CRYSTAL
GROWTH
&DESIGN This article is licensed under CC-BY 4.0 © ®

pubs.acs.org/crystal

Comparative Study on Adaptive Bayesian Optimization for Batch
Cooling Crystallization for Slow and Fast Kinetic Regimes

Published as part of Crystal Growth & Design virtual special issue “Industrial Crystallization: ISIC 22 / BACG
52

Thomas Pickles, Chantal Mustoe, Cameron J. Brown, and Alastair J. Florence*

Cite This: https://doi.org/10.1021/acs.cgd.3c01225 I: I Read Online

ACCESS | [l Metrics & More | Article Recommendations | @ Supporting Information

\_ ey (|
) [T T R— | 7| 3 11

ABSTRACT: Crystallization kinetic parameter estimation is important for the classification, design, and scale-up of pharmaceutical
manufacturing processes. This study investigates the impact of supersaturation and temperature on the induction time, nucleation
rate, and growth rate for the compounds lamivudine (slow kinetics) and aspirin (fast kinetics). Adaptive Bayesian optimization
(AdBO) has been used to predict experimental conditions that achieve target crystallization kinetic values for each of these
parameters of interest. The use of AdBO to guide the choice of the experimental conditions reduced material usage up to 5-fold
when compared to a more traditional statistical design of experiments (DoE) approach. The reduction in material usage
demonstrates the potential of AdBO to accelerate process development as well as contribute to Net-Zero and green chemistry
strategies. Implementation of AdBO can lead to reduced experimental effort and increase efficiency in pharmaceutical crystallization
process development. The integration of AdBO into the experimental development workflows for crystallization development and
kinetic experiments offers a promising avenue for advancing the field of autonomous data collection exploiting digital technologies
and the development of sustainable chemical processes.

1. INTRODUCTION control deterministically as it displays a stochastic character.’
Secondary nucleation relates to the formation of new nuclei

Crystallization is a key step in the manufacture of high-quality
from the attrition of existing crystals and can be controlled by

drug products and serves as a purification step to remove

impurities from the crude product.l Understanding and changes in solid loading, particle size, shear rate, mixing, and
controlling the crystallization of pharmaceuticals allows us to supersaturation. A pharmaceutical crystallization process
design manufacturing processes that yield the desired particle requires nucleation and growth rates that can be maintained
shape, size, and polymorph without impacting the yield, purity, within ranges that facilitate robust and controlled operation.
and quality of the final product. For example, differences in Excessive nucleation rates lead to too many fines and/or

particle shape and size affect downstream processing as well as
the effectiveness of dissolution for human absorption.”

As particle shape and size are dictated by the kinetics of
crystallization, these properties can be controlled by altering
key process parameters that dictate supersaturation. Control-
ling particle shape and size relies on controlling nucleation,
growth, and agglomeration rate processes. Primary nucleation,
which is the initial formation of new crystals in solution and
can be described by induction time, is inherently difficult to

fouling, and excess particle growth can lead to unfavorable
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Figure 1. Schematic diagram of the experimental setup and optimization loop consisting of the Zinsser Crissy platform, the Technobis Crystalline,

data analysis, and optimization algorithms (left-to-right).

particle shapes, agglomeration, and reduced purification
performance with the potential inclusion of impurities.
Agglomeration, the aggregation of two or more particles to
form larger particles, can change the final product’s physical
and chemical properties, and while it can be used to aid in
filtering, agglomeration must be controlled to ensure
consistency and tablet content uniformity.>® Conversely, very
low nucleation and growth rates can lead to low yields and
long, uneconomic processing times.

Various methods have been applied to develop controlled
crystallization processes ranging from chemical intuition,”
methodical parameter investigation® or machine learning
approaches proposed in this work. Design of experiment
(DoE)” is a powerful statistical tool used to map the design
space, fit models to the data, interpolate between known values
and forms a useful component of quality by design (QbD)
experimental planning. The use of statistical DoE for process
understanding was introduced initially in the agriculture
industry”'® and in recent years has seen wide application in
biotechnological processing,' "> drug discovery, and medicines
manufacture.*~'® DoE experimental planning aims to use the
least number of experiments to explore the effects of changing
a given number of variables across the whole design space.
However, even with DoE methods, exploring large numbers of
process variables still requires many experiments. For example,
a full factorial design exploring five variables with three
increments would result in a plan of 243 experiments which,
when using expensive active pharmaceutical ingredients
(APIs), may not be necessitating using other desi7gn methods.

In this work, we explore Bayesian optimization'” (BO) as an
alternative method to DoE for finding global or local minima
or maxima in functions of interest. BO constructs a
probabilistic model of the objective function, specifically the
difference between target and experimental crystallization
kinetic parameters. It employs an acquisition function to
iteratively suggest the next point of evaluation, or experiment,
to either reduce uncertainty in the model by further
exploration or determine the global optimum by exploiting
known values. Previous studies = utilizing BO in pharmaceut-
ical crystallization are promising but highlight the need for
methods to accommodate the multiple objectives required for
suitable process design. For example, Bayesian approaches for
optimization of chemical reactions were shown to be efficient,
taking a few hours of lab work compared to super modified

simplex algorithm (10+ hours per variable) and grid searches
(600+ hours per variable)."”

This work demonstrates the application of algorithms to
optimize crystallization process conditions to achieve desired
pharmaceutical crystallization kinetic parameters. Methods
including DoE and BO can be used to target specific values
for pharmaceutical crystallization parameters, and both
methods are shown to be significantly more efficient than
grid-search approaches. An adaptive (a varying exploration and
exploitation model) BO experimental planner showed further
improved performance over the DoE and fixed BO methods.
The exploration of two API case studies shows the algorithmic
approach proposed may be generalizable to other APIs.
Implementing improved decision-making algorithms such as
these could reduce time and material use and contribute to a
greener and more sustainable approach to process develop-
ment in medicine manufacturing.

2. MATERIALS

Lamivudine was purchased from Molekula Ltd. as an off-white
powder and aspirin was purchased from Alfa Aesar as a white solid.
Both APIs have a purity exceeding 99% and did not undergo further
purification. Ethanol and ethyl acetate were purchased from VWR and
have purity exceeding 99.97%, so they did not undergo further
purification.

3. EXPERIMENTAL METHODS AND OPTIMIZATION

The optimization loop included the following steps: vial dosing,
crystallization, analysis of the resulting image data, and further data
analysis by an optimization algorithm to recommend the next best
round of experiments. A schematic to represent this logical flow is
shown in Figure 1.

3.1. Vial Dosing, Crystallization, and Image Analysis. Sample
preparation for crystallization experiments was carried out using a
Zinsser Analytics Crissy platform,”® an XYZ robot that doses both
powders and liquids. Crystallization exzperiments were conducted
using a Technobis Crystalline platform,”" a parallel reactor system
that can perform eight separate heating, cooling, and stirring
procedures with in-built sample imaging at the 2—7 mL scale.

The experimental procedure was consistent for all experiments and
involved the following steps:

1. Heat the solution to a temperature 10 °C below the solvent’s
boiling point at a rate of 0.5 °C/min.

2. Maintain the elevated temperature for 10 min to ensure
complete dissolution.
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Table 1. Parameters and Objectives for the Optimization Problem

API input parameter bounds target parameter objectives
supersaturation temperature (°C) induction time (s) nucleation rate (#/s) growth rate (um/s)
lamivudine 2-3 5-50 3600 0.1 0.01
aspirin 1.05-2 5-50 3600 0.1 0.05

3. Cool the solution to the desired isothermal temperature at a
rate of —10 °C/min, with no stirring at this stage.

4. Keep the solution at the isothermal temperature for 3 h.

S. Repeat steps 1—4 for a total of five cycles.

The stir rate was fixed at 600 rpm throughout the experiment,
except where specified.

Images were captured every S s, and an in-house convolutional
neural network (CNN) image analysis algorithmzz’23 was used to
extract kinetic parameters. X-ray powder diffraction (XRPD) patterns
were collected using a Bruker D8 Discover,”* and the data were
visualized using DIFFRAC.EVA®® and Matplotlib*® (Python).
Solubility profiles were generated for each API in a solvent selected
from previous work.”>*’

3.2. Optimization: Input Parameter Bounds, Target Param-
eter Objectives, and Approaches. The objective of this
optimization problem was to minimize the difference between the
experimentally measured values for the kinetic parameters of interest
and the associated target values. Table 1 presents the bounds on the
input parameters for supersaturation and isothermal experimental
temperature and the target objectives for induction time, nucleation
rate, and growth rate. As this optimization problem has multiple
objectives it can be assumed that the optimum process conditions will
sit on a Pareto front™® so the objective function value will be used as a
quantifier for optimization performance.

The input parameter bounds were varied for each API to
accommodate the different sizes of their metastable zone width
(MSZW).***” Lamivudine showed a broad MSZW (>30 °C) and
therefore was deemed unlikely to observe any nucleation at low
supersaturations within the time constraints of the experiment.
Aspirin displayed a narrow MSZW (mean of 16 °C) and thus
nucleation was likely to be feasible at low supersaturations (generally
below 1.2). As a larger MSZW generally allows higher super-
saturations to be achieved before primary nucleation occurs and
nucleation is known to dominate growth at high supersaturations,” it
was mechanistically assumed that, comparatively, nucleation would
dominate for lamivudine crystallization but growth would dominate
for aspirin crystallization. Thus, while the nucleation rate target was
held constant for both systems, the growth rate target for aspirin was
set to SX the target for lamivudine. Numerical values for rate targets
were based on the initial experiments.

3.2.1. Optimization Approach 1: DoE with Surface Minimization.
For the DoE optimization, an initial DoE screening of 28 experiments
was followed by successive rounds of smaller screens (7 experiments/
iteration) centered at the next predicted optimum. We refer to this
method as adaptive due to the iterative update of the objective
function and the adaptation of this new objective function surface to
guide the next round of experiments. This cycle was repeated until the
termination of a change in temperature of less than 2 °C and a change
in supersaturation of less than 0.02 between the previous and next
recommended experiments was achieved.

The initial experimental screen was performed by employing a full-
factorial design consisting of five supersaturation levels, five
temperature levels, and three central points, resulting in 28
experiments. The initial DoE plan for lamivudine (Table 2) was
centered around a supersaturation of 2.4 and an isothermal
temperature of 20 °C and for aspirin (Table 2), the DoE plan was
centered around a supersaturation of 1.5 and a temperature of 20 °C.

For the subsequent optimization, an objective function surface
could not be fitted directly to the kinetic parameters measured
experimentally for multiple reasons. First, as nucleation is a stochastic
process dozens of experiments are required to sample the probability
distribution of induction time values.” Second, there is an inherent

Table 2. Adaptive Design of Experiment Plan for
Optimization Iterations

iteration
initial 1 2 3¢
supersaturation +0.4 +0.2 +0.1 +0.05
temperature +10 °C +10 °C +5 °C +2 °C

“If iterations continue past 3, then the same exploitative (small scope
of experimental design space) plan is followed.

measurement uncertainty associated with the nucleation and growth
rate parameters obtained via image analysis, as only a subset of sample
particles are sampled. Consequently, multiple data points are required
to reduce the uncertainties associated with these kinetic parameters.

As the aim of the optimization was to achieve convergence in as
few experiments as possible, equations that describe the kinetics of
crystallization were fit to the experimental data and used to smooth
the surface of the objective. To smooth the surface of the objective
function with domain knowledge, experimental data were plotted for
each input parameter (temperature and supersaturation) with respect
to each objective (induction time, nucleation rate, and growth rate)

and eqs 1—5 (below)*>*" were fit to the data
tq(SS) = A x e7P*SS (1)
Rgouin(SS) = a X SS + b (2)
Ryouan(T) =a X T +b (3)
R, (SS) = A x &8 (4)
R, (T)=axT+b ()

where f;,4 is the induction time, Ry, is the growth rate, R, is the
nucleation rate at a given supersaturation SS (where SS = 1 at
equilibrium solubility), and temperature T and a and b are fitted
parameter coefficients. The growth rate objective was weighted by a
factor of 10, and this meant that all parameters sat within the same
order of magnitude and thus on a comparable scale. There is no direct
domain relationship between induction time and temperature, so this
relationship was assumed as negligible, and therefore, parameters were
not fitted. The parameters A, a, and b were obtained from the fitted
equations, and the resulting fitted functions for induction time,
nucleation rate, and growth rate were then mathematically
manipulated®” so that the minimum of each function occurs at the
objective target. The functions transformations used are given below
with eq 6 being used to transform equations that feature exponential
relationships between the objective and the input parameters (eqs 1
and 4), and eq 7 being used to transform equations that feature linear
relationships (eqs 2, 3, and 5)

D, (Byeq(x)) = 108 (Rarget) ~log(Pheal))! (6)

Dx(Pﬂtted(x)) = l(Ptarget) - (Pﬁtted(x))l (7)

where Py, is the target value for a given parameter, Pgy.q is the fitted
equation for a given parameter evaluated at the input value for either
supersaturation, SS, or temperature, T, both here represented by x,
and the difference between the target value Py and fitted value
Pgea(x) for a given target parameter is defined as the function
D, [Pgea()]. The objective function for a given supersaturation and
temperature, f(SS,T), could then be defined as follows

https://doi.org/10.1021/acs.cgd.3c01225
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Table 3. Predicted Optimum Supersaturations and Isothermal Experimental Temperatures for Lamivudine and Aspirin Over
Multiple Iterations with the Objective Function Also Presented

iteration lamivudine aspirin
temperature (°C) SS obj. function value temperature (°C) SS obj. function value
initial screen 26.9 2.88 0.86 45.0 1.21 1.00
2 26 2.63 0.81 50.0 1.18 0.90
3 24.9 2.56 0.73 22.62 112 0.84
4 22.4 228 0.72 19.13 1.14 0.72
N 22.97 2.31 0.68 12.97 1.14 0.68
6 23.73 2.36 0.61 5.98 1.16 0.57
7 24.12 2.36 0.61 S.0 1.16 0.57
£(SS, T) = Dgg(,,4(SS)) + Dgs(R,,(SS)) + Dr(R,,(T)) assigned a value of 0.1. In summary, this approach starts by selecting
experiments across the whole design space and then adapts its search
+ DSS(Rgrowth(S)) + DT(Rgrowth(T)) (8) purpose to focus on finding the true optimum solution. This discrete-

The minimum of the objective surface (within the parameter upper
and lower bounds) was then calculated using multiple approaches: a
genetic algorithm (GA), differential evolution (DE), covariance
matrix adaptation evolution strategy (CMA-ES), and Nelder—Mead
or pattern search approach. These algorithms were implemented in
Python using the PyMOO?®® library. The means of the values of
supersaturation and temperatures corresponding to the predicted
minimum from each algorithm were used as the center point for the
next round of experiments. A smaller two-level full factorial DoE
(Table 2) was then performed at this supersaturation and temper-
ature. Following this round of experiments, the fitted functions were
updated, the objective function surface was recalculated, and a new
average minimum was predicted for the next round of experiments.
This loop was repeated until the termination criteria were met. The
subsequent DoE plans can be seen in Table 2. Using multiple
algorithms to predict the next best experiment allowed us to remove
outliers (see Tables SI and S2).

3.2.2. Optimization Approach 2: Bayesian Optimization. Three
center points were taken as initial values and the difference between
the target objectives and the experimental values for the parameters of
interest were included in the objective function using the equation
below

DSS,T(Pexp @SS,TT) = |10g(Ptarget) - Iog(Pexp @SS,T)I (9)

where Py, is the target value for a given parameter, Py,qgsr is the
experimental value for a given parameter at given supersaturation, SS,
and temperature, T, inputs, and the difference between the log target
value, Py, and log experimental value, P.,@ssr for a given
supersaturation and temperature is defined as the function
Dgs 1(Pesp@ss;t)y Where P is the parameter of interest. As stated
earlier in the construction of eq 8, the relationship between induction
and temperature can be assumed to be negligible; the same can be
applied in eq 10 also.

The objective function assessed with kinetic parameters measured
at a given supersaturation and temperature, f(SS,T), compared with
the target kinetic parameters was then defined as follows

f(8S, T) = Dggr(ting) + Dssr(Ryye) + DSS,T(Rgrowth) (10)

A Bayesian optimization algorithm was then implemented to
determine the next experimental point to trial within the lower and
upper bounds of the parameters. The algorithm was implemented in
Python using the GPyOpt®* library using a Gaussian process
probabilistic model and expected improvement acquisition function
(see item 1 in the Supporting Information).

A Bayesian model with acquisition jitter (a scalar ratio between
exploration: exploitation) of 0.001, 0.1, 1, and 10 as well as an
adaptive dynamic model was performed. The criterion for changing
the exploration/exploitation trade off was that if the objective
function value falls below 10% of the maximum objective function
value, the acquisition jitter is set to 1. Then, if the objective function
value falls below 5% of the maximum, then the acquisition jitter is

value adaptive approach makes sense for a crystallization given the
potential for many local optima and that experiments are done in
batch. A continuous-value adaptive approach to changing the
acquisition jitter could be implemented in fast moving experiments
such as flow chemistry. Similar to the DoE optimizations, the
termination criteria for convergence were a change in temperature of
less than 2 °C and a change in supersaturation of less than 0.02
between recommended experiments. Unlike the DoE optimizations,
no domain knowledge in the form of physical equations that describe
the system was needed as Gaussian processes can adapt the function
used allowing good fit to data with many minia and large
uncertainties.

4. RESULTS AND DISCUSSION

Lamivudine recrystallizing from ethanol typically has relatively
slow kinetics [i.e., large MSZW and induction times in the
hours (SS ~ 2)],>* whereas aspirin in ethyl acetate typically has
fast kinetics [i.e.,, narrow MSZW and induction times in the
minutes (SS ~ 2)].%” Comparing the performance of the DoE
and BO optimization methods for APIs with different inherent
kinetic profiles can provide evidence for the generalizability of
application of these methods.

4.1. Design of Experiment with Surface Minimization.
Overall, the DoE approach allowed for sufficient data
collection of measured kinetic parameters and, after applying
domain knowledge, allowed for visualization of the data on a
3D surface. The minimum point of the surface (the only
optimum value) was then found each time by search-based
algorithms (refer to Section 3.2.1.).

The initial DoE screen consisting of 28 experiments
investigated how supersaturation and temperature impacted
each of the three objectives: induction time, nucleation rate,
and growth rate. The minimum of the 3D objective function
surface corresponded to a supersaturation of 2.88 and a
temperature of 26.9 °C for lamivudine and a supersaturation of
1.21 and a temperature of 45.0 °C for aspirin. As discussed
earlier, various approaches were used to identify the minimum,
and the values determined by GA, DE, CM-AES, and pattern
search consistently agreed (Tables SI and S2). By contrast, the
Nelder Mead values were discarded when calculating the mean
value in early iterations, as this algorithm encountered
calculation errors and only predicted the minimum under
boundary conditions. The results over seven iterations of the
optimization and experimental loop are shown in Table 3
where the median values of supersaturation and isothermal
temperature predicted across all algorithms are presented.

For both APIs, the termination criteria (see Section 3.2.1.)
were achieved after the seventh iteration of the algorithm,
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Figure 2. Surface plot of the objective function resulting from the adaptive DoE optimization experiments for lamivudine (a) and aspirin (b).

Table 4. Predicted Optimum Supersaturations and Isothermal Experimental Temperatures for Lamivudine and Aspirin Across

Different Exploration/Exploitation Bayesian Models

acquisition jitter model lamivudine

temperature (°C) SS obj. function value

0.001 20 2.43 1.90
0.1 19.82 2.58 1.76
1 20.95 2.63 1.38
10 29.8 2.57 0.86
adaptive 17.9 2.86 0.40

aspirin
no. of exp.  temperature (°C) SS obj. function value  no. of exp.
8 20 1.49 1.98 6
6 19.52 1.50 1.98 8
6 20 1.51 1.98 6
31 14.39 1.36 0.40 25
32 18.17 1.27 0.40 15

equating to 70 experiments. These optimization approaches
were consistent in predicting relatively similar values of
supersaturation and temperature for the global minimum of
the objective function for lamivudine. However, for aspirin, a
series of supersaturation and temperature values resulted in the
global minimum “valley” as seen in Figure 2.

The surface plot for aspirin has minimal dependence on
temperature and is much more dependent on supersaturation
such that small changes (+0.1) in the supersaturation had
more impact on the crystallization kinetics than changes in the
temperature. The surface plot for lamivudine shows a
comparable impact on crystallization kinetics caused both by
supersaturation and temperature.

DoE approaches are typically less suited to handle high
levels of noise.”® The fitting of physical equations to smooth
the objective function surface helped address this issue of
noise*® associated with the stochastic nature of crystallization
nucleation kinetics, and, arguably, significantly reduces the
number of experiments required to generate a smooth enough
surface to find a minimum. This in-part mechanistic model
parameter fitting allowed for a second-order polynomial kinetic
model to be defined for each APL

4.2. Bayesian Optimization. BO was applied using five
different acquisition jitter level models to evaluate the
performance from different exploration and exploitation
weightings. These were as follows: highly exploitation-focused,
exploitation-focused, exploration-focused, a model that bal-
anced exploration versus exploitation, and an adaptive model
which started as exploration-focused and moved to exploita-
tion-focused as the objective function value decreased (see
Section 3.2.2 for further details). The three center points of the
domain space of interest (SS of 2.4 and temperature of 20 °C
for lamivudine and SS of 1.5 and temperature of 20 °C for
aspirin), and the related extracted kinetic data from the initial
DoE plan, were used as initial values for the Bayesian model.

As expected, exploitation-focused models, i.e., acquisition
jitter of 0.001 to 0.1, terminated quickly but still had high
values (relative to other models) for the objective function for
both lamivudine and aspirin, indicating that optimization likely
found a local rather than global minimum (Table 4). The
model which balanced the focus between exploitation and
exploration, ie., acquisition jitter of 1, terminated for both
lamivudine and aspirin after six experiments again with high
objective function values indicative of local minima (Table 4).
The exploration-focused model, ie., acquisition jitter of 10,
achieved significantly lower objective function values for both
APIs compared with the exploitation-focused model and the
model that balanced exploration and exploitation models.
However, the exploration-focused model terminated after only
31 experiments for lamivudine and 25 experiments for aspirin
(Table 4).

To integrate the advantages of exploration-focused models
(lower objective function values indicative of a global
minimum) and exploitation-focused models (faster conver-
gence), an adaptive Bayesian model was explored. This
acquisition jitter for this model started high (10), i,
exploration-focused, and was reduced stepwise with steps
down in value triggered by reductions in objective function
values until the termination criteria was met. In other words,
an objective function value between S and 10% of the
maximum value (this was 8% after 13 experiments for
lamivudine and 6% after 14 experiments for aspirin) triggered
the change of acquisition jitter from 10 of 1. Termination
criteria were met for aspirin after 1 experiment at an
acquisition jitter of 1. In the lamivudine optimization, a
reduction in the objective function value to a value of 3% of
the maximum triggered the acquisition jitter to change from 1
to 0.1 after a further 19 experiments. The results from the next
experiment following this change met termination criteria. If
the problem was more complex or the termination criteria
more stringent; then the acquisition jitter could be further
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Figure 3. Plot of posterior mean, posterior standard deviation (sd), and acquisition function for lamivudine (a) and aspirin (b) for the final
iteration of the adaptive exploration/exploitation model. The X and Y axes, labeled as X1 and X2, correspond to the supersaturation and
temperature (respectively) input values at which the posterior mean, posterior standard, and acquisition function are evaluated.

reduced; however, this was unnecessary here. In total
termination criteria were satisfied after 32 experiments for
lamivudine and 15 experiments for aspirin (Table 4). This
difference in the number of experiments required is indicative
of the differences between fast and slow kinetic regimes for the
two APIs. Aspirin has a smaller “sweet spot” and a large
gradient into the minimum due to the large impact on
crystallization kinetics from small changes in process
conditions particularly SS and as such the BO algorithm can
find the optimum more efliciently.

Figure 3 shows the 2D heat maps for the objective function
value (here labeled posterior mean referring to the mean of the
posterior distribution’” output in BO), the uncertainty
associated with these values (posterior standard deviation),
and the acquisition function (an expected improvement
algorithm used to weight the optimization toward exploration
or exploitation). While some parts of the design space still have
areas with higher levels of uncertainty (ie., posterior standard
deviation of ~0.8 and above), these areas also correlate to
points where the value of the objective function (i.e., posterior
mean values) is also predicted to be high. Thus, these areas are
unlikely to correspond to the global minimum, i.e., objective of
the optimization.

4.3. Comparison of the Optimization Methods. It is
worth focusing on the results from AdBO as this approach
either performed as well as or better than other BO
configurations tested and shows most promise as a general
experimental optimization approach. As the objective functions
for BO and DoE approaches investigate the absolute difference
between the experimental or fitted outcome and the target
values for each induction time, nucleation rate, and growth
rate, we can compare the objective function values for both
methods. All target parameters for induction time, nucleation
rate, and growth rate were satisfied for both lamivudine and
aspirin with experimental validation (Figure S6—with
reference to reliability of each measurement), and XRPD
(Figures S7 and S8) was run on each crystal sample recovered
to confirm the target polymorphic form for both lamivudine
and aspirin was produced.

The BO methodology for optimizing kinetic parameters
required fewer experiments when compared with the DoE
approach (Figure 4). Specifically, AdBO optimization of
lamivudine crystallization used 50% less material and required
54% less experiments than DoE methodology. Further
improvements were seen for aspirin crystallization where
AdBO used 75% less material and required 79% less
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Figure 4. Comparison between different optimization approaches, DoE for lamivudine (a) and aspirin (d) and AdBO for lamivudine (b*) and
aspirin (e*) and algorithm performance in reducing the objective function for process condition optimization for small-scale batch cooling
crystallization of lamivudine (c) and aspirin (f). The dashed lined represents an extrapolation back to experiment 0, as the DoE methods required a
28 initial screening experimental plan.*The numbering on the legends for these figures were not sequential as the AdBO method was a 1
experiment/iteration approach and thus would make the legend too large to display.

experiments than the DoE optimization. This improvement in
experimental efficiency is predominantly due to the fact that
the AdBO method does not require an initial screen of
experiments.

As shown in Figure 4c,f, the AdBO method reaches the
lowest objective function value and satisfies the termination
criteria in the least number of experiments, suggesting that the
AdBO method can outperform both the fixed acquisition jitter
Bayesian models and the DoE method. While the DoE method
achieved a relatively low objective function through initial
screening, the AdJBO method continues to drive the trends in
objective function even lower. Notably, the AdBO model
demonstrates a significant improvement over the BO10
(Bayesian with an acquisition jitter of 10) for aspirin, achieving
a low objective function in 10 fewer experiments. Furthermore,
AdBO’s faster reduction of the objective function and
satisfaction of achieving the termination criteria comes at no
additional computational cost as all the algorithms employed
in this study exhibited comparable average execution times
(from 3 to 4 s), with no statistically significant differences
observed (Figure SS).

The inherent noise in the objective function also presented
no noticeable challenge for the AdBO optimization. The
AdBO method, as applied, was “blind” to the physics of the
experiment in that no domain knowledge was required to
achieve a fit for the objective function. This lack of reliance on
equations that describe the physics of the system provides us
with a potentially generalizable method that can handle the
inherent stochastic nature of induction time and the higher
levels of noise associated with fewer numbers of experimental
points.”® These results also suggest that the AdBO method

may have potential application to optimize other parameters
for which the physics of the system is complex or poorly
understood as well as other physical processes beyond
crystallization.

Both approaches (DoE and AdBO) discussed in this paper
have also shown significant improvements over a grid search,
with Bayesian methods requiring the least experimental work.
A grid search of the design space for lamivudine and aspirin
would require 1125 and 1069 experiments, respectively, based
on the increments of the termination criteria and the span of
the design space for each variable for each APL

5. CONCLUSIONS

This study demonstrated the successful application of two
optimization methods for crystallization kinetic parameters of
two APIs with the approaches implemented in the Python
libraries, PyMOO and GPyOpt. By minimizing the total sum
of the differences between target and experimental values,
these algorithms have successfully achieved the desired target
values for induction time, nucleation rate, and growth rate that
relate to attainable conditions for a viable industrial process
design. Two case studies of lamivudine and aspirin were
explored to assess the effectiveness of the algorithms for APIs
that display widely differing crystallization kinetics. The DoE
and AdBO methods identified the Pareto optimal process
conditions, specifically supersaturation and temperature,
essential for optimizing crystallization processes. Notably,
both methods yielded low objective function values (0.61 for
DoE lamivudine and 0.57 for DoE aspirin and 0.40 for AJBO
both lamivudine and aspirin with respect to initial values
upward of 11 for lamivudine and 7 for aspirin). The savings, in
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terms of time and material, of using AdBO over DoE methods
can be estimated as between a 15—80 kWh reduction in energy
and specifically £20,000/kg for lamivudine and £60/kg for
aspirin.

The effective application of the AdBO method to these two
APIs is promising; however, further study across a wider range
of APIs is required to confirm the generalizability of this
approach to the wide range of physicochemical properties
presented by new pharmaceutical molecules. It will be
important to address known limitations of the method, such
as increasing the dimensionality of this problem beyond 20
inputs/outputs (e.g., stirring rate, rate of antisolvent addition,
heating/cooling rate, and morphology) could reduce the
algorithmic performance.””*’ The incorporation of these more
complex parameters will have a complex relationship with
nucleation rate and growth rate, and as such convergence of
the algorithm may require further experimentation or an initial
training data set to achieve high algorithmic performance.
Furthermore, in this work, we relied on prior knowledge of the
MSZW in specific solvents system tested when constraining
the design space search. However, the approach can be phased
to explore potential process conditions to evaluate MSZW
under different conditions and then feed into more detailed
kinetic parameter studies.

Even with these limitations, this study clearly shows that
using BO to guide experimental design allows for a faster,
targeted, and more sustainable approach to API crystallization
kinetics data collection in pharmaceutical development.
Furthermore, the AJBO model could transform automated
crystallization data collection to autonomous experimental
design enabling smart experimentation for crystallization
kinetics to further enhance R&D productivity and process
understanding. This implementation of BO has the potential to
translate to meaningful cost savings for materials, resource,
energy utilization, and chemical waste and to accelerate
development timelines. This method could also be expanded
to investigate the optimization of other numerical parameter
objectives such as solute concentration, aspect ratio, and yield
and ﬂ)plied to optimization of drug substant filtration”' and
flow.
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