Term Fold Enrichment Benjamini p-value 

KEGG_PATHWAY hsa04141:Protein processing in endoplasmic reticulum 2.26 0.0000031 

REACTOME_PATHWAY R-HSA-69239~Synthesis of DNA 2.51 0.0000086 

REACTOME_PATHWAY R-HSA-69242~S Phase 2.37 0.0000016 

GOTERM_CC_ALL GO:0022624~proteasome accessory complex 3.33 0.0000412 

REACTOME_PATHWAY R-HSA-453279~Mitotic G1 phase and G1/S transition 2.31 0.0000422 

GOTERM_CC_ALL GO:0005838~proteasome regulatory particle 3.46 0.0000844 

REACTOME_PATHWAY R-HSA-69206~G1/S Transition 2.25 0.0001258 

REACTOME_PATHWAY R-HSA-68949~Orc1 removal from chromatin 2.37 0.0001447 

REACTOME_PATHWAY R-HSA-69052~Switching of origins to a post-replicative state 2.37 0.0001447 

REACTOME_PATHWAY R-HSA-69190~DNA strand elongation 3.73 0.0010575 

REACTOME_PATHWAY R-HSA-9759194~Nuclear events mediated by NFE2L2 2.13 0.0013778 

REACTOME_PATHWAY R-HSA-450408~AUF1 (hnRNP D0) binds and destabilizes mRNA 2.22 0.0016226 

REACTOME_PATHWAY R-HSA-5668541~TNFR2 non-canonical NF-kB pathway 2.22 0.0016226 

REACTOME_PATHWAY R-HSA-5607761~Dectin-1 mediated noncanonical NF-kB signaling 2.18 0.0026605 

REACTOME_PATHWAY R-HSA-5676590~NIK-->noncanonical NF-kB signaling 2.18 0.0026605 

REACTOME_PATHWAY R-HSA-351202~Metabolism of polyamines 2.20 0.0033016 

GOTERM_BP_ALL GO:0006310~DNA recombination 2.02 0.0040453 

GOTERM_BP_ALL GO:0006260~DNA replication 2.02 0.0040453 

REACTOME_PATHWAY R-HSA-5610780~Degradation of GLI1 by the proteasome 2.14 0.0047487 

REACTOME_PATHWAY R-HSA-180534~Vpu mediated degradation of CD4 2.16 0.0047487 

REACTOME_PATHWAY R-HSA-69580~p53-Dependent G1/S DNA damage checkpoint 2.16 0.0047487 

REACTOME_PATHWAY R-HSA-187577~SCF(Skp2)-mediated degradation of p27/p21 2.16 0.0047487 

REACTOME_PATHWAY R-HSA-9762114~GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 2.16 0.0047487 

REACTOME_PATHWAY R-HSA-174113~SCF-beta-TrCP mediated degradation of Emi1 2.16 0.0047487 

REACTOME_PATHWAY R-HSA-69563~p53-Dependent G1 DNA Damage Response 2.16 0.0047487 

REACTOME_PATHWAY R-HSA-349425~Autodegradation of the E3 ubiquitin ligase COP1 2.16 0.0047487 
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REACTOME_PATHWAY R-HSA-69541~Stabilization of p53 2.16 0.0047487 

REACTOME_PATHWAY R-HSA-69615~G1/S DNA Damage Checkpoints 2.16 0.0047487 

REACTOME_PATHWAY R-HSA-8854050~FBXL7 down-regulates AURKA during mitotic entry and in early mitosis 2.16 0.0047487 

REACTOME_PATHWAY R-HSA-176187~Activation of ATR in response to replication stress 3.73 0.0049128 

REACTOME_PATHWAY R-HSA-5696398~Nucleotide Excision Repair 2.44 0.0051844 

GOTERM_MF_ALL GO:0043021~ribonucleoprotein complex binding 2.07 0.005191 

REACTOME_PATHWAY R-HSA-2871837~FCERI mediated NF-kB activation 2.03 0.0057396 

REACTOME_PATHWAY R-HSA-1234176~Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 2.10 0.0057396 

REACTOME_PATHWAY R-HSA-5610783~Degradation of GLI2 by the proteasome 2.10 0.0057396 

REACTOME_PATHWAY R-HSA-8948751~Regulation of PTEN stability and activity 2.10 0.0057396 

REACTOME_PATHWAY R-HSA-69656~Cyclin A:Cdk2-associated events at S phase entry 2.10 0.0057396 

REACTOME_PATHWAY R-HSA-174143~APC/C-mediated degradation of cell cycle proteins 2.10 0.0057396 

REACTOME_PATHWAY R-HSA-9604323~Negative regulation of NOTCH4 signaling 2.10 0.0057396 

REACTOME_PATHWAY R-HSA-5358346~Hedgehog ligand biogenesis 2.10 0.0057396 

REACTOME_PATHWAY R-HSA-176408~Regulation of APC/C activators between G1/S and early anaphase 2.10 0.0057396 

REACTOME_PATHWAY R-HSA-69202~Cyclin E associated events during G1/S transition  2.10 0.0057396 

REACTOME_PATHWAY R-HSA-453276~Regulation of mitotic cell cycle 2.10 0.0057396 

REACTOME_PATHWAY R-HSA-5610785~GLI3 is processed to GLI3R by the proteasome 2.10 0.0057396 

REACTOME_PATHWAY R-HSA-1234174~Cellular response to hypoxia 2.10 0.0057396 

REACTOME_PATHWAY R-HSA-9735869~SARS-CoV-1 modulates host translation machinery 2.31 0.0057396 

REACTOME_PATHWAY R-HSA-9013694~Signaling by NOTCH4 2.04 0.0058165 

REACTOME_PATHWAY R-HSA-69610~p53-Independent DNA Damage Response 2.12 0.0058165 

REACTOME_PATHWAY R-HSA-4641257~Degradation of AXIN 2.12 0.0058165 

REACTOME_PATHWAY R-HSA-174178~APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins in late mitosis/early G1 2.12 0.0058165 

REACTOME_PATHWAY R-HSA-174154~APC/C:Cdc20 mediated degradation of Securin 2.12 0.0058165 

REACTOME_PATHWAY R-HSA-350562~Regulation of ornithine decarboxylase (ODC) 2.12 0.0058165 

REACTOME_PATHWAY R-HSA-69613~p53-Independent G1/S DNA damage checkpoint 2.12 0.0058165 

REACTOME_PATHWAY R-HSA-75815~Ubiquitin-dependent degradation of Cyclin D 2.12 0.0058165 

REACTOME_PATHWAY R-HSA-174084~Autodegradation of Cdh1 by Cdh1:APC/C 2.12 0.0058165 
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REACTOME_PATHWAY R-HSA-69017~CDK-mediated phosphorylation and removal of Cdc6 2.12 0.0058165 

REACTOME_PATHWAY R-HSA-69601~Ubiquitin Mediated Degradation of Phosphorylated Cdc25A 2.12 0.0058165 

GOTERM_CC_ALL GO:0044454~nuclear chromosome part 2.31 0.0063258 

REACTOME_PATHWAY R-HSA-8939902~Regulation of RUNX2 expression and activity 2.05 0.006794 

REACTOME_PATHWAY R-HSA-5632684~Hedgehog 'on' state 2.05 0.006794 

REACTOME_PATHWAY R-HSA-176814~Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 2.06 0.0072972 

REACTOME_PATHWAY R-HSA-4608870~Asymmetric localization of PCP proteins 2.06 0.0072972 

REACTOME_PATHWAY R-HSA-174184~Cdc20:Phospho-APC/C mediated degradation of Cyclin A 2.06 0.0072972 

REACTOME_PATHWAY R-HSA-5387390~Hh mutants abrogate ligand secretion 2.06 0.0072972 

REACTOME_PATHWAY R-HSA-211733~Regulation of activated PAK-2p34 by proteasome mediated degradation 2.06 0.0072972 

REACTOME_PATHWAY R-HSA-176409~APC/C:Cdc20 mediated degradation of mitotic proteins 2.06 0.0072972 

REACTOME_PATHWAY R-HSA-5362768~Hh mutants are degraded by ERAD 2.06 0.0072972 

REACTOME_PATHWAY R-HSA-4641258~Degradation of DVL 2.06 0.0072972 

REACTOME_PATHWAY R-HSA-179419~APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of the cell cycle checkpoint 2.06 0.0072972 

REACTOME_PATHWAY R-HSA-8941858~Regulation of RUNX3 expression and activity 2.06 0.0072972 

REACTOME_PATHWAY R-HSA-180585~Vif-mediated degradation of APOBEC3G 2.06 0.0072972 

REACTOME_PATHWAY R-HSA-68962~Activation of the pre-replicative complex 3.73 0.007485 

GOTERM_BP_ALL GO:0006261~DNA-dependent DNA replication 2.17 0.0078504 

REACTOME_PATHWAY R-HSA-5658442~Regulation of RAS by GAPs 2.00 0.0079233 

GOTERM_CC_ALL GO:0015935~small ribosomal subunit 2.33 0.0081112 

REACTOME_PATHWAY R-HSA-5696399~Global Genome Nucleotide Excision Repair (GG-NER) 2.49 0.0084861 

REACTOME_PATHWAY R-HSA-381119~Unfolded Protein Response (UPR) 2.17 0.0091469 

KEGG_PATHWAY hsa03030:DNA replication 3.44 0.0093144 

REACTOME_PATHWAY R-HSA-169911~Regulation of Apoptosis 2.01 0.0096264 

REACTOME_PATHWAY R-HSA-1236978~Cross-presentation of soluble exogenous antigens (endosomes) 2.01 0.0096264 

GOTERM_CC_ALL GO:0000502~proteasome complex 2.05 0.0105855 

KEGG_PATHWAY hsa03013:Nucleocytoplasmic transport 2.03 0.0118799 

REACTOME_PATHWAY R-HSA-6781827~Transcription-Coupled Nucleotide Excision Repair (TC-NER) 2.63 0.0119519 

GOTERM_MF_ALL GO:0004386~helicase activity 2.14 0.0134942 
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REACTOME_PATHWAY R-HSA-9754678~SARS-CoV-2 modulates host translation machinery 2.21 0.0142003 

GOTERM_CC_ALL GO:0022627~cytosolic small ribosomal subunit 2.28 0.0156316 

GOTERM_BP_ALL GO:0000725~recombinational repair 2.30 0.018628 

REACTOME_PATHWAY R-HSA-180786~Extension of Telomeres 3.31 0.0196071 

REACTOME_PATHWAY R-HSA-6803529~FGFR2 alternative splicing 3.31 0.0196071 

GOTERM_BP_ALL GO:0006275~regulation of DNA replication 2.46 0.0244952 

GOTERM_BP_ALL GO:0035966~response to topologically incorrect protein 2.04 0.0249392 

GOTERM_BP_ALL GO:0006986~response to unfolded protein 2.10 0.0365318 

GOTERM_CC_ALL GO:0043596~nuclear replication fork 3.92 0.0382861 

GOTERM_CC_ALL GO:0008540~proteasome regulatory particle, base subcomplex 3.49 0.0382861 

REACTOME_PATHWAY R-HSA-6782210~Gap-filling DNA repair synthesis and ligation in TC-NER 2.80 0.0383433 

GOTERM_MF_ALL GO:0031369~translation initiation factor binding 3.09 0.0426369 

GOTERM_MF_ALL 
GO:0016706~oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, 2-
oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors 3.93 0.0426369 

GOTERM_MF_ALL GO:0017116~single-stranded DNA-dependent ATP-dependent DNA helicase activity 3.93 0.0426369 

GOTERM_MF_ALL GO:0043142~single-stranded DNA-dependent ATPase activity 3.93 0.0426369 

GOTERM_MF_ALL GO:0044183~protein binding involved in protein folding 2.42 0.0426369 

REACTOME_PATHWAY R-HSA-70263~Gluconeogenesis 2.20 0.0441255 

GOTERM_BP_ALL GO:0090329~regulation of DNA-dependent DNA replication 3.26 0.0462452 

KEGG_PATHWAY hsa03050:Proteasome 2.09 0.0483399 

GOTERM_MF_ALL GO:0003678~DNA helicase activity 2.46 0.0498916 
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PXD007592 

Table 27; Enrichment analysis of dataset PXD007592. Optimal combination of analysis parameters are shown 
for each of the DE methods QPRT and t-test. 

DE method Normalisation Threshold Number of DE 
proteins 

Number of 
significant terms 

QPROT Log2 transformed 0.05 159 124 

t-Test AIN 0.05 89 87 

 

Table 27 summarises the best combination of parameters using DE methods 

QPROT and t-test for analysis of PXD007592, the dataset with the largest 

number of identified protein groups and the smallest proportion of proteins 

identified as differentially expressed. QPROT analysis combined with a 

significance threshold of 0.05 FDR and using log2 transformed protein 

abundances gave the optimal enrichment output of 125 terms with 159 DE 

proteins (GO terms shown in Table 28). The t-test analysis also at a significance 

threshold of 0.05 produced 89 significant terms using AIN (GO terms shown in 

Table 29). Again these results were an improvement on the maximum output 

from QPROT of 88 terms using Progenesis QIP normalisation in the previous 

section, despite the introduced fold-enrichment significance threshold. 

However, a limitation of this evaluation is that in QPROT analysis using several 

of the normalisation methods, it appears that the maxima is not captured. 

Future work should extend the range of significance threshold to address this.  

The plot in Figure 3.3.7 shows the annotation categories of the significant terms. 

The distributions were similar, with QPROT having an increased number in all 

categories. 
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 Figure 3.3.7; Distribution of the optimal results of enrichment analysis for DE methods QPROT and t-test for 

dataset PXD007592.  

Overall, the t-test performed poorly with this data. Generally, there are very few 

proteins were called DE, even at less conservative significance thresholds, and 

even in the normalisation data that provided DE proteins (AIN and TIN, Figure 

3.3.4, row 3, columns 2 and 4), there was not a large amount of significant 

enrichment terms. For QPROT analysis, log2 transformed data (Figure 3.3.4, 

row 3, columns 1), performed best, but only at a relatively high FDR. Other 

successful normalisation methods were using Q-mean, loess, and RLR (Figure 

3.3.4, row 3, columns 6, 7, and 9). 
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Table 28; Enrichment results for optimal QPROT analysis with log2 transformed protein abundances and a significance threshold of 0.05 for dataset PXD007592. Access to the 
DAVID results for all parameter combinations is provided in the link in the Supplementary Material section. 

Category Term Fold 
Enrichment 

Benjamini p-
value 

GOTERM_CC_ALL GO:0072562~blood microparticle 9.39 1.56E-18 

GOTERM_CC_ALL GO:0005615~extracellular space 4.47 2.93E-18 

KEGG_PATHWAY hsa04610:Complement and coagulation cascades 12.53 3.23E-10 

GOTERM_BP_ALL GO:0072376~protein activation cascade 9.34 1.17E-08 

GOTERM_BP_ALL GO:0030198~extracellular matrix organization 5.04 6.58E-08 

GOTERM_BP_ALL GO:0043062~extracellular structure organization 5.04 6.58E-08 

GOTERM_BP_ALL GO:0009611~response to wounding 3.58 0.000001 

GOTERM_BP_ALL GO:0042060~wound healing 3.86 0.000002 

GOTERM_BP_ALL GO:1900046~regulation of hemostasis 11.56 0.000003 

GOTERM_BP_ALL GO:0030193~regulation of blood coagulation 11.56 0.000003 

GOTERM_BP_ALL GO:0050818~regulation of coagulation 11.08 0.000004 

REACTOME_PATHWAY R-HSA-114608~Platelet degranulation  5.95 0.000009 

GOTERM_BP_ALL GO:1900047~negative regulation of hemostasis 14.50 0.000010 

GOTERM_BP_ALL GO:0030195~negative regulation of blood coagulation 14.50 0.000010 

GOTERM_CC_ALL GO:0034774~secretory granule lumen 8.46 0.000013 

GOTERM_CC_ALL GO:0031983~vesicle lumen 7.20 0.000014 

GOTERM_CC_ALL GO:0060205~cytoplasmic membrane-bounded vesicle lumen 7.20 0.000014 

GOTERM_BP_ALL GO:0006959~humoral immune response 7.48 0.000014 

GOTERM_BP_ALL GO:0032101~regulation of response to external stimulus 3.78 0.000014 

GOTERM_BP_ALL GO:0050819~negative regulation of coagulation 13.60 0.000015 

GOTERM_BP_ALL GO:0061041~regulation of wound healing 8.06 0.000020 

GOTERM_BP_ALL GO:0006954~inflammatory response 4.37 0.000025 

GOTERM_BP_ALL GO:0030155~regulation of cell adhesion 3.61 0.000025 

GOTERM_CC_ALL GO:0005581~collagen trimer 10.54 0.000026 

GOTERM_CC_ALL GO:0098552~side of membrane 3.86 0.000029 
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GOTERM_CC_ALL GO:0031091~platelet alpha granule 7.12 0.000043 

GOTERM_BP_ALL GO:0002250~adaptive immune response 5.41 0.000051 

GOTERM_BP_ALL GO:0002576~platelet degranulation 6.29 0.000074 

GOTERM_BP_ALL GO:0061045~negative regulation of wound healing 10.88 0.000087 

GOTERM_BP_ALL 
GO:0002460~adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily 
domains 6.04 0.000105 

GOTERM_BP_ALL GO:0042730~fibrinolysis 16.92 0.000115 

GOTERM_BP_ALL GO:1903034~regulation of response to wounding 6.59 0.000117 

GOTERM_BP_ALL GO:0006958~complement activation, classical pathway 8.63 0.000117 

GOTERM_BP_ALL GO:0016485~protein processing 5.37 0.000117 

GOTERM_BP_ALL GO:0006952~defense response 2.57 0.000120 

GOTERM_CC_ALL GO:0009986~cell surface 3.17 0.000126 

GOTERM_BP_ALL GO:0050727~regulation of inflammatory response 5.71 0.000155 

GOTERM_BP_ALL GO:0002455~humoral immune response mediated by circulating immunoglobulin 8.06 0.000195 

GOTERM_BP_ALL GO:1903035~negative regulation of response to wounding 9.46 0.000207 

REACTOME_PATHWAY R-HSA-140875~Common Pathway of Fibrin Clot Formation 6.44 0.000258 

REACTOME_PATHWAY R-HSA-216083~Integrin cell surface interactions 18.45 0.000258 

REACTOME_PATHWAY R-HSA-977606~Regulation of Complement cascade 12.30 0.000332 

GOTERM_BP_ALL GO:0090303~positive regulation of wound healing 10.74 0.000387 

GOTERM_BP_ALL GO:0007155~cell adhesion 2.00 0.000401 

GOTERM_BP_ALL GO:0006956~complement activation 7.33 0.000401 

GOTERM_BP_ALL GO:0009605~response to external stimulus 2.15 0.000401 

GOTERM_CC_ALL GO:0009897~external side of plasma membrane 5.41 0.000406 

GOTERM_CC_ALL GO:0044420~extracellular matrix component 5.41 0.000406 

GOTERM_CC_ALL GO:0034358~plasma lipoprotein particle 14.76 0.000406 

GOTERM_CC_ALL GO:1990777~lipoprotein particle 14.76 0.000406 

GOTERM_CC_ALL GO:0005578~proteinaceous extracellular matrix 4.26 0.000596 

GOTERM_CC_ALL GO:0032994~protein-lipid complex 13.42 0.000650 

GOTERM_CC_ALL GO:0031093~platelet alpha granule lumen 7.87 0.000650 
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GOTERM_BP_ALL GO:0006955~immune response 2.39 0.000658 

GOTERM_BP_ALL GO:0007596~blood coagulation 3.67 0.000682 

GOTERM_BP_ALL GO:1903036~positive regulation of response to wounding 9.67 0.000682 

GOTERM_BP_ALL GO:2000257~regulation of protein activation cascade 9.67 0.000682 

GOTERM_BP_ALL GO:0051604~protein maturation 4.45 0.000682 

GOTERM_BP_ALL GO:0016064~immunoglobulin mediated immune response 6.71 0.000703 

GOTERM_BP_ALL GO:0019724~B cell mediated immunity 6.71 0.000703 

GOTERM_BP_ALL GO:0050817~coagulation 3.60 0.000784 

GOTERM_BP_ALL GO:0002252~immune effector process 3.00 0.000794 

GOTERM_BP_ALL GO:0007599~hemostasis 3.57 0.000839 

GOTERM_CC_ALL GO:0030141~secretory granule 3.34 0.000892 

GOTERM_BP_ALL GO:0032102~negative regulation of response to external stimulus 5.66 0.000942 

GOTERM_BP_ALL GO:0002449~lymphocyte mediated immunity 5.00 0.001077 

GOTERM_CC_ALL GO:0098644~complex of collagen trimers 17.57 0.001262 

GOTERM_BP_ALL GO:0045785~positive regulation of cell adhesion 3.86 0.001286 

GOTERM_BP_ALL GO:0050820~positive regulation of coagulation 14.50 0.001428 

GOTERM_BP_ALL GO:1900048~positive regulation of hemostasis 14.50 0.001428 

GOTERM_BP_ALL GO:0030194~positive regulation of blood coagulation 14.50 0.001428 

GOTERM_CC_ALL GO:0005788~endoplasmic reticulum lumen 4.51 0.001620 

GOTERM_BP_ALL GO:0050776~regulation of immune response 2.57 0.001650 

GOTERM_BP_ALL GO:0002443~leukocyte mediated immunity 4.30 0.001696 

GOTERM_BP_ALL GO:0002697~regulation of immune effector process 4.25 0.001883 

GOTERM_CC_ALL GO:0034364~high-density lipoprotein particle 15.37 0.002276 

REACTOME_PATHWAY R-HSA-3000178~ECM proteoglycans 5.98 0.002345 

REACTOME_PATHWAY R-HSA-2022090~Assembly of collagen fibrils and other multimeric structures 11.36 0.002529 

GOTERM_BP_ALL GO:0044236~multicellular organism metabolic process 7.44 0.003146 

GOTERM_BP_ALL GO:0072378~blood coagulation, fibrin clot formation 12.09 0.003648 

GOTERM_BP_ALL GO:0016337~single organismal cell-cell adhesion 2.85 0.003648 

GOTERM_BP_ALL GO:0030449~regulation of complement activation 8.91 0.003897 
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GOTERM_BP_ALL GO:0050878~regulation of body fluid levels 3.07 0.004206 

GOTERM_BP_ALL GO:0002526~acute inflammatory response 5.88 0.004619 

GOTERM_BP_ALL GO:0031589~cell-substrate adhesion 3.36 0.004785 

GOTERM_BP_ALL GO:0002684~positive regulation of immune system process 2.44 0.004785 

GOTERM_BP_ALL GO:0002673~regulation of acute inflammatory response 8.46 0.004886 

GOTERM_BP_ALL GO:0002920~regulation of humoral immune response 8.46 0.004886 

GOTERM_BP_ALL GO:0044243~multicellular organism catabolic process 11.16 0.004999 

KEGG_PATHWAY hsa05322:Systemic lupus erythematosus 6.65 0.005612 

GOTERM_BP_ALL GO:0051346~negative regulation of hydrolase activity 3.49 0.005664 

GOTERM_BP_ALL GO:0098602~single organism cell adhesion 2.63 0.005747 

GOTERM_BP_ALL GO:0002682~regulation of immune system process 2.16 0.006497 

GOTERM_MF_ALL GO:0005198~structural molecule activity 2.49 0.007545 

GOTERM_MF_ALL GO:0004857~enzyme inhibitor activity 3.90 0.007545 

GOTERM_CC_ALL GO:0042627~chylomicron 19.68 0.008264 

GOTERM_CC_ALL GO:0042383~sarcolemma 4.52 0.008266 

KEGG_PATHWAY hsa05150:Staphylococcus aureus infection 9.31 0.009080 

GOTERM_BP_ALL GO:0051240~positive regulation of multicellular organismal process 2.21 0.009318 

GOTERM_CC_ALL GO:0031012~extracellular matrix 2.53 0.009813 

GOTERM_BP_ALL GO:0032963~collagen metabolic process 7.36 0.010525 

GOTERM_MF_ALL GO:0032403~protein complex binding 2.19 0.010869 

GOTERM_MF_ALL GO:0004866~endopeptidase inhibitor activity 5.45 0.010869 

GOTERM_MF_ALL GO:0030414~peptidase inhibitor activity 5.45 0.010869 

GOTERM_BP_ALL GO:0045723~positive regulation of fatty acid biosynthetic process 24.17 0.011280 

GOTERM_BP_ALL GO:0045861~negative regulation of proteolysis 3.72 0.011280 

GOTERM_BP_ALL GO:0018149~peptide cross-linking 13.43 0.012212 

GOTERM_BP_ALL GO:0010810~regulation of cell-substrate adhesion 3.97 0.013184 

GOTERM_BP_ALL GO:1903524~positive regulation of blood circulation 9.07 0.013340 

REACTOME_PATHWAY R-HSA-166665~Terminal pathway of complement 19.68 0.013860 

GOTERM_BP_ALL GO:0044259~multicellular organismal macromolecule metabolic process 6.77 0.015915 
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REACTOME_PATHWAY R-HSA-1442490~Collagen degradation 7.38 0.017097 

REACTOME_PATHWAY R-HSA-1650814~Collagen biosynthesis and modifying enzymes 10.25 0.017097 

GOTERM_BP_ALL GO:0022407~regulation of cell-cell adhesion 3.80 0.018268 

REACTOME_PATHWAY R-HSA-198933~Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 7.03 0.018609 

GOTERM_BP_ALL GO:0050778~positive regulation of immune response 2.44 0.019707 

GOTERM_BP_ALL GO:0045765~regulation of angiogenesis 4.63 0.020064 

GOTERM_BP_ALL GO:0007159~leukocyte cell-cell adhesion 3.41 0.021571 

GOTERM_MF_ALL GO:0061135~endopeptidase regulator activity 4.85 0.021985 

GOTERM_BP_ALL GO:0003018~vascular process in circulatory system 6.27 0.022246 

GOTERM_BP_ALL GO:0045055~regulated exocytosis 2.97 0.022246 

GOTERM_BP_ALL GO:0034367~macromolecular complex remodeling 19.34 0.022246 

GOTERM_BP_ALL GO:0034369~plasma lipoprotein particle remodeling 19.34 0.022246 

GOTERM_BP_ALL GO:0034368~protein-lipid complex remodeling 19.34 0.022246 

GOTERM_BP_ALL GO:0051917~regulation of fibrinolysis 19.34 0.022246 

GOTERM_BP_ALL GO:0051918~negative regulation of fibrinolysis 19.34 0.022246 

GOTERM_BP_ALL GO:0010951~negative regulation of endopeptidase activity 3.96 0.023908 

GOTERM_BP_ALL GO:1901342~regulation of vasculature development 4.44 0.023908 

GOTERM_CC_ALL GO:0034385~triglyceride-rich lipoprotein particle 14.06 0.024134 

GOTERM_CC_ALL GO:0034361~very-low-density lipoprotein particle 14.06 0.024134 

GOTERM_MF_ALL GO:0004867~serine-type endopeptidase inhibitor activity 6.53 0.024920 

GOTERM_CC_ALL GO:0044433~cytoplasmic vesicle part 2.10 0.025271 

GOTERM_BP_ALL GO:0010466~negative regulation of peptidase activity 3.90 0.026716 

GOTERM_CC_ALL GO:0000786~nucleosome 8.20 0.027397 

GOTERM_CC_ALL GO:0099503~secretory vesicle 2.36 0.027397 

GOTERM_BP_ALL GO:0001775~cell activation 2.42 0.028203 

GOTERM_BP_ALL GO:0051241~negative regulation of multicellular organismal process 2.40 0.029612 

GOTERM_BP_ALL GO:1903317~regulation of protein maturation 5.83 0.029612 

GOTERM_BP_ALL GO:0070613~regulation of protein processing 5.83 0.029612 

GOTERM_BP_ALL GO:0006641~triglyceride metabolic process 7.25 0.032172 
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GOTERM_BP_ALL GO:0030574~collagen catabolic process 10.07 0.032573 

GOTERM_CC_ALL GO:0044815~DNA packaging complex 7.69 0.034218 

GOTERM_BP_ALL GO:0071827~plasma lipoprotein particle organization 16.12 0.036398 

GOTERM_BP_ALL GO:0031639~plasminogen activation 16.12 0.036398 

GOTERM_BP_ALL GO:0045923~positive regulation of fatty acid metabolic process 16.12 0.036398 

GOTERM_BP_ALL GO:0030162~regulation of proteolysis 2.26 0.036398 

GOTERM_BP_ALL GO:0006639~acylglycerol metabolic process 6.91 0.036398 

GOTERM_BP_ALL GO:0035150~regulation of tube size 6.91 0.036398 

GOTERM_BP_ALL GO:0002698~negative regulation of immune effector process 6.91 0.036398 

GOTERM_BP_ALL GO:0050880~regulation of blood vessel size 6.91 0.036398 

GOTERM_BP_ALL GO:0097006~regulation of plasma lipoprotein particle levels 9.30 0.040279 

GOTERM_BP_ALL GO:0006638~neutral lipid metabolic process 6.59 0.044366 

REACTOME_PATHWAY R-HSA-166663~Initial triggering of complement 7.69 0.045478 

GOTERM_BP_ALL GO:0001944~vasculature development 2.66 0.047120 

GOTERM_BP_ALL GO:0010811~positive regulation of cell-substrate adhesion 4.40 0.047417 

GOTERM_CC_ALL GO:0005589~collagen type VI trimer 24.60 0.047665 

GOTERM_CC_ALL GO:0098647~collagen beaded filament 24.60 0.047665 

GOTERM_CC_ALL GO:0034366~spherical high-density lipoprotein particle 24.60 0.047665 

GOTERM_BP_ALL GO:0051270~regulation of cellular component movement 2.25 0.049221 
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Table 29; Enrichment results for optimal t-test analysis with AIN and a significance threshold of 0.05 for dataset PXD007592. Access to the DAVID results for all parameter 
combinations is provided in the link in the Supplementary Material section. 

Category Term Fold 
Enrichment 

Benjamini p-
value 

REACTOME_PATHWAY R-HSA-5607764~CLEC7A (Dectin-1) signaling 5.86 0.038094 

REACTOME_PATHWAY R-HSA-2871837~FCERI mediated NF-kB activation 6.12 0.038094 

REACTOME_PATHWAY R-HSA-202424~Downstream TCR signaling 5.99 0.038094 

REACTOME_PATHWAY R-HSA-5621481~C-type lectin receptors (CLRs) 4.95 0.038094 

REACTOME_PATHWAY R-HSA-389957~Prefoldin mediated transfer of substrate  to CCT/TriC 9.18 0.038094 

REACTOME_PATHWAY R-HSA-389958~Cooperation of Prefoldin and TriC/CCT  in actin and tubulin folding 8.44 0.039624 

REACTOME_PATHWAY R-HSA-8951664~Neddylation 4.40 0.039624 

REACTOME_PATHWAY R-HSA-202403~TCR signaling 5.03 0.039624 

REACTOME_PATHWAY R-HSA-5668541~TNFR2 non-canonical NF-kB pathway 6.01 0.039624 

REACTOME_PATHWAY R-HSA-5676590~NIK-->noncanonical NF-kB signaling 6.01 0.039624 

REACTOME_PATHWAY R-HSA-983168~Antigen processing: Ubiquitination & Proteasome degradation 4.28 0.039624 

REACTOME_PATHWAY R-HSA-9604323~Negative regulation of NOTCH4 signaling 5.86 0.039624 

REACTOME_PATHWAY R-HSA-5607761~Dectin-1 mediated noncanonical NF-kB signaling 5.86 0.039624 

REACTOME_PATHWAY R-HSA-8948751~Regulation of PTEN stability and activity 5.47 0.041565 

REACTOME_PATHWAY R-HSA-69656~Cyclin A:Cdk2-associated events at S phase entry 5.47 0.041565 

REACTOME_PATHWAY R-HSA-69202~Cyclin E associated events during G1/S transition  5.47 0.041565 

REACTOME_PATHWAY R-HSA-8878159~Transcriptional regulation by RUNX3 5.47 0.041565 

REACTOME_PATHWAY R-HSA-6807070~PTEN Regulation 4.54 0.041565 

REACTOME_PATHWAY R-HSA-9013694~Signaling by NOTCH4 5.35 0.041565 

REACTOME_PATHWAY R-HSA-983169~Class I MHC mediated antigen processing & presentation 3.45 0.041565 

REACTOME_PATHWAY R-HSA-1257604~PIP3 activates AKT signaling 3.81 0.041565 

REACTOME_PATHWAY R-HSA-2454202~Fc epsilon receptor (FCERI) signaling 4.33 0.041565 

REACTOME_PATHWAY R-HSA-382556~ABC-family proteins mediated transport 5.03 0.041565 

REACTOME_PATHWAY R-HSA-195253~Degradation of beta-catenin by the destruction complex 4.83 0.041565 

REACTOME_PATHWAY R-HSA-5687128~MAPK6/MAPK4 signaling 4.83 0.041565 
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REACTOME_PATHWAY R-HSA-1280218~Adaptive Immune System 2.37 0.041565 

REACTOME_PATHWAY R-HSA-9020702~Interleukin-1 signaling 4.65 0.041565 

REACTOME_PATHWAY R-HSA-350562~Regulation of ornithine decarboxylase (ODC) 5.55 0.041565 

REACTOME_PATHWAY R-HSA-69610~p53-Independent DNA Damage Response 5.55 0.041565 

REACTOME_PATHWAY R-HSA-69601~Ubiquitin Mediated Degradation of Phosphorylated Cdc25A 5.55 0.041565 

REACTOME_PATHWAY R-HSA-4641257~Degradation of AXIN 5.55 0.041565 

REACTOME_PATHWAY R-HSA-349425~Autodegradation of the E3 ubiquitin ligase COP1 5.55 0.041565 

REACTOME_PATHWAY R-HSA-1236978~Cross-presentation of soluble exogenous antigens (endosomes) 5.55 0.041565 

REACTOME_PATHWAY R-HSA-69541~Stabilization of p53 5.55 0.041565 

REACTOME_PATHWAY R-HSA-69613~p53-Independent G1/S DNA damage checkpoint 5.55 0.041565 

REACTOME_PATHWAY R-HSA-201681~TCF dependent signaling in response to WNT 3.80 0.041565 

REACTOME_PATHWAY R-HSA-211733~Regulation of activated PAK-2p34 by proteasome mediated degradation 5.41 0.041565 

REACTOME_PATHWAY R-HSA-174154~APC/C:Cdc20 mediated degradation of Securin 5.41 0.041565 

REACTOME_PATHWAY R-HSA-174084~Autodegradation of Cdh1 by Cdh1:APC/C 5.41 0.041565 

REACTOME_PATHWAY R-HSA-180534~Vpu mediated degradation of CD4 5.41 0.041565 

REACTOME_PATHWAY R-HSA-69563~p53-Dependent G1 DNA Damage Response 5.41 0.041565 

REACTOME_PATHWAY R-HSA-5362768~Hh mutants are degraded by ERAD 5.41 0.041565 

REACTOME_PATHWAY R-HSA-69615~G1/S DNA Damage Checkpoints 5.41 0.041565 

REACTOME_PATHWAY R-HSA-4641258~Degradation of DVL 5.41 0.041565 

REACTOME_PATHWAY R-HSA-174178~APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins in late mitosis/early G1 5.41 0.041565 

REACTOME_PATHWAY R-HSA-69580~p53-Dependent G1/S DNA damage checkpoint 5.41 0.041565 

REACTOME_PATHWAY R-HSA-4608870~Asymmetric localization of PCP proteins 5.41 0.041565 

REACTOME_PATHWAY R-HSA-75815~Ubiquitin-dependent degradation of Cyclin D 5.41 0.041565 

REACTOME_PATHWAY R-HSA-5387390~Hh mutants abrogate ligand secretion 5.41 0.041565 

REACTOME_PATHWAY R-HSA-8878166~Transcriptional regulation by RUNX2 4.40 0.041565 

REACTOME_PATHWAY R-HSA-450531~Regulation of mRNA stability by proteins that bind AU-rich elements 4.32 0.041565 

REACTOME_PATHWAY R-HSA-176814~Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 5.28 0.041565 

REACTOME_PATHWAY R-HSA-5358346~Hedgehog ligand biogenesis 5.28 0.041565 

REACTOME_PATHWAY R-HSA-351202~Metabolism of polyamines 5.28 0.041565 
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REACTOME_PATHWAY R-HSA-169911~Regulation of Apoptosis 5.28 0.041565 

REACTOME_PATHWAY R-HSA-176409~APC/C:Cdc20 mediated degradation of mitotic proteins 5.28 0.041565 

REACTOME_PATHWAY R-HSA-179419~APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of the cell cycle checkpoint 5.28 0.041565 

REACTOME_PATHWAY R-HSA-8941858~Regulation of RUNX3 expression and activity 5.28 0.041565 

REACTOME_PATHWAY R-HSA-8854050~FBXL7 down-regulates AURKA during mitotic entry and in early mitosis 5.28 0.041565 

REACTOME_PATHWAY R-HSA-174113~SCF-beta-TrCP mediated degradation of Emi1 5.28 0.041565 

REACTOME_PATHWAY R-HSA-69017~CDK-mediated phosphorylation and removal of Cdc6 5.28 0.041565 

REACTOME_PATHWAY R-HSA-174184~Cdc20:Phospho-APC/C mediated degradation of Cyclin A 5.28 0.041565 

REACTOME_PATHWAY R-HSA-157118~Signaling by NOTCH 3.70 0.041619 

REACTOME_PATHWAY R-HSA-69206~G1/S Transition 4.25 0.042239 

REACTOME_PATHWAY R-HSA-9762114~GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 5.15 0.042239 

REACTOME_PATHWAY R-HSA-5678895~Defective CFTR causes cystic fibrosis 5.15 0.042239 

REACTOME_PATHWAY R-HSA-180585~Vif-mediated degradation of APOBEC3G 5.15 0.042239 

REACTOME_PATHWAY R-HSA-187577~SCF(Skp2)-mediated degradation of p27/p21 5.15 0.042239 

REACTOME_PATHWAY R-HSA-1234174~Cellular response to hypoxia 5.03 0.042573 

REACTOME_PATHWAY R-HSA-1234176~Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 5.03 0.042573 

REACTOME_PATHWAY R-HSA-5619084~ABC transporter disorders 5.03 0.042573 

REACTOME_PATHWAY R-HSA-5610780~Degradation of GLI1 by the proteasome 5.03 0.042573 

REACTOME_PATHWAY R-HSA-5632684~Hedgehog 'on' state 5.03 0.042573 

REACTOME_PATHWAY R-HSA-446652~Interleukin-1 family signaling 4.10 0.042573 

REACTOME_PATHWAY R-HSA-162909~Host Interactions of HIV factors 3.52 0.042573 

REACTOME_PATHWAY R-HSA-176408~Regulation of APC/C activators between G1/S and early anaphase 4.91 0.042573 

REACTOME_PATHWAY R-HSA-5610785~GLI3 is processed to GLI3R by the proteasome 4.91 0.042573 

REACTOME_PATHWAY R-HSA-453276~Regulation of mitotic cell cycle 4.91 0.042573 

REACTOME_PATHWAY R-HSA-174143~APC/C-mediated degradation of cell cycle proteins 4.91 0.042573 

REACTOME_PATHWAY R-HSA-1169091~Activation of NF-kappaB in B cells 4.91 0.042573 

REACTOME_PATHWAY R-HSA-5610783~Degradation of GLI2 by the proteasome 4.91 0.042573 

REACTOME_PATHWAY R-HSA-450408~AUF1 (hnRNP D0) binds and destabilizes mRNA 4.91 0.042573 

REACTOME_PATHWAY R-HSA-69242~S Phase 3.97 0.0459 
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REACTOME_PATHWAY R-HSA-8939902~Regulation of RUNX2 expression and activity 4.80 0.0459 

REACTOME_PATHWAY R-HSA-9755511~KEAP1-NFE2L2 pathway 3.91 0.048362 

REACTOME_PATHWAY R-HSA-453279~Mitotic G1 phase and G1/S transition 3.91 0.048362 

REACTOME_PATHWAY R-HSA-5658442~Regulation of RAS by GAPs 4.69 0.048814 
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Overall performance of normalisation methods 

Table 30; Rank of normalisation methods based on number significant terms from enrichment analysis. Overall 
ranking and ranking for DE methods QPROT and t-Test. 

QPROT Score t-test Score Overall Score 

Quantile - mean 27 AIN 28 Log2 transformed 43 

Log2 transformed 24 TIN 24 Loess 42 

VSN 23 Loess 21 Quantile - mean 42 

Quantile - median 22 Log2 transformed 19 AIN 37 

Loess 21 Progenesis 18 Quantile - median 33 

MIN 21 Quantile - mean 15 MIN 31 

QPROT 20 RLR 13 TIN 31 

RLR 12 Quantile - median 11 Progenesis 30 

Progenesis 12 MIN 10 VSN 29 

AIN 9 VSN 6 RLR 25 

TIN 7   QPROT 20 

 

The overall ranking and the ranking by dataset of the normalisation methods is 

shown in Table 30. Methods were ranked from 10 – 0 and 10 – 1 for QPROT and 

t-test, respectively, according to their performance in each dataset at the 

thresholds used in section 3.3, and the rankings summed. The best overall 

normalisation for QPROT was Quantile–mean, followed by log2 transformation, 

VSN, and Quantile-median. Interestingly, QPROT’s own normalisation method 

performed less well. Although this method is based on the general method for 

quantile normalisation, instead of setting each data point to the mean or the 

median value across samples, QPROT sets the protein abundance at the 0 to 

100% percentile data points to the median value across samples and then 

interpolates the protein values in between to the value of the nearest percentile 

point. This method seems to provide poorer results than Quantile-mean, which, 

although ranked in the lower half for t-test analysis, was ranked third overall. t-

test analysis was optimal using AIN; however, this method proved unsuccessful 

with QPROT analysis, resulting in a overall ranking of 29. VSN performed well 

with QPROT analysis but not with the t-test, (23 and 6). The best overall 

performance was with log2 transformed data  (28 and 9), followed by Loess (21 

and 21), Quantile – mean (27 and 15), AIN (28 and 9) and Quantile – median 

(22 and 11). However, apart from log transformation, the best normalisation 

method appears to differ depending on what DE analysis you are performing. 
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The impact of normalisation appears to be of previously unappreciated 

importance in the success of DE analysis. Overall, an alternative normalisation 

method improved on the results where only Progenesis normalisation had been 

applied. In the t-test analysis of dataset PXD007592, there had been a maximum 

of one significant term, which was rescued using several of the methods in 3.3. 

However, the best normalisation method varied widely and depended heavily 

on the selected threshold for significance. Normalisation reviews have 

previously found no consensus on the best normalisation method (Tokareva et 

al., 2021), and as suggested by Chawade et al. (2014), the appropriate 

normalisation method appears to be dependent on the intrinsic characteristics 

of the data.  

 

vi. Review of benchmarking 

Established software evaluation methods for quantitative proteomics requires 

‘ground truth’ data. Existing benchmarking datasets widely used for software 

evaluation can be inaccurate and imprecise giving skewed results and providing 

a poor basis for method analysis. This chapter introduced a novel method for 

benchmarking quantitative proteomics software without the need for ground 

truth data by using the results of pathway analysis as a metric for successful DE 

analysis. Limitations of this benchmarking method could arise due to the 

amount of redundancy in functional analysis and a small count of additional 

true positive proteins, could lead to several very similar pathways or terms 

being labelled as significant. Also, the results of the analysis are only as good as 

the annotation and quality of database used. As a method for benchmarking its 

results are still valid as each DE and normalisation method being assessed is 

provided with the same level of accuracy in knowledge database used for 

evaluation.  

The proteome is a diverse and dynamic system with multi-dimensional, 

interconnected properties. Proteomics experimental datasets are heterogenic, 

but there is often a homogenous approach to their statistical analysis, with the 

aim of benchmarking being to discover a gold-standard approach. Assumptions 
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of statistical methods used for DE and normalisation, such as normality, 

linearity, and homogeneity of variance, will hold true to different extents 

depending on the properties of the data, resulting in different degrees of 

successful analysis. Research goals, exploratory or verification studies, dictate 

the size of the dataset. Comprehensive characterisation of the proteome 

requires large-scale analysis of integrated data (Reiter et al., 2009) resulting in 

a vast number of proteins compared to samples. Whereas targeted analysis for 

disease-specific biomarkers will generally feature a much smaller number of 

proteins (Maes et al., 2016), providing much smaller ratio of proteins to 

samples. Often there is an analysis assumption that most proteins in the sample 

are equally expressed and only a small proportion are changing (Cox et al., 

2014). However, datasets vary in the proportion of its proteins changing across 

experimental conditions, the direction of change (proteins could be either up- 

or down-regulated), and in magnitude of DE compared to magnitude of 

background variation.  

A dataset with a large amount of variation in the background proteome creates 

noise that can mask DE proteins. A fold change significance threshold can be put 

in place to avoid this. However, the change in abundance of proteins of interest 

may be subtle and so using a fold-change threshold or ranking based on fold-

change may result in missing vital information. The methodology of label-free 

proteomics means there is a high degree of introduced variation due to sample 

runs being runs processed in the MS separately, causing variation between 

replicates. Statistical methods have the ability to deal with heterogeneous 

variation. The Welch t-test is capable of comparing means between groups 

without assuming equal population variances. However, variation is not always 

constant; lower abundant proteins display a higher amount of variance 

(Mahoney et al., 2011). Furthermore, there is an increase in Type I errors with 

Welch’s t-test when the data has corresponding issues such as non-normal 

distribution or unequal group sizes (Ahad and Yahaya, 2014, Zimmerman and 

Zumbo, 1993), and Type I error rates are greater when sample size is small and 

when cut-off level for significance is stringent (Zimmerman, 2004).  
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Significance threshold selection 

Optimal significance threshold varied from 0.007 to the least stringent value 

analysed, the conventionally accepted 0.05. Intuitively, a stringent cut-off will 

give a concentrated pool of changing proteins, and decreasing threshold 

stringency will mean a trade off by increasing the chance of including false 

positives. However, the results suggest that in some circumstances, a less 

conservative significance threshold may have improved output. Biological data 

will naturally have variation, possibly with background proteins incidentally 

showing a higher abundance across conditions. Methods that work best with 

stringent cut-off may be preferable with this type of data. Limiting the 

significance threshold at a least stringent level of 0.05 also appears to have been 

insufficient. For dataset PXD004501, many of the normalisation methods in 

combination with the t-test are only just starting to call proteins DE at this level. 

Further investigations should include thresholds beyond 0.05. The results in 

Chapter Three demonstrated the wide range of significance thresholds for 

defining significance required for optimal output of DE analysis and finding the 

correct threshold is a delicate process with optimal significance threshold 

varying from 0.001 to 0.05, the highest threshold applied. The range examined 

appeared to be both not broad enough at times and have circumstances where 

an even smaller or larger threshold may have improved results.  

A limitation of our analysis was using different threshold measurements for 

QPROT (FDR) and t-test and MSstats (BH corrected p-values). This made direct 

comparison difficult and, as discussed above, may have prevented a more 

optimised output with the application of a further decreased cut-off threshold. 

A solution to this would have been to use gradually increasing proportions of 

proteins to be classified as DE after ranking by test statistic. However, the aim of 

the benchmarking exercise was to try to mimic what a biologist would do, 

investigating the appropriateness of the standard accepted threshold of 0.05. 

For this reason, ranking was not originally considered, but its application will 

be investigated in further work.  

Much research has been performed over recent years in attempting to develop 

an optimal proteomics analysis tool, with further research in evaluating and 



Optimising the statistical pipeline for quantitative proteomics 

 

208 
 

assessing available statistical method for quantitative proteomics (Välikangas et 

al., 2017). However, there is still no single gold standard approach (Gatto et al., 

2016). The results of Chapter Three highlight the diversity in effectiveness of 

processing methods, with not only DE analysis but also normalisation and 

selection of significance threshold for significance being key to successful 

results. Furthermore, the aim of a quantitative proteomics experiment is not to 

provide a static and binary group of proteins that have been ‘proven’ to be 

changing. DE results are followed up with validation and investigation. The DE 

experiment is essentially a scoping exercise. Dalman et al. (2012) state that DE 

analysis can provide more than one answer, and that data interpretation as 

more of an art than a science. In proteomics, statistical tests do not need to tell 

us categorically that a protein is different or the same, only to point us in a 

sensible direction for further investigation. The outcome of this thesis focuses 

on the end goal of proteomics experiments, the detection of functionally related 

changing proteins, and utilises this for analysis evaluation. We propose that 

effective DE is not through a single statistical algorithm, but an integration of 

available methods, combined with a means of evaluation. By having a useful and 

desired outcome, detecting functionally related proteins that change, the 

pipeline described in this chapter is able to select most appropriate methods 

according to the properties of the data 

 

Pathway analysis 

The benchmarking pipeline in Chapter Three used the pathway analysis to 

evaluate the DE results and was conducted using the RDAVIDWebService 

package in R (Fresno and Fernández, 2013). The package allows access to the 

web-based Database for Annotation, Visualisation and Integrated Discovery 

(DAVID) (Huang da et al., 2009a) through R. There were technical issues 

associated with using of the RDAVID package; the multiple calls to querying the 

web database in the pipeline lead to unpredictable crashing of the software and 

the daily job limit was regularly exceeded when performing large analyses. In 

Bioconductor version 3.14, RDAVIDWebService package became deprecated 

and is no longer supported. An alternative API for accessing DAVID has been 
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provided the developers. However, this still requires accessing a web-based 

database and the specifications state that it is only for light-duty jobs (no more 

than 400 proteins in search list, not for looping in scripts, maximum 200 hits 

per day). For this reason, continuing with DAVID for enrichment analysis in an 

R based pipeline was not sensible. 

There are also concerns about the completeness of DAVID enrichment analysis 

due to irregular updates. The Gene Ontology (GO) (Ashburner et al., 2000) is 

updated daily. Functional identity of genes changes over time, with semantic 

similarity measures showing that 20% of genes do not match themselves after 

two years (Gillis and Pavlidis, 2013). This instability of GO enrichment results 

means that functional annotation databases can become outdated without 

regular maintenance. Recent versions of enrichment tools are required for 

consistent results due to rapidly evolving ontology and annotations (Tomczak 

et al., 2018). Although recently updated in November 2021, the previous update 

of DAVID had not been since 2016, and the update before that was 2010. To 

demonstrate the impact of using outdated gene annotations in research, Wadi et 

al. (2016) compared pathway analysis of essential genes of 77 breast cancer cell 

lines (Marcotte et al., 2016) with annotations from the 2010 and 2016 versions 

of DAVID. They found that 74% of 2016 enriched terms were missed when 

using the oldest version of the software. The number of human biological 

process and molecular pathways in the database doubled between the 2010 and 

2016 updates. In benchmarking, Zhou et al. (2019) estimated that 4-10% of 

their input gene candidates of their analysis were not recognized by the current 

release of DAVID (at the time 2016 version), and that 44% of the human GO 

annotations records were in need of updating.  

 

3.4. Conclusions 

In this chapter we presented a novel method for benchmarking which utilised 

functional enrichment analysis to evaluate statistic methods using biological 

data. Overall there was no consensus on best method for DE, normalisation 
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method or threshold cut-off and the correct combination of parameters 

appeared to be dependent on the characteristics of the individual datasets.  

The t-test performed best on the largest dataset with a lot of the proteins 

changing in intensity across the conditions, often with the least stringent 

significance threshold. QPROT gave better pathway analysis results when there 

appeared there are fewer proteins of interest within the data and required 

conservative significance thresholds for optimal performance.  Due to the 

peptide level input required, MSstats evaluation was only performed without 

the normalisation factor. The results showed very similar performance to the t-

test, and it appeared that the advanced statistical model may have complexity 

that is not required for the pairwise label-free comparison, and may be better 

utilised in a more complicated experimental design such as time-course, with 

multiple factors, or in label-based set-ups.  

Investigations in this chapter suggest that appropriate DE method is dependent 

of individual characters of the data. The proportion of proteome changing due 

to experimental conditions and how large the changes in intensity are 

compared to background intensities appears to have an effect on statistical 

analysis. The analysis methods assigned a numeric value to the proteins, 

allowing the application of a threshold to decide which of the proteins are 

significant. This was not always the same value for all datasets. The analysis 

methods ranked the proteins in order of significance. This was not the same 

order for each method and no one method was consistently the same. Overall 

there was no best pipeline for analysis of every given dataset and different 

combinations of methods produced drastically different results for different 

datasets. The results led to the development of a data-driven statistical pipeline 

for optimal results (described in Chapter Four). Simultaneous analysis 

performed in with all possible workflow chains in parallel and the combination 

of parameters that provided the highest number of functionally related proteins 

in the differentially expressed set returned to the user. 
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Chapter 4. Optimised proteomics pipeline 

4.1. Introduction 

i. Abstract 

In the evaluation of normalisation, DE analysis, and selection of threshold for 

defining significance (Chapter 3), there was no overall best method. Different 

properties of data require the application of different analysis methods and the 

pursuit of a single gold standard approach appears to be currently outside of 

reach. The outcome of this evaluation was the development of a pipeline that 

uses a high performance computing cluster to easily perform all possible 

parameter options and apply an evaluation metric in order to return the results 

from best combination of analysis methods to the user. In this chapter we 

report the development, implementation and validation of this pipeline and 

demonstrate its superior performance to the present analysis output of 

Progenesis QIP. 

The pipeline provides eight possible methods for normalisation using the 

Normalyzer DE package. Inspired by the principles employed by QPROT, this 

chapter implements an improved method of DE analysis called here BayesianT. 

Written in R and utilising Stan for Bayesian modelling through No U Turn 

sampling, this algorithm provides local FDR through semi-parametric mixed 

modelling and kernel density estimation. Groups of proteins are defined as DE 

by a range of incrementally increasing significance thresholds, and each group’s 

functional enrichment is calculated using the clusterProfiler package in R. The 

parameter options creating the group of most functionally related proteins is 

deemed the best and the results are returned to the user.  

Validation of the methods showed that the BayesianT algorithm provided 

superior DE analysis (and identical FDR estimation) to QPROT. The application 

of the simplify() function in clusterProfiler reduced the issue of redundancy in 

enrichment analysis, and analysis with the pipeline provided an improved 

output to the standard analysis from Progenesis QIP. 

 



Optimising the statistical pipeline for quantitative proteomics 

 

212 
 

ii. Proteomics pipeline development 

Results of DE analysis provide researchers with proteins of interest, which 

become the focus of further investigation. Pathway analysis provides meaning 

to DE experiments by attaching biological context to the proteins detected as 

changing across different experimental conditions. By highlighting statistically 

enriched biological processes in the data, biologists can focus further studies on 

the proteins involved in these processes. Chapter Three described the 

development of benchmarking software that utilised enrichment results to 

evaluate DE methods. The results indicated that there is no one best analysis 

pipeline and appropriate methods are dependent on the individual 

characteristics of the data. The results also demonstrated the importance of 

normalisation in the success of DE analysis, and that the use of an arbitrary 

significance threshold does not always provide the optimal output. These 

findings indicate that the sensible approach to analysis is to enable users to 

easily investigate a wide range of parameter options. In this chapter, we 

describe the development of a statistical pipeline where simultaneous analysis 

of all possible workflow chains is performed on a high-performance computing 

cluster to allow parallel initiation. Evaluation of methods is performed using 

pathway analysis and a summary of the functional enrichment of DE proteins is 

returned to the user. 

 

Pipeline Workflow 

The optimised proteomics pipeline workflow (Figure 4.1.1) was programmed in 

R (version 4.1.2) and is divided into the following sections; log transformation, 

normalisation, DE analysis, threshold selection for defining significant results, 

pathway analysis on changing proteins, and evaluation of the results. In chapter 

3, log transformation occurred after normalisation to allow for like for like 

comparison with QPROT analysis which performs log transformation after 

normalisation. However, as our pipeline does not use QPROT, log 

transformation was performed before normalisation, according to the 

Normalyzer workflow. 
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Figure 4.1.1; Simplified scheme of the optimised proteomics pipeline. Tab separated, protein group abundance 
data with a header identifying the comparison groups is normalised by several methods. Each normalisation 
output has differential expression (DE) analysis by t-test and QPROT. DE proteins are subject to enrichment 

analysis with the R package ClusterProfiler using a range of significance thresholds to define significant DE. The 
combination of methods providing the greatest number of significant GO terms is returned to the user, along 

with details of the proteins changing between conditions and their functionally related pathways.  

 

High-performance computing (HPC)  

Large-scale proteomics analysis is computationally intensive with vast numbers 

of proteins requiring individual analysis. Working through each sample one by 

one is time-consuming. The use of high-throughput technology allows 

simultaneous analysis which decreases runtime but requires powerful 

hardware. HPC architectures are a collection of servers which work in parallel 

to streamline complex algorithms efficiently. The pipeline is available to 

download from GitHub 

https://github.com/HayleyPrice/Pipeline/tree/main/Server. To install 

dependencies, Rstan and to compile the Stan model run the Bash script 

‘installs.sh’ (Figure 4.1.2).  

https://github.com/HayleyPrice/Pipeline/tree/main/Server
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Figure 4.1.2; Command line installation of the packages required for running the pipeline. 

 

The pipeline is run through R scripts on a LINUX server to provide 

parallelisation of the many parameter combinations. Details of the number of 

files being analysed at each step of the workflow are summarised in Figure 

4.1.3. 

 

 
Figure 4.1.3; Schematic of parameter combinations at each stage of the workflow. Text in black shows the 
number of different files being analysed at the step above. Stages run in parallel on all available nodes of 

computer cluster.  
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The pipeline takes input a pairwise comparison of identified, quantified, and 

grouped protein abundances in a tab separated file. An additional identifier line 

must be added (Figure 4.1.4) to provide details of the pairwise comparison. 

 

Figure 4.1.4; Identifying header of tab separated input file. Group comparisons are indicated by letters 1 and 2. 

 

Running of the pipeline is initiated with the Bash script ‘runServer.sh’ with 

arguments of input file name and file name for results files (Figure 4.1.5).  

 

 

Figure 4.1.5; Command line installation of the packages required for running the pipeline. 

 

Normalisation 

The data was normalised using modified R code from the NormalyzerDE 

package in R providing eight methods as described in Chapter 3; log2 

transformation, loess normalisation, robust linear regression normalisation, 

variance stabilisation normalisation, total intensity normalisation, median 

intensity normalisation, average intensity normalisation, and quantile 

normalisation. 
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Differential expression analysis 

The normalised protein abundance data were tested for DE.  The abundance of 

each protein across the two samples were compared using the following 

methods: 

BayesianT – A model was implemented combining the principles employed in 

QPROT’s algorithm for DE and FDR calculation, as described in Chapter 1, 

combined with a Hamiltonian based method for sampling, No U Turn sampling 

(NUTs) (Homan and Gelman, 2014), from the posterior distribution, described 

next. The model was written in R (version 4.1.0) and Stan (version 2.21.3) 

(Carpenter et al., 2017). Compiling of the Stan model is performed during the 

installation script. Modelling is performed individually on each protein in the 

data. To reduce computational time caused by repeated sampling, data is split 

into 25 subsets to allow parallelisation of DE analysis. After DE analysis, the 25 

subsets were then recombined prior to local FDR calculation which is 

performed using through semi-parametric mixed modelling and kernel density 

estimation described in Chapter 1. 

Welsh two sample t-test – Comparison of means was performed using R and 

the t.test() function. Multiple testing was performed using p.adjust(), method 

= ‘BH’ i.e. Benjamini-Hochberg. 

 

Sampling method 

Performing Bayesian inference for DE analysis, requires parameter estimation 

through sampling from the posterior distribution. This process of computing 

expectations with respect to a target probability distribution is often repeated 

thousands of times and requires a computer algorithm to process the 

calculations. Stan is a probabilistic programming language for high-

performance statistical computation providing Bayesian inference through 

Markov Chain Monte Carlo (MCMC) sampling. As described in Chapter 1, a 

Markov chain is a process for generating sequences of random variables where 

the probability of the next variable is dependent only on the current variable. 

Monte Carlo simulation is the generation of series of random numbers from 
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distributions, similar to the concept of rolling a dice. Stan uses a Hamilton 

Monte Carlo (HMC) sampler for deciding if the proposed value is likely to fit the 

posterior distribution. Devised originally by Duane et al. (1987) for Lattice 

Quantum Chromodynamics calculations, and later adapted for use in Bayesian 

neural networks (Neal, 1996). This sampling method provides a more efficient 

and robust algorithm than the Metropolis Hastings (MH) (Hastings, 1970) 

method (Betancourt, 2016) employed by QPROT. Although easily implemented, 

the random walk in MH scales poorly with increasingly high-dimensional target 

distributions (Betancourt, 2017) and has a resulting transition density which is 

concentrated around the original starting point. As dimensional space increases, 

the volume of a distinguished point in comparison to the neighbouring volume 

decreases (Figure 4.1.6).  

 

a.)    b.)     c.) 

Figure 4.1.6; Demonstration of how volume compared to the neighbouring volume decreases as dimension 
increases. a.) In one dimensional space the relative weight of the centre partition is 1/3, b.) two dimensionally it 

is 1/9, however, in three dimensions c.) the relative weight is just 1/27 (Betancourt, 2017). 

 

An HMC is better able to explore regions of high probability by making large 

jumps from the initial starting point exploring high-dimensional spaces with the 

use of differential geometry. HMC is a variant of MH but samples from a Gibbs 

canonical distribution, which is distribution that often describes positions and 

velocities of particles in gas but can also be applied to the model parameters in 

Bayesian inference: 
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𝑝(X) ∝ 𝑒𝑥𝑝 (−
𝑈(𝑋)

𝑇
) 

Where 
Probability, 𝑝(X), of a system to be in the state 𝑋 depends on the energy of the state, 
𝑈(𝑋), and the temperature, 𝑇.  

 

The Hamiltonian differential equation allow us to vectorise the random walk to 

travel around the contours into a two dimensional space. An extension of an 

HMC is the NUTs employed by Stan, which eliminates the need for user-defined 

tuning of the parameters providing an automatic adaptation.  

 

Defining significant results 

Significant results were defined with a range of cut-off values. The results in 

Chapter Three demonstrated that decreasing or increasing the stringency of the 

significance threshold for significance may have provided more significant 

terms. Therefore the range of threshold was increased (0.000001 – 0.1). Details 

of thresholds used and the increase over iteration are shown in Table 31. 

Proteins passing the threshold of significance are deemed as being DE and put 

forward for functional enrichment analysis. 

Table 31; Summary of significance threshold ranges. Proteins passing the threshold are categorised as DE and 
go forward for enrichment analysis. Size of increment increases over iteration. 

Range Increment 

0.000001 - 0.000009 0.000001 

0.00001 - 0.00009 0.00001 

0.0001 - 0.0009 0.0001 

0.001 - 0.009 0.001 

0.01 - 0.1 0.01 

 

Pathway analysis 

To overcome the issues described using RDAVID, described in the results of 

Chapter Three, the pipeline was altered to use ClusterProfiler 4.0 (Wu et al., 

2021) for pathway analysis. Released in August 2021, this Bioconductor 

package provides an up-to-date universal interface for functional enrichment 



Optimising the statistical pipeline for quantitative proteomics 

 

219 
 

analysis based on internally supported ontologies and pathways. The 

clusterProfiler package (Yu et al., 2012) is popular and has been used in 

pipelines, online platforms and more than 30 CRAN and Bioconductor packages. 

It relies on Bioconductor genome-wide annotation packages of organism 

databases (OrgDb) which are updated every six months and accessed through 

the annotation package AnnotationHub (Morgan, 2021).  

Further to the completeness in results arising from the regularly updated 

search databases, clusterProfiler provides an algorithm for limiting excessive 

amounts of redundancy, where many significant terms are returned that all 

reflect the same pathway and interfering with interpretation. The simplify() 

function (Yu, 2020), which is designed to limit reoccurrence of highly similar 

terms by summarising them with one representative term. Making use of the 

GOSemSim package (Yu et al., 2010) within Bioconductor, and general terms 

from analysis of the whole GO corpus are limited. GO is a hierarchical ontology 

of a set of concepts and their relationships, with parent terms based on less 

specific concepts, and children terms of increasingly specific concepts. Multiple 

parents for each concept are allowed, meaning that through multiple paths, two 

terms can share the same ancestors. GOSemSim calculates semantic similarity 

among enriched terms using four information content based methods (Resnik, 

1999, Jiang and Conrath, 1997, Lin, 1998, Schlicker et al., 2006), which are 

calculated using the frequency two terms and their closest common ancestor 

appears in a specific corpus of GO annotations, and a graph structure based 

method (Wang et al., 2007), which is computes the specificity of a GO term 

based on its location in a graph. The resulting terms with a high level of 

similarity are removed, leaving a single representative term. In the 

development of our pipeline, the simplify() function was included with the 

intention of reducing bias from redundant, inflated counts and therefore 

providing an unbiased evaluation metric through pathway analysis. 

Pathway analysis was performed in R using the enrichGO() function of the 

clusterProfiler package. Proteins passing the significance threshold were 

categorised as DE and used as the target set. All discovered proteins were used 

as the background set. Biological process, cellular component and molecular 
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function sub-ontologies were searched and significant terms were defined by 

BH corrected p < 0.05. To reduce redundancy in the enriched terms, the 

function simplify() was applied using the recommended similarity cut-off of 0.7 

and BH adjusted p-value of 0.05 and the Human (Carlson, 2019) database, a 

Bioconductor annotation packages of genome wide annotation, primarily based 

on mapping using Entrez Gene identifiers was searched. Parallelisation was 

again employed to reduce computational time. 

 

Evaluation of Results 

The combination of parameters; normalisation method, DE analysis method, 

and significance threshold that provided the highest number of significantly 

enriched terms was designated the optimised pipeline and returned to the user, 

along with the DE proteins and details of the enriched terms. 

 

iii. Aims of chapter 

The results in Chapter Three highlighted the diversity in application of 

statistical methods, and with all of the areas of possible heterogeneity in 

proteomics data, a thorough assessment of the properties of the data would be 

useful prior to selecting the appropriate statistical method rather than trying to 

rely on one gold-standard approach. However, the mathematical knowledge 

required for this may be beyond some biologist’s experience level. In this 

chapter we develop an optimised proteomics pipeline which utilises HPC and 

incorporates several different approaches for DE analysis, normalisation and 

selection of significance threshold for significance, applying pathway analysis to 

provide an evaluation metric, and returning the optimal parameter combination 

to the user. The implemented algorithms will be validated and the best results 

of analysis will be compared to a functional enrichment analysis obtained from 

a standard output from Progenesis QIP to demonstrate the improved 

performance. 
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4.2. Methods 

i. Validation of methods 

Datasets 

Biological datasets PXD004501 (Jin et al., 2018), PXD004682 (Stewart et al., 

2017), and PXD007592 (Zila et al., 2018) previously described in Chapter Three 

were used to demonstrate the validity of the methods implemented in the 

pipeline.  

 

Implementation Bayes statistics 

DE analysis of log2 transformed abundances of each of the datasets was 

performed using QPROT without any normalisation. Log2 transformed 

abundances (QPROT performs a log transformation as part of its analysis) were 

analysed using the BayesianT. The output Z-statistics of for each analysis were 

assessed for FDR, both using the BayesianT calculation and pathway analysis 

was conducted using the significance thresholds described in Table 31 and the 

number of significant terms for each method of DE analysis was compared. 

 

Implementation of FDR 

DE analysis of log2 transformed protein abundances for each of the datasets 

was performed using the QPROT. The FDR calculation was performed on the 

resulting Z-statistics using QPROT and the BayesianT and their values 

compared. 

 

Evaluation of clusterProfiler() for DE evaluation 

In order to validate the use of pathway analysis for benchmarking, significant 

results from the t-test (p-value threshold < 0.05) analysis of dataset PXD004682 

were evaluated with pathway analysis using different proportions of proteins 

said to be significantly changing. On each iteration, 5% of proteins classified as 

DE were removed from the pathway analysis foreground list and replaced with 
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proteins from the background list, simulating analysis with increasing false-

positive rates. This process was repeated 100 times. The validation exercise 

above was also repeated with the application of the simplify() function to 

reduce redundancy. 

 

ii. Comparison to Progenesis output 

To validate the pipeline, the datasets described in Chapter Three were analysed 

with the pipeline. The optimised result was compared to clusterProfiler GO 

enrichment analysis, as described in section 4.2, of the standard output from 

Progenesis analysis: defined as Progenesis normalisation, ANOVA (in the form 

of Welch’s t-test for pairwise analysis), and using common significance 

thresholds; 0.1, 0.05, and 0.01. 

 

iii. Comparison to QPROT output 

Further validation was performed by comparing the pipeline output to that of 

QPROT. The optimised result was compared to clusterProfiler GO enrichment 

analysis, as described in section 4.2 of the QPROT analysis from Chapter 3. In 

this analysis QPROT was set to perform 10,000 iterations for the burnin and 

10,000 iterations for sampling, and an inverse log2 transformation was 

performed prior to QPROT analysis due to the transformation that occurs 

within the software. Pipeline settings were: 

1. 325 iterations for the burnin and 650 iterations for sampling 

2. 1000 iterations for the burnin and 2000 iterations for sampling (rStan 

default parameters) 
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4.3. Results and discussion 

i. Validation of methods 

Implementation Bayesian differential expression analysis 

Comparison of the pathway analysis evaluation of the results of QPROT and 

BayesianT’s DE analysis of the same data and using the same method for FDR 

calculation (Figure 4.3.1) demonstrates better overall performance by 

BayesianT and sufficiently demonstrates the validity of the method. However, 

for two of the datasets, QPROT gave a slightly higher maximum number of 

terms at its optimal significance threshold than the BayesianT.  

For dataset PXD004501, both DE methods resulted in an overall low level of 

enrichment terms with a maximum of 13 and eight for QPROT and the 

BayesianT, at their optimal significance threshold of 0.02 and 0.006, 

respectively. However, overall, BayesianT analysis more consistently gave a 

higher number of enrichment terms at the other threshold cut-off values. In 

analysis of PXD004682 data, the BayesianT DE provided the most enrichment 

terms for all significance thresholds with a maximum of 52 terms at a threshold 

of 0.005 as opposed to seven terms using QPROT at the same threshold. 

QPROT’s optimal significance threshold was 0.02 which gave 18 enrichment 

terms, which was lower than the amount resulting from BayesianT analysis 

(35). For dataset PXD007592, the BayesianT yielded a higher number of 

enrichment terms than QPROT at all but two thresholds (0.001 and 0.1). At 0.1, 

which was QPROT’s optimal significance threshold, there were 109 terms as 

opposed to 90 terms and at 0.001 there were 54 as opposed to 52 terms. 

Optima BayesianT analysis output was similar result QPROT’s maximum at its 

optimal significance threshold of 0.05 with 103 enrichment terms.  
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Figure 4.3.1; Comparison of pathway analysis of differential expression analysis of biological benchmarking 
datasets produced by QPROT and BaysianT model using the same FDR method. 

 

Both methods follow the same formula for calculating DE; however, differences 

occur in QPROT which provides an additional imputation step that uses 

probabilistic modelling and truncation rules (as described in Chapter One). As 

imputation is applied not only to missing data but also to abundances falling 

below a truncation point calculated individually for each protein, and the 

process is carried out within the software without user control (imputed values 

are not included in the software’s output). Furthermore, a different number of 

sampling and burnin iterations were performed, making it difficult to create 

identical results using the two methods. The impact of these parameters is 

further investigated in section 4.3.ii. 
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Implementation of FDR calculation 

 
Figure 4.3.2; Comparison of FDR values produced by QPROT and BayesianT model on the same differential 

expression analysis output for biological benchmarking datasets. 

 

Figure 4.3.3; Comparison of ordered FDR values produced by QPROT and BayesianT model on the same 
differential expression analysis output for biological benchmarking datasets. 

Violin plots comparing the FDR calculation of performed by QPROT and the FDR 

calculation performed by the BayesianT on the same DE analysis data (Figure 

4.3.2) were very similar for all datasets, suggesting that both methods provide 

almost identical results. Ordered FDR values (Figure 4.3.3) for the same 

comparison show that values are the same for dataset PXD004501, almost the 

same for dataset PXD007592, and only slightly differ in the middle 1000 
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observations for dataset PXD004682. These results sufficiently validate the 

method for FDR calculation in the BayesianT. 

The successful implementation of the key stages of QPROT’s algorithm for 

pairwise label-free DE analysis allowed the shell-based program for Linux 

operating systems (that requires installation of a specialist mathematical 

library) to be incorporated into the R based pipeline.  

 

Pathway analysis 

The clusterProfiler R package has the ability to provide KEGG module queries. 

However, is this is conducted through connection to an online web resource, 

much like the RDAVID API used in the benchmarking software in Chapter Three. 

Due to the unpredictable crashes experienced when making multiple calls to the 

web-based database, plus the security constraints of web access on the server 

nodes, KEGG annotation was not included in the optimised pipeline. For 

Reactome pathway queries, there is a corresponding package to clusterProfiler, 

ReactomePA (Yu and He, 2016). However, this package does not have the same 

level of features as clusterProfiler; currently, there are only a limited amount of 

organisms that can be searched, and the input IDs must be converted to Entrez 

gene ID form. Furthermore, there is no simplify() function as with 

clusterProfiler, so the resulting enriched terms will be highly inflated due to 

redundancies. For this reason, Reactome pathway analysis was also excluded 

from the pipeline. 

To validate the pathway analysis method, enrichment analysis was performed 

on foreground data that included an increasing amount of proteins from the 

background group (i.e., not classified as DE by t-test analysis using a BH p-value 

of < 0.05 as significant) to simulate analyses that incorrectly classify proteins as 

DE when they are not. The results (Table 32 and Figure 4.3.4) demonstrate that 

by including an increasingly large proportion of not ‘true’ DE proteins in the 

search list, fewer significant terms are returned on functional enrichment 

analysis. Proteins that had been classified by statistical analysis as changing 
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between conditions were more functionally similar to each other compared to 

the total pool of identified proteins.  

Table 32; Pathway analysis validation completed with dataset PXD004682. Different proportions of true DE 
proteins and randomly selected background proteins. Number of significant terms from DAVID enrichment 

analysis of DE proteins from t-test analysis (Benjamini Hochberg adjusted p-value < 0.05). Process was repeated 
100 times. 

Proportion DE 
proteins 

Proportion of 
background 

proteins 

Mean number of 
terms 

Standard 
deviation 

Standard error 

100 0 117.00 0 0 

95 5 84.85 16.38 3.21 

90 10 58.01 17.99 3.53 

85 15 39.38 18.30 3.59 

80 20 23.89 16.35 3.21 

75 25 14.09 13.71 2.69 

70 30 7.64 9.43 1.85 

65 35 4.19 5.96 1.17 

60 40 2.06 3.85 0.75 

55 45 1.22 2.67 0.52 

50 50 0.73 2.19 0.43 

45 55 0.57 2.03 0.40 

40 60 0.35 1.28 0.25 

35 65 0.24 0.89 0.17 

30 70 0.32 1.10 0.22 

 

 

Figure 4.3.4; Pathway analysis validation completed with dataset PXD004682. Number of significant terms (t-
test analysis, Benjamini Hochberg adjusted p-value < 0.05) from DAVID enrichment analysis with different 

proportions of significantly differentially expressed proteins included in the search list. Process was repeated 100 
times. 
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These results suggest that the pathway enrichment testing approach using 

clusterProfiler is an effective evaluation tool, and that precise DE analysis 

produces more significant terms, and that an increased false discovery rate 

‘dilutes’ the quality of the enrichment analysis. 

 

Simplify function 

The purpose of the simplify() function is to reduce high-level terms in favour of 

leaf node terms, condensing the total number of terms and giving a better 

biological picture. This step was included in the pipeline to avoid bias from 

expanded counts from an inflated number of enrichment results. Table 33 

summarises the reduction in significantly enriched terms from clusterProfiler 

analysis before and after the application of the simplify() function, which 

reduces the total number of significant GO terms by approximately half (top 

row compared to bottom row).  

 

Table 33; Total number of enriched GO BP, CC, and MF terms from clusterProfiler analysis of upregulated 

proteins from the current Progenesis QIP DE analysis of dataset PXD004682 before and after simplfy() function 

Analysis Number of significantly enriched terms 

GO BP GO CC GO MF 

clusterProfiler 
only 

159 67 14 

clusterProfiler 
followed by simplify() 

77 26 8 

 

Table 34 demonstrates the effective reduction of redundant MF terms from the 

analysis in Table 33 after the simplify() function was applied. Three terms, 

‘actin binding’, ‘actin filament binding’, and ‘cytoskeletal protein binding’ are 

reduced to simply ‘actin binding’; ‘calmodulin binding’, ‘myosin binding’, and 

‘spectrin binding’ are represented by the term ‘calmodulin binding’; 

‘endopeptidase inhibitor activity’ also covers the terms ‘endopeptidase 

regulator activity’ and ‘enzyme inhibitor activity’; and a further reduction is 

made with ‘peptidase inhibitor activity’ also representing ‘peptidase regulator 

activity’. 
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Table 34; Simplified enriched GO MF terms (left column) and original enriched GO MF terms (right column) from 
clusterProfiler analysis of upregulated proteins from the current Progenesis QIP DE analysis of dataset 

PXD004682 

GO MF terms after simplify() Original GO MF terms 

Actin binding Actin binding 

 Actin filament binding 

 Cytoskeletal protein binding 

Antioxidant activity Antioxidant activity 

Calcium ion binding Calcium ion binding 

Calmodulin binding Calmodulin binding 

 Myosin binding 

 Spectrin binding 

Copper ion binding Copper ion binding 

Endopeptidase inhibitor activity Endopeptidase inhibitor activity 

 Endopeptidase regulator activity 

 Enzyme inhibitor activity 

Peptidase inhibitor activity Peptidase inhibitor activity 

 Peptidase regulator activity 

 

Table 35; Pathway analysis validation using the simplify() function completed with dataset PXD004682. Different 
proportions of true DE proteins and randomly selected background proteins. Number of significant terms from 
DAVID enrichment analysis of DE proteins from t-test analysis, (Benjamini Hochberg adjusted p-value < 0.05). 

Process was repeated 100 times. 

Proportion DE 
proteins 

Proportion of 
background 

proteins 

Mean number of 
terms 

Standard 
deviation 

Standard error 

100 0 54.00 0 0 

95 5 42.18 6.96 1.36 

90 10 32.96 8.51 1.67 

85 15 23.18 9.38 1.84 

80 20 15.49 8.68 1.70 

75 25 9.05 7.91 1.55 

70 30 5.83 5.89 1.16 

65 35 3.46 4.71 0.92 

60 40 1.69 2.47 0.48 

55 45 0.70 1.58 0.31 

50 50 0.32 0.91 0.18 

45 55 0.26 0.88 0.17 

40 60 0.20 0.89 0.17 

35 65 0.08 0.44 0.09 

30 70 0.05 0.26 0.05 

 



Optimising the statistical pipeline for quantitative proteomics 

 

230 
 

 

Figure 4.3.5; Pathway analysis validation completed with dataset PXD004682. Number of significant terms (t-
test analysis, Benjamini Hochberg adjusted p-value < 0.05) from DAVID enrichment analysis with different 

proportions of significantly differentially expressed proteins included in the search list 

To validate the use of simplify() in as part of the pathway analysis evaluation, 

the validation exercise above for clusterProfiler was repeated using the 

additional application of the simplify() function. Although the results (Table 35 

and Figure 4.3.5) show a decrease in total number of terms (54 rather than 117) 

when there are 100% of ‘true’ DE proteins in the search list, they do again 

demonstrate that fewer functionally enriched terms are returned as the number 

of proteins not classified as changing are included. 
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i. Comparison to Progenesis output 

PXD004501 

 

 

Figure 4.3.6; Enrichment analysis to results from optimised pipeline of dataset PXD004501. DE analysis by BayesianT (orange) and t-test (blue) of protein abundances (identified 
with by minimum of one unique peptide) and normalised by the method shown in the x-axis strip. DE proteins identified using the significance threshold on the x-axis (number of 

proteins shown as solid line) were subjected to pathway analysis. Number of significant enrichment terms are shown as points.    
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A summary of the functional enrichment results from the analysis of dataset 

PXD004501 is shown in Figure 4.3.6. Most parameter combinations struggled to 

produce significantly enriched terms with this data. However, the BayesianT method for 

DE combined with the transformation based normalisations, VSN (column 8, orange 

data), and to a lesser degree log2, (column 1) managed to provide functionally related 

DE proteins, with the best output occurring at a relatively low significance threshold 

(maximum 68 significant terms at threshold of 0.000001 from 184 DE proteins). A 

comparison of the output from a standard Progenesis QIP output is (Progenesis 

normalisation and Welsh’s t-test using common significance thresholds of 0.01, 0.05, 

and 0.1 for defining DEs) is summarised in Table 36 and produced 5, 144, and 270 DE 

proteins, respectively. However, GO Enrichment analysis of the assigned DE proteins 

using clusterProfiler did not return any significantly enriched terms. 

 

Table 36; Enrichment analysis results for dataset PXD004501 from the optimised pipeline and Progenesis output at 
standard significance threshold of 0.01, 0.05, and 0.1. 

DE method Normalisation Threshold Number of DE 
proteins 

Number of significant 
terms 

BayesianT VSN 0.000001 184 68 

t-Test Progenesis 0.01 1 0 

t-Test Progenesis 0.05 46 0 

t-Test Progenesis 0.1 142 0 

 

The paper accompanying the dataset PXD004501 (Jin et al., 2018) aimed to determine 

the molecular characterizations of malignant ascites, a sign of peritoneal seeding in 

gastric cancer. This dataset identified 2534 protein groups when comparing ascite fluid 

from patients with liver cirrhosis and malignant ascites, with 397 changing between 

conditions (defined as 1.5-fold change and p-value < 0.05); 81 elevated in gastric cancer 

patients and 218 downregulated. However, this value was obtained using two search 

engines and the method used to integrate the results was not reported. Although a 1%-

peptide-level filter was applied, there was no protein level FDR control and results with 

a single peptide ID in only one replicate were included, resulting in a vastly over-

reported count of proteins which had not been confidently identified and quantified. 
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Filtering their supplementary data for proteins supported by two or more peptides, and 

protein quantification values in all six samples results in only 574 protein groups. In the 

optimal analysis by our pipeline, 575 proteins were identified with 184 proteins being 

classed as DE; 157 were upregulated in cancer patients and 27 were downregulated. Of 

the 157 upregulated proteins, 31 were also highlighted as being upregulated in the 

combined results in the original paper along with 18 of the 27 downregulated proteins. 

To directly compare our results from the optimal analysis with the pairwise analysis of 

PXD004501 data, GO analysis was performed using clusterProfiler on the DE proteins 

provided by Jin et al. (2018) in their ‘Supplementary Table S6. List of the significantly 

differential expressed proteins in label-free quantitation set 1’ (https://ars.els-

cdn.com/content/image/1-s2.0-S0009912017312560-mmc7.xlsx). Enriched terms for 

Biological Process, Molecular Functions, Cellular Components, and KEGG pathways for 

analysis performed on upregulated proteins as classed by each of the methods and are 

summarised in Table 37, with upregulated proteins from our optimal analysis providing 

more functionally enriched terms than analysis of the upregulated proteins from the 

original paper. Of the 46 proteins classed as DE by the current Progenesis QIP output, 

only 6 were upregulated in cancer patients and enrichment analysis of these produced 

no significant terms.  

Table 37; Summary of the number of GO terms and KEGG pathways from enrichment analysis performed on upregulated 
proteins from the optimal analysis and from the original paper for dataset PXD004501 

Source of 
upregulated 

proteins 

Number of 
upregulated 

proteins 

Number of significantly enriched terms 

GO BP GO CC GO MF KEGG 
pathways 

Optimal analysis 157 131 22 49 16 

Original paper 81 44 9 14 4 

 

The top eight most significant terms from enrichment analysis of the upregulated 

proteins from the optimal analysis and the original paper were compared (Figure 4.3.7) 

and found to contain mostly similar terms, validating the pipelines’ analysis of this 

dataset. Furthermore, enrichment results for the proteins from the optimal analysis 

provide more significant terms with a greater values of significance and a higher gene 

count than those identified in the original paper. 

https://ars.els-cdn.com/content/image/1-s2.0-S0009912017312560-mmc7.xlsx
https://ars.els-cdn.com/content/image/1-s2.0-S0009912017312560-mmc7.xlsx
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Figure 4.3.7; Top eight most significant terms for GO Biological Pathways, Molecular Functions, Cellular Components and 
KEGG pathways from enrichment analysis of proteins upregulated in malignant ascites as classified by the optimal result 

from our analysis (left column) and by the original paper for dataset PXD004501 (right column), count represents the 
number of proteins in the search group that belong to the given gene-set. 
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Table 38; Summary of terms produced by enrichment analysis of proteins upregulated in cancer tissue as identified by the 
optimal analysis and from the original paper for dataset PXD004501 that are related to functions highlighted by Jin et al. 

(2018)  

 
Analysis of UR proteins 

(BH p-value)   

optimal  original  

Movement of cell, locomotion, cell adhesion   

Cadherin binding involved in cell-cell adhesion 4.64E-02 NS 

Endothelial cell migration 1.39E-03 4.87E-02 

Integrin binding 2.65E-03 NS 

Integrin biosynthetic process 3.21E-02 NS 

Leukocyte chemotaxis 5.10E-03 NS 

Leukocyte migration involved in inflammatory response 4.44E-03 NS 

Muscle cell migration 5.27E-03 NS 

Myeloid leukocyte migration 5.15E-03 NS 

Regulation of actin cytoskeleton 1.50E-02 NS 

Regulation of endothelial cell migration 4.97E-03 NS 

Regulation of smooth muscle cell migration 1.02E-02 NS 

Immune response, response to wounding   

Acute inflammatory response 3.34E-15 2.79E-08 

Blood coagulation 2.87E-19 2.03E-07 

Chronic inflammatory response 8.53E-03 NS 

Coagulation 3.46E-19 2.03E-07 

Complement and coagulation cascades 5.71E-44 6.35E-12 

Humoral immune response 4.65E-18 1.18E-07 

Immunoglobulin binding 6.81E-03 NS 

Innate immune response in mucosa NS 1.83E-02 

Leukocyte aggregation 1.81E-03 NS 

Mucosal immune response NS 3.70E-02 

Negative regulation of angiogenesis 6.33E-04 NS 

Negative regulation of coagulation 7.36E-18 NS 

Negative regulation of immune effector process 1.19E-02 NS 

Negative regulation of wound healing 2.70E-17 NS 

Positive regulation of inflammatory response 1.96E-02 NS 

Regulation of acute inflammatory response 1.54E-02 NS 

Regulation of blood coagulation NS 7.37E-06 

Regulation of coagulation NS 7.77E-06 

Regulation of humoral immune response 1.54E-02 NS 

Regulation of wound healing NS 7.37E-06 

Calcium ion binding and peptidase inhibitor activity   

Calcium-dependent protein binding 4.20E-03 NS 

Endopeptidase inhibitor activity 5.02E-21 1.88E-05 

Endopeptidase regulator activity 4.32E-21 NS 

Exopeptidase activity 1.37E-03 NS 

Negative regulation of endopeptidase activity 9.17E-20 3.14E-06 

Peptidase inhibitor activity NS 1.88E-05 
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Peptidase inhibitor complex 2.20E-03 1.88E-05 

Serine-type endopeptidase activity 3.30E-12 1.22E-03 

Extracellular components   

Endocytic vesicle lumen 4.06E-09 7.39E-04 

Extracellular matrix binding 2.82E-06 NS 

Extracellular matrix structural constituent 1.37E-12 NS 

Neutrophil extracellular trap formation 3.12E-02 NS 

Pigment granule 1.18E-04 NS 

Regulation of extracellular matrix constituent secretion 2.70E-02 NS 

Regulation of kinase activity   

Positive regulation of tau-protein kinase activity 2.20E-02 NS 

 

In the original paper for PXD004501, Jin et al. (2018) discuss relevant enrichment terms 

that were commonly acquired by functional analysis of the results a combination of 

three procedures which also included in-depth profiling and a second pairwise DE 

analysis (supplied as separate datasets PXD002213 and PXD03351) comparing the 

ascite fluids of patients with liver cirrhosis to those of patients with peritoneal seeding.  

Table 38 summarises terms found in enrichment analysis of the proteins upregulated in 

cancer tissue as classed by the optimal analysis and those from the paper. There were 

many more significant (40 compared to 17) related terms obtained from the optimal 

analysis proteins than from the proteins from the supplementary materials in the 

original paper with a greater value of significance (smallest p-value 4.32E-21). 

In the original paper for the dataset PXD004501, Jin et al. (2018) selected protein 

marker candidates to differentiate malignant ascites from benign ascites by using the 

Human Protein Atlas database (Uhlén et al., 2015) to compare the mRNA expression of 

upregulated proteins in the stomach relative to mean levels in 27 other tissues. Those 

expressed specifically in the stomach were compared with gastric cancer secretome 

datasets (Marimuthu et al., 2013) to see if they were secreted from gastric cancer cells 

or tested for positive staining in >75% of gastric tissues in the Human Protein Atlas 

database. Following this two proteins were verified using enzyme-linked 

immunosorbent assay (ELISA) using 27 benign samples and 57 malignant ascitic fluids 

samples. Only one of these two proteins, POSTN (Q15063), was identified by Progenesis 

QIP processing of the raw data. POSTN was successfully identified as being upregulated 

in cancer samples using the optimal analysis, but was not classed as DE using the 
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current Progenesis QIP pipeline, differences in the results of the statistical analyses are 

summarised in Table 39. Normalisation of the raw abundances with Progenesis QIP 

resulted in abundances with a log2 fold change of 1.55 where as VSN normalised 

abundances gave a log2 fold change of 2.22. Welsh’s t-test analysis of Progenesis QIP 

normalised abundances gave a p-value of 0.05 and a BH corrected value of 0.14 meaning 

the protein wasn’t classed as being DE using the current Progenesis QIP output.   

 

Table 39; Statistical analysis results of protein identified by Jin et al. (2018) as being a protein marker for differentiating 
malignant from benign ascites that were identified in Progenesis QIP processing 

UniProt ID 

Progenesis analysis Optimal analysis 

Log2 fold 
change 

p-value BH p-value 
Log2 fold 
change 

Z-statistic 
Bayesian T 

FDR 

Q15063 1.55 0.050 0.14 2.22 5.82 6.39 e-28 

 

When compared to the proteins classed as upregulated in cancer in the original paper, 

our optimal analysis produced more terms with a higher fold enrichment. In the current 

Progenesis QIP output, 218 proteins had were more abundant in cancer patient and 47 

of them had a p-value below 0.05. However, after BH correction for multiple testing, 

only 6 proteins were classed as being significantly upregulated. Of the proteins more 

abundant in cancer patients with a p-value < 0.05 but a BH corrected p-value > 0.05, 

there were 16 with a greater than 2-fold change, suggesting that the best method for 

correcting for multiple testing may not be the most appropriate for this dataset. The 

original paper for PXD004501 identified characteristic functions in the ascites proteome 

data: movement of cell, locomotion, cell adhesion, immune response, response to 

wounding, calcium ion binding and peptidase inhibitor activity, extracellular 

components and regulation of kinase activity. Enrichment analysis of the upregulated 

proteins from the optimal analysis produced more terms related to those functions than 

enrichment analysis of the proteins identified as upregulated in cancer tissue in the by 

the original paper. The optimal analysis also successfully classed the protein marker 

identified by the paper as being upregulated in cancer tissues. However, the current 

Progenesis QIP output did not. These results provide biological validation for the 

pipeline proposed in this chapter.  
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PXD004682 

 
Figure 4.3.8; Enrichment analysis to results from optimised pipeline analysis of dataset PXD004682. DE analysis by BayesianT (orange) and t-test (blue) of protein abundances 

(identified with by minimum of one unique peptide) and normalised by the method shown in the x-axis strip. DE proteins identified using the significance threshold on the x-axis 
(number of proteins shown as solid line) were subjected to pathway analysis. Number of significant enrichment terms are shown as points.    
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A summary of the functional enrichment results from the analysis of dataset 

PXD004682 is shown in Figure 4.3.8. Here the t-test gave optimal performance 

combined with central tendency based normalisations AIN (column 2) and TIN (column 

4). The best performance appeared to occur around the significance threshold 0.005, 

which is relatively lenient in terms of the range of thresholds applied by the pipeline, 

but much more stringent then the generally accepted 0.05. Interestingly, in the best 

parameter combination this still allowed a large proportion of proteins to be defined as 

DE; 1176 for t-test DE analysis, TIN and significance threshold of 0.004, producing 162 

significant terms. The BayesianT method for DE was not as successful as the classic t-

test and appeared to work best with linear modelling based normalisation methods RLR 

and Loess (columns 5 and 6) and still required a relatively stringent significance 

threshold of below 0.0001 for success. 

A comparison of the output from a standard Progenesis QIP output is (Progenesis 

normalisation and Welsh’s t-test using common significance thresholds of 0.01, 0.05, 

and 0.1 for defining DEs) is summarised in Table 40 and produced 666, 1226, and 1515 

DE proteins, respectively. However, GO Enrichment analysis of the assigned DE proteins 

using clusterProfiler only returned 40, 54 and 52 significantly enriched terms, 

respectively. The Progenesis normalisation method employs a form of central tendency 

normalisation, similar to the successful methods employed in the pipeline, and manages 

to provide some amount of functionally related proteins. The key to the pipeline’s 

success with this dataset appears to be the more stringent threshold for significance, 

which will have limited the number of false positives included in the DE group, 

providing better functional enrichment results. 

Table 40; Enrichment analysis results for the dataset PXD004682 from the optimised pipeline and Progenesis output at 
standard significance threshold of 0.01, 0.05, and 0.1. 

DE method Normalisation Threshold Number of DE 
proteins 

Number of significant 
terms 

t-Test TIN 0.004 1176 162 

t-Test Progenesis 0.01 666 44 

t-Test Progenesis 0.05 1226 59 

t-Test Progenesis 0.1 1513 56 
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The original paper for PXD004682 (Stewart et al., 2017) aimed to compare methods of 

sample preparation and MS data acquisition using greatest coverage as a metric to see if 

increased instrument time was justified for increasing protein identification in large 

scale proteomics studies. Data-dependent acquisition was compared to data-

independent acquisition and label-free quantification was compared to TMT. We used 

the publically available data (PXD004682) for the label-free DDA experiment which was 

a pairwise comparison between lung squamous cell carcinoma and adjacent tissue. Our 

optimal analysis pipeline (t-test for DE analysis, TIN, and a significance threshold of 

0.004) provided 1159 proteins being identified as upregulated in cancer tissue as 

opposed to 312 proteins with the current Progenesis QIP output. 

In the original paper for the dataset PXD004682, Stewart et al. (2017) performed 

enrichment analysis using PANTHER (Protein ANalysis THrough Evolutionary 

Relationships) (Mi et al., 2016) GO-Slim functional classifications and assessed the 

ability of the analysis methods to identify proteins involved in biomarker candidates 

and selected lung cancer pathways (Stewart et al., 2015). To compare our results with 

those of the original paper, Gene List Analysis was performed using the PANTHER 

webpage (Version 17.0, http://www.pantherdb.org/) on the upregulated proteins from 

our optimal analysis, from the current Progenesis output, and the biomarker candidates 

identified in the original paper (Supporting Information, ‘Table S4’) to compare the 

amount of shared terms. PANTHER analysis of the identified biomarker candidates 

provided 1507 enriched terms. PANTHER analysis of the proteins from our optimal 

analysis and the current Progenesis QIP output produced 705 and 620 terms, with 705 

and 571 of those terms being shared with the PANTHER analysis terms from the 

biomarker candidate, respectively (Table 41).  

 

 

 

  

http://www.pantherdb.org/
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Table 41; Number of enrichment terms from PANTHER analysis of proteins classed as being upregulated by optimal analysis 
and the current Progenesis output, and the number of terms shared with PANTHER analysis of biomarker candidates 

identified by Stewart et al. (2017) 

Source of upregulated proteins Number of enriched terms 
with panther analysis 

Number of enriched terms 
shared with panther analysis 

of biomarker candidates 

Optimal analysis 705 627 

Progenesis analysis 620 571 

 

Furthermore, the resulting PANTHER ontology terms were searched for terms 

associated with the lung cancer pathways: ‘Apoptosis and survival - apoptotic TNF-

family pathways’, ‘Apoptosis and survival - p53-dependent apoptosis’, ‘Development - 

Dopamine D2 receptor transactivation of EGFR’, ‘G-protein signaling - K-RAS regulation 

pathway’, ‘Immune response- NFAT in immune response’, and ‘Stimulation of TGF-beta 

signaling in lung cancer’ as described in the original paper. Compared to the current 

Progenesis QIP output, the optimal analysis provided a greater number of GO-Slim 

functional classifications that were associated with the selected lung cancer associated 

pathways (Table 42).  

The results demonstrate that the proteins classed as being upregulated by the optimal 

analysis had associated functions related to the original experiment the dataset was 

obtained from, and that more functionally related terms were obtained from the 

optimal analysis that from the current Progenesis analysis. Furthermore, compared to 

the current Progenesis QIP output, the optimal analysis provided more enriched 

functional terms (705 compared to 620) with more terms shared with terms with the 

PATHER analysis from the biomarker candidate proteins from the original paper (627 

compared to 571). 
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Table 42; Number of GO-Slim functional classifications associated with selected lung cancer pathways identified by Stewart 
et al. (2017) for proteins upregulated in cancer tissue identified by the pipeline’s optimal analysis and by the current 

Progenesis QIP output 

Lung cancer pathways and associated terms 
Number of associated terms   

Progenesis optimal  

Common terms for several lung cancer pathways   

Apoptotic process 4 13 

Cell death 8 13 

Cell migration 6 11 

Cell proliferation 3 10 

Cell signaling 2 3 

Programmed cell death 4 6 

Protein phosphorylation 2 9 

Receptor signaling pathway 17 33 

Signal transduction 19 34 

Synaptic transmission 2 4 

Transcriptional regulation 0 1 

   

Apoptosis and survival: Apoptotic TNF-family pathways   

Extrinsic apoptotic signaling pathway 3 4 

Intrinsic apoptotic signaling pathway 2 6 

Proteolysis 4 8 

   

Apoptosis and survival: p53-dependent apoptosis   

Protein modification process 2 12 

Protein stability 0 3 

   

Development: Dopamine D2 receptor transactivation of EGFR   

Dopamine signaling pathway 0 5 

Neurotransmitter secretion 4 0 

   

G-protein signaling: K-RAS regulation pathway   

Cell growth and/or maintenance 3 6 

   

Immune response: NFAT in immune response   

Cytokine production 1 12 

Gene expression 3 19 

Immune response 12 29 

   

Stimulation of TGF-beta signaling in lung cancer   

Angiogenesis 3 7 
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PXD007592 

 
Figure 4.3.9; Enrichment analysis to results from optimised pipeline analysis of dataset PXD007592. DE analysis by BayesianT (orange) and t-test (blue) of protein abundances 

(identified with by minimum of one unique peptide) and normalised by the method shown in the x-axis strip. DE proteins identified using the significance threshold on the x-axis 
(number of proteins shown as solid line) were subjected to pathway analysis. Number of significant enrichment terms are shown as points. Significant terms and number of DE 

proteins were not included for QPROT AIN analysis at significance threshold of 0.1 and 0.09 as all proteins were defined as DE (3079 proteins with zero significant terms) causing 
distortion of the plots.  
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A summary of the functional enrichment results from the analysis of dataset 

PXD007592 is shown in Figure 4.3.9. The BayesianT method for DE combined 

with the transformation based normalisations, log2 (column 1), and to a lesser 

degree VSN (column 8, orange data), along with quantile normalisation gave the 

most functionally related proteins, but required a much less stringent 

significance threshold than previously seen with the BayesianT (best results 

were 105 significant terms from 194 DE proteins at significance threshold of 

0.1). The classic t-test was less successful with this data, often calling very few 

proteins DE. However, even with central tendency based normalisation 

methods AIN and TIN (columns 2 and 4) and a lenient significance threshold, 

where more proteins were called DE than with the BayesianT, functional 

enrichment within these proteins was low, meaning that the low significance 

threshold was merely allowing an increased number of false positives to be 

identified as DE. 

A comparison of the output from a standard Progenesis QIP output is 

(Progenesis normalisation and Welsh’s t-test using common significance 

thresholds of 0.01, 0.05, and 0.1 for defining DEs) is summarised in Table 43 

and produced 2, 10, and 27 DE proteins, respectively. However, GO Enrichment 

analysis of the assigned DE proteins using clusterProfiler only returned 4 

significantly enriched terms, at the 0.05 threshold.  

Table 43; Enrichment analysis results for the dataset PXD007592 from the optimised pipeline and Progenesis 
output at standard significance threshold of 0.01, 0.05, and 0.1. 

DE method Normalisation Threshold Number of DE 
proteins 

Number of 
significant terms 

BayesianT Log2 transformation 0.1 194 105 

t-Test Progenesis 0.01 2 0 

t-Test Progenesis 0.05 10 4 

t-Test Progenesis 0.1 28 0 

 

MAPKi therapy can be extremely effective in treatment of cerebral metastases 

from BRAF mutated melanoma. However, acquired drug resistance rates within 

6-8 months are high (McArthur et al., 2014). The original paper for the dataset 

PXD007592 by Zila et al. (2018) compared samples from cerebral metastases of 

melanoma patients of those classed as good responders to MAPKi therapy 
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(progression-free survival ≥ 6 months) compared to poor responders 

(progression-free survival ≤ 3months) of the treatment. Of the 194 proteins 

classed as DE by the optimal combination of methods 182 were upregulated in 

good responders and 12 were upregulated in poor responders. Progenesis QIP 

analysis using BH corrected p value of 0.05 for significance gave 5 proteins 

upregulated in good responders and 5 upregulated in poor responders.   

In the original experiment by Zila et al. (2018) the authors highlight 34 proteins 

in the good responder group that are involved in the immune response, cell 

adhesion in the immune response, are apolipoproteins, or are extracellular 

matrix components. Of the 194 proteins classified as DE by the optimal analysis 

method in our experiment, 7 of the proteins from the original paper were 

classed as DE, plus a further 15 proteins belonging to the same subgroups not 

highlighted in the original paper. Furthermore, an additional 15 proteins with 

functions related to the complement and coagulation cascade were also classed 

as DE. Details of these proteins of interest are summarised in Table 44. By using 

a less conservative cut-off threshold and not taking into account a minimum 

fold change, the pipeline was able to consider more subtle changes in 

abundance between conditions which resulted in the inclusion of extra proteins 

of interest. Only three proteins had BH corrected p-values below 0.05, meaning 

34 potentially important proteins would have been missed if the analysis had 

been performed using the current Progenesis QIP pipeline. 
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Table 44; Summary of proteins upregulated in good responders to MAPKi therapy that are related to the 
functions highlighted by Zila et al. (2018) as classified by the optimal analysis 

UniProt ID Protein name 
Log2 fold 
change 

BH p value 
Bayesian T 

FDR 
 Immune response related proteins    

P01889 HLA class I histocompatibility antigen, B alpha chain 1.71 0.611 0.002736 

P01903 
HLA class II histocompatibility antigen, DR alpha 
chain 

2.38 
0.646 

0.027450 

P01594* Immunoglobulin kappa variable 1-33 3.07 0.629 0.029071 

P01597 Immunoglobulin kappa variable 1-39 0.25 0.577 0.078188 

P01593 Immunoglobulin kappa variable 1D-33 1.57 0.599 0.022865 

P01619 Immunoglobulin kappa variable 3-20 2.00 0.511 0.078645 

P06312 Immunoglobulin kappa variable 4-1 1.39 0.577 0.023603 

P08514 Integrin alpha-L 5.26 0.118 0.000675 

P04083 Annexin A1 1.28 0.611 0.009092 

P05109 Protein S100-A8 1.35 0.612 0.052788 

P06702 Protein S100-A9 1.76 0.599 0.016052 

 Apolipoproteins    

P02647* Apolipoprotein A-I 0.93 0.488 0.041272 

P06727* Apolipoprotein A-IV 2.75 0.118 0.000003 

P04114* Apolipoprotein B-100 1.33 0.059 0.000255 

 Extracellular matrix (ECM) components    

P02452* Collagen alpha-1(I) chain 2.77 0.655 0.030311 

P12109 Collagen alpha-1(VI) chain 2.95 0.655 0.033266 

P39059* Collagen alpha-1(XV) chain 3.36 0.646 0.017357 

P12110 Collagen alpha-2(VI) chain 3.30 0.595 0.000613 

P12111 Collagen alpha-3(VI) chain 2.89 0.611 0.000499 

P02751* Fibronectin 1.67 0.642 0.044443 

P23142 Fibulin-1 1.42 0.665 0.075334 

Q13201 Multimerin-1 3.95 0.697 0.024751 

 Coagulation and complement cascade proteins    

P00488 Coagulation factor XIII A chain 2.02 0.611 0.026127 

P01042** Kininogen-1 0.96 0.008 0.000318 

P01008 Antithrombin-III 0.78 0.201 0.021107 

P02675 Fibrinogen beta chain 2.98 0.507 0.000083 

P02671 Fibrinogen alpha chain 2.98 0.507 0.000474 

P02679 Fibrinogen gamma chain 2.89 0.595 0.000593 

Q14112 Nidogen-2 1.89 0.653 0.027030 

P35555 Fibrillin-1 2.36 0.678 0.046089 

P06681 Complement C2 0.80 0.087 0.019176 

P0C0L4** Complement C4-A 0.99 0.028 0.004501 

P13671** Complement component C6 1.48 0.003 0.000040 

P07358 Complement component C8 beta chain 1.18 0.109 0.000218 

P02748 Complement component C9 0.64 0.321 0.015037 

P08603 Complement factor H 0.60 0.611 0.092305 

P10909 Clusterin 1.28 0.461 0.005979 

* Protein was classed as DE by analysis in PXD007592 paper 
** Protein was classed as DE by current Progenesis QIP pipeline 
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Of the remaining 27 proteins originally highlighted in the good responder group 

by Zila et al., 16 were not identified in our pre-processing and four of them were 

down regulated according to the Progenesis QIP quantification values. The 

remaining seven that were not classified as DE by the optimal analysis are 

described in Table 45. BH corrected p-values ranged from 0.61 – 0.96, meaning 

if the analysis had been performed using the current Progenesis QIP pipeline, 

again none of these proteins would have been selected as DE. 

Table 45; Summary of proteins highlighted by Zila et al. (2018) that were upregulated in good responders to 
MAPKi therapy missed by the optimal analysis 

UniProt 
ID 

Protein name 
Log2 fold 
change 

BH p value 
Bayesian T 

FDR 

P01857 Ig gamma-1 chain C region 0.31 0.61 0.265 

P01834 Ig kappa chain C region 0.67 0.65 0.182 

Q05707 Collagen alpha-1(XIV) chain 3.13 0.76 0.133 

P01871 Ig mu chain C region 1.49 0.81 0.444 

P16284 Platelet endothelial cell adhesion molecule 2.39 0.90 0.658 

P08123 Collagen alpha-2(I) chain 1.60 0.90 0.684 

Q5Y7A7 HLA class II histocompatibility antigen, DRB1-13 beta chain 0.30 0.96 1.000 

 

To investigate the biological relevance of the changing proteins, pathway 

enrichment was performed for the upregulated proteins based on GO terms for 

biological process, cellular component, and molecular function, along with 

KEGG pathways using ClusterProfiler. Figure 4.3.10 displays the enriched KEGG 

pathways from the optimal analysis and the current Progenesis QIP pipeline. In 

comparison to Progenesis QIP analysis, the optimal method has a higher 

number and more significant results, along with a higher gene ratio. In the 

original paper, only the ‘Complement and coagulation cascades’ KEGG pathway 

was enriched with this dataset. This pathway also appeared in the results from 

both the optimal and Progenesis QIP analysis. Additionally, the optimal analysis 

also provided significant enrichment in several other relevant pathways: Tight 

junctions are intracellular adhesion complexes that help establish epithelial cell 

polarity which prevents cancer cell invasion and tumour progression (Martin-

Belmonte and Perez-Moreno, 2012). Chen et al. (2019) identified ‘amoebiasis’, 

‘ECM-receptor interaction’ and ‘focal adhesion’ signaling pathways as being 

important in the formation of metastases from melanoma. The actin 
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cytoskeleton pathway regulates cell motility, which is required for immune 

surveillance and helps prevent cancer invasion and metastasis (Li et al., 2016). 

Proteoglycans are key macromolecules that are involved in proliferation, 

adhesion, angiogenesis and metastasis of cancer. Furthermore, Zila et al. (2018) 

discuss the relevance of the up-regulated immune response related proteins in 

the good responders. Our analysis provides further evidence of an activated 

immune system in good responders through the enrichment of the disease 

pathways ‘Systemic lupus erythematosus’, ‘Staphylococcus aureus infection’, 

‘Human papillomavirus infection’, ‘Coronavirus disease – COVID-19’, and 

‘African trypanosomiasis’.  

 

Figure 4.3.10; KEGG pathways mapped by upregulated proteins in the good responders to MAPKi therapy by 
optimal and Progenesis analysis.  
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Figure 4.3.11; Most significantly enriched GO BP terms following hierarchical clustering based on the pairwise 
similarities of high frequency words mapped by upregulated proteins in the good responders to MAPKi therapy 

by optimal and Progenesis analysis.  

 

Figure 4.3.11Figure 4.3.11 summarises the most significantly enriched GO BP terms 

following hierarchical clustering based on the pairwise similarities of high 

frequency words, which was performed to improve interpretation of the large 

number of enriched terms. The main subtrees contain processes belonging to 

coagulation, the immune response, and cell stabilization and regeneration 

which are processes relevant to the main pathways discussed in the original 

paper. However, Zila et al. only describe 9 enriched BP pathways in the good 

responders. Our analysis discovered 75 enriched BP terms after redundancy 

was removed using simplify(). 
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Figure 4.3.12; Most significantly enriched GO CC terms following hierarchical clustering based on the pairwise 
similarities of high frequency words mapped by upregulated proteins in the good responders to MAPKi therapy 

by optimal and Progenesis analysis. 

 

Figure 4.3.12 summarises the most significantly enriched CC terms following 

hierarchical clustering. The original paper only discovered two significantly 

enriched terms: extracellular region and matrix. Our optimal analysis contained 

41 significantly enriched terms including terms associated with ECM and also 

wound healing. 

Enrichment analysis provided 29 significant GO MF terms. Following 

hierarchical clustering, these are summarised in Figure 4.3.13. The main 

subtrees contain processes belonging to calcium-dependent ECM receptors, 

DNA binding, structural constituents of ribosomes and the myelin sheath, and 

carboxypeptidase activity. There were a large number of terms related to 

calcium-dependent ECM receptors which is potentially of interest as the 

calcium sensor receptor has been identified as a potential prognostic marker for 



Optimising the statistical pipeline for quantitative proteomics 

 

251 
 

metastasis (Tharmalingam and Hampson, 2016). The original paper did not 

uncover any enriched MF pathways in the good responders.  

 

Figure 4.3.13; Most significantly enriched GO MF terms following hierarchical clustering based on the pairwise 
similarities of high frequency words mapped by upregulated proteins in the good responders to MAPKi therapy 

by optimal and Progenesis analysis. 

 

Our optimal analysis was provided by using log2 transformed abundances and 

Bayesian t-test for DE analysis with a 0.1 FDR. Use of this relatively generous 

cut-off threshold without the constraints of a minimum fold-change parameter 

provided more enriched terms than current Progenesis QIP pipeline, many of 

which had been highlighted as interesting in the original paper for the dataset 

PXD007592. In good responders to MAPKi therapy, our analysis derived some 
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of same proteins and also additional proteins with similar functions. Our 

analysis also provided more information than in the original paper with a 

greater number of significant pathways with potentially interesting terms 

requiring further investigation.  

The original paper for dataset PXD007592 identified 5977 proteins using 

MaxQuant software with the Andromeda search engine. Original DE analysis 

was conducted using the Perseus statistical analysis package which applied a 

two-sided Student’s t-test. A p < 0.05 with an FDR based permutation correction 

along with a minimum of two-fold abundance difference resulted in 1907 

proteins being defined as changing in abundance between good and poor 

responders to MAPKi treatment. Due to processing difficulties, only three out of 

the five out of the six good responder samples were included in processing the 

raw data using Progenesis QIP. The outcome of this, along with the effect of 

using different software to process this experiment (Progenesis QIP and Mascot 

as opposed to MaxQuant and Andromeda) resulted in identification of only 

3098 protein groups and the optimal analysis occurred when just 194 proteins 

were classed as DE. To make direct comparison to the original paper would 

require using MaxQuant data and identical protein quantification inputs. 

Proteins highlighted as being important in the original paper that were missed 

from being identified as DE by our optimal analysis, were all accompanied by 

BH corrected  p-values greater than 0.05, and therefore would not have been 

identified as changing by the original paper if they had used our quantification 

data. Progenesis processing of the raw data also produced different log fold 

change values which resulted in some of the proteins being classed as 

upregulated in the original paper but downregulated according to our 

quantification analysis. The aim of this benchmarking was to provide a metric 

with which to compare analysis in order to improve Progenesis QIP output 

therefore processing with other software was not included. However, based on 

the promising performance of the pipeline. It would be useful expand its 

application to include MaxQuant input data and to reanalyse this data in future 

work. 
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Overall analysis 

Overall, the proteins identified as being DE by the optimal analysis provided 

better biological context that related to the original experiments than those 

identified using current the Progenesis pipeline. Enrichment analysis of these 

proteins produced terms similar to those in the original experiments often with 

higher gene ratios and more significant terms, along with further terms possibly 

relevant to the disease investigated not discussed in the original paper. The 

comparison or our analysis to that of the original paper was limited by different 

processing methods of the raw data. The datasets were chosen to provide large 

protein lists with which to demonstrate the software and we were bound by 

Progenesis QIP analysis as this was the focus of project. However, our 

processing did not identify all proteins from original papers. Progenesis QIP 

processing provided a different amount of identified proteins with different 

quantification values. Furthermore, the biological context discussed in the 

papers was obtained from a combination of strategies, such as in-depth 

proteome profiling, targeted approaches, and validation, rather than just the 

pairwise comparison of the data used in our analysis.  We attempted to 

overcome this problem for datasets PXD004501 and PXD004682, by 

performing our own enrichment analysis on the list of DE proteins was supplied 

as supplementary material and using this establish the relevance of our results.  

Looking at the analysis over all of the datasets, using the classic t-test for DE 

analysis appeared to work better with the central tendency normalisation 

methods of AIN and TIN. For BayesianT analysis, transforming the data using 

VSN or log2 often provided the best combination. Developing this pipeline 

further, it may become apparent that only specific DE and normalisation 

combinations may be necessary, reducing the computational running time. 

However, further testing will be required before this becomes apparent.  

When comparing results to the original experiments it appeared that the BH 

correction of p-values may have prevented the current Progenesis QIP output 

from identifying proteins of interest from being classed as DE. In the original 

analysis of dataset PXD004501, the authors concluded that protein POSTN was 

a significant biomarker for gastric cancer and peritoneal seeding. Highlighted as 
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being upregulated by our optimal analysis, t-test provided a p-value of 0.05 that 

was BH corrected to 0.14, meaning the protein was missed from this analysis, 

highlighting the problems with using an arbitrary cut-off value for significance 

and methods to correct for multiple testing. A limitation of this chapter has 

been using different threshold metrics to compare DE analysis. In future work, 

an alternative method could be implemented where the test statistic is used to 

rank proteins, then gradually increasing proportions of more significant 

proteins are used as the test set for pathway analysis.  

The implementation of clusterProfiler was a much improved implementation 

over RDAVID. There were no technical issues in executing the software, and the 

addition of the simplify() function gave condensed terms which are easier to 

interpret. Even with redundant terms removed, there were occasions when a 

greater number of significant terms were produced, presumably due to the 

querying of current ontologies. However, there is a limitation in performing a 

direct comparison between the results and those of Chapter 3 as the log 

transformation was performed at different stages. This is addressed in the next 

section where QPROT analysis is performed on data normalised using this 

pipeline. 

Currently the software is only able to perform pairwise comparisons. It would 

be useful to extend the software to allow for group comparison. This could be 

possible with some amendment to the algorithm by providing a comparison 

matrix. It will also be possible to add further options for normalisation and DE 

analysis through additional algorithms written in R. 
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ii. Comparison to QPROT output 

650 iterations 

 
Figure 4.3.14; Enrichment analysis of results from optimised pipeline analysis of datasets. DE analysis by BayesianT (orange) using 650 iterations of sampling with 325 iterations for the 

burnin and QPROT (brown) of protein abundances (identified with by a minimum of one unique peptide) and normalised by the method shown in the x-axis strip. DE proteins identified using 
the significance threshold on the x-axis (number of proteins shown as solid line) were subjected to pathway analysis. Number of significant enrichment terms are shown as points. 
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2000 iterations 

 

Figure 4.3.15; Enrichment analysis of results from optimised pipeline analysis of datasets. DE analysis by BayesianT (orange) using 2000 iterations of sampling with 1000 iterations for the 
burnin and QPROT (brown) of protein abundances (identified with by a minimum of one unique peptide) and normalised by the method shown in the x-axis strip. DE proteins identified using 

the significance threshold on the x-axis (number of proteins shown as solid line) were subjected to pathway analysis. Number of significant enrichment terms are shown as points. 
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Initial comparison of the Bayesian T with 650 iterations for sampling and 325 

for burnin analysis against QPROT analysis of the same data (Figure 4.3.14) 

shows similar output for the low ranking normalisation methods for dataset 

PXD004501 (Figure 4.3.14, row 1). QPROT analysis performed better when the 

data was normalised with MIN, and Bayesian T gave better performance with 

AIN and VSN. However, increasing the number of iterations to 1000 and 2000 

for sampling and burnin, respectively (Figure 4.3.15;5, row 1), reduced the 

effectiveness of the best normalisations for Bayesian T analysis, leaving QPROT 

as the better analysis method.   

For dataset PXD004682 (Figure 4.3.14, row 2), the performance was the same 

for Bayesian T and QPROT, except for data normalised with AIN, MIN, and TIN, 

where QPROT analysis was superior. When the sampling iterations were 

increased to 2000 with 100 burnin (Figure 4.3.15;, row 2), Bayesian T analysis 

was improved and gave a similar performance to that of QPROT.  

In dataset PXD007592 (Figure 4.3.14, row 3), QPROT analysis was superior to 

Bayesian T with AIN and TIN data, and Bayesian T analysis was superior with 

Quantile normalised data. All other normalised data had similar outputs. With 

increasing sampling and burnin iterations (Figure 4.3.15;5, row 3), Bayesian T 

performance improved, except with VSN and quantile normalisation.  

Increasing the sampling number improved the performance of the Bayesian T 

for some normalisation methods in two of the datasets. However, these results 

show both increased sampling and burnin number, causing a drop in 

performance for some normalisation methods. This indicates that a large 

number of iterations along with a small number of burnin iterations could give 

optimal output in some cases. However, this will increase the length of time that 

the program will run, and further work is required to assess the trade-off 

between processing speed and optimal analysis. The results demonstrate the 

importance of selecting the appropriate number of iterations for sampling and 

indicate that there are limitations to the results described in section 4.3.i, as this 

additional parameter has not been taken into account.  
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4.4. Conclusions 

In this chapter, we developed, validated and implemented an optimised pipeline 

that utilises HPC for parallelisation of multiple combinations of methods for DE 

analysis, normalisation and significance threshold selection. Functional 

enrichment analysis of proteins defined as DE was applied as a metric to 

determine the most successful combination of methods and the results are 

returned to the user. The implementation of the BayesianT algorithm for DE 

analysis and local FDR estimation into the R pipeline were successfully 

validated to perform as well or better than original software. The application of 

clusterProfiler and the simplify() function reduced the issue of redundancy in 

enrichment analysis, and provided up-to-date enrichment analysis along with 

improved functionality compared to RDAVID. Analysis of datasets from Chapter 

3 showed the optimised pipeline’s performance was superior to a standard 

analysis using Progenesis QIP. 
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Chapter 5. Thesis conclusions and outlook 

Summary of thesis results 

Proteomics is the study of the quantity of proteins in a cell, tissue or organism. 

The abundance of each protein in a cell is governed by gene expression and 

protein degradation, and can, for example, provide insights into biological 

response to disease. Quantitative proteomics experiments compare the amount 

of protein in a sample at a different time or under different conditions. Label-

free quantitative proteomics utilises high-throughput MS for global analysis of 

complex samples which provides information about the absolute or relative 

differences in protein quantities between samples.  

A key step in quantitative proteomics is deciding which proteins are changed in 

abundance between sample groups, using statistical techniques i.e. DE analysis.  

DE analysis allows us to determine which proteins are changing across samples, 

highlighting potential biomarkers, reveals protein involvement in metabolic 

pathways or facilitates research into drug discovery for treatment and 

prevention. Such experiments produce vast amounts of data requiring 

dedicated software for analysis, and statistical methods to confidently define 

proteins changing in abundance due to experimental conditions. However, due 

to the properties of proteomics data there can be problems reliably comparing 

conditions. Small sample sizes containing a large number of features provide 

large sample-to-sample variation with outliers distorting analysis and creating 

false positives when analysed with the commonly used t-test. The main aim of 

this Industrial CASE PhD studentship, in collaboration the developers of 

Progenesis QIP, was to provide an improved statistical pipeline that could be 

implemented in the Progenesis QIP workflow. 

In Chapter 2, three approaches to DE were evaluated; linear modelling using the 

MSstats package, and Bayesian analysis using QPROT, alongside Welsh’s t-test, 

the current DE analysis method offered by Progenesis QIP in the form of 

ANOVA. Benchmarking was carried out using the common practice of analysis 

of artificial spike-in datasets to simulate a biological situation where known 

proteins change across conditions. Having a ‘ground truth’ allows us to 
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demonstrate how well the analysis methods are able to detect the proteins that 

we know are of different abundances between sample groups. However, the 

results of the benchmarking exercise were inconclusive and further 

investigation of spike-in data revealed problems with its accuracy and 

precision, undermining the results of the software evaluation. Further issues 

are that technical replicates common in benchmarking data lack inherent 

biological variation provide poor representation of the proportion of proteome 

changing and the directions in which change occurs. Artificial data limits scope 

and impairs the statistical power of an experiment. However, in a typical 

benchmarking exercise, authentic biological data cannot be used, as we do not 

know the true number of changing proteins with which to calculate sensitivity 

and specificity. These problems led to the development of a novel profiling-

based alternative method for statistical analytical evaluation that does not rely 

on the use of artificial spike-in data.  

In Chapter 3, we defined and tested a benchmarking method that relied on the 

results of enrichment analysis for evaluation of software. Quantitative 

proteomics experiments are usually followed by downstream analysis, with the 

aim of discovering many functionally related groups within the changing 

proteome. Pathway enrichment analysis provides biological context to the DE 

results, and a greater number of significant terms would be expected from an 

accurate analysis, as the change in abundance would be linked to functionality. 

The method was used to assess DE analysis, normalisation techniques and the 

selection of the most appropriate significance threshold using three biological 

datasets. The results highlighted the importance of applying the optimal 

normalisation method in DE analysis. However, overall there was no one clear 

optimal method and the effect of combining methods differed depending on the 

characteristics of the individual datasets. Following this analysis, going forward 

the sensible outcome appeared to be to develop a pipeline that was able to 

perform simultaneous analysis of the possible parameter combinations in 

parallel, evaluate the results using functional enrichment, and return details of 

the best workflow for that particular dataset to the user, along with DE proteins 

and pathway analysis details. 
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Chapter 4 describes the development and implementation of an optimised 

pipeline. Implemented as bash script initiated Rscripts, the pipeline runs on a 

Linux server on an HPC, allowing parallelisation of computationally heavy 

stages of analysis. The pipeline provides eight methods for normalisation using 

the Normalyzer DE package. There are two methods for DE analysis; Welch’s 

two-tailed t-test and an implementation called ‘BayesianT’ written in R and 

Rstan, and inspired by principles employed in the QPROT package. A large 

range of significance thresholds are used for defining DE proteins and pathway 

analysis is performed using the R package clusterProfiler to decide which 

combination of parameters provides the most functionally related group of DE 

proteins. The pipeline was validated and the demonstrated using the biological 

datasets from Chapter 3. To our knowledge, this is the only end-to-end pathway 

analysis pipeline designed for proteomics data, enabling users to iterate 

through multiple options for finding the best normalisation method and the 

best significance threshold for pathway analysis. 

 

Further work 

Currently the running of the package takes several hours, depending on the 

cluster availability and the size of the dataset being analysed. Areas to 

potentially reduce the running time could be to perform a screening run with a 

smaller number of significance threshold iterations. The results of this may 

indicate the range where the optimal significance threshold is likely to be, 

allowing a second run with smaller increments within this range only. Also, 

implementing a minimum and maximum proportion of proteins being called as 

DE before proceeding to perform enrichment analysis on these would also 

reduce running time as the results in Chapter 4 showed there appeared to be a 

sweet spot between too many or too few DEs. Dataset with hundreds of 

proteins are unlikely to produce the best enrichment results if a stringent 

significance threshold means only one or two proteins are being labelled as DE, 

and likewise if the significance threshold is lenient and identifies most of the 

proteins as changing. Further work must also be carried out to assess the 

optimal running of the sampling in the Bayesian T. Increasing the number of 
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iterations for sampling and using a small number of burnin iterations will 

increase the length of time that the program runs, and this trade-off between 

performance and processing speed requires assessment.  

Current installation of the pipeline is through GitHub download to be run on a 

Linux server. There is further work planned to improve the pipeline and 

provide it as a publication ready wrapped package through containerisation. 

Containerisation software provides portability through encapsulation of entire 

environments including dependencies, libraries, runtime code and data. A 

container is a secure, standardised, and efficient method for sharing package 

software without the need for local installation. Software compiled on different 

platforms requires specific libraries and compilers. Containerising software 

allows it to run reliably when moving between computing environments giving 

reproducibility as binaries and libraries are packaged up so that software uses 

the same files to run each time. A popular container is Docker (Merkel, 2014). 

Originally designed for businesses, it is useful for network centric web servers 

and databases rather than HPC systems. It was designed for trusted users 

running trusted containers through root access rather than batch job 

schedulers or Message Passing Interface applications for HPC clusters. Docker 

containers have are isolated and have no access to the host file system. Another 

methods for containerisation is Singularity, developed by Kurtzer et al. (2017). 

Singularity runs on a no trust security model and container models can be run 

without root access. Entering a container without root privileges prevents 

escalation of root privileges within the container. The container is built on a 

local Linux system that you have root access to using a definition file which is a 

list of software requirements of the custom container (Sylabs.io, 2021). The file 

specifies the type of OS, software, environment variables to set at runtime, files 

to add from the host system and container metadata. The container is then 

transferred to the HPC system where it will be run. Implementation of 

containerisation using Singularity, plus the addition of a graphical user interface 

are the intended next stages of work in order to provide publication ready 

software. It would also be useful to add Reactome and Kegg pathways analysis 

for more comprehensive results. New releases of ReactomePA will be 
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monitored for inclusion when there is an opportunity to employ the simplify() 

function for reducing redundancy, and clusterProfiler will be monitored for 

offline KEGG queries.  

Limitations 

Processing of both our benchmarking data and our biological data was 

performed using Progenesis QIP with peak picking set to maximum. This was 

conducted as previously unpublished work from our group had demonstrated 

that this gives the best performance from the software. However, this change 

from default parameter use is different from the method employed by the 

typical biologist, affecting the applicability of our results. A further limitation is 

in the blanket imputation of 0.0000001 for zero values. There is no current 

consensus on the appropriate method to deal with missing data in proteomics. 

However, due to Progenesis QI’s alignment algorithm, it is claimed that zero 

abundance values in its analysis are true missing proteins and are appropriate. 

Therefore, due to the focus of this thesis being Progenesis QIP data, missing 

value methods were not investigated and imputation was performed to prevent 

problems due to division of zeros. Although we investigated the impact of this 

imputation and found it to be negligible, this does affect the wider application of 

the pipeline and must be considered in further work and the full treatment of 

imputation of missing values would be an interesting future addition to the 

pipeline. 

In our analysis, we compared DE analysis methods that used different metrics 

for calculating significance cut-off thresholds, QPROT (FDR) and t-test and 

MSstats (BH corrected p-values). This makes direct comparison difficult and 

may have prevented optimal output from being captured. Our aim was to 

recreate conditions applied by a biologist and to highlight problems with 

application of arbitrary cut-off thresholds. However, in future work an 

alternative method will be considered where proportions of proteins ranked on 

their test statistic are used, allowing like for like comparison of performance.  

A further limitation is that the pipeline’s performance was assessed using a 

default number of iterations for sampling and burnin. However, further analysis 



Optimising the statistical pipeline for quantitative proteomics 

 

264 
 

found that increasing the sampling number improved the performance of the 

Bayesian T for some normalisation methods in two of the datasets. This 

demonstrates that selecting the correct parameter should be taken into account. 

  

Conclusions 

The aim of this project was to provide an improved statistical pipeline that 

could be implemented in the Progenesis QIP workflow. Following 

benchmarking existing differential expression methods using ground truth data, 

a novel technique was developed to benchmark using biological data and 

functional enrichment analysis to provide an evaluation metric. We then 

developed, validated and implemented an optimised pipeline that utilises HPC 

for parallelisation of multiple combinations of methods for DE analysis, 

normalisation and significance threshold selection. The most successful 

combination of methods and the differential expression analysis results are 

returned to the user. It was shown that the output provided more functionally 

enriched groups of proteins that would have been achieved with the current 

output of Progenesis QIP, indicating that the pipeline would be a successful 

improvement to the present Progenesis QIP workflow.  

 

Supplementary material 

Link to OneDrive folder 

https://1drv.ms/u/s!AhU3p9jJHqUNn8FByup3CzsiCASCTA?e=FnUUcz 

Chapter 2 - Investigation for optimal burn-in and number of iterations for 

QPROT 

Chapter 3 – DAVID terms for all analysis parameters 

Chapter 4 – ClusterProfiler GO terms for all analysis parameters 
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