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A B S T R A C T   

Machine learning for medical ultrasound imaging encounters a major challenge: the prohibitive costs of pro-
ducing and annotating clinical data. The issue of cost vs size is well understood in the context of clinical trials. 
These same methods can be applied to optimize the data collection and annotation process, ultimately reducing 
machine learning project cost and times in feasibility studies. This paper presents a two-phase framework for 
quantifying the cost of data collection using iterative accuracy/sample size predictions and active learning to 
guide/optimize full human annotation in medical ultrasound imaging for machine learning purposes. The paper 
demonstrated potential cost reductions using public breast, fetal, and lung ultrasound datasets and a practical 
case study on Breast Ultrasound. The results show that just as with clinical trials, the relationship between 
dataset size and final accuracy can be predicted, with the majority of accuracy improvements occurring using 
only 40–50% of the data dependent on tolerance measure. Manual annotation can be reduced further using 
active learning, resulting in a representative cost reduction of 66% with a tolerance measure of around 4% 
accuracy drop from theoretical maximums. The significance of this work lies in its ability to quantify how much 
additional data and annotation will be required to achieve a specific research objective. These methods are 
already well understood by clinical funders and so provide a valuable and effective framework for feasibility and 
pilot studies where machine learning will be applied within a fixed budget to maximize predictive gains, 
informing resourcing and further clinical study.   

1. Introduction 

1.1. Motivation for cost analysis and optimization 

Ultrasound is one of the most commonly used diagnostic modalities 
in the world today due to its low cost and minimally invasive approach 
[1]. Despite this there is extremely limited availability of annotated data 
for machine learning (ML). There are very few large-scale public ultra-
sound datasets available and where clinical data does exist there is often 
no useful annotation to produce an effective ground truth. This is not a 
problem unique to ultrasound, the inherent cost of producing high 
quality data and subsequent complex clinical annotation required to 
inform the neural network means that generating appropriate datasets 
for diagnostic quality deep learning is a major investment [2]. There-
fore, when designing or commissioning a research project applying 
machine learning to ultrasound, it is important to factor in the financial 

and clinical cost of producing and annotating the data as well as the 
machine learning itself. There are many methods aimed at optimizing 
neural network response to training, such as transfer learning [3,4] and 
few-shot learning [5,6], as well as methods for reducing the burden of 
annotation [7] by reducing human-model supervision [8,9] and self- 
supervision [10,11] such as masked autoencoders [12], and clustering 
[13]. These methods while effective are not designed to consider the 
real-world barriers [14,15] to machine learning research, factors such as 
the cost and time of data collection that could completely prevent a 
study from being performed [16]. Fortunately, there is already a tried 
and tested methodologies within medical research for performing this 
type of analysis that is well known to clinical funding bodies and com-
missioners: those used for designing clinical and random control trials 
[17], where is often not clinically or financially viable to sample a large 
population, therefore a smaller feasibility study is first performed, and 
the results analyzed to calculate the size of subsequent trials. 
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The process of developing a dataset for machine learning has many 
similarities to designing random control trials, the addition of more data 
has diminishing returns on how much it improves the accuracy of the 
result some tradeoffs can be made to maintain the validity of the study 
while making it cost effective [18]. Where funding and clinical resources 
are finite, it is important to weigh the value of additional data and 
annotation against the time and cost of producing it. This paper seeks to 
apply a framework similar to that of clinical trials [19], such as using a 
statistical power curve function during sampling to quantify diminishing 
returns in training result [20]. Cost will then be further optimized by 
applying active learning [21] to reduce the cost of data annotation after 
collection by targeting manual annotation to those parts of the data that 
most require additional attention by an expert clinician. Time and cost 
are critical metrics to decision makers attempting to balance the risks 
and priorities of medical device and imaging research involving ma-
chine learning but has seen limited focus in the current literature. 

1.2. Cost / time optimization methods and applications 

Statistical power analysis is the concept of estimating the effect of a 
result within a given sample and to what extent this can be generalized 
to a larger sample size based upon its statistical significance [22,23]. A 
power curve represents every arrangement of power and difference for 
each sample size when the significance level and the standard deviation 
are held constant. Factors that may effect statistical power are as fol-
lows: the statistical significance criterion used in the test, the magnitude 
of the effect of interest in the population and the sample size used to 
detect the effect [24,25]. Statistical power analysis has been previously 
used to predict classification performance [26,27], and used to deter-
mine sample size in cases such as retinal optical coherence tomography 
(OCT) [28] and in magnetic resonance imaging (MRI) [29] and small 
phantom studies [30] but has yet to be explored for ultrasound. 

Cost is often the limiting factor when proposing a machine learning 
study, especially in medical imaging where sample size can play a major 
role in study cost. One common method of sample selection is to use a 
derivation of the Widrow-Hoff learning rule [31] that suggests the use of 
an number (such as 10, 100 or 1000) sets of data for every imaging 
feature that will be used in the model. This method is somewhat arbi-
trary and may come up with sample sizes that are too small or large for 
actual training purposes depending on the feature-set being examined 
with limited possibility for cost to performance comparison. Model- 
based sampling based on the algorithmic characteristics such as gener-
alization [32,33], or convergence [34] can provide good baseline for 
sample size selection based on threshold criteria but can be more diffi-
cult to directly relate to costs. The proposed method uses empirical 
curve fitting for sample size determination [35], allowing for accurate 
prediction of time and cost of producing the data similar to that used for 
control trials [36]. 

Where ultrasound data is available without annotation, there is an 
opportunity to apply a targeted approach to sample labelling. There are 
many ways to reduce the cost of annotation in the early stages of data 
analysis such as using unsupervised clustering methods [37], in this case 
active learning used to target manual clinical annotation time more 
effectively. While more expensive than self-supervised and automated 
methods, full human annotation is already recognized as appropriate by 
regulatory bodies for medical device research and as such was used as 
the exampled method in this study. Use of a meta-heuristic optimization 
algorithms for thresholding and feature selection should be considered 
as a potential method for increasing network accuracy when defining 
the dataset annotation [38]. 

Active learning is a technique where a neural network is used to 
analyze a dataset and the resulting predictions used to target future 
training effort on a selected portion of the dataset [7]. There are many 
common methods of active learning within machine learning [7], such 
as using an unlabeled pool where a network chooses the best examples of 
a classifier known as diversity sampling [39]. In this case selective 

uncertainty sampling [40] is used to identify where the neural network 
has the lowest confidence in its prediction and target those images for 
annotation. This has been used previously as a method of dataset se-
lection criteria for omni-supervised learning [41]. This forms an active 
learning loop, allowing for the consistent querying of the learning 
network to better inform the annotation process (Fig. 1). Active learning 
has already been successfully applied to breast ultrasound using a 
weakly supervised approach, as well as in the detection of breast masses 
[42,43], in the multi-model detection of liver fibrosis for ultrasound 
elastography [44], and in semi-supervised covid lung disease classifi-
cation [45]. 

1.3. Structure and scope of the paper 

This paper proposes a 2-phase prescriptive framework for optimizing 
data capture and data annotation. The datasets, machine learning al-
gorithms, and data control measures of each phase is shown in section 2. 
The efficacy of each phase is shown independently in section 3.1 and 
3.2. A case study is presented in section 3.3 using publicly available 
data, demonstrating the framework for reducing the cost of data capture 
and annotation compared to the common approach of using fully an-
notated arbitrary data sets. 

This paper examines how:  

• Ultrasound dataset size effects neural network accuracy performance 
for three publicly available datasets to determine optimal sampling 
size.  

• Uses predictive curve from a small sample to inform further data 
collection for machine learning based on a cost benefit analysis.  

• Compares that sample size prediction compared to the real result 
from the dataset.  

• Tests the effectiveness of uncertainty sampled active learning for 
ultrasound data for reducing the cost of annotation.  

• Combines these methods to determine optimal sample size and 
annotation level for maximizing accuracy whilst minimizing cost. 

The use of curve fitting for determination of sample size may not be 
as efficient as formulaic or model-based sample size selection methods, 
but this empirical testing provides a simple robust basis for predictive 
modeling of dataset cost. While other semi-supervised, fully automated, 
or clustering methods may provide inexpensive labelling, where manual 

Fig. 1. Active Learning Cycle. This shows the cyclical iterative nature of active 
learning within machine learning. 
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annotation must be maintained as the primary form of annotation, such 
as cases where regulatory approval is a future consideration, uncertainty 
sampled active learning allows for manual annotation to be targeted at 
those classifications with the weakest predictions while stronger clas-
sifiers are off loaded to a semi-automated labelling process. When 
combined these methods form a novel 2 phase process to reduce the cost 
of producing a dataset for machine learning for ultrasound by opti-
mizing collection and labelling of data. 

Despite increased demand for scans and a shortage of sonographers 
[46–48], funding for ultrasound-based machine-learning research is 
limited. Researchers must therefore ensure that studies are efficient and 
cost effective, leveraging as much value as possible from collection 
studies and clinical time. 

2. Materials and methods 

2.1. Proposed method for optimizing sampling / annotation 

Phase 1 uses power curves, a method common in determining size of 
clinical trials based off factors such as population size and available 
resources. Applying this technique allows these same factors can be 
considered during the collection of data for machine learning and used 
to determine a rough performance estimate from the size of dataset. 
Ensuring a representative sampling within the training set assists in the 
subsequent extrapolation of the statistical power curve. This also allows 
the simulation of the data collection process with each subsequent 
iteration representing an additional round of data collection of datasets 
like those described in section 2.2. Phase 2 uses semi-supervised active 
learning to automatically annotate a proportion of the dataset, where a 
reduction in performance can be accepted, a error tolerance threshold 
can be applied, leading to significant cost and time savings. In this work, 
a convolutional neural network (CNN) is used as described in section 
2.3, Alexnet is used a well-known and understood benchmark, however 
other neural network architectures can be easily substituted, and would 
likely provide a more optimal result. Hyperparameters are also exemplar 
and not intended as recommendation of optimal settings, but merely to 
demonstrate the framework in action. 

Phase 1 – Optimized data set Capture 
Phase 1: Estimate the power curve and predict required dataset size 

(Fig. 2). Below are explanatory notes for the flow chart:  

1. A neural network is trained on a small sample of annotated data 
(dependent on experimental constraints e.g. 10–100 samples). The 
dataset should be split into training and test sets. Validation metrics 
(such as accuracy) are saved.  

2. An additional subset of annotated samples (ideally in equal chunks) 
is added to the dataset (re-randomising training and validation sets is 
advised). 

3. Neural network is retrained and tested. The chosen validation met-
rics are saved.  

4. The validation metrics are plotted against dataset size and a power 
curve is fitted to the data.  

5. Repeat steps 2–4 until curve fit is ‘stable’ at desired statistical power 
and accuracy. Stability is when subsequent sample groups predict 
end accuracies within your desired tolerance (such as within 2 %).  

6. Plot the power curve (e.g. accuracy vs sample size) can then be used 
to determine the required dataset size for desired/acceptable vali-
dation metric. 

Phase 2 – Optimizing annotation 
In cases where excess samples have been captured, particularly in 

large unannotated datasets or where data is being repurposed, active 
learning, detailed in section 2.5, can be used to selectively target sam-
ples that the CNN has the most difficulty identifying for manual anno-
tation, thus optimizing the annotated sample set as seen in Fig. 3. This 
process uses selective uncertainty sampling to minimize manual anno-
tation of remaining data. Below are explanatory notes for the flow chart:  

1. Train and validate a neural network on available annotated data 
(such as the sample set produced in phase one).  

2. Identify least certain samples on unannotated data, where the CNN 
has least certainty detecting particular classifiers (e.g. bottom 50 
samples).  

3. Manually annotate next batch of data with additional focus on 
identified weak classifiers.  

4. Combine new and old batches and reshuffle the dataset.  
5. Train new neural network and evaluate result using the validation 

set. 

Fig. 2. Phase 1 flow chart showing collection cycle and subsequent power curve analysis leading to the determination of dataset size based on curve fit.  

A. Lawley et al.                                                                                                                                                                                                                                 



Biomedical Signal Processing and Control 92 (2024) 106048

4

6. Use the validation metrics (such as accuracy level) to decide if 
additional samples are required. Consideration should be given to 
the effect of dataset balance on classification as well as comparisons 
made to predicted values from Phase 1 to ensure training validity.  

7. Cease annotation when (cost and accuracy) metrics are within 
acceptable parameters. 

This iterative process allows this technique to be applied naturally 
during the data collection and annotation process, such as during a pilot 
study. A new round of training can be performed upon receipt of a new 
batch of data, adding an additional datapoint for the power curve. If data 
is in a single large batch it, like those introduced in subsection 2.2, can 
be divided into percentages such as in this study, to produce the required 
increments. This is shown in the case study, Section 3.3. 

2.2. Datasets 

2.2.1. Breast lesion 
The BUSI breast lesion ultrasound dataset (available at [49]) (Fig. 4) 

consists of breast ultrasound images of 600 women between the ages of 
25 and 75. The ground truth images were presented with original im-
ages. The images were categorized into three classifiers, which are 
normal, benign, and malignant, while a segmentation mask is available 
in this dataset, a simple classification ground truth is substituted to 
enable comparison with other datasets studied. 

2.2.2. Covid lung 
The lung ultrasound dataset [50,51] (available at [52])(Fig. 5), 

consists of 179 videos (64 COVID, 49 bacterial pneumonia, 66 healthy), 
53 images (18x COVID, 20x bacterial pneumonia, 15x healthy) from 
convex probes and 17 videos (6 COVID, 2 bacterial pneumonia, 9 
healthy) and 6 images (4 COVID, 2 bacterial pneumonia) from linear 
probes. Cases of viral pneumonia in the dataset were excluded as it 
consisted of only 6 cases and there is evidence to suggest ultrasound can 
differentiate between viral and bacterial pneumonia [53,54] meaning 
including it in a single pneumonia classifier would be counter intuitive. 

2.2.3. Fetal planes 
The fetal ultrasound dataset [55] (available: [56]) consists of around 

12,000 images from 1792 patients and is split into 6 classifiers: fetal 
abdomen, brain, femur, thorax, maternal cervix, and a generic ‘other’ 
classifier as exampled in Fig. 6. 

2.3. Deep learning 

The experimentation was performed using the Pytorch framework 
[57], on a computer with an Intel CPU with a clock speed of 2.4Ghz and 
a Nvidia 3060 GPU. A standard Alexnet neural network that had been 
pretrained using the ImageNet Challenge dataset [58] was used with the 
final layer output reduced to fit the classification requirements of the 
dataset. Alexnet [59] was selected to provide a baseline to study dataset 

Fig. 3. Phase 2 Active learning cycle for annotation.  

Fig. 4. Examples of breast lesion ultrasound classifiers from the BUSI dataset [23], left benign, center: malignant, right: normal.  
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selection size, using the training parameters in Table 1. Network selec-
tion and hyperparameter settings are simple and designed to example 
the framework in action but not optimal for high precision machine 
learning tasks. The complexity of the data and requisite predictors and 
feature sets should be considered when designing machine learning 
studies using techniques as seen in these recent studies [60–63]. The 
images were contrast normalized and compressed into tensors sized 299 
× 299. Test/train split was performed on a per image basis as there is no 
known repeated data within the set. No additional data augmentation 
was performed as this would potentially confound results. 

2.4. Training set size 

The dataset was initially split randomly 80/20 into test and training 
sets as documented above, an additional split was performed on the 
training set taking a percentage of the data for training using stratified 
random sampling [64], to ensure a representative sampling of each 
classifier. The percentage of data is increased with each iteration in 
order to determine the relations between sample size and accuracy. The 
percentage of the breast and fetal datasets were between 1 % and 5 % 
then in increments of 10 % thereafter. The Lung dataset has a smaller 
sample size and so the smallest split tested was 5 %, then in increments 
of 10 %. This was done to simulate the collection of data over time. Each 
experimental training run was performed 80 times over 20 epoch each. 
The use of an unseen test set means that any overfitting that has 
occurred will already be reflected in the test result that is used in the 
calculation of the power curve, with the accuracy of an overfitted 
network substantially lower when validated on the unseen test data. 
Each subsequent round of collection increases the size of both training 
and test sets and testing adds a new datapoint to the power curve further 
refining the curve fit. The exampled approach is overly simplified, 
performing a stratified random split with each new experimental run 
and looking at only very simple classification tasks, more complex 
datasets should consider folded-based cross validation and the potential 
improvements that could be made through careful feature selection and 

Fig. 5. Examples of Covid Lung Ultrasound Dataset [24]. left: Covid, center: bacterial pneumonia, right: normal.  

Fig. 6. Examples of fetal Plane Ultrasound Dataset [28]. a: other, b: abdomen, c: brain, d: maternal cervix, e: femur, f: thorax.  

Table 1 
Sample Hyperparameters used in example network in 
this paper.  

Hyperparameters Value 

Activation Functions SoftMax 
Learning Rate 0.001 
Training Iterations 80 
Epochs 20 
Optimizer ADAM 
Momentum 0.9 
Dropout 0.5  
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ensemble learning models as methods to reduce overfitting as exampled 
in recent studies [65–67]. 

2.5. Active learning 

At its core, active learning is a technique whereby the learner plays a 
role in specifying the content they learn [7]. An uncertainty sampling 
[39,41] method is used whereby the images with the lowest confidence 
was selected for annotation. This was performed for each percentage of 
the dataset from 10 to 90 % with the active learning performed on the 
remaining percentage of the dataset also using a threshold percentage to 
specify an additional proportion of the dataset for annotation (as can be 
seen in Fig. 7). Each active learning threshold was tested 20 times over 
20 epochs each. 

3. Results 

3.1. Size to accuracy of dataset 

Examining the breast dataset mean accuracy results for 80 neural 
networks per threshold percentage (Fig. 8), the highest mean accuracy 
of 85.42 % was achieved using 90 % of the data, contrast to 79.6 % using 
40 % of the data and 75.29 % at 20 %, a difference of 5.82 % and 10.13 
% respectively. Increasing dataset size reduces the variation as seen in 
the standard deviation between neural networks with an average of 6.17 
at 1 % of the data, down to 2.42 at 90 %. Selecting the neural network 
with the highest accuracy for each percentile shows that the highest 
accuracy network with 91.72 % was produced with only 60 % of the 
dataset, in comparison to 82.8 % using 20 % of the dataset a difference 
of just 8.92 %, there were significant diminishing returns on data in-
vestment after 30–40 % of the data is used. 

Using the mean accuracy data, it is possible to extrapolate a close 
approximation of data to fit classification accuracy, a fitted curve from 
just 10 % of the data can be used to approximate the amount of addi-
tional data required to reach a certain level of accuracy similar to that 
used in clinical studies, with each additional data point improving the fit 
further. 

In the lung dataset (Fig. 9) the difference between the highest mean 
accuracy of 83.66 % and 80.87 % using 40 % of the dataset was just 2.79 
%. The trend of reducing standard deviation as dataset size increases is 
less obvious, while the initial deviation is 12.34 at only 5 % of the 
dataset it is reduced to 7.62 by around 10 % of the dataset but remains 
unstable but does achieve the lowest standard deviation at 5.25 at 
around 90 % of the dataset. When the highest accuracy neural networks 
are considered, an accuracy of 89.93 % is achieved at just 30 % of the 
data, with diminishing returns until 70–80 % where a significant 
improvement is achieved with results of 94.36 % at 70 % and 95.96 % at 
80 % of the data. As previously seen in Fig. 6 the same data trend is 
possible and is visible in the mean accuracy data for the lung dataset. A 
statistical curve is used to predict CNN accuracy for sample sizes. 

The fetal plane dataset contains over 12,000 samples from over 1700 

patients making it the largest dataset assessed, using only 20 % (around 
2400 samples) the mean accuracy reached over 90 %, with additional 
data providing diminishing returns for the additional data added. The 
1SD trends downwards from 3.40 to 0.54 using 80 % of the dataset. The 
fetal data also exhibits the same trend from the power curve (Fig. 10) 
despite containing substantially more data and classifiers than the pre-
vious two datasets, the difference between mean and highest result after 
50 % of the dataset (6000 samples) is 0.66 % of that achieved with 90 % 
of the dataset, it is also within 0.56 % of the highest achieved result of 
94.97 %. 

The use of curve fitting as a method of sample selection is empirical 
has clearly shown to be effective at determining sample size in all three 
datasets, a clear followable trend that can be seen in the network 
response and can be used to extrapolate data requirements based off this 
trend. The high initial standard deviation in accuracy result in training 
result seen in all three datasets is due to factors such as overfitting, 
sample randomisation and training performance. As sample size in-
creases the so does the stability of the training process, due the test set 
being unseen the results from the networks form a clear accuracy trend 
regardless of these factors. Where sample size will be consistently small 
harmonic mean (F-1 Score in Table 2) should be factored into result 
metrics to ensure network response is truly representative of learnt 
classification. 

3.2. Active learning 

Comparing the results of using active learning to target the lowest 
predicted accuracy using a threshold to that of annotating the same 
percentage with no targeting shows a small consistent improvement. 
The highest accuracy of 92.99 % is achieved at 60 % of the dataset, as 
can be seen in Table 2, the neural network is already performing 
consistently with a weighted average precision of 90 %, recall of 92 % 
leading to an F-1 Score, the combination of precision and recall of 0.91. 

Comparing the default annotation values to those using active 
learning shown in Table 3 and Fig. 9, shows that the majority of learning 
can be achieved using between 40 and 50 % of the data (in the region of 
300–400 sample sets). For example, when 10 % of the data is used for 
the teacher network and an additional 30 % is annotated using active 
learning then a mean result of 82.99 was achieved that is only 4.3 % less 
than when trained with the complete dataset where a mean result of 
87.29 % was achieved. Where 20 % of the dataset is used to train the 
teacher network then this difference drops to just 3.28 %. The variation 
of accuracy after 60 % of the dataset is likely due to the probabilistic 
nature of neural network training rather than the dataset itself. The 
statistical maximum result of 92.99 % was achieved at all subsequent 
dataset proportions above 50 % when trained exhaustively, but this may 
not be feasible to achieve in practice. This supports the hypothesis that 
additional data provides limited, to no, return on investment after this 
point. 

When comparing the data for the default annotation technique with 
active learning for the breast dataset (Fig. 11), the mean active learning 

Fig. 7. Diagram of active learning dataset split method showing proportion of data used for training and threshold for additional annotation.  
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consistently is above that of the default annotation technique, although 
this improvement suffers from diminishing returns after 50 % of the 
dataset is used. While there is significant improvement in the highest 
accuracy results achieved even with only 10 % active learning there is 
significant training variance at lower dataset sizes that would need to be 
accounted for in the training methodology. 

Lung ultrasound also performed well with active learning (Table 4), 
with a network trained on 20 % and an additional 10 % active learning 
was able to achieve a mean accuracy of 82.35 %, just 4.3 % less than the 
highest achieved mean accuracy of 86.65 % from a network trained on 

30 % of the data and an additional 50 % targeted through active 
learning. 

When comparing active learning to default annotation methods 
(Fig. 12), the active learning does improve mean accuracy results but 
does not significantly improve training of high accuracy models after 60 
% of the data is in use due to the wide variation in training accuracy 
achieved. 

The variation in training accuracy is highest for this dataset, out of 
the three, which is attributed to the low base dataset size, meaning that 
the CNN training is more susceptible to statistical anomalies in the data, 

Fig. 8. Accuracy of mean and highest result with associated power curves for neural network response for breast dataset.  

Fig. 9. Accuracy of mean and highest result with associated power curves for neural network response for lung dataset.  
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a well-known phenomenon. Despite this, the trend improvement is still 
evident, although with smaller returns initially than larger datasets. 

The fetal ultrasound data has a significantly larger sample size and 
double the number of classifiers than the previous two datasets. As seen 
in Table 5, there was a 2.22 % improvement when active learning was 
used to annotate 10 % of the dataset but is subject to diminishing returns 
as the highest accuracy result achieved was 94.40 % using 80 % of the 
dataset where the active learning had been trained using a dataset with 
60 % of the data an improvement of only 1.39 %. 

When comparing active learning to default annotation methods in 
Fig. 13, an initial accuracy boost, after using above 60 % data, training 
variance becomes a significant factor with active learning achieving 
only limited improvements. 

The use of uncertainty sampled active learning is shown to boost 
classification accuracy performance of all three datasets with most 
improvement seen prior to 50 % human annotation of the dataset with 
substantial diminishing returns after this point. Targeting human 
annotation to the most essential data while allow semi-automated 
annotation to potentially fill in for classifiers where the network 
already has high confidence. Active learning where 50 % of the dataset 
has already been annotated shows no performance drop over full human 
annotation, suggesting this data could annotated using active learning 
with almost no loss of reliability despite the potential of labelling error. 

3.3. Case study 

Having shown in section 3.1 that accuracy vs. sample size follows a 
power law and therefore has significantly diminishing returns after a 
certain point. As shown in section 3.2, active learning produces im-
provements in accuracy with low amounts of initially annotated data, 
again with diminishing returns as annotation proportion increases, we 
can now consider what this means in terms of costs for collection and 
annotation. 

In order to demonstrate the potential saving incrementally, phase 1 
and phase 2 of the prescribed method were applied independently to the 
BUSI data set, and then as a combined method considering mean 
response and max response of the CNNs respectively [68]. 

Fig. 10. Accuracy of mean and highest result with associated power curves for neural network response for fetal plane.  

Table 2 
Precision, Recall and F-1 score for top performing network (BUSI (breast) 
dataset based off a network trained on 10% of the dataset with an additional 
40% annotated using active learning.  

Classifier Precision Recall F1-Score 

0 – Benign 90 88  0.89 
1 – Malignant 94 92  0.93 
2 – Normal 87 96  0.91 
Average 90 92  0.91  

Table 3 
Active Learning improvement in BUSI (breast) dataset based on the percentage of data used – Mean Results.   

Percentage of dataset used for training 

Percentage of training data actively learned - 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 % 
0 % 70.84 75.29 77.60 79.60 81.69 83.61 83.73 84.29 85.42 85.42 
10 %  77.39 80.51 82.99 85.25 86.56 86.62 85.67 85.86 86.85 
20 %   80.10 84.01 84.78 85.73 85.57 85.35 86.69 87.20 
30 %    83.03 84.94 86.59 85.70 86.08 87.17 86.78 
40 %     84.32 85.49 85.46 85.56 85.73 85.99 
50 %      84.28 85.16 86.56 86.37 86.07 
60 %       85.29 85.64 86.88 87.29 
70 %        85.42 85.42 85.42 
80 %         85.92 86.14 
90 %          86.02  
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Fig. 11. Comparison of mean Active Learning (AL) to default annotation for breast dataset.  

Table 4 
Active Learning improvement in lung dataset based on the percentage of data used – Mean Results.   

Percentage of dataset used for training 

Percentage of training data actively learned - 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 % 
0 % 70.62 76.55 77.71 80.87 79.79 80.75 82.72 83.66 83.11 84.43 
10 %  78.41 78.66 81.09 80.86 84.33 84.24 83.37 84.59 84.59 
20 %   82.35 83.77 80.09 83.22 85.69 83.77 85.09 84.43 
30 %    81.46 81.91 83.51 82.97 86.65 85.23 84.81 
40 %     80.86 83.33 83.90 84.36 84.51 84.57 
50 %      84.33 84.81 85.23 83.11 84.59 
60 %       84.24 84.36 84.81 85.23 
70 %        83.50 85.23 84.43 
80 %         84.84 84.81 
90 %          84.59  

Fig. 12. Comparison of mean active learning to default annotation for lung dataset.  
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Phase one was applied to the BUSI breast dataset, with an initial 
sample size of 15. The process was iterated until power curve stability 
was achieved at 150 samples as shown in Fig. 14a. This allowed a pre-
diction that 400 samples were required to be within 4 % of the theo-
retical maximum accuracy achievable with the full dataset. These 
remaining samples (250) were then ‘collected’ by randomly sampling 
the BUSI dataset. All remaining BUSI data was used for validation. 

Phase 2 was then applied with an initial CNN trained on a sub sample 

of 50, and then predicted the annotation for the remaining 350 unan-
notated datasets with 50 chosen for annotation using uncertainty sam-
pling and added to the training set. A new CNN was then trained, 
validated, and then used to select an additional 50 samples from the 
remaining unannotated patient sets. This was repeated until all 400 
samples were selected as shown in Fig. 14b for illustrative purposes, but 
the process would stop once the acceptable tolerance is reached. 

All networks were trained for 100 times for a cycle of 20 epoch, using 

Table 5 
Active Learning for Fetal ultrasound based on the percentage of data used – Mean Results.   

Percentage of dataset used for training 

Percentage of training data actively learned - 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 % 
0 % 87.61 90.79 91.70 92.65 93.08 93.45 93.60 93.65 93.74 94.13 
10 %  93.01 93.83 93.95 93.89 93.89 94.19 93.78 94.15 93.92 
20 %   93.85 94.10 93.92 93.78 94.02 93.97 93.98 94.09 
30 %    94.15 93.91 93.83 94.03 94.00 93.84 94.06 
40 %     94.01 93.80 93.77 94.13 94.18 94.08 
50 %      93.89 93.92 93.94 94.00 93.98 
60 %       93.31 94.40 93.68 94.34 
70 %        93.92 93.91 93.95 
80 %         93.75 94.23 
90 %          94.34  

Fig. 13. Comparison of mean active learning to default annotation for lung dataset fetal dataset.  

Fig. 14. A.) comparing the power curve fit for sampling steps of the breast dataset from phase1b.) Performance of active learning in comparison to full annotation of 
400 samples from phase 2. 
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an Alexnet CNN and ADAM optimization method. Depending on the 
experimental robustness requirements, the best result of the training 
epochs or the mean result can be considered with differing conclusions. 

For the BUSI dataset with 400 samples from Phase 1, with an 
acceptable tolerance of 2 %, 350 samples of the 400 need annotation for 
the mean response to be within tolerance but only 200 samples of the 
400 need be annotated for the maximum result to be within acceptable 
tolerance. 

From the combined method of phase 1 and phase 2, considering the 
maximum response form the CNNs, an accuracy of 85 % was achievable 
using only 400 samples compared with the theoretical maximum of 88 
% at the full BUSI dataset size (from Fig. 8). Additionally with only 200 
of the 400 samples manually annotated, accuracy only drops to 84.7 % 
for a 50 % reduction in annotation burden, directly translatable into 
costs. 

For completeness, the cases of simply performing phase 1 alone (with 
400 captured and annotated samples) and performing phase 2 alone on 
the full BUSI dataset, yielding 50 % annotation, were also considered to 
illustrated cost differences. Using an initial representative costing model 
of 1:2 for data collection and annotation the relative costs of each 
method and phase can be seen in Fig. 15, calculated using (1), where P is 
the price of collection or annotation and N is the numbers predicted by 
phase 1 and 2 respectively. 

Cost = (PCollect × NCollect) + (PAnnotate × NAnnotate) (1) 

Dependent on accuracy and robustness requirements, significant cost 
savings can be made by optimizing collection using a statistical power 
curve, and by targeting annotation by applying active learning as 
described in our method. Combining the methods shows the potential to 
reduce costs even further, up to 66 % where the best performing network 
is taken into account as shown in Fig. 15. A similar analysis has been 
performed for differing overall acceptable tolerances from the maximum 
prediction from Fig. 8. This allows for further optimization of costs when 
accuracy can be acceptably traded. The shape of this graph shows that 
regardless of the initial costing model used, the prescribed method will 
always yield a cost reduction in comparison to capturing arbitrary 
amounts of data and annotating it all, which is an important result 
allowing decision makers to optimize their clinical applications of ma-
chine learning. The scale of the cost saving is related to the complexity of 

the data, the CNN type used, and the costing model, but this method is 
always expected to return a cost reduction for minimal accuracy loss. 

This case study has shown statistical power curves and active 
learning allow for significant optimization in both sample and annota-
tion set size. This reduction in sample size represents a direct cost 
reduction in producing a viable dataset. Through the example case study 
on the BUSI dataset, this gave a 50 % cost reduction for an accuracy loss 
of 4 % when considering mean response or a 66 % cost reduction for an 
accuracy loss of 3.75 % from theoretical maximums at full dataset size 
using Alexnet as a performance benchmark. Similarly, if theoretical 
maximum accuracy is required, the method allows for a 40–50 % cost 
reduction with negligible loss in accuracy depending on the robustness 
criterion used; demonstrating the power of active learning in boosting 
accuracy at low sample numbers. Even when using just phase 2, a cost 
reduction of ~ 25 % is feasible for no accuracy drop using active 
learning to take some of the annotation burden. If the case study were a 
‘quick pass’ feasibility study, then a massive 90 % cost saving can be 
made for an accuracy tradeoff of 10 %. Although cost is important, this 
would be most significant in terms of time as it allows proof of concepts 
to be demonstrated quickly and efficiently. This method is a powerful 
tool for planners to maximize gains and productivity under a fixed 
budget or time frame. 

4. Conclusions 

This paper demonstrated a 2-phase method that can be used to 
perform a cost analysis for the collection and annotation of data. Three 
publicly available ultrasound datasets were investigated using the pre-
scribed method:  

• Using an empirical curve-fit model of sample size determination was 
shown to provide an indicative method for determining cost and 
providing a method for scaling research studies at the cost of 
stability.  

• Uncertainty sampling with active learning provides a cost-effective 
method of augmenting manual annotation by targeting samples 
with the lowest confidence for human annotation while those with 
high confidence can be annotated using active learning. 

Fig. 15. Cost saving of capture and annotation for methods: Full capture/Full annotate (FC/FA), Full capture/Active learning (FC/AL), optimized capture/Active 
learning from mean accuracy (OC/Mean-AL), optimized capture/Active learning from max accuracy (OC/Max). 
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• Defining an error tolerance on required performance metrics can be 
used with this framework to substantially lower cost. With a 50 % 
cost reduction possible in the case study with an error tolerance of 4 
%.  

• The point of diminishing returns can be clearly defined using this 
method, potentially reducing over collection for that specific use 
case.  

• Using this framework aligns machine learning research with other 
clinical trials that already use these and similar sampling techniques. 

This framework provides ultrasound researchers with an empirical 
method, using power theory to identify the most effective sample size 
and therefore cost of future collection but and using methods such as 
uncertainty sampling to provide a robust, targeted method of aug-
menting manual labelling, allowing the clinician to focus on targets with 
low predictive certainty, with semi-supervised active learning labelling 
those with high confidence. This will allow for better scaling of studies 
to encourage additional ultrasound machine learning studies to be 
funded in future by providing a clear empiric indicator of expected 
performance that is easily converted to cost metrics. 

In order to progress machine learning research further in ultrasound, 
significant investment in data collection and annotation will be 
required, but this burden can be significantly reduced by scaling feasi-
bility studies and using targeted sampling methods such as the one 
presented in this work. Future works will explore additional cost 
reduction methodologies for both collection, labelling and machine 
learning. It will further examine small scale collection for machine 
learning such as the use of decentralized collection and federated 
learning. As well as exploring additional methods to reduce labelling 
cost using automation such as masked autoencoders and clustering. 

The implications of lower cost studies with clear empirical indicators 
of results that can be expected in future studies, is that machine learning 
research into ultrasound will become a less risky endeavor allowing for 
more prospective studies to be conducted and more ultrasound data 
suitable for machine learning to become available to the academic 
community. 
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[19] D.J. Biau, S. Kernéis, R. Porcher, Statistics in brief: the importance of sample size in 
the planning and interpretation of medical research, Clin. Orthop. Relat. Res. 466 
(9) (2008) 2282–2288. 

[20] N.C. Thompson, K. Greenewald, K. Lee, G.F. Manso, Deep learning’s diminishing 
returns: The cost of improvement is becoming unsustainable, IEEE Spectr. 58 (10) 
(2021) 50–55. 

[21] P. Ren, et al., A survey of deep active learning, ACM Comput. Surveys (CSUR) 54 
(9) (2021) 1–40. 
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