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Abstract

One of the postulates of quantum mechanics demands observables to be real, and as

a consequence Hamiltonians, representing the energy of a system, to be Hermitian. In

fact, this constraint is unnecessarily strong, since also a non-Hermitian Hamiltonian can

feature a real spectrum, for example, in the case that they satisfy e.g. both parity and

time-reversal (PT ) symmetries, as obtained by Bender and Boettcher in 1998. Following

the wave of interest towards this topic in the last decades, I will review the consequences

of lifting the Hermiticity condition for Hamiltonians described by time-dependent param-

eters. I will use this to investigate effects related to the adiabatic geometric phase in PT -

symmetric non-Hermitian systems. This will be investigated both theoretically, and with

our experimental collaborators, in a non-Hermitian dimer model realized by a mechanical

metamaterial platform. Metamaterials consist of an arrangement of “meta-atoms”, arti-

ficially designed units, in this case corresponding to classical harmonic oscillators, whose

interactions are then engineered in order to obtain the desired effective Hamiltonian. We

will exploit the controllability of this platform to investigate not only the non-Hermitian

geometric phase, but then to study the dynamic properties of the interacting so-called

Hatano-Nelson dimer, where the interplay of non-Hermiticity and interactions leads to

the co-existence of stable and unstable population dynamics. This sets the ground for the

final part of this thesis, in which I will theoretically investigate a larger system with three

sites with periodic boundary conditions: a triangular plaquette, pierced by a magnetic

flux, that might in turn be of interest for the investigation of topological phenomena in

the future.
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Outline

This thesis consists of 5 main chapters, two of them presented in a publication-style

format: in which case the publication is preceded by a short paragraph that clarifies my

contribution.

The opening chapter is a brief review aimed at setting the ground for the remainder of

this work, and consists of three sections. In Section 1.1 the condition on the Hermiticity of

the Hamiltonian is lifted, and its consequences are discussed. Then follows an introduction

to two-site models (so-called dimers) and the role of non-Hermiticity is discussed using

these minimal models in both the non-interacting and interacting cases.

Finally in Section 1.3 I will introduce the concept of metamaterials, discussing the great

novelty and flexibility of this experimental platform. This chapter should be interpreted

as a toolbox facilitating reader’s understanding of the results presented in Chapters 2 and

3.

The core of this thesis begins with Chapter 2. In Section 2.1 I analytically derive the

geometric factor in the case of non-Hermitian Hamiltonians; I will follow the steps of the

Hermitian derivation, so to highlight the differences between the two cases. I will then

try to formulate the non-Hermitian equivalent of the adiabatic theorem, before moving

to the next section, where I check these results in a “numerical experiment”. Using a

dimer model made non-Hermitian by on-site gain and loss terms, in Section 2.2 I obtain a

numerical validation of the expected results. At the same time these results were achieved,

my research was scooped and I moved in the direction of finding an actual experimental

platform. Together with our collaborators, we realized that the mechanical metamaterial
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made of two coupled harmonic oscillator described in Section 2.3 was effectively serving

this purpose.

In Chapter 3, the main result of my research is presented in the form of a publication:

Yaashnaa Singhal, Enrico Martello, Shraddha Agrawal, Tomoki Ozawa, Hannah Price, and

Bryce Gadway. Measuring the adiabatic non-hermitian berry phase in feedback-coupled

oscillators. arXiv preprint arXiv:2205.02700, 2022. There we inspected the Hatano-Nelson

dimer measuring the non-Hermitian geometric factor acquired by the system when its pa-

rameters depend on time. We obtained that, as opposed to its Hermitian counterpart, the

non-Hermitian geometric factor affects the amplitude also along open paths in parameter

space.

Chapter 4 consists of the study of the dynamical features of a dimer model in pub-

lication style: Enrico Martello, Yaashnaa Singhal, Bryce Gadway, Tomoki Ozawa, and

Hannah M Price. Coexistence of stable and unstable population dynamics in a nonlinear

non-hermitian mechanical dimer. arXiv preprint arXiv:2302.03572, 2023.

While working at the experimental results obtained with the mechanical metamaterial

discussed in Section 2.3, I noticed an interesting coexistence of two dynamical regimes

in a non-linear dimer model. We investigated this feature, and found that introducing

non-Hermiticity in a dynamical manner the population observes either stable or unstable

dynamics, initial conditions holding the balance between one or the other behavior.

Chapter 5 is devoted to the description of the dynamical features of a triangular

plaquette, namely a three-site system with periodic boundary conditions, and to the

understanding of the interplay between a synthetic magnetic flux and the interactions

within the system. I start investigating the symmetries of the model in Section 5.1,

before simulating it numerically. The outcome of the numerical simulations is presented

in Section 5.2, where I observe three dynamical regimes: two of them being observed also

in the dimer case, namely self-trapping and Rabi-like oscillations, and the third can be

described as a chiral soliton, that is to say a localized wave packet moving around the

plaquette. Lastly, Section 5.3 is intended to set the ground for an experimental proposal
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to be performed using the aforementioned mechanical metamaterial.

In the last chapter I give an overview of this work, before discussing future research

venues.
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Chapter 1

Theoretical background

When approaching quantum mechanics for the first time, the postulates are one of the

early topics tackled [3, 4]. These establish the probabilistic interpretation of the wave

function, its time evolution and symmetry and the fact that the expectation values of

operators in quantum mechanics must be real. Consider e.g. the Hamiltonian operator:

its eigenvalues are associated with the energy of a system, hence these have to be real.

In Section 1.1 the main focus is on this latter postulate, and I will review why the

requirement of Hermiticity of the Hamiltonian is too restrictive when demanding real

eigenvalues. In particular, I will illustrate that this constraint can be lifted under the

appropriate symmetry conditions and show the consequences of relaxing Hermiticity. As

a full review of non-Hermitian quantum mechanics is beyond the scope of this section, the

more mathematically-oriented readers are referred to Refs. [5–8] and references therein;

in this section the only aim is to make the reader aware of the pitfalls coming with lifting

the Hermiticity condition, and to lay the basis for the results presented in Section 2.1.

In Section 1.2, I present a brief review of two-site models (dimers), showing their rich

dynamical features and how these can be used to explore the behavior of Hermitian and

non-Hermitian physics in both the non-interacting and the interacting case. This will set

the ground for the results presented in Section 2.2, where a 2× 2 Hamiltonian is used to

numerically investigate the theoretical results, and in Chapters 3 and 4, where two dimer
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CHAPTER 1. THEORETICAL BACKGROUND

models are experimentally realized to investigate their dynamical features.

Finally Section 1.3 contains a review of a novel experimental platform: metamaterials.

These are obtained arranging together meta-atoms, the building units, with controlled

interactions allowing for great control and flexibility of the setup. Focus will then be

extended towards metamaterials made of mechanical meta-atoms, as this is the type of

platform we used to obtain the experimental results presented in Chapters 3 and 4 and

in Appendix B.

1.1 Non-Hermitian physics

Two of the postulates of quantum mechanics state that i) to any observable in classical

mechanics we can associate a linear operator in quantum mechanics, and ii) since the

eigenvalues represent the outcome of experiments, these have to be real [3,4]; for this rea-

son linear operators are also required to be Hermitian. Hamiltonians describing quantum

systems are no exception to this: as their eigenvalues ε represent the energy of the system,

demanding their Hermiticity assures that ε ∈ R [3,4]. Moreover, as the Hamiltonian plays

the role of the generator of the dynamics, its Hermiticity is required in order to obtain a

unitary time evolution.

In 1998 Bender and Boettcher [9] showed that the Hermiticity requirement is an unneces-

sarily strong constraint for the Hamiltonian to yield real eigenvalues, since its symmetry

with respect to both spatial inversion, parity P , and time-reversal symmetry, T , can be

sufficient as we shall review further below. Here:

P : x→ −x, T : i→ −i;

both are reflection operators, i.e. P2 = T 2 = I, and P is linear, whereas T has to be

anti-linear in order to preserve the canonical commutator [3, 4, 9, 10]. In other words,

one can say that if the Hamiltonian commutes with the PT operator, [H,PT ] = 0, the

eigenvalues of the Hamiltonian are real in the common basis as we shall discuss [9, 10].

6



1.1. NON-HERMITIAN PHYSICS

In fact, PT symmetry is not the only way to regain a real energy spectrum with a non-

Hermitian Hamiltonian [11–13]. In the case of 2× 2 Hamiltonians, in fact, the authors of

Ref. [11] show that any Hamiltonian symmetric with respect to an anti-unitary symmetry

S such that S2k = 1, for odd k, has real eigenvalues, and in Ref. [13] the author gave

a general condition for spectra to be real. The reason why we focus on PT -symmetry

is that it is simple to engineer an experiment implementing parity and time reversal

symmetries [10,12].

The study of open quantum systems dates back to studies in the field of nuclear

physics, and was initially investigated considering the dynamics of the density operator

(Lindblad formalism) or describing the time evolution using a non-Hermitian operator

(Feshbach projection), c.f. Refs. [10, 12] and references therein. However, in this thesis I

will focus on simulating quantum Hamiltonians with classical systems, in which case the

effective non-Hermitian Hamiltonian is sufficient to describe the dynamics of a system. [10,

12]. Thanks to the similarities between the quantum dynamics of a particle and the

propagation of classical waves, the investigation of non-Hermitian Hamiltonian has been

widely considered in the field of optical structures [10,14–17], and has later involved other

experimental platforms e.g. electrical circuits [18], fluids [19] and mechanical systems [1,2,

20–22]. Using these platforms, fascinating phenomena like exponential amplification [23,

24] unidirectional invisibility [25], enhanced sensitivity [26,27] and single mode lasing [28]

have been investigated, among many others [10,12].

I have mentioned that Hermiticity is an unnecessarily strong requirement for a system

to display a real spectrum. In the next section, I will review some of the mathematical

properties of non-Hermitian Hamiltonian, before focusing on the special case of PT -

symmetric systems.

1.1.1 Eigenvectors of non-Hermitian Hamiltonians

Let us now review the consequences of lifting the Hermiticity condition for the Hamilto-

nian of a system. A Hamiltonian H is Hermitian if it is equal to its Hermitian conjugate,

7



CHAPTER 1. THEORETICAL BACKGROUND

H†. One of the consequences of Hermiticity, is that the eigenvalue problem is equivalently

solved acting on H from either the left or the right: solving H |ψn〉= εn |ψn〉 is the same

as solving 〈ψn|H = εn 〈ψn|, with |ψn〉 being the n-th eigenvector of the Hamiltonian H

with eigenenergy εn [3, 4]. As soon as the Hermiticity condition is lifted, this result does

not hold anymore (in general), so that in this case one has to distinguish between the

right and the left eigenvectors [9, 12,29]:

H |Rn〉 = εRn |Rn〉 , 〈Ln|H = εLn 〈Ln| ; (1.1)

where |Rn〉 is the n-th right eigenvector with eigenenergy εRn , and similarly 〈Ln| is the

n-th left eigenvector with eigenvalue εLn . In general |Rn〉 6=〈Ln|†, as is easily seen by taking

the Hermitian conjugate of the equation for the left eigenvectors in Eq. 1.1:

H† |Ln〉 = εL∗n |Ln〉 . (1.2)

So, the first consequence of dealing with H 6=H†, is that we now have two distinct sets

of eigenvectors, {|Rn〉} and {|Ln〉}, one for the Hamiltonian H and one for its Hermitian

conjugate, respectively, with eigenenergies εRn and εL∗n [5, 10,12,29].

Let us now turn to the eigenenergies; it is possible to show that these need no R and L

labelling, i.e. the left eigenvectors have the same eigenvalues as the right eigenvectors:

εLn = εRn . Starting from the eigenvalue equation for the left eigenvectors, Eq. 1.2 can be

written as:

det
(
H† − εL∗n I

)
= 0;

since transposing does not affect the determinant and the Hermitian conjugation consists

in the transpose of the complex conjugate, it becomes:

det
(
H− εLnI

)∗
= det

(
H− εLnI

)
= 0,

8



1.1. NON-HERMITIAN PHYSICS

where it has been taken in account that the complex conjugate of a null quantity is the

quantity itself. Similarly, looking at the eigenvalue equation for |Rn〉:

det
(
H− εRn I

)
= 0.

It then follows that the eigenenergies are the same for both sets of eigenvectors {|Rn〉}

and {〈Ln|}, as they solve the same equation. Assuming that there is no degeneracy

in the spectrum of the Hamiltonian, indexing the energies conveniently we obtain that

εLn =εRn ≡ε [5, 10,12].

As there are two distinct sets of eigenvectors, it is natural to wonder how does orthogo-

nality work. In general, eigenvectors belonging to each basis are not orthogonal [5], but

one can prove that these satisfy another interesting property. Using the results of the

eigenvalue problems in Eq. 1.1:

〈Lm|H|Rn〉 = εm 〈Lm|Rn〉 = εn 〈Lm|Rn〉 ,

(εm − εn) 〈Lm|Rn〉 = 0.

Assuming again that there is no degeneracy in the spectrum of the Hamiltonian, this re-

lation proves that 〈Lm|Rn〉∝δm,n. This property goes under the name of bi-orthogonality,

and it can be shown that {|Rn〉} and {〈Ln|} form a bi-orthogonal eigenbasis in a finite-

dimensional space [5, 12].

The bi-orthogonality has two main implications: one of them will be discussed in more

detail in Section 2.1 and relates to the dynamics of the system; the other one concerns

the normalization convention that now suffers from an ambiguity, namely 〈Rn|Rn〉 = 1

vs. 〈Ln|Rn〉 = 1. In principle, one can choose to normalize a state using either one of

the two, but the latter is preferable as it allows for simplifications in the calculations and

for a neater probabilistic interpretation of the eigenvalues of the observables as discussed

in Ref. [5]. In order to avoid any issue related to the choice of the normalization, in

Section 2.1 I will explicitly keep the normalization factor.

9



CHAPTER 1. THEORETICAL BACKGROUND

1.1.2 PT -symmetry of the Hamiltonian

Having introduced the left and right eigenvectors, we can now briefly review how, under

PT -symmetry, a non-Hermitian Hamiltonian can exhibit a real spectrum [12, 29, 30]. To

see this, let us consider the eigenvalues equation for the right eigenvectors, and use the

PT -symmetry condition H = (PT )−1H(PT ):

(PT )−1H(PT ) |Rn〉 = εn |Rn〉 ;

applying the (PT ) operator from the left on both sides of this equation and using the

fact that time-reversal is anti-linear:

HPT |Rn〉 = ε∗nPT |Rn〉 .

This equation compared with the eigenvalues equation for the right eigenvectors in (1.1),

says that if {|Rn〉} is a common basis for both H and (PT ), that is to say if all the

eigenstates of the Hamiltonian are also eigenstates of the (PT ) operator with eigenvalue

α, then the eigenenergies are real, εn=ε∗n:

Hα |Rn〉 = ε∗nα |Rn〉

In this case the PT -symmetry of the Hamiltonian is unbroken. Conversely, if no common

eigenbasis for H and (PT ) can be found, the symmetry is broken [12, 29, 30]. In the

case the symmetry is unbroken the eigenstates associated with real eigenenergies yield

PT -symmetric wave functions, namely states that are left unchanged if they are reflected

in space and then played backwards in time. The transition from the unbroken to the

broken PT -symmetry regime, takes place at the so-called exceptional points, that are the

subject of the next section.

10



1.1. NON-HERMITIAN PHYSICS

1.1.3 Exceptional points

This subsection is not intended to be exhaustive; its goal is to make the terminology

clear and to prepare the reader for the results presented in Chapter 2. The reader who

wants to know more about exceptional points will find it very interesting reading through

Refs. [12, 31,32].

Similar to Hermitian Hamiltonians, non-Hermitian Hamiltonians can also show de-

generacy in their spectrum, i.e. εn = εm for some n 6=m; in which case, one talks about

diabolic points [12]. However, when the energy spectrum is analytically continued in the

complex plane, as can be done for non-Hermitian Hamiltonians, a degeneracy in the eigen-

values can be accompanied by an unusual phenomenon characteristic of the non-Hermitian

realm: the coalescence of the eigenvectors, |Rn〉= |Rm〉, 〈Ln|= 〈Lm|, that become “self-

orthogonal”, 〈Ln|Rm〉= 0 [31–34]. The points at which this phenomenon takes place are

referred to as exceptional points, and are a distinctive feature of non-Hermitian Hamil-

tonians [12]. Interestingly, when dealing with PT -symmetric Hamiltonians, exceptional

points correspond to the PT -breaking points [31], and at these points systems show

anomalous behavior like e.g. unidirectional invisibility or enhanced sensitivity [12,35,36].

Another interesting fact about exceptional points is that dramatic effects arise also in

their neighborhood [12, 31]; this region of parameter space has been inspected using e.g.

photonics setups [10,14], that show a good degree of control in that region [12].

In Appendix A I review the well-known analogy between the degeneracy point of

the energy spectrum and a fictitious magnetic monopole generating a fictitious mag-

netic field [4, 37]. Such a parallelism can be drawn also in this case, but this turns out

to have a more interesting outcome: exceptional points, in fact, behave as imaginary

monopoles [38], generating a complex field whose strength grows with the distance from

the exceptional point [38,39]. This result will be relevant in Chapter 3, where we encircle

the field generated by such a monopole in parameter space. In order to investigate the

role of exceptional points, I will make use of 2-level systems [12]; such minimal models

are the subject of next section.

11



CHAPTER 1. THEORETICAL BACKGROUND

1.2 Dimer models

Systems involving a large number of energy levels can often be reduced to analyzing two-

level systems [12]. Equivalently, the dynamics of many systems like, e.g. Bose-Einstein

condensates [40–43] or coupled waveguides [44, 45] can be described, under convenient

conditions, by a set of discrete coupled equations, and the simplest non-trivial case is

when said system only contains two equations in which case the problem can be solved

analytically [46,47].

In this section I will review this class of minimal models, the so-called dimers, in both

the Hermitian and the non-Hermitian regimes. In Section 1.2.1 I will review the analytical

solution in the Hermitian case for a specific initial condition [46, 47], and I will discuss

the Josephson and Rabi oscillations and the transition to the self-trapping regime. These

results will serve as a yardstick to interpret the results presented in Chapters 4 and 5,

where a 3-level system is discussed. Finally, I will introduce two parametrizations that

will prove useful for understanding the physical meaning of the results. Then follows

Section 1.2.2 where I introduce non-Hermiticity in a dimer model in two distinct ways:

adding on-site gain and loss and making the hopping asymmetric. This will be the starting

point for the results presented in Section 2.2 and in Chapters 3 and 4.

1.2.1 A minimal Hermitian dimer

A simple example of a Hermitian dimer is given by a Bose-Einstein condensate in a

double well potential [40–43]. This can be mathematically described under the two-mode

approximation as:

α=α1ψ1 + α2ψ2,

where ψj, j = 1, 2 are two functions localized on either one of the two potential wells,

and the dynamics of the two components αj is described by the following non-linear

12



1.2. DIMER MODELS

a) −J

−J

2∆n1

n2

b) −J

−J

n1 n2

−ig+ig

c) −J + δ

−J − δ

n1 n2

Figure 1.1: Cartoons of various dimer models discussed in this and following sections; the
shadowed areas are a pictorial representation of the occupation on each well, whereas the black
arrows represent the hopping process. a): sketch of the model presented in Eq. 1.4 in the case
of ∆1 = ∆2 ≡∆. b) sketch of the model in Eq. 1.7 with on-site gain and loss represented by
the colored arrows, and ∆ = 0 as the dotted line shows. c) is the Hatano-Nelson dimer in
Eq. 1.8; note the different texture of the arrows representing the hopping process as resembling
the different energy cost.

Schrödinger equations [40–43]:

i
∂

∂t
α1(t) = (∆1 + U1|α1|2)α1(t)− Jα2(t),

i
∂

∂t
α2(t) = (∆2 + U2|α2|2)α2(t)− Jα1(t);

(1.3)

here ∆j∈R represent the depth of well j, J ∈R is the hopping amplitude associated with

hopping from one well to the other, Uj∈R is the strength of the interactions of the atoms

within each well, |αj|2 =nj is the number of atoms in well j and ~=1.

This system of equations can be cast in the familiar Hamiltonian form:

iα=Hα, H =




∆1 + U1n1 −J

−J ∆2 + U2n2


 . (1.4)

A cartoon of this Hamiltonian is sketched in Fig. 1.1a. Without loss of generality, I will

consider the interaction values, U , the on-site potential, ∆ and the hopping energy, J , to

be positive.

Note that, had I started talking about coupled waveguides I would have said that ∆j is

related to the propagation constant, Uj is the strength of Kerr nonlinearity, αj an electric

field amplitude on waveguide j and J a coupling constant (proportional to the inverse

of the distance between the waveguides) [15, 24, 48]. Equivalently, I could have started

13



CHAPTER 1. THEORETICAL BACKGROUND

talking about e.g. coupled pendula [21] or exciton polaritons [49] just by assigning the

appropriate physical meaning to the matrix elements of H in Eq. 1.4.

Under the assumption that the two potential wells are not tilted, ∆1 =∆2 =0 and that

the interaction strength is the same in both wells, U1 =U2 =U , the two coupled equations

in Eq. 1.3 can be solved exactly, if the system is initially in one of the two wells [46, 47].

As the mathematical details can be found in these references, I will only review the final

result. Looking at the population imbalance between the two sites, z = n1−n2, one finds

that its time evolution is obtained solving:

∂2z

∂t2
=

(
−4J2 − 2JU(α1α

∗
2 + α∗1α2)0 +

1

2
U2z0

)
z(t)− 1

2
U2z(t)3, (1.5)

where the index 0 means the initial value of the quantity within the brackets, and similarly

z0≡ z(0). If the system is initially localized on a single site, i.e. initial condition z0 = 1

(z0 =−1 would yield the same result), then (α1α
∗
2 + α∗1α2)0 =0, and Eq. 1.5 simplifies to:

∂2z

∂t2
=

(
−4J2 +

1

2
U2

)
z(t)− 1

2
U2z(t)3. (1.6)

Let us look at the solution to this equation starting from the non-interacting case, U=0.

In this case the Hamiltonian (1.4) describes the so-called Josephson junction [50], and

Eq. 1.6 has an oscillatory solution. The oscillations of the population imbalance mean

that the particles (in the case of a Josephson junction, Cooper pairs [50]) move from

one end to the other of the junction, undergoing the so-called Josephson oscillations, c.f.

Fig. 1.2, where the numerical solution to Eq. 1.6 is plotted for different values of the

interaction strength. The observed alternating current in the absence of a potential, is

described by the first Josephson equation [41,47,50]. When switching on the interactions,

Eq. 1.6 still has an oscillating solution. These are the so-called Rabi oscillations, and

their period grows larger as U approaches the threshold value U = 4J . At the threshold

the oscillation period diverges as plotted in Fig. 1.2.

When the interaction strength exceeds the critical value, Eq. (1.6) has a different solution

14



1.2. DIMER MODELS

Figure 1.2: Numerical solutions to Eq. 1.6 for distinct values of the interaction strength U :
the lighter the markers the larger the value of U in units of J . For U=0 Josephson oscillations
are observed. Note the period of Rabi oscillations growing larger as U→4J (triangles), and that
at the critical value the period diverges (bullet). For strong interactions self-trapping is evident
and fewer particles tend to leave the initial site (crosses).

that does not change sign [47]. This means that z(t)> 0 the whole time, that is to say

the initial site is always more populated than the other, as the numerics in Fig. 1.2 show.

Moreover, the stronger the interaction grows, the closer the population imbalance is to

1, c.f. Fig. 1.2; physically, this means that for U�4J , fewer particles move to the other

well. This phenomenon is known as self-trapping, and is solely induced by interactions

between the particles [40,41,47,49,51].

These results can also be obtained using two alternative parametrizations of the prob-

lem that are both convenient and conventional when describing dimer models as I will

now describe in the non-interacting case just for the sake of clarity, but in Refs. [40–43]

the interacting case is described. The first one is the “phase space” parametrization, that

uses the normalized population imbalance, z̃=(n1−n2)/n (as done earlier), and the phase

between the wave functions in the two wells, ϕ= argα1/α2, to describe the dynamics of
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CHAPTER 1. THEORETICAL BACKGROUND

the dimer [40,41,49,51], that in this case becomes:

∂

∂t
z̃ = −2J

√
1− z2 sinϕ

∂

∂t
ϕ = 2(∆1 −∆2) + 2

Jz√
1− z2

cosϕ

where I dropped the time dependence of z̃ and ϕ for the sake of notation; note that ϕ

is periodic. A numerical solution to this system of equations is shown in the top row of

Fig. 1.3. In the {z̃, ϕ} phase space, Rabi-like oscillations are visible as closed trajectories

spanning the entire interval of value of z̃ from −1 to 1, whereas self-trapping is observed

in the far right panel, and shows up as a trajectory that never crosses the imaginary z̃=0

line.

The second parametrization is performed in terms of the Bloch vector s whose components

are defined as [42,43]:

sx =
1

2n
(α∗1α2 + α1α

∗
2),

sy =
1

2i n
(α∗1α2 − α1α

∗
2),

sz =
1

2n
(|α1|2 − |α2|2),

where the factor 1/2 comes from the condition that |s|2 = 1/4, so that the head of the

Bloch vector lies on the Bloch sphere, a sphere of radius 1/2, c.f. Refs. [42,43], and again

the time dependence of αj and the components of the Bloch vector are suppressed for the

sake of notation. In this parametrization, the dynamics is described by the following set

of equations:
∂

∂t
sx = (∆2 −∆1)sy,

∂

∂t
sy = −(∆2 −∆1)sx + 2Jsz,

∂

∂t
sz = −2Jsy.

The numerical solution to this set of equations is displayed in Fig. 1.3, and in this case

Rabi-like oscillations are the trajectories that wind around the Bloch sphere moving the

hemispheres of the Bloch sphere, whereas when the system is self trapped, it walks along
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1.2. DIMER MODELS

trajectories that never cross the equator. As might be expected, the two parametrization

are equivalent as can be seen considering that ϕ=atan(sy/sx) and z̃=2sz [2].

Figure 1.3: Plot of the phase space for three different value of ∆1 − ∆2 in the phase space
representation (top row) and the Bloch sphere parametrization (bottom row): note that when
the system undergoes Rabi-oscillations z oscillates from -1 to 1, whereas the phase spans over
an interval of values, and equivalently the trajectories move between the north and the south
hemisphere of the Bloch sphere. In the self-trapping regime (far right panel) the wave function
is localized on either one of the two sites, and the population imbalance never changes sign, or
equivalently, the trajectories never cross the equator of the Bloch sphere.

Now that I have described the Josephson and the Rabi-like oscillations and the self-

trapping regime in the Hermitian case, I will add non-Hermiticity to the dimer, to review

the known results and highlight the differences.

1.2.2 Examples of non-Hermitian dimers

Non-Hermitian effects are ubiquitous, and these can be taken in account in the dimer

model either adding on-site gain and loss terms or making the hopping energy asymmet-

ric. The first one is a very common approach in both theory [33, 39, 42, 43, 48, 52] and
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experiments [10, 15, 24]; the latter, on the other hand, is a two-site version of the well

known Hatano-Nelson model [53–55].

On-site gain and loss

Consider a system in which gain and loss can be controlled so that one site is fed with

atoms (resp. light intensity is amplified in one of the waveguides) at a rate g, and the

other one leaks atoms (resp. in the other one light is damped) at the same rate. Since

gain and loss enter as purely imaginary on-site terms, ∓ig respectively, it is immediate

to see that the Hamiltonian

H =




+ig −J

−J −ig


 , (1.7)

is non-Hermitian yet PT -symmetric [15, 33, 43, 48], since in this case the parity operator

P corresponds to the Pauli matrix σx and T is the complex conjugation:

H=σxH∗σx, σx =




0 1

1 0


 .

The eigenvalues of the Hamiltonian in Eq. 1.7 are ε±=±
√
J2 − g2, and assuming without

loss of generality that both J, g>0, as long as g<J , there exist a common eigenbasis for

both the Hamiltonian and the PT operator, and the energy is real, and in the opposite

limit g>J the PT -symmetry is broken and the eigenvalues are a complex conjugate pair.

Finally, as the Hamiltonian is PT -symmetric, the exceptional point and the PT -breaking

correspond [12,15,33,43,48].

As a review of the results for the dynamics of this model is presented in Section 2.2,

I will now include the interactions in this model as follows:

H =



Un1 + ig −J

−J Un2 − ig


 .

As this is a non-linear Hamiltonian, the eigenvalues correspond now to the chemical

18



1.2. DIMER MODELS

potential rather than the energy [43,52]. In Refs. [43,52] the authors perform an extensive

study of this system, and obtained that, interestingly, taking in account interactions makes

the system break PT -symmetry at a smaller value of the gain and loss rate, namely

g2 =J2 − U2 [43, 52]. Moreover, this relation also says that for U =J no PT -symmetric

regime is allowed [43,52].

Asymmetric hopping: Hatano-Nelson dimer

Non-Hermiticity can also be introduced into the system in the form of asymmetric hop-

ping; in terms of the Hamiltonian, this means that, assuming there is no on-site potential:

H =




0 −J − δ

−J + δ 0


 , (1.8)

where, without loss of generality, I will assume J, δ ∈ R+. This model is sketched in the

right-most cartoon of Fig. 1.1, where the different texture of the arrows representing the

hopping process resembles the different energy cost.

This Hamiltonian is the two-site version of the well-known Hatano-Nelson model: a PT -

symmetric model describing a one-dimensional chain of sites connected via asymmet-

ric hopping [53–55]. In case of open boundary conditions, eigenstates accumulate in a

macroscopic number at the ends of the chain, yielding the so-called non-Hermitian skin-

effect [7, 56,57].

This type of non-Hermiticity has been experimentally investigated in optical setups [58–61]

and electrical systems [62–64], and more recently also using mechanical metamateri-

als [1, 2, 21].

The main dynamical features of the Hatano-Nelson dimer model are reviewed within

the publication in Chapter 4, but I will also briefly review the main results for the non-

interacting case here. The spectrum of the Hamiltonian (1.8) is given by ε=
√
J2 − δ2;

this means that the Hamiltonian is in the PT -unbroken symmetry regime as long as

δ < J . The dynamics of the system in this regime is characterized by the existence of
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two fixed points that behave as centers within phase-space: the system oscillates around

it along stable orbits [2, 65, 66]. For small values of the asymmetry, these centers are

located close to the equilibrium condition z = 0, that is to say the system undergoes

Rabi-like oscillations, c.f. Chapter 4. As δ grows larger, the centers move away from this

equilibrium condition and the system starts showing self-trapping [2].

As soon as the PT -symmetry is broken, the energy becomes purely imaginary and the

two centers turn into a pair of stable-unstable points; in this regime, the population grows

exponentially and tends to occupy one site rather than the other, that can be interpreted

as a two site version of the non-Hermitian skin-effect [2, 7, 56,57].

Also in this case one can consider adding interactions, either on-site [67] or making

the hopping energies depend on the population imbalance [1, 2]. In this latter case:

H =




0 −J − gz

−J + gz 0


 , z ≡ n1 − n2;

this model is the subject of Chapter 4, where the outcome of the numerical simulations

and the experimental results are presented in publication form, c.f. Ref. [2].

1.3 Introduction to mechanical metamaterials

I conclude this chapter with a brief overview of mechanical metamaterials, a novel exper-

imental platform whose advantages I will discuss in this section.

When quantum objects like atoms are combined together, new collective properties

emerge that depend on the way these are arranged and interact [68]. If instead of atoms,

one decides to use artificially generated meta-atoms in a custom arrangement, it is pos-

sible to generate an exotic meta-material characterized by singular phenomena like e.g.

negative refractive index [69, 70], negative elastic modulus [71, 72] or negative mass den-

sity [73].

The choice of the building blocks of metamaterials is arbitrary, as one could use meta-
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1.3. INTRODUCTION TO MECHANICAL METAMATERIALS

atoms taken from e.g. the photonic [69,70], acoustic [72] or mechanical [22,74–77] realm,

mainly according to the length scale one wants to act upon. In Chapters 3 and 4 we

will take advantage of a metamaterial made of mechanical building units. Mechanical

meta-atoms can be as complicated as robotic unit cells [78], or gyroscopes [75], but our

collaboration made use of harmonic oscillators and coupling was arranged so to happen

without any physical contact, c.f. Appendix B [21].

Metamaterials owe much of their success to the fact that the arrangement and the

interactions of meta-atoms can be finely tuned, allowing for an overall remarkable control

over the metamaterial realized. Along this direction, there has been a huge push because

not only have mechanical metamaterials proved themselves to be a valid platform to ex-

plore topological phenomena [20,22,74–76] but they have as well the potential to be scaled

down in size [22, 77], that would allow for scalable real life application of topologically

robust phenomena like edge modes [74, 75], light steering and funneling [61, 79], acoustic

and vibration insulation, waveguiding and many others [22,76].

Although these mechanical setups cannot simulate purely quantum effects, the ex-

ceptional control displayed by mechanical metamaterials also in reproducing phenomena

that in principle break Newton’s law [21], could pave the way to the engineering of exotic

interactions in non-Hermitian systems, where the exponential behavior following a linear

input qualifies this class of materials for sensing applications [26,27,76].
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Chapter 2

Non-Hermitian geometric phase

This chapter is a theoretical introduction to the results presented in Chapter 3. Here the

main results are presented at a level half-way between a review and a technical chapter.

In order to understand why, a narrative interlude is needed.

At the end of the first year of my PhD, Silberstein et al. [80] published an elegant

paper describing the influence of the non-Hermitian Berry connection on the dynamics of

a wave packet. By that time, my progress in the study of this question was as presented

in Section 2.1 and Section 2.2. Although my work was therefore not original anymore, my

results did match those of Silberstein et al.’s. After a few months spent looking for possible

experimental platforms to further explore this type of physics, we finally came across a

group that was working on the mechanical metamaterial setup that is described in detail

in our joint publication included in Appendix B and that I present here in Section 2.3.

Our collaboration on this project then led to the work presented in Chapter 3.

In the first section of this chapter, I will derive an analytical form for the geometric

Berry phase in the case of a non-Hermitian Hamiltonian, as it constitutes the ground

upon which the results in Chapter 3 are obtained. I will formulate it following the same

steps as in the Hermitian case [3, 4] in order to better highlight the differences between

the two cases. In order to test the results obtained, in Section 2.2 I report the outcome of

a “numerical experiment” performed using a dimer model with on-site gain and loss, like
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CHAPTER 2. NON-HERMITIAN GEOMETRIC PHASE

that described in the last chapter. Not only do the results obtained show good agreement

between theory and numerics, but these also show the same type of features observed for

a Hatano-Nelson dimer in Chapter 3, with the experimental platform described in detail

in Section 2.3 that closes this chapter. 1

2.1 Geometric phase

Lifting the Hermiticity condition on the Hamiltonian led to the definition of two sets

of eigenvectors, namely the left and the right eigenvectors that together form a basis

satisfying the so-called bi-orthogonality relation, c.f. Section 1.1. In this section, I will

explore the consequences of this non-Hermiticity in the case of Hamiltonians with slowly-

varying time-dependent parameters, where the adiabatic evolution of the wave-function

is affected by a geometric phase.

As reviewed in Appendix A, the time evolution of a Hamiltonian evolving periodically

and adiabatically in parameter space can lead to interesting results. Specifically, the wave

function can acquire an observable phase factor known as the geometric (Berry) phase,

defined as (c.f. Eq. A.8):

γHn = i

∮

C
dP · An(P), An(P) = 〈φn(P )|∇P |φn(P )〉 , (2.1)

where the superscript relates to the fact that this is the geometric phase for the Hermitian

case and {|φk〉} is the set of eigenvectors of the Hermitian Hamiltonian. The fact that

it is an observable phase factor and that it is geometrical, i.e. it does not depend on

the rate of change of the Hamiltonian (as long as it evolves adiabatically), has attracted

interest from scientists working in solid state systems, as well as in many other areas of

physics and length scales, see e.g. Refs. [81–84] and references therein, since the first time

Berry considered the consequences of an adiabatic evolution on a closed loop in parameter

1The main results in Section 2.1 and Section 2.2 have been presented in their final form also thanks
to the help of Tomoki Ozawa, our collaborator, who developed the elegant mathematical formulation.
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space [37,85].

In this section, I will join the group of scientists trying to generalize such a successful and

powerful concept to the non-Hermitian realm since a long time [5,80,86–95], going through

this process in a pedagogical way, in order to build up the tools needed to understand the

results in Section 2.2 and Chapter 3.

The above analytical expression for the geometric Berry phase is obtained making use

of the following steps [3, 4] as detailed in Appendix A:

i) writing a generic state in terms of the instantaneous eigenbasis and solving the time

dependent Schrödinger equation using this as an ansatz;

ii) projecting on another basis vector using the orthogonality relations ;

iii) solving the resulting differential equations under the hypotheses of the adiabatic the-

orem, to obtain the geometric phase acquired by the system.

These steps mainly involve two operations, as emphasized: expanding in terms of the

eigenbasis and projecting. As reviewed in Sec. 1.1, these operations have no trivial corre-

spondence in the case of non-Hermitian quantum mechanics, hence the following questions

arise naturally:

i) which basis would one choose to expand the generic state? Why would one be a

better choice than the other? Should one use the Schrödinger equation for H or H†?

ii) How does projection work? Why would one choose to project on one basis rather

than the other?

iii) Does the adiabatic theorem have an equivalent in non-Hermitian quantum mechanics?

Is the geometric phase still an observable?

In order to address these questions and to provide the tools to appreciate the work pre-

sented in Chapter 3, I shall now review the derivation of the non-Hermitian geometric

phase.
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Let us start by writing down a generic state; for the sake of the argument let us

expand it as a linear combination of the instantaneous right eigenvectors, {|Rn(t)〉} of a

non-degenerate non-Hermitian Hamiltonian. Using a similar notation as the Hermitian

case in Appendix A:
∣∣ψR(t)

〉
=
∑

n

an(t)
|Rn(t)〉√
〈Rn(t)|Rn(t)〉

, (2.2)

where an(t) is some complex coefficients whose form is to be determined and |Rn(t)〉 is

the n-th instantaneous right eigenvector of the system associated with the instantaneous

eigenenergy εn(t) and n is an index running over all the eigenvectors.2 Finally, note that

the norm of |Rn(t)〉 is explicitly written in the denominator (as opposed to what is done

in Ref. [88]), in order to avoid any issue related to the choice of the normalization, as

discussed in Section 1.1, so that any change in the amplitude of the state is described by

the coefficient an(t).

As we chose to use the instantaneous right eigenvectors to write down the generic

state at time t, the most reasonable choice for the Schrödinger equation to substitute this

ansatz in, is: (
i
∂

∂t
−H(t)

) ∣∣ψR(t)
〉

= 0. (2.3)

Had one chosen the left eigenbasis to expand the state, rather than Eq. 2.3, one would

choose to solve: (
i
∂

∂t
−H†(t)

) ∣∣ψL(t)
〉

= 0, (2.4)

with the ansatz:
∣∣ψL(t)

〉
=
∑

n

an(t)
|Ln(t)〉√
〈Ln(t)|Ln(t)〉

,

where the symbols have the same meaning as those in Eq. 2.2. Using Eq. 2.2, the eigen-

2Although in general the coefficients of the expansion an(t) might depend on the choice of the basis
used for the expansion, for the sake of notation these are not labelled with R or L.
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value equation in Eq. 2.3 yields:

∑

n

i
1√

〈Rn(t)|Rn(t)〉

[
− iεn(t)an(t) |Rn(t)〉+ ȧn(t) |Rn(t)〉+ an(t)

∂

∂t
|Rn(t)〉

− an(t)
1

2

〈Rn(t)| ∂
∂t
|Rn(t)〉+ c.c.

〈Rn(t)|Rn(t)〉 |Rn(t)〉
]

= 0,

(2.5)

where c.c. stand for the complex conjugate. This equation differs from its Hermitian coun-

terpart Eq. A.2 only because for non-Hermitian Hamiltonians the norm of the eigenstates

is not necessarily conserved.3

Once the ansatz has been used in the appropriate time dependent Schrödinger equa-

tion, the second crossroad is approached in the form of the projection: in the Hermitian

case, in fact, projecting on a vector allows to simplify calculations because of the orthog-

onality relation, see e.g. Eq. A.3. Under the same spirit (and following the suggestion

in Ref. [5]), it seems reasonable to use the bi-orthogonality of the non-Hermitian bases,

〈Lm|Rn〉 ∝ δmn. It is understood that projecting on 〈Rm| is possible, but this comes at

a cost: calculations become over-complicated, and results are harder to interpret, as they

cannot be cast in the form of Eq. 2.7 which will be introduced below.

In the Hermitian case, projecting on the k-th eigenvector led to an equation for the

coefficient of the expansion aHk :

ȧk(t) = ak(t)

[
−iεk(t)− 〈φk(t)|

∂

∂t
|φk(t)〉

]
+
∑

n6=k

an(t) 〈φk(t)|
∂

∂t
|φn(t)〉 , (2.6)

where the symbols have the same meaning as before. In the case that the second term

in Eq. 2.6 can be neglected, i.e. assuming we are in the condition to apply the adia-

batic theorem, this equation can be solved yielding the geometric phase contribution, c.f.

Appendix A. Turning back to the non-Hermitian case, projecting Eq. 2.5 on 〈Lm| and

3One could as well start without normalizing the eigenstates as in Ref. [88], namely:

∣∣ψR(t)
〉

=
∑

n

an(t) |Rn(t)〉 ,

and normalizing the result afterwards. Although it leads to analogous results [1], we look for encapsulating
all the effects related to the geometric phase into the expansion coefficients.
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rearranging the terms:

ȧm = am(t)

[
−iεm(t)− 〈Lm(t)| ∂

∂t
|Rm(t)〉

〈Lm(t)|Rm(t)〉 +
1

2

〈Rm(t)| ∂
∂t
|Rm(t)〉+ c.c.

〈Rm(t)|Rm(t)〉

]

+
∑

n6=m

an(t)
〈Lm(t)| ∂

∂t
|Rn(t)〉

〈Lm(t)|Rm(t)〉 ,

(2.7)

where the contribution of the eigenenergy in the first term in the square bracket yields

the dynamic factor, ei
∫
εm dt, analogously to the Hermitian result. Dynamic factor aside,

the similarity between this and Eq. 2.6 is noticeable, in particular when looking at the

last term. In a similar fashion as for the Hermitian case, the addends can be rewritten

taking the time derivative of the the eigenvalue equation for the right eigenvectors and

projecting on {〈Lm|}, so that [80,86]:

〈Lm(t)| ∂
∂t
|Rn(t)〉

〈Lm(t)|Rm(t)〉 =
1

εn − εm
〈Lm(t)|Ḣ|Rn(t)〉
〈Lm(t)|Rm(t)〉 . (2.8)

As discussed in Appendix A for the Hermitian case, this term is negligible under the

hypotheses of the adiabatic theorem, i.e. a slowly varying Hamiltonian, away from de-

generacies. However, when considering non-Hermitian Hamiltonians energies are allowed

to take complex values; hence the dynamic factor ei
∫
εm dt contributes with an oscillatory

phase modulated by an exponential change, related to Re εm and Im εm respectively. This

in turn means that it is not easy to give a formulation of the adiabatic theorem as I now

will qualitatively explain considering two extreme conditions [80]: the case in which the

imaginary part of the energy dominates the terms in square brackets in Eq. 2.7, and the

PT -symmetric case, c.f. Section 1.1. Let us start from the former. In this case:

|Im εm| �
〈Lm(t)| ∂

∂t
|Rm(t)〉

〈Lm(t)|Rm(t)〉 ;

let us examine first the case in which
∣∣ψR

〉
is initially in an equal superposition of all the

eigenstates. Looking at Eq. 2.2 it is clear that even for a slowly varying Hamiltonian,
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the eigenstate whose eigenenergy has the largest imaginary part will rapidly dominate

the dynamics; in fact it grows the quickest, outpacing the other eigenstates (resp. decays

the slowest, surviving the other eigenstates). This means that after a short time all the

amplitudes an(t) in Eq. 2.2 can be ignored as they quickly become negligible with respect

to aM(t), with M labeling the dominant state [80]. If the system is initialized in an

eigenstate, the story does not change: the terms in Eq. 2.8 regulate the overlap with

other eigenstates, and at some later time (the ratio 〈Lm(t)|Ḣ|Rn(t)〉 /(εn − εm) sets the

time-scale for how much later) |RM〉 will be excited, and it will quickly start dominating

the dynamics [80,86]. Lastly, let us consider the case when |ψ(0)〉= |RM〉: in this case the

overlap with other states can be neglected from the very beginning, as am=0, for m 6=M ,

and the adiabatic theorem (as understood from the Hermitian case) holds [80, 86].

Things change if we restrict ourselves to the PT -unbroken region. In this case, in fact,

εn ∈ R, and the adiabatic theorem holds in the Hermitian sense if the system is away from

exceptional points; in other words, the adiabatic theorem in the PT -symmetric regime

holds if [33, 86]:

〈Lm(t)|Ḣ|Rn(t)〉 � εn − εm, (2.9)

which is the usual restriction also for a Hermitian Hamiltonian.

Summing up, as long as the energies are allowed to be imaginary, the dynamics will be

dominated by the state whose eigenenergy has the largest imaginary part, unless the other

terms in (2.7) can compensate for Im εn. On the other hand, in the case in which PT -

symmetry is unbroken, i.e. energy is real, we have obtained that the adiabatic theorem

holds similarly to the Hermitian case. Other regimes require more technicalities that

are beyond the scope of this thesis, but more details on the formulation of the adiabatic

theorem can be found in Refs. [86–89,91].

Let us therefore set ourselves in the PT -symmetric regime, so that we can neglect the

sum in Eq. 2.8 and focus on the first part of Eq. 2.7. If we now factorize the dynamic

factor in the coefficients as am(t) = ei
∫ t
0 εm dτcm(t), parametrizing the time dependence of
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the Hamiltonian by λ = (λ1, λ2, . . . ), Eq. 2.7 turns into:

ċm(t) = −∂λ
∂t
cm(t)

[ 〈Lm|∇λ|Rm〉
〈Lm|Rm〉

− 1

2

〈Rm(t)|∇λ|Rm(t)〉+ c.c.

〈Rm(t)|Rm(t)〉

]
.

The quantities in the brackets look like slightly modified copies of the Berry connection

given in Eq. 2.1. If we define the following four quantities [1, 80,92]:

Aαβm,j = i
〈αm(λ)| ∂

∂λj
|βm(λ)〉

〈αm(λ)|βm(λ)〉 , α, β = L or R, (2.10)

we can see that as soon as Hermiticity is restored, |Rn〉 ≡ |Ln〉 and the definitions in

Eq. 2.10 collapse on to the definition of the Berry connection in Eq. 2.1. Using the

(reasonable) initial condition that at the initial time cm(0) = 1, we obtain that cm(t) =

eiγ
G
m(C), where:

γGm(C) =

∫

C
dλ ·

(ALR
m (λ)− i ImARR

m (λ)
)
, (2.11)

with C being the trajectory of the system in parameter space [1]. As opposed to Eq. 2.1,

the non-Hermitian geometric factor is now a complex quantity with imaginary part:

Im γGn (C) =

∫

C
dλ · Im(ALR

n (λ)−ARR
n (λ)). (2.12)

As soon as Hermiticity is restoredALR
n ≡ARR

n ≡An, and Im γGn (C)=0. Let us now look at

what happens to the Berry connections ALR and ARR in Eq. 2.12 under the generalization

to the non-Hermitian case of gauge transformation [80,92]: |Rn(λ)〉 → rn(λ) |Rn(λ)〉 and

|Ln(λ)〉 → ln(λ) |Ln(λ)〉.4 We obtain:

AαR → AαR + i∇λ ln rn(λ), α = L or R. (2.13)

Just like the Hermitian case, Berry connections can be gauged away for a generic path C,

4In Refs. [80, 92] it is clarified that both rn(λ) and ln(λ) are two analytic, non-zero functions of the
parameter λ, and that the gauge choice is ln(λ)=1/r∗n(λ) so that the bi-orthogonality holds. However,
in the following discussion this latter detail is of no interest, c.f. Eq. 2.14.
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and so it happens to Re γGn =
∫
C dλ · ReALR

m (λ). However, as opposed to the Hermitian

case, combinations of these Berry connections are gauge invariant [1, 80,92], namely:

δAR
n ≡ ALR

n −ARR
n , (2.14)

is gauge invariant for a generic path C. This means that C does not need to be closed,

the the geometric factor to be an observable, as opposed to the Hermitian case. It is of

paramount importance to note that the integrand in the definition of the imaginary part

of γGn (2.12) is exactly the gauge invariant quantity δARn in Eq. 2.14: we then expect the

amplitude of the state to exponentially change during time evolution in parameter space

along a generic path in parameter space even in the PT -symmetric regime. A detailed

discussion on the role of the gauge invariant combination of the Berry connections can be

found in Refs. [80,92] where tha band theory and the wave packet dynamics is discussed

in connection with this result.

Note that had we started with expanding the generic state using the vectors of the left

eigenbasis {|Ln〉}, we would have obtained for Eqs. 2.13 and 2.14, respectively AαL →

AαL + i∇λ ln ln(λ) and δAL
n ≡ ARL

n −ALL
n . The correspondence between δAL

n and δAR
n

can be derived following Ref. [80].

In the PT -symmetric regime, when the adiabatic theorem holds, it is then possible to

explicitly write down the evolution of an eigenstate as:

∣∣ψR
m

〉
= exp

(
−i
∫ t

0

εm dτ

)
exp

(
i

∫

C
dλ ·

(ALR
m − i ImARR

m

)) |Rm〉√
〈Rm|Rm〉

,

where the explicit time dependence has been hidden for the sake of notation, but it is un-

derstood that {|Rm〉} is the instantaneous right eigenbasis, and that the time dependence

of the Berry connections is parametrized by λ, that describes a trajectory C in parameter

space. This formulation makes it easy to explicitly write down the dynamical behavior of

the population, n(t)≡
〈
ψR(t)

∣∣ψR(t)
〉
, and will prove itself remarkably useful in the next
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section, in fact:

n(t) = n(0)
∣∣∣eiγDmeiγGm

∣∣∣
2

= n(0) exp

{
2

∫ t

0

Im εm dτ − 2

∫

C
dλ · Im δAR

m

}
,

and since we are in the PT -symmetric regime:

n(t) = n(0) exp

{
−2

∫

C
dλ · Im δAR

m

}
, (2.15)

where n(0) is the value of the population at the initial time. This result will be put to a

test in the numerical experiment in Section 2.2, but before that I owe the reader answers

to the questions posed in the beginning of this section:

i) there is no “better” or “worse” choice when it comes to write a state in terms of the

instantaneous eigenbasis. One should only be careful on the choice of the Schrödinger

equation to solve with their ansatz, namely Eq. 2.3 or Eq. 2.4 accordingly;

ii) as it is known from Hermitian quantum mechanics, projection is useful in order to

select terms in the series expansion. In this case, using the bi-orthogonality relations

〈Lm|Rn〉 ∝ δmn, allowed for useful simplifications;

iii) it is hard to define the non-Hermitian equivalent of the adiabatic theorem, specially

outside of the PT -symmetric regime [86–89,91], as the dynamics of a non-Hermitian

system is exponentially dominated by the state whose eigenenergy has the largest

imaginary part. Despite this, we found that the imaginary part of the geometric

factor is gauge invariant, causing the norm of the state to change during the time

evolution (even in the PT -symmetric case) also along open paths [80].

2.2 Our dimer model

Of the two ways of making a dimer model non-Hermitian introduced previously, the first

that I studied was using balanced on-site gain and loss, as this model has been widely
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explored in both theory and experiments [16, 23, 24, 33, 39, 41–43,48, 52, 96, 97]. The non-

Hermitian Hamiltonian is:

H =



ig −J

−J −ig


 , (2.16)

where, as described in Section 1.2, J represents the hopping energy and g is the factor

accounting for the on-site gain and loss, and without loss of generality, both J and g are

real and positive.

The eigenvalues of H are ε±=±
√
J2 − g2≡±ε, and as long as g<J , PT -symmetry

is unbroken and ε is real; left and right eigenvectors are given by:

〈L±| =
(
J, ±ε+ ig

)
, |R±〉 =




J

±ε+ ig


 , (2.17)

up to a normalization constant. Note that as mentioned in Section 1.1, the internal

product yields:

〈R±|R∓〉 = 2g(g ∓ iε) 〈L±|L∓〉 6= 0;

〈R±|L±〉 = 2ε(ε∓ ig) = (〈L±|R±〉)∗;

〈R±|L∓〉 = 〈L±|R∓〉 = 0.

(2.18)

On the other hand, the PT -symmetry of the Hamiltonian is broken if the gain and loss

parameter is larger than the hopping energy, g > J , in which case the energy is purely

imaginary and the eigenvectors in Eq. 2.17 cease to be simultaneous eigenvectors of both

H and the (PT ) operator. The PT -breaking point J=g corresponds with the exceptional

point, where ε=0, and the eigenvectors coalesce, causing self-orthogonality 〈R±|L±〉=0,

c.f. Ref. [31].

A sketch of the parameter space is plotted in Fig. 2.1, where the PT -broken region, J <g

is shadowed.
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Figure 2.1: Sketch of the parameter space; the shaded region is where the PT -symmetry is
broken. The square loops represent the trajectories of the system during the time evolution
as described in the text; the inset shows the orientation of the loops in the case of clockwise
circulation, but the simulations were carried out also for the circulation in opposite direction.
Note that the whole evolution takes place in the PT -unbroken region.

Firstly, I investigated the behavior of the system when the Hamiltonian does not

change in time to check the code: the goal was to observe the oscillations of the total pop-

ulation accompanied by Rabi-like oscillations for weaker interactions and the exponential

growth of the population in the PT -broken regime, as observed e.g. in Refs. [43, 48, 52].

After initializing the system in a state given by the superposition of the right eigenstates,

namely:
∣∣ψ(R)

〉
=

1√
2

(|R−〉+ |R+〉),

I plotted n=
〈
ψ(R)

∣∣ψ(R)
〉

to check the behavior of the total population of the system, and

the population in each site obtained as the square modulus of the components of
∣∣ψ(R)

〉
.

The results are plotted in Fig. 2.2, where it is possible to see the solid black line represent-

ing n that oscillates only when the non-Hermiticity, g, is switched on. The oscillations of

the total population have a longer period when the parameters are picked closer to the

exceptional point [43,48,52]. Together with the oscillation of n, n1 (red dash-dotted line)

and n2 (blue dashed line) undergo Rabi-like oscillations: particles (or light intensity,. . . )

are exchanged between the two sites, and we note that n grows when the population is

on site 1 as this is the one fed with atoms, c.f. Eq. 2.16, and decreases when the popu-
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lation moves to the lossy site [43, 48, 52]. In the PT -broken regime, energies are purely

imaginary, there are no simultaneous eigenstates of H and the (PT ) operator, and the

dynamics is dominated by the exponential growth of the population [43,48,52,80].

Figure 2.2: Plot of the behavior of the population (black solid line) for stationary values of
the parameters. Note that the frequency of the oscillations is proportional to the energy gap
2ε between the upper (blue dashed line) and lower (red dash-dotted line) eigenstate, |R+〉 and
|R−〉 respectively.

Once I had verified that the numerics gave the expected result in the stationary case,

I made the parameters g and J depend on time. As the goal of this numerical experiment

is to check Eq. 2.15, I tuned their time dependence to have the system evolve in the

PT -symmetric region of the parameter space, as sketched in Fig. 2.1, in order to avoid

any of the issues related to breaking (PT ) symmetry.

The time evolution of the parameters was chosen to be cyclic in time, and in order to

facilitate both analytical checks and the numerical implementation, I chose the evolution

to take place on squares of side-length Λ, c.f. Fig. 2.1: along each side of the square only
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step no. J g
1 constant Ji g(t)=gi + λg(gf − gi) t
2 J(t)=Ji + λJ(Jf − Ji) t constant gf
3 constant Jf g(t)=gf + λg(gi − gf ) t
4 J(t)=Jf + λJ(Ji − Jf ) t constant gi

Table 1: Scheme of the implementation of the time evolution of the parameters as sketched in
Fig. 2.1. The labels i and f refer to the initial and final value taken by the parameters along
the side of the square, while λg and λJ are the linear coefficients tuning the linear dependence
on time for g and J respectively, so that the process was adiabatic according to the Hermitian
prescription, c.f. Eq. 2.9.

one parameter depends linearly on time, as schematically shown in Table 1, hence the

Berry connection Aα,β
± =(Aα,βg,±,Aα,βJ,±) has only one non-zero component.

Starting from an initial value τ0, time has been discretized considering steps δτ small

enough that [H(τ),H(τ + δτ)]≈0; under this approximation it was possible to obtain the

time evolution as:

|R±(t)〉 = e−i
∫ T
0 H(τ)dτ |R±(0)〉

≈ e−iH(τn)δτ . . . e−iH(τj)δτ . . . e−iH(τ1)δτ |R±(0)〉

where τj =τ0 + jδτ , j is an integer and T is the total time of the evolution. At each time

step, I evaluated the population by taking n±(t)=〈R±(t)|R±(t)〉 and normalizing it with

respect to its initial value, yielding the left-hand side of:

n±(t)

n±(0)
= exp

{
−2 Im γG±

}
. (2.19)

As for its right-hand side, it is obtained starting with the evaluation of Aαβ± considering

the following results. Along the vertical segments of the square loops in the inset of

Fig. 2.1, only g changes starting from gi as g=gi+λgt, straightforward calculations yield:

ARRg,± = ±λg
1

2ε
; ARLg,± = −λg

±ε+ ig

2ε2
;

ALRg,± = λg
±ε− ig

2ε2
; ALLg,± = ∓λg

1

2ε
;

(2.20)

analogously along the horizontal segments of the loop, where J changes from its initial
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value Ji as J=Ji + λJt:

ARRJ,± = ±iλJ
±2ε+ ig

2Jε
; ARLJ,± = iλJ

1

2J

(
2 +

g2

ε2
∓ ig

ε

)

ALRJ,± = iλJ
1

2J

(
2 +

g2

ε2
± ig

ε

)
; ALLJ,± = ±iλJ

±2ε− ig
2Jε

.

(2.21)

In both cases the final time of the evolution is chosen suitably so that gf = gi + Λ and

similarly Jf =Ji+Λ. Finally, evaluating the gauge invariant quantities connected to these

Berry connections as in Eq. 2.14, it is easily found that:

δARg = −iλg
g

2 ε2
= δALg , δARJ = iλJ

1

2J

g2

ε2
= δALJ , (2.22)

where the subscripts g and J label the component of the Berry connections along the

homologous direction in parameter space, and the ± label does not enter because there

is no difference for the system initialized into either of the two eigenstates. It is also

interesting to note that, δAR yields the same results as δAL, and that in this specific

case both components are purely imaginary.
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Figure 2.3: Plot of the population (thick coloured line) of the system during the time evolution
along the square loop of side Λ=1 sketched in the small insets, in the counter clockwise direction;
the lighter dashed line represents the right-hand side of Eq. 2.19, namely the geometric factor.
The legend specifies the value of the parameters at the initial time, corresponding to the bottom-
left corner of the loop. Vertical lines represent the time at which the corner of the square is
reached; the cartoons highlight the path walked by the system in parameter space. Either
plotting the result for the upper or the lower right (resp. left) eigenstates, yields the same
result.

The results of the numerical simulations are plotted in Fig. 2.3. The data are simulated

for Λ = 1 meaning that the square has side of unitary length. Time is in arbitrary units

with the integer values shown corresponding to the time taken to reach the various corners

of the square; the cartoons inside the plot area highlight the segment where the time

evolution is taking place. The colored lines represent the behavior of the population

n(t)/n(0) when the system moves along square loops in parameter space, starting at the

three distinct set of values (J0, g0) specified in the legend; note that these values specify

the coordinates of the bottom-left corner of the square. On top of the thick colored lines,

the dashed line represents the exponential of the geometric factor, i.e. the right-hand side

of Eq. 2.19. This has been numerically evaluated integrating Eqs. 2.22 along path C in

parameter space.

The first thing to appreciate is the exact overlapping of the norm n(t)/n(0) with

e−2 Im γG , that proves Eq. 2.19. Secondly, we observe that as the system approaches the
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exceptional point n grows and conversely shrinks as it moves away from it, as we will

show in Chapter 3 [1]. Moreover, the closer the system gets to the PT -breaking line, the

larger the growth of the population. We finally comment on the fact that the population

goes back to its initial value at the end of the evolution [1, 33, 38]. In the first place, this

is a consequence of the fact that the phase is geometric, as the phase accumulated only

depends on the position of the contour in parameter space. Secondly, this is related to the

concept of magnetic monopole already mentioned in Section 1.1.3. Following Ref. [38], in

fact, it is possible to write down the field generated by the fictitious monopole:

Ω± = ∓ i 1

2 (J2 − g2)3/2




−J

0

g



,

corresponding to the field generated by a one-sheet complex hyperbolic magnetic monopole.

As the trajectory in parameter space does not encircle it, as opposed to what we did in

Chapter 3, the non-Hermitian flux encircled by the loop is zero [1, 33].

The numerical simulations were also performed in the opposite direction along the

same loop; the results are plotted in Fig. 2.4, showing a mirror image of the case in which

the evolution followed a counter-clockwise path in Fig. 2.3. All of the features observed

in the case of counterclockwise evolution, appear also in this case. This specular behavior

proves (again) that the phase accumulated is actually geometric [1].
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Figure 2.4: Plot analogous to Fig. 2.3 but in the case the evolution takes place in the clockwise
direction along the loops sketched in the small insets. Note that the dynamics are specular with
respect to the previous case.

Finally, I investigated the behavior of the system along larger loops. The results

are plotted in Fig. 2.5, where the evolution goes in the counterclockwise direction; the

dashed lines represent the oscillations of n for smaller loops, Λ = 1, whereas the solid

lines represent the case of larger loops, Λ = 2. Lines with the same color represent loops

starting at the same point. As expected [1], larger loops lead the system closer to the

PT -breaking line where the population grows more quickly, hence the higher peaks.
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Figure 2.5: Plot of the population evolution over time, for loops walked in the counter-clockwise
direction. Color encodes the initial value of the parameters; dashed lines are obtained for squared
loops with side of length Λ = 1, whereas solid lines are for the case of loops with side of length
Λ=1. Note the tiny wiggles near the peaks for the longer loops, related to numerical instabilities
arising close to the PT -breaking line.

2.3 Coupled Harmonic Oscillators

At the time my research was scooped, this was the state of my project: a theory matching

with a numerical experiment. After checking that my theoretical results were matching

also with those in Ref. [80], we decided to move towards an actual experimental platform

and we started collaborating with a group of experimentalists working on the development

of a mechanical metamaterial made of coupled harmonic oscillators. In this section, I will

briefly introduce this set-up, but more details can be found in our preprint [21] included

as Appendix B. Note that we chose to study the effect of the adiabatic non-Hermitian

geometric factor, not in the above dimer with onsite gain and loss, but instead in a Hatano-

Nelson dimer [53–55], i.e. the dimer in which non-Hermiticity comes from asymmetry in

the hopping energy described in Section 1.2. This was because not only this is a model that

scales up to an interesting one-dimensional topological system [7], but is also challenging

to realize by other physical means, showing the advantages of our set-up.
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Figure 2.6: Sketch of the setup: the harmonic oscillators (in blue) move vertically and are
coupled via a contactless feedback that is generated by modulating the current running through
the solenoid (in red). Adapted from Ref. [2].

In the last part of this section I will therefore specifically show how this dimer model

was realized using two coupled harmonic oscillators; the outcome of the experiment is the

subject of the publication-style Chapter 4.

The experimental setup is sketched in Fig. 2.6: it consists of a pair of (almost) identical

harmonic oscillators [21], however here I will keep the formalism as generic as possible so

that it can be easily extended to any number N of oscillators. Each of the oscillators is

made of a mass attached to springs that constrain the motion along the vertical direction,

and an accelerometer connected to a computer; this allows for a real time measurement

of the acceleration a(t) and the simultaneous computation of its numerical derivative,

the jerk j(t) = ∂a(t)/∂t. Feedback is implemented as follows: to each mass is connected

a rigid rod ending with a magnet that, during the oscillations, moves inside a solenoid.

Controlling the current running through its coils, it is possible to apply a force to the

magnet, allowing for a contactless feedback [21].

Let us start considering the measurement of the acceleration and the computation of

its time derivative. For a harmonic oscillator, their dynamics is described by:

dak
dt

= jk and
djk
dt

= −ω2ak;
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these resemble the equations of motion for the position and momentum of a harmonic

oscillator with mass m= 1 oscillating at frequency ω. For this reason, one can consider

the pair (ak, jk) for oscillator k as proxies for its position and momentum (Xk, Pk), so

that this equation can be written as:

Ẋk = Pk and Ṗk = −ω2Xk, (2.23)

where the dot represent the time derivative. Measuring X and P we can build quantities

that are analogues of tight binding Hamiltonians quantities, e.g. the proxy for the energy

Ẽ∝ (ωX2 + P 2/ω)/2 (whose analogue is the particle probability density) and the proxy

for the phase φ̃j = arg(Xj + iPj) of each oscillator (the phase of the evolving wave func-

tion) [21]. These measurements are used to engineer a feedback F , that is then applied

to the oscillators.

In the absence of external feedback, Fk, we define the following complex quantities [21,

98,99]:

αk ≡
√
ω

2
Xk + i

√
1

2ω
Pk, α∗k ≡

√
ω

2
Xk − i

√
1

2ω
Pk, (2.24)

whose dynamics is described by α̇k = −iωαk and its complex conjugate α̇∗k = iωα∗k.

These quantities have also a physical meaning: the square modulus |αk|2 corresponds to

the energy of oscillator k, whereas argαk represents its oscillation phase [21,99].

Including the effects of an external feedback applied to oscillator k, Fk, means turning

the equation for Ṗk in Eq. 2.23 into Ṗk = −ω2Xk + Fk. The full equations of motion for

the variables αk then become [21,99]:

α̇k = −iωαk + i

√
1

2ω
Fk, (2.25)

and its complex conjugate describes the dynamics of α∗k. Since in this setup the feed-

back is computed as a function of the measured quantities X1, . . . , XN , P1, . . . , PN , with

N being the total number of oscillators, it is possible to express Fk as a function of
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(α1, . . . , αN , α
∗
1, . . . , α

∗
N).

It is clear that as long as no feedback is applied, Eq. 2.25 has an oscillatory solution

αk∼ e−iωt, and analogously its complex conjugate oscillates as α∗k∼ e+iωt. As soon as Fk

is switched on, the time dependence of the complex variable is still given approximately

by αk(t) ∼ e−iωt provided that the following two conditions apply: i) that the feedback

has small amplitude (weak feedback) and ii) that ω is the largest frequency in the prob-

lem. Under these circumstances, when we transform Eq. 2.25 into the frame of reference

rotating with frequency ω, we will find that all the “co-rotating” terms proportional to

αk(t) will vary slowly, while terms proportional to α2
k or “counter-rotating” terms propor-

tional, for example, to α∗k(t) will be rotating with frequency ≈ ω and ≈ −2ω, respectively.

Since ω is large, both terms will average out quickly, hence giving no contribution to the

dynamics. This high-frequency limit is known as Rotating Wave Approximation (RWA)

and is a common approach in the field of optics [21,99,100].

If the conditions for the RWA hold, only terms in the feedback that are ∝ αk(t)

contribute, and the equations of motion become [21]:

α̇k = −iωαk +
i√
2ω

∑

j

FRWA
kj αj, (2.26)

where FRWA
kj is the part of the feedback applied to the k-th oscillator that depends on

the j-th oscillator, for which we only keep suitable co-rotating terms. As all these co-

rotating terms contain one factor of αj, we have factored this out for clarity [21]. To make

a connection with quantum dynamics, we need to identify αk = 〈α̂k〉 and α∗k =
〈
α̂†k

〉
,

where α̂k and α̂†k are Bosonic annihilation and creation operators respectively, and 〈•〉 is

the quantum mechanical average with respect to the initial state. We also assume that

FRWA
kj αk ≈

〈
F̂RWA
kj α̂j

〉
, where F̂RWA

kj is an operator obtained by replacing all the classical

variables αk’s and α∗k’s with α̂k’s and α̂†k’s. With these identifications and taking ~ = 1,

it can then be shown that Eq. 2.26 is equivalent to the mean-field Schrödinger equation
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of motion obtained using the following normal-ordered Hamiltonian [21]:

H =
∑

k

ωα̂†kα̂k −
1√
2ω

∑

k,j

1

nk + 1
α̂†kF̂

RWA
kj α̂j, (2.27)

where nk is the number of α̂†k operators in F̂RWA
kj . Therefore, in order to simulate the

quantum dynamics of a particular tight-binding Hamiltonian, we simply need to design

and implement suitable feedback terms in our classical system of mechanical oscillators.

As shown in Ref. [21], this approach is very general and flexible, and can be applied to

an arbitrary number of oscillators.

Here, as an explicative example, I will report how to generate the feedback to simulate

the interacting version of the Hatano-Nelson model used in Chapter 4. Starting from the

Hamiltonian:

H =




∆ −J − gz

−J + gz −∆


 , z ≡ n1 − n2,

we first calculate the mean-field dynamical equations, which define the classical equations:

α̇k = −iωαk − i
∑

j

[∆kδkj − (1− δkj)(J + gzkj)]αj, (2.28)

where δkj is the Kronecker delta, zkj = 〈ẑkj〉 is the mean-field population imbalance be-

tween sites k and j, and I have used that zkj = −zjk. Comparing this with Eq. 2.26,

there are three terms that need to be engineered via the feedback to explore this model,

namely: (i) on-site energy shifts ∆k, (ii) reciprocal hopping terms J and (iii) non-

reciprocal population-dependent terms tuned by g. Feedback-engineering for the first

two of these has been demonstrated in Ref. [21], where it was shown that a suitable feed-

back was of the type Fk = AkjXj. In particular, in order to obtain an alternating onsite

shift of energy ∆ on one site and −∆ on the other and an inter-oscillator coupling of
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energy J , the parameter Akj has to be [21]:

1

2ω
Akj =





(−1)k+1 ∆ for k = j;

zJ for k 6= j.

(2.29)

Finally, the term depending on the population imbalance can be included by applying the

following:

Fk = B(ω2X2
k − P 2

j )Xk

= B
ω

2

[
(α2

k + α∗k
2 + 2αkα

∗
k) + (α2

j + α∗j
2 − 2αjα

∗
j )
] 1√

2ω
(αk + α∗k)

≈ B

2

√
ω

2
(αkα

∗
k − αjα∗j )αk,

(2.30)

where the RWA has been used in the last step. In the second equation of this chain, inside

the square brackets only terms containing an equal number of αk and α∗k will survive, since

terms of the type αkαk and α∗kα
∗
k rotate with ≈ ω and −3ω respectively in the co-rotating

frame, hence quickly averaging out. It follows, finally, that the feedback to apply to the

k-th oscillator is:

FRWA
kj =

B

2

√
ω

2
(αkα

∗
k − αjα∗j ).

By direct comparison with Eq. 2.28, we find that B = 4g. Note that the sign change in

the term gz comes naturally from the choice of using the measurement of the acceleration

X of the oscillator to which the feedback has to be applied and the jerk P from the other

oscillator.

In conclusion, the feedback to apply to the k-th oscillator in order to obtain a non-

reciprocal hopping between two wells of different depth is:

Fk =
∑

j

[
AkjXj + (1− δkj)4g (ω2X2

k − P 2
j )Xk

]
,
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and Akj as in Eq. 2.29.

Having described how to engineer the feedback to apply to each of the oscillators

in order to realize the Hatano-Nelson dimer, we can now move to Chapter 3 and then

Chapter 4 where the outcome of the experiment are presented in publication style.
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Chapter 3

Measuring the Adiabatic

non-Hermitian Berry Phase

Based on the work I carried out with the collaboration of Hannah Price and Tomoki

Ozawa, and that I presented in Chapter 2, we proposed this experiment to the experi-

mental group led by Bryce Gadway. As a joint first author of this paper, together with

Hannah Price and Tomoki Ozawa, I dealt with the theoretical aspects presented and with

the editing of the manuscript; Yaashnaa Singhal and Bryce Gadway took care of the main

writing and collection of the experimental data.
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The geometrical Berry phase is key to understanding the behaviour of quantum states under cyclic
adiabatic evolution. When generalised to non-Hermitian systems with gain and loss, the Berry phase
can become complex, and should modify not only the phase but also the amplitude of the state.
Here, we perform the first experimental measurements of the adiabatic non-Hermitian Berry phase,
exploring a minimal two-site PT -symmetric Hamiltonian that is inspired by the Hatano-Nelson
model. We realise this non-Hermitian model experimentally by mapping its dynamics to that of
a pair of classical oscillators coupled by real-time measurement-based feedback. As we verify ex-
perimentally, the adiabatic non-Hermitian Berry phase is a purely geometrical effect that leads to
significant amplification and damping of the amplitude also for non-cyclical paths within the param-
eter space even when all eigenenergies are real. We further observe a non-Hermitian analog of the
Aharonov–Bohm solenoid effect, observing amplification and attenuation when encircling a region
of broken PT symmetry that serves as a source of imaginary flux. This experiment demonstrates
the importance of geometrical effects that are unique to non-Hermitian systems and paves the way
towards the further studies of non-Hermitian and topological physics in synthetic metamaterials.

Geometrical phases play a fundamental role across
physics as they emerge from the cyclic adiabatic evolu-
tion of a system, and depend only on certain intrinsic ge-
ometrical properties within a given parameter space. In
quantum mechanics, a key example of this is the Berry
phase [1], which can be related, not only to the quantum
geometry of eigenstates, but also to important topolog-
ical invariants, such as the Chern number and winding
number [2, 3]. Experimentally, the Berry phase has pro-
found effects on material and transport properties, and
it underlies Hall effects, polarization, charge pumping,
semiclassical dynamics and many other phenomena [2].

Following its discovery, the Berry phase was gener-
alised to systems with dissipation or gain, in which
the Hamiltonian becomes non-Hermitian [4–11]. Inter-
est in such problems has continued to grow, inspired
by developments in non-Hermitian experimental plat-
forms, including in photonics [12, 13], mechanics [14–
20], electric circuits [21, 22], and cold atoms [23, 24]
amongst many others [25–27]. This progress has also
been driven by interest in topological systems, in which
non-Hermiticity leads to new topological classifications
and unusual boundary phenomena [25, 27].

Underlying these effects are fundamental differences
between Hermitian and non-Hermitian Hamiltonians;
this includes that eigenstates can coalesce and become
defective at exceptional points, that the left and right
eigenfunctions will typically be different from each other,
and that the eigenenergies can become complex [13, 26].
One important consequence of these differences is that
the Berry phase will, in general, become complex- in-
stead of real-valued, implying that the amplitude as well
as the phase of a state will vary under adiabatic dynam-

ical evolution [4–7, 28–31].
In this paper, we measure the adiabatic non-Hermitian

Berry phase, demonstrating how non-Hermiticity leads to
gauge-invariant geometrical effects even for non-cyclical
paths in parameter space. This goes beyond previous
experiments which observed the real part of a Berry
phase for closed loops around non-Hermitian exceptional
points [32–34]; in those cases, the Berry phase was para-
metric rather than adiabatic as adiabaticity inevitably
breaks down when an exceptional point is dynamically
encircled [35–37] and geometrical properties have there-
fore to be reconstructed from eigenmode measurements.
In contrast, here we study a two-site PT -symmetric sys-
tem, in a regime for which the eigenenergies are real and
adiabatic evolution is possible. To realise our model, we
employ a mapping between quantum evolution and the
classical dynamics of a pair of oscillators coupled with
real-time measurement-based feedback [20]. We evolve
our system adiabatically and experimentally demonstrate
that the imaginary part of the Berry phase leads to sig-
nificant geometrical amplification and damping, which is
intrinsically non-Hermitian.
Non-Hermitian Berry phase: Before discussing our ex-

periment, we review the basic theory of non-Hermitian
systems [13, 26] to motivate the non-Hermitian Berry
phase. Various related definitions exist for this phase [4–
11]; here, we introduce a formalism that is motivated by
physical observables to concisely include all relevant geo-
metrical effects using Berry connections. This definition
has the advantage that its imaginary part is manifestly
gauge-invariant and is immediately related to measure-
ments of the population. Detailed derivations are given
in the Supplemental Material.
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We consider a N -component state vector |ψ(t)〉, which
depends on time t and obeys the Schrödinger-type equa-
tion i∂t|ψ(t)〉 = H(λ)|ψ(t)〉, where the family of N -
by-N non-Hermitian matrices H(λ) are parametrized
by a set of real parameters λ = (λ1, λ2, · · · ). For a
given value of λ, H(λ) acts as a non-Hermitian Hamil-
tonian. It has right and left eigenvectors, denoted by
|Rn(λ)〉 and 〈Ln(λ)| respectively, which are generally
not complex conjugates of each other [13, 26], but which
share the same complex eigenvalues εn(λ), indexed by
n = 1, 2, · · · , N . Within the parameter space spanned by
λ, four distinct geometrical Berry connections can then
be defined [30, 38]; however, for the non-Hermitian Berry
phase, only the following two Berry connections will be
relevant:

ALRn,j (λ) ≡ i〈Ln(λ)|∂λj
|Rn(λ)〉/〈Ln(λ)|Rn(λ)〉, (1)

ARRn,j (λ) ≡ i〈Rn(λ)|∂λj
|Rn(λ)〉/〈Rn(λ)|Rn(λ)〉. (2)

Upon a generalized gauge transformation, which multi-
plies |Rn(λ)〉 and |Ln(λ)〉 not just by a phase but also
by arbitrary and independent nonzero factors, it can be
shown that the following combination of the above Berry
connections is invariant [30]:

δALR−RRn,j (λ) ≡ ALRn,j (λ)−ARRn,j (λ). (3)

It is a distinguishing feature of non-Hermitian systems
that gauge-independent quantities can be constructed
just from a linear combination of Berry connections; in
Hermitian quantum mechanics, the different Berry con-
nections coincide and the gauge-invariant combination
δALR−RRn,i is always zero.

We now consider the adiabatic evolution of a state
upon changing the parameter λ(t) as a function of time
t to extract the non-Hermitian counterpart of the Berry
phase [4–7, 28–31, 39]. Here, we focus on the situation
where all the eigenvalues are real and non-degenerate so
that we can apply the adiabatic theorem [40, 41]. Then if
the initial state corresponds to the n-th right eigenstate,
the state at time t can be written as

|ψ(t)〉 = c(t)
|Rn(λ(t))〉√

〈Rn(λ(t))|Rn(λ(t))〉
(4)

where c(t) is a complex-valued adiabatic factor that the
state acquires as λ(t) is varied. In defining c(t), we chose
to separate out the denominator, as we are interested in
physical observables such as the population N(t), which
is then given simply by N(t) ≡ 〈ψ(t)|ψ(t)〉 = |c(t)|2. We
note that the final result is independent of the way the
state |ψ(t)〉 is written as a product of a coefficient c(t)
and a basis vector, as explained in detail in Supplemen-
tal Material. We formally solve the Schödinger equation
i∂t|ψ(t)〉 = H(λ(t))|ψ(t)〉 = εn(λ(t))|ψ(t)〉 by applying
〈Ln(λ(t))| from the left, which yields

c(t) = c(0) exp

[
−i
∫ t

0

dt′εn(λ(t′)) + iφ[C]
]
, (5)

where the first term in the exponent is the dynamical con-
tribution to the adiabatic factor c(t), whereas the second
part is the non-Hermitian Berry phase that we define by

φ[C] ≡
∫

C
dλ ·

(
ALR
n (λ)− iImARR

n (λ)
)
, (6)

where ALR
n (λ) = (ALRn,1(λ),ALRn,2(λ), · · · ) and similarly

for ARR
n (λ). The non-Hermitian Berry phase depends

on the path C taken in parameter space and reflects the
geometrical structure of the eigenstates, analogous to the
well-known Berry phase for Hermitian systems [1, 2].
However, unlike the Hermitian Berry phase, the non-
Hermitian Berry phase has both real and imaginary
parts. In particular, the imaginary part

Im(φ[C]) =

∫

C
dλ · ImδALR−RR

n (λ), (7)

depends solely on the imaginary part of δALR−RR
n (λ) =

(δALR−RRn,1 (λ), δALR−RRn,2 (λ), · · · ), which is the gauge-
invariant combination of Berry connections introduced
in Eq. (3). Therefore, it is then immediately obvi-
ous that the imaginary part of the non-Hermitian Berry
phase is gauge independent even when the path C is not
closed [39]. On the other hand, the real part of the Berry
phase is gauge invariant only when the path C forms a
closed path, just like in the Hermitian case [2]. When the
eigenvalues are all real, the evolution of the population
[as depicted in Fig. 1 (a)] is thus determined purely by
the imaginary part of the Berry phase as

N(t) = |c(t)|2 = N(0) exp [−2Im(φ[C])] , (8)

which is directly observable in our experiment.
Experimental set-up: To experimentally explore the ef-

fects of non-Hermitian geometry, we implement the sim-
ple two-site model Hamiltonian

H =

(
−∆ J + δJ

J − δJ ∆

)
, (9)

as depicted in Fig. 1 (b). The elements of H have
units of frequency, consistent with the aforementioned
Schrödinger-type equation describing the system dynam-
ics. Physically, the real parameters ∆, J , and δJ relate
to relevant frequency shifts of (∆) and hopping rates
between (J ± δJ) the oscillators. This model is in-
spired by the Hatano-Nelson model for a 1D lattice [42],
which has non-reciprocal hoppings between neighbour-
ing lattice sites and which can exhibit nontrivial topol-
ogy and the non-Hermitian skin effect [27]. The eigen-
values of Eq. 9 are given by ε± = ±

√
∆2 + J2 − δJ2,

which means that the two eigenvalues are both real when
∆2 + J2 > δJ2, corresponding to the PT -symmetric re-
gion. If ∆2 +J2 = δJ2, the eigenvalues coalesce at an ex-
ceptional point; within the parameter space of (∆, J, δJ),
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FIG. 1. Exploration of the non-Hermitian Berry phase in the two-site Hatano-Nelson model. (a) In non-Hermitian
systems with PT symmetry, adiabatic paths in parameter space generically results in amplification or attenuation of the time-
dependent population N(t). This results directly from the imaginary portion of the adiabatic non-Hermitian Berry phase φ
acquired by a state along its trajectory. (b) Top: The Hatano-Nelson (HN) dimer, a minimal non-Hermitian lattice model
with non-reciprocal left/right hopping rates J ± δJ and an inter-site frequency imbalance 2∆. Bottom: Implementation of the
HN dimer in a mechanical system via measurement-and-feedback. Non-reciprocal coupling between mechanical oscillators, as
well as shifts to their resonance frequencies, are realised through applied forces that are responsive to real-time measurements.
(c) PT symmetry-breaking phase diagram of the HN dimer. A conical surface of exceptional points in the J−δJ−∆ parameter
space separates regions of broken and preserved PT symmetry, respectively lying inside and outside of the conical surface.

the surface of exceptional points corresponds to a dou-
ble cone, with its apex at the origin [11], as shown in
Fig. 1 (c).

The gauge-invariant combinations of the Berry con-
nections within the PT -symmetric region (c.f. Eq. 3)
are all purely imaginary, and they diverge as we ap-
proach the PT -symmetry breaking transition, where adi-
abaticity breaks down. (Analytical expressions of the
Berry connections and associated Berry curvatures are
derived in the Supplemental Material, and can be inter-
preted in terms of a complex hyperbolic pseudo-magnetic
monopole in parameter space [11, 31].) This in turn
means that the only non-vanishing part of the non-
Hermitian Berry phase (Eq. 6) is purely imaginary and
therefore gauge-invariant for any path.

To explore the two-site Hatano-Nelson model, we con-
struct a synthetic mechanical lattice made up of two
classical oscillators artificially coupled by real-time feed-
back measurements, based on our approach reported in
Ref. [20]. The essential idea of this scheme is to map the
Heisenberg equations for a desired tight-binding quan-
tum Hamiltonian onto Newton’s equations of motion for
classical oscillators in phase-space within a rotating wave-
approximation [43, 44]. As discussed in [20], the use of
real-time feedback then means that many two level non-
Hermitian Hamiltonian can be realized with this setup.
Here, we use self- and cross-feedback between the oscil-
lators to realize the Hamiltonian described in Eq. 9, as
depicted at the bottom of Fig. 1 (b). Self-feedback terms
proportional to the oscillator positions (Fi ∝ xi) allow us
to shift their frequencies by ±∆ from a nominal starting
value of f0 ≈ 3.05 Hz. Cross-feedback forces (Fi ∝ xj)

allow us to introduce independent left-to-right and right-
to-left hopping terms J ± δJ , with no intrinsic limitation
to reciprocal energy exchange. By applying self-feedback
terms proportional to the oscillator momenta (Fi ∝ pi),
we cancel the oscillators’ natural damping and explore
coherent dynamics for well over 1000 s (> 3000 periods).
These long timescales are crucial to performing the first
explorations of adiabatic response in a non-Hermitian
system. Beyond single-body (quadratic, in the operator
sense) terms, we additionally apply higher-order feedback
to cancel nearly all native quartic nonlinearities. How-
ever, small residual nonlinearities remain, serving to, e.g.,
cap the energy growth in cases of broken PT symmetry.

Results: We first experimentally establish the PT
symmetry-breaking phase diagram of the canonical two-
site Hatano–Nelson model, with tunable reciprocal (J)
and non-reciprocal (δJ) components of the real-valued
inter-site hopping, but with no inter-site bias (∆ = 0).
In this case, for fixed J , an exceptional point and PT
symmetry-breaking phase transition are encountered at
δJ = J , as previously demonstrated with this platform
by spectral analysis in Ref. [20]. In the full (J ,δJ) pa-
rameter space, there are two distinct regions of conserved
and broken PT symmetry, denoted by white and grey in
Fig. 2 (a). We experimentally determine the exceptional
line separating these regions by probing the breakdown
of adiabaticity and the rapid onset of energy growth as
states cross over into the PT -broken region, as shown
in Fig. 2 (b). We prepare eigenmodes of the symmet-
ric double-well for various fixed values of the reciprocal
hopping J , and then linearly ramp δJ from 0 to 1.2 J
over 400 s. We establish the exceptional points (white
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FIG. 2. PT symmetry-breaking phase diagram of the
unbiased (∆ = 0) Hatano–Nelson dimer. (a) White
points mark the experimentally measured exceptional points
(EPs). Critical δJ values for these points are determined by
detecting the breakdown of adiabaticity as the EP is crossed.
(b) Experimental energy dynamics of prepared eigenstates
along the ramp of δJ [dashed red line in (a)] for J = 6.0 mHz.
The measured energy at site 1 decays (while the site 2 and
total energy grow) until the EP is reached at δJ ∼ J . Here,
we plot the site 1 (E1), site 2 (E2), and total energy (ET )
normalized to their respective initial values (Ei). (c) Crossing
of the EP is marked by the onset of growth of the otherwise
decaying site 1. The red dashed line is an empirical fit to the
data, with the fit minimum defining δJcrit. Here, we plot the
energy in oscillator 1 normalized to its initial value (E1/E1,i).

circles) by determining the instantaneous δJ values for
which there begins to be energy growth at the otherwise
decaying first site, as shown in Fig. 2 (c). Here, an ob-
servable proportional to the ith oscillator energy Ei(t) is
reconstructed from the measured xi and pi signals [20].
We can then associate the oscillators’ energy dynamics
with relative changes in the macroscopic mechanical en-
ergy population Ni(t) ∼ Ei(t)/hf0.

We now restrict ourselves to the PT symmetric re-
gion of Fig. 2 (a), exploring the adiabatic gauge invariant
non-Hermitian Berry phase acquired (via the energy dy-
namics of prepared eigenmodes) as we slowly evolve along
controlled paths in parameter space. In Fig. 3 (a), we first
prepare our system as an eigenmode of the symmetric
double well for a fixed reciprocal hopping J = 6.45 mHz,
and then we smoothly vary the asymmetric hopping as
δJ(t) = δJmax sin2(πt/Tramp) over a time Tramp = 500 s.
From the left inset, this corresponds to a closed linear
path in parameter space from the black dot at δJ = 0
to one of the colored dots (representing different values
of δJmax), and back. It is seen in Fig. 3 (a) that the
total energy increases as the trajectory moves closer to
the exceptional line, with the blue (δJmax = 5.16 mHz)
path showing the largest gain. For such a trajectory, the
energy in the system is determined by the instantaneous
δJ value, as confirmed by the parametric collapse of the
energy vs. δJ for the blue and yellow curves, shown in

the right inset. To note, slight wiggles in both the data
(solid lines) and the numerical simulation curves (dashed
lines, which include effects of the finite ramp duration)
arise, primarily due to non-adiabatic deviations accumu-
lated near the exceptional line. However, for all curves
the total energy returns to near its initial value at the
end of the trajectories, consistent with adiabatic evolu-
tion along a time-reversed path that encloses zero non-
Hermitian flux.

In Fig. 3 (b), we start from the same conditions but
now move along closed circular loops by also varying the
symmetric hopping term J by a sinusoidal function over
a time period of 1000 s. Coordination between the vari-
ation of J and δJ allows us to make either clockwise or
counterclockwise paths in parameter space (inset). The
energy dynamics curves for the two path directions are
essentially (up to small non-adiabatic corrections) mir-
rored versions of each other with respect to the time
midpoint Tramp/2, as the gauge-invariant Berry phase
accumulated from the common starting point is again
uniquely determined by the instantaneous position in pa-
rameter space. This is consistent with the fact that these
finite-area paths enclose zero non-Hermitian Berry phase.
To note, the curves in Fig. 3 (a) and Fig. 3 (b) do exhibit
percent level gain and loss over their respective evolution
times of 500 and 1000 s, stemming from residual loss and
gain terms at the scale of a few µHz.

We now explore closed paths in parameter space that
enclose a region of broken PT symmetry, and which cor-
respondingly aquire a finite non-Hermitian Berry phase.
We accomplish this by introducing a site-to-site energy
bias (∆). To recall, the exceptional surface in the full
(∆, J, δJ) parameter space of Eq. 9 corresponds to a dou-
ble cone with an apex at the origin [11]. As depicted in
Fig. 4 (a), this admits closed paths within the PT sym-
metric region that enclose areas of broken PT symmetry.
The PT -broken region can, in a sense, serve as a source
of non-Hermitian Berry flux, in analogy to the manner
in which a magnetic solenoid serves as a source of flux in
the canonical Aharonov–Bohm thought experiment [45].
Indeed, our procedure can be viewed as measuring the
imaginary Aharonov-Bohm phase in parameter space.

We explore the dynamics of the total energy ET as we
traverse counter-clockwise (CCW) and clockwise (CW)
paths in the J − ∆ plane, starting from several fixed
values of δJ . We start by preparing eigenmodes of the
system with J = 0 and then ramp, over 1000 s, about
an ellipse in the J −∆ parameter space as displayed in
Fig. 4 (a). As we see from Fig. 4 (b), the dynamics
of the total energy are strongly dependent on δJ . In
the fully symmetric case, δJ = 0, we find no signifi-
cant change to the total oscillator energy, as expected
from the lack of an enclosed PT -broken region. For
increasing values of δJ , we find that the CCW (CW)
paths in parameter space lead to an increasing growth
(decay) of the energy upon completing one cycle. Fig-
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FIG. 3. Geometric energy amplification and attenuation in the Hatano–Nelson dimer. (a) Left: Dynamics of the
total energy ET = E1 + E2 for adiabatic transformations (normalized to its initial value ET,i). Inset: path of the adiabatic
transformation, for fixed J = 6.5 mHz, ramping from δJ = 0 to/from different maximum values of δJmax = 3.4 mHz (yellow),
δJmax = 4.3 mHz (red), and δJmax = 5.2 mHz (blue). Right: Plot of the total energy vs. the instantaneous δJ value, for
the yellow and blue paths. The black dotted line shows the expected parametric dependence of ET /ET,i on δJ for fully
adiabatic evolution under H. (b) Dynamics of ET for CW (purple) and CCW (gold) paths as specified by the inset, centered
at (J, δJ) = (6.5, 2.2) mHz and having a radius of 2.2 mHz. The colored dashed lines in the main panels relate to the time-
dependent solutions of the Schrödinger-type equation based on evolution under the ideal HN model, including non-adiabatic
effects due to the finite ramp durations of Tramp = 500 s for (a) and Tramp = 1000 s for (b).

ure 4 (c) summarizes the δJ-dependence of the measured
gain (attenuation) of the total energy experienced upon
completing one cycle in the CCW (CW) direction. The
near-exponential dependence of the measured gain (at-
tenuation) with δJ is in qualitative agreement with the
expected variation of the acquired non-Hermitian Berry
phase for cyclic paths. The non-Hermitian Berry phase
accumulated around such paths grows with the size of
the PT broken region, having a form that is nearly pro-
portional to δJ , as presented in the Supplement. For
the experimentally traversed path in the CCW (CW) di-
rection, the system picks up a negative (positive) con-
tribution of this imaginary phase, and the state of the
oscillators thus experiences a corresponding growth (de-
cay) in its energy. At short times or for small values of
the hopping asymmetry δJ , the observed amplification
and attenuation are in fair agreement with the analyti-
cal form expected based on pure geometric contributions
of an imaginary Berry phase. However, clear deviations
can be found, most prominently in situations where very
large growth of the total energy are expected (CCW or-
bits for large δJ values). On physical grounds, devia-
tions from the expected response can be expected for very
large oscillator displacements due to natural anharmonic-
ities. We qualitatively capture the observed saturation of
growth by comparing to a dynamical evolution that in-
corporates small but non-negligible (empirical) nonlinear
contributions, described further in the Supplement.

Conclusion: We have experimentally measured the
non-Hermitian Berry phase for adiabatic evolution in a
two-site Hatano-Nelson model. We have demonstrated
significant geometrical contributions to amplification and
damping along both closed and open paths, and shown

that these effects are observable in a synthetic mechani-
cal metamaterial. Going further, we will be able to add
different types of nonlinearities to the two-site Hatano-
Nelson model, allowing us to explore the interplay of in-
teractions with PT -symmetry [46, 47]. As active me-
chanical metamaterials are scaled up to larger systems
with dozens of oscillators, they will enable controllable
explorations of the effects of quantum geometry and
topology in non-Hermitian Chern insulators, such as,
for example, the anomalous velocity contributions pre-
dicted to arise from the non-Hermitian Berry phase [30]
and the breakdown of the canonical bulk-boundary cor-
respondence of Hermitian models [48–50].
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(c) Ratio of the final total energy ET,f to the initial total energy ET,i as a function of the tunneling asymmetry δJ . The upper
and lower panels show the energy ratios for one half cycle and one full cycle, respectively. The purple (gold) points are the
experimentally measured ratios for the CCW (CW) paths (with error bars smaller than the data points) and the long-dashed
and short-dashed lines are theory comparisons. For (b,c), the black long-dashed lines are the analytical predictions (detailed
in the Supplement) for the amplification/attenuation under fully adiabatic evolution according to Eq. 9. The dotted lines are
the trajectories determined by numerical simulation of the experimental ramping procedure, also incorporating weak nonlinear
contributions that serve to capture the saturation observed for large amplification (detailed in the Supplement).
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Supplemental Material for “Measuring the Adiabatic Non-Hermitian Berry Phase in
Feedback-Coupled Oscillators”

THEORETICAL BACKGROUND ON
NON-HERMITIAN BERRY PHASE

We summarize here details of the theoretical formalism
for the non-Hermitian Berry phase.

We consider a family of N -by-N matrices H(λ)
parametrized by a set of real parameters λ =
(λ1, λ2, · · · ). For a given value of λ, the matrix H(λ)
is generally not Hermitian, and we consider a system
which obeys the Schrödinger equation whereH(λ) acts as
a non-Hermitian Hamiltonian: i∂t|ψ(t)〉 = H(λ)|ψ(t)〉.
Here, |ψ(t)〉 is a time-dependent N -component vector,
which is an analog of the wavefunction in this non-
Hermitian system.

Various properties of the system are characterized by
the eigenvectors and eigenvalues of the non-Hermitian
Hamiltonian H(λ). Assuming that the Hamiltonian is
diagonalizable, there exist N right eigenvectors |Rn(λ)〉
and the same number of left eigenvectors 〈Ln(λ)| in-
dexed by an integer n = 1, 2, · · · , N , which satisfy
H(λ)|Rn(λ)〉 = εn(λ)|Rn(λ)〉 and 〈Ln(λ)|H(λ) =
εn(λ)〈Ln(λ)|. Here, generally complex eigenvalues εn(λ)
are common for the right and left eigenvectors. Assuming
non-degeneracy of energies, namely εn(λ) 6= εn′(λ) for
n 6= n′ for a given value of λ, left and right eigenvectors of
different eigenvalues are orthogonal 〈Ln(λ)|Rn′(λ)〉 = 0
if n 6= n′. There is no a priori reason to take a particular
normalization for the left and/or right eigenvectors, and
thus, upon defining the eigenvectors, there is a freedom
to choose an overall multiplicative factor. Physically ob-
servable quantities should not depend on this choice of
overall factors of the eigenvectors. In other words, we
should look for properties which are independent under
the following gauge transformations:

|Rn(λ)〉 → rn(λ)|Rn(λ)〉, |Ln(λ)〉 → ln(λ)|Ln(λ)〉,
(10)

where rn(λ) and ln(λ) are nonzero complex numbers.
From the analogy with Hermitian quantum mechan-

ics, we define the Berry connection for non-Hermitian
systems; however, since the left and the right eigenvec-
tors are different, we need to consider the following four
distinct Berry connections [30, 38]:

ALRn,j (λ) ≡ i〈Ln(λ)|∂λj |Rn(λ)〉/〈Ln(λ)|Rn(λ)〉, (11)

ARLn,j (λ) ≡ i〈Rn(λ)|∂λj |Ln(λ)〉/〈Rn(λ)|Ln(λ)〉, (12)

ARRn,j (λ) ≡ i〈Rn(λ)|∂λj |Rn(λ)〉/〈Rn(λ)|Rn(λ)〉, (13)

ALLn,j(λ) ≡ i〈Ln(λ)|∂λj |Ln(λ)〉/〈Ln(λ)|Ln(λ)〉. (14)

Upon the gauge transformation Eq. (10), these four Berry

connections transform as

ALRn,j (λ)→ ALRn,j (λ) + i∂λj ln rn(λ) (15)

ARLn,j (λ)→ ARLn,j (λ) + i∂λj ln ln(λ) (16)

ARRn,j (λ)→ ARRn,j (λ) + i∂λj ln rn(λ) (17)

ALLn,j(λ)→ ALLn,j(λ) + i∂λj ln ln(λ). (18)

Thus, each Berry connection is gauge-dependent, namely
the Berry connections depend on how one chooses the
normalization of the left and right eigenvectors. However,
we can construct the following gauge-invariant combina-
tions of the Berry connections [30]:

δALR−RRn,j (λ) ≡ ALRn,j (λ)−ARRn,j (λ) (19)

δARL−LLn,j (λ) ≡ ARLn,j (λ)−ALLn,j(λ). (20)

We note that it is a distinguishing feature of non-
Hermitian systems that we can construct gauge-
independent quantities just from the Berry connections.
Since the four Berry connections coincide for Hermitian
quantum mechanics, the gauge-invariant combinations
δALR−RRn,j and δARL−LLn,j are zero when the Hamiltonian
is Hermitian. As we see soon, these gauge-independent
combinations of Berry connections appear in a properly-
defined Berry phase upon adiabatic change of the param-
eter λ.

We now consider an adiabatic evolution of a state upon
changing the parameter λ(t) as a function of time t and
study a scaling factor that the state acquires, which is a
non-Hermitian counterpart of the Berry phase [4–7, 28–
31, 39]. In Hermitian systems, the adiabatic theorem
guarantees that, if the change of the parameters is suf-
ficiently slow, the state remains in the original state up
to an overall phase factor if the initial state is an en-
ergy eigenstate. As mentioned above, one needs to be
cautious when applying the adiabatic theorem to non-
Hermitian systems; however, we now assume that this
theorem can be applied. Starting from a right eigenstate,
we consider adiabatic change of the parameter λ(t) as
the time t changes, and follow how the eigenstate evolves
during this process. We take a family of right eigenstates
|Rn(λ(t))〉. Assuming that the adiabatic theorem holds,
if the initial state is in the n-th right eigenstate, the state
at time t can be written as

|ψ(t)〉 = c(t)
|Rn(λ(t))〉√

〈Rn(λ(t))|Rn(λ(t))〉
(21)

where c(t) is a complex function accounting for the adia-
batic factor the state acquires as λ(t) is varied. The de-
nominator is introduced so that the change of the inten-
sity of the state |ψ(t)〉 can be captured by just looking at
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the coefficient c(t) because 〈ψ(t)|ψ(t)〉 = |c(t)|2 ≡ N(t),
where N(t) is the population. In the next section, we
show that the final result is independent of how |ψ(t)〉 is
written as a product of the coefficient and a basis vector.

We can formally solve the Schrödinger equation
i∂t|ψ(t)〉 = H(λ(t))|ψ(t)〉 = εn(λ(t))|ψ(t)〉 to obtain the
Berry phase. We first apply 〈Ln(λ(t))| from the left to
the Schrödinger equation. Writing the state as Eq.(21),
the Schrödinger equation becomes

i〈Ln(λ(t))| ∂
∂t

(
c(t)

|Rn(λ(t))〉√
〈Rn(λ(t))|Rn(λ(t))〉

)

= c(t)εn(λ(t))
〈Ln(λ(t))|Rn(λ(t))〉√
〈Rn(λ(t))|Rn(λ(t))〉

. (22)

Expanding the time derivative and arranging terms, we
obtain the following differential equation for c(t):

∂c(t)

∂t
=c(t)

[
−iεn(λ(t))− 〈Ln(λ(t))|∂t|Rn(λ(t))〉

〈Ln(λ(t))|Rn(λ(t))〉

+
1

2

〈Rn(λ(t))|∂t|Rn(λ(t))〉+ c.c.

〈Rn(λ(t))|Rn(λ(t))〉

]
, (23)

where c.c. stands for complex conjugate of the preceding
term. Converting the time derivative in the right-hand
side to the derivative in λ, and using the definition of the
Berry connections, Eq.(15)-(18), we obtain

∂c(t)

∂t
=c(t)

[
−iεn(λ(t)) +

+i
∂λ(t)

∂t
·
(
ALR
n (λ)− iImARR

n (λ)
)]
, (24)

where ALR
n (λ) = (ALRn,1(λ),ALRn,2(λ), · · · ) and similarly

for ARR
n (λ). Solving this differential equation, we obtain

c(t) =c(0) exp

[
−i
∫ t

0

dt′εn(λ(t′))+

i

∫

C
dλ ·

(
ALR
n (λ)− iImARR

n (λ)
)]
, (25)

The first term in the exponent is the dynamical contribu-
tion to the adiabatic factor c(t), whereas the second part
is the line integral in the parameter space and only de-
pends on the path C, and is thus analogous to the Berry
phase, reflecting the geometrical structure of the eigen-
states. In analogy with Hermitian quantum mechanics,
we define the non-Hermitian Berry phase as a function
of the path C as

φ[C] =

∫

C
dλ ·

(
ALR
n (λ)− iImARR

n (λ)
)
. (26)

Unlike the Hermitian Berry phase, the non-Hermitian
Berry phase has both the real and imaginary parts

Re (φ[C]) =

∫

C
dλ · ReALR

n (λ), (27)

Im (φ[C]) =

∫

C
dλ · ImδALR−RR

n (λ), (28)

where δALR−RR
n (λ) = (δALR−RRn,1 (λ), δALR−RRn,2 (λ), · · · )

is the gauge-invariant combination of the Berry connec-
tions introduced in Eq. (19). Therefore, the imaginary
part of the non-Hermitian Berry phase is gauge indepen-
dent even when the path C is not closed [39]. On the
other hand, the real part of the Berry phase is gauge in-
variant only when the path C forms a closed path, just
like in the Hermitian case.

An advantage of the above formulation in terms of the
Berry connection is also that the geometrical contribu-
tion to the time evolution of the populationN(t) = |c(t)|2
is manifestly gauge-invariant even for an open path:

N(t) = N(0) exp

[
2

∫ t

0

dt′Imεn(λ(t′))− 2Im (φ[C])
]
.

(29)

Therefore, when the energy eigenvalue is real during the
time evolution and hence Imεn(λ(t)) = 0, which is the
case we experimentally study in this paper, the popu-
lation dynamics is solely determined by the imaginary
part of the Berry phase. And thus by observing the pop-
ulation dynamics, we can experimentally determine the
imaginary part of the Berry phase.

DIFFERENT DEFINITION OF THE ADIABATIC
COEFFICIENT

The observable result of the non-Hermitian Berry
phase through the population dynamics, Eq. (29), is in-
sensitive to the way the adiabatic coefficient c(t) is de-
fined. For demonstration, we write, instead of as in
Eq. (21), the state vector as

|ψ(t)〉 = c̃(t)|Rn(λ(t))〉, (30)

which is also a natural definition to take. Applying
〈Ln(λ(t))| from left to the Schrödinger equation

i
∂

∂t
{c̃(t)|Rn(λ(t))〉} = εn(λ(t))c̃(t)|Rn(λ(t))〉, (31)

we obtain the differential equation for c̃(t):

∂c̃(t)

∂t
= c̃(t)

[
−iεn(λ(t))− 〈Ln(λ(t))|∂t|Rn(λ(t))〉

〈Ln(λ(t))|Rn(λ(t))〉

]
.

(32)

Integrating this differential equation, we obtain

c̃(t) = c̃(0) exp

[
−i
∫ t

0

εn(λ(t′))dt′ + i

∫

C
ALR
n (λ) · dλ

]
.

(33)

On the other hand, the population evolves in time as

N(t) = |c̃(t)|2〈Rn(λ(t))|Rn(λ(t))〉. (34)



10

To understand the dynamics, in addition to the
time evolution of c̃(t), we need to understand how
〈Rn(λ(t))|Rn(λ(t))〉 evolves in time. By a simple cal-
culation, we can show

∂

∂t
{〈Rn(λ(t))|Rn(λ(t))〉}

= 〈Rn(λ(t))|Rn(λ(t))〉2∂λ(t)

∂t
Im
[
ARR
n (λ)

]
. (35)

Integrating this differential equation, we obtain

〈Rn(λ(t))|Rn(λ(t))〉

= 〈Rn(λ(0))|Rn(λ(0))〉 exp

[
2

∫

C
Im
[
ARR
n (λ)

]
· dλ

]
.

(36)

Combining Eq.(33) and Eq.(36), time evolution of the
population is

N(t) = N(0) exp

[
2

∫ t

0

Imεn(λ(t′))dt′

−2

∫

C
Im
[
ALR
n (λ)−ARR

n (λ)
]
· dλ

]
,

(37)

which is exactly the same as Eq. (29). Thus, the time
evolution of the population is independent of the way
the adiabatic coefficient is defined, as expected.

TWO-SITE HATANO-NELSON MODEL

Here we describe the two-site non-Hermitian model we
experimentally realize. The Hamiltonian is

H/h =

(
−∆ J + δJ

J − δJ ∆

)
. (38)

Here, we take ∆, J and δJ to be real parameters, re-
lating to relevant frequency shifts of and hopping rates
between the oscillators. The eigenvalues of Eq. 38 are
given by ε± = ±

√
∆2 + J2 − δJ2, which means that the

two eigenvalues are both real when ∆2 +J2 > δJ2, corre-
sponding to the PT -symmetric region. If ∆2 +J2 = δJ2,
the eigenvalues coaelesce at an exceptional point; within
the parameter space of λ = (∆, J, δJ), this exceptional
point corresponds to a double cone, with its apex at the
origin [11], as shown in Fig. 1 (c).

Within the PT -symmetric region, the gauge-invariant
combinations of the Berry connections are

δALR−RR±,∆ = i
δJ

2
· ∆δJ ± J

√
∆2 + J2 − δJ2

(∆2 + J2)(∆2 + J2 − δJ2)
(39)

δALR−RR±,J = i
δJ

2
· JδJ ∓∆

√
∆2 + J2 − δJ2

(∆2 + J2)(∆2 + J2 − δJ2)
(40)

δALR−RR±,δJ = −i δJ
2
· 1

∆2 + J2 − δJ2
, (41)

We note that they are all purely imaginary, and that they
diverge as we approach the PT -symmetry breaking tran-
sition, where adiabaticity breaks down. The associated
geometrical Berry curvature δΩLR−RR

± ≡ ∇×δALR−RR
± ,

where δALR−RR
± = (δALR−RR±,∆ , δALR−RR±,J , δALR−RR±,δJ ) is

also imaginary and takes the form [11]:

δΩLR−RR
± =

±i
2(∆2 + J2 − δJ2)3/2

(∆, J, δJ), (42)

which is analogous to the magnetic field of a one-sheeted
complex hyperbolic magnetic monopole. From the above
quantities, we are able to analytically calculate the non-
Hermitian Berry phase and to predict the consequent am-
plification and damping of the population.

NON-HERMITIAN BERRY PHASE FOR PATHS
ENCLOSING PT -BROKEN REGIME

We provide theoretical analysis of the non-Hermitian
Berry phase for the configuration described in Fig. 4 of
the main text. The path we take is an ellipse in ∆ − J
plane with a fixed value of δJ . For a given value of δJ ,
the path can be parametrized by a single parameter θ as

∆ = ∆0 cos θ, J = J0 sin θ, (43)

where, in the experiment, θ depends on time t, which
varies from 0 to T . Time dependence of θ(t) is such that
initially, θ(0) = 0 and at the final time, θ(T ) = Θ ≤ 2π.
Note that the path is not closed unless Θ = 2π. In our
experiment, ∆0 = 7.5mHz and J0 = 6.45mHz. We note
that the gauge-invariant combinations of Berry connec-
tions δALR−RR±,∆ and δALR−RR±,J are both purely imaginary
in PT -symmetric region. Thus the imaginary part of the
Berry phase along the path C described by Eq.(43) is

Im[φ[C]] = −i
∫

C
dλ · δALR−RR

± (λ)

= −i
∫ Θ

0

dθ
{
∂θ∆(θ)δALR−RR±,∆ (θ) + ∂θJ(θ)δALR−RR±,J (θ)

}

= −i
∫ Θ

0

dθ
{
−∆0 sin θδALR−RR±,∆ (θ)

+J0 cos θδALR−RR±,J (θ)
}
. (44)

Using expressions (39) and (40), we can perform the in-
tegral and obtain

Im[φ[C]] = −1

4
log

{
(∆2

0 − δJ2)(δ2
0 cos2 Θ + J2

0 sin2 Θ)

∆2
0(∆2

0 cos2 Θ + J2
0 sin2 Θ− δJ2)

}

∓ δJ

2

J0

∆0

√
∆2

0 − δJ2
Π

(
1− J2

0

∆2
0

; Θ

∣∣∣∣ 1− J2
0 − δJ2

∆2
0 − δJ2

)
,

(45)
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FIG. 5. The cylindrical surface of integral over which the
Berry curvature can be defined everywhere continuous. The
integral of the Berry curvature over this surface yields the
non-Hermitian Berry phase corresponding to the closed ellip-
tical path at a fixed value of δJ .

where Π(n;φ|k) is the incomplete elliptic integral of the
third kind defined by

Π(n;φ|m) =

∫ φ

0

dθ

(1− n sin2 θ)
√

1−m sin2 θ
. (46)

For a closed path with Θ = 2π, the real part of the non-
Hermitian Berry phase also becomes gauge invariant (up
to 2π multiples of an integer). However, we can show
that for the path we consider here, the real part is zero,
and thus the non-Hermitian Berry phase for a closed path
in our setup is purely imaginary. Furthermore, the first
logarithm term in Eq.(45) vanishes for a closed path and
the elliptic integral becomes the complete one, yielding

φ[C]Θ=2π =

∓ i2δJJ0

∆0

√
∆2

0 − δJ2
Π

(
1− J2

0

∆2
0

∣∣∣∣ 1− J2
0 − δJ2

∆2
0 − δJ2

)
, (47)

where we now have the complete elliptic integral of the
third kind defined by

Π(n|m) =

∫ π/2

0

dθ

(1− n sin2 θ)
√

1−m sin2 θ
. (48)

The expressions (45) and (47) are what we used in Fig. 4
of the main text to draw theoretical curves.

So far, we have derived the non-Hermitian Berry phase
through the line integral of the Berry connections along
the path. For a closed path (Θ = 2π) we can obtain the
same result using the surface integral of the Berry curva-
tures as we show below. We can convert the line integral
to the surface integral using Stokes’ theorem, which is a
standard procedure also in Hermitian cases. However, we
should be careful that, in the plane determined by a fixed
value of δJ in the parameter space of λ = (∆, J, δJ), the
interior of the curve C contains the PT -broken region. At
the PT -breaking transition the eigenstates coalesce and
we are no longer able to use the Stokes’ theorem, which
assumes the involved functions be continuous. We can,
however, deform the surface of integral to the cylindrical
form, as illustrated in Fig. 5. The surface of the cylinder
is entirely contained in the PT -symmetric region, and
thus Stokes’ theorem can be safely applied. The surface
to be integrated contains two parts: side and the base.
The Berry curvature (42) does not have any component
perpendicular to the base of the cylinder at δJ = 0. We
then need to consider the surface integral only over the
side of the cylinder. The side of the cylinder can be
parametrized by λ = (∆, J, δJ) = (∆0 cos θ, J0 sin θ, δJ ′)
with parameters θ and δJ ′. Here, θ varies from 0 to 2π,
and δJ ′ varies from δJ , which is the initial value, to 0.
Then, denoting the unit vector normal to the surface by
n and the surface element by dS, the surface integral is
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φ[C]Θ=2π =

∫ ∫
δΩLR−RR
± · ndS

=

∫ 2π

0

dθ

∫ 0

δJ

dδJ ′δΩLR−RR
± ·

(
∂λ

∂θ
× ∂λ

∂δJ ′

)
dθdδJ ′

=

∫ 2π

0

dθ

∫ 0

δJ

dδJ ′
±i∆0J0

2(∆2
0 cos2 θ + J2

0 sin2 θ − δJ ′2)3/2

=

∫ 2π

0

dθ
∓i∆0J0δJ

2(∆2
0 cos2 θ + J2

0 sin2 θ)
√

∆2
0 cos2 θ + J2

0 sin2 θ − δJ2

= ∓i J0

∆0

2δJ√
∆2

0 − δJ2

∫ π/2

0

dθ
1(

1−
(

1− J2
0

∆2
0

)
sin2 θ

)√
1− ∆2

0−J2
0

∆2
0−δJ2 sin2 θ

= ∓i J0

∆0

2δJ√
∆2

0 − δJ2
Π

(
1− J2

0

∆2
0

∣∣∣∣
∆2

0 − J2
0

∆2
0 − δJ2

)
, (49)

which is exactly the expression Eq.(47). The popula-
tion increase/decrease due to the imaginary part of the
non-Hermitian Berry phase is thus directly related to the
imaginary magnetic flux enclosed in the surface defined
by the interior of the closed path. The change of popula-
tion upon adiabatically following a closed path is a mani-
festation of the Aharonov-Bohm effect with an imaginary
magnetic flux.

DATA ACQUISITION AND ANALYSIS

As described previously in Ref. [20], we acquire real-
time proxies of the oscillators’ positions based on contin-
uous voltage signals from analog accelerometers attached
to each oscillator. We additionally acquire a proxy for the
oscillators’ momenta based on determining the instanta-
neous jerk by taking the numerical derivative of acquired
acceleration signals. These voltage signals proportional
to the acceleration and jerk are normalized to a common
scale, and respectively serve as dimensionless proxies for
the oscillator positions (x̃i) and momenta (p̃i). From the
rapidly oscillating (at frequency f0) x̃i and p̃i signals, we
can reconstruct a proxy for the mechanical energy stored
in each oscillator Ei ∝ x̃2

i + p̃2
i . Furthermore, the total

energy of the two-oscillator dimer can be reconstructed
simply as ET = E1 + E2.

In Fig. 6, we display the progression of acquired and
processed data, relating to the scenario of cyclic attenu-
ation (a) and amplification (b) of energy upon encircling
a PT -broken region. In both cases, we start with a state
initialized by resonantly depositing energy into oscillator
1 while maintaining an inter-oscillator bias (frequency
mismatch) 2∆. The first column depicts the paths for
CW (gold, row (a)) and CCW (purple, row (b)) trajecto-
ries in the model’s parameter space. The second column

depicts the x̃i position signals for oscillators 1 (red) and
2 (blue). The p̃i momentum signals, which are indistin-
guishable from the x̃i signals on this long timescale, are
not shown. The third column displays the calculated en-
ergies for each oscillator, normalized to the initial total
energy. The fourth and final column displays the total
mechanical energy in the two-oscillator dimer, normal-
ized to the initial total energy. To note, the data from the
final column is the same as that appearing (combined) in
the central panel of Fig. 4 (b).

INFLUENCE OF WEAK NONLINEARITIES

Our experimental implementation involves rather
large, few cm-scale displacements from equilibrium of our
masses on springs (further details in Ref. [20]). For large
displacements, there is a natural increase of the oscilla-
tion frequency due to the anharmonicity of the physi-
cal springs that appear above and below our oscillating
masses. We apply feedback forces to cancel out, to first
order, this natural stiffening effect. Specifically, for each
oscillator, we apply a nonlinear contribution to the feed-
back forces of the form FNLi = αi(x̃

2
i + p̃2

i )x̃i. In general,
the control over αi for such a nonlinear feedback can be
used to implement nonlinear interaction terms, as was
demonstrated in Ref. [20]. Here, we set αi for each oscil-
lator so as to cancel their natural quartic nonlinearities.

However, this cancellation is imperfect, and residual
and higher-order nonlinearities lead to shifts in the fre-
quencies of the oscillators that become more severe as
the mechanical energy in an oscillator grows. In par-
ticular, for experiments in which we expect to observe
a large increase in the overall mechanical energy due to
the accrual of a complex Berry phase, we tend to find less
growth than expected. Specifically, for the experiments
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FIG. 6. Representative primary and processed data, demonstrating how quantities like total energy are derived
from the primary acquired signals for the individual oscillators. Shown for the data as presented in Fig. 4, for
δJ = 1.3 mHz and for both directions of encircling. Row (a): For CW (gold) trajectories in the J −∆ plane, the data panels
display (from left to right) the progression from position (x̃i) signals, to the individual energy signals in each oscillator, to the
total energy of the two-oscillator dimer. To note, both the individual and total oscillator energies are normalized to the total
energy at time t = 0 (start of the encircling process). For the CW trajectory, the total energy is attenuated upon completing
one cycle. Row (b): Same data progression for the case of CCW (purple) trajectories in the J − ∆ plane. For the CCW
trajectory, the total energy is amplified upon completing one cycle.

described in Fig. 4 of the main text involving cyclic am-
plification along CCW paths encircling the PT -broken
region, we find reasonable agreement between our exper-
imental data and the analytical theory results in cases
in which the total energy remains small (ET /ET,i . 2,
with ET,i being the initial total energy). However, for
conditions in which there is larger energy growth, we ob-

serve significant deviations from the expected analytical
results. To capture this effect, we also compare our data
(for Fig. 4) to numerical simulation curves that incorpo-
rate additional nonlinear contributions to the dynamics.
Specifically, we compare to dynamical evolution accord-
ing to the set of coupled equations:

ȧ = −i[(ω0 −∆)a+ iΓaa− (J + δJ)b+ g̃(|a|2 − 1)a] (50)

ḃ = −i[(ω0 + ∆)b+ iΓbb− (J − δJ)a+ g̃(|b|2 − 1)b] (51)

The majority of terms are as defined previously in the
text, with ω0 = 2πf0 describing the common bare an-
gular frequency of the two oscillators, 2∆ the angu-
lar frequency mismatch imposed between the oscillators,
and J ± δJ the left-to-right and right-to-left hopping
rates. These parameters are evolved according to the
state preparation procedure and parameter ramps as
described in the context of Fig. 4. Specifically, pop-
ulation is first initialized at site a (corresponding to
a(t = 0) = 1) in the presence of a large initial detun-
ing of 2∆0, with ∆0/2π = 7.7 mHz. Then, a purely
non-reciprocal hopping of δJ is smoothly turned on as
δJ = (δJmax/2)× (1− cos(πt/Tprep)) over a preparation

time of Tprep = 250 s, with variable final values of δJmax

as described in the main text. Then, after this prepara-
tion stage, encircling orbits in the J −∆ plane are made
as depicted in Fig. 4. Specifically, the coordinates ∆ and
J follow their respective forms of ∆ = ∆0 cos(2πt/Tramp)
and J = C × J0 sin(2πt/Tramp), where Tramp = 1000 s,
J0/2π = 6.45 mHz, and C = ±1 defines the chirality for
CW and CCW parameter trajectories.

The fixed terms Γa,b account for small residual
loss/gain at oscillators a and b, taking values of Γa/2π =
10.25 µHz and Γa/2π = -5.75 µHz, relating to weak loss
and gain terms, respectively. The coefficient of the em-
pirical nonlinear term contains both a real and imaginary
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contribution (i.e., g̃ = g̃re + ig̃im), which take respective
values of g̃re/2π = 1.12 mHz and g̃im/2π = 32.5 µHz. To
note, these values (Γa,b and g̃) were determined based
on a global optimization of the agreement between the-
ory and experiment (minimization of summed squared
residuals) for the full CCW ramp case for all δJ values.

The complex numbers a and b represent the field co-
efficients for the two mechanical oscillator modes. By
convention these coefficients are normalized as |a(t)|2 +
|b(t)|2 = 1 at time t = 0, and as such their squared
norms can be compared to the individual normalized (to

the total initial energy) oscillator energies as presented
in the main text (E1/ET,i and E2/ET,i). As the frequen-
cies and damping/gain of the individual oscillators were
separately fine-tuned in experiment under the respective
conditions of |a(t = 0)|2 = 1 and |b(t = 0)|2 = 1, the
contributions from the empirical nonlinear terms vanish
under those conditions. Importantly, the nonlinear con-
tributions to the dynamical evolution become significant
when the total energy of either oscillator grows large, re-
producing the saturation of cyclic growth as observed in
the main text.
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Non-Hermitian two-site “dimers” serve as minimal models in which to explore the interplay of gain
and loss in dynamical systems. In this paper, we experimentally and theoretically investigate the
dynamics of non-Hermitian dimer models with non-reciprocal hoppings between the two sites. We
investigate two types of non-Hermitian couplings; one is when asymmetric hoppings are externally
introduced, and the other is when the non-reciprocal hoppings depend on the population imbalance
between the two sites, thus introducing the non-Hermiticity in a dynamical manner. We engineer the
models in our synthetic mechanical set-up comprised of two classical harmonic oscillators coupled by
measurement-based feedback. For fixed non-reciprocal hoppings, we observe that, when the strength
of these hoppings is increased, there is an expected transition from a PT -symmetric regime, where
oscillations in the population are stable and bounded, to a PT -broken regime, where the oscillations
are unstable and the population grows/decays exponentially. However, when the non-Hermiticity
is dynamically introduced, we also find a third intermediate regime in which these two behaviors
coexist, meaning that we can tune from stable to unstable population dynamics by simply changing
the initial phase difference between the two sites. As we explain, this behavior can be understood
by theoretically exploring the emergent fixed points of a related dimer model in which the non-
reciprocal hoppings depends on the normalized population imbalance. Our study opens the way for
the future exploration of non-Hermitian dynamics and exotic lattice models in synthetic mechanical
networks.

I. INTRODUCTION

In recent decades, systems described by non-Hermitian
Hamiltonians have become a topic of great interest since
gain and loss can lead to many intriguing effects, includ-
ing parity-time (PT ) symmetry and real energy spec-
tra [1–7], exceptional points [8–11], non-Hermitian ge-
ometrical phases [12–20] and new types of topological
phenomena [21–28]. This interest has also been driven
by recent experimental developments leading to non-
Hermitian physics being simulated across a wide-range
of platforms such as photonics [11, 29–33], ultracold
gases [34–36] and mechanical metamaterials [20, 37–43].

Within this field, significant effort has been devoted
to the study of so-called “dimer” models, in which two
sites are coupled together in a (non-Hermitian) Hamilto-
nian that can be represented generally as a 2× 2 matrix.
Such models are useful as they serve as minimal systems
in which to (often analytically) understand the effects
of non-Hermitian terms on dynamical behavior [44–47].
Many of the previous works focused on the dimer models
where the non-Hermiticity is introduced and controlled
through on-site loss and gain terms (see, e.g., [5–7, 44–
50] and references therein), that is, through the diagonal
components in the Hamiltonian.

In this paper, we instead explore dynamics of dimer
models in which the non-Hermitian effects are introduced
by making the hopping between the two sites asymmet-
ric [51]. Such systems are inspired by the Hatano-Nelson
(HN) model [52–54], which is a one-dimensional lat-

tice model with asymmetric hoppings between the sites
exhibiting the so-called non-Hermitian skin effect [55–
57]. Such asymmetric, or non-reciprocal, hoppings are
more difficult to experimentally implement than on-site
gain and loss. However, there has been significant re-
cent progress in realizing such asymmetric hoppings us-
ing setups based on optical systems [58–61], electrical
circuits [62–64] and synthetic mechanical metamateri-
als [20, 65], opening up a possibility to experimentally
study such non-Hermitian models.

In this paper, we engineer non-Hermitian dimer mod-
els by taking advantage of the flexibility of a mechan-
ical set-up consisting of two coupled harmonic oscilla-
tors with measurement-based feedback [65]. As we have
previously demonstrated, this approach can be used to
simulate near-arbitrary mean-field lattice Hamiltonians,
with controllable on-site gain and loss, non-reciprocal
couplings and (exotic) synthetic nonlinearities amongst
other effects [20, 65]. In addition to its tunability, a key
advantage of this set-up is that it provides full access to
the dynamics, allowing us to observe the evolution of the
system in real time.

Here, we exploit this mechanical set-up to investigate
dynamics of Hatano-Nelson dimer models. We first in-
vestigate the linear Hatano-Nelson dimer in which the
asymmetric hopping is externally fixed [51]. In this lin-
ear model we observe that, while in the PT -symmetric
regime the trajectories of dynamics show closed stable
orbits, in the PT -broken regime the behavior is unsta-
ble, with the population exponentially exploding or de-
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caying. We fully characterize this behavior in terms of
fixed points of motion. Building on the understanding
of the linear model, we then explore a nonlinear ver-
sion of the Hatano-Nelson dimer in which the asym-
metric coupling is induced by population imbalance be-
tween the two sites. For this model, we again find
both a stable regime at low coupling strengths, in which
population oscillations are bounded, analogous to the
PT -symmetric regime described above, and an unstable
regime at high coupling strengths, in which the popu-
lation grows/decays, similar to the PT -broken regime.
However, we also find a new regime at intermediate cou-
pling strengths, where the two types of behavior coexist,
allowing us to tune the population dynamics from a sta-
ble oscillation to an unstable divergence by simply tuning
the initial phase difference between the oscillators. As we
discuss, this behavior can be understood by studying the
fixed points of a variant of the nonlinear Hatano-Nelson
dimer model, which we call the instantaneous Hatano-
Nelson dimer model, in which the non-reciprocal coupling
depends on the normalized population difference between
the two sites as introduced below. Our work lays the
foundation to exploring dynamics of more exotic lattice
Hamiltonians with non-Hermiticity and mean-field inter-
actions.

The paper is structured as follows: in Sec. II we intro-
duce and define the models we explore. We introduce the
linear Hatano-Nelson dimer model, nonlinear Hatano-
Nelson dimer model, and the instantaneous Hatano-
Nelson dimer model that helps elucidate the dynamics
of the original nonlinear Hatano-Nelson dimer model. In
Sec. III we describe the experimental approach and set-
up, and the details and parameters chosen. In Sec. IV, we
analyze the linear Hatano-Nelson dimer model. We first
analytically study the dynamical behavior of the model,
and then compare the results with numerically and exper-
imentally obtained dynamics. In Sec. V, we analyze the
dynamical behavior of the instantaneous Hatano-Nelson
dimer model and discuss the emergence of multiple fixed
points and the structure of the transition between the
weakly and strongly interacting regimes. In Sec. VI, we
finally study the nonlinear Hatano-Nelson dimer model.
We give qualitative explanations of the phase diagram
using results obtained in previous sections, and discuss
the coexistence of different phases in the dynamics from
both numerical and experimental approaches. Finally, in
Sec. VII, we draw conclusions and discuss the outlook for
this work.

II. MODELS

We experimentally realize two types of non-Hermitian
dimer models. The first is the linear Hatano-Nelson
(HN) dimer model, in which Hermiticity is broken by
externally-tuneable non-reciprocal couplings between the
two sites. The second is the nonlinear HN dimer model,
in which the non-reciprocal couplings are instead induced

a)

−J−δJ

−J+δJ

2∆

b)

−J−gz

−J + gz

2∆

FIG. 1. a) Sketch of the Hatano-Nelson dimer as described
in Eq. 1 where δJ is the hopping asymmetry parameter.
b) Sketch of the dimer with population-dependent hopping
asymmetry as described in Eq. 3, where z describes the pop-
ulation imbalance between the two sites and g is a control
parameter.

by the population imbalance between the two sites, and
hence evolve dynamically, depending on the interparticle
interaction strength. In order to obtain analytical under-
standing of the nonlinear HN dimer model, we also the-
oretically introduce a variant of the nonlinear HN dimer
model in which the non-Hermiticity only depends on the
normalized population imbalance between the two sites;
such a model describes the dynamics of the nonlinear HN
dimer model for a short period of time, and thus we call
it an instantaneous HN dimer model. We shall now intro-
duce the linear, nonlinear, and instantaneous HN dimer
model in turn.

A. Linear Hatano-Nelson Dimer Model

The linear HN dimer model is a model in which
two sites are coupled by non-reciprocal hopping ampli-
tudes [28, 51, 66, 67]. By writing the complex-valued
wave-function of the two sites as α = (α1, α2)T, the dy-
namics of the linear HN dimer is described by

iα̇ =

(
ω −∆ −J − δJ
−J + δJ ω + ∆

)
α, (1)

where ω is an overall energy offset and ∆ determines
the on-site energy difference between the two sites (with
~ = 1), as shown in Fig. 1 (a). Without loss of generality,
from now on we will consider J , ∆ and δJ to be non-
negative real values. The coupling between the sites is
split into the reciprocal part of the hopping amplitude
−J and the non-reciprocal part ±δJ , the latter being
responsible for breaking Hermiticity. This model is the
two-site version of the famous Hatano-Nelson model for
a one-dimensional chain [52–54] in which all the nearest-
neighbor inter-site couplings take the form as in Eq. 1. As
a result of the non-reciprocal hopping, the Hatano-Nelson
model is topologically nontrivial and exhibit phenomena
such as directional transport and the non-Hermitian skin
effect in a 1D chain [55–57, 68].

Similar to other two-site non-Hermitian models [44,
69], the linear HN dimer (Eq. 1) exhibits a PT -symmetry
breaking transition, in which the eigenstates of the
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Hamiltonian coaelesce at an exceptional point [1, 2, 70]
as the strength of the non-Hermitian terms is increased.
The energy eigenvalues, E±, of the Hamiltonian, which
is the two-by-two matrix in Eq. 1, are [2, 70]:

E± = ω ±
√
J2 + ∆2 − δJ2. (2)

The spectrum shows qualitatively different behavior de-
pending on the relative strength between J2 + ∆2 and
δJ2. The energies are purely real when J2 + ∆2 > δJ2,
corresponding to a weakly non-Hermitian regime called
the PT -symmetric regime. When J2 +∆2 = δJ2 the two
eigenvalues become degenerate, at which point the eigen-
vectors also coalesce, yielding the exceptional point in
the parameter space. When J2 + ∆2 < δJ2, the energies
acquire nonzero imaginary part, which is called the PT -
broken regime. The appearance of the imaginary part of
eigenenergies indicates that the norm of the wavefunc-
tion will not be conserved over time, and the population
exponentially grows or decays [28, 51, 66, 67, 71].

B. Nonlinear Hatano-Nelson Dimer Model

In the linear HN dimer model, the non-Hermiticity was
included via a constant off-diagonal contribution ±δJ .
In the nonlinear HN dimer model, the non-Hermiticity
is introduced dynamically via the population imbalance
between the two sites. The nonlinear HN dimer model is
defined by the following equation of motion:

iα̇ =

(
ω −∆ −J − gz
−J + gz ω + ∆

)
α, (3)

in which the non-reciprocal part of the hopping am-
plitude is now set by ±gz, where g is the interaction
strength and z ≡ |α1|2 − |α2|2 represents the population
imbalance between the two sites. A sketch of this model
is made in Fig. 1 (b). As z depends on the complex wave-
function, this is no longer a linear model and so does not
have linear eigenstates and eigenenergies similar to the
linear HN dimer. Understanding the rich behavior of
this model is a goal of the current paper. Because of the
nonlinearity, it is not possible to obtain a good analytical
understanding of the model. In order to approximately
understand the dynamics of this model for a short pe-
riod of time, we introduce the following instantaneous
HN dimer model.

C. Instantaneous Hatano-Nelson Dimer model

The nonlinearity in the nonlinear HN dimer model was
in the term ±gz in the off-diagonal terms. We can rewrite
this term as ±gn(z/n), where n is the norm of the wave-
function. In non-Hermitian models, the norm n generally
depends on time, and so do gn and z/n. However, as we
discuss in more detail in Sec. V, the model

iα̇ =

(
ω −∆ −J − ḡz/n

−J + ḡz/n ω + ∆

)
α, (4)
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FIG. 2. Sketch of the experimental apparatus used for imple-
menting the described models. We perform real-time mea-
surements of the effective position Xk and momentum Pk

variables of our oscillators (labeled by index k), which are
used to compute real-time feedback forces that are applying
magnetically through a voltage-controlled current. The form
of the feedback forces used to implement a desired Hamilto-
nian H is given simply by the relationship Fk ∝ −∂H/∂Xk.

which is obtained by replacing gn in the nonlinear HN
dimer model by ḡ, allows description of the dynamics
without complication arising from the time-dependence
of n if ḡ is taken to be a constant value. Physically, we
can view the model as describing the dynamics of the
nonlinear HN dimer model at time close to t0 if we set
ḡ = gn(t0). We thus call the model the instantaneous
HN dimer model.

Before moving on to describe the dynamical features of
the linear, nonlinear and instantaneous HN dimer mod-
els, we briefly explain how the models can be experimen-
tally realized in our system of mechanical oscillators.

III. EXPERIMENTAL SET-UP

Our experimental setup is described in detail in
Ref. [65], and consists of two almost identical oscilla-
tors, whose acceleration a(t) and its numerical deriva-
tive, the jerk j(t) = da(t)/dt, are measured in real
time. These measurements can be used to produce a
real-time feedback force on each oscillator that allows
us to synthetically couple the two oscillators. This pro-
cedure enables us to effectively generate a wide vari-
ety of two-level tight-binding Hamiltonians. Within the
rotating-wave approximation, the Heisenberg’s equations
of motion for a generic tight-binding Hamiltonian can be
mapped onto Newton’s equations for the harmonic os-
cillators. Hence, we can engineer a combination of self
and cross feedback [65]: the former is responsible for lo-
cal on-site terms (e.g. site-dependent potential energy
shifts, site-dependent gain or loss, and on-site nonlinear
interactions), while the latter introduces off-site terms
that allow energy to hop from site to site (e.g., com-
plex hopping, non-reciprocal coupling, and even density-
dependent hopping).
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Experimentally, feedback forces are implemented by
using real-time voltage output signals to control the cur-
rents through gradient solenoids surrounding each oscil-
lator. These control signals result in magnetic forces on
the oscillators, each of which feature an embedded dipole
magnet. The real-time voltage measurement signals re-
lating to acceleration and jerk are normalized to a com-
mon scale. Given the simple harmonic nature of our os-
cillators, these normalized measurement signals Xk and
Pk, where k is the oscillator index, serve as direct prox-
ies for the oscillators’ positions and momenta, xk and pk.
As depicted in Fig. 2, a desired Hamiltonian H is imple-
mented by feeding back on the oscillators with forces that
are true to Hamilton’s equation (dpk/dt = −∂H/∂xk).
Hence, feedback forces are of the form Fk ∝ −∂H/∂Xk.
Naturally, site energy shifts are implemented by forces of
the form Fk ∝ Xk, while gain and loss terms are imple-
mented through feedback of the form Fk ∝ Pk, and so
on [65]. Owing to our co-normalization of the Xk and Pk
variables, the relative magnitude of all the linear terms
in our experimentally implemented Hamiltonians are de-
fined simply by the ratio of the applied feedback coef-
ficients. The absolute calibration of our feedback forces
(i.e., how the control voltage signals generated by our
measurement-and-feedback system relate to the actual
mHz-scale terms of the implemented Hamiltonian) is per-
formed by investigating the frequency shift of the individ-
ual oscillators based on self-feedback forces (Fk ∝ Xk),
as detailed in Ref. [65].

In order to simulate the dynamics as in Eq. 1, we in-
troduce a combination of self-feedback (to cancel nat-
ural loss terms and to shift the site energies) and lin-
ear cross-feedback (to introduce hopping between sites).
To capture nonlinear terms, such as the population-
dependent hopping contributions of Eq. 3, we introduce
feedback forces of the form F1(2) ∝ g(X2

1 + P 2
1 − X2

2 −
P 2

2 )X2(1)/(X
2
1,i +P 2

1,i +X2
2,i +P 2

1,i), where Xk,i and Pk,i
are the initial values taken by the effective position and
momentum variables. Through this normalization, these
nonlinear terms are governed by the same absolute cali-
bration as the linear terms.

In addition to allowing for implementation of the de-
sired linear and nonlinear HN dimer models, our con-
trol over these applied forces enables us to set the initial
state of the oscillators for each experiment. Starting with
oscillators nominally at rest, we sinusoidally drive the
two oscillators at their common resonance frequency of
∼ 3.05 Hz for several seconds. By controlling the relative
strength and phase of these two sinusoidal “initialization”
drives, we control the initial amplitudes and phases of the
two oscillators (or correspondingly, the initial complex-
valued wave-function α.

IV. LINEAR HN DIMER MODEL

With the experimental setup we just described, we
study the dynamical behavior of the linear HN dimer

model. To understand the dynamics, we employ two
descriptions, one is in the “phase space” of the popu-
lation imbalance and the phase difference between the
two sites, and the other is the Bloch sphere representa-
tion. Although the dynamics of linear HN dimer model
can be obtained just by looking at the eigenstates of the
non-Hermitian Hamiltonian, the description in terms of
the phase space and the Bloch sphere gives us intuitive
picture for understanding, and will also lay the ground-
work for later Sections to understand the dynamics of the
nonlinear and instantaneous HN dimer models.

A. Dynamical Equations for the linear HN dimer

We rewrite here the equation of motion for the linear
HN dimer model, Eq. 1,

i
∂

∂t

(
α1

α2

)
=

(
ω −∆ −J − δJ
−J + δJ ω + ∆

)(
α1

α2

)
. (5)

In standard Hermitian quantum mechanics, the overall
normalization of the wavefunction is not an observable,
and we can assume the wavefunction to be normalized
with the overall phase left as a gauge degree of free-
dom. However, in non-Hermitian quantum mechanics,
time evolution is non-unitary in general and the change
of norm of the wavefunction over time plays an important
role, describing phenomena such as decay and lasing. In
our classical experimental setup, all the information of
the wavefunction, α1 and α2, can in principle be mea-
sured. Following the practice of non-Hermitian quantum
mechanics, we consider the norm of the wavefunction to
be an observable, but we choose to not consider the over-
all phase to be significant.

In describing dynamics of two-site (two-level) systems,
it is both convenient and conventional to recast the dy-
namical equations either in terms of “phase space” dy-
namics [72] or in terms of the Bloch vector [45, 46]. As
we shall use both pictures interchangeably, we now briefly
introduce each in turn.

In the phase-space picture, we look at the dynam-
ics in the space of phase difference between two sites,
ϕ ≡ arg(α1/α2) ∈ (−π, π], and the normalized popula-
tion imbalance between two sites z̃ ≡ (|α1|2 − |α2|2)/n,
where n ≡ |α1|2 + |α2|2 is the total population. In the
dynamics of two-site Hermitian models, the dynamics
is fully characterized in the space of {z̃, ϕ}. In non-
Hermitian models, however, the overall norm of the wave-
function can change and have significance, the full dy-
namics is characterized in the space of {n, z̃, ϕ}. Equa-
tions of motion for {n, z̃, ϕ} can be obtained from Eq. 1
in a straightforward manner, and they are

ṅ = −2 δJ n
√

1− z̃2 sinϕ, (6)

˙̃z = 2(z̃ δJ − J)
√

1− z̃2 sinϕ, (7)

ϕ̇ = −2 ∆ + 2
Jz̃ − δJ√

1− z̃2
cosϕ. (8)
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We see that the time evolution of the variables z̃ and ϕ
are closed by themselves and does not depend on the total
population n. As a result, we can consider the dynamics
in the restricted 2D phase space {z̃, ϕ}; the dynamics of n
is separately determined from the information of {z̃, ϕ},
as in other non-Hermitian dimer models [45, 46]. Most
importantly, when considering the dynamics of {z̃, ϕ}, we
do not need to worry about the fact that the total popu-
lation n can change in time, and thus we can analyze the
dynamics in {z̃, ϕ} in a way analogous to the Hermitian
dimer models.

Secondly, we can alternatively visualize the dynam-
ics by means of the normalized Bloch vector, s =
(sx, sy, sz)

T, whose components are defined as:

sx ≡
1

2n
(α∗

1α2 + α1α
∗
2), (9)

sy ≡
1

2i n
(α∗

1α2 − α1α
∗
2), (10)

sz ≡
1

2n

(
|α1|2 − |α2|2

)
=

1

2
z̃, (11)

subject to the condition |s|2 = 1/4, implying that the
head of the Bloch vector always lies on the surface of a
sphere of radius 1/2 called the Bloch sphere [45, 46]. As
the total population n also changes, the full dynamics is
described by the four variables {n, sx, sy, sz}. We then
obtain [51]:

ṅ = −4 δJ n sy (12)

ṡx = 2∆sy + 4 δJ sxsy (13)

ṡy = −2∆sx + 2Jsz − δJ + 4 δJ s2
y (14)

ṡz = −2Jsy + 4 δJ sysz, (15)

where again we see that the time dependence of the
Bloch vector (sx, sy, sz) does not depend on the total
population n, and thus, upon considering the dynam-
ics of the Bloch vector (sx, sy, sz), we do not need to
worry about the time dependence of n. We note that
since a vector (sx, sy, sz) lies on the surface of a two-
dimensional sphere, the dimension of the space the vari-
ables {n, sx, sy, sz} move is three-dimensional, agreeing
with the three-dimensional description in the phase space
{n, z̃, ϕ}. Naturally, the phase-space and the Bloch-
vector equations are fully equivalent, as can be shown
by noting that ϕ = arctan(sy/sx) and z̃ = 2sz.

B. Dynamics of the linear HN dimer

As one increases the non-Hermiticity δJ , the dynamics
of the linear HN dimer qualitatively change before and
after the PT -symmetry breaking transition at J2 +∆2 =
δJ2. We first discuss the PT -symmetric region J2+∆2 >
δJ2 to show, both theoretically and experimentally, that
the dynamics is described by oscillation around two fixed
points. We then discuss the PT -broken regime J2+∆2 <
δJ2 where the fixed points turn into a source and sink of
dynamics.

1. PT -symmetric Regime

In the PT -symmetric regime, J2 + ∆2 > δJ2, where
eigenvalues of the Hamiltonian are real, we will show
that the dynamics consist of Rabi oscillations between
the two sites, which can be seen as closed orbits in
phase-space and on the Bloch sphere. We also show
that the population can be biased toward one of the two
sites; the emergence of population imbalance comes from
non-Hermiticity, and its mechanism is different from the
self-trapping known in interacting Hermitian Josephson
dimers.

To understand the dynamics, we look for fixed points of
motion, which are obtained by setting the time derivative
of the variables to zero. In the non-Hermitian models we
analyze in this paper, we find it convenient and useful
to look for fixed points of variables other than n, leaving
possibility for n to change in time. In what follows, when
we refer to fixed points, they refer to fixed points in the
parameter space of either {z̃, ϕ} in the phase space de-
scription or {sx, sy, sz} in the Bloch sphere description
without including n.

In terms of the Bloch-sphere description, the fixed
points are thus obtained by setting ṡx = ṡy = ṡz = 0 in
Eqs. 13, 14 and 15. Looking at the equation for ṡz = 0,
one sees that the fixed point should satisfy either sy = 0
or sz = J/2δJ . The latter solution implies sz > 1/2 in
the PT -symmetric region, J2 + ∆2 > δJ2, which is not
compatible with the condition |s|2 = 1/4 and thus not
a valid solution. Therefore, the only fixed points in the
PT -symmetric region satisfy sy = 0. Solving the other
equations ṡx = ṡy = 0, we obtain two fixed points:



sx
sy
sz


 =

1

2(J2 + ∆2)



−δJ ∆± Ω J

0
δJ J ± Ω∆


, (16)

where Ω ≡
√
J2 + ∆2 − δJ2 > 0 in the PT -symmetric

regime.
Equivalently, the fixed points can be expressed in terms

of the phase-space variables by setting ˙̃z = ϕ̇ = 0. We
find two fixed points,

(
z̃
ϕ

)
=

{(
δJ J+Ω∆
J2+∆2

0 or π

)
,

(
δJ J−Ω∆
J2+∆2

π

)}
, (17)

In the first fixed point, we should choose ϕ = 0 when
δJ < J and ϕ = π when δJ > J . This discontinuous
change of ϕ may look odd, but this is due to the fact
that when J = δJ , the first fixed point becomes z̃ = 1,
which corresponds to the north pole in the Bloch sphere
description. As the fixed point crosses the north pole,
the phase angle ϕ changes discontinuously from 0 to π.
Note that there is no discontinuity in the Bloch sphere
description.

We now consider dynamics of the system around the
fixed points. Dynamics around a fixed point can be un-
derstood by looking at the Jacobian matrix, J , of the
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FIG. 3. Numerically and experimentally obtained dynamics of the linear Hatano-Nelson dimer model, with ∆ = 0, and three
distinct values of δJ in both the Bloch-sphere representation (top panels) and the phase space representation (bottom panels).
Different colors of points represent the different initial conditions, which are highlighted by open circles. Numerical results are
in solid lines, whereas experimental data are plotted with (slightly transparent) points. In the PT -symmetric regime the fixed
points in Eqs. 16 and 17 are centers (blue triangles), while as soon as the PT -symmetry is broken (panel on the right), one of
the points in Eq. 19, or equivalently in Eq. 20, behaves as a source (unstable point, green diamond) and the other as a drain
(stable point, orange square).

fixed point. In the phase space {z̃, ϕ} the Jacobian is

J =

(
∂z̃ ˙̃z ∂ϕ ˙̃z

∂z̃ϕ̇ ∂ϕϕ̇

)
. (18)

It is known from general theory of dynamical systems
that the dynamics around a fixed point is classified ac-
cording to the eigenvalues of the Jacobian matrix [73–
76]. If the real part of the two eigenvalues are both zero,
the fixed point acts as a center of motion around which
the system oscillates. If the real part of the eigenvalues
are both positive, the fixed point is called an unstable
fixed point, and the dynamics flows away from the point.
If the real part of the eigenvalues are both negative, the
fixed point is called a stable fixed point, and the dynam-
ics sinks into the point. If one of the eigenvalues has a
positive real part and the other eigenvalue has a nega-
tive real part, the fixed point behaves as a saddle point
of dynamics.

For the fixed points of Eq. 17, the eigenvalues of this
Jacobian are a purely imaginary complex conjugate pairs
with no real part, indicating that these points behave as
centers for the dynamics. This oscillatory behavior is
analogous to the Rabi oscillation in coherently coupled
two-level quantum systems. Such oscillatory dynamics

is confirmed also experimentally as seen in Fig. 3. De-
pending on the value of δJ , which is the strength of the
non-Hermiticitiy, the value of z̃ at the fixed points vary,
and can even reach the maximum value of z̃ = 1. This
imbalance of population is a two-site version of the non-
Hermitian skin effect known in the extended Hatano-
Nelson model with edges, where all the eigenstates are
known to be localized on one edge [52–54].

These dynamical features are both numerically and ex-
perimentally confirmed, as described in Fig. 3. The left
panel describes the Hermitian limit (δJ = 0) of the linear
HN dimer model, whereas the central panel is in the PT -
symmetric regime and the right panel is the PT -broken
regime. Fixed points which serve as centers of dynamics
are indicated by blue triangles whereas source and sink
are indicated by a green diamond and an orange square,
respectively. The roles of fixed points found in dynamics
obtained from numerical and experimental means are in
accord with what we found above.

So far, we have not looked at the dynamics of n. If
we insert the fixed points into the equation for n, we
see ṅ = 0, indicating that the total population does not
change in time on the fixed points. This behavior is ex-
pected because the eigenvalues of the Hamiltonian in the
PT -symmetric region are both real. However, if we look
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FIG. 4. Numerically calculated phase space dynamics for the
linear HN dimer model in the space of {n, z̃, ϕ}. Different col-
ors are for different initial conditions, highlighted with open
circles. All the fixed points are represented as lines perpen-
dicular to the z̃ − ϕ plane as their coordinates are indepen-
dent of the population, n. Left panel: in the PT -symmetric
case (δJ = 0.5 J and ∆ = 0.01 J), the fixed points in Eq. 17
(triangles) are centers. Right panel: if the system is not PT -
symmetric (δJ = 2 J and ∆ = 0.01 J), only points in Eq. 20
are well defined, and appear in pairs of stable (orange squares)
and unstable (green diamonds) points.

at the dynamics around the fixed points, the total pop-
ulation n changes in time. In the left panel of Fig. 4, we
plot the numerically-calculated dynamics within a region
of the 3D phase-space of {n, z̃, ϕ}. In the 3D phase-space,
the fixed point in the phase space {z̃, ϕ} corresponds to
a line perpendicular to the z̃ − ϕ plane. The variation
of the population during dynamical evolution even in the
PT -symmetric region reflects that the eigenstates are not
orthogonal, and their overlap can lead to a change of pop-
ulation during dynamics.

2. PT -broken Regime

Approaching to the PT -breaking transition from the
PT -symmetric region corresponds to taking Ω→ 0, and
the fixed points of the PT -symmetric region in Eq.(16)
merge in this limit, giving rise to an exceptional point.

Beyond the PT -breaking transition, J2 + ∆2 < δJ2,
we enter the PT -broken regime where the eigenvalues of
the Hamiltonian are no longer real. We again look for
fixed points by setting ṡx = ṡy = ṡz = 0 in (13), (14),
and (15). The fixed point solution with sy = 0 we had in
the PT -symmetric region is no longer a valid solution in
the PT -broken regime with J2 + ∆2 < δJ2. Instead, we
find two fixed points at



sx
sy
sz


 =

1

2 δJ



−∆
±iΩ
J


. (19)

Equivalently, in the phase-space description, the fixed
points are:

(
z̃
ϕ

)
=

(
J/δJ

± arccos
(
−∆/

√
δJ2 − J2

)
)
. (20)

The eigenvalues of the Jacobian corresponding to these
fixed points are both negative for the fixed point with
ϕ < 0 and both positive for the fixed point with ϕ > 0,
which implies that the fixed point at ϕ < 0 is a stable
fixed point acting as a sink of dynamics, where as the
fixed point at ϕ > 0 is an unstable fixed point acting
as a source. In the linear HN dimer, fixed points are
nothing but the eigenstates of the 2-by-2 Hamiltonian;
the eigenstate corresponding to the stable fixed point
has the eigenvalue whose imaginary part is larger than
the other eigenstate. We can physically understand the
source/sink nature of these fixed point by noting that,
starting from a state which is a superposition of the two
eigenstates, the weight of the eigenstate corresponding to
the sink will grow because of the larger imaginary part.
We note that the total population n at the fixed points
is no longer a constant, but rather grows in time. In this
sense, the fixed points we found here are not fixed points
in the full dynamics taking n into account. As we noted
earlier in this paper, we keep this terminology that the
fixed points are points where variables other than n are
kept constant.

V. INSTANTANEOUS HN DIMER MODEL

Now we turn to models with nonlinearities. Unlike the
linear HN dimer model where the fixed points correspond
to the eigenstate of the 2-by-2 Hamiltonian, obtaining the
fixed points of dynamics of models with nonlinearity is
generally nontrivial. Although the model we experimen-
tally implement is the nonlinear HN model, this model
does not allow for a simple description in terms of fixed
points. However, as we shall explain, we can obtain the
fixed points of the instantaneous HN model, which also
contains nonlinearity and thus provides a good approxi-
mation to understand the experimentally realized nonlin-
ear HN model. In this section, we give a theoretical de-
scription of the dynamics of the instantaneous HN dimer
model, which we will use in later Sections to understand
the dynamics of nonlinear HN dimer model.

We rewrite here the equation of motion for the instan-
taneous HN dimer model Eq.(4):

iα̇ =

(
ω −∆ −J − ḡz̃
−J + ḡz̃ ω + ∆

)
α, (21)

where we used the notation z̃ = z/n we introduced in
the previous section. The equations for the phase-space
variables {n, z̃, ϕ} are

ṅ = −2 ḡn z̃
√

1− z̃2 sinϕ (22)

˙̃z = 2(ḡ z̃2 − J)
√

1− z̃2 sinϕ (23)

ϕ̇ = −2∆ + 2
J − ḡ√
1− z̃2

z̃ cosϕ, (24)
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while the equations for the Bloch sphere variables are:

ṅ = −8 ḡn sysz (25)

ṡx = 2∆sy + 8 ḡ sxsysz (26)

ṡy = −2∆sx + 2(J − ḡ)sz + 8 ḡ s2
ysz (27)

ṡz = −2Jsy + 8 ḡ sys
2
z. (28)

Just like the linear HN dimer model, time derivatives
of the variables z̃, ϕ, sx, sy, and sz have no n depen-
dence, which implies that we can consider the dynam-
ics in the phase space {z̃, ϕ} and on the Bloch sphere
{sx, sy, sz} independent from how n depends on time.
Nonetheless, the instantaneous HN dimer model is not
a linear model; indeed the dynamics has z̃ dependence
in the 2-by-2 nonlinear Hamiltonian of Eq.(4). The sit-
uation should be contrasted with what happens for the
nonlinear HN dimer model, whose equations of motions
are Eqs. (40-46) in the next section. The nonlinear HN
dimer model has explicit n dependence in equations of
motion for z̃, ϕ, sx, sy, and sz, and a closed description
in terms of either {z̃, ϕ} or {sx, sy, sz} is not allowed,
making the analysis more difficult. The dynamics of the
instantaneous HN dimer model we explore in this section
serves as the basis to understand the dynamics of the
nonlinear HN dimer model in the next section.

A. Dynamics of the instantaneous HN dimer model

As before, we first look for the fixed points of motion.
Fixed points, as before, are points determined by ˙̃z = ϕ̇ =
0 for the phase-space dynamics and ṡx = ṡy = ṡz = 0 for
the Bloch sphere dynamics, without imposing ṅ = 0.
The fixed points we discuss are, therefore, fixed points in
the restricted space in which we do not look at the time
evolution of n.

From the condition ṡz = 0, we obtain sy = 0 or s2
z =

J/(4ḡ). Let us first examine the case sy = 0. From the
other two equations, ṡx = ṡy = 0, we obtain the following
two fixed point solutions



sx
sy
sz


 = ± 1

2
√

(J − ḡ)2 + ∆2



J − ḡ

0
∆


. (29)

A striking feature of the instantaneous HN dimer model
is that these fixed points are always valid fixed points
irrespective of the values of J , δJ , and ∆, which is to be
contrasted to the linear HN dimer model where the fixed
point sy = 0 was valid only in the PT -symmetric region.
These fixed points in phase-space description are

(
z̃
ϕ

)
=

{(
∆ sign(J−ḡ)√

(J−ḡ)2+∆2

0

)
,

(
− ∆ sign(J−ḡ)√

(J−ḡ)2+∆2

π

)}
(30)

The sign of the fixed points of z̄ depends on sign(J − ḡ);
this is because when J = ḡ, the fixed point reaches the
north pole in the Bloch sphere description and thus ϕ

changes between 0 and π around J = ḡ. Note that there
is no discontinuous change in the Bloch sphere represen-
tation.

Now we look for the fixed point sy 6= 0. Combining
s2
z = J/(4ḡ) with ṡx = ṡy = 0, we obtain the following

additional four fixed points



sx
sy
sz


 = ± 1

2
√
ḡJ



−∆

0
J


± 1

2
√
ḡ




0√
ḡ − gT

0


, (31)

where the signs of the first and the second terms can be
chosen independently, and we defined

gT ≡
J2 + ∆2

J
. (32)

These additional fixed points with sy 6= 0 are valid fixed
points only when ḡ − gT > 0. Thus, the instanta-
neous model behaves qualitatively differently depending
on whether ḡ < gT or ḡ > gT, where the former has
only two fixed points but the latter has six fixed points.
We will refer to the case ḡ < gT as the weak interaction
regime and ḡ > gT as the strong interaction regime.

These fixed points with sy 6= 0 in the phase-space de-
scription have the following expressions:

(
z̃
ϕ

)
=




±
√
J/ḡ

± arccos

(
∓∆√
J(ḡ−J)

)

, (33)

where the sign of z̃ and the sign inside arccos should be
chosen to be opposite, but the sign in front of arccos is
independent of the other signs.

We now consider the weak interaction regime ḡ < gT

and the strong interaction regime ḡ > gT in turn to in-
spect the nature of fixed points and dynamics around
them.

1. Weak interaction regime

In the weak interaction regime ḡ < gT, the instan-
taneous HN dimer model has two fixed points given by
Eq. (29). These fixed points satisfy ṅ = 0, indicating
that the total number does not change in time. Thus,
the weak interaction regime is a direct analog of the PT -
symmetric regime in the linear HN dimer model.

We find that the eigenvalues of the Jacobian of the
two fixed points in phase space description are λ± =

±2
√
J(ḡ − gT) for both fixed points. Since ḡ < gT in the

weak interaction regime, λ± are complex conjugate pairs,
indicating that these fixed points serve as the center of
oscillation in the phase space of {z̄, ϕ}, analogous to the
fixed points in the PT -symmetric regime in the linear
HN dimer model.

In Fig. 5, we plot numerically obtained dynamics of
the weak interaction regime. All orbits are closed as ex-
pected.
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2. Strong interaction regime

The strong interaction regime ḡ > gT of the instan-
taneous HN dimer model behaves differently from the
PT -broken regime of the linear HN dimer model. First
of all, the two fixed points present in the weak interaction
regime ḡ < gT remain as fixed points in the strong inter-
action regime. The eigenvalues of the Jacobian of these
two fixed points are λ± = ±2

√
J(ḡ − gT), which are now

both real and have opposite signs; this indicates that the
fixed points now act as saddle points of dynamics in the
{z̃, ϕ} phase space.

In addition to the two fixed points inherited from the
weak interaction regime, there are four additional fixed
points in the strong interaction regime. Calculating the
eigenvalues of the Jacobian of these four fixed points, we
can group them into two categories.

Among the four additional fixed points, the eigenvalues

FIG. 5. Numerically obtained dynamics for the instantaneous
HN dimer model in the weak interaction regime ḡ = 0.4J < gT
with ∆ = 0.1J . The panels on the right show the dynamics
on the Bloch sphere (top) and in the phase space (bottom)
for a set of different initial conditions, as highlighted by the
empty markers. The filled triangles in the bottom right plot
represent the two fixed points which behave as centers. Rabi-
like oscillations are clearly seen as is the shift of the fixed-point
centers away from z̃ = 0, reflecting the interplay of the non-
reciprocal couplings with the on-site energy difference. The
behavior of population in time for each of the initial conditions
highlighted is plotted in the left panels.

of the Jacobian of the following two fixed points

(
z̃
ϕ

)
=




√
J/ḡ

arccos

(
−∆√
J(ḡ−J)

)

,




−
√
J/ḡ

− arccos

(
∆√

J(ḡ−J)

)

,

(34)

are in both cases

λ = 2
√
J(ḡ − gT) and 4

√
J(ḡ − gT), (35)

which are both positive in the strong interaction regime
ḡ > gT. Therefore, these two fixed points are unstable
fixed points which act as sources of dynamics.

On the other hand, the eigenvalues of the Jacobian of
the other two fixed points

(
z̃
ϕ

)
=




√
J/ḡ

− arccos

(
−∆√
J(ḡ−J)

)

,




−
√
J/ḡ

arccos

(
∆√

J(ḡ−J)

)

,

(36)

are both

λ = −2
√
J(ḡ − gT) and − 4

√
J(ḡ − gT), (37)

which are both negative, indicating that these two fixed
points are stable fixed points that act as sinks of dy-
namics. This behavior is confirmed by the numerically
obtained dynamics as plotted in Fig. 6.

Calculating the time dependence of the total popula-
tion at these four fixed points, we find

ṅ = ±2n
√
J(ḡ − gT), (38)

where the positive (negative) sign corresponds to the two
stable (unstable) fixed points. This indicates that the
total population of the stable fixed points exponentially
increases, whereas that of the unstable fixed points expo-
nentially decreases; such behavior is consistent with these
stable points acting as sinks and sources of dynamics.

For all these four fixed points, the population imbal-
ance is |z̄| =

√
J/ḡ, which indicates that |z̄| → 0 as

ḡ → ∞. The non-Hermitian localization on one of the
two sites becomes smaller and smaller as the interac-
tion ḡ becomes larger, which is in stark contrast to the
self-trapping phenomenon known in two-site nonlinear
Josephson model where the localization becomes stronger
as the interaction becomes larger.

3. Transition between the weak and strong regimes

We have just seen that, as the interaction ḡ increases
and crosses gT, the number of fixed points changes from
two to six. We now examine this transition.

We first note that such an increase of the number of
fixed points beyond two is not possible with any linear
dimer model, in which the fixed points are determined by
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FIG. 6. Numerically obtained dynamics of the instantaneous HN dimer model in the strong interaction regime with ḡ = 1.1 J >
gT (a) and ḡ = 1.4 J (b), both with ∆ = 0.1 J . In each case, we plot the behavior of the population over time (a-I and b-I ), the
trajectories on the normalized Bloch sphere (a-II and b-II ) and the trajectories in the phase space of {z̃, ϕ} (a-III and b-III ).
Plots in the phase space and the Bloch sphere are for different initial conditions (marked with open markers); the evolution of
the population over time for each initial condition is plotted in a-I and b-I using the corresponding marker. The saddle (blue
triangles), stable (orange squares) and unstable (green diamonds) fixed points are highlighted. Note the trajectories converge
towards the stable fixed points, after being slightly bent by the presence of saddle points. As expected, the population diverges
quickly as a stable point is approached.

(at most) two eigenstates of the two-by-two Hamiltonian.
Therefore, the appearance of six fixed points in the strong
regime is an intrinsically nonlinear phenomenon.

Approaching the transition point from the weak
regime, each of the two fixed points split into three as one
crosses the transition point ḡ = gT. During this process,
a fixed point on the weak interaction side, which is a cen-
ter of dynamics, turns into three fixed points which are a
saddle point, a stable fixed point, and an unstable fixed
point. This process is consistent with the Poincaré-Hopf
index theorem as we shall explain. On a two-dimensional
parameter space, such as the phase space {z̄, ϕ} and the
surface of the Bloch sphere, the tangent vectors of the
dynamics define a vector field. Such a vector field can
have singularities, corresponding to the fixed points. For
each of these singularities, a topological index called the
Poincaré index can be defined, which assigns the value
of −1 for saddle points and +1 for centers, stable, and
unstable fixed points. The index theorem states that the
sum of the Poincaré indices on the two-dimensional pa-
rameter space should be equal to the Euler characteristics
of the parameter space [46, 77]. The Euler characteris-
tics of our parameter space, which is a two-dimensional
sphere as evident from the Bloch sphere description, is
+2. In the weak interaction regime, we have two centers
as singularities, and thus the sum of the Poincaré indices
is +2, which is equal to the Euler characteristics as ex-

pected. As one crosses the transition point, a center,
which has the Poincaré index of +1, turns into a sad-
dle point, a stable point, and an unstable point, whose
Poincaré indices are −1, +1, and +1, respectively, con-
serving the sum of the Poincaré indices. Thus the strong
interaction regime also satisfies the index theorem.

VI. NONLINEAR HN DIMER MODEL

With the understanding of the instantaneous HN
dimer model, we can now understand dynamics of the
nonlinear HN dimer model, which is the model experi-
mentally implemented.

We rewrite the equations of motion for the nonlinear
HN dimer model Eq. (3),

i
∂

∂t

(
α1

α2

)
=

(
ω −∆ −J − gz
−J + gz ω + ∆

)(
α1

α2

)
. (39)

The dynamical equations in the phase-space are

ṅ = −2 gn2 z̃
√

1− z̃2 sinϕ, (40)

˙̃z = 2 (gn z̃2 − J)
√

1− z̃2 sinϕ, (41)

ϕ̇ = −2 ∆ + 2
J − gn√

1− z̃2
z̃ cosϕ. (42)
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and in terms of the Bloch sphere variables, the dynamics
obey

ṅ = −8gn2 sysz, (43)

ṡx = 2∆sy + 8gn sxsysz, (44)

ṡy = −2∆sx + 2(J − gn)sz + 8gn s2
ysz, (45)

ṡz = −2Jsy + 8gn sys
2
z. (46)

We see that the time dependence of z̃, ϕ and sx, sy, sz
depend explicitly on n, implying that we can no longer
use the two-dimensional phase space {z̃, ϕ} and the sur-
face of the Bloch sphere {sx, sy, sz} as a parameter space
within which the equations of motion are closed. Instead,
we should consider the time dependence of n together
with the other variables to understand the dynamics.
This explicit n dependence in the equations of motion
makes it difficult to analytically approach the dynamics
of the nonlinear HN dimer model when the interaction
is strong. However, as we shall see, the theory of the
instantaneous HN dimer model can provide a good qual-
itative understanding of what happens in the nonlinear
HN dimer model.

A. Dynamics of the nonlinear HN dimer model

We first look for fixed points of the dynamics. Since
replacing ḡ in the instantaneous HN dimer model by gn
recovers the equations of motion of the nonlinear HN
dimer model, the two fixed points in the weak interaction
regime and the six fixed points in the strong interaction
regime of the instantaneous HN dimer model still satisfy
˙̃z = ϕ̇ = 0 and ṡx = ṡy = ṡz = 0. However, these
points are not truly fixed anymore in the parameter space
because n can depend on time, and the time dependence
of n itself affects the position of the fixed points in the
parameter space.

We first note that the two fixed points satisfying sy = 0
are still fixed in the parameter space even in the nonlin-
ear HN dimer model because they obey ṅ = 0, namely
n is time independent. The additional four fixed points
are not fixed anymore in the parameter space because n
changes in time. The transition between the weak and
strong interaction regimes is clear in the case of the in-
stantaneous HN dimer model, given by ḡ = gT. On the
other hand, in the case of the nonlinear HN dimer model,
there appears also a distinctive intermediate interaction
regime between the weak and the strong regimes as we
shall explain now.

In the nonlinear HN dimer model, one measure of the
interaction strength is gn0, where n0 is the total popu-
lation at the initial time. Replacing ḡ by gn0, the two
fixed points with sy = 0 of the instantaneous HN dimer
model are still the fixed points in the nonlinear HN dimer
model. If gn0 is small enough compared to gT, the dy-
namics we found for the weak interaction regime of the
instantaneous HN dimer model applies also to the non-
linear HN dimer model. However, one should remember

that, although the total population n does not change
in time exactly at the fixed points, the total population
does change during the periodic Rabi oscillation around
the fixed points. This implies that even though the sys-
tem initially satisfies gn0 < gT, the total population
changes and at some time t we may enter the regime with
gn(t) > gT at which the dynamics should be compared
to the strong interaction regime of the instantaneous HN
dimer model.

We refer to the regime in which gn(t) < gT holds for
any time t ≥ 0 as the weak interaction regime of the non-
linear HN dimer model. In the weak interaction regime,
all the dynamics are described by orbital motion around
the two fixed points which serve as the centers of dynam-
ics.

We refer to the regime in which both gn(t) < gT and
gn(t) > gT happen at some time t ≥ 0 during the evo-
lution as the intermediate interaction regime. In this in-
termediate interaction regime, which is a unique feature
of the nonlinear HN dimer model, there simultaneously
exist two types of orbits: one is a closed orbit similar to
the weak interaction regime, and the other is a diverg-
ing orbit which is reminiscent of the strong interaction
regime of the instantaneous HN dimer model.

We finally refer to the regime in which gn(t) > gT

holds for any time t ≥ 0 as the strong interaction regime,
where the dynamics diverges as in the strong interaction
regime of the instantaneous HN dimer model. A crucial
difference between the strong interaction regime of the
instantaneous HN dimer model and the nonlinear dimer
model is that, in the latter, the source and the sink of
dynamics are no longer fixed points in the space {z̃, ϕ} or
{sx, sy, sz} because of the change of the total population
n.

We now examine these three regimes experimentally,
and compare them to numerical simulations.

B. Experimental results and Numerical simulations

Figure 7 shows the dynamics of the nonlinear HN dimer
model, experimentally and numerically obtained, for dif-
ferent values of gn0. Firstly, panels with gn0 = 0 and
gn0 = 0.4 J correspond to the weak interaction regime.
We observe Rabi-like oscillations, similar to the ones
found in the linear and instantaneous HN dimer mod-
els. Secondly, the panel with gn0 = 1.1J corresponds
to the strong interaction regime, where the population
of the trajectories diverges over time towards either pos-
itive or negative population imbalances, depending on
the initial conditions. Finally, in the intermediate inter-
action regime at gn0 = 0.7J the two behaviors co-exist,
i.e., stable orbits and unstable trajectories are possible,
depending on the initial conditions used, i.e. the initial
phase difference between the two sites. This co-existence
of both regimes is the unique feature of the nonlinear HN
dimer model.

We can further see the unique feature of the nonlinear
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FIG. 7. Comparison between the numerical simulation and the experimental results of dynamics of the nonlinear HN dimer
model, for ∆ = 0.1J , and four distinct values of gn0 in both the unnormalized Bloch-sphere representation (top panels), in
which we plot ns = n(sx, sy, sz)T, and the phase space representation (bottom panels). Numerical results are in solid lines,
whereas experimental data are plotted with (slightly transparent) points, open circles represent the initial conditions. We note
that the points can leave the surface of the Bloch sphere because the distance from the origin reflects the total population n.
Three regimes are identified: for zero or small values of g (two panels on the left), Rabi-like oscillations are observed just like
in Fig. 3. In the opposite limit of very strong interactions (right-most panel), the system tends towards an asymptotic value
of z, either positive or negative. In the intermediate regime, gn0 = 0.7J , the two behaviors coexist, depending on the initial
conditions.

HN dimer model if we examine the dynamics on the nor-
malized Bloch sphere, as shown in the central panel of
Fig. 8. We observe that the trajectories bend in arcs on
the sphere, before eventually converging towards points
on the equator. This behavior arises because instanta-
neously the trajectory is attracted towards the stable
fixed points of the instantaneous HN dimer model for
that particular value of gn → ḡ. However, as n keeps
growing, the coordinates of the fixed points in the in-
stantaneous HN dimer model also keep changing (see,
e.g., Fig. 6), so that the trajectories appear to effectively
“chase down” the stable points by following these arcs.
Indeed, in the limit that n→∞, the coordinates on the
Bloch sphere of the stable fixed points in the instanta-
neous HN dimer model become:



sx
sy
sz


→




0
±1/2

0


, (47)

corresponding to the points of convergence on the equa-
tor of the normalized Bloch sphere in the experimental

model, e.g., as can be seen in the central panel of Fig. 8.
Physically, this corresponds to the modes changing from
being localized primarily on one of the two sites at small
ḡ (and hence small n), to being an equal superposition of
the two sites as ḡ → ∞, as the non-reciprocal coupling
term dominates over all other terms in the Hamiltonian.

Of particular note in Fig. 8, two trajectories starting
close to each other (black points and red points in the top
panels) actually behave very differently: one describes a
closed loop around the center (full blue triangle) and its
population remains finite, although oscillating, whereas
the other about half-way through the loop, diverts and
ends up in the basin of attraction of the stable points
(full orange squares), where the population diverges ex-
ponentially. As in the strong interaction case, note that
the trajectories are bent in arcs to “follow” the always
changing position of the fixed point in the corresponding
instantaneous model.

Another helpful way to visualize this physics is shown
in Fig. 9, where we plot arrows corresponding to the tan-
gent vectors of dynamics on each point of the three di-
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FIG. 8. Numerical dynamics of the population in the phase-space for the nonlinear HN dimer model with g = 0.7J and
∆ = 0.1 J ; initial conditions are chosen so to highlight the different behaviors described in the text. The empty markers in the
phase space plot and Bloch sphere plot (left and central panel) highlight the initial conditions, while different colors are for
trajectories starting from each of the initial conditions; the change of n over time of each set of initial conditions (right panel,
corresponding markers and colors) shows an evident decrease of population in the neighborhood of the unstable points (green
diamonds). As the system evolves, it is then attracted towards the stable points (orange squares) where n grows exponentially.

mensional phase space. The top panels show the change
in behavior of the fixed points on slices of fixed n: as long
as for some time t1, gn(t1) < gT, the former are centers
(top left panel), whereas as soon as for some later time t2
the condition gn(t2) > gT is met, the latter behave like
saddles (see top mid and right panels).

In the intermediate regime, in the case of initial con-
ditions close to ϕ = 0, the system is pushed by the equa-
tions in a closed orbit around the center (top left panel in
Fig. 9) and the population oscillates, as shown in Fig. 5.
If the initial conditions are not sufficiently close to the
fixed point of the blue up-triangle in the top left panel,
while moving around the center, the trajectory ends up
close enough to the basin of repulsion of unstable points
(green diamonds) or to the basin of attraction of the sta-
ble points (orange squares).

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have investigated both theoretically
and experimentally the dynamics of two-site models with
hopping asymmetry. In a linear model where the hopping
asymmetry is externally fixed, we experimentally ob-
served the transition from PT -symmetric to PT -broken
regimes as the hopping asymmetry is increased. While
all the orbits are closed in the PT -symmetric regime,
the population diverges in the PT -broken regime due to
the non-Hermiticity from the hopping asymmetry. In a
nonlinear model where the hopping asymmetry is dynam-
ically induced by population imbalance between the two
sites, we experimentally observed three different regimes
in behavior, depending on the initial coupling strength.
In the weak and strong regimes, we observe stable pop-
ulation oscillations and exponential growth/decay of the
population, respectively, similar to the behavior in the
linear model described above. However, in the inter-

mediate regime, we observe a coexistence of these dy-
namics, meaning that we can tune from stable oscilla-
tions to divergent behavior by simply varying the initial
phase-difference between the two sites. As we explain,
all three different regimes can be understood by study-
ing the emergent fixed points of a closely-related nonlin-
ear model in which the non-reciprocal hopping depends
on the normalized population imbalance between the two
sites.

In the future, this work opens the way towards the
further exploration of non-Hermitian dynamics in more
exotic systems. As demonstrated here and in our pre-
vious works [20], this mechanical platform can be used
to simulate a wide-variety of lattice models, which would
not not easy to realize in other systems. Going further, it
will be interesting to explore, for example, the addition
of other mean-field nonlinear effects [78] as well as ex-
tensions to larger systems, e.g., such as non-Hermitian
three-site trimer models [79–81] or large lattices with
many sites [82], where the interplay of gain and loss with
artificial gauge fields and topological phenomena can also
be explored [83, 84].
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FIG. 9. Plot of slices of the 3D parameter space for the nonlinear HN dimer model when g = 0.7J and ∆ = 0.1J . The top
panels represent bird-eye plots of different slices of constant n values, while the bottom panels represent slices of constant z̃ as
seen from z̃= 0. The centers (blue, up triangles), saddles (blue, down triangles), stable (orange squares) and unstable (green
diamonds) points, are those of the instantaneous HN dimer model when gn→ ḡ. The arrows represent the vector field described
by Eqs. 40 to 42, while their color is representative of the tilt along the n direction: black indicates tilting in the negative
direction, and red indicates the positive tilting.
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Chapter 5

From dimer to trimer

In condensed matter, magnetic fields are responsible for the realization of intriguing phys-

ical phenomena like e.g. the quantum Hall effect [101, 102], the appearance of fractal

energy spectra (Hofstadter’s butterfly) [103] or anyons, quasi-particles with fractional

statistics [104]. Over the decades, there has been a growing interest towards the simula-

tion of such phenomena in charge neutral settings that allow for a fuller exploration of

the physics of charged particles in magnetic fields, for example, without disorder. Such

attempts have been performed using e.g. cold atoms [105], photons [106], or phonons [107].

A minimal model to investigate the physics of magnetic fields is a triangular plaquette,

namely a three-site tight-binding chain with periodic boundary conditions. Notwithstand-

ing this has has long been a configuration of interest [46, 106, 108, 109], to my knowledge

a systematic study of the interplay between interactions and magnetic flux on the dy-

namics of particles in this system has not been performed yet. In this chapter I focus on

this interplay, inspired by the possibility of generating a tunable magnetic field through a

triangular plaquette with on-site interaction using the mechanical metamaterial discussed

already in Section 2.3 and in Appendix B.

The chapter is structured as follows. In Section 5.1 I review the Hamiltonian for a

trimer starting from the generic case of a charged boson hopping on a one-dimensional

chain with periodic boundary conditions. I will then switch to the semiclassical picture,
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and discuss the symmetry properties that I will use to check my numerical results, that

are presented and discussed in Section 5.2. In the last part, Section 5.3, I propose the

implementation of the feedback for generating the Hamiltonian discussed, and investigate

some future research avenues for this ongoing work.

5.1 The trimer model

In this chapter, I will use the same notation as in the previous ones: J will again represent

the hopping energy, U the control parameter of the on-site interaction, and αj the am-

plitude of the wave function on site j. Moreover, as I will keep the “condensate jargon”,

again I will refer to |αj|2 = nj as the population on site j, and talk about single particles

moving around the plaquette; finally, I will take ~=1.

Consider a gas of charged boson hopping on a ring made of M discrete sites (namely

a one-dimensional chain with periodic boundary conditions); assuming a magnetic flux

is pierced through the ring, the quantum system is described by the Hamiltonian (here

~=1):

Ĥ =
M∑

k=1

[
U

2
α̂†kα̂

†
kα̂kα̂k −

J

2
eiφ/N α̂†k+1α̂k + H.c.

]
,

that is the Bose-Hubbard Hamiltonian [106,108–110]. Here α̂k (α̂†k) is the bosonic annihi-

lation (creation) operator, U and J are the interaction strength and the hopping energy,

the index k is considered mod M , and φ is the phase factor acquired by a particle that

winds around the plaquette once and is periodic with period 2π.

Using Heisenberg equations of motion and substituting 〈α̂k〉 and 〈α̂†k〉 with their ex-

pectation values, it is possible to obtain for the considered case of M=3:

iα̇1 = Un1α1 − Jeiφ/3α2 − Je−iφ/3α3,

iα̇2 = Un2α2 − Jeiφ/3α3 − Je−iφ/3α1,

iα̇3 = Un3α3 − Jeiφ/3α1 − Je−iφ/3α2.

(5.1)
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A sketch of the system is shown in the left-hand side panel of Fig. 5.1. As in Section 1.2,

it is possible to cast this system of equations in the Hamiltonian form iα̇ = Hα (note

that here H is not a linear operator anymore), where:

H =




Un1 −Jeiφ/3 −Je−iφ/3

−Je−iφ/3 Un2 −Jeiφ/3

−Jeiφ/3 −Je−iφ/3 Un3




= H†. (5.2)

Note that from now on, when referring to the “Hamiltonian” I will refer to the Hermitian

matrix in Eq. 5.2. In the right-hand side of Fig. 5.1 the energy spectrum of H for the

non-interacting case, U = 0, is plotted as a function of the phase [106]. However, it is

worth emphasizing that as well as the degeneracies at φ = 0, π, the energy levels at phases

φ= π/2 and 3π/2 are equidistant from each other: this will in turn lead to interesting

physical consequences, as I will show in Section 5.2.

Figure 5.1: Left : sketch of the 3-site plaquette. Right : plot of the spectrum of the Hamiltonian
in Eq. 5.2 in the non-interacting case (U=0) as φ (in units of π) changes from 0 to 2. Note the
degeneracies at φ = 0 between the excited states and at φ = π between the ground state and
the first excited state. Note also that at φ=π/2 and 3π/2 the energies are equally spaced.

Looking at the symmetries of the Hamiltonian in Eq. 5.2, the first thing to observe is

that flipping the sign of J is the same as shifting the phase φ→ π+φ. Hence, when looking

at quantities that are related to the population (or its expectation value) we expect to

find results that are symmetric by flipping the sign of the phase, φ. Moreover, changing
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the sign of the interaction, U → −U , corresponds to H(φ) → −H(π + φ), that simply

flips the energy landscape and shifts the phase factor. This means that in order to see

what happens to the system when the magnetic flux pierced is φ and interaction switches

from attractive to repulsive (or vice versa), it is sufficient to look at the results for π+ φ.

These symmetries combined with the literature results in Refs. [46, 106, 108, 109], allow

for checking the numerical results that are presented in the following section.

5.2 Numerical results

The two primary tools of investigation of the results were the Inverse Participation Ratio

(IPR) and the chiral current, that I will describe here in turn. For a normalized N -

component state α = (α1, α2, . . . αN), the IPR as defined in Refs. [111,112] is:

IPR =

∑N
i=1 |αi|4(∑N
i=1 |αi|2

)2 =
N∑

i=1

n2
i ; (5.3)

this constitutes a measure of the localization of the wave packet over the N sites of the

system. Practically speaking if the wave packet is fully localized on a single site it is

straightforward to see that IPR = 1, whereas if on each site the amplitude of the wave

packet is αj = 1/
√
N (equally spread wave packet), IPR = 1/N . As we are dealing with

a trimer, N = 3. In this chapter I will make use of the time average of the inverse

participation ratio, 〈IPR〉, that I define as:

〈IPR〉 =

(
1

T

∫ T

0

IPR dt

)−1
=
〈
n2
1

〉
+
〈
n2
2

〉
+
〈
n2
3

〉
, (5.4)

where 〈•〉 represents the time average of •. As it involves expectation values of the

population, we expect that 〈IPR〉 is symmetric with respect to φ= π, and that flipping

the sign of the interaction results in shifting φ by π.

As for the chiral current Ich, this has been used in Refs. [106, 108, 109] to investigate

the chirality of the system. In the semi-classical case under examination here, it is defined
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as:

Ich =
1

2

N∑

j=1

Ij, Ij = −iJ(eiφ/3a∗jaj+1 − e−iφ/3a∗j+1aj) (5.5)

where again, given the cyclic nature of the system, modulo 3 arithmetic holds when going

3 → 1; the 1/2 factor is to avoid double counting. It is expected that if time reversal

symmetry T is preserved, chiral current yields zero [106]: this is easy to understand, since

T : i→−i. Moreover, we expect this quantity to be anti-symmetric with respect to π

since flipping the sign of J corresponds to shifting φ→π + φ.

Having stated all the symmetries of the system and of the main observables, and

having clarified the parameters of the simulations, we can now look into the outcome

of the numerics. Once initialized on a single site1, α(t = 0) ≡ α0 = (1, 0, 0)T, the wave

function was let to evolve using the system of equations (5.1), for a fixed value of the

interaction strength, U measured in units of J , and a fixed phase φ. The total time of

the simulation was initially set to T =30J , and, since most of the investigated quantities

involve time averages, I also performed longer simulations, T = 80J , in order to check if

anything was being left out by an early stop. As this was not the case, I will only show the

plots for the shorter time simulations unless otherwise stated. In all cases, integration was

performed so that the initial value of the population n(0)=1 did not change throughout

the whole process by more than 1%.

First, I decided to map the parameter space {U, φ} with the averages of the IPR and

the chiral current; the results are shown in Fig. 5.2.

These plots show a number of interesting features that will be analyzed in further

detail later in this section. Focusing on the 〈IPR〉 plot, the first thing to note is the

symmetry with respect to φ= π, as expected from the aforementioned discussion about

the symmetries of the expectation values of the population. In addition to that:

1. for strong interactions, there is a darker area; that means that the system is localized

on a single site, 〈IPR〉≈ 1. This area of the parameter space will be referred to as

1Given the structure of the Hamiltonian, the choice of the initial site should have no influence on the
final result; this is another check for the goodness of the numerics that was not mentioned in the previous
section as it is an obvious one.
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Figure 5.2: Plot of the 〈IPR〉 (left panel) and 〈Ich〉 (right panel) for T = 30J , both of them
showing symmetry (〈IPR〉) and anti-symmetry (〈Ich〉) with respect to φ= π, as expected. In
the 〈IPR〉 plot three regions can be distinguished: I highly localized with small current, II
non-localized with (in general) nonzero current and III highly localized with nonzero current.

Region I.

2. there is a dome shaped area below Region I, where the wave packet on average is

spread over two sites: this is what will be called Region II. Note that at its apex,

at U≈6J and φ=π, the system is highly delocalized;

3. there are two lung-shaped2 regions of localization for the wave packet inside region

II, that extend down to the non-interacting case; this region of the parameter space

is going to be labelled as Region III ;

Similarly, the chiral current shows anti-symmetry with respect to φ=π (namely Ich(φ) =

−Ich(−φ)), as expected. Moreover:

1. at φ=0, π the Hamiltonian is T -symmetric, hence the chiral current is zero;

2. in the non-interacting case, the initial state is an equal superposition of the three

eigenstates of the Hamiltonian, whose chiral currents add up to zero (c.f. Ap-

pendix C), hence the net zero chiral current;

3. In region III the current is close to zero, as expected from a localized wave packet.

2So far this Rorschach test has yield 100% of people seeing this plot agree on the lung shape. Including
my mother who, puzzled, asked whether (and why) I was looking at a chest X-ray.
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In order to better understand the behavior of the system in the three above-mentioned

regions, it is worth looking at the time average of the population on each of the sites,

〈nj〉 , j=1, 2, 3, shown in Fig. 5.3. The first feature that we observe is that the panels for

〈n2〉 and 〈n3〉 look very similar; in fact they are specular, as a signature of chirality. This

is due to the fact that the system of three equations in Eq. 5.1 with the initial condition

(1, 0, 0)T can be cast into a system of two equations [46], in which the two initially-empty

sites behave as a single “pseudo-site”. The combined interpretation of Figs. 5.2 and 5.3

Figure 5.3: Plot of the time average of the population on each site, 〈n1〉 , 〈n2〉 , 〈n3〉 from the
left to the right, respectively, for T = 30J . Note that all the population is, on average, at the
starting site when parameters are in region I (localization regime); there also is a peak of 〈n1〉
around φ = π (as opposed to the valleys in 〈n2〉 and 〈n3〉) showing the dimer-like behavior
described in the text.

will guide now the characterization of the above-mentioned three regions.

5.2.1 Region I

In all the panels in Fig. 5.3, the area of parameter space corresponding to region I stands

out clearly. In fact, there 〈n1〉 ≈ 1 and consequently both 〈n2〉 and 〈n3〉 ≈ 0; combining

this and the fact that the 〈IPR〉 shows a strong localization (namely 〈≈1〉) and the

chiral current is small (〈Ich〉 ≈ 0), allows us to state that in region I self-trapping takes
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place [46], in analogy with what is observed for strong interactions in the dimer case, c.f.

Chapter 1.2. These intuitions on the dynamic behavior of the system in region I can be

Figure 5.4: Plots of the trajectory of the center of mass for values of the parameters picked
in Region I, and specified in each plot. Color represents the value of the current. Note that the
wave packet never leaves the neighborhood of the site on which it is initialized.

verified by looking at plots of the position of the center of mass of the wave packet in

time. Its coordinates can obtained as:

xcm =
1

2
(n3 − n2) ycm =

√
3

2
n1,

and the results are shown in Fig. 5.4. Those plots show a sequence of points (close enough

to look like a continuous line) each representing the instantaneous position of the center of

mass, and color coded according to the value of the current at that specific instant of time:

red means counterclockwise circulation, conversely blue means clockwise circulation. The

closer the points to the center of the plaquette, the more the wave packet is spread over

the three sites; if the center of mass lies on the line connecting two sites, it means that

the wave packet is spread only over those two sites. When parameters are chosen from

region I the center of mass never leaves the neighborhood of the initial site, and the chiral

current oscillates so that it averages to small values, as stated previously.
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5.2.2 Region II

In the plots of Fig. 5.3, regions II and III do not show up as clearly as region I. Furthermore,

the fact that in those areas 〈nj〉 ≈ 1/3 for all the three sites, means that on average the

wave packet visits all the sites for the same amount of time. Moreover, the 〈IPR〉 averages

to 1/2, that is to say the population occupies on average two sites at a time. In order to

better understand what this means, it is worth looking at the plot of the center of mass

in Fig. 5.5.

Figure 5.5: Plots of the trajectory of the center of mass for values of the parameters picked
in Region II, and specified in each plot. Note the Rabi-oscillations and the rotating dimer-like
behavior, with two sites behaving as a single pseudo-site.

In this case, the center of mass experiences a dimer-like behavior, in which it oscillates

between one site and the other two, that collectively behave as a single pseudo-site.

Moreover, from Fig. 5.5 it is clear that this configuration rotates, that is to say all the

three sites get to cover the role of the fully occupied site. An interesting qualitative

difference between the plots showed in Fig. 5.5 is that for values of the phase φ<π/2, the

wave packet spends less time being spread over the three sites (left panel), whereas for

values of φ>π/2 Rabi-oscillations involve more of such spreading (right panel).

Conversely, at φ=0 and π sites 2 and 3 remain combined and always play the role of

the pseudo-site. Here, we can investigate the behaviour of the system with the help of the

results in Ref. [46]. In this case, the plots of the center of mass trajectories displayed in
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Figure 5.6: Plots of the trajectory of the center of mass for values of the parameters picked
in Region II at φ= 0 (top row) and φ= π (bottom row) at different values of the interaction
specified in each plot. As the system is T -symmetric, current is zero (hence the color does not
change). Note that the system behaves as if it was a dimer due to the symmetry of the equations.

Fig. 5.6, exhibit the above-mentioned dimer-like behavior: the system is either localized

on a single site, or it is equally spread over the other two, undergoing Rabi-like oscillations;

moreover, note that since at φ= 0, π, the Hamiltonian is T -symmetric, the net current

is zero. It is interesting to note that as in this regime the system behaves like a dimer,

for stronger interactions it shows a transition from Rabi-like oscillations to self-trapping,

as also described in Ref. [46]. There, the authors investigate the transition from Rabi-

like oscillations to self-trapping solving the system in Eq. 5.1 exactly. This is done by

considering the fact that the second and third equations of the system (5.1) are identical,

and with the same initial conditions. In Ref. [46], the authors obtain for the trimer case
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that the transition from Rabi-like oscillations to self-trapping behaves in two different

ways depending on the mutual sign of U and J , as also shown in Fig. 5.7. If both U and

Figure 5.7: Plot of the average value of the population on the starting site as a function of the
interaction strength, for different values of φ (color scale) from 0 (darker) to π (lighter); lines
are a guide to the eye. The behavior for φ=0, π is qualitatively explained in the main text. The
difference in the value of 〈n1〉 for U=0 is explained in Appendix C.

J have the same sign, there is a sharp transition to the self-trapping regime as U grows

larger, at U=6J ; otherwise, the transition is smooth. Note that in this case the transition

happens at a much higher value of the interaction strength than the dimer case. This

means that, in order to see an abrupt transition to localization in a three-site plaquette,

not only one has to choose attractive interactions, but it also has to be much stronger

than the dimer case [46]. In Fig. 5.7 the ratio U/J shows this change of sign at φ=π; this

can be obtained looking at the Hamiltonian in Eq. 5.2, and considering that it is periodic,

H(φ)=H(φ+ 2π), so that:

−Je±iπ/3 =−Je±iπ=J.

Finally, note that in Fig. 5.7 also values of φ between 0 and π are considered. Note that

for these values of the phase pierced through the plaquette, the average of the population

on the initial site has an interesting behavior that might be worth investigating.
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5.2.3 Region III

Let us finally turn to region III. So far we have found that region I and II of parameter

space display a behavior that we have discussed also in the dimer case, namely Rabi-like

oscillations and self-trapping. These regimes are characterized by weak localization and

non-zero current, and strong localization with small current respectively. In the plots

of Fig. 5.2, on the other hand, region III stands out as a region where there is both

strong localization, and a non-zero current. As we are investigating a system of non-

linear Schrödinger equations a natural suspicion is that the wave packet is behaving like

a soliton: a localized wave packet that circulates around the plaquette [108,109].

Solitons are usually described as waves that propagate at a constant velocity preserving

their shape [113]. These properties, due to the mutual cancellation of non-linearity and

dispersion effects [113], are actually one of the reasons why solitons have attracted the

interest of scientists also in view of possible applications, as Refs. [114,115] show.

Looking at the plot of the trajectory of the center of mass in Fig. 5.8 it is clear that,

independently of the value of the interaction strength, the trajectory of the center of mass

lies on an (almost) straight line connecting two sites. This means that the transfer of the

population from one site to the other happens in a direct way, i.e. the whole population

(or at least a large part of it) moves from one site to the other without going through the

third site. Note that in the left panel of Fig. 5.8, although the wave packet is localized

and winds around the plaquette, in this case one cannot talk about a soliton, since that

panel represents the non-interacting regime. Moreover, notwithstanding the net current is

zero, the winding is evident. I suspect that what happens is the following: as analytically

proved in Appendix C, in the non-interacting regime, the initial state is obtained as an

equal superposition of the three eigenstates, whose characteristic currents add up to zero,

c.f. Fig. C.2. As a consequence, the eigenstate with the largest current associated is

the one contributing to the circulation of the center of mass, whereas the remaining two

contribute to the net zero current.

This circulation of the wave packet inside the plaquette suggests that the winding of
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Figure 5.8: Plot of the trajectory of the center of mass for different sets of values within region
I, specified in each plot. Color represents the value of the current. The center of mass moving
on a straight line from one site to the other means direct population transfer from one site to
the other, like a soliton on a ring.

the center of mass around the center of the plaquette (that represents the point at which

n1 = n2 = n3) can be useful to characterize this region. In the frame of reference whose

origin lies at the center of the plaquette, the coordinates of the center of mass are (x, y);

as we are interested in the winding, it is convenient to consider the polar coordinates in

this frame of reference, so that x=r cos θ and y=r sin θ, where r is the distance from the

center and θ the polar angle. We now consider the winding given by:

wcom =

[
1

2π

∫ T

0

dθ

dt
dt

]
, (5.6)

where [•] denotes the integer part of • and θ= atan(y/x). Taking the derivative of the

polar angle leads to θ̇=(xẏ− ẋy)/(x2 +y2). Discretizing this quantity means that at each

step labelled by (n), the angle θ changes by an amount:

∆θ(n) = cos θ(n)(sin θ(n+1) − sinθ(n))− (cos θ(n+1) − cos θ(n)) sin θ(n)

= cos θ(n) sin θ(n+1) − sin θ(n) cos θ(n+1)

= sin
(
θ(n+1) − θ(n)

)
.

A sketch of both the frame of reference of the plaquette and the resulting winding around
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its center are shown in Fig. 5.9

Figure 5.9: Left: Cartoon of the frame of reference with the origin in the center of the
plaquette. Right: Plot of the winding of the trajectory of the center of mass around the center
of the plaquette. It characterizes very well the regime of direct population transfer in region III.

In this section, I have showed how to characterize the three regions of parameter space

using the 〈IPR〉 , and the winding around the center of mass of the plaquette. In the next

one, I will explain how such a model could be obtained using coupled harmonic oscillators.

5.3 Experimental realization and future work

In this final chapter, I presented a minimal model for the exploration of the interplay

between interactions and synthetic magnetic fields pierced through a plaquette. With the

help of known results from the literature, I set up numerical simulations that yield the

known results from Refs. [46,106,108,109], and then investigated so-far unexplored regions

of the parameter space. I found that three regimes can be spotted, two of them having

an analogy with the dimer case: in region I the time average of the IPR yields a value

close to 1, and the chiral current yields small values, meaning that the wave packet is

self-trapped in the initial state. In region II the system tends to be more spread, as 〈IPR〉

lies around 1/2; in this case I considered the possibility of having the system behaving as

a dimer in which two sites behave collectively as one, also due to the symmetries of the
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system whose equations can be reduced to the equations for a dimer [46]. This behavior

reminds us of the Rabi-like oscillations reviewed in Section 1.2. Finally, in region III the

wave packet has a soliton-like behavior, as it looks very well localized on a single site

while winding around the plaquette. It is, in fact, the winding of the center of mass of

the wave packet around the center of the plaquette that characterizes nicely this region

of parameter space, c.f. Fig. 5.9.

Clearly, in order to prove that it is a soliton, further investigations are needed. One

of the first things to check, would definitely be whether the width of the wave packet

changes during the evolution. If on the one hand some of the results in Refs. [108, 109]

encourage this view, I am puzzled by the fact that the highly localization regime goes

down to the non-interacting regime (c.f. the bottom row of Fig. 5.2). Another thing that

would be worth investigating is the bright spot at (φ, U)≈(π, 6J) in the plot of the 〈IPR〉

where a delocalization peak appears. Finally, it would be of interest investigating the

qualitative difference between the plots in Fig. 5.5 when the parameters have been chosen

right outside of region III, from opposite sides.

These results have to undergo the experimental check. As soon as the third harmonic

oscillator will be in place, the theory developed in Appendix B [21] can be straightfor-

wardly generalized to reproduce this model. In this case, in fact, the feedback that allows

for the simulation of both the complex hopping and the on-site interaction is described

in detail, and in the RWA it yields:

FRWA
kj αj =





√
2ωU |αk|2αk for k = j;

√
2ωJeiφjkαj for k 6= j

where φjk = −φkj = φ, U is the interaction strength and ω the dominant frequency.

However, at the state of the art, the setup in Appendix B [21] probably lacks the necessary

definition to observe all the features of the plot in Fig. 5.2. This is due to unwanted

uncontrolled non-linearities that might add up when the system has to be simulated for

such a long time (the plots presented are obtained for T = 30J). In any case, once this
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issue is tackled, the exploration of the interplay of magnetic field and interactions could

be straightforwardly broadened to larger systems.

96



Chapter 6

Conclusion

In this thesis I have started with a review of the known results for systems described by

non-Hermitian matrices, where it has been observed that these exhibit real spectra under

anti-linear symmetry conditions, the simplest of which to implement is PT -symmetry. I

also reviewed the concept of exceptional points, namely points in parameter space where

the spectral degeneracy is accompanied by a coalescence of the eigenvectors, which is

a characteristic of non-Hermitian Hamiltonians. In contrast to the degeneracy points

for Hermitian Hamiltonians, these behave as imaginary fictitious monopoles generating

a field whose strength grows with the distance. In order to investigate the dynamical

features of non-Hermitian Hamiltonians, I introduced a class of minimal 2-site models,

called dimers, in which non-Hermitianity was introduced by adding on-site gain and loss

and by making the hopping energy asymmetric, in turn. Finally, I introduced the concept

of mechanical metamaterials, a flexible and powerful platform that allowed us to simulate

the dimer models mentioned, and experimentally explore their dynamics.

In the second chapter, considering the dynamics of a non-Hermitian Hamiltonian with

time-dependent parameters, I gave a formulation for the geometric factor γGn and observed

that, as opposed to its Hermitian counterpart, not only it is a complex number, but its

imaginary part is gauge invariant also along open paths in parameter space. I then

focused on PT -symmetric systems in which case the adiabatic theorem holds with the
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same hypotheses as the Hermitian quantum mechanics: away from spectral degeneracies

and for slowly varying Hamiltonians. The consequence of the imaginary part of the

geometric factor is the exponential change of the amplitude of the wave function during

the evolution of the system in time along an open path in parameter space. In order

to probe this result, I considered a non-Hermitian model with balanced on-site gain and

loss, and numerically investigated the results theoretically predicted. This PT -symmetric

model is widely studied in theory and experiments (e.g. in optics and cold atoms setups).

Letting the system evolve in time, numerics verified the theoretical predictions made: the

square modulus of the wave function shows exponential growth while getting closer to

the PT -breaking line and conversely shrinks when moving away from it, also along open

paths. Closing the loop in both clockwise and counterclockwise directions, showed two

features: the exact specular results, firstly, proves that the factor acquired by the system

is actually geometric. Secondly, at the end of the loop, the norm of the system goes back

to its initial value, as a consequence of the fact that the trajectory does not enclose any

region of broken PT -symmetry.

With this outcome in mind, we joined an experimental group working on the real-

ization of a mechanical metamaterial, and proposed the experimental realization of a

PT -symmetric Hamiltonian to investigate the effects of the geometric factor. The experi-

mental platform used is presented in Appendix B, and is made of two harmonic oscillators

coupled only via a contactless feedback; we decided to take advantage of its great tun-

ability and flexibility, and experimentally implemented a less commonly realized two-site

Hamiltonian, namely the Hatano-Nelson dimer. In Chapter 3 I display the results of a real

time measurement of the geometric phase in this non-Hermitian model reproduced using

a mechanical metamaterial in the form of a paper. Once the PT -unbroken region was

identified, we started exploring the dynamics of the energy (a proxy for e.g. the popula-

tion of a mean field Hamiltonian describing Bose-Einstein condensates or for the intensity

of light in a coupled waveguide experiment), and experimentally verified the geometric

nature of γGn by simulating the adiabatic evolution along closed paths in parameter space
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that do not encircle a PT -broken region. Next we introduced a third parameter in the

Hamiltonian, and generated closed paths in the three-dimensional parameter space that

encircled the PT -broken region. In this case, as expected from the theoretical results, the

change in population with respect to its initial value is proportional to the “non-Hermitian

flux” generated by the enclosed PT -broken region. This work paved the way towards the

exploration of the interplay between non-Hermitianity and interactions, that I explored

in Chapter 4.

Also the fourth chapter is presented in the form of a paper, where we reviewed the

known dynamical features of the Hatano-Nelson model, and then introduced asymmetric

interaction-dependent hopping terms, supporting our numerical and theoretical results

with experimental data. In order to gain insight into the interacting Hatano-Nelson model,

we also considered a version of it in which the interactions are normalized. The study

of its fixed points and of their behavior, allowed for an understanding of an intermediate

regime where, depending on the initial conditions, the system showed either stable (with

Rabi-like oscillations) or unstable dynamics (with exponential explosion of the population)

for a given set of parameters. With this work we lay the foundations for exploring more

exotic interactions and systems, using a larger number of harmonic oscillators so that

larger lattices could be explored.

A theoretical study investigating the interplay between interactions and magnetic fields

is the subject of the fifth (and last) chapter of this thesis. There I consider a minimal

model for the exploration of such effects, namely a three-site chain with periodic boundary

conditions. I then consider complex hopping terms such that a particle hopping around

the triangular plaquette acquires a phase factor; to such a model I add on-site interactions,

to explore the combination of these two effects. In order to analyze the results, I used the

Inverse Participation Ratio (IPR), that is a measure of the localization of the wave packet,

and the chiral current, a measure of the chirality of the system. Analyzing the outcome

of the numerical simulations, allowed me to spot three regions of the parameter space.

Further investigations led me to state that in two of them, the dynamics of the trimer
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resembles the behavior of the dimer with self-trapping and the Rabi-like oscillations,

respectively. The third region, where the wave packet is highly localized and shows non-

zero chiral current suggests that the wave packet behaves like a soliton circulating around

the plaquette. Next, I introduced a new quantity, the winding of the center of mass around

the center of the plaquette, that seems to support this intuition, but further analysis is

needed in order to confirm this result. Finally, I obtain a formulation of the feedback to

be generated and applied to a set of three oscillators in order to experimentally realize

this model in the mechanical oscillator discussed, and discuss some future directions for

this project to take in the realm of the simulation of topological phenomena.

This thesis paves the way to a number of interesting future research directions. Looking

at the short time-scale, investigating the interplay of interactions with synthetic magnetic

brought to the observation of a localized wave packet that winds around a plaquette

already looking at a minimal model. It would be interesting looking at the existence of

such a magnetic soliton using other types of interactions, or maybe density dependent

gauges.

Furthermore, the contribution of the non-Hermitian geometric factor and its gauge-

invariance along open paths constitute the first step towards the implementation of this

effect in real life (e.g. sensing), alongside with the vast number of applications of PT -

symmetric Hamiltonians (unidirectional invisibility, anomalous wave transportation and

guiding). Exploring the interplay of PT -symmetry and interactions is definitely tempting,

as PT -symmetric systems are dissipative systems with real spectra and interactions allow

the system to dynamically break the PT -symmetry, or even observing stable nonlinear

modes in the PT -broken regime. Moreover, notwithstanding the mechanical metamaterial

introduced has just seen the light it has already proved its tunability and flexibility in

investigating the parameter space of a non-Hermitian Hamiltonian. As soon as this will be

scaled up in number, it will be interesting to investigate even more exotic interactions like

long distance interactions or density dependent gauges to name a few, together with effects

related to the breakdown of the bulk-boundary correspondence, like the so-called non-
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Hermitian skin effect and other anomalous dynamical features. Such phenomena could

then be brought to a smaller length-scale once lattices of coupled harmonic oscillators are

scaled down in size.
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Appendix A

Hermitian Geometric phase

In this Appendix, I derive a general formulation of the geometric phase in the Hermitian

case, following Refs. [3, 4, 116]. After that I will highlight the parallelism between its

effects and the physics of magnetic fields following Refs. [4, 117].

Consider a system described by the time-dependent Hamiltonian H, which we shall

assume has a non-degenerate energy spectrum at all times. Given the instantaneous

orthonormal eigenbasis at time t, {|φn(t)〉} , the generic state can be written as:

|ψ(t)〉 =
∑

n

an(t) |φn(t)〉 , (A.1)

where the coefficients of the expansion an(t) are to be determined. By direct substitution

of Eq. A.1 into the time-dependent Schrödinger equation i ∂
∂t
|ψ(t)〉 = H |ψ(t)〉, where

~=1, one obtains:

i
∑

n

[
ȧn(t) |φn(t)〉+ an(t)

∂

∂t
|φn(t)〉

]
=
∑

n

an(t)εn(t) |φn(t)〉 . (A.2)
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Projecting this result on 〈φk(t)| and rearranging the terms:

ȧk(t) = −iak(t)εk(t)−
∑

n

an(t) 〈φk(t)|
∂

∂t
|φn(t)〉

= ak(t)

[
−iεk(t)− 〈φk(t)|

∂

∂t
|φk(t)〉

]
−
∑

n6=k

an(t) 〈φk(t)|
∂

∂t
|φn(t)〉 ,

(A.3)

where in the second equation I simply extracted from the sum the term with n=k. Let

us focus on the expectation value in the last term; by taking the time derivative of the

eigenvalue equation, this can be re-written as:

〈φk(t)|
∂

∂t
|φn(t)〉 =

1

εn − εk
〈φk(t)|Ḣ|φn(t)〉 ; (A.4)

this term can be neglected under the hypotheses of the adiabatic theorem, which states

that a system prepared in an eigenstate of a slowly varying Hamiltonian, will remain in

this eigenstate during the time evolution [3, 4, 116]. We then obtain that in this case:

ȧk(t) ≈ −iak(t)εk(t)− ak(t) 〈φk(t)|
∂

∂t
|φk(t)〉 ;

with the (reasonable) initial condition that ak(0) = 1, we can integrate this equation to

obtain:

ak(t) = eiγ
D
k eiγ

G
k ,

where I defined two phases:

γDk = −
∫ t

0

dτ εk(τ), (A.5)

and:

γGk (t) = i

∫ t

0

dτ 〈φk(τ)| ∂
∂τ
|φk(τ)〉 . (A.6)

The quantity in Eq. A.5, is known as dynamic phase (hence the superscript), and it arises

from the time evolution of a state under the operator e−iHt; the other phase factor is a

feature of the time-dependent Hamiltonian that I will investigate now.
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In case the time dependence of the Hamiltonian H takes place via some parameters,

P(t), γGk can be written as:

γGk (t) = i

∫ P (t)

P (0)

dP · 〈φk(P)|∇P|φk(P)〉 , (A.7)

that is a line integral to be performed in parameter space along the path connecting P(0)

and P(t), the initial and final point of the time evolution respectively. Note that the

integrand is gauge dependent: as |φk(P)〉 → eiζ(P) |φk(P)〉, then the integrand is shifted

by −∇Pζ(P). This means that the overall phase γk will be affected by an additional term

ζ(P(0)) − ζ(P(t)). As there is no restriction in the choice of the path, one can always

choose a gauge ζ(P) such that the accumulated phase along the path connecting P(0)

and P(t) is cancelled out.

However, if the evolution takes place on a closed loop in parameter space, C, things

change. In fact, the choice made on the phase of the eigenstates implies that ζ(P) is single-

valued; this in turn means that P(0) and P(T ) (T being the time needed to go around

a loop in parameter space) differ by an integer multiple of 2π, and –more importantly–

this quantity cannot be gauged away [81], hence this is a physical observable. The gauge-

invariant physical quantity

γGk =

∮

C
dP ·Ak(P), Ak(P)

.
= i 〈φk(P)|∇P |φk(P)〉 , (A.8)

is a geometric phase (hence the G in the subscript) as it only depends on the geometry of

the path traced in parameter space, and not on how fast he system evolves [3, 4, 81, 116].

This factor is known as Berry phase, whileAk(P) is called Berry vector potential or Berry

connection [3, 4, 116]. 1 Given the circulation integral, one may well think of applying

Stoke’s theorem in parameter space. If SC is the surface enclosed by the curve C, the

1The geometric phase is also known as Pancharatnam phase, or Pancharatnam-Berry phase. In order
not to displease anyone, I will try and call it geometric phase as much as I can. To my knowledge, this
naming issue does not apply to the Berry vector potential and the Berry connection.
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integral in Eq. A.8 is equivalent to the surface integral of the curl of 〈φk(P)|∇P |φk(P)〉:

∇P×A(P) = i∇P× 〈φk(P)|∇P|φk(P)〉 .

Working component-wise on the k-th band, suppressing the band index for the sake of

notation:

Ωµν(P) =
∂

∂P µ
Aν(P)− ∂

∂P ν
Aµ(P)

= i

[〈
∂φ(P)

∂P µ

∣∣∣∣
∂φ(P)

∂P ν

〉
−
〈
∂φ(P)

∂P ν

∣∣∣∣
∂φ(P)

∂P µ

〉]
.

This quantity is called Berry curvature, and in three dimensions it behaves as if it was

the magnetic field in parameter space (this explains why An is referenced to also as Berry

vector potential).

At this point, it is worth underlining that because of its definition, the integral of the

Berry curvature over a closed manifold is related to the Chern number, which is an integer

topological quantity. As a further proof of this fact, following Ref. [117] consider a closed

path C and a Berry connection A on a closed manifold; then one can arbitrary choose the

orientation of the path of integration C± and as a consequence define the geometric phase

as:

γ± =

∮

C±
dl · Ak =

∫

S±
dS · Ωk,

where S is the surface enclosed by C, and Ωk=∇×Ak where n is the band index. Since

these two phases must be associated to the same state, they must differ by an integer

multiple of 2π:

γ+ = −γ− + 2πν, ν ∈ Z.
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Integrating over the entire manifold means:

∫

Stot
dS · Ωn =

∫

S+
dS · Ωn +

∫

S−
dS · Ωn = 2πν.

Geometric phases naturally appear in a number of problems as a consequence of a

closed loop evolution in the parameter space. In what follows, a simple example of its

role in the measurement of the velocity is briefly presented, but for an extended and more

complete representation of the role of Berry phase in quantum mechanics, please refer to

Ref. [81], that I will follow here.

Let us now relax this condition on the slowly varying Hamiltonian, and look at the first

order corrections to the state ψ(t). This means expecting that the eigenstates are changing

linearly in time (as we are inspecting the first order corrections) as |φn(t)〉 → |φn(t)〉 +

|δn(t)〉; furthermore, we expect corrections to have components along |φm(t)〉 , m 6= n.

Using the perturbed eigenstates as in |ψ(t)〉 =
∑

n an(t)(|φn(t)〉+ |δn(t)〉) in the time-

dependent Schrödinger equation:

i~
[(
− i
~
εn(t)− 〈φn(t)| ∂

∂t
|φn(t)〉

)
(|φn(t)〉+ |δn(t)〉) +

∂

∂t
(|φn(t)〉+ |δn(t)〉)

]
=

εn(t) |φn(t)〉+H |δn(t)〉 .

By rearranging the terms and considering that 〈φn(t)| ∂
∂t
|φn(t)〉 |δn(t)〉 and ∂t |δn(t)〉 are

second order corrections, this equation becomes:

i~
[
− i
~
εn(t) |δn(t)〉 − 〈φn(t)| ∂

∂t
|φn(t)〉 |φn(t)〉+

∂

∂t
|φn(t)〉

]
= H |δn(t)〉

i~
[
∂

∂t
− 〈φn(t)| ∂

∂t
|φn(t)〉

]
|φn(t)〉 = (H− εn(t)) |δn(t)〉 ;
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using the fact that i∂t=H and projecting on 〈φm(t)|, with m 6=n, we finally obtain:

i 〈φm(t)| ∂
∂t
|φn(t)〉 = (εm(t)− εn(t)) 〈φm(t)|δn(t)〉

|δn(t)〉 = i
∑

m 6=n

〈φm(t)| ∂
∂t
|φn(t)〉

εm(t)− εn(t)
|φm(t)〉 , (A.9)

so that to the first order, the initial state can be written as:

|ψ(t)〉 = eiγ
D
n eiγ

G
n

[
|φn(t)〉 − i

∑

k 6=n

〈φk(t)|∂t|φm(t)〉
En − Ek

|φk(t)〉
]
. (A.10)

Let us consider a crystal, so that the states are Bloch states that are parametrized

by the wave vector, q. Given the velocity operator defined as ~ 〈ṙ〉 = i 〈[H, r]〉, in the

parameter space (q, t) we have:

~ṙ(q) = i eiq·r[H, r]e−iq·r ≡ ∂H
∂q

,

where the explicit dependence of H on q and t is suppressed for the sake of notation.

Taking the expectation value of this quantity with respect to the state in Eq. A.10, and

using the Schrödinger equation to obtain that 〈φn|∂qH|φm〉 = (εn − εm) 〈∂qφn|φm〉, one

finds for the n-th energy level:

~vn(q) =
∂En(q)

∂q
− i
[〈

∂φn
∂q

∣∣∣∣
∂φn
∂t

〉
−
〈
∂φn
∂t

∣∣∣∣
∂φn
∂q

〉]
≡ ∂En(q)

∂q
− ~Ωn

qt. (A.11)

This result says that velocity is affected by an extra term, called anomalous velocity, and

that this term is related to the geometric phase Ωqt; moreover, if Eq. A.11 is integrated

over the entire Brillouin zone, the second term is the only one contributing.
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Geometric phase and magnetic fields

In the final part of this appendix, I will review an explicative example connecting the

physics of geometric phase with the physics of magnetic fields [4,117,118]. This connection

can already be spotted from the definition of the Berry curvature, Ω = ∇ × A, that

resembles the way the magnetic field is defined as the curl of the magnetic vector potential.

Consider a particle with spin 1/2 in a region of space permeated by a magnetic field,

B, that is slowly rotating with frequency ω. If the rotation takes place around the z axis,

the magnetic field can be written explicitly component-wise as:

B(t) = B




sin θ cosωt

sin θ sinωt

cos θ



,

where θ is the polar angle and B the magnitude of the field.

Assuming that the rotation of the magnetic field is slow enough that the spin of the

particle follows the direction of B, the Hamiltonian can be written as H=µB · σ, where

σ = (σx, σy, σz)
T is the spin angular momentum operator and µ = ~e/2m is the Bohr

magneton [4, 117]. Explicitly:

H(t) = µB




cos θ e−iωt sin θ

e−iωt sin θ − cos θ


 ,

with eigenvalues ε± = ±µB for the spin up and down configurations respectively, and

associated eigenstates:

|φ−(t)〉 =



e−iωt sin θ

2

− cos θ
2


 , |φ+(t)〉 =



e−iωt cos θ

2

sin θ
2


 . (A.12)

We can now combine these with the definition of the Berry connection in Eq. A.8 to

obtain the geometric phase, observing that the only time dependent parameter in the
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Hamiltonian is the azimuthal angle ϕ≡ωt. The Berry connection only has one non-zero

component, namely:

A− =
1

B sin θ
sin2 θ

2
ϕ̂, A+ =

1

B sin θ
cos2

θ

2
ϕ̂;

and its curl (evaluated in spherical polar coordinates) is directed along the direction of

the magnetic field:

Ω± = ∓ 1

2B2
B̂. (A.13)

Finally, we obtain from Eq. A.8:

γ±(C) =

∫ 2π

0

B sin θ dϕ A± = −π(1∓ cos θ) = ∓1

2
ΩS(C),

where the last equation of this chain expresses the geometric phase in terms of the solid

angle ΩS subtended by the closed trajectory C, modulo 2π.

The experimental verification of this theoretical prediction of Sir M. V. Berry [37] arrived

by two distinct research groups working at the same facility in Grenoble, c.f. Refs. [119,

120].

Let us now look at this solution under a different point of view, and in order to do so,

let us start noticing that the Hamiltonian is fully described by three parameters, namely

(B, θ, ϕ(t)). It then seems legitimate to think of the parameter space as the surface of a

sphere of radius B. Furthermore, the definition of the Berry curvature Ω± in Eq. A.13

looks exactly like the magnetic field generated by a fictitious magnetic monopole of charge

±1/2 placed at the origin of this sphere. Finally, note that the origin of the sphere is

where B=0, that in turn means where ε−=ε+ i.e. the states are degenerate.

It is now clear the parallelism between the physics described so far and the undergrad-

uate theory on magnetic fields: the point where the eigenstates become degenerate acts as

a monopole of charge 1/2 that generates a field described by the Berry curvature, that is

obtained as the curl of the Berry connection, its vector potential, Ω=∇×A. Evaluating
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the flux of this field through a closed surface of contour C generates the geometric phase,

γ.

In the work presented in Chapter 3, we observed an analogous result for a non-Hermitian

Hamiltonian. In fact, also in the case of non-Hermitian geometric phase it is possible to

draw this parallelism [39], in which case the monopole is located at the exceptional point

(that differ slightly from the degeneracy points, c.f. Section 1.1.3), its charge is imaginary

and generates a field that grows with the distance from the monopole.
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Appendix B

Coupled Harmonic oscillators

In co-authoring this paper, together with Hannah Price and Tomoki Ozawa we took

care of the “Mapping and Theory Background” section; Ritika Anandwade, Yaashnaa

Singhal, Sai Naga Manoj Paladugu, Michael Castle, Shraddha Agrawal, Ellen Carlson,

Cait Battle-McDonald and Bryce Gadway were concerned with the experiment realization,

the experimental results and the main writing.
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Synthetic Mechanical Lattices with Synthetic Interactions
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Metamaterials based on mechanical elements have been developed over the past decade as a pow-
erful platform for exploring analogs of electron transport in exotic regimes that are hard to produce
in real materials. In addition to enabling new physics explorations, such developments promise to
advance the control over acoustic and mechanical metamaterials, and consequently to enable new
capabilities for controlling the transport of sound and energy. Here, we demonstrate the building
blocks of highly tunable mechanical metamaterials based on real-time measurement and feedback
of modular mechanical elements. We experimentally engineer synthetic lattice Hamiltonians de-
scribing the transport of mechanical energy (phonons) in our mechanical system, with control over
local site energies and loss and gain as well as control over the complex hopping between oscillators,
including a natural extension to non-reciprocal hopping. Beyond linear terms, we experimentally
demonstrate how this measurement-based feedback approach opens the window to independently
introducing nonlinear interaction terms. Looking forward, synthetic mechanical lattices open the
door to exploring phenomena related to topology, non-Hermiticity, and nonlinear dynamics in non-
standard geometries, higher dimensions, and with novel multi-body interactions.

Networks of coupled harmonic oscillators have long
served as a foundational model for understanding ther-
mal transport in solids [1], and over the past decade have
additionally become a powerful theoretical and experi-
mental platform for exploring topology [2] and its con-
nections to mechanical structures [3–5]. While experi-
ments based on physically coupled oscillators offer pow-
erful capabilities for the realization of artificial materi-
als and the visualization of novel transport phenomena
therein [6–18], such physical coupling terms present natu-
ral limitations on the Hamiltonians that may be directly
engineered. For example, Newton’s third law dictates
that the direct hopping terms should obey reciprocity,
with forward and backward tunneling pathways having
equal amplitudes. The position-dependence of spring
forces further implies the restriction to realizing only
time-reversal invariant hopping Hamiltonians.

While a number of clever approaches have been pro-
posed [19–22] and implemented [6, 7] to circumvent such
limitations while maintaining physical coupling between
oscillators, one may seek alternative approaches that
avoid direct physical connections altogether. In the con-
text of classical electrical or mechanical metamaterials,
where mode occupations are on order of the Avogadro

∗ These authors contributed equally to this work.
† tomoki.ozawa.d8@tohoku.ac.jp
‡ H.Price.2@bham.ac.uk
§ bgadway@illinois.edu

number, one can naturally think about utilizing measure-
ments of the oscillators’ properties - e.g., center-of-mass
positions and momenta - as a resource for Hamiltonian
engineering, with little concern for the disturbance of the
natural system dynamics. Indeed, the natural suitability
of classical metamaterials for measurement-based feed-
back has in recent years led to proposals for the realiza-
tion of designer non-Newtonian systems [23], and even
first demonstrations of the engineering of non-reciprocity
in robotic mechanical metamaterials of physically cou-
pled rotors [24, 25]. Here, through the measurement of
and feedback on a system of otherwise physically dis-
connected mechanical oscillators, we demonstrate a gen-
eral approach to engineering nonlinear synthetic lattice
Hamiltonians. We experimentally demonstrate the en-
gineering of complex and non-reciprocal hopping terms,
complex local site energies, and synthetic quartic nonlin-
earities, exploring the use of feedback-based control to
drive both PT -symmetry breaking and Josephson self-
trapping phase transitions in a synthetic double-well.
The extension to larger, many-site arrays of synthetically
coupled oscillators, incorporating even more exotic syn-
thetic nonlinearities, will enable explorations of novel lat-
tice Hamiltonians with tailored mean-field interactions.

This paper is organized as follows. Section I describes
our experimental system and presents an informal dis-
cussion of our feedback-based approach to Hamiltonian
engineering. In Sec. II, we provide the formal theoretical
framework underlying this approach to engineering effec-
tive tight-binding models for mechanical oscillators syn-
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thetically coupled by measurement-based feedback. In
Sec. III, we provide several examples for the engineering
of specific Hamiltonian terms, such as local site ener-
gies (real and imaginary) and inter-site hopping terms
(complex and non-reciprocal), as well as nonlinear inter-
action terms. For each example, we provide a theoretical
derivation for the required feedback forces, as well as an
experimental demonstration of the implementation. We
summarize our results in Sec. IV.

I. DESCRIPTION OF THE SYSTEM

As depicted in Fig. 1(a,b), our prototype for a “lattice
of synthetically coupled oscillators” consists of modular,
large-scale (kg-scale mass) mechanical oscillators. In the
absence of applied feedback forces, these oscillators are
characterized by nearly identical natural oscillation fre-
quencies f0 ∼ 3.05 Hz and quality factors Q ∼ 1000.

An analog accelerometer (EVAL-ADXL203) is fixed to
each oscillator, and we acquire real-time measurements
of acceleration a(t) by sending the signals to a common
computer. By taking the numerical derivative of the ac-
quired signal, we additionally acquire real-time measure-
ments of the oscillators’ jerk j(t) ≡ ∂a(t)/∂t. As the
signals come from harmonic oscillators with roughly con-
stant frequencies, we can associate the measured acceler-
ation and jerk signals as proxies for the oscillator position
x(t) and momentum p(t) signals, respectively (as the sets
of variables {a, x} and {j, p} have proportional relation-
ships, as we explain in more detail later). We hereafter
refer to the input signals as position x̃ and momentum p̃.
In experiment, we normalize the x̃ and p̃ signals to the
same dimensionless amplitude, reflecting the equiparti-
tion of kinetic and potential energy.

Our “synthetic mechanical lattice” approach imple-
ments an effective Hamiltonian H = H + H0 in the os-
cillator array, where the portion H can be considered
as a perturbation to the bare Hamiltonian H0 of the
uncoupled, identical oscillators. The modified part of
the Hamiltonian, H (the terms of which have frequency
scales � f0), describes the transport of mechanical en-
ergy (phonons) between the oscillators, small shifts to the
oscillator frequencies, and any engineered nonlinearities.
Roughly speaking, to implement H we apply individual
feedback forces to the oscillators that reflect the relation-
ship Fi ∼ −∂H/∂x̃i (cf. Fig. 1(a)). These forces can in
principle have almost any dependence on the positions x̃i
and momenta p̃i, including higher powers thereof, open-
ing up new possibilities for Hamiltonian engineering [26].
To note, we will develop the framework for this feedback-
based control more formally in Sec. II.

We implement these feedback forces magnetically,
avoiding any added mechanical contacts. Each oscilla-
tor has a dipole magnet attached to a central, cylindrical
shaft. The dipole magnet is embedded in a wound coil
(gradient solenoid [27], with a higher winding density at
its base than at its top). We control the current (be-

tween 0 and 2 A) in the coil, which produces an axial
magnetic field gradient that in turn creates a force on
the oscillator. While there is a fixed direction of current
flow, we operate with a nominal offset gradient and con-
trol the variations about this offset, thus achieving an
effective bi-directional (positive and negative along the
axial direction) control of forces.

Figure 1(c) displays the typical real-time measure-
ments acquired for one example experiment, which ex-
plores a self-trapped mode in a nonlinear double-well
(discussed further later on, in the context of Fig. 7).
The measured x̃ (panel i) and p̃ (panel ii) signals for
oscillators 1 (red) and 2 (blue) are shown in panels i
and ii, including zoomed in views over several seconds
showing the intra-envelope dynamics. From these pri-
mary measurements, we construct a proxy for the local
mechanical energy Ei = (x̃2i + p̃2i )/2, as shown in panel
iii. The local mechanical energy plays a role analogous
to the local particle probability density |ψi|2 of a wave
function ψ under the evolution of the implemented tight-
binding Hamiltonian. One may also extract the local
phase φi = arg(x̃i + ip̃i) at each oscillator, associated
with arg(ψi) of the corresponding evolving wave func-
tion. To note, the initial linear and quadratic rise of the
signals in panels i/ii and iii, respectively, relate to an
initial preparation step of 10 s during which a sinusoidal
force prepares the respective energy and phases of the
two oscillators. In panels iv and v, we plot further de-
rived experimental quantities relevant to the dynamics in
this case of a tunnel-coupled double-well with nonlinear
interactions. Panel iv depicts the normalized energy im-
balance z = (E1−E2)/(E1 +E2) and panel v depicts the
relative oscillator phase ∆φ = φ1 − φ2. The trajectories
of z and ∆φ reflect a self-trapped mode with a trapped
population imbalance but a running relative phase.

II. MAPPING AND THEORY BACKGROUND

The theoretical basis for our synthetic mechanical
metamaterial is a mapping which can be made in certain
limits from Newton’s equations of motion to the Heisen-
berg equations for a tight-binding quantum Hamiltonian.
Such an approach has previously been used, for exam-
ple, to propose how to simulate a Peierls hopping phase
and an effective Harper-Hofstadter model with time-
modulated classical coupled harmonic oscillators [19, 20].
In this section, we show how this approach can be ap-
plied to implement a wide variety of Hamiltonian terms
by subjecting individual and pairs of classical oscillators
to weak feedback.

Before entering into details of the mapping, we start
by considering the equations of motion for a pair of un-
coupled and identical harmonic oscillators:

mẋi(t) = pi(t), ṗi(t) = −mω2xi(t), (1)

where xi(t) and pi(t) are position and momentum of an
oscillator at time t with the index i = 1, 2 running over
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FIG. 1. Modular mechanical oscillators synthetically coupled by measurement-based feedback. (a) A cartoon
depiction of the implemented mechanical oscillators, which feature embedded accelerometers (marked a) for the real-time
measurement of proxies for position (x̃) and momentum (p̃), a set of four springs (one marked b), and a dipole magnet embedded
in a gradient solenoid for the application of forces (marked c). Real-time feedback forces Fi, which depend on the real-time
measurements x̃i and p̃i, are used to implement an effective tight-binding Hamiltonian H. (b) A photograph of the large-scale
prototype used to implement the two-site synthetically-coupled mechanical lattice depicted in (a), with letters denoting the
same elements. (c) Acquired experimental data and processed observables for a two-site system with synthetic hopping and
synthetic nonlinearity. Panel i: Experimental measurements of x̃1 (red) and x̃2 (blue), with inset showing short-time dynamics
over several oscillator periods from t = 0 to 3 s. Panel ii: Similar plots for the corresponding p̃i measurements. Panel iii:
Constructed proxy for the local mechanical energy, Ei ∝ x̃2i + p̃2i , for two coupled masses with synthetic nonlinearity. Panel
iv: Dynamics of the normalized population imbalance z = (E1 − E2)/(E1 + E2). Panel v: Dynamics of the relative oscillator
phase ∆φ = φ1 − φ2, where the local oscillator phase is reconstructed from the x̃ and p̃ measurements as φi = arg(x̃i + ip̃i).

the two oscillators, ω=ω1 =ω2 is the angular oscillation
frequency and m=m1 =m2 is the mass. The dot over
variables denote the first derivative in time. Below, we
often suppress the explicit time-dependence, (t), when it
is obvious. For convenience of measurement, it is more
natural for us to work with the acceleration, ai(t), and
the jerk, ji(t) ≡ ȧi(t), instead of the position and mo-
mentum. However, for a harmonic oscillator, these are
simply related as

ai(t) = −ω2xi(t), ji(t) = −ω
2

m
pi(t) (2)

and their equations of motion are

ȧi(t) = ji(t), j̇i(t) = −ω2ai(t) (3)

suggesting the acceleration as a proxy for the position,
and the jerk as a proxy for the momentum. To make this
concept clearer in what follows, we shall introduce the
notation Xi ≡ ai and Pi ≡ ji, so that the equations of
motion become

Ẋi = Pi, Ṗi = −ω2Xi. (4)

To couple the two oscillators and simulate different ef-
fects, we now add feedback to the system such that the
equations of motion become

Ẋi = Pi, Ṗi = −ω2Xi + Fi. (5)

where Fi is a function of (X1, X2, P1, P2). In analogy
with the real momentum, this feedback acts as a “force”
on the oscillator. Here we present a general recipe, while
below, we shall discuss specific examples of Fi that we
consider to map to different Hamiltonians. As stated
above, the experiment works with normalized effective
variables for position and momentum. However, for con-
creteness, we retain the dimensionality of Xi and Pi and
include relevant angular frequency ω terms below.

To map the above equations to Heisenberg equations,
we introduce the classical complex variables [19, 20]:

αi ≡
√
ω

2
Xi + i

√
1

2ω
Pi (6)

in analogy with the annihilation operator of the quantum
harmonic oscillator. It can be straightforwardly shown
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from this that |αi|2 then scales with the instantaneous
oscillation energy of a given mass. From this, it follows
that we can re-express the acceleration and jerk as

Xi =

√
1

2ω
(αi + α∗i ), Pi = −i

√
ω

2
(αi − α∗i ) (7)

and hence the equations of motion are

α̇i = −iωαi +
i√
2ω
Fi, (8)

where the feedback term, Fi, should also be re-expressed
as a function of (α1, α

∗
1, α2, α

∗
2). Note that the complex

conjugate of this equation describes the time-evolution
of the conjugate variables, α∗i .

In the absence of the feedback, it can be seen from
Eq. 8 that the time-dependence of the complex ampli-
tudes is given by αi(t) ∝ e−iωt (and similarly α∗i (t) ∝
eiωt) as expected for harmonic oscillators. Including the
feedback naturally modifies the dynamics. However, pro-
vided that ω remains the largest frequency-scale in the
problem and that the feedback is sufficiently weak, these
dynamical changes will be slow and small compared to
the natural oscillations. In this limit, we can assume that
the complex amplitudes’ fastest time-dependence is still
given by αi(t) ∝ e−iωt [19, 20], or in other words, that
the αi variables “rotate” with a frequency ≈ ω (while the
conjugate variables α∗i “rotate” with ≈ −ω).

Working in this high-frequency limit allows us to ap-
ply the “rotating-wave approximation” (RWA) to sim-
plify Eq. 8 [19, 20]. The RWA is an approach well-known
from quantum optics, in which only so-called “co-rotating
terms” with a frequency ≈ ω are kept in the dynam-
ics. To physically understand the RWA, we can imag-
ine transforming Eq. 8 into a “co-rotating frame” at the
natural frequency ω. In this frame, a term ∝ αi, for ex-
ample, varies relatively slowly (due to feedback), while
a term ∝ α∗i oscillates rapidly at a frequency ≈ −2ω.
Terms like the former are “co-rotating” while the lat-
ter are “counter-rotating” as they will rapidly average to
zero over the timescale for the slow dynamics. In the limit
that ω → ∞, only “co-rotating terms” with a frequency
≈ ω remain important, justifying the RWA assumption
that all other terms can be dropped.

Under the condition of high natural frequency and
weak feedback, we can therefore re-write Eq. 8 as

α̇i = −iωαi +
∑

j

i√
2ω
FRWA
ij αj , (9)

where Fi →
∑

j F
RWA
ij αj is the RWA, i.e., where we only

keep suitable co-rotating terms in the feedback applied to
oscillator i. Note that such terms must contain at least
one factor of either α1 or α2 (as both oscillators have nat-
ural frequency ω), and so we have explicitly factored out
αj in this expression for convenience. In general, FRWA

i

can still be any suitable function of (α1, α
∗
1, α2, α

∗
2), as

discussed further below, and so can encode a wide-range

of physical effects. Explicit examples are given in the fol-
lowing sections to further illustrate this approximation.

The equation of motion (Eq. 9) can be regarded as the
Heisenberg equation of motion derived from a quantum-
mechanical Hamiltonian (with ~ suppressed)

H =
∑

i

ωα̂†i α̂i −
1√
2ω

∑

i,j

1

ni + 1
α̂†i F̂

RWA
ij α̂j , (10)

where α̂†i and α̂i are creation and annihilation opera-
tors for site i obeying bosonic commutation relations.
The operator F̂RWA

ij is an operator obtained by replacing

(α1, α
∗
1, α2, α

∗
2) in FRWA

ij by (α̂1, α̂
†
1, α̂2, α̂

†
2) and moving

all the creation operators to the left of the annihilation
operators. The factor of ni is the number of the operators

α†i appearing in FRWA
ij . With the identification αi = 〈α̂i〉

and α∗i = 〈α̂†i 〉, where 〈·〉 is the quantum mechanical av-
erage of the operator with respect to the initial state,
the Heisenberg equation of motion for Eq. 10 reduces
exactly to Eq. 9 when F̂RWA

ij does not itself contain op-

erators. When F̂RWA
ij does contains operators, this will

correspond to inter-particle interactions in the quantum-
mechanical language, as discussed further below. In such
cases, assuming that the energy in each oscillator is large
enough so that we are in the classical limit, we can ap-
proximate 〈F̂RWA

ij α̂j〉 ≈ FRWA
ij αj such that interaction

terms also reduce to the corresponding terms in Eq. 9.
Hence, the dynamics of our synthetic mechanical meta-

material can be used to simulate the above general
class of quantum mechanical tight-binding Hamiltonians.
Note also that although we focus experimentally in this
paper on up to two oscillators, the above equations are
valid for n identical oscillators, in which case H will de-
scribe an n-site Hamiltonian. The generalization to non-
identical oscillators is also straightforward, as discussed
in Ref. [19], provided that all the natural oscillator fre-
quencies are large enough that the RWA can be applied.

Having reviewed the above general theoretical recipe,
we shall now give explicit examples for using feedback
to engineer specific types of desired terms in the tight-
binding Hamiltonian, both in theory and experiment.

III. HAMILTONIAN CONTROL EXAMPLES

A. Control of Local Site Energy Shifts

As a first example of this theoretical approach, we show
how adding weak feedback corresponding to Fi ∝ Xi

leads to local site energy shifts in the above Hamiltonian
mapping. Physically, such a term corresponds in experi-
ment to applying a local feedback which is proportional
to the measured acceleration of the given oscillator.

Theoretically, we start by writing the feedback term as

Fi = Ai,iXi =
Ai,i√

2ω
(αi + α∗i ), (11)
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FIG. 2. Local control of site energy shifts by position-
dependent feedback. (a) Oscillation frequency of an indi-
vidual oscillator (determined by Fourier analysis of the exper-
imental oscillator dynamics), as a function of the coefficient
for the position-dependent feedback force. Error bars (smaller
than the data points) represent the standard error of the mean
of the fit used to determine the points. (b) Scaled power spec-
tra of the Fourier-transformed oscillator position dynamics for
three different values of the x̃ feedback coefficient, with colors
relating to those of the points in (a).

where Ai,i is the (weak) amplitude for the feedback ap-
plied to oscillator i, which depends on the measurements
of Xi. (Note that Einstein’s index summation convention
is not applied here).

Adding a feedback like this means that one of our equa-
tions of motion becomes Ṗi = −(ω2 − Ai,i)Xi, which is
equivalent to having a new effective natural frequency
ω̃i =

√
ω2 −Ai,i. Assuming weak amplitudes for the

driving force and taking a Taylor expansion of this ex-
pression, we obtain ω̃i ' ω −Ai,i/2ω.

Alternatively, this result can be obtained by substitut-
ing the applied feedback form into Eq. 8, leading to

α̇i = −iωαi + i
Ai,i

2ω
(αi + α∗i ). (12)

Applying the RWA means that we neglect the counter-
rotating α∗i term such that

FRWA
ij αj =

{
Ai,i√
2ω
αi for i = j

0 for i 6= j
(13)

The Hamiltonian [Eq. 10] then follows directly as

H =
∑

i

(ω + ∆i)α̂
†
i α̂i, (14)

where ∆i = −Ai,i/2ω. In terms of the tight-binding
Hamiltonian, this is interpreted as adding a tunable site
energy shift ∆i to site i of the lattice, as desired. Physi-
cally, this corresponds to a local shift of the correspond-
ing oscillator frequency by an amount ∆i.

We now demonstrate experimentally this control of
local site energies by position-dependent self-feedback.
Figure 2 depicts the control of the oscillator frequency,
corresponding to site energy shifts in the equivalent tight-
binding model, through the application of x̃-dependent

self-feedback. In Fig. 2(a), we plot the experimentally
measured oscillator frequency as a function of the applied
coefficient of self-feedback. We find a linear relationship
between the measured frequency and the applied feed-
back, consistent with the fact that we are safely in the
limit of weak feedback, with the modifications to the bare
oscillator frequency at the level of . 0.5%.

These oscillation frequencies are determined by first
depositing mechanical energy into the oscillator over 10 s
(by application of a strong oscillating force) and then al-
lowing the oscillator to ring down freely over 100 s. We
then perform a numerical Fourier transform of the posi-
tion data and fit the resulting spectrum to a Lorentzian
line shape, extracting the center frequency. Figure 2(b)
shows several such experimental line shape curves, with
colors corresponding to the data points of the extracted
center frequencies in Fig. 2(a).

B. Local Control of Loss and Gain

Similarly, local feedback can be used to simulate on-
site loss and gain. For a tight-binding Hamiltonian, this
would correspond to having

H =
∑

i

(ω − iγi)α̂†i α̂i, (15)

where γi is real and with γi > 0 and γi < 0 representing
local loss and gain, respectively. From this, we can read-
off that we require

FRWA
ij αj =

{
iγi
√

2ωαi for i = j

0 for i 6= j
(16)
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determined by fitting experimental data sets of the mechani-
cal energy dynamics to an exponential decay ∝ e−2(2πγt), with
negative γ values relating to gain. Error bars (smaller than
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energy dynamics of oscillators 1 and 2, respectively. (b) Experimental oscillator position (x̃) dynamics over several oscillation
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ϕ = −π/4 (purple), and ϕ = −π/2 (brown). The trajectories reflect data sampled from one period of the mechanical energy
dynamics (∼50 s), with a low-pass filter applied to the plotted data.

It is straightforward to see from Eq. 7 that a suitable
choice of feedback is

Fi = Bi,iPi = −iBi,i

√
ω

2
(αi − α∗i ), (17)

where γi = −Bi,i/2, as the unwanted α∗i term in this
expression will be neglected in the RWA. Here, Bi,i is the
(weak) amplitude for the feedback applied to oscillator i,
which depends on the measurements of Pi. Physically,
this corresponds in our setup to local feedback which is
proportional to the jerk of the oscillator.

Our control of the local loss and gain terms of a single
oscillator (site) is demonstrated in Fig. 3. Figure 3(a)
plots the measured rate of mechanical energy damping
as a function of the applied coefficient of momentum-
dependent self-feedback. We find a very linear relation-
ship between the applied amplitude of feedback and the
shift of the measured rate of damping/gain (with a nearly
identical slope to that found in Fig. 2(a), owing to our
normalization of the dimensionless x̃ and p̃ signals).

The damping rates in Fig. 3(a) are determined as fol-
lows. We first excite the oscillator (as in Fig. 2) by sinu-
soidally driving it near resonance for 10 s, and then allow
it to undergo free evolution under the applied feedback
for up to 1000 s. We then compute a proxy of the me-
chanical energy stored in the oscillator, E = (x̃2 + p̃2)/2,
as plotted for the four different feedback cases shown in
Fig. 3(b). A simple exponential decay curve is fit to the
dynamics of the mechanical energy, with negative decay
values indicating an exponential gain. Starting from a
relatively long decay time of ∼ 200 s, corresponding to
a natural quality factor of nearly 1000, we can introduce
greatly enhanced loss or even strong gain through this
momentum-dependent feedback. Importantly, for the in-
vestigation of unitary dynamics, we can also achieve an

excellent cancellation of the loss/gain terms by the ap-
propriate weak self-feedback (cf. red curve in Fig. 3(b)).
We note that similar feedback for the enhancement of
mechanical quality factors has previously been reported
in Ref. [16].

C. (Complex) Inter-oscillator Hopping

So far, only self-feedback of the form FRWA
ij αj ∝ δij has

been taken into consideration and, as a consequence, only
on-site phenomena have been investigated. However, if
one were to reproduce, for example, a Hamiltonian con-
taining a hopping term like:

H =
∑

i

ω α̂†i α̂i − J
∑

i>j

(eiϕα̂†i α̂j + H.c.), (18)

then a feedback involving inter-oscillator forces is needed.
In the equation above, J is the hopping amplitude, and
ϕ is the tunnelling phase that mimics the Peierls phase
gained by a charged particle hopping on a tight-binding
lattice in the presence of a magnetic vector potential.
Hence, the latter may be designed to engineer artifi-
cial magnetic fields and topological quantum Hall tight-
binding models in larger systems.

In order to realise Eq. 18, we require:

FRWA
ij αj =

{
0 for i = j√

2ωJ eiϕj,iαj for i 6= j

with ϕj,i = ϕ and ϕi,j = −ϕ. In this case, a possible
choice of feedback applied to the i-th oscillator depending
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FIG. 5. Avoided crossing in a biased double-well. (a) A two-oscillator “double-well” with synthetic hopping J and
an inter-well bias ∆. (b) Frequency spectra of the two-oscillator system as a function of inter-well bias ∆. Overlaid power
spectra of the coupled oscillator dynamics upon initialization of oscillator 1 (red) and oscillator 2 (blue), as determined by
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plot shows the experimental dynamics of the mechanical energy appearing in oscillator 2, normalized to the total energy.

on the j-th one is:

Fi = Aj,iXj +Bj,iPj , i 6= j

= Aj,i
1√
2ω

(αj + α∗j )− i Bj,i

√
ω

2
(αj − α∗j ).

Hence, one needs to set Aj,i = 2J ω cosϕj,i and Bj,i =
− 2J sinϕj,i. Experimentally, this can be realised by
measuring both jerk and acceleration from one oscilla-
tor, and applying a commensurate feedback to the other.
Note that for a system with many oscillators, the hopping
amplitudes and phases can be chosen to have arbitrary
spatial dependence so as to encode the desired lattice
geometry, connectivity and gauge fields.

In experiment, working with normalized measurements
for x̃ and p̃, the application of conjugate forces for the im-
plementation of complex hopping is relatively straightfor-
ward. We demonstrate this control in Fig. 4. Figure 4(a)
plots the dynamics of the mechanical energy stored in
oscillator 1 (red) and oscillator 2 (blue) as a function
of evolution time under the applied inter-oscillator feed-
back. Prior to the plotted dynamics, we again include an
initialization step during which energy is deposited into
oscillator 1 by a sinusoidal drive. High-visibility Rabi os-
cillations are observed in the mechanical energy dynam-
ics, with energy flowing from oscillator 1 to oscillator 2,
and back. As noted by the inset, these dynamics occur
for a tunneling phase of ϕ = π.

To see the consequence of the imposed tunneling phase
ϕ, we need only look at the traces of either x̃ or p̃ for
the two oscillators, which provide information about the
relative phase of the oscillators. Figure 4(b) shows the
dynamics of the position signals of the two oscillators,
with a zoom in on the time (near 10 s) at which the
two oscillators first have nearly equal mechanical ener-
gies. For the case of ϕ = π, we have a position-dependent

force, and the two signals are out of phase by π/2, sim-
ilar to the usual physical scenario of coupled oscillating
masses. However, unlike the usual case, we find that as
energy moves from oscillator 1 to 2, the x̃2 signal actually
leads the x̃1 signal, whereas it would normally lag for a
physical spring. This reflects our implementation of a π
tunneling phase. The lower two panels indicate the con-
sequence of introducing a momentum-dependence to the
inter-oscillator coupling. In particular, for ϕ = −π/2, the
coupling terms become fully momentum-dependent, lead-
ing to dynamics in which the oscillators swing in phase
as energy is transferred, signaling a concomitant change
to the phase structure of the system’s eigenstates.

To note, there are slight differences in the relative am-
plitudes of the red and blue curves during this time win-
dow for the three different panels of Fig. 4(b), relating to
slightly different hopping rates for the different ϕ values.
This stems from the presence of a small natural coupling
between the oscillators, which do in fact share a common
physical support apparatus for convenience. To avoid
such effects, one can simply actively cancel such natural
contributions prior to adding synthesized hopping (which
is done later for the probing of non-reciprocal hopping
in Fig. 6). Here, by working with synthesized coupling
terms that are much larger than the natural coupling, we
simply work above it and tolerate a small ϕ-dependence
to the hopping rate.

Figure 4(c) depicts more comprehensively how the rela-
tive phase and mechanical energy of the oscillators evolve
throughout the dynamics. Taking advantage of the abil-
ity to simultaneously measure both the x̃ and p̃ signals at
all sites, we reconstruct both the normalized energy im-
balance of the two oscillators, z = (E1−E2)/(E1+E2), as
well as the relative phase between them, ∆φ = φ1 − φ2,
where we simply determine the energies and phases of
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the oscillators as E = (x̃2 + p̃2)/2 and φ = arg(x̃ + ip̃).
The evolution of z and ∆φ under the system evolution
maps out the phase-space dynamics of this simple two-
mode system. For the case of hopping with equal site
energies, these dynamics should map out trajectories as
shown in Fig. 4(c), with full oscillations between z = ±1,
and with the curves centered about a ∆φ value deter-
mined directly by the tunneling phase ϕ. In an analogous
description in terms of an effective Bloch sphere (with the
energy initiated at site 1 relating to a state vector initially
aligned along +z), these trajectories simply relate to the
paths traversed in a response to different applied tunnel-
ing “torque” vectors lying (at azimuthal angles ϕ) in the
equatorial plane.

We now integrate our demonstrated control over site
energy terms with this control over inter-site hopping.
In particular, we investigate how the frequency spec-
trum of this two-oscillator system evolves as we add a
variable inter-site frequency offset ∆ (applied as equal
amplitude shifts of ±∆/2 to oscillators 1 and 2, respec-
tively) while keeping a fixed inter-oscillator hopping rate
J , as depicted in Fig. 5(a). Similar to Fig. 2, we obtain
these frequency spectra by looking at the dynamics and
performing a numerical Fourier transform. Figure 5(b)
shows this spectrum, with the canonical avoided cross-
ing encountered near ∆ = 0 as the modes of the two
oscillators hybridize due to the engineered hopping. To
note, the color indexing of Fig. 5(b) reflects the weight
of the response at a given frequency that is found to re-
late to energy in oscillator 1 (red) and oscillator 2 (blue).
Specifically, we investigate the dynamical evolution fol-
lowing the initialization of energy at site 1 or 2, yielding
distinct Fourier spectra as depicted in red and blue, re-
spectively. One sees that for large ∆ the eigenmodes are
nearly localized to the individual oscillators, while they
are near-evenly delocalized near resonance. Finally, in
Fig. 5(c), starting with energy in oscillator 1, we plot the
dynamical evolution of the normalized energy in oscilla-
tor 2 as a function of ∆. This Chevron Rabi pattern
relates to high-visibility oscillations near ∆ = 0, with
faster and lower-amplitude oscillations for larger values
of the site-to-site frequency mismatch.

D. Non-reciprocal Inter-oscillator Hopping

Going further, one advantage of using feedback to
engineer inter-oscillator hopping terms is that it is
straightforward to realise non-reciprocal couplings. Non-
reciprocal Hamiltonians [28] naturally host chiral phe-
nomena, and are intimately connected to the physics
of non-Hermitian mechanics [29]. While non-reciprocity
would be challenging to access in physical systems gov-
erned by Newtonian mechanics – where forces come in
equal and opposite pairs – it can effectively be engineered
in active matter [24, 25, 30] and in systems featuring dis-
sipation [31]. Here, as we show, it can be engineered at
will in synthetically coupled mechanical networks.

We consider the following Hamiltonian:

H =
∑

i

ω α̂†i α̂i −
∑

i>j

[(J + δJ)eiϕα̂†i α̂j +

(J − δJ)e−iϕα̂†jα̂i],

where the change in the hopping amplitude J → J ±
δJ [cf. H in Eq. 18] represents a non-reciprocal inter-
oscillator coupling. This type of non-reciprocal coupling
is well-known from the Hatano-Nelson model [32–34], and
it not only selects a preferential direction of hopping,
but more importantly causes this Hamiltonian to become
non-Hermitian (H† 6= H). Note that for |δJ/J | < 1,
this Hamiltonian is PT -symmetric and its eigenvalues
are real. Conversely, if |δJ/J | > 1, the PT -symmetry of
the system is broken and the energies become complex.
At |δJ/J | = 1 the energy levels coalesce in an excep-
tional point and the PT phase transition takes place.
Explicitly, the non-reciprocal double-well (with coupled
left and right modes, |L〉 and |R〉) possesses eigenmodes

±
√
J2 − δJ2/(δJ −J)|L〉+ |R〉 (up to normalization fac-

tors), having eigenfrequencies ±
√
J2 − δJ2, respectively.

Following the earlier discussed procedure, it is straight-
forward to obtain the new definitions for Aj,i and Bj,i:

A1,2 = 2(J + δJ)ω cosϕ and B1,2 = − 2(J + δJ) sinϕ,

A2,1 = 2(J − δJ)ω cosϕ and B2,1 = 2(J − δJ) sinϕ;

with analogous physical meaning as before. Because each
of these force terms are added by hand, non-reciprocal
hoppings are as natural to engineer in this setting as re-
ciprocal ones.

In Fig. 6 we experimentally demonstrate the ability to
engineer non-reciprocal hopping terms (depicted in the
cartoon of Fig. 6(a)), driving this two-site system across a
PT symmetry-breaking phase transition. To note, while
in the earlier data (Figs. 2-5) there existed an additional,
small contribution to the hopping due to physical cou-
pling (via the shared support structure), for this data we
take care to first actively cancel, via feedback, the phys-
ical coupling (scale . 1 mHz) prior to introducing our
synthetic coupling forces.

For a fixed value of J ≈ 2π × 8.4 mHz, we introduce a
tunable hopping asymmetry δJ . Figure 6(b) shows the
dynamics of the measured oscillator energies, beginning
with energy residing in oscillator 1, for values of δJ = J/8
(top) and 7J/8 (bottom). Unlike in the case of reciprocal
hopping terms, the total mechanical energy is not fixed
throughout these dynamics, even in the PT -symmetric
phase. As energy flows from oscillator 1 to 2, the en-
ergy of the system grows. The difference of scale of the
two panels of Fig. 6(b) reflects the fact that this growth
in energy becomes more pronounced for larger values of
δJ approaching the PT symmetry-breaking phase tran-
sition. As stated above, the eigenstates of the system in
the PT -symmetric regime similarly reflect an asymme-
try between left and right modes, which for larger lat-
tices gives rise to the non-Hermitian skin effect [35]. One
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FIG. 6. Non-reciprocal hopping and PT symmetry breaking (a) Two oscillators coupled with non-reciprocal hopping
terms, J ± δJ . (b) Experimental population dynamics, starting with all energy in the first oscillator, for δJ/J = 0.125 and
δJ/J = 0.875. (c) Fit-extracted peak locations of the power spectra based on experimental dynamics when starting with all
energy in oscillator 1 (red dots) and with all energy in oscillator 2 (blue dots). The solid lines relate to the expected real
eigenspectrum for f0 = 3.0489 Hz and J = 2π× 8.4 mHz. Error bars, which are smaller than the points, relate to the standard
error of the fits to two Gaussian peaks. (d) Experimental total energy (E1 + E2) dynamics for excitation of eigenmodes in
the case of fully asymmetric hopping (i and iv, with J = 0) and fully symmetric hopping (ii and iii, with δJ = 0). For the
symmetric case, the initial states relate to the two oscillators having equal energy and an initial relative oscillator phase of 0 (ii)
and π (iii). For the asymmetric case, the initial states relate to the two oscillators having equal energy and an initial relative
oscillator phase of π/2 (i) and −π/2 (iv).

additionally finds a clear difference in the rate of popu-
lation exchange (Rabi) dynamics observed in these two
cases, with the dynamics slowing down appreciably as
δJ/J approaches 1. This slow-down of the dynamics re-
flects a change to the eigenspectrum of the system, with
the real eigenvalues coalescing at an exceptional point at
δJ = J , then transforming into imaginary eigenenergies,
reflecting modes that undergo pure exponential decay or
gain (ignoring the intra-envelope x̃ or p̃ dynamics at the
bare frequency ω).

We can again directly investigate this frequency re-
sponse of the system upon approaching the PT -breaking
phase transition by simply Fourier-transforming the os-
cillation dynamics (taken over 400 s) and extracting a
peak or peaks in the resulting power spectrum. We per-
form this analysis for both the cases of starting in oscilla-
tor 1 (red points) and oscillator 2 (blue points) and plot
the resulting resonance values in Fig. 6(c). We perform
this analysis solely in the PT symmetric regime (and up
to δJ = J), but find a clear closing of the energy gap
in the system as the PT phase transition is approached.
The measured frequency resonance values are in good
agreement with the plotted theory curve, which relates to
the form f0 ± (J/2π)

√
1− (δJ/J)2 with f0 = 3.0489 Hz

and J = 2π × 8.4 mHz.

To gain insight into the structure of the eigenmodes in
the PT -broken region, we seek to prepare these eigen-
modes directly and observe their evolution. Figure 6(d)
contrasts the behavior of prepared eigenmodes in the
purely reciprocal case (curves ii and iii) to those in the
purely non-reciprocal case (i and iv). In the reciprocal
case (δJ = 0, J ≈ 2π × 8.4 mHz), we prepare both in-

phase and out-of-phase eigenmodes of the coupled two-
oscillator system, by initially driving the two oscillators
(to deposit mechanical energy) with a controlled phase
difference, to result in equal-energy superposition states
with relative phases of 0 (ii) and π (iii). We plot, in
Fig. 6(d), the dynamics of the total energy E = E1 +E2

for these two cases, observing no appreciable variation in
this reciprocal hopping scenario.

For the purely non-reciprocal case (J = 0, δJ ≈
2π×8.4 mHz), the eigenstate structure is maximally dis-
tinct to the reciprocal case, yielding equal-energy super-
position states with relative phases of ±π/2. Using the
same general initialization procedure, we prepare these
eigenmodes of the non-reciprocal double-well, and we in-
deed observe distinct dynamics of the total energy, result-
ing in an exponential growth of the mode with relative
phase π/2 (i) and an exponential attenuation of the mode
with relative phase −π/2 (iv), at least up until the scale
at which uncontrolled nonlinearities modify this picture.

E. Synthetic Interactions

Finally, it is worth considering the outcome of weak
non-linear feedback, as this is a way to simulate mean-
field interactions in the Hamiltonian mapping. In the
context of classical emulation experiments, this feed-
back based approach has connections to recent proposals
and realizations in photonic [36] and electronic [37] net-
works. As an example of how feedback can introduce syn-
thetic interactions, consider an energy-dependent feed-
back Fi = (Ai,iX

2
i + Bi,iP

2
i )Xi. In this case, a measure
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FIG. 7. Eigenmodes and phase-space dynamics of a two-oscillator system with synthetic interactions. (a) Mode
frequencies for a double-well system with synthetic Hartree-like local interactions, implemented via self-feedback forces Fi ∝
Eix̃i, where Ei is the total mechanical energy in mode i. The frequencies are determined by fits to the experimental population
imbalance dynamics of in-phase (∆φ = 0) and out-of-phase (∆φ = π) modes with an initial population imbalance z = 0.3. The
out-of-phase mode stiffens with increasing U/J , while the in-phase mode softens across the self-trapping transition at U/J ∼ 2.
The dark blue circles (dark red squares) relate to experimental data, the light blue (red) points relate to numerical simulations,
and the light gray dashed lines relate to the approximate analytical expressions described in the text. (b) Phase-space maps
of the experimental dynamics of the relative oscillator phase ∆φ and normalized energy imbalance z, for U/J ≈ 1, 3, and 6.
To note, small residual loss and/or gain terms leads to slightly disconnected trajectories in the experimental panels.

related to the “energy” of the system is used to create a
non-linear on-site potential. By substituting the results
in Eq. 7 into the form of the feedback, we have

Fi =

[
Ãi,i(αi + α∗i )2 − B̃i,i(αi − α∗i )2

]
(αi + α∗i )

= Ω−,i(αi
3 + α∗i

3 + αi
2α∗i + α∗i

2αi)

+Ω+,i(αi
2α∗i + α∗i

2αi),

where 2ωÃi,i = Ai,i, 2B̃i,i = Bi,i and Ω±,i = Ãi,i ± B̃i,i.
When applying the RWA one should be careful in neglect-
ing terms, since also the contribution from terms like αi

3

and α∗i
2αi can be discarded. In the former case, we have a

much faster co-rotating wave, while in the latter case the
net contribution in terms of frequency is ≈ e−iωt, which
is counter-rotating with frequency ≈ 2ω in the rotating
frame. We are then left with:

FRWA
ij αj =

{
2Ãi,i |αi|2αi for i = j

0 for i 6= j

Then the Hamiltonian in Eq. 10 follows as:

H =
∑

i

ωα̂†i α̂i −
∑

i

Uiα̂
†
i α̂
†
i α̂iα̂i, Ui = Ãi,i/

√
2ω,

where the second term is the on-site interaction. When
written in terms of the equation of motion, Eq. 9, after
replacing operators by c-numbers, features a term that
reflects a local (diagonal, Hartree) mean-field interaction.

We now implement this local mean-field interaction in
our two-oscillator double-well, with a common value of
the nonlinear U term applied to each oscillator. Here,

the term U describes a local angular frequency shift due
to mean-field nonlinearity, where the scale is such that
it represents the shift that would be experienced by a
given oscillator when all of the mechanical energy resides
in said oscillator (with total mechanical energy approxi-
mately conserved in the following scenarios we explore).
We calibrate the U term for each oscillator by directly
measuring the oscillator frequency in an uncoupled con-
figuration for several values of the nonlinear feedback co-
efficient as well as several values of the mechanical en-
ergy. To note, while the engineered variations of the
quartic nonlinearity are indeed found to be linearly tun-
able by application of feedback force terms ∝ (x̃2i + p̃2i )x̃i,
our calibrations additionally account for natural contri-
butions to the oscillator nonlinearity due to the physical
properties of the springs. For example, to achieve a “non-
interacting” scenario, we in fact first cancel the relatively
weak quartic nonlinearities that occur naturally due to
the physical properties of our springs. Controlled nonlin-
ear terms are then added to this “non-interacting” start-
ing point. To note, this cancellation was performed for
the study presented earlier in Fig. 6, and for all studies
presented hereafter.

We now use our ability to apply a tunable nonlin-
earity to a tunnel-coupled system to explore the self-
trapping phase transition of the canonical Josephson
double-well [38, 39]. This mean-field model describing
interacting bosonic excitations in a coherently coupled
two-mode system is ubiquitous, describing physical sys-
tems ranging from polariton fluids [40] to cold atomic
gases [41–44] to classical photonics [45–48]. Working
with a fixed hopping J ≈ −2π × 8.4 mHz, we plot in
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Fig. 7(a) the mode spectrum of this double-well sys-
tem as we tune the nonlinear U term. Specifically, we
present the measured frequency dependence of prepared
in-phase (∆φ = 0) and out-of-phase (∆φ = π) superposi-
tion modes, each having a small initial inter-well energy
imbalance of z = 0.3. Similar to before, the relative
phase ∆φ and energy imbalance z of the initial state
is controlled by the relative amplitudes and phases of
the applied sinusoidal drives during an initial prepara-
tion time step. Here, we determine the mode frequencies
of the system by simply taking the inverse of the time
separation between local extrema of the z dynamics.

Specifically, in Fig. 7(a) we show how the measured
in-phase and out-of-phase mode frequencies evolve as we
tune the ratio of U/J across the expected self-trapping
phase transition at U = 2J . For zero quartic nonlin-
earity, we find excellent agreement between the mea-
sured frequencies of the in-phase and out-of-phase modes.
Upon adding a weak U term, however, these modes un-
dergo radically different responses. The out-of-phase or
π mode becomes stiffened, seeing its frequency increase
directly as U is increased. The in-phase mode, in con-
trast, acquires a decreased mode frequency, leading to
very slow dynamics near U = 2J . Beyond U = 2J , the
frequency of the in-phase mode begins to increase, ap-
proaching that of the stiffened ∆φ = π mode.

This observed difference in the modal frequency re-
sponse – that the π mode is continuously stiffened for
increasing U , while the 0-phase mode undergoes mode-
softening – is completely in line with the expected re-
sponse associated with the Josephson double-well [49]
and its supported dynamical self-trapping phase transi-
tion [38, 39]. Our measured mode frequencies are in fair
agreement with approximate analytical forms for the 0-
phase (plasma) mode and π mode oscillation frequencies
(Eqs. 4.7 and 4.10 of Ref. [38], respectively), which we
plot as dashed black lines. We note some disagreement
between our data and these analytical formulae, however,
which is expected as these expressions are strictly valid
only near z = 0. We find considerably better agreement
between our data and the frequencies predicted by nu-
merical simulations of an ideal Josephson double well for
our given initial z value of 0.3, plotted as the connected-
dot curves of Fig. 7(a).

There exist further distinctions between the response
of these two modes beyond their frequency behavior.
Specifically, while the frequencies of the in-phase mode
are similarly small on either side of the mode-softening
encountered at U = 2J , we find that there are net
swings of the energy imbalance z for values U < 2J ,
i.e., z changes sign during the dynamics. In contrast,
for U > 2J we find that the excess mechanical energy
becomes self-trapped to the oscillator in which it is initi-
ated. This self-trapping transition of the in-phase mode
reflects a drastic modification of the phase space portraits
describing this system, as a separatrix moves through the
phase space for increasing U/J [38, 39].

We now examine this behavior in Fig. 7(b) by mapping

out the phase space portraits for several values of U/J ,
utilizing the same approach as in Fig. 4(c). The out-of-
phase modes, indicated by the blue trajectories, remain
relatively unaffected in the three phase-space portraits
for U/J values of ∼1, 3, and 6. In contrast, trajecto-
ries starting near the unstable fixed point at z = 0 and
∆φ = 0 are significantly altered by the introduction of
nonlinear U term. These trajectories first become self-
trapped in both relative phase ∆φ and energy imbalance
z for moderate U values just beyond the self-trapping
transition (i.e., for U ∼ 3J). For still larger values, we
encounter a different form of self-trapped mode, having
z values confined to either side of z = 0 but experienc-
ing a running relative phase ∆φ. These results, in ex-
cellent agreement with theory, demonstrate how the in-
corporation of real-time measurements can enable both
the implementation of synthetic interactions as well as
visualization of the resulting nonlinear dynamics.

While the mean-field Josephson model with uniform
interactions is naturally realized by a range of physical
systems, our general approach to engineering synthetic
nonlinearities allows for the extension to more intricate
forms of interactions. As one simple demonstration of
this, we examine in Fig. 8 the phase-space dynamics of
a double-well system under the application of a well-
dependent interaction term U1 = −U2 = 2.2J . We again
start from different points in phase space (indicated by
the colored disks) and study the phase-space dynamics
of z and ∆φ. Compared to the double-well with uniform
quartic nonlinearity, the phase space map is significantly
altered, showing two distinct self-trapped regions at rel-
ative phases of ∆φ = 0 and π. We again find excellent
agreement between the observed trajectories and those
predicted by theory.

F. Additional Possible Terms

Having given specific examples of the terms that we ex-
perimentally engineer in this work, we now briefly high-
light, from a theoretical view-point, some general con-
siderations for the type of terms that could be accessi-
ble with this approach [cf. Eq. 10]. Firstly, an advan-
tage of using feedback to engineer the system is that the
resulting Hamiltonian can be arbitrarily long-ranged or
spatially-structured when it is scaled up to include more
oscillators. For example, there are no fundamental the-
oretical constraints on the range or type of interactions
and couplings that are possible between different oscil-
lators, which allows for, in principle, arbitrary network
connectivity and nonlinearities, provided that the feed-
back is weak.

Secondly, we have assumed above that the form of
the feedback is time-independent, such that the result-
ing Hamiltonian is also time-independent. However, this
is not required for the RWA to hold so long as the nat-
ural frequency, ω, remains the largest frequency scale in
the problem. This allows, e.g., for the investigation of
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time-modulated Hamiltonians, to introduce still further
control for engineering effective models [19, 20] or for the
investigation of Floquet or stroboscopic Hamiltonians for
their own sake [50, 51]. Alternatively, slow variations of
the feedback parameters can enable the exploration of
adiabatic geometric response and dynamical phase tran-
sitions, as well as the population and exploration of sys-
tem eigenstates by Hamiltonian annealing.

Thirdly, as discussed above, the RWA reduces the feed-
back to Fi →

∑
j F

RWA
ij αj by only keeping co-rotating

terms with a frequency ≈ ω in the lab-frame. In gen-
eral, such terms must have the number of α factors be-
ing one greater than the number of α∗ factors, as any
other combinations should average to zero in the ω →∞
limit. This in turn means that in the RWA Hamiltonian
[Eq. 10] the only terms present will contain equal num-
bers of α and α∗ variables. In the language of quantum
creation and annihilation operators, this corresponds to
Hamiltonians which conserve the total number of parti-
cles in the system, but do not necessarily constrain the
local particle number or the energy of the system. This
therefore allows for many other types of terms, such as
correlated hopping terms in which, for example, two par-
ticles hop at once. Considering only two-body (quartic)
interactions, the degree of control afforded by this ap-
proach should have direct applications in the engineer-
ing of interacting Hamiltonians with exotic forms [52]
or fine-tuned symmetries [53, 54]. This approach even
allows for the direct engineering of Hamiltonians domi-
nated by beyond-quartic terms [55], which could enable
the realization of exotic phases requiring higher-order in-
teractions, without complications due to the presence of
lower-order terms [56].

G. Beyond the RWA

Finally, it is worth noting that the RWA is strictly
valid for weak feedback in the limit that ω →∞. In gen-
eral, there will be corrections to the RWA coming from
the coupling between the α and α∗ variables in the dy-
namical equations [cf. Eq. 8]. For example, as discussed
in Refs. [19, 20], this can lead to corrections such as, at
lowest order, an overall shift to the resonance frequency,
which is a classical analogue of the Bloch-Siegert shift.

At even lower frequencies or for stronger feedback,
the RWA cannot be applied and counter-rotating feed-
back terms, such as those linearly-dependent only on α∗i ,
should not be neglected. In such cases, by a similar line
of reasoning to that above, the system can be mapped
to a tight-binding Hamiltonian that now does not con-
serve the total particle number. As is well-known, such
particle-non-conserving terms in bosonic Hamiltonians
can lead to parametric instabilities, as recently studied,
for example, in topological models [19, 20, 57–59].

IV. CONCLUSION

We have presented a general recipe for engineering syn-
thetic lattice tight-binding models, featuring both linear
and nonlinear terms, based on the real-time measurement
of and feedback on arrays of isolated mechanical oscilla-
tors. We have experimentally demonstrated the basic
elements of this approach, including the control of real
and imaginary site energies, complex and non-reciprocal
inter-site hopping terms, and engineered nonlinear inter-
actions. The presented approach is general, directly ap-
plicable to classical emulators based on mechanics or elec-
tronics and photonics [60], but also intimately related to
recent ideas for the steering of quantum systems into new
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many-body phases via measurement-based feedback [61–
64]. Looking forward, as this approach is expanded to
many-site arrays of classical oscillators, the ability to
synthesize near-arbitrary mean-field lattice Hamiltonians
will open up new opportunities for exploring exotic trans-
port phenomena in a highly accessible laboratory setting.
More generally, the incorporation of measurement-aided
approaches promises to expand our capabilities for syn-
thetic lattice and synthetic dimensions [65] engineering.
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[63] M. H. Muñoz Arias, P. M. Poggi, P. S. Jessen, and I. H.
Deutsch, Phys. Rev. Lett. 124, 110503 (2020).
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Appendix C

Analytics for the non-interacting

case

In this appendix, the analytics for the trimer in Chapter 5 are carried out.

As shown in Fig. 5.2, the localization spotted in the lung-shaped region discussed in

Sec. 5.2 extends down to the non-interacting case, U=0. As this phenomenon happens at

φ=π/2, that is to say where the eigenenergies are equally spaced, we may expect that the

equal level spacing can explain this phenomenon in the non interacting case. In order to

confirm this intuition, analytics will be carried out in the following for the case of φ∈]0, π[,

as the same results apply, with minor changes, to the other half of the parameter space.

The eigenvectors of the Hamiltonian in Eq. 5.2 for φ∈]0, π[ are:

v− =
1√
3




1

1

1



, v0 =

1√
3




−eiπ/3

−e−iπ/3

1




v+ =
1√
3




−e−iπ/3

−eiπ/3

1




to which the energies ε−, ε0, ε+ are associated, representing the energy of the ground

state, and the first and second excited states, respectively.

Up to an overall phase factor, the initial state (1, 0, 0)T can be written as the following
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linear combination of the eigenvectors:

|α(t = 0)〉 =
1√
3

(
|v−〉 − e−iπ/3 |v0〉 − eiπ/3 |v+〉

)
,

then, the time evolution is described by:

|α(t)〉 =
1√
3

(
e−iε−t |v−〉 − e−iε0te−iπ/3 |v0〉 − e−iε+teiπ/3 |v+〉

)
, (C.1)

that will be used to evaluate the 〈IPR〉 as described in Eq. 5.4.

Let us consider φ 6=π/2; the first step in order to determine the time average of the IPR

as defined in Eq. 5.4 is evaluating ni = |αi|2; for the site initialy loaded it yields:

n1 =

∣∣∣∣
1√
3

(
1√
3
e−iε−t +

1√
3
e−iε0t−iπ/3 +

1√
3
e−iε+t+iπ/3

)∣∣∣∣
2

=
1

9

∣∣∣∣ cos ε−t+ cos(ε0t− iπ/3) + cos(ε+t+ iπ/3)

− i sin ε−t− i sin(ε0t− iπ/3)− i sin(ε+t+ iπ/3)

∣∣∣∣
2

.

Before expanding this square and evaluating the expectation value of n1, the following

short notation is introduced: instead of writing cos(•) or sin(•), I will make use of the

short notation cν and sν , and ν=−, 0, + to indicate the argument of the trigonometric

functions, respectively ε−t, ε0t−π/3 and ε+t+π/3. By doing so, this last equation reads:

n1 =
1

9
|c− + c0 + c+ − is− − is0 − is+|2

=
1

9
(3 + 2c−c0 + 2c−c+ + 2c0c+ − 2s−s0 − 2s−s+ − 2s0s+).

(C.2)

We now want to find the time averate of n1 and of n2
1 to check the numerical results in

Section 5.2. As the time average of a generic time-dependent quantity x(t) is defined as

〈n1〉≡
∫ T
0

d(t)n1(t)/T , we obtain for an asymptotically long time T→∞ that 〈n1〉 = 1/3,

that matches the numerical results in Fig. 5.3. When working through the same steps for

n2 and n3 the result is exactly the same with a slightly different encoding of the subscripts
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−, 0, +. Evaluating n2
1 yields:

n2
1 =

1

81

(
9 + 4c2−c

2
0 + 4c20c

2
+ + 4c2−c

2
+ + 4s2−s

2
0 + 4s20s

2
+ + 4s2−s

2
+ + . . .

)

where the dots indicate terms that have odd powers of cos and sin, that average to 0 over

long times. Using that:

〈
c4
〉

=
〈
s4
〉

=
3

8
;
〈
c2µs

2
ν

〉
=
〈
c2µc

2
ν

〉
=
〈
s2µs

2
ν

〉
=

1

4
;

where µ, ν=−, 0,+, we find that the time average for the square of the populations 〈n2
i 〉

yields the same result for the threesites, namely 15/81. It follows that IPR = 27/15 ≈ 1.8.

We now investigate what happens right at π/2: where the zero of the energy can be

chosen in such a way that ε0 = 0 and ε− = −ε+ ≡ ε. Because of this equal spacing

between the energy values, the calculation changes slightly, as can be immediately seen

by comparing Eq. C.2 with:

n1 =

∣∣∣∣
1√
3

(
1√
3
e−iεt +

1√
3
e−iπ/3 +

1√
3
eiεt+iπ/3

)∣∣∣∣
2

=
1

9
|1 + 2 sin εt+ π/6|2.

Also in this case, the results for n2 and n3 are completely analogous (in which case it is

convenient to factor out e−iπ/6 and e−iπ/3, respectively), and the evaluation of the time

average yields 1/3 in all the three cases, as expected from the results in Fig. 5.3. Taking the

square of these quantities and evaluating the time average, one obtains straightforwardly

that 〈n2
1〉 = 〈n2

2〉 = 〈n2
3〉 = 19/81, hence the 〈IPR〉 yields 57/81 ≈ 0.70.

Finally, when φ= 0 using the Gram-Schmidt algorithm, the basis vectors can be written

as:

v− =
1√
3




1

1

1



, v0 =

1√
2




−1

0

1




v+ =
1√
6




−1

2

−1



.
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flux numerics analytics
φ 6= π/2, 3π/2 ∼ 0.51 0.55

φ = 0 ∼ 0.48 0.55
φ = π/2 ∼ 0.64 0.70
φ = π ∼ 0.48 0.55

φ = 3π/2 ∼ 0.64 0.70

Table C1: Values of the 〈IPR〉 for both the numerics and the analytics. Note that at φ=π/2
the wave packet is more localized (lower 〈IPR〉 ) than for other values. These results agree with
the numerics in the non-interacting case (c.f. Figs. 5.2 and 5.3).

Then, setting the zero of the energy at the first excited state (degenerate with the second

excited state), ε+ = ε0 = 0 and re-labeling ε−= ε, the state describing the time evolution

of the system at φ=0,
∣∣α(0)(t)

〉
can be written as:

∣∣α(0)(t)
〉

=
1√
3
e−iεt |v−〉 −

1√
2
|v0〉 −

1√
6
|v+〉 .

Following the same procedure as before, there is a difference: on average, the population

is not equally spread over the three sites, 〈n1〉 = 5/9 and 〈n2〉=〈n3〉=2/9. This is due to

the uneven distribution of the initial wave packet on the three sites as one can see when

comparing this last equation with Eq. C.1. Anyway the 〈IPR〉 yields the same result as

before, 15/27≈0.55.

A completely analogous result is obtained in the φ=π case.

These results not only confirm the qualitatively behaviour of the system in the non-

interacting case (c.f. Figs. 5.2 and 5.3), but also yield the same numerical value as the

simulations, as summarized in Table C1, where the result of the calculations made for φ

up to 2π are listed.

Furthermore, the plot in Fig. C.1 represents the slice at U=0 of the plot of the 〈IPR〉 in

the left panel of Figs. 5.2.

132



Figure C.1: Plot of 〈IPR〉 (Eq. 5.4) in the non-interacting case, U = 0 as a function of the
phase pierced through the plaquette. The peaks in 〈IPR〉 appear as expected at φ = π/2 and
3π/2, in agreement with the numerics as explained in the text. Line is a guide to the eye.

Finally, a note on the current. As mentioned in Sec. 5.2, in the non-interacting case

the chiral current averages to zero, c.f. Fig. 5.2. This phenomenon is due to the initial

state being in an equal superposition of the three eigenstates, each of them contributing

with a chiral current that is characteristic [109].

Interestingly, the sum of the chiral currents characterizing the eigenstates is zero, as shown

in Fig. C.2 where the currents associated with the eigenstates are plotted versus the phase

pierced through the plaquette. Their sum is plotted as the dotted line that is always zero,

explaining the behavior of the current shown in Fig. 5.2.
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Figure C.2: Plot of the currents characterizing the eigenstates of the Hamiltonian for different
values of the phase pierced through the plaquette: the blue solid line represents the current
associated with the ground state, the dashed line the current associated with the first excited
state, and the dash-dotted line is the current associated with the second excited state. The
dotted line represent their sum, that is constantly zero.
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