
Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 57 (2024) 075001 (27pp) https://doi.org/10.1088/1751-8121/ad1cb3

Flux-conserving directed percolation

Barto Cucurull1, Greg Huber2, Kyle Kawagoe3,
Marc Pradas1, Alain Pumir4 and Michael Wilkinson1,∗

1 Department of Mathematics and Statistics, The Open University, Walton Hall,
Milton Keynes MK7 6AA, United Kingdom
2 Chan Zuckerberg Biohub—San Francisco, 499 Illinois Street, San Francisco, CA
94158, United States of America
3 Departments of Physics and Mathematics, The Ohio State University, Columbus,
OH 43210, United States of America
4 Laboratoire de Physique, Ecole Normale Supérieure de Lyon, CNRS, Université
de Lyon, F-69007 Lyon, France

E-mail: m.wilkinson@open.ac.uk

Received 3 October 2023; revised 12 December 2023
Accepted for publication 9 January 2024
Published 6 February 2024

Abstract
We discuss a model for directed percolation in which the flux of material along
each bond is a dynamical variable. The model includes a physically significant
limiting case where the total flux of material is conserved. We show that the
distribution of fluxes is asymptotic to a power law at small fluxes. We give an
implicit equation for the exponent, in terms of probabilities characterising site
occupations. In one dimension the site occupations are exactly independent, and
the model is exactly solvable. In two dimensions, the independent-occupation
assumption gives a good approximation. We explore the relationship between
this model and traditional models for directed percolation.

Keywords: directed percolation, occupation probability,
power-law distribution, percolation transition

1. Introduction

Percolation problems were introduced by Broadbent and Hammersley in 1957 [1]. Their paper
motivated the study of percolation [2, 3] by a discussion of fluids passing through a disordered
medium, such as water penetrating through limestone. Forced flow of a liquid through a porous
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medium is central to many interesting and technologically important processes involving elu-
tion from, or absorption by, randommedia, such as leaching of salts from soil, extraction of oil
or gas from reservoirs, brewing coffee, or the operation of chromatography columns, which
stimulated the study of directed percolation. There is a vast literature treating the standard
models of directed percolation, reviewed in [4], and [5–21] are indicative of the breadth of
different models and approaches to directed percolation which have been investigated. Much
of the effort has been stimulated by the observation that directed percolation has a phase trans-
ition, which is still not completely understood (for example, the critical exponents of the stand-
ard model for directed percolation are not known analytically). In this paper we follow a some-
what different direction of enquiry, which is arguably closer to the issues originally addressed
by Broadbent and Hammersley. The standard percolation models (such as bond percolation on
a lattice) do not take into account the mass conservation of a flowing liquid. We consider a gen-
eralisation of directed percolation, which includes the flux in a bond as a dynamical variable.
If the fluxes are ignored, and only the occupancy of bonds is considered, then the standard dir-
ected percolation model occurs as a particular special case. Our generalised model includes a
flux-conserving case which can describe the forced flow of a liquid through a randommedium,
and we shall consider this in some detail. We demonstrate that aspects of the subset of mod-
els which represents elution by a flux-conserving fluid are exactly solvable in one dimension,
extending some results obtained (in another context) in [22]. Our generalised model has some
similarity to the Scheidegger model for the distribution of river catchment basins [23, 24],
which will be discussed in the conclusions. Another, more distantly related, class of models
which quantify directed transport in random media is described in [25, 26].

The percolation model introduced by Broadbent and Hammersley uses the idea of ‘wetted’
bonds. Here we extend this binary notion of wetting by modelling the flux ϕ of liquid through
each bond and the probability distribution of such fluxes. We argue that, for a quite general
class of flux-conserving process which involve a forced flow through a disordered medium,
the distribution of the fluxes has some universal characteristics. After penetrating a sufficient
distance into the network, the probability densityP(ϕ) for the flux ϕ in a channel may approach
a stationary distribution, with a power-law form at small values of ϕ:

P(ϕ)∼ ϕ−α . (1)

The existence of power laws is usually associated with critical phenomena, however the power-
law distribution described by equation (1) is a robust feature, which does not depend upon
tuning the model to criticality. We argue that the mechanism determining the power law is very
general, and that power-law distributions of small fluxes are a robust feature of the model.

Section 2 defines our model, in both one and two dimensions. Our model includes both
a ‘skeleton’ of wetted bonds, and the flux of material, ϕ, carried in each wetted bond. The
skeleton is defined by three probabilities: a wetted channel continues with probability p1, splits
into K channels with probability p2, and terminates with probability p0. The flux carried by a
bond which splits is distributed so that a fraction rk flows into each branch, with r1 + · · ·+ rK =
1, where rk ∈ [0,1]. We emphasise cases where there are only K= 2 branches, and where the
two branches carry fixed fractions of the total flux, denoted by r and 1− r. Accounting for the
relation p0 + p1 + p2 = 1, the model then has three independent parameters, p0, p2 and r. The
flux-conserving case is the p0 = 0 subspace. The model which was considered in [22] is the
one-dimensional, flux-conserving case.

Section 3 considers the distribution of fluxes in the mass-conserving case in some detail. It
is shown that, for small values of the flux, the probability distribution function (PDF) of the
flux is asymptotic to a power law described by equation (1). We obtain an exact equation for
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the exponent α of this power law, in terms of some probabilities, Pj which characterise the
occupation of lattice sites.

The bond skeleton is characterised by the probability f that a given bond is occupied.
In section 4 this is calculated under the assumption that the occupation of sites is statist-
ically independent, and we find very good agreement between theory and numerical exper-
iment. Section 5 estimates the probabilities Pj which define the equation for α using the
same approach, and we compare empirically determined values for the exponent α with those
obtained from both numerical and theoretical estimates of the Pj.

In section 6 we consider the extent to which the independent-occupancy approximation is
exact.We demonstrate two results which indicate that it is exact in the one-dimensional version
of the model. We find that, in the two-dimensional case, this is a very good approximation, but
not exact.

Section 7 discusses the relationship between our system and the standard model for directed
percolation. By varying the parameter p0 we can induce a percolation transition in our model,
which can be regarded as a consequence of large voids appearing between the active bonds. In
section 7.1 we investigate where the transition lies in the parameter space of our model. Our
model can be thought of in terms of a combination of ‘bond’ and ‘site’ deletion processes, and
section 7.1 also discuss the relationship between our system and a model for mixed site and
bond percolation, discussed in [17]. Section 7.2 presents some numerical evidence that the the
critical exponents describing the structure of the skeleton are the same as for the usual directed
percolation model. In section 7.3 we present some results on the distribution of void sizes.

Finally section 8 summarises and discusses the implications of our results, including a
model for the slow elution of material by percolation.

2. Definition of the model

We define discrete dynamical processes, with an iteration number, j. Incrementing j can be
thought of as advancing time, but in the physical contexts described in the Introduction,
increasing j represents moving downstream in the forced flow. Because the iteration index
can be interpreted as a discrete time, our one or two dimensional systems are comparable to
standardmodels for directed percolation in 1+ 1 dimensions or 2+ 1 dimensions, respectively.

2.1. One-dimensional model

We consider a bi-partite lattice. At even iteration number j, only even sites are occupied. The
dynamics always moves an occupied site by one unit left or right, so that for odd iteration
number, only the odd sites may be occupied. Every occupied site, index i, is associated with a
flux, ϕi( j), at iteration j.

First consider the dynamics of the site occupations. At each iteration, an occupied site is
annihilated with probability p0, or moves either right or left with equal probabilities p1/2, or
else it splits into K= 2 branches with probability p2.

The corresponding dynamics of the fluxes is as follows. If a site is annihilated its flux dis-
appears. When transitions bring two occupied sites to the same position, their fluxes combine,
and if the site branches, then its flux is divided. So values of the flux are changed by two
possible processes, namely

coalescence : ϕi ( j+ 1) = ϕi−1 ( j)+ϕi+1 ( j)

splitting : ϕi−1 ( j+ 1) = r−ϕi ( j) , ϕi+1 ( j+ 1) = r+ϕi ( j) (2)
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Figure 1. The model is defined on a bi-partite lattice. Only even sites (red) are occupied
at even-numbered iterations, only odd sites (blue) during odd iterations. At each itera-
tion every occupied site is either removed (probability p0), moves to one of its nearest
neighbours (probability p1), or else splits into K= 2 daughters (probability p2). The flux
ϕ carried by an occupied site moves with it, unless the site is removed, in which case
the flux disappears. When two fluxes are moved to the same site, they are added.

where either (r+,r−) = (r,1− r) or (r+,r−) = (1− r,r), both cases with probability equal
to one-half. The model is illustrated schematically in figure 1. More generally, we can make
r ∈ [0,1] a random variable, chosen independently for every bifurcation, with a PDF which is
symmetric about 1

2 .
The model only describes a volume-preserving flow when the stopping probability p0 is

equal to zero. This parameter is included for two reasons. The parameter p0 is included primar-
ily so that our system encompasses the standard model of directed percolation. In addition,
the case where p0 > 0 can model situations where the solvent disappears, for example by
evaporation.

The fluxes at each wetted site can increase (due to coalescence) or decrease (due to split-
ting), and some sites become unoccupied. The long-time behaviour of the model is character-
ised by the probability, f, that sites are occupied and the distribution of the non-zero values
of ϕ. A nonzero value of p0 implies a loss of conservation, which significantly changes the
nature of the problem. When p0 is large enough, the probability that a site is occupied at long
times becomes zero, and as p0 decreases, one observes a transition when the probability of
occupation becomes strictly positive.

2.2. Two-dimensional model

Consider a model defined on an 2N× 2N square lattice, with sides identified to make a toroidal
topology. Every site (i, j) carries a weight ϕij. Initially only sites with i+ j even are occupied,
with unit weight, so that our model is defined on a bi-partite lattice. The value of N is assumed
to be large.

The lattice configuration is then evolved in discrete timesteps. At each site, we choose
(with equal probabilities) a move to one of the four nearest neighbour sites. With probability
p1, all of the flux on (i, j) is moved to the selected neighbour. Alternatively, with probabil-
ity p2, branching onto K nearest neighbours occurs. Note that these moves preserve the bi-
partite property, so that at iteration k, only sites with i+ j having the same parity as k may be
occupied.

We investigated two different versions of this model, which we term the two-branch and
four-branchmodels. In the two-branchmodel, we haveK= 2, and a fraction 1− r of theweight
at (i, j) is moved to the selected neighbour, and a fraction r is moved in the reciprocal direction.
All of the random choices are independent. The model has three parameters of interest, p2, p0
and r.
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Figure 2. In two dimensions, when the flux at an occupied site splits there may be up
to four branches. We consider two cases in some detail. In the two-branch version of
the model there are two branches, which go in opposite directions, either horizontal or
vertical, with equal probability. In the four-branchmodel, where branching events reach
all nearest neighbours, with the locations of the weights r1,r2,r3,r4 randomly assigned.

In the four-branch model, there is branching to all of the nearest neighbour sites, so that
K= 4. The fractional weights for each branch are defined by four numbers, {r1,r2,r3,r4}, with
r1 + r2 + r3 + r4 = 1. The processes involved in the evolution of the two-dimensional model
are illustrated in figure 2.

3. Power-law distribution of fluxes in the mass-conserving case

In the following, sections 3–6, we consider exclusively the mass-conserving case, with p0 = 0.
To simplify the notation, we will set, in these sections, p= p2, so that p1 = (1− p).

We argue here that the distribution of fluxes P(ϕ) has a power-law behaviour in the limit
as ϕ→ 0 (with the exponent in (1) satisfying α< 1, so that the distribution is normalisable).
Branching of a channel reduces the flux due tomultiplying by a random factor rk < 1, whichwe
assume to have a known PDF. Because fluxes are added when coalescence of channels occurs,
this process increases the flux. We are interested in the distribution of very small values of the
flux ϕ. In this case splitting and coalescence have very different effects. In the case where a
channel carries a very small flux, coalescence with another channel will produce a much larger
flux (with a value which is typically comparable to the mean flux). Almost all coalescence
events will, therefore, remove a very small value of ϕ, whereas splitting events just reduce
its value. The distribution of very small values of ϕ is, therefore, the result of a competition
between two process: the small values of ϕ continue to decrease due to splitting, but they are
annihilated by coalescences.

In order to explain why a power-law distribution of the flux is expected, we start by making
a change of variables. Instead of considering ϕ, we consider the PDF of a logarithmic variable,
ψ ≡ ln ϕ. Consider the dynamics of the variable ψ (regarding increasing ψ as a displacement
to the right). With every bifurcation of a channel, the points representing the values of ψ are
split into K new points, and each one is displaced by ln rk. When two channels coalesce, the
two values of ψ are replaced by ψ = ln [exp(ψ1)+ exp(ψ2)]. In the following we shall assume
that the PDF P(ϕ) is bounded so that the probability of ϕ being less than ϕ0 approaches zero
as ϕ0 → 0. This is consistent with the distribution (1) provided α< 1. Under this assumption,
in the limit as ϕ→ 0, most coalescences occur with channels carrying a much larger flux. As a
consequence, coalescence of a channel with a small flux, ψ, is replaced by a value close to that
which characterises a typical channel. This picture implies that the variable ψ drifts to the left
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with each bifurcation, but, in the case of small fluxes, coalescence almost inevitably causes a
jump back to a position close to the origin.

Because the equations defining the dynamics of ψ become independent of the value of ψ in
the limit as ψ →−∞, the PDF of ψ should reflect this translational symmetry. In the limit as
ψ→−∞, the PDF of ψ should be asymptotic to an eigenfunction of the translation operator.
Because the exponential function is an eigenfunction of a translation operator, we expect that
the PDF of ψ has the form

Pψ (ψ)∼ exp(λψ) . (3)

Note that we must have λ> 0 to have a normalisable distribution if this law holds as ψ→−∞.
The corresponding distribution of ϕ is then a power law of the form

P(ϕ)∼ ϕ−α, α= 1−λ . (4)

This is a very general argument indicating that the steady-state distribution of fluxes
approaches a power law as we go deeper into the percolation medium, but it does not yield
a prediction of the exponent α. Figure 3 illustrates numerical simulations of the distribution
P(ϕ) for the two-dimensional model, demonstrating that it is indeed asymptotic to a power
law at small values of ϕ.

To calculate α we shall determine a master equation for the PDF of the variable ψ, valid in
the limit as ψ→−∞. Because coalescence almost inevitably results in the value of ψ making
a large jump to the right, we must consider the fate of sites which are occupied and which
have not experienced a coalescence for a large number of iterations. The latter requirement
is imposed because it is only those sites which have very small values of ϕ. For this subset of
sites we introduce the following probabilities:

P1 ≡ probability of moving without branching or coalescence

P2 ≡ probability of moving without branching and undergoing coalescence

P3+k ≡ probability of branching K ways, with k branches undergoing coalescence (5)

Note that P1 +P2 = 1− p and P3 + · · ·+P3+K = p. In practice, when we estimate the Pk from
numerical simulations, we only accumulate statistics for those sites which have not undergone
coalescence in the precedingNthr iterations.We take a sufficiently large value for this threshold
such that the Pk are insensitive to the value Nthr.

To describe the asymptotic form of the probability of very small fluxes, we write down an
equation for the PDF of ψ at iteration j+ 1, which is valid in the limit as ψ→−∞. Note that,
because events involving coalescence almost always induce a large increase of the flux, they
do not contribute to this balance equation for very small values of ϕ. It follows that it is only
events which do not involve coalescence at iteration j which contribute to Pψ(ψ, j+ 1), when
ψ→−∞: these events are moving without coalescence, leaving ψ unchanged (probabil-
ity P1), or splitting events where some of the daughters escape coalescence (probabilities
P3, . . . ,P2+K). Taking this remark into account, if Pψ(ψ, j) is the PDF of ψ at iteration j, then

Pψ (ψ, j+ 1) = P1Pψ (ψ, j)+Q
K∑
k=1

Pψ (ψ − ln(rk) , j) (6)

with

Q=
1
K
[KP3 +(K− 1)P4 + · · ·+PK+2] . (7)
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Figure 3. Results of numerical simulations demonstrating that the distribution of flux,
P(ϕ), is asymptotic to a power law at small ϕ. We show results for the two-dimensional
model. Upper row: two-branch system: each panel illustrates different values of p, with
r= 0.01 ((a), left panel) and r= 0.5 ((b), right panel). Lower row: four-branch system,
with r= 0.025 ((c), left panel) and r= 0.25 ((d), right panel).

Seeking a solution of the form (3) which is independent of j gives an exact equation for the
exponent α:

1−P1 = Q
K∑
k=1

rα−1
k . (8)

In the cases where K= 2 and where the splitting ratios are (r,1− r)), (this includes the one-
dimensional model and the two-branch model in two dimensions) equation (8) simplifies to

rα−1 +(1− r)α−1
= F(p) (9)

with

F(p)≡ 1−P1

Q
=

2(1−P1)

2P3 +P4
(two−way splitting) . (10)
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We also simulated a model with K= 4: when there is a four-way split, we set a weight factor
of r for two of the sites (chosen at random), and a factor 1− r for the other two sites. In this
case, α satisfies equation (9) with

F(p)≡ 1−P1

2Q
=

(1−P1)

2P3 + 3P4/2+P5 +P6/2
(four−way splitting) . (11)

We can use equations (9) and (10) or (11) to determine the exponentα in figure 3. These require
the probabilitiesPk, which are themselves dependent upon the site occupation probability, f (p).
We must estimate the f (p) (section 4) and the Pk (section 5) in order to compare the exponents
α in figure 3 with theoretical values.

4. Occupation probabilities in the mass-conserving case

Here we present calculations for the occupation probability f in the mass-conserving case,
p0 = 0, assuming that the occupation of sites is statistically independent of their neighbours.
For the sake of simplicity, we set p= p2, so p1 = 1− p. We limit the discussion to the two-
dimensional models, because the one-dimensional case was treated in [22], where it was shown
that the occupation probability is

f1 (p) =
4p

(1+ p)2
, (12)

where the sub-index 1 indicates the one-dimensional model.

4.1. Occupation probability: two-dimensional case with double branching

We determine here the probability of occupation in the two-dimensional problem, first with
K= 2 (two-branchmodel), f2,2(p), where the sub-indices indicate the two-dimensional model
with two branches and we recall that p= p2. Assuming that sites are randomly occupied with
probability f2,2, we estimate the probability Pempty that a site will be empty at the next iteration.
Note that the probability that one of the four nearby sites makes a transition to reach this
site is

Ptr =
(1+ p)

4
f2,2 . (13)

The probability of the site remaining empty is

Pempty = (1−Ptr)
4
= 1− f2,2 . (14)

This leads to a cubic equation for f2,2:

1− f2,2 =

[
1−

(
1+ p
4

)
f2,2

]4

= 1− (1+ p) f2,2 +
6
16

(1+ p)2 f2,2
2 − 1

16
(1+ p)3 f2,2

3 +
1

256
(1+ p)4 f2,2

4 . (15)

When p≪ 1, this is approximated by −pf2,2 + 3
8 f2,2

2 ∼ 0, so that

f2,2 ∼
8
3
p . (16)
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Figure 4. Comparing simulated occupation fraction f2,2 for the two-branch model with
prediction from independent-occupancy approximation, equations (17) and (18). The
inset shows the fractional error, plotted against lnp. (We defined the fractional error by
∆f/f≡ ( fth − fnum)/

√
fth fnum, where fth and fnum are, respectively, the theoretical and

numerically determined values of f.).

The cubic equation arising from (15) can, in fact, be solved by the method of Cardano. Within
the interval p ∈ (0,1), we have only one real root. By this method, the dependence of f2,2 on p
is given by:

f2,2 (p) =
4

3(1+ p)

[
4−

(
y(p)− x(p)

1+ p

)1/3

+

(
x(p)+ y(p)

1+ p

)1/3
]
, (17)

where

x(p) = 44− 10p , y(p) = 6
√
3
√
p2 − 8p+ 18 . (18)

The maximum of f2,2(p) is f2,2 ≈ 0.9126 at p= 1. Figure 4(a) compares this prediction of the
filling probability with the result of numerical simulation. The agreement is very good, but
not perfect. In particular, we find that the fractional error is quite large at small values of p, as
illustrated in panel 4(b). We were not able to determine whether the fractional error eventually
approaches zero as p→ 0.

4.2. Occupation probability: two-dimensional case with fourfold branching

The occupation probability for the four-branch model in two dimensions will be denoted f2,4.
For this model the transition probability is

Ptr =
1+ 3p

4
f2,4 . (19)

Then, the cubic equation for f2,4 is:

1− f2,4 =

[
1−

(
1+ 3p

4

)
f2,4

]4

. (20)
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Figure 5. Comparing simulated occupation probability f2,4 for the four-branch model
with prediction from independent-occupancy approximation, equation (21). The inset
shows the fractional error (defined in the same way as for figure 4), plotted against lnp.

Making a comparison with equation (15), we see that f2,4(p) = f2,2(3p), so that the occupation
probability in this case is

f2,4 (p) =
4

3(1+ 3p)

[
4−

(
y(3p)− x(3p)

1+ 3p

)1/3

+

(
x(3p)+ y(3p)

1+ 3p

)1/3
]
, (21)

and, when p≪ 1, we have f2,4 ∼ 8p. In this case, the maximum value is f2,4 = 1 at p= 1.
Figure 5 compares this prediction of the filling probability with the result of numerical simu-
lation. Again, while the agreement is very good throughout most of the range of p, there is a
substantial fraction error for small values of p.

5. Estimates of transition probabilities in the mass-conserving case

In section 3 we presented an exact equation, (8), determining the exponent α in terms of a
set of probabilities Pk, defined by equation (5). In this section we consider these probabilities,
comparing numerical simulations with theoretical estimates, where these are available.

We consider different models in turn (including the one-dimensional model, because these
probabilities were not given in [22]). In all cases, the theory uses the assumption that the
sites are independently occupied with probability f, as estimated in section 4. In section 6 we
shall argue that this independent-occupation assumption is exact in the one-dimensional case.
Accordingly we propose that the formulae for the Pk are exact in one dimension.

In the case of the two-dimensional model with two-way splitting, we are able to estimate the
Pk analytically using the independent-occupation model. We find close agreement with values
derived from numerical simulations. In the two-dimensional model with four-way splitting,
we are limited to giving values of Pk derived from simulations.

5.1. One-dimensional model

A given trail can evolve in several ways at each iteration, with probabilities defined by
equation (5). If sites are occupied with probability f1(p), we find, using equation (12), that

10
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there is a transition probability for a trail coalescing with one or other of its two neighbouring
sites, given by

Ptr =

[
1
2
(1− p)+ p

]
f1 (p) =

2p
1+ p

(22)

(the term (1− p)/2 comes from the case where the neighbouring site does not divide and
moves in the direction that creates a collision, and p comes from the case where the neigh-
bouring trail divides).

The probability P1 arises from the case where a trail does not divide, and does not collide:

P1 = (1− p)(1−Ptr) =
(1− p)2

1+ p
. (23)

Similarly

P2 = (1− p)Ptr =
2p(1− p)

1+ p
. (24)

In the case where the trail divides, there are two independent chances for the trail to be anni-
hilated, so the probability for both daughter trails to end is

P5 = p [Ptr]
2
=

4p3

(1+ p)2
. (25)

Similarly the probability for both daughter trails to survive is

P3 = p [1−Ptr]
2
=
p(1− p)2

(1+ p)2
. (26)

And because there are two ways in which one daughter trail can continue

P4 = pPtr [1−Ptr] =
4p2 (1− p)

(1+ p)2
. (27)

Using equations (23)–(27) in equation (9), we find that for the one-dimensional flux-
conserving model, α is a solution of

rα−1 +(1− r)α−1
=

3− p
1− p

(28)

in accord with equation (2) of [22].

5.2. Two-dimensional model with two branches

Next consider estimates for the transition probabilities for the two-dimensional model with
branching into two opposite directions. Again, we use the assumption that the sites are inde-
pendently occupied, with probability f2,2, as approximated by equations (17) and (18).

First note that a site moves to one of its nearest neighbours with a transition probabil-
ity, given by equation (13), namely Ptr = f2,2(p)((1− p)/4+ p/2) = f2,2(p)(1+ p)/4. A site
remains un-branched with probability (1− p), and un-combined if there is no other transition
into the final site from any of its three other neighbours. Hence

P1 = (1− p)(1−Ptr)
3
. (29)

The value of P2 is then determined by noting that 1− p= P1 +P2:

P2 = 1− p−P1 . (30)
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If the trajectory branches (with probability p), it avoids collision if none of the three nearest
neighbours of each of the two new sites make a transition which lands there. Hence

P3 = p(1−Ptr)
6
. (31)

Similarly, P5 is the probability of an event where neither of the two branches avoids coales-
cence with at least on one of its three nearest neighbours:

P5 = p
[
1− (1−Ptr)

3
]2
. (32)

To determine P4 we can use P3 +P4 +P5 = p to obtain

P4 = 2p(1−Ptr)
3
[
1− (1−Ptr)

3
]
. (33)

Figure 6 compares these theoretical estimates for the Pk with numerical simulations. The
numerical simulations include only sites which had not experienced coalescence in the preced-
ingNthr = 8 iterations (the parameterNthr was introduced in the paragraph below equation (5)).
These simulations show that the true Pk values differ slightly from the theoretical expressions,
equations (29)–(33), which are plotted in figure 6. The small difference between theory and
simulation becomes negligible as p→ 0.

We used the theoretical expression for f (p), equations (17) and (18), when evaluating
equations (29)–(33) for figure 6. Plotting the Pk for simulations with Nthr = 0 yields curves
which are barely distinguishable from equations (29)–(33), indicating that the small discrep-
ancy is due to the theory neglecting the requirement to exclude sites which have undergone
recent collisions, rather than the error in equations (17) and (18).

It is impractical to impose very large values of Nthr because, as p→ 1, very few sites satisfy
the requirement to have undergone no coalescences in the last Nthr iterations: for Nthr = 8,
we found that the probability of an occupied site satisfying this criterion falls from 0.64 at
p= 0.05 to 0.0013 at p= 0.75. Simulations with Nthr = 4 gave points which appear coincident
with those for Nthr = 8 when included in figure 6.

Figure 7 provides direct tests of the theoretical prediction for the exponent α. We estim-
ated α from simulations with a wide range of values of r and p. In the left panel of figure 7,
we compare the theoretical values of α obtained from equation (9) against numerically estim-
ates, obtained by directly simulating the model: here we used the values of Pk obtained from
simulations with Nthr = 8. In the right panel we collapse all of the data points onto two plots
of F(p)≡ (1−P1)/Q, one obtained using equations (29)–(33), the other using values of Pk
obtained from simulations with Nthr = 8. The former shows small but significant deviations
at larger values of p. The small dispersion between the symbols gives an indication of the
accuracy of our determination of the exponents α.

We remark that, if the errors in the approximations underlying equations (29)–(33) and (17),
(18) are negligible as p→ 0, we can determine the limiting value of F(p) as p→ 0. Using these
expressions in equation (10) results in

lim
p→0

F(p) = 3 . (34)

12
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Figure 6. Estimates of the probabilities defined in (5), Pk(p), k= 1, . . . ,5, for the
two-dimensional two-branch model. The solid lines are the theoretical predictions,
equations (29)–(33). The numerical simulations imposed the requirement that the site
has not recently experienced a coalescence in the preceding Nthr = 8 iterations. They
differ significantly from the theoretical model as p→ 1.

Figure 7. Testing the determination of α for the two-branch two-dimensional, two-
branch model, using equation (8), and the Pk derived from simulations with Nthr = 8.
Left panel: there is satisfactory agreement between the empirical values of α and the
values obtained from (8). Right panel: the data points collapse onto a plot of F(p)≡
(1−P1)/Q, using values of Pk derived from simulations (withNthr = 8), compared with
the values of F(p) obtained from equations (29)–(33).

5.3. Two-dimensional model with four branches

In the case of the four-branch model, a theoretical calculation of the probabilities Pk is con-
siderably more difficult, although we can obtain formulae for P1 and P2 which are analogous
to those obtained in the two-branch case, and find

P1 = 1− 7p+O
(
p2
)

(35)

The calculation of the other Pk is complicated, because once a site has branched from one site
to its four neighbours, one has to consider transitions from the eight sites adjacent to the four

13
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Figure 8. Numerical simulations of the functions Pk(p), k= 1, . . . ,7, for the two-
dimensional, four-branch model. Two different numerical simulations are shown: one
includes all sites (i.e. Nthr = 0, solid line), the other (points) imposes the requirement
that the site has not experienced a coalescence in the preceding Nthr = 6 iterations.

Figure 9. Testing the determination of α for the two-dimensional four-branch model,
using (8), and the Pk derived from simulations with Nthr = 6. Left panel: there is satis-
factory agreement between the empirical values of α and the values obtained from (8).
Right panel: the data points onto a plot ofF(p)≡ (1−P1)/Q, using values ofPk derived
from simulations (with Nthr = 6), compared with the values of F(p) obtained from sim-
ulations which included all sites (i.e. setting Nthr = 0): there is a significant discrepancy
as p→ 1.

newly occupied positions. Four of them can only reach one of the four new positions, but four
of them could possibly reach two positions. We can, however, assert that P3 = p+O(p2) and
conclude that

lim
p→0

F(p) =
3
2
. (36)

Numerical investigation of the probabilities Pk for the four-way splitting model is dif-
ficult because, except when p is small, the proportion of sites which do not undergo
coalescence events is very small. Accordingly, we confined our numerical investigations
to cases where p< 0.5. Figures 8 and 9, illustrating investigations of the four-branch

14
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model, are similar to figures 6 and 7, but do not include theoretical predictions of
F(p)≡ (1−P1)/Q.

6. Tests of exactness in the mass-conserving case

In the Introduction, we mentioned that, in one dimension, the case where p0 = 0 appears to be
exactly solvable. Here, we argue that the steady-state probability for occupying N consecutive
sites at step j can be written as a product of independent probabilities at different sites. That is,
if si is the occupation of the ith site, then we postulate the joint probability to be the product:

PN (s1,s2, . . . ,sN) =
N∏
i=1

P1 (si) =
N∏
i=1

[si f1 +(1− si)(1− f1)] (37)

where f 1 is the probability of occupation of a single site, given by (12). This result can be
demonstrated by assuming that (37) holds at iteration j, and testingwhether the joint probability
given by equation (37) remains unchanged by the dynamics.

Because sites which are not adjacent to each other are not influenced by common sites at the
previous iteration, non-adjacent pairs are obviously independent. In section 6.1 we investigate
the joint probability P2(a,b) for two adjacent sites, and show that this factorises if we make
an assumption about the relationship between the occupation probability, f, and the splitting
probability, p. This relation need not necessarily be the same as the function f1(p) given by (12),
and we shall distinguish it by denoting this function by f̃1(p). The same approach is also used
to determine functions f̃2,2(p) and f̃2,4(p) which would ensure that P2(a,b) = P1(a)P1(b) for
the two-dimensional models. We show that f̃1(p) coincides with f1(p), implying that the one-
dimensional model is exactly solvable, but that this does not hold for the two-dimensional
cases.

We are also able to give an inductive demonstration of a more general result concerning the
dynamics of the one-dimensional model: in section 6.2 we show that the boundary between an
occupied and an unoccupied region fluctuates diffusively, while the occupation probabilities
within the occupied region remain statistically independent.

6.1. Condition for factorisation

Consider two adjacent sites at step j+ 1. These were influenced by the configuration at step j
through their nearest neighbours. There is only one site, which will be referred to as the ‘key
site’, which can influence both of the sites at step j+ 1 (see figure 10). So if we are seeking
to establish whether sites are independent, this one site should receive special attention. This
observation is also true in higher dimensions.

Consider the influence of the key site, X, upon its two nearest neighbours, A and B. A
‘wetted bond’ connection may (probability P̃1), or may not, (probability P̃0), be made from
the key site X to site A. Let a= 0 or a= 1 indicate whether site A is (respectively) empty or
occupied. Also let P(a|0) be the probability that A becomes occupied at step j+ 1, given that
no connection has been made to A from X, and P(a|1) be the probability that A is occupied if
a connection is made from site X. Clearly, P(a|1) = a, because A is definitely occupied if the
connection is made, so that P(1|1) = 1 and P(0|1) = 0. With these definitions, we can write
an expression for the probability of A being occupied at step j+ 1. The probability P1(a) of
A being occupied has a contribution from a term where no connection is made from X to A
(with probability P̃0), multiplied by the probability for the independent event in which site A
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Figure 10. At iteration j+ 1, sites A an B are influenced by their nearest neighbours
(illustrated here for the two-dimensional model) at iteration j. Correlations may result
from the fact that both A and B are influenced by occupation of the ‘key site’, X.

achieves occupancy a by connections from its other neighbouring sites. Adding another term,
representing events where X does connect to A, we have

P1 (a) = P(a|0) P̃0 +P(a|1) P̃1 . (38)

We shall need expressions for P̃0 and P̃1. These depend upon which version of the model
we consider.

One-dimensional model
In the one-dimensional case, we assume that sites are occupied with probability f at step j. So
the probability of X being occupied and splitting is fp, and of X occupied and moving to the
left without splitting is f(1− p)/2. Hence

P̃1 =

(
1+ p
2

)
f , P̃0 = 1−

(
1+ p
2

)
f . (39)

Now consider the joint occupation probability of sites A and B. Going from iteration j to j+ 1,
there is a probability P̃00 that there is no transfer of occupation from X to either A or B. The
probability that X transfers to B and not A is P̃01, and the probability to transfer to both sites
is P̃11. In the one-dimensional case, these probabilities are

P̃00 = 1− f , P̃01 =
f
2
(1− p) , P̃11 = pf . (40)

The joint probability at step j+ 1 for sites A, B is

P2 (a,b) = P(a|0)P(b|0) P̃00

+ [P(a|0)P(b|1)+P(a|1)P(b|0)] P̃01 +P(a|1)P(b|1) P̃11 . (41)

Now use (41) and (38) to determine

P2 (a,b)−P1 (a)P1 (b) = P(a|0)P(b|0)
[
P̃00 − P̃2

0

]
+ [P(a|0)P(b|1)+P(a|1)P(b|0)]

[
P̃01 − P̃0P̃1

]
+P(a|1)P(b|1)

[
P̃11 − P̃2

1

]
. (42)
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From (42), the occupations remain independent at step j+ 1 if all three of the following con-
ditions are satisfied:

P̃00 = P̃2
0 , P̃10 = P̃0P̃1 , P̃11 = P̃2

1 . (43)

In the one-dimensional case, these conditions are

1− f=

[
1−

(
1+ p
2

)
f

]2

(1− p)
f
2
=

[
1−

(
1+ p
2

)
f

](
1+ p
2

)
f

pf=

[(
1+ p
2

)
f

]2

. (44)

These three equations all imply the same relationship between f and p:

f̃1 (p) =
4p

(1+ p)2
(45)

which is the same relationship between f and p as arises independently from the calculation
of the filling fraction in the independent-site approximation, equation (12).

Note that this calculation did not require P(a|0) or P(b|1), only the probabilities P̃0, P̃00,
P̃01. It is, therefore, easily extended to the two-dimensional models that we considered.

Two-dimensional model
For the two-branch model

P̃00 = 1− f
2
, P̃01 =

(
1− p
4

)
f , P̃11 = p

f
2

two−branch model

P̃0 = 1−
(
1+ p
4

)
f , P̃1 =

(
1+ p
4

)
f . (46)

In this case, equation (44) are satisfied by

f̃2,2 (p) =
8p

(1+ p)2
. (47)

Similarly, for the four-branch model

P̃00 = 1−
(
1+ p
2

)
f , P̃01 =

(
1− p
4

)
f , P̃11 = pf

four−branch model

P̃0 = 1−
(
3p+ 1

4

)
f , P̃1 =

(
3p+ 1

4

)
f . (48)

In this case, equation (44) are satisfied by

f̃2,4 (p) =
16p

(3p+ 1)2
. (49)

In contrast with the one-dimensional model, in the two-dimensional cases the functions f̃(p),
which satisfy the factorisation condition, do not agree with the functions f (p) which describe
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Figure 11. We consider configurations at the left-hand edge of the filled region. At iter-
ation j (blue sites), the configuration is (0,1,a,b) (where a ∈ {0,1} and b ∈ {0,1} are
variable). At iteration j+ 1 (red sites), the occupied region either expands (lower row,
occupancy (1,a ′,b ′)) or else contracts (upper row, occupancy (0,1,b ′)). We show that
if a,b are independent, with occupation probability f1 = 4p/(1+ p)2, then a ′,b ′ have
the same property. Sites defined to be empty are shown as open circles, those defined
filled are solid colour, and sites which are occupied with probability f1(p) are shaded.

the occupation probability of the sites discussed in section 4. We conclude that the site occu-
pations are not independent in the two-dimensional models.

6.2. One-dimensional case: finite intervals

We have shown that in the one-dimensional case, the independent-occupancy distribution is
self-reproducing under iteration of the model in the mass-conserving case, p0 = 0.We can also
establish a stronger result on exactness of solutions of the one-dimensional case. Suppose that
we know that at iteration j, the occupied region is bounded: it is known that sites n− and n+
are occupied, and that everything to the left of n− and to the right of n+ is empty. All the
sites with a parity different from j are empty. Let us assume that all of the sites n with the
same parity as j satisfying n− < n< n+ are occupied with independently with probability f 1,
given by (12). What can be said about the joint distribution of occupancy at the next (j+ 1)
iteration?

The end values n− and n+ both change by ±1, independently. At each end the boundary
expands with probability (1+ p)/2 or contracts with probability (1− p)/2. Let us assume
that the shifts of the boundary have been determined, and consider the joint distribution of
occupation of the other sites, conditional upon the new positions of the ends of the occupied
interval.

We shall argue that if, at iteration j, the interior sites are independently occupied with prob-
ability f 1, then, they remain independently occupied with f 1 at iteration j+ 1. Because of the
short range of influence of occupation probabilities at the next iteration, we can treat the two
ends independently, and consider only a short interval in the vicinity of one end.

We consider a sequence of four sites at iteration j, having the same parity as j. The first
two of these have definite values 0 and 1, and the second two are variable, a ∈ {0,1} and
b ∈ {0,1}, as illustrated in figure 11. These four sites, (0,1,a,b), influence the values of sites
(of different parity) at the next iteration. We consider two cases: the case where the occupied
region expands and the sequence at the next iteration is (1,a ′,b,), and also the contracting
case where the occupations become (0,1,b ′).
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Table 1. Conditional probabilities for reaching states (1,a ′,b ′) or (0,1,b ′) (rows) from
initial states (0,1,a,b) (columns).

(0,1,0,0) (0,1,0,1) (0,1,1,0) (0,1,1,1)

(1,0,0) 1−p
2

(
1−p
2

)2
0 0

(1,0,1) 0
(

1−p
2

)(
1+p
2

) (
1−p
2

)2 (
1−p
2

)2

(1,1,0) p
(

1−p
2

)
p

(
1−p
2

)(
1+p
2

) (
1−p
2

)2(
1+p
2

)
(1,1,1) 0

(
1+p
2

)
p 2p

(
1−p
2

)
+ p2 1−

(
1−p
2

)
−
(

1−p
2

)2

−
(

1−p
2

)2(
1+p
2

)
(0,1,0)

(
1−p
2

) (
1−p
2

)2 (
1−p
2

)2 (
1−p
2

)2

(0,1,1) 0
(

1−p
2

)(
1+p
2

) (
1−p
2

)(
1+p
2

) (
1−p
2

)[
1−

(
1−p
2

)2
]

In the contracting case, one calculates the probability of b′, assuming that a and b are inde-
pendent, with probability f 1 of being equal to 1:

Prob(b ′) =
∑
(a,b)

P01| (b
′|a,b) [f1a+(1− f1)(1− a)] [f1b+(1− f1)(1− b)] (50)

where P01|(b ′|a,b) is the conditional probability for obtaining (0,1,b ′) at iteration j+ 1 given
(0,1,a,b) at iteration j. Noting that the probability for a ‘contracting’ shift of the boundary is
(1− p)/2, if the joint distribution of occupations is self-reproducing under iteration, we should
expect that

Prob(b ′) =

(
1− p
2

)
[f1b

′ +(1− f1)(1− b ′)] . (51)

Similarly, for the extending case, we can calculate the joint probability distribution of (a ′,b ′):

Prob(a ′,b ′) =
∑
(a,b)

P1| (a
′,b ′|a,b) [f1a+(1− f1)(1− a)] [f1b+(1− f1)(1− b)] (52)

where P1|(a ′,b ′|a,b) is the conditional probability for obtaining (1,a ′,b ′) at iteration j+ 1
given (0,1,a,b) at iteration j. In this case, we expect

Prob(a ′,b ′) =

(
1+ p
2

)
[f1a

′ +(1− f1)(1− a ′)] [f1b
′ +(1− f1)(1− b ′)] . (53)

There does not appear to be any transparent general expression for the conditional probabilities
P1|(a, ,b ′|a,b) and P01|(b ′|a,b), and we determined them on a case-by-case basis. They are
tabulated in table 1. The first four rows determineP1|(a ′,b ′|a,b), and the final two rows specify
P01|(b ′|a,b).

Using the expressions in table 1, we were able to verify that equations (51) and (50) are
indeed equal, as are equations (53) and (52). We are not aware of any simpler route to this
conclusion.
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The same argument can be applied at the right-hand edge of the occupied region, so that
the site occupations remain independent inside any occupied region, independent of how its
boundaries fluctuate.

7. Relation to standard model for directed percolation

Here we discuss what happens, in one dimension, when p0 ̸= 0. This includes the standard
model for directed percolation as a special case, and we shall give emphasis to making con-
nections with that problem. So in this section we will not consider the probability distribution
of the flux ϕ, but rather concentrate on the set of occupied sites. The model then has just two
relevant parameters, p0 and p2.

When p0 ̸= 0, there is a possibility for clusters of pathways to die out, so that the occupation
fraction f1(p0,p2) is equal to zero when p0 > pc, where pc is the percolation threshold. This
percolation threshold is a function of p2.

The standard directed bond-percolation problem is when the two bonds are filled independ-
ently with probability p, so that p2 ≡ p2 and (1− p)2 = p0. The standard directed percolation
problem is therefore represented by the parametric line p0 = (1− p)2, p2 = p2 in the two-
dimensional parameter space of our model.

In section 7.1 we propose a bound on the percolation threshold, pc(p2), and compare this
with numerical estimates. Section 7.2 presents some numerical investigations of the critical
exponents of the model. We find that these appear to be identical to those of the standard
directed percolation model, in accord with a hypothesis of Janssen [6] and Grassberger [7]. In
section 7.3 we present numerical investigations of the PDF of the distribution of sizes of voids.

7.1. Phase diagram

The space of models is illustrated in figure 12. The allowed region of p0, p2 space is a triangle,
p0 ⩾ 0, p2 ⩾ 0, p0 + p2 ⩽ 1. The line p0 = 0 is exactly solvable for the equilibrium distribution
as described by equation (12) and section 6. The standard directed bond-percolation problem
with probability p for bond occupation is the line p0 = (1− p)2, p2 = p2. We have plotted our
numerical evaluation of the critical line, above which f1(p0,p2) = 0. The critical line crosses
the line defining bond-directed percolation at p= 0.644 . . ., as expected [13].

We were able to suggest an upper bound on the critical line using the following argument
(which assumes that p2 ≪ 1). We know that p0 = 0 is exactly solvable, with those sites which
are accessible on a given iteration are independently occupied with probability f1(0,p2) =
4p2/(1+ p2)2. Because there are no correlations, the site occupation is a Poisson process. This
expression implies that there are ‘voids’ between occupied sites which have a characteristic
lengthscale ⟨Lv⟩ which diverges as p2 → 0. Assuming that the lattice spacing is unity, and
noting that it is only every second site which is accessible, the mean length of the voids is

⟨Lv⟩ ∼ 1/(2p2) (54)

when p0 = 0. These voids have an exponential distribution of lengths.
A completely empty state is another possible solution. The dynamics of the system is

described by the boundary between the empty state and an occupied region. This boundary
is described by a single trajectory, and its treatment is more tractable than analysing the joint
statistics of an occupied region. The path of the boundary is a random walk with a drift. In the
limit where both p0 and p2 are small, we can characterise the motion of the boundary of the
occupied region by a diffusion coefficient Db and a drift velocity vb.
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Figure 12. Parameter space of the one-dimensional model, showing the critical line for
percolation transition (crosses). The conventional one-dimensional directed percolation
problem, in which bonds are occupied independently with probability p, is represented
parametrically by the line p0 = (1− p)2, p2 = p2, shown in blue. The red cross indicates
the critical point for the standard directed bond-percolation model, at p≈ 0.644.

The diffusion coefficient is determined by writing ⟨∆x2⟩= 2D∆t, and noting that the dis-
placement is unity (except in the rare cases where the trajectory terminates). There is a drift
velocity into the empty region, which is determined by noting that when a trajectory splits,
with probability p2, the daughter trajectory on the void side become the new boundary. When
p0 = 0 the diffusion coefficient Db and a drift velocity vb (into the empty region) are

Db =
1
2
, vb = p2 . (55)

Note that after coarse-graining the spatial and temporal scales, the edge of a void satisfies a
stochastic differential equation of the form

dx= vbdt+
√

2Dbdη (t) (56)

where dη is a standard stochastic increment, satisfying ⟨dη(t)⟩= 0 and ⟨dη(t)dη(t ′)⟩= δ(t−
t ′). This is equivalent to a Fokker-Planck equation for the position of a void boundary:

∂P
∂t

=− ∂

∂x
[vbP] +Db

∂2P
∂x2

. (57)

A similar expression holds for the overall width of the void. Taking account of the fact that
the void has two edges, both the drift velocity and the diffusion coefficient are doubled. The
steady-state probability density for the distribution of large void sizes is then

Pv (L) = const.× exp(−L/⟨Lv⟩) (58)

where the steady state size scale for the large voids is ⟨Lv⟩= 2Db/2vb ∼ 1/2p2, which is in
agreement with equation (54).

Consider what happens as p0 is increased. When p0 ̸= 0 there is a new mechanism which
contributes to the drift velocity of the boundary. When a trail disappears, the boundary of
the occupied region retreats by a distance L1 equal to the length of the first void which is
encountered. The velocity of the boundary is then

vb = p2 − p0⟨L1⟩ (59)
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Figure 13. Ratio pc/p22 for transition line, showing consistency with equation (61).

which becomes negative at a critical value of p0. The significance of this critical value is that
for p0 > pc the boundary of the occupied region retreats, until we are left with the empty
configuration. We should expect that ⟨L1⟩ increases when p0 > 0, so that (when p2 ≪ 1), vb is
bounded above:

vb ⩽ p2 −
p0
2p2

. (60)

The critical value of p0 occurs when vb changes sign, so that

pc ⩽ 2p22 . (61)

In figure 13 we plot p0/p22 for the transition line, as a function of p2. The ratio is less than 2,
as predicted by equation (61). We do not have a theory for the form of this dependence.

Finally, we remark that our model is related to a model of directed percolation in which
bonds are deleted with probability 1− pbond, and sites are deleted with probability 1− psite, as
discussed in [17]. The parameters pbond and psite are related to our parameters as follows:

p0 = (1− psite)+ psite (1− pbond)
2
, p2 = psitep

2
bond . (62)

This bond/site deletion model does not cover the whole parameter space of our model: the
square 0⩽ psite ⩽ 1, 0⩽ Pbond ⩽ 1 maps to the region to the right of the cyan line in figure 12.
It can be verified that the region of the critical line of our model lying within this region is in
agreement with the data in [17].

7.2. Critical exponents

The percolation process which we consider is a form of directed percolation. Grassberger
[7] and Janssen [6] introduced a hypothesis that directed percolation has universal critical
exponents, and we expect that the transition in our model lies in this universality class. Thus
we expect that f1(p0,p2) = 0 when p0 > pc(p2), and that when pc − p0 is small and positive we
have

f1 (p0,p2)∼ |pc (p2)− p0|β . (63)

where β = 0.276 . . . is the critical exponent for the order parameter of the directed percolation
transition. Figure 14 presents evidence that the occupation fraction vanishes in accord with
equation (63).
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Figure 14. Occupied fraction approaching the percolation transition. The average frac-
tion, to the power 1/β, where β is the exponent of directed percolation, shown as a
function of p0, reveals an approximately linear law. This is consistent with the expected
behaviour ⟨ f⟩ ∝ (pc(p2)− p0)

β when p0 → pc(p2), see equation (63).

Figure 15. Void size distribution. The PDFs of the size distributions for p2 = 0.05 (left)
and p2 = 0.25 (right) show broad tails, which can be approximately represented by an
exponential form: P(n)∝ exp(−µn); as indicated by the dashed line in the figure. The
exponent µ becoming very small when p0 approaches the transition point. For small
values of n, on the other hand, the distributions of n are also exponential, consistent
with equation (58): P(n)≈ f1

n, with f1 = 4p2/(1+ p22), as indicated by the dashed line
in the inset.

7.3. Void size distribution

We investigated the distribution of sizes of voids, Pvoid(n). The distribution, illustrated in
figure 15 is highly distinctive: there is a ‘core’ region, in which Pvoid(n) has a rapid expo-
nential decay, and a ‘tail’, which has a slower exponential decay, described by an exponent µ:

P(n)∝ exp(−µn) . (64)

The lengthscale associated with the slow decay diverges as the critical point is approached.
(In figure 15 the void size n is the number of potentially filled sites which are actually empty.
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Figure 16. The decay rate µ of the void size distributions as a function of the normalised
mean occupation fraction, ⟨ f⟩/p2, to the power ν⊥/β, where ν⊥ and β are the classical
directed percolation exponents [4]. The dashed line indicate a power 1 corresponds to the
directed percolation scaling, and describes approximately the numerical observations.

Because sites with different parity from the iteration index are automatically empty, the void
sizes discussed in section 7.1 are approximately 2n.)

Figure 16 shows how values of the decay rate µ behaves as a function of the probability
p0, at the values of p2 = 0.05, 0.1 and 0.25. In the spirit of directed percolation, one expects
that the exponent µ∝ |pc(p2)− p0|ν⊥ when p0 < pc(p2). Since ⟨ f⟩ ∝ |pc(p2)− p0|β , figure 16
shows µ as a function of ⟨ f⟩ν⊥/β . Additionally, we divided the value of ⟨ f⟩ν⊥/β by pν⊥c , which
reduces the various values to a unique curve. The dashed line shows a power law with a power
1 (linear dependence), which closely agrees with the measured values of µ collapsed to a single
curve.

8. Conclusions, implications for elution

We introduced an alternative model for directed percolation which comes closer to addressing
the questions originally posed by Broadbent and Hammersley [1]. Our model considers the
distribution of fluxes ϕ through wetted bonds, and it has a flux-conserving regime, in which
the total flux remains constant. Our model has similarities to the Scheidegger river model [23],
which also involves addition of fluxes upon combining paths, and which also leads to a power-
law distribution of fluxes [24]. The models differ as to the source of the flux: in our model
the flux total flux is constant when p0 = 0, whereas in the Scheidegger model new sources are
added continuously.

We find that the distribution of fluxes ϕ is very broad, and in section 3 we showed that it
has a power-law asymptote at small fluxes: P(ϕ)∼ ϕ−α. The exponent of this power law, α,
was found to vary continuously as a function of the parameters of the model. We found an
exact equation for α (equation (8)) in terms of some probabilities Pk (defined by (5)) which
characterise the ‘wetting’ of the skeleton of bonds through which the fluxes flow.

In one dimension, the sites are independently occupied in the steady-state, implying that
many quantities of interest, including the exponentα, and the filling fraction for occupied sites,
f 1, can be determined exactly.
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In two dimensions, the independent-occupancy assumption gives a very good approxim-
ation for α and for the filling fractions, as shown in sections 4 and 5, but it is not exact. In
section 6 we examined the conditions for the site occupations to remain independent under
iteration. We found that these are only consistent with the predicted values of the filling frac-
tion f in the one-dimensional case.

In the case where the paths can terminate, the model is no longer flux conserving, and we
find that the distribution of wetted bonds has a percolation transition. In section 7 we showed
that, in the one-dimensional case, the critical exponents are in agreement with those of the
standard directed percolation model. We also investigated the distribution of void sizes.

The long-tailed distribution of fluxes is expected to have practical consequences. Consider
the following model for an elution process. For definiteness we discuss a solute being washed
out of a solid substrate by a liquid. Leaching of a salt from a permeable rock or from land
reclaimed from the sea would be a concrete example. We assume that the solid medium is
permeated by randomly arranged narrow channels, but that on a large scale it appears homo-
geneous. We shall assume that the fluid is being forced through the medium, by gravity, or a
pressure difference (or both).

If the solid contains solute with a concentration c (defined asmass per unit volume), this will
come into equilibrium with the salt dissolved in the liquid phase at a concentration Kc, where
K is a partition coefficient. If the liquid is flowing in very narrow channels, we can assume that
the solute equilibrates between the solid and liquid phases, so that the concentration in the fluid
flowing through the pore is also Kc. The rate at which solute is removed from the medium by
flow through the pore is therefore ṁ= Kcϕ, where ϕ is the volume flux through the pore. The
concentration is proportional to the amount of solute remaining in the solid phase, so that we
expect that the concentration in the runoff through the pore reduces exponentially as a function
of time. We therefore expect that the rate of loss of solute from a single pore is

ṁ= Kc(0)ϕexp [−νϕ t] (65)

where ν is dependent upon the geometry of the pore and the coefficient of solubility in the
liquid and solid phases.

In the case of perfusion through a random medium, the liquid may follow many different
channels (labelled by an index i), with very different volume fluxes ϕi in different channels.
In this case, the total rate of solute out of the medium is

Ṁ(t) =
∑
i

ṁi (t) = Kc(0)
∑
i

ϕi exp(−νiϕi t) . (66)

We shall argue that the predominant factor determining the rate of elution at long times is
the existence of pores which carry very low fluxes. For this reason we adopt the simplifying
assumption that the coefficients ν i are the same for all of the pores. If the probability density
function of ϕ is P(ϕ), and the density of pores carrying fluid is ρ, then the time-dependence
of the eluted flux from a surface of area A is

Ṁ(t) = KρAc(0)
ˆ ∞

0
dϕ P(ϕ)ϕexp(−νϕ t)

= −KρAc(0)
dP̄
ds

∣∣∣∣
νt

(67)

where P̄(s) is the Laplace transform of P(ϕ). Determining the long-time behaviour depends
upon the distribution of ϕ in the limit as ϕ→ 0. We have argued that this has a power-law
behaviour for a wide range of models. This indicates that there are many channels which have
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an extremely small flux, corresponding to a slow elution of the solute. Using (67), this corres-
ponds to a power-law decay of the eluted solute flux:

Ṁ(t) ∼ c(0)Aρ
ˆ ∞

0
dϕ ϕ1−α exp(−νϕ t)

= Γ(2−α)c(0)Aρ(νt)α−2
. (68)

It is noteworthy that, due to the power-law distribution of the flux ϕ, despite the fact that the
elution from each channel decreases exponentially as a function of time, the overall rate of
elution has a much slower, power-law, decay. This is a consequence of the long-time beha-
viour being dominated by the channels with the smallest flux. At present, we are aware of
only one reference which gives evidence for a power-law decay of the residual concentration
of eluted material [27]. However, their results indicate a M∼ t−1/2 decay, with a cutoff at
large time ensuring that the eluted mass is normalisable. This is distinct from the prediction of
equation (68).
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