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Abstract

The system of robot manipulation involves a pipeline consisting of the perception
of objects in the environment and the planning of actions in 3D space. Deep
learning approaches are employed to segment scenes into components of objects and
then learn object-centric features to predict actions for downstream tasks. Despite
having achieved promising performance in several manipulation tasks, supervised
approaches lack inductive biases related to general properties of objects. Recent
advances show that by encoding and reconstructing scenes in an object-centric
fashion, the model can discover object-like entities from raw data without human
supervision. Moreover, by reconstructing the discovered objects, the model can
learn a variational latent space that captures the various shapes and textures of the
objects, regularised by a chosen prior distribution. In this thesis, we investigate the
properties of this learned object-centric latent space and develop novel object-centric
generative models (OCGMs) that can be applied to real-world robotics scenarios.

In the first part of this thesis, we investigate a tool-synthesis task which leverages
a learned latent space to optimise a wide range of tools applied to a reaching task.
Given an image that illustrates the obstacles and the reaching target in the scene,
an affordance predictor is trained to predict the feasibility of the tool for the
given task. To imitate human tool-use experiences, feasibility labels are acquired
from simulated trial-and-errors of the reaching task. We found that by employing
an activation maximisation step, the model can synthesis proper tools for the
given tasks with high accuracy. Moreover, the tool-synthesis process indicates
the existence of a task-relevant trajectory in the learned latent space that can
be found by a trained affordance predictor.

The second part of this thesis focuses on the development of novel OCGMs
and their applications to robotic tasks. We first introduce a 2D OCGM that is
deployed to robot manipulation datasets in both simulation and real-world scenarios.
Despite the intensive interactions between robot arm and objects, we find the model
discovers meaningful object entities from the raw observations without any human
supervision. We next upgrade the 2D OCGM to 3D by leveraging NeRFs as
decoders to explicitly model the 3D geometry of objects and the background. To
disentangle the object spatial information from its appearance information, we
propose a minimum volume principle for unsupervised 6D pose estimation of the



objects. Considering the occlusion in the scene, we further improve the pose
estimation by introducing a shape completion module to imagine the unobserved
parts of the objects before the pose estimation step. In the end, we successfully
apply the model in real-world robotics scenarios and compare its performance in
several tasks including the 3D reconstruction, object-centric latent representation
learning, 6D pose estimation for object rearrangement, against several baselines.
We find that despite being an unsupervised approach, our model achieves improved
performance across a range of different real-world tasks.
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1
Introduction

1.1 Motivation

Manipulating the objects in a scene using an actuated robot arm necessitates

the coordination of perception and action systems. The perception system aims

to interpret the raw observations, such as pixels or point clouds, into meaningful

representations, which include explicit representations, such as the object poses [1, 2],

the object bounding boxes [3], the object meshes for geometry-based manipulation [4,

5], or latent representations that encode object properties such as the object

affordance into latent embedding [6]. Taking these representations, a high level

planner can then bridge the gap between the user interface and the low-level robot

controller and manipulate the selected objects in a task-oriented way. The perception

system thus plays a vital role for the scene understanding that facilitates the object

manipulation. With the advance of deep learning, learning-based approaches offer

advantages such as real-time inference or generalisation ability on unseen instances.

The investigation of these approaches thus delves into the feature learning [7, 8]

and collecting larger dataset [9] for improved generalisation ability, which despite

a straightforward solution, lacks the inductive bias related to the objectness itself.

In contrast to supervised approaches, recent work has found that it is possible

to discover object-like entities from raw data in an unsupervised fashion[10–12].

1



2 1.1. Motivation

These approaches belong to a VAE framework that learns structured object-centric

latent representations by introducing different attention mechanisms to encourage

object-level disentanglement. Due to the generative essence of these models, we

denote these approaches as object-centric generative models (OCGMs). In contrast

to scene segmentation models, OCGMs perform instance segmentation, object

pose or position estimation, object-centric latent representation learning, and

observation reconstruction in a single model. Each output can then be leveraged by

different downstream robotic tasks as high-level visual inputs. Despite the diverse

functionalities that a single OCGM model can offer, early OCGMs works only

conducted experiments on simple synthetic dataset such as the scenes of moving

MNIST digits [11–13]. Thus in this thesis, we investigate whether unsupervised

OCGMs can be applied to robotics scenarios that involve objects of diverse and

complex shapes, and moreover, we also conduct how the learned object-centric

latent representations could potentially facilitate robotic applications.

The first part of this thesis investigates the learning and the application of

object-centric latent representations in robotic tasks. By reconstructing the raw

observations, the learned latent space of objects can encode a manifold of variations

of object shapes and textures. Nevertheless, besides the visual information, we

are also interested in whether the object latent space induces sub-manifolds that

encode task-relevant properties of the objects, such as the object affordance for a

given action in specific environments. In cognitive science, dual-system theory [14]

suggests that humans can develop intuition that quickly and automatically maps

visual observations to intuitive conclusions based on past experiences. Furthermore,

prior research [15] has also found that New Caledonian crows are able to create

reaching tools by combining two short combinable parts, which requires anticipating

properties of the unseen objects. Such anticipation, or planning on objects, is

usually interpreted as involving creative mental modelling. For manipulation tasks,

especially tool-use tasks, we posit that the affordance of the tools can be developed by

the learning signal established from the trial-and-errors of using the tools in specific

tasks. To simulate this process with neural networks, we conduct experiments with
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a reaching task, where a robot uses different tools to avoid obstacles in the scene to

reach the target. Like how humans or animals are able to infer object properties, a

classifier can be trained to replicate this ability by learning the tool affordance from

the established dataset of tool-use. This motivates us to unlock the ability of task-

oriented tool synthesis that explicitly generates 3D meshes of the synthesised tools

by leveraging a classifier that captures a high-level understanding of tool affordance.

An object-centric latent representation is a compact representation that encodes

useful object properties which can be used to facilitate downstream robotic tasks.

Nevertheless, naturally occurring scenes, especially in robotic scenarios, usually

consist of several objects and the background. To discover the objects in the scene

in an supervised fashion, the OCGMs can be employed to first decompose the scene

into object-like entities and then predict the object-centric latent representations

using the encoder module of the model. Therefore, in the second part of this thesis,

we propose three OCGMs and apply them to classic robotics tasks. In contrast

to previous OCGMs that evaluate models mainly on simple synthetic datasets,

we are interested in the unsupervised learning of OCGMs in robotic scenarios.

These experiments are more challenging as the objects are real-world objects that

have diverse shapes and textures including the robot arm itself. Moreover, in the

manipulation tasks, there are interactions between the objects and the robot, which

further increases the difficulty of the disentanglement of learned scene components.

To this ends, we first explore whether the fully unsupervised approach can still learn

meaningful scene components from the raw observations. Leveraging the learned

object latent representations and the segmentation masks, we then investigate how

these features assist in facilitating manipulation within an actual robotic setting.

As a 2D OCGM only learns to reconstruct object pixels of 2D images, which

can provide limited information for robotic applications such as the geometry-

based object grasping or collision-aware path planning. Moreover, instead of

capturing the 3D geometry of the discovered objects, the learned object-centric

latent representations also only model the variations of the objects in the projected

2D image space. To address this limitation, the model can be upgraded to 3D,
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leveraging the recent implicit 3D representations, neural radiance fields(NeRFs) [16],

as the object- and background-decoder. In 2D OCGM [17], the object-centric

latent representation can be factorised into the where and what components

that disentangles the object spatial information from its appearance information.

This disentanglement can facilitate scene editing by offering more flexibility and

interpretability of the object latent representations. However, recent 3D OCGMs [18,

19] represent each object only using a single latent embedding and thus cannot

provide such benefits. To solve this problem, it is conceivable that in contrast

to 2D OCGMs, the object shape is not only perceivable in observations such as

the point clouds, but can also be predicted as outputs of NeRFs. We therefore

propose to leverage a minimum volume principle to estimate the object poses

based on the object shapes without using any human supervision or known object

templates. Besides the design choices of the models, it is also important to deploy

the 3D OCGM in real-world robotic scenes and evaluate it’s performance in several

downstream perception tasks. These experimental investigations constitute the

last contribution of this thesis.

1.2 Guiding Questions

In this thesis, we focus on four guiding questions that investigate the application of

OCGMs in robotic tasks. The guiding questions that we propose are the following:

1. Given that generative models naturally capture factors of variation, could

they also be used to expose these factors such that they can be modified in a

task-driven way?

2. How well does an OCGM learn disentangled components from robot inter-

action datasets in a fully unsupervised fashion?

3. Can an OCGM explicitly model the 3D geometry of objects and the

background while still being able to disentangle the object spatial information

from its appearance information, as in 2D OCGMs, without using any known

CAD models or templates of the objects?
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4. Can the 3D OCGM be applied to real-world robotics scenarios and achieve

various functionalities for scene understanding, such as the object detection, 6D

pose estimation, object-centric latent representation learning and 3D reconstruction,

to facilitate downstream robotic tasks without using any human supervision?

More specifically, we aim to show that (a) by using an affordance predictor (a

classifier) trained on a learned latent space of various tools, the model can learn

from the simulated experiences of trial-and-errors of tool-use in different reaching

tasks to identify the task-relevant trajectory in the latent space. This affordance

predictor can then be leveraged to perform task-driven tool synthesis together with

the learned tool decoder; (b) by deploying the OCGM to robotics scenarios that

involve intensive interactions between the robot and the objects, the model can still

learn meaningful object components in an unsupervised fashion and leverage the

learned object-centric latent representations to facilitate the object rearrangement

tasks; (c) a 3D OCGM that leverages the heuristic of minimum volume principle for

unsupervised object pose estimation and object-centric scene generation and scene

editing. (d) object pose estimation is improved by a 3D OCGM that is eventually

applied to real-world robotics scenarios with a shape completion module. We then

demonstrate that a fully unsupervised OCGM can provide several functionalities

for scene understanding, such as the object detection, 3D reconstruction, 6D pose

estimation and latent representation learning, which can be potentially leveraged

by downstream robotic applications.

1.3 Thesis Outline

We begin the thesis by providing the background and an overview of the existing

literature on affordance learning and OCGMs in Chapter 2. The Chapters 3 to 6

aims at answering the guiding question and provide the concrete theory, method

and the experiment to address the questions raised above. In the remainder of this

section, we will first provide a brief overview of individual chapters from Chapter 3 to

6 and how they address each guiding question. Each of the subsections summarises
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the motivation, contribution and conclusion of Chapters 3 to 6. An overview of

the key contributions in this thesis is illustrated in fig. 1.1.

(a)

(b)

(c)

(d)

Figure 1.1: An overview over the key contributions of this thesis. (a) In Chapter 3,
we train an affordance predictor of tool feasibility in a reaching task and utilise it to
synthesis tools in a task-driven way. (b) In Chapter 4, we propose an unsupervised
OCGM in 2D for robotics scenarios and evaluated its performance in two common robotic
tasks: robot pushing and pick-and-place. (c) In Chapter 5, we upgrade the 2D OCGM
to 3D by employing NeRFs as the decoder to explicitly model the 3D geometry of the
objects and the scene. We proposes minimum volume principle as heuristic to allow the
unsupervised 6D pose estimation so that the appearance and spatial information of the
objects is disentangled, which also facilitates scene editing. (d) In Chapter 6, we deploy
the 3D OCGM in real-world robotics scenarios. We improve the pose estimation by
introducing a shape-completion module for handling the occlusions. We also demonstrate
the advantages of using OCGM as the scene understanding module for robotic tasks
compared to the vanilla NeRFs by evaluate the OCGM performance in several perception
tasks in real-world.

Finally, Chapter 7 revisits our guiding questions, summarises the conclusions

and contributions. We also analysis the limitations of the proposed approaches,

and provides an outlook for future research directions building upon the con-

tributions of this thesis.
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1.3.1 Tool Synthesis Using Affordance Predictor Learned
from Tool-use Experiences

Research in cognitive science [14] highlights that, human can develop intuition

that automatically and efficiently maps the visual observation to complex patterns

of ideas, which includes the approximation of the outcome of a physical process.

Gibson [20] defines the concept of affordance to describe the intuition of whether

an object in the environment is affordable for specific actions. For the tool-use

tasks, we posit that an intuition of the affordance of the tools can naturally emerge

as the experiences of tool-use accumulate. To these ends, we are interested in

whether this process can be replicated using neural networks and then applied

to tool synthesis tasks.

To simulate the experiences of tool-use, we collect a dataset that consists of

paired data of tool image, task image and a label of the feasibility of the given tool

for the task. Concretely, we investigate a reaching task where the robot should use

either a stick or a hook to reach a target in the scene while avoiding collision with

the obstacles. We train a generative model on the tool images using a differentiable

mesh decoder [21] that directly models the 3D geometry of the tools. An affordance

predictor is trained together with the learned latent space of the tools to predict

the feasibility of the tools for the given task image that describes the obstacles

and the reaching target in the scene. Once trained, we leverage the activation

maximisation [22] to traverse through the learned latent space of the tools to reach

a point that has a highest affordance for the given task. The found latent vector

can subsequently be decoded into explicit 3D meshs, which enables the visualisation

of the entire process of the tool synthesis.

The experiments presented in section 3.4 indicate that proper tools can be

synthesised with high accuracy given the corresponding task image using the

learned affordance predictor and the mesh decoder of the tools. Using the activation

maximisation the model can traverse from a start point of low affordance in the

latent space to a point that corresponds to high affordance for the given tasks.

Moreover, the visualisation depicted in fig. 3.4 shows that the morphing of the tools
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is a continues process, which indicates the existence of a trajectory in the latent

space along which the task-relevant affordance varies continuously. In contrast

to previous works in latent representation learning [23, 24] that focus on axis-

aligned disentanglement driven by the Gaussian prior, our work sheds light on

another possibility on the latent space manipulation, i.e. using a classifier to

perform task-oriented, high-level traversal in the latent space. Following our work,

[25] also demonstrates that a real quadruped robot is able to find the stable

walking pose by guiding the pose interpolation in latent space using a trained

high-level stability classifier.

Another interesting finding of this work is that, we found an unseen T-shape

tool (see the right-middle example of fig. 3.4) is created when the hook points

to left side but the target is on the right. This T-shape tool can be viewed as

the interpolation between the hook pointing to the left and the hook pointing to

the right. The creation of the T-shape tool indicates that the model is able to

first identify which part of the tool is important for the success of the task and

only modify that part intentionally. We hope this finding could provide insights

on future works on novel tool creation.

1.3.2 Unsupervised 2D OCGM for Robotic Scenes

Following section 1.3.1, we have demonstrated the ability of tool synthesis using

the learned latent space of the tools and a high-level affordance predictor. Since

this section, we begin with developing OCGMs that can discover object-like entities

and learn the object-centric latent representations from raw observations without

using human labels. Previous works[10, 11, 26] have found that by leveraging the

reconstruction bottleneck in the VAE, the model can segment the scene into object-

like entities. This disentanglement is motivated by different attention mechanisms

proposed in these works. One of the choices is the spatial attention [12, 13, 27] that

allows the model to encode the object latent representations separately into the

where component that captures the location of the objects and the what component

that encodes the shape and appearance of the objects. However, these models
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conduct experiments mainly on simple synthetic dataset such the moving MNIST

digits. We are thus interested in whether the unsupervised OCGMs can also be

applied to robotics scenarios, where the scenes have objects that vary widely in size

and texture, including the complex articulated object, the robot arm, as well.

To conduct this experiment, we create a pushing dataset consists of trajectories

of a Panda arm pushing the YCB objects [28] randomly on the table-top. We

also test our model using the real-world Sketchy dataset [29], where videos of

a robot gripper performing pick-and-place tasks are recorded. We propose the

model APEX that introduces a principled mask normalisation algorithm and a

feature-map scene encoder. For the OCGMs, the scenes are explained by multiple

components including the foreground and background component. The proposed

mask normalisation algorithm first models whether a pixel is jointly occupied by all

foreground components and then distribute the occupancy to a single component

using a softmax operation. In the OCGMs, the VAE operation runs multiple times

in each training iteration and is the most computationally expensive operation

in the model. To mitigate computation complexity, we propose to perform the

encoding not on the input images but on a down-sampled feature map that reuses

the outputs of the scene encoder. The benefit of encoding the feature map is

that, for a CNN-based encoder, increasing the input image size can result in a

quadratic growth of computation, but increasing the channel size only leads to

a linear growth of the computational cost. A feature map has a down-sampled

size than the original image with a larger channel size. By directly encoding the

feature map, we could thus save computations in the VAE-operations. Results

in Chapter 4 show that, the model can still successfully segment and track the

objects using the proposed encoding approach. Moreover, given the learned object

latent representation, we also demonstrate that it can facilitate the robot skill

execution on an object arrangement task. Another interesting finding of this work

is that, for the most complex object in the dataset, i.e. the robot arm, the model

learns to segment it differently in different dataset. For the Panda pushing dataset,

the model segments the robot arm into a single entity, whereas it segments the
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robot gripper into two separate components in the pick-and-place dataset(Sketchy

dataset). We posit that this is because there is relative motion between the grippers

in the pick-and-place tasks. This different segmentation results for the same object

suggest that there is no unique correct segmentation if we do not provide additional

inductive bias to specify the concrete level of abstraction.

1.3.3 Unsupervised OCGM with Pose Estimation in 3D

In section 1.3.2, we showed that an OCGM can learn meaningful object represen-

tations in a fully unsupervised fashion in robotics scenarios. However, the robot

manipulation is not only object-centric but also in 3D. The 2D decoder in the model

can identify the object pixels in the scene image using the decoded object masks,

but this projected geometry information is not sufficient for robotics manipulation

tasks, such as the geometry-based grasping and the collision-aware path planning.

Moreover, the object spatial information in 3D, i.e. the object 6D pose, is also more

informative than the 2D bounding boxes inferred from 2D images. For example, the

object 6D pose has been shown to facilitate the object grasping [30]. Estimating the

6D poses of the objects usually requires a known CAD Library or templates of the

objects that pre-define the canonical poses. To preserve the self-supervised fashion of

learning, we assume no such inputs are available both in the training phase and the

testing phase. Moreover, the pose estimation under this condition can be ill-posed

if there is no unique correct pose for the objects that exhibit symmetric shapes.

To address these problems, we propose ObPose that employs NeRFs as the

object decoder to explicitly model the object geometry in 3D. We choose RGB-D

images as inputs, which is easily available using the depth camera in robotics

experiments. Given the camera extrinsic- and the intrinsic parameters, the point

clouds can be computed from the depth image and it can be viewed as a discrete

sampling of the surface of the observed scene. Therefore, the point cloud observation

partially preserves the geometry of the scene in 3D. We use the instance colouring

stick-breaking process [31] to perform clustering on the input point clouds for the

scene segmentation. The segmented object point clouds thus can be viewed as an
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approximation of the original object shape. ObPose defines the pose of the object

using a bounding box containing the object that has a minimum volume. Due to

the symmetry of the objects, the volume of the bounding box remains unchanged

if a pair of the coordinate axes is swapped. We thus choose the bounding box

that has the closest distance to the world coordinate as the final bounding box

representing the object pose. This heuristic allows the model to predict unique

object pose without using any pre-defined labels or object templates.

The experimental results show that ObPose is able to discover meaningful object

entities in 3D scenes and to the best of our knowledge, it is also the first NeRF-based

OCGM that can estimate 6D poses of the discovered objects without using human

supervision. Therefore, ObPose is able to learn object-centric latent representations

that only capture the object appearance information. The spatial information

is disentangled from the latent representations as in the 2D OCGM works. In

Chapter 5.5.3 we further demonstrate that this property facilitates the scene editing.

The training of the model uses single view RGB-D images, which is different from

the baseline [18]. We observe that despite without having access to multi-view

supervision, the model is still able to reconstruct the 3D shapes of the objects.

1.3.4 3D OCGMs in Real-world Robotic Applications

In the last part of this thesis, we develop an OCGM that is applied to real-

world robotics scenarios. The current NeRF-based approaches for the robotic

applications [32] necessitates retraining the NeRF from scratch before each action,

which severely hinders the flexibility of deploying those models in robotic tasks

because the environment states need to be frequently updated. Nevertheless, the

NeRF-based OCGMs can recognise the objects using the learned object encoder and

thus alleviate the burden of retraining the model once it is trained in a self-supervised

fashion. This property of the NeRF-based OCGMs is thus of paramount importance

for the robotic applications. In ObPose, the minimum volume principle is used for

estimating the object poses, but we found that due to the occlusions in the scene,

the object shape observed from single-view images can not always be sufficient for
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accurate pose prediction. On this basis, we propose DreamUp3D that introduces a

shape completion module to inpaint the unobserved parts of the objects before the

pose estimation. The shape completion module is supervised via self-distillation

that allows it to learn the shape information of the objects by reusing the predictions

of the object decoder, which drastically saves the computation during the training.

Beside the model itself, another contribution of this work is to evaluate the

performance of the proposed 3D OCGM in real-world scenarios. The real-world

robotic data is more expensive to collect than simulation data. However, pretraining

the models with simulation data can have performance drop stems from the sim-

to-real gap of the data distribution. The OCGM is a self-supervised learning

model and thus does not require labelling for training. This property makes it

possible to directly collect real-world data for training. The experiment in Chapter 6

demonstrates that our final model, DreamUp3D, can successfully segment the scene

into object-like entities in the real-world. Moreover, comparing to NeRFs approaches,

the DreamUp3D takes only one RGB-D image as input while the NeRFs necessitate

a dense, multi-view images as inputs for the scene reconstruction. The inference

time of DreamUp3D is also reduced to only a fraction of a second for each update

of the current scene states, which is much faster compared to retraining the NeRF

from scratch. Moreover, we demonstrate that the learned object-centric latent

representation can be leveraged for the object matching, and the inferred object

poses can also facilitate the object rearrangement task in real-world.

1.4 Publications and Contributions

The following publications, listed in their order of appearance, form the main body

of chapter 3 to 6.

1. Y. Wu, S. Kasewa, O. Groth, S. Salter, L. Sun, O. Parker Jones, and I. Posner.

“Learning Affordances in Object-Centric Generative Models”. In: Workshop on

Object-Oriented Learning at ICML 2020 (July 2020)

The work [6] won the best paper award in Workshop on Object-Oriented Learning

at ICML 2020. The proposed approach has been applied to several works across a
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wide range of tasks including locomotion of a real quadruped robot:

A. L. Mitchell, M. Engelcke, O. P. Jones, D. Surovik, S. Gangapurwala, O. Melon,

I. Havoutis, and I. Posner. “First Steps: Latent-Space Control with Semantic Con-

straints for Quadruped Locomotion”. In: 2020 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS).

and path planning for reaching tasks:

C.-M. Hung, S. Zhong, W. Goodwin, M. Engelcke, O. Parker Jones, I. Havoutis, I.

Posner. Reaching Through Latent Space: From Joint Statistics to Path Planning in

Manipulation. IEEE Robotics and Automation Letters (RA-L) with ICRA (IEEE

International Conference on Robotics and Automation) 2022.

2. Y. Wu, O. Parker Jones, M. Engelcke, and I. Posner. "APEX: Unsupervised,

object-centric scene segmentation and tracking for robot manipulation." In 2021

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

3. Y. Wu, O. Parker Jones, and I. Posner. "ObPose: Leveraging Pose for Object-

Centric Scene Inference and Generation in 3D." In: arXiv preprint arXiv:2206.03591.

4. Y. Wu, H. Sáez de Ocáriz Borde, J. Collins, O. Parker Jones, I. Posner.

"DreamUp3D: Object-Centric Generative Models for Single-View 3D Scene Under-

standing and Real-to-Sim Transfer." Submitted to IEEE Robotics and Automation

Letters (RA-L)
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2
Background

In this chapter, we provide some context for deep generative models and an overview

of topics related to the central themes of the thesis: affordance learning and object-

centric generative models. We first introduce the latent variable models and the

object-centric generative models from section 2.1 to section 2.2.2. Section 2.3 then

covers related work; 2.3.1, background knowledge about affordance learning; and

section 2.3.2, the recent evolution of object-centric generative models.

2.1 Latent Variable Models

The latent variable model is one type of generative model that attaches an unobserved

latent variable z𝑖 to each observation 𝑥𝑖, where the latent variable z𝑖 is expected

to capture meaningful variations, e.g. textures of objects, ages of human faces or

view angles of the scenes, etc. A typical generative process follows:

z𝑖 ∼ N(z|0, I),x𝑖 ∼ N(`\ (z𝑖) |diag(𝜎\ (zi))) (2.1)

Here `\ and 𝜎\ are usually parameterised by deep neural networks. Given a large

scale dataset that could involve millions of latent variables, the inference of the

posterior 𝑝(z|x) becomes tractable by introducing amortized variational inference [33,

34]. This learns the shared patterns across the approximate posterior 𝑞(z|x) of

15
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each pair of {z𝑖, x𝑖}. To learn disentangled latent representations, [23] rewrites

the variational free energy objective function [35] (also known as evidence lower

bound(ELBO)) to:

L(\, 𝜙, 𝛽; x, z) = E𝑞𝜙 (z|x) [log𝑝\ (x|z))] − 𝛽DKL(𝑞𝜙 (z|x) ∥ 𝑝(z)), (2.2)

where 𝛽 is a hyperparameter that balances the regularisation strength and the recon-

struction accuracy. DKL(𝑞𝜙 (z|x) ∥ 𝑝(z)) is the Kullback-Leibler divergence [36](KL

divergence) which measures the distance between the distribution 𝑞𝜙 (z|x) and 𝑝(z).

\ and 𝜙 are the parameters utilised for modelling the likelihood and the approximate

posterior distribution. The expectation of the second term in Equation 2.2 under

the data distribution 𝑝(x) can be further broken down into two terms:

E𝑝(x) [DKL(𝑞𝜙 (z|x) ∥ 𝑝(z))] = I(x; z) + DKL(𝑞𝜙 (z) ∥ 𝑝(z)) (2.3)

where I(x; z) is the mutual information between x and z under the distribution of

𝑝(x)𝑞(z|x). We refer readers to [23] for detail derivation. Penalising the I(x; z)

will reduce the amount of information about x captured by z whereas penalizing

DKL(𝑞𝜙 (z) ∥ 𝑝(z)) pushes the marginalised approximate posterior 𝑞(z) towards the

multivariate Gaussian prior 𝑝(z). This helps to explain why the latent representation

learned by the variational autoencoders (VAEs) has the effects of disentanglement

along each latent dimensions and how this disentanglement strength might be

adjusted by the hyperparameter 𝛽. Given a latent space disentangled along each

dimension, we can manipulate the learned latent representation by e.g. traversing

each dimension or perform arithmetic operations.

Despite these promising properties, prior work has mostly conducted the

experiments using single objects, e.g. faces, chairs, MNIST numbers, etc. However,

in real world a scene is usually comprised of several objects and the background.

When humans analyse a complex scenario we naturally attend to only the part of

the image that is most relevant to the current task. We suggest it is intuitive to

first decompose a scene into several components, and then learn the corresponding

latent representation of each segmented component and its reconstruction. This
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is especially benificial for robotic tasks that involves object-centric operations.

Fortunately, this behaviour can still be implemented by learning to reconstruct the

observed scene with several properly designed attention mechanisms introduced

in the encoding step.

2.2 Object-centric Generative Models

Compared to VAE that encodes the scene into a single latent representation, the

OCGMs first learn to decompose the scene into several scene components and the

background. Next, a component VAE is employed to encode and reconstruct each

segmented scene component, which is later composed to reconstruct the entire

scene. In this way, the OCGMs can learn object-centric latent representations

and the decoder in the component VAE also models the geometry and texture of

each object independently. This object-level disentanglement offers more flexibility

for downstream robotic tasks as a scene understanding module. Next, we will

explain each module in the OCGMs in detail.

2.2.1 Scene Encoder

The scene encoder in OCGMs encodes the raw RGB image or point cloud inputs

into pixel-wise or point-wise embeddings. For the static scene, a U-Net-like [37]

structure can be employed, whereas for the video data a ConvLSTM [38] can be

used to capture the spatial-temporal information. The predicted scene embedding

can be of the same size of the inputs or be down-sampled for the improvement of

the computational efficiency. For the image inputs, the CNN layers can be used and

for the point cloud inputs we can use the KPConv [39] layer for the encoding. The

encoded scene embeddings will then be clustered into scene components and then be

further encoded into object-centric representations. As these are two different types

of tasks, different features are needed for the learning. The learning of these two types

of features can be achieved using two additional MLPs following the scene encoder.
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2.2.2 Attentions in the OCGMs

The key designs that cause the unsupervised scene decomposition and also dif-

ferentiate each OCGM from each other is the special attention mechanisms used

in the OCGMs. Next, we will explain different attention mechanisms that can

motivate object-centric disentanglement in detail.

Sequential Slot-Based Attention

Sequential slots-based attention [10] employs an attention net that recurrently

generates masks over a sequence of steps to condition a component VAE. The

component VAE is a VAE that encodes the masked observations into the latent

representations and then decodes it to reconstruct the masked area of the scene.

The recurrent attention network predicts the component masks and tracks which

parts of the image have yet to be explained using an autoregressive process:

m1 = 𝛼1,m𝑘 = s𝑘−1 ⊙ 𝛼𝑘 ,m𝐾 = s𝐾 , (2.4)

Here the component mask m is computed as the multiplication of the attention

mask 𝛼 and the scope s, which is initialised and updated as follows:

s0 = 1𝑁×1, s𝑘 = s𝑘−1 ⊙ (1 − 𝛼𝑘 ), (2.5)

The scope s keeps track of which pixels in an image have been accounted for. The

ones in the scope s indicate unexplained pixels, and zeros represent the already

explained part of the image. Without introducing any further inductive bias, [10]

demonstrates that the component masks m can converge to object-like entities by

only reconstructing the observed scene composed by the decoded scene components

using the component VAE. The learned object-centric latent representations can

encode meaningful variations along each dimension of the latent embedding, e.g.

the location of the object or the size of the object, which can be visualised by

traversing a single dimension of the learned latent embedding and then decoding

the modified latent embedding.
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Another approach focused on sequential slots-based attention [11] further

factorises the object-centric latent representation into a separate triplet of con-

tinuous latent variables z = {z𝑤ℎ𝑎𝑡 , z𝑤ℎ𝑒𝑟𝑒, z𝑝𝑟𝑒𝑠}. Each triplet of latent variables

explicitly encodes the position, appearance and presence of each object. Such a

disentanglement provides more flexibility for scene editing and is more intepretable

compared to encoding the location and appearance jointly using a single latent

embedding. For each scene component, the z𝑤ℎ𝑎𝑡 is decoded using a glimpse decoder

and then scaled and shifted by a spatial transformer [40] according to z𝑤ℎ𝑒𝑟𝑒. As the

inference is sequential, the encoder can be implemented utilising a recurrent neural

network(RNN) to approximate the dependency between the latent embeddings:

𝑞𝜙 (z|x) = 𝑞𝜙 (𝑧𝑝𝑟𝑒𝑠,𝑛+1 = 0|z1:𝑛, x)
𝑛∏
𝑖=1

𝑞𝜙 (z𝑤ℎ𝑒𝑟𝑒,𝑖, z𝑤ℎ𝑎𝑡,𝑖, 𝑧𝑝𝑟𝑒𝑠,𝑖 = 1|z1:𝑖−1, x) (2.6)

This dependency in the inference step is introduced to avoid encoding the same

object twice. However, sequential inference can impose an unnatural ordering on

objects [41], which is not desirable as the order of the slots should be permutation-

equivariant in the general case where no additional assumptions are imposed on the

objects in the scene. To address these limitations, another group of works [41, 42]

introduce the instance slots-based attentions to prevent the model from learning

an ordered set of slots.

Instance Slot-Based Attention

The first instance slots-based attention we introduce in this section is the slot

attention [42]. The slot attention module maps from a set of input feature vectors to

a set of output vectors that we refer to as slots. Each slot can then be decoded into

a scene component and captures object information such as object shape, object

texture etc. Slot attention uses an iterative attention mechanism to map from its

inputs to the slots. To prevent the model from learning an unnatural ordering of the

slots, the slots are initialised at random and then refined for several iterations to bind

to a particular part of the input features. Concretely, given the input feature vectors

e and the randomly initialised slot o, the slot attention module first uses learnable
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linear transformations 𝑘, 𝑞, and 𝑣 to map inputs and slots to a common dimension

𝐷, and then computes the dot-product attention with attention coefficients that

are normalised over the slots to introduce competition between the slots:

𝛼𝑎𝑡𝑡 = 𝜋SM( 1
√
𝐷
𝑘 (e)𝑞(𝜋LN(o))𝑇 ) (2.7)

The 𝛼𝑎𝑡𝑡 , 𝜋SM and 𝜋LN denote the computed attention, the softmax operation and the

LayerNorm operation respectively. To aggregate the input values to their assigned

slots, the update u to the slots can be computed using a weighted mean as follows:

u = (𝛼𝑎𝑡𝑡 + 𝜖) (𝑣(e)) (2.8)

A Gated Recurrent Unit (GRU) [43], f𝐺𝑅𝑈 , is employed to update the slots utilising

the aggregated input information:

o = fGRU(o′, u) (2.9)

with o′ being the slot from refined in last iteration (for the first iteration, the o′

is then the randomly initialised slot). An optional residual connection can also

be implemented to facilitate learning:

o = o + h(𝜋LN(o)) (2.10)

with h being a mapping function parameterised by a MLP. After 𝑇 iterations of the

slot attention on the input features, the slots can converge to object-like entities

after training by reconstructing the observed scenes. In contrast to sequential slot-

based attention, the slot attention exhibits two key properties [42]: (1) permutation

invariance with respect to the input and (2) permutation equivariance with respect

to the order of the slots. These properties allow the predicted slots not to specialize

to one particular type of object, which facilitates generalisation.

Another instance slots-based attention is the Instance Colouring Stick-Breaking

Process (IC-SBP) [41]. The IC-SBP is a non-parametric, differentiable algorithm

that clusters pixel embeddings into a variable number of soft attention masks m.
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The soft attention masks are computed following the same stick-breaking process

as in sequential slots-based attention:

m1 = 𝛼1,m𝑘 = s𝑘−1 ⊙ 𝛼𝑘 ,m𝐾 = s𝐾 , (2.11)

The scope s𝑘 ∈ [0, 1]𝑁×1 tracks which pixels have not yet been explained. s𝑘 is

initialised and updated as follows:

s0 = 1𝑁×1, s𝑘 = s𝑘−1 ⊙ (1 − 𝛼𝑘 ) (2.12)

𝛼𝑘 is computed as the distance between a sampled cluster seed and all individual

pixel embeddings (we assume RGB here) according to a kernel 𝜓. To prevent

the model from learning a fixed order of segmented masks, the seed is sampled

by first computing a matrix of seed scores, which is initialised by sampling from

a uniform distribution c ∼ 𝑈 (0, 1). The seed scores are then multiplied by the

scope matrix to mask out the explained pixels. The pixel embedding that has the

highest score is then selected as the cluster seed. The sampling from the uniform

distribution guarantees the order of the components to be stochastic, therefore

there will be no fixed order of the scene components to be learned during training.

Different from the slot-attention, the IC-SBP assigns each scene component to

an actual pixel, which allows additional inductive bias for the clustering to be

introduced. For example, the pixels surrounding the sampled cluster seed could

have a higher probability to be clustered together.

Spatial Slot-Based Attention

The two types of attention discussed above employ either sequential inference

or iterative refinement to learn a set of order-free object-centric representations.

These approaches, however, can be computationally expensive when scaled to many

objects in a scene. Inspired by the classic object detection framework [3], the spatial

slots-based attention assigns each slot to a feature in a feature map predicted by

a CNN-based encoder in parallel. Similar to [11], each feature is further decoded

to a triplet of continuous latent variables z = {z𝑤ℎ𝑎𝑡 , z𝑤ℎ𝑒𝑟𝑒, z𝑝𝑟𝑒𝑠} to encode the
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appearance, location and the presence in a disentangled way. Consider a feature

map of size 𝐻𝑥𝑊 : individual features of the feature map are spatially separated

from each other. This is an inherent inductive bias that prevents two slots from

explaining the same area, i.e. different objects should be in different locations. A

prior distribution over the z𝑤ℎ𝑒𝑟𝑒 can also be chosen to specify the average size of

the objects in the scene. However, this either requires a priori knowledge about the

object sizes in the dataset or is infeasible, because in a general setting the object

sizes can be arbitrary, e.g. a huge object occupies the full image. In this sense, the

key inductive bias of the spatial slots-based attention might not be valid.

2.2.3 Component VAE

After segmenting the scene into scene components, the component VAE will then

encode each segmented scene component into object-centric latent representation

and decode them to reconstruct the scene. The most of the computational cost

of the OCGMs is spent on this operation. Consider a video of 𝑁 frames, if the

model performs 𝐷 times of object proposals and tracks 𝑃 detected objects from

previous time steps, then 𝑁 × (𝐷 + 𝑃) times of VAE operations are needed to

discover new objects and update the states of objects that are detected and tracked.

Therefore, any improvements on the computational efficiency of the component

VAE can drastically reduce the computational cost of the OCGMs. For the encoder

in the component VAE we can use 2D CNN-based encoder for the images and

KPConv-based encoder for the point clouds. The decoder can be a vanilla CNN-

based decoder or a Spatial Broadcast Decoder [44]. The latter is shown to be

able to help VAEs learn disentangled representations and is therefore commonly

chosen in 2D OCGMs [10, 45]. For robotic applications, nevertheless, a 2D decoder

can not provide sufficient 3D information for downstream tasks such as the robot

manipulation. Therefore, a 3D decoder that directly models the geometry and

the texture of the objects can be introduced into the OCGMs. Currently, the 3D

decoder can be a generative radiance field (GRAF) [46]. The GRAF is a continuous

function which maps the object-centric latent representation, the coordinate and



2. Background 23

the viewing direction of a query point to a volume density and an RGB color value.

We can learn the GRAFs by parameterising this continuous function with a MLP.

2.3 Related works

In this section, we present works related to the various aspects of the central

investigation of this thesis: affordance learning and object-centric generative models.

2.3.1 Affordance Learning in Robotic Tasks

In cognitive psychology, the concept of Affordance [20] defines the action possibilities

that are readily perceivable by an actor, e.g. a door handle can be turned. According

to [20], the world is perceived not only in terms of object shapes and spatial

relationships but also in terms of object possibilities for action. The affordance

therefore serves as the bridge between the perception and the action of the agent.

As in computer vision tasks, visual affordance recognition also aims to classify,

detect and segment the objects’ affordances in a scene.

A affordance classification models are similar to image classification models that

use an encoder to learn visual features and predict an affordance label as the output.

The encoder can be a CNN encoder [47] that learns a global feature for the whole

image. However, classification accuracy can be influenced by the noisy background

features in the observations. To alleviate the influence of the background features,

[48] proposes to employ RPN[3, 49] to first extract the object region and then

classify the object affordance within the detected object area in the image. Similar

to object detection tasks, the interference of object occlusion in complex scenes is

still challenging to address. Therefore, datasets that richly contain these situations

are of paramount importance for the final performance of the model. To this end,

[50] and [51] proposed large-scale object affordance detection datasets to handle

scenes that contain intensive occlusion of the objects.

Affordance segmentation is a more precise way to predict affordances. Affordance

segmentation is critical for robots interaction because the robot usually only

manipulates a part of the object, e.g. the handle of the mug instead of the
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whole mug. Similar to instance segmentation tasks, affordance segmentation

models [48, 52] also employ a detect and segment pipeline. For these approaches,

the segmentation accuracy therefore depends on the accuracy of the object detection.

Another group of works propose detection-free [53, 54] approaches that improve the

robustness of the affordance segmentation by proposing a context information-based

affordance segmentation model that combines the global information and the local

information for the affordance prediction. To train the segmentation model, several

datasets [55–57] are constructed and conducted as well.

In contrast to the discriminative approaches discussed above that learn affordance

prediction directly from human supervision, in this thesis we investigate a weakly

supervised, generative approach for affordance learning (see Chapter 3). Our

approach first learns a latent space of different tools used for a reaching task via

unsupervised reconstruction of the multi-view RGB-D images of the tools. The

latent space therefore encodes the shape information of the tools applied to the

reaching task. To expose the affordance manifold induced by the learned latent

space, we train a classifier (affordance predictor) to learn to predict the feasibility

of the tools in the reaching tasks. The trained classifier can then be leveraged

to find trajectories traversing the latent space from spaces of low feasibility of

the tools to spaces of high feasibility of the tools. Our approach demonstrates

that such trajectories exist and can be found by the affordance predictor in a

latent space of the objects learned in an unsupervised way, which can also facilitate

tool-synthesis using the 3D decoder of the tools.

2.3.2 Object-centric Generative Models

Scene understanding based on object-centric representations has advantages of

interpretability, compositional generalisation and data efficiency. Object-centric

learning favors using minimum supervision for training and focus on inductive biases

that encourage the model to factorise the scene observation into meaningful, object-

level entities. The inductive biases used for object-centric learning can be mainly

divided into three groups: sequential slots-based, spatial slots-based and instance
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slots-based. Early OCGM works [10–12, 58] learn ordered sequences of vectors via

applying sequential attention to images. In each step, an attention mask is computed,

an auto-encoder network then encodes and decodes the masked observations

and learn the object-centric latent representation through the reconstruction

bottleneck [26]. A scope is usually used to track which pixel has not been explained

yet. As the inference is a sequential process, the model has to run N calls of a

VAE for N Objects in the scene. Moreover, due to the dependency of the sequential

inference, the model is computationally expensive to scale up to large amounts of

objects in the scene. Inspired by the Region Proposal Network(RPN)[3, 49] in the

classic object detection framework, the spatial slots-based OCGMs [13, 27, 59, 60]

associate object slots to different spatial locations and learn a grid of object-centric

latent vectors in a fully parallelised fashion. This reduces the time complexity of

processing and improves the scalability in terms of object density. Another limitation

of the sequential-based OCGMs is that, the learned object-centric representations

has an inherent order due to the dependency in the inference process. This is

counter-intuitive as the object slots should be symmetric without further inductive

biases being introduced. To address this problem, instance-based OCGMs [31, 42,

45, 61–65] propose attention based grouping to learn a permutation-invariant set of

vectors. A random sampling step is usually employed to ensure the object-centric

vectors are order-free. Besides static scenes, video-based OCGMs [13, 17, 66, 67]

are proposed to additionally leverage spatial temporal consistency for learning

object entities. With video-based models, OCGMs can also perform object tracking

throughout the video sequence [13, 17].

With the advent of differentiable rendering [68], recently proposed OCGMs [18,

46, 69–71] have replaced the 2D CNN decoders the 3D decoders such as NeRFs[16]

to explicitly model the 3D geometry and the texture of the objects and the scene.

The training of the models are supervised by posed multi-view RGB images, and

it can be further accelerated by using the RGB-D images to allow training the

model without explicit ray marching [18]. These OCGMs allow novel-view synthesis

for downstream tasks. As being unsupervised approaches, the OCGMs will fail in
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complex real-world scenarios. Recent works use the semi-supervised training for

the real-world datasets. DINOSAUR [72] proposes that rather than training on

the raw image pixels, training on the pre-trained DINO [73] features can lead to

obvious improvements on instance segmentation accuracy in real-world scenarios.

To handle more complex data, more recent models [74, 75] have also employed

diffusion model [76] to improve the modeling capacity.

In this thesis, we focus on the investigation on OCGMs applied to robotic scenes.

We investigate the unsupervised segmentation performance of OCGMs in robotic

tasks that involve complex, articulated robot arms and find the limitation of the

current inductive bias for scene segmentation in OCGMs, i.e. for complex objects

such as the robot arms, the segmentation results can be not unique in robotic

tasks where the robot arms can have different task-dependent motions. Additional

inductive biases are thus necessary to further motivate the desired segmentation

results of the robot arms. We also emphasis the limitations of 2D OCGMs for

robotic tasks caused by not directly modelling the 3D geometry of the objects

which is of pivotal importance for robot manipulation. Therefore, we propose two

3D OCGMs (see Chapter 5 and Chapter 6) that, to the best of our knowledge,

are the first OCGMs that can disentangle the spatial information of the objects

from its appearance information as in the 2D OCGMs. We also demonstrate how

this disentanglement facilitates the scene editing by providing more flexibility for

scene inference. In addtion to the proposed models, we also, to the best of our

knowledge, for the first time apply the 3D OCGMs and emphasis the benefits

of using 3D OCGMs for scene understanding in robotic tasks compared to the

commonly used NeRF-based approaches. We demonstrate these advantages by

comparing its performance in several perception tasks in real-world robotic scenes.



3
Learning Affordances in Object-Centric

Generative Models

In this chapter we explore the richness of information captured by the latent space

of a vision-based generative model. The model combines unsupervised generative

learning with a task-based performance predictor to learn and to exploit task-

relevant object affordances given visual observations from a reaching task, involving

a scenario and a stick-like tool. While the learned embedding of the generative

model captures factors of variation in 3D tool geometry (e.g. length, width, and

shape), the performance predictor identifies sub-manifolds of the embedding that

correlate with task success. Within a variety of scenarios, we demonstrate that

traversing the latent space via backpropagation from the performance predictor

allows us to imagine tools appropriate for the task at hand. Our results indicate that

affordances – like the utility for reaching – are encoded along smooth trajectories in

latent space. Accessing these emergent affordances by considering only high-level

performance criteria (such as task success) enables an agent to manipulate tool

geometries in a targeted and deliberate way. This work was presented orally and

received an outstanding paper award as:

Y. Wu, S. Kasewa, O. Groth, S. Salter, L. Sun, O. Parker Jones, and I. Posner.

“Learning Affordances in Object-Centric Generative Models”. In: Workshop on

27
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3.1 Introduction

The advent of deep generative models [e.g. 10, 61, 77] with their aptitude for

unsupervised representation learning casts a new light on learning affordances

[20]. This kind of representation learning raises a tantalising question: Given that

generative models naturally capture factors of variation, could they also be used

to expose these factors such that they can be modified in a task-driven way? We

posit that a task-driven traversal of a structured latent space leads to affordances

emerging naturally along trajectories in this space. This is in stark contrast to

more common approaches to affordance learning where it is achieved via direct

supervision or implicitly via imitation [e.g. 78–82]. The setting we choose for our

investigation is that of tool synthesis for reaching tasks as commonly investigated

in the cognitive sciences [83, 84].

Figure 3.1: Tool synthesis for a reaching task. Our model is trained on data-triplets
{task observation, tool observation, success indicator}. Within a scenario, the goal is
to determine if a given tool can reach the goal (green) while avoiding barriers (blue)
and remaining behind the boundary (red). If a tool cannot satisfy these constraints, our
approach (via the performance predictor) imagines how one may augment it in order
to solve the task. Our interest is in what these augmentations, imagined during tool
synthesis, imply about the learned object representations.

In order to demonstrate that a task-aware latent space encodes useful affordance

information we require a mechanism to train such a model as well as to purposefully

explore the space. To this end we propose an architecture in which a task-based
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performance predictor (a classifier) operates on the latent space of a generative model

(see fig. 3.1). During training the classifier is used to provide an auxiliary objective,

aiding in shaping the latent space. Importantly, however, during test time the

performance predictor is used to guide exploration of the latent space via activation

maximisation [85–87], thus explicitly exploiting the structure of the space. While our

desire to affect factors of influence is similar in spirit to the notion of disentanglement,

it contrasts significantly with models such as 𝛽-VAE [88], where the factors of

influence are effectively encouraged to be axis-aligned. Our approach instead relies

on a high-level auxiliary loss to discover the direction in latent space to explore.

Our experiments demonstrate that artificial agents are able to imagine an

appropriate tool for a variety of reaching tasks by manipulating the tool’s task-

relevant affordances. To the best of our knowledge, this makes us the first to

demonstrate an artificial agent’s ability to imagine, or synthesise, 3D meshes of

tools appropriate for a given task via optimisation in a structured latent embedding.

Similarly, while activation maximisation has been used to visualise modified input

images before [e.g. 89], we believe this work to be the first to effect deliberate

manipulation of factors of influence by chaining the outcome of a task predictor

to the latent space, and then decoding the latent representation back into a 3D

mesh. Beyond the application of tool synthesis, we believe our work to provide

novel perspectives on affordance learning and disentanglement in demonstrating

that object affordances can be viewed as trajectories in a structured latent space

as well as by providing a novel architecture adept at deliberately manipulating

interpretable factors of influence.
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3.2 Related Work

The concept of an affordance, which describes a potential action to be performed

on an object (e.g. a doorknob affords being turned), goes back to [20]. Because of

their importance in cognitive vision, affordances are extensively studied in computer

vision and robotics. Commonly, affordances are learned in a supervised fashion

where models discriminate between discrete affordance classes or predict masks

for image regions which afford certain types of human interaction [e.g. 78, 79, 82,

90–92]. Interestingly, most works in this domain learn from object shapes which

have been given an affordance label a priori. However, the affordance of a shape

is only properly defined in the context of a task. Hence, we employ a task-driven

traversal of a latent space to optimise the shape of a tool by exploiting factors

of variation which are conducive to task success.

Recent advances in 3D shape generation employ variational models [93, 94]

to capture complex manifolds of 3D objects. Besides their expressive capabilities,

the latent spaces of such models also enable smooth interpolation between shapes.

Remarkable results have been demonstrated including ‘shape algebra’ [94] and

the preservation of object part semantics [95] and fine-grained shape styles [96]

during interpolation. This shows the potential of disentangling meaningful factors of

variation in the latent representation of 3D shapes. Inspired by this, we investigate

whether these factors can be exposed in a task-driven way. In particular, we propose

an architecture in which a generative model for 3D object reconstruction [21] is

paired with activation maximisation [e.g. 85–87, 97] of a task-driven performance

predictor. Guided by its loss signal, activation maximisation traverses the generative

model’s latent representations and drives an imagination process yielding a shape

suitable for the task at hand.

A key application of affordance-driven shape imagination is tool use. Robotics

boasts a mature body of literature studying how robots can utilise tools to improve

their performance across a wide range of tasks like reaching [98], grasping [99],

pushing [90] and hammering [100]. The pipeline executing tool-based tasks typically

starts with models for tool recognition and selection [e.g. 78, 100–103] before
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tool properties and affordances are leveraged to compute higher-order plans [104].

Our proposed model lends itself to robotics applications like these, as the learned

latent space encodes a rich object-centric representation of tools that are biased

for specific tasks.
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3.3 Method

Figure 3.2: The model architecture. A convolutional encoder 𝜙 represents the task
image 𝐼𝐺 as a latent vector z𝐺. In parallel, the 3D tool encoder 𝜓 takes an input image 𝐼 𝑖

𝑇

and its silhouette 𝐼 𝑖
𝑆

and produces a latent representation z𝑇 . The concatenated task–tool
representation h𝑐𝑎𝑡 is used by a classifier 𝜎 to estimate the success of the tool at solving
the task (i.e. reaching the goal). Given the gradient signal from this performance predictor
for success, the latent tool representation z𝑇 gets updated to render an increasingly
suitable tool (via the 3D tool decoder 𝜓′). We pretrained the encoding and decoding
models (𝜓, 𝜓′) together as in prior work [105, 106].

Our overarching goal is to perform task-specific tool synthesis for 3D reaching

tasks. We frame the challenge of tool imagination as an optimisation problem in

a structured latent space obtained using a generative model. The optimisation is

driven by a high-level, task-specific performance predictor, which assesses whether

a target specified by a goal image 𝐼𝐺 is reachable given a particular tool and in

the presence of obstacles. To map from tool images into manipulable 3D tools,

we first train an off-the-shelf 3D single-view reconstruction model taking as input

tool images 𝐼𝑖
𝑇
, 𝐼
𝑗

𝑇
and corresponding tool silhouettes 𝐼𝑖

𝑆
, 𝐼
𝑗

𝑆
as rendered from two

different vantage points 𝑖 and 𝑗 . After training, the encoder can infer the tool

representation that contains the 3D structure information given a single-view RGB

image and its silhouette as input. This representation is implicitly used to optimise



34 3.3. Method

the tool configuration to make it suitable for the task at hand. An overview of

our model is given in fig. 3.2.

  

Scenarios

A B C D E

Inputs

✘ ✘ ✘ ✘ ✘

✓✓ ✓ ✓ ✓

Figure 3.3: (Left) Task examples from our dataset. Top and bottom rows correspond
to unsuccessful and successful tool examples respectively. Columns A - E represent five
different task scenario types each imposing different tool constraints including width,
length, orientation and shape. Note that the robot is fixed at its base on the table and
constrained to remain outside the red boundary. Hence, it can only reach the green target
with a tool while avoiding collisions with the blue obstacles. (Right) Model inputs {task
observation, tool observation} during training and test time.

More formally, we consider 𝑁 data instances: {(𝐼𝑛
𝐺
, 𝐼
𝑛,𝑖

𝑇
, 𝐼
𝑛, 𝑗

𝑇
, 𝐼
𝑛,𝑖

𝑆
, 𝐼
𝑛, 𝑗

𝑆
, 𝜌𝑛)}𝑁

𝑛=1,

where each example features a task image 𝐼𝐺 , tool images 𝐼𝑇 in two randomly

selected views 𝑖 and 𝑗 , and their corresponding silhouettes 𝐼𝑆, as well as a binary

label 𝜌 indicating the feasibility of reaching the target with the given tool. Examples

of task images and model inputs are shown in fig. 3.3. In all our experiments, we

restrict the training input to such sparse high-level instances. For additional details

on the dataset, we refer the reader to the supplementary material.

3.3.1 Representing Tasks and Tools

Given that our tools are presented in tool images 𝐼𝑇 , it is necessary for the first

processing step to perform a 3D reconstruction of 𝐼𝑇 , from pixels into meshes. To

achieve this single view 3D reconstruction of images into their meshes, we employ

the same architecture as proposed by [105, 106]. The 3D reconstruction model

consists of two parts: an encoder network and a mesh decoder. Given the tool
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image and its silhouette in view 𝑖, i.e 𝐼𝑖
𝑇

and 𝐼𝑖
𝑆
, we denote the latent variable

encoding the tool computed by the encoder, 𝜓, as

𝜓(𝐼𝑖𝑇 , 𝐼
𝑖
𝑆) = z𝑇 . (3.1)

The mesh decoder takes z𝑇 as input and synthesises the mesh by deforming a

template. A differentiable renderer [21] predicts the tool’s silhoutte 𝐼 𝑗
𝑆

in another

view 𝑗 , which is compared to the ground-truth silhouette 𝐼 𝑗
𝑆

to compute the silhouette

loss L𝑠. This silhouette loss L𝑠 together with an auxiliary geometry loss L𝑔

formulates the total 3D reconstruction loss:

L𝑟𝑒𝑐𝑜𝑛 = L𝑠 + `L𝑔, (3.2)

where ` is the weight of the geometry loss. We refer the reader to [21] regarding

the exact hyper-parameter and training setup of the 3D reconstruction model.

Task images 𝐼𝐺 are similarly represented in an abstract latent space. For this

we employ a task encoder, 𝜙, which consists of a stack of convolutional layers.1 𝜙

takes the task image 𝐼𝐺 as input and maps it into the task embedding z𝐺 .

3.3.2 Tool Imagination

Task-driven learning The tool representation z𝑇 contains task-relevant informa-

tion such as tool length, width, and shape. In order to perform tool imagination,

the sub-manifold of the latent space that corresponds to the task-relevant features

needs to be accessed and traversed. This is achieved by adding a three-layer

MLP as a classifier 𝜎. The classifier 𝜎 takes as input a concatenation h𝑐𝑎𝑡 of

the task embedding z𝐺 and the tool representation z𝑇 , and predicts the softmax

over the binary task success. The classifier learns to identify the task-relevant

sub-manifold of the latent space by using the sparse success signal 𝜌 and optimising

the binary-cross entropy loss, such that

L𝑡𝑎𝑠𝑘 (𝜎 (h𝑐𝑎𝑡) , 𝜌) = − (𝜌 log (𝜎(h𝑐𝑎𝑡)) + (1 − 𝜌) log (1 − 𝜎(h𝑐𝑎𝑡))) , (3.3)
1Architecture details are provided in the supplementary material.
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where 𝜌 ∈ {0, 1} is a binary signal indicating whether or not it is feasible to solve the

task with the given tool. The whole system is trained end-to-end with a loss given by

L
(
𝐼𝐺 , 𝐼

𝑖
𝑇 , 𝐼

𝑖
𝑆, 𝐼

𝑗

𝑇
, 𝐼
𝑗

𝑆
, 𝜌

)
= L𝑟𝑒𝑐𝑜𝑛 + L𝑡𝑎𝑠𝑘 . (3.4)

Note that the gradient from the task classifier 𝜎 propagates through both the

task encoder 𝜙 and the toolkit encoder 𝜓, and therefore helps to shape the latent

representations of the toolkit with respect to the requirements for task success.

Tool imagination Once trained, our model can synthesise new tools by traversing

the latent manifold of individual tools following the trajectories that maximise

classification success given a tool image and its silhouette (fig. 3.2). To do this,

we first pick a tool candidate and concatenate its representation z𝑇 with the

task embedding z𝐺 . This warm-starts the imagination process. The concatenated

embedding h𝑐𝑎𝑡 is then fed into the performance predictor 𝜎 to compute the gradient

with respect to the tool embedding z𝑇 . We then use activation maximisation [85–

87] to optimise z𝑇 with regard to L𝑡𝑎𝑠𝑘 of the success estimation 𝜎 (h𝑐𝑎𝑡) and a

feasibility target 𝜌𝑠 = 1, such that

z𝑇 = z𝑇 + [
𝜕L𝑡𝑎𝑠𝑘 (𝜎 (z𝑇 ) , 𝜌𝑠)

𝜕z𝑇
, (3.5)

where [ denotes the learning rate for the update. Finally, we apply this gradient

update for 𝑆 steps or until the success estimation 𝜎 (z𝑇 ) reaches a threshold 𝛾, and

use 𝜓′(z𝑇 ) to generate the imagined 3D tool mesh represented by z𝑇 .
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3.4 Experiments

In this section we investigate our model’s abilities in two experiments. First, we

verify the functionality of the task performance predictor 𝜎 in a tool selection

experiment where only one out of three tools is successfully applicable. Second, we

examine our core hypothesis about task-driven tool synthesis in a tool imagination

experiment where the model has to modify a tool shape to be successfully applicable

in a given task. In both experiments, we compare our full task-driven model, in

which the tool latent space was trained jointly with the task performance predictor,

with a task-unaware baseline, in which the 3D tool representation was trained

first and the task performance predictor was fitted to the fixed tool latent space.

We report our results in table 3.1 as mean success performances within a 95%

confidence interval around the estimated mean.

Tool Selection We verify that the classifier 𝜎 correctly predicts whether or

not a given tool can succeed at a chosen task. For each task, we create a toolkit

containing three tool candidates where exactly one satisfies the scenario constraints.

The toolkits are sampled in the same way as the remaining dataset and we refer the

reader to fig. 3.3 again for illustrations of suitable and unsuitable tools. We check

whether the classifier outputs the highest success probability for the suitable tool.

Achieved accuracies for tool selection are reported in the left column of table 3.1.

Tool Imagination We evaluate whether our model can generate tools to succeed

in the reaching tasks. For each instance the target signal for feasibility is set to 𝜌𝑠 = 1,

i.e. success. Then, the latent vector of the tool is modified via backpropagation

using a learning rate of 0.01 for 10, 000 steps or until 𝜎(h𝑐𝑎𝑡) reaches the threshold

of 𝛾 = 0.997. The imagined tool mesh is generated via the mesh decoder 𝜓′. This

is then rendered into a top-down view and evaluated using a feasibility test which

checks whether all geometric constraints are satisfied, i.e. successful reaching from

behind the workspace boundary while not colliding with any obstacle. We report

the percentage of imagined tools that successfully pass this test in table 3.1.
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3.4.1 Model Training

In order to gauge the influence of the task feasibility signal on the latent space

of the tools, we train the model in two different setups. A task-driven model

is trained with a curriculum: First, the 3D reconstruction module is trained on

tool images alone. Then, the performance predictor is trained jointly with this

backbone, i.e. the gradient from the predictor is allowed to back-propagate into

the encoder of the 3D reconstruction network. In a task-unaware ablation, we

keep the pre-trained 3D reconstruction weights fixed during the predictor training

removing any influence of the task performance on the latent space. All models are

trained for 15,000 steps in total. The first 10,000 steps are spent on pre-training

the 3D reconstruction part in isolation and the remaining 5,000 steps are spent

training the task performance predictor. We select checkpoints that have the lowest

task loss L𝑡𝑎𝑠𝑘 on the validation split.

3.4.2 Quantitative Results

We start our evaluation by examining the task performance predictor in the tool

selection experiment (TS). For each scenario type (A - E) we present 250 tasks from

the test set, each paired with three tool images and their respective silhouettes. We

encode each tool with the tool encoder 𝜓 and concatenate its representation z𝑇 to

z𝐺 obtained from the task image encoder 𝜙. Each concatenated pair ℎ𝑐𝑎𝑡 is passed

through the feasibility predictor 𝜎 and the tool which scores highest is selected. We

Tool Selection Success [%] Tool Imagination Success [%]
Scn N Task-Unaware Task-Driven Random Walk Task-Unaware Task-Driven
A 250 88.8 ± 3.9 90.8 ± 3.6 3.6 ± 2.3 55.6 ± 6.2 96.4 ± 2.3
B 250 96.4 ± 2.3 97.6 ± 1.9 5.6 ± 2.9 42.0 ± 6.1 78.8 ± 5.1
C 250 96.4 ± 2.3 97.2 ± 2.1 23.6 ± 5.3 56.8 ± 6.1 76.4 ± 5.3
D 250 96.8 ± 2.2 98.4 ± 1.6 2.4 ± 1.9 75.2 ± 5.4 81.2 ± 4.8
E 250 87.2 ± 4.1 87.6 ± 4.1 13.6 ± 4.3 88.4 ± 4.0 86.4 ± 4.3
Tot 1250 93.1 ± 1.4 94.3 ± 1.3 9.8 ± 1.7 63.6 ± 2.7 83.8 ± 2.0

Table 3.1: (Left) Tool Selection: Mean accuracy when predicting most useful tool among
three possible tools. (Right) Tool Imagination: Comparison of imagination processes
when artificially warmstarting from the same unsuitable tools in each instance. Best
results are highlighted in bold.
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optimisation steps
  

optimisation steps
  

optimisation steps

Figure 3.4: Qualitative results of tool evolution during the imagination process. Each
row illustrates an example of how the imagination procedure can succeed at constructing
tools that solve the task by: (left) increasing tool length, (middle) decreasing tool width,
and (right) altering tool shape (creating an appropriately oriented hook). Each row in
each grid represents a different imagination experiment.

report the results for this experiment in the left section of table 3.1. The results

confirm that 𝜎 is able to identify suitable tools with almost perfect accuracy. Tool

selection accuracy does not differ significantly between the task-driven and the

task-unaware variations of the model. This suggests that the factors of tool shape

variation are captured successfully in both cases and the feature vectors produced

by 𝜓 are discriminative enough to be separated efficiently via the MLP 𝜎.

After verifying the task performance predictor’s functionality in the tool selection

experiment, we investigate its ability to drive a generative process in the next

experiment. This is done to test our hypothesis about the nature and exploitability

of the latent space. Given that the latent space captures factors of variation in

3D tool geometry, we hypothesise that these factors can be actively leveraged to

synthesise a new tool by focusing on the performance predictor. Specifically, we

present our model with a task image 𝐼𝐺 and an unsuitable tool geometry. We

then encode the tool via 𝜓 and modify its latent representation z𝑇 by performing

activation maximisation through the performance predictor 𝜎. As the feasibility

prediction is pushed towards 1, the tool geometry gradually evolves into one that is

applicable to the given task image 𝐼𝐺 . In addition to comparing the imagination

outcomes for the task-driven and the task-unaware model, we also include a random

walk baseline, where, in place of taking steps in the direction of the steepest gradient,
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we move in a random direction in the task-driven latent space for 10, 000 steps. In

this baseline the latent vector of the selected tool is updated by a sample drawn

from an isotropic Gaussian with mean 0, and, to match the step size of our approach,

the absolute value of the ground-truth gradient derived by back-propagating from

the predictor as the variance.

For 250 instances per scenario type, we warmstart each imagination attempt

with the same infeasible tool across random walk, task-driven, and task-unaware

models to enable a like-for-like comparison, with the results presented in table 3.1.

The performance of the random walk baseline reveals that a simple stochastic

exploration of the latent space is not sufficient to find suitable tool geometries.

However, following the gradient derived from the performance predictor leads to

successful shaping of tool geometries in a much more reliable way. While the

task-unaware ablation provides a strong baseline, transforming tools successfully in

63.6% of the cases, the task-driven model significantly outperforms it, achieving a

global success rate of 83.8% on the test cases. This implies that jointly training the

3D latent representation and task performance predictor significantly shapes the

latent space in a ‘task-aware’ way, encoding properties which are conducive to task

success (e.g. length, width, and configuration of a tool) along smooth trajectories.

Moreover, each of these trajectories leads to higher reachability suggesting that

these affordances can be seen as a set trajectories in a task-aware latent space.

3.4.3 Qualitative Results

Qualitative examples of the tool imagination process are provided in fig. 3.4 and

fig. 3.5. In the right-middle example of fig. 3.4, a novel T-shape tool is created,

suggesting that the model encodes the vertical stick-part and horizontal hook-part

as distinct elements. The model also learns to interpolate the direction of the hook

part between pointing left and right, which leads to a novel tool. As shown in

fig. 3.5, tools are modified in a smooth manner, leading us to hypothesise that tools

are embedded in a continuous manifold of changing length, width and configuration.

Optimising the latent embedding for the highest performance predictor score often
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drives the tools to evolve along these properties. This suggests that these geometric

variables are encoded as trajectories in the structured latent space learnt by our

model and deliberately traversed via a high-level task objective in the form of

the performance predictor.

Figure 3.5: Examples of tool synthesis progression during the imagination process.
In the top row, a stick tool morphs into a hook. The middle row shows a left-facing
hook transforming into a right-facing hook. In the bottom row, the tool changes into
a novel T-shape. Constraints on these optimisations are specified via task embeddings
corresponding to the task images on the far left.
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3.5 Conclusion

In this chapter we investigated the ability of an agent to synthesise tools via

task-driven imagination within a set of simulated reaching tasks. Our approach

explores a hybrid architecture in which a high-level performance predictor drives an

optimisation process in a structured latent space. The resulting model successfully

generates tools for unseen scenario types not in the training regime; it also learns

to modify interpretable properties of tools such as length, width, and shape. Our

experimental results suggest that these object affordances are encoded as trajectories

in a learnt latent space, which we can navigate through in a deliberate way using a

task predictor and activation maximisation, and interpret by decoding the updated

latent representations. Ultimately, this may aid in our understanding of object

affordances while offering a novel way to disentangle interpretable factors of variation

– not only for 3D tool synthesis. To facilitate further work in this area, we plan to

release both the reaching dataset and trained model to the community.
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3.6 Dataset for the Reaching Tasks

To investigate tool imagination, we designed a set of simulated reaching tasks with

clear and controllable factors of influence. Each task image is comprised of a green

target button, three red lines delineating the workspace area, and, optionally, a set

of blue obstacles. We also vary the goal location and the sizes and positions of the

obstacles. For each task image, we provide a second image depicting a tool, i.e. a

straight stick or an L-shaped hook, with varying dimensions, shapes, and textures.

Given a pair of images (i.e. the task image and the tool image), the goal is to predict

whether the tool for a given task scene can reach the target (the green dot) whilst

avoiding obstacles (blue areas) and remaining on the exterior of the workspace

(i.e. behind the red line). Depending on the task image, the applicability of a tool is

determined by different subsets of its attributes. For example, if the target button is

unobstructed, then any tool of sufficient length will satisfy the constraints (regardless

of its width or shape). However, when the target is hidden behind a corner, or

only accessible through a narrow gap, an appropriate tool also needs to feature a

long-enough hook, or a thin-enough handle, respectively. As depicted in Figure 3.3,

we have designed five scenario types to study these factors of influence in isolation

and in combination. The task setting and tool are first rendered in a top-down

view for the geometric applicability check. Then the tool is rendered in 12 different

views for the 3D reconstruction. The geometric applicability check verifies whether

or not any of the tools can reach the target, while satisfying the task constraints.

3.7 Dataset Construction Minutiae

Our synthetic dataset consists of pairs of task image (in top-down view) and tool

image as well as the corresponding silhouettes in 12 different views. We also record

the tool image from top-down view for the tool-applicability check. All images are

128 × 128 pixels. The applicability of a tool to a task is determined by sampling

100 interior points of the tool polygon, overlaying the sampled point with the

target and rotating the tool polygon between -60 degrees and +60 degrees from
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the y-axis. If any such pose of the tool satisfies all constraints (i.e. touching the

space behind the red line while not colliding with any obstacle), we consider the

tool applicable for the given task. All train- and test-cases are constrained to

have only sticks and hooks as tools.

The dataset contains a total of 18,500 scenarios. Table 3.2 shows a breakdown

of each by scenario type and split. Each split has an equal number of feasible

and infeasible instances, for each scenario type.

Type Training Validation
A 4,000 500
B 4,000 500
C 4,000 500
D 4,000 500
E - 500
Total 16,000 2,500

Table 3.2: Number of instances by scenario type.

3.8 Architecture and Training Details

As described in the main text, our model comprises two main parts (as depicted in

fig. 3.2). On the one hand, we used a task-based classifier, while on the other we

used a encoder-decoder model as a single-view 3D reconstruction model. We briefly

describe each component in turn. As a 3D reconstruction model, we faithfully

re-implement the encoder-decoder architecture identical to [21, 105]. A high-

level model schematic is shown in fig. 3.6. The task-based classifier consists of

two sub-parts: a task encoder and a classifier. The task encoder stacks five

convolutional blocks followed by a single convolutional layer. First, the five

consecutive convolutional blocks make use of 16, 32, 64, 64, 128 output channels

respectively. Each convolutional block contains two consecutive sub-convolutional

blocks, each with a kernel size of 5 and padding of 2 (and with stride of 1 and stride

of 2, respectively). Second, the additional convolutional layer has kernel size 4,

stride 1, padding 0, and 256 output channels. All convolutional layers use an ELU

nonlinearity. The classifier is a three layer MLP with input dimension 768, and
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Figure 3.6: Model for 3D reconstruction.

successive hidden layers of 1024 and 512 neurons respectively. Each of these layers

use eLU activation functions. Given that the classifier outputs logits for a binary

classifier, the output dimension is 2. All experiments are performed in PyTorch,

using the ADAM optimiser with a learning rate of 0.0001 and a batch size of 16.
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4
APEX: Unsupervised, Object-Centric
Scene Segmentation and Tracking for

Robot Manipulation

Recent advances in unsupervised learning for object detection, segmentation, and

tracking hold significant promise for applications in robotics. A common approach

is to frame these tasks as inference in probabilistic latent-variable models. In this

chapter, we investigate whether the unsupervised OCGM can learn meaningful

object-like entities in robotic scenarios where frequent interactions between the

objects and the robot exist in the scene. We propose apex, a new latent-variable

model which is able to segment and track objects in more realistic scenes featuring

objects that vary widely in size and texture, including the robot arm itself. This is

achieved by a principled mask normalisation algorithm and a high-resolution scene

encoder.To evaluate our approach, we present results on the real-world Sketchy

dataset. This dataset, however, does not contain ground truth masks and object IDs

for a quantitative evaluation. We thus introduce the Panda Pushing Dataset (P2D)

which shows a Panda arm interacting with objects on a table in simulation and which

includes ground-truth segmentation masks and object IDs for tracking. In both cases,

apex comprehensively outperforms the current state-of-the-art in unsupervised

object segmentation and tracking. We demonstrate the efficacy of our segmentations

47
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for robot skill execution on an object arrangement task, where we also achieve the

best or comparable performance among all the baselines. This work is published as:

Y. Wu, O. Parker Jones, M. Engelcke, and I. Posner. "APEX: Unsupervised,

object-centric scene segmentation and tracking for robot manipulation." In 2021

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
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4.1 Introduction

Scene segmentation and tracking are cornerstones of robotics (e.g. [107, 108]).

A principal motivation is the ability to ground sensory observations in state-

representations suitable for executing downstream tasks. While considerable

advances have been made in using supervised methods for detecting and segmenting

objects (e.g. [3, 109]), labelling data is resource intensive and quickly becomes

intractable when trying to consider every possible object category for every deploy-

ment eventuality. Unsupervised learning – the discovery of representations suitable

for task execution without the need for training labels – is therefore emerging

as a promising alternative. In particular, recently developed object-centric scene

representations (e.g. [10, 12, 59, 61, 110, 111]) have the potential of vastly improving

data efficiency in robotics and other applications (e.g. [66, 112, 113]). Here we show,

however, that current state-of-the-art methods fail on visually complex datasets

that are representative of scenarios commonly encountered in robot manipulation.

Within the class of unsupervised, object-centric models, variational autoencoders

(VAEs) ([33, 114]) are emerging as a popular choice. Object detection and segmen-

tation are performed by using spatial transformer networks (STNs) [40] and spatial

Gaussian mixture models (SGMMs) ([115–117]) to separate objects, respectively.

Some works do not impose any further structure on these latent representations

(e.g. [10, 42, 66, 110]), while others further factorise the representations to explicitly

disentangle foreground objects from the background, object location, appearance,

and whether an object slot is used or not (e.g. [11, 59, 111, 118]).In contrast to,

e.g., op3 [66] which was also developed in the context of robotics, we argue the

latter is of particular utility in robotics applications where such highly structured

representations can be directly used as inputs to a planning module. A recently

proposed model of this type called scalor [111] achieves particularly good results

on segmenting and tracking objects in videos that contain a possibly large number

of objects. We demonstrate however, that scalor struggles to learn object-centric

representations on datasets with objects of widely varying sizes and textures as

encountered in robot manipulation.



50 4.1. Introduction

  

(a) Sketchy
  

(b) Panda Pushing Dataset (P2D)

Figure 4.1: apex learns to segment and track objects in videos without supervision
from (a) the established Sketchy dataset [29] and (b) our Panda Pushing Dataset (P2D).
Segment colour indicates object ID. apex accurately segments the diverse objects in the
scenes and tracks the blue cup in (b) despite severe occlusion at 𝑡 = {7, 11}.

We therefore develop apex (Amortised Parallel infErence with miXture models),

a novel object-centric generative model trained on videos. In contrast to prior work,

apex uses a principled mask normalisation procedure to parameterise an SGMM,

which allows the explicit tuning of foreground and background standard deviations.

apex also features an improved scene encoder that outputs a high-resolution feature

map that is particularly suitable for tracking [119]. To showcase the efficacy of

apex, we evaluate apex qualitatively on Sketchy [29], an existing real-world robot

manipulation dataset. We also introduce the Panda Pushing Dataset (P2D) as a

quantitative benchmark against prior art. This contains videos of a Panda arm

interacting with objects on a table in simulation and includes ground truth labels for

segmentation masks and tracking objects between frames. It can be observed that

apex comprehensively outperforms recent state-of-the-art methods ([27, 42, 66, 111,

120]) by a large margin in terms of unsupervised segmentation and object tracking.

Finally, inspired by the Open Cloud Robot Table Organization Challenge [121],

we demonstrate the utility of apex specifically in the context of a robot object

re-arrangement task. Here, the superior segmentation performance of apex, as

illustrated in fig. 4.1, as well as the quality of the learned object representations

lead to significantly better results compared to prior art.
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4.2 Related Work

This work builds on recent literature on object-centric generative models (OCGMs),

which are typically formulated as VAEs (e.g. [11, 118]) or generative adversarial

networks (GANs) (e.g. [122–124]).Unlike object-centric GANs, VAE-based methods

directly provide an amortised inference mechanism for extracting object-centric

representations from input images. Early works that use STNs for separating

objects do so by sequentially attending to different regions in an image, leading to

a computational complexity that increases linearly with the number of objects ([11,

118]). More recent works parallelise the inference of object representations, which

has been shown to be particularly useful for images with a large number of objects

([59, 111]). Segmentation-based models that parameterise an SGMM (e.g. [10, 42,

61, 110]) tend to be computationally more expensive than STN-based approaches

where objects can be generated as smaller crops rather than image-sized components.

A more informative pixel-level labelling, however, is required in applications such

as the object arrangement task considered in this work. slot-attention [42] is a

prominent recent model belonging to this category and is therefore selected as one

of our baselines. The majority of related works learn object representations from

individual images (e.g. [10, 42, 110]), but some also exploit temporal information

in video sequences (e.g. [12, 66, 111]) to improve object separation. apex also

leverages a VAE, STNs, and an SGMM for the parallel inference of structured,

object-centric latent representations from videos. The structure of the model is

most closely related to scalor [111]. Instead of parameterising a Gaussian image

likelihood, however, apex parameterises an SGMM which allows direct tuning of

loss magnitudes from background and foreground modules. Moreover, apex uses a

scene encoder that is particularly suitable for object tracking [125].

A small number of works also explore the use of object-centric representations

in robotics ([66, 112]). op3 [66] uses an object-centric model to predict goal images

that contain a set of blocks in a desired configuration and the authors in [112]

show that explicit object representations can accelerate the acquisition of robotic

manipulation skills. Similarly, cobra [113] leverages object-centric representations
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to improve data efficiency and policy robustness in several RL tasks in visually

simple simulated environments. Inspired by [121], we benchmark a number of

models on an object manipulation task, where we observe that segmentations

and object representations learned by apex lead to significantly better results

compared to the recent state-of-the-art.
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4.3 APEX: Amortised Parallel Inference with
Mixture Models

Let x ∈ [0, 1]𝐻×𝑊×𝐶 be a frame from a video sequence x1:𝑇 , where 𝐻 and 𝑊 denote

the image height and width, 𝐶 represents the number of image channels (e.g. RGB),

and 𝑇 denotes the number of frames in the video sequence. Consider a scene S to

be formed of 𝐾 object hypotheses – or components – which are each encoded by a

set of latent variables such that S = {z1, . . . , z𝐾}. In particular, we consider two

disjoint sets of object hypotheses comprised of foreground objects and a background

component, such that S = Ofg ∪ Obg, where Ofg = {zfg
1 , . . . , z

fg
𝐾−1} and Obg = {zbg},

i.e., zbg = z𝐾 . Each foreground component is described by a set of latent variables

zfg
𝑘
= {zwhere

𝑘
, zwhat
𝑘

, 𝑧
pres
𝑘

} encoding its location, appearance, and existence in the

scene (see [11]). zbg directly encodes the appearance of the background. For each

frame x𝑡 at time 𝑡, foreground components can either be propagated from the

previous time step or discovered in the current image (see [12, 111]).

apex defines a generative model with learnable parameters \ that is formulated

as an SGMM (e.g. [10, 61, 110]) via the image likelihood

𝑝\ (x𝑡 |z1:𝐾,𝑡) =
𝐾∑︁
𝑘=1

m𝑘 (z1:𝐾,𝑡) ⊙ N (`(z𝑘,𝑡), 𝜎𝑘 ), (4.1)

where m𝑘,𝑡 are the segmentation masks, `𝑘,𝑡 are the means of the Gaussian

components, and 𝜎𝑘 is a fixed component standard deviation. Separate standard

deviations are used for the foreground and background, i.e. 𝜎1:𝐾−1 = 𝜎fg and

𝜎𝐾 = 𝜎bg. A probabilistic prior 𝑝\ (z1:𝐾,1:𝑇 ) is defined to regularise the model.

To achieve segmentation and tracking, apex provides an approximate inference

model [35] with learnable parameters 𝜙 for an object-centric latent representation

of how a scene evolves in a sequence of images, i.e.,

𝑞𝜙 (z1:𝐾,1:𝑇 |x1:𝑇 ) =
𝑇∏
𝑡=1

𝑞𝜙 (z1:𝐾,𝑡 |z1:𝐾,<𝑡 , x≤𝑡) . (4.2)

The inference and generative models are learned jointly as a VAE ([33, 114]). An

overview of apex is illustrated in fig. 4.2. This section proceeds by first defining the
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Figure 4.2: Illustration of apex. A backbone first extracts an encoding from an
input image. This is used to propagate objects from the previous time step and to
discover additional objects in the current image. The remainder of the image is treated
as background. The final image is composed from both the foreground objects and the
background.

underlying structure of the generative model, before defining the associated inference

model that facilitates the segmentation and tracking of objects in video sequences.

4.3.1 Generative Model

To capture correlations between frames, we assume the latents z1:𝐾,𝑡 depend on

the latents of the previous time steps

𝑝\ (z1:𝐾,1:𝑇 ) =
𝑇∏
𝑡=1

𝑝\ (z1:𝐾,𝑡 |z1:𝐾,<𝑡) . (4.3)

𝑝\ (z1:𝐾,𝑡) is further factorised into three terms to represent propagated objects O𝑝
𝑡 ,

discovered objects O𝑑
𝑡 , and the background Obg

𝑡 . Assuming there are 𝑃 propagated

objects and 𝐷 newly discovered objects, we assume propagated objects depend on

the previous latent variables, newly discovered objects in turn depend on objects

that have already been propagated to avoid the rediscovery of propagated objects

𝑝\ (z1:𝐾,𝑡 |z1:𝐾,<𝑡) = 𝑝\ (zbg
𝑡 |zbg

<𝑡 ) 𝑝\ (zd
1:𝐷,𝑡 |z

p
1:𝑃,𝑡) 𝑝\ (z

p
1:𝑃,𝑡 |z1:𝐾,<𝑡) . (4.4)

To facilitate application in robotics and similar to prior works (e.g. [12, 111]), the

latents describing foreground objects in Ofg are factorised into {zwhere
𝑘

, zwhat
𝑘

, 𝑧
pres
𝑘

}

describing component location, appearance, and presence in the scene, respec-

tively, such that

𝑝\ (zp
𝑘,𝑡
|zfg
𝑘,<𝑡

) = 𝑝\ (𝑧pres
𝑘,𝑡

|zfg
𝑘,<𝑡

) 𝑝\ (zwhat
𝑘,𝑡 |zfg

𝑘,<𝑡
)𝑧

pres
𝑘,𝑡 𝑝\ (zwhere

𝑘,𝑡 |zfg
𝑘,<𝑡

)𝑧
pres
𝑘,𝑡 , (4.5)

𝑝\ (zd
𝑘,𝑡 |z

p
1:𝑃,𝑡) = 𝑝\ (𝑧

pres
𝑘,𝑡

|zp
1:𝑃,𝑡) 𝑝\ (z

what
𝑘,𝑡 )𝑧

pres
𝑘,𝑡 𝑝\ (zwhere

𝑘,𝑡 )𝑧
pres
𝑘,𝑡 . (4.6)
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The segmentation masks m𝑘 and the means ` of the Gaussian components in

eq. (4.1) are decoded from {zwhere
𝑘,𝑡

, zwhat
𝑘,𝑡

, 𝑧
pres
𝑘,𝑡

} and zbg
𝑡 . We consider 𝑧pres

𝑘,𝑡
to be

Bernoulli distributed and the remainder of the latents being Gaussian distributed

(see [27, 111]). zwhat
𝑘,𝑡

encodes the appearance of a component and the logits 𝛼𝑘,𝑡
from which the mask m𝑘,𝑡 is later obtained. zbg

𝑡 only encodes the appearance of the

background component. zwhere
𝑘,𝑡

encodes a transformation in an STN [40], describing

the size and location of a bounding box that contains an object. A separate variable

for encoding background location is not needed as every pixel that is not assigned

to a foreground object is treated as background.

In contrast to scalor, where the foreground mask needs to be explicitly clamped

to [0, 1], we employ a principled approach to mask normalisation. In particular, we

first introduce a foreground mask mfg
𝑡 to model the occupancy of the foreground

as a whole, and then compute intermediate object masks m̂1:𝐾−1,𝑡 which attribute

specific occupancy responsibility to each individual object. Specifically, the mask

logits 𝛼1:𝐾−1,𝑡 for the 𝐾 − 1 foreground objects are computed as

𝛼𝑘,𝑡 = 𝑐 tanh
(
CNN(zwhat

𝑘,𝑡 )
)
, (4.7)

where 𝑐 is a fixed constant that constrains the mask logits to [−𝑐 , 𝑐]. The foreground

mask mfg
𝑡 is computed as

mfg
𝑡 = tanh

(
𝐾−1∑︁
𝑘=1

STN
(
softplus(𝛼𝑘,𝑡) 𝑧pres

𝑘,𝑡
, zwhere
𝑘,𝑡

))
, (4.8)

where the softplus operation ensures that a possible foreground component makes a

non-negative contribution to the foreground mask when 𝑧pres
𝑘,𝑡

= 1. The intermediate

object masks m̂1:𝐾−1,𝑡 are obtained such that

�̂�𝑘,𝑡 = STN
(
𝛼𝑘,𝑡 , zwhere

𝑘,𝑡

)
+ 2𝑐𝑧pres

𝑘,𝑡
, (4.9)

m̂1:𝐾−1,𝑡 = softmax
(
�̂�1,𝑡 , . . . , �̂�𝐾−1,𝑡

)
. (4.10)

eq. (4.9) maps components with 𝑧pres
𝑘,𝑡

= 1 to an interval that does not overlap with

components where 𝑧pres
𝑘,𝑡

= 0. This formalises the intuition that objects which are

not present will not occupy any physical space. The masks for the 𝐾 − 1 foreground
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objects are then obtained by the element-wise multiplication of the foreground

mask mfg
𝑡 with intermediate object masks m̂1:𝐾−1,𝑡 ,

m1:𝐾−1,𝑡 = m̂1:𝐾−1,𝑡 ⊙ mfg
𝑡 . (4.11)

Finally, inspired by the stick-breaking process formulations in prior work ([10, 110]),

the background mask mbg
𝑡 is computed as

mbg
𝑡 = 1 − mfg

𝑡 . (4.12)

4.3.2 Inference Model

The true posterior over latent variables is generally intractable, so a variational

approximation 𝑞𝜙 (z1:𝐾,1:𝑇 |x1:𝑇 ) is introduced. Mirroring eq. (4.3) in the generative

model, the approximate posterior is factorised as

𝑞𝜙 (z1:𝐾,1:𝑇 |x1:𝑇 ) =
𝑇∏
𝑡=1

𝑞𝜙 (z1:𝐾,𝑡 |z1:𝐾,<𝑡 , x≤𝑡) . (4.13)

The posterior at time step 𝑡 exhibits the same dependencies as were assumed in

eq. (4.4) and can thus be written as

𝑞𝜙 (z1:𝐾,𝑡 |z1:𝐾,<𝑡 , x≤𝑡) = 𝑞𝜙 (zbg
𝑡 |zd

1:𝐷,𝑡 , z
p
1:𝑃,𝑡 , x𝑡)

𝑞𝜙 (zd
1:𝐷,𝑡 |z

p
1:𝑃,𝑡 , x≤𝑡) 𝑞𝜙 (zp

1:𝑃,𝑡 |z1:𝐾,<𝑡 , x≤𝑡) . (4.14)

We assume that the approximate posterior for the 𝑘th propagated object in O𝑝
𝑡

factorises such that
𝑞𝜙 (zp

𝑘,𝑡
|zfg
𝑘,<𝑡

, x≤𝑡) =

𝑞𝜙 (𝑧pres
𝑘,𝑡

|zwhat
𝑘,≤𝑡 , 𝑧

pres
𝑘,<𝑡

, zwhere
𝑘,𝑡−1 , x≤𝑡)

𝑞𝜙 (zwhat
𝑘,𝑡 |zwhere

𝑘,𝑡 , zwhat
𝑘,<𝑡 , x≤𝑡)𝑧

pres
𝑘,𝑡

𝑞𝜙 (zwhere
𝑘,𝑡 |zwhere

𝑘,<𝑡 , z
what
𝑘,<𝑡 , x≤𝑡)𝑧

pres
𝑘,𝑡

(4.15)

and that the posterior for a discovered object factorises as

𝑞𝜙 (zd
𝑘,𝑡 |z

p
1:𝑃,𝑡 , x≤𝑡) = 𝑞𝜙 (𝑧pres

𝑘,𝑡
|zwhat
𝑘,𝑡 , zwhere

𝑘,𝑡 , zp
1:𝑃,𝑡 , x≤𝑡)

𝑞𝜙 (zwhat
𝑘,𝑡 |zwhere

𝑘,𝑡 , x≤𝑡)𝑧
pres
𝑘,𝑡 𝑞𝜙 (zwhere

𝑘,𝑡 |x≤𝑡)𝑧
pres
𝑘,𝑡 . (4.16)

Intuitively, zwhere
𝑘,𝑡

encodes where to look in an image in order to infer zwhat
𝑘,𝑡

which

is used for determining the appearance of an object.
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4.3.3 Inference - Implementation

We now proceed with describing the implementation of how these posterior distri-

butions are inferred for object propagation and discovery as well as the background.

Feature Extraction Features are extracted with a shared encoder. Observations

x≤𝑡 are stacked and encoded into a feature map e𝑡 ∈ R𝐻/4×𝑊/4×𝐹 with a deep layer

aggregation (DLA) encoder [126] and a ConvLSTM [38] to capture spatio-temporal

correlations. 𝐹 is the number of the feature channels. The encoder outputs a

high-resolution feature map that preserves spatial correspondences between the

features and input images. This is beneficial for object tracking [119] and in contrast

to scalor, where a low resolution feature map is used instead. Propagation: Using

the previous object bounding box at 𝑡 − 1, a square feature map fp
𝑘,𝑡

is extracted

from e𝑡 using an STN, whereby the square dimensions are set equal to the larger

side of the previous bounding box. A CNN then maps fp
𝑘,𝑡

to a feature vector

cp
𝑘,𝑡

. Discovery: A grid of equally spaced features cd
1:𝐷,𝑡 is extracted from the

feature map e𝑡 to discover new objects.

Object Location Propagation: The posterior over z𝑤ℎ𝑒𝑟𝑒
𝑘,𝑡

is computed with an

RNN whose inputs are [cp
𝑘,𝑡
, zwhat

𝑘,𝑡−1, zwhere
𝑘,𝑡−1 ]. Discovery: The posterior over zwhere

𝑘,𝑡

is computed from cd
𝑘,𝑡

with a 1 × 1 convolution.

Object Appearance Propagation: A glimpse G𝑘,𝑡 is cropped from the feature

map e𝑡 using a STN according to zwhere
𝑘,𝑡

. A RNN takes the encoding of the glimpse

G𝑘,𝑡 encoded by a CNN and zwhat
𝑘,𝑡−1 as inputs to infer the posterior over zwhat

𝑘,𝑡
.

Discovery: The posterior over zwhat
𝑘,𝑡

is inferred in same fashion as for propagated

objects with weights being shared and zwhat
0 being initialised to a vector of zeros.

Background: The posterior over zbg
𝑡 is obtained with a CNN using the background

mask mbg
𝑡 and the current image x𝑡 .

Object Presence Propagation: The posterior over 𝑧pres
𝑘,𝑡

is computed with an

RNN whose inputs are [cp
𝑘,𝑡
, zwhat

𝑘,𝑡
, 𝑧

pres
𝑘,𝑡−1]. Discovery: The presence of objects in

the discovery phase is determined by: 1. whether a new object is detected and

2. whether that object has been explained by the propagated objects. We use

the scope s𝑡 to indicate which pixels have not been explained yet. This scope is
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defined as s𝑡 = 1 − mp
𝑡 whereby mp

𝑡 is computed as in eq. (4.8) but only using

propagated objects. We thus decompose the posterior over 𝑧pres
𝑘,𝑡

into two terms

{𝑝proposal
𝑘,𝑡

, 𝑝context
𝑘,𝑡

} ∈ [0, 1] so that

𝑞𝜙 (𝑧pres
𝑘,𝑡

|zwhat
𝑘,𝑡 , zwhere

𝑘,𝑡 , zp
1:𝑃,𝑡 , x≤𝑡) = 𝑝proposal

𝑘,𝑡
𝑝context
𝑘,𝑡 . (4.17)

𝑝
proposal
𝑘,𝑡

is obtained with a fully-connected layer from [cd
𝑘,𝑡
, zwhat

𝑘,𝑡
, zwhere

𝑘,𝑡
] and

describes whether a cell might contain a new object or not. The purpose of 𝑝context
𝑘,𝑡

is to avoid the rediscovery of objects via the scope s𝑡 . This removes discovered

objects that overlap with propagated objects and it is computed as

pcontext
𝑘,𝑡 =

∑
𝑖, 𝑗 s𝑡,𝑖, 𝑗 tanh(softplus(𝛼𝑘,𝑡,𝑖, 𝑗 ))∑

𝑖, 𝑗 tanh(softplus(𝛼𝑘,𝑡,𝑖, 𝑗 ))
, (4.18)

where (𝑖, 𝑗) are all pixel coordinate tuples in an image. Intuitively, pcontext
𝑘,𝑡

corresponds to the fraction of the proposed object mask that has not been explained

by the propagated objects. Object Filtering: To reduce memory requirements,

foreground objects are discarded at every time step when 𝑧
pres
𝑘,𝑡

is below a fixed,

manually set threshold.

4.3.4 Learning

The inference and generative models can be jointly trained by maximising the

evidence lower bound (ELBO). Omitting object subscripts, this is given by

L(\, 𝜙) =
𝑇∑︁
𝑡=1
E𝑞𝜙 (z𝑡 |z<𝑡 ,x≤𝑡 ) [log 𝑝\ (x𝑡 |z𝑡)] (4.19)

+ KL
[
𝑞𝜙 (z𝑡 |z<𝑡 , x≤𝑡) ∥ 𝑝\ (z𝑡 |z<𝑡)

]
. (4.20)

Prior distributions for continuous and discrete variables are assumed to be Gaussian

and Bernoulli, respectively. Continuous variables are reparameterised (see [33,

114]) and discrete variables are obtained using the Gumbel-Softmax trick [127]. In

practice, we minimise the inclusive KL divergence [128] for the zwhat and zwhere as

we empirically find this leads to better performance. We also include an entropy

loss on the 𝐾 − 1 foreground object masks in the training objective,

L𝐻 =

𝐻∑︁
𝑖=1

𝑊∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝐾−1∑︁
𝑘=1

−𝑚fg
𝑡,𝑖, 𝑗

𝑚𝑘,𝑡,𝑖, 𝑗 log𝑚𝑘,𝑡,𝑖, 𝑗 . (4.21)
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This penalises pixels being explained by multiple components. The full training

objective is the sum of the ELBO and the mask entropy loss:

L = L(\, 𝜙) + L𝐻 . (4.22)
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4.4 Experiments

This section presents experiments on unsupervised scene segmentation, object

tracking, and a simulated object manipulation task to showcase the capabilities

of apex. Our recent, state-of-the-art baselines consist of scalor [111], op3 [66],

slot-attention [42], space [27], and g-swm [120].

Datasets We perform a qualitative evaluation using the real-world Sketchy dataset

[29], which contains demonstration trajectories of a robot arm performing different

tasks involving a set of objects. The images are pre-processed as in [41], using

a 128 × 128 resolution and sequences of length 10. Sketchy, however, does not

contain object annotations, which prohibits the quantitative evaluation of object

segmentation and tracking methods. We therefore introduce the Panda Pushing

Dataset (P2D), which shows a Panda arm interacting with objects in simulation

and includes pixel-level ground truth segmentations as well as object tracking IDs.

Up to three objects are spawned in each episode and the robot-arm moves along a

randomly selected straight line in the horizontal direction. Objects in the dataset

are sampled from a set of 14 common objects (e.g. mugs, coffee cans, apples)

with varying shapes, colours, and textures (see [129]). We collect a total of 2,400

trajectories (2,000 for training, 200 for validation, and 200 for testing) with each

trajectory having a length of 20 frames with a resolution of 128 × 128.

Metrics Similar to prior work (e.g. [61, 110]), the quality of object segmentations is

evaluated using the Adjusted Rand Index (ARI) [130] and the Mean Segmentation

Covering (MSC) on a held-out test set. To enable rigorous benchmarking, we report

results on two variants of these metrics: one which only considers foreground objects

(see [110]) as well as one where all pixels and ground truth masks are considered,

including those belonging to the background. The latter is relevant in the context of

this work as the background needs to be explicitly separated from the foreground for

the manipulation task in section 4.4.3. Multi-object tracking metrics are evaluated

following the procedure in Weis et al. [131], which is based on the protocol from

the established MOT16 tracking benchmark [132].
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Implementation Details apex is trained with ADAM [133] and a learning rate

of 10−4. The baselines are trained with the default learning rates and optimisers

from the released implementations. The number of components in op3 and slot-

attention is set to 𝐾 = 5 for P2D and to 𝐾 = 8 for Sketchy. For scalor, the hard

constraint on object size as found in the original implementation is removed as P2D

and Sketchy contain objects of various sizes. apex, scalor, and op3 are trained

with a batch size of 4 for 4 × 104 iterations. An additional 104 warm-up iterations

are used for g-swm. With the exception of op3, the models are trained on the full

image sequences. op3 is trained on sub-sequences of length five due to the model

capacity limitations on images that are resized to 64 × 64 as used in the original

model. Training apex, scalor, g-swm and op3 on a single NVIDIA Titan RTX

GPU takes about 20 hours each. For space, the batch size is increased to 16 and

the number of training iterations are increased to 2 × 105 and 1 × 105 iterations

for P2D and Sketchy, respectively, to account for the fact that space is trained on

individual images rather than image sequences. For slot-attention the number

of training iterations is further increased to 4 × 105 and 2.5 × 105 iterations for

P2D and Sketchy, respectively, as we found that the models take longer to learn

reasonable segmentation masks. The resulting wall-clock times for space and

slot-attention are about 5 hours and 20 hours, respectively.
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Object tracking ARI-FG MSC-FG ARI MSC
op3 ✓ 0.30 ± 0.03 0.30 ± 0.01 0.15 ± 0.05 0.39 ± 0.03
scalor ✓ 0.31 ± 0.03 0.37 ± 0.01 0.43 ± 0.04 0.52 ± 0.01
g-swm * ✓ 0.38 ± 0.17 0.42 ± 0.05 0.33 ± 0.13 0.55 ± 0.04
space ✗ 0.33 ± 0.17 0.49 ± 0.12 0.72 ± 0.21 0.62 ± 0.09
slot-att. ✗ 0.77 ± 0.24 0.46 ± 0.16 0.25 ± 0.22 0.50 ± 0.14
apex ✓ 0.89 ± 0.02 0.73 ± 0.01 0.93 ± 0.00 0.80 ± 0.01
* The g-swm results are computed with one failed random seed being excluded.

Table 4.1: Mean and standard deviation of the segmentation metrics on P2D from four
random seeds.

MOTA ↑ MOTP ↑ Match ↑ ID S. ↓ FPs ↓ Miss ↓ MD ↑ MT ↑
op3 −48.6 ± 17.0 66.6 ± 0.9 25.7 ± 4.4 0.3 ± 0.1 74.4 ± 13.4 73.9 ± 4.5 15.2 ± 4.7 15.6 ± 4.8
scalor −125.6 ± 6.3 73.5 ± 0.5 31.6 ± 1.1 2.6 ± 0.0 157.2 ± 6.5 65.8 ± 1.1 19.0 ± 1.7 22.3 ± 2.3
g-swm * −41.8 ± 2.0 73.1 ± 0.5 36.7 ± 4.0 2.0 ± 1.0 78.4 ± 2.5 61.3 ± 3.5 25.3 ± 4.6 28.6 ± 3.2
apex 50.5 ± 4.0 83.2 ± 0.6 79.7 ± 0.5 0.2 ± 0.1 29.2 ± 3.8 20.0 ± 0.5 70.8 ± 1.0 71.2 ± 0.7
* The g-swm results are computed with one failed random seed being excluded.

Table 4.2: Mean and standard deviation of the tracking metrics on P2D from four
random seeds.

4.4.1 Unsupervised Segmentation and Tracking

Quantitative results for unsupervised segmentation and tracking on P2D are

summarised in table 4.1 and table 4.2, respectively.

For both tasks, it can be seen that apex outperforms the baselines by significant

margins. We also observe a smaller standard deviation of the scores for apex,

indicating that apex is more stable than the baselines. We attribute these

improvements to the principled mask normalisation, the high-resolution feature

maps, and the mask entropy loss. Qualitative tracking results for apex are shown

in fig. 4.1. It can be seen that apex is clearly able to track individual objects even

through occlusions, thus corroborating the quantitative results in table 4.2.

Qualitative segmentation results for apex as well as for the baselines are shown

in figs. 4.3 and 4.4 on P2D and Sketchy, respectively. In fig. 4.3, a fairly cluttered

scene from P2D can be seen where the robot arm is interacting with two objects

in close proximity to each other. While apex clearly segments the foreground

objects and the arm itself – a key prerequisite for task planning and control –

the baselines struggle to do so. scalor is unable to accurately segment the
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Figure 4.3: Scene segmentation results on P2D. apex achieves the qualitatively best
results, cleanly segmenting all foreground objects as well as the Panda arm.
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Figure 4.4: Scene segmentation results on Sketchy. In contrast to the baselines, apex
manages to cleanly segment all objects even on this more challenging real-world dataset.

arm with part of it being captured by the background module. We conjecture

that this is due to the Gaussian image likelihood used for training scalor, as

this does not untie the standard deviation of the foreground and the background

likelihood as in apex. A similar problem is observed with g-swm which uses the

same image likelihood modelling as scalor. For apex and space, in contrast, a

smaller standard deviation is used for the background likelihood (0.04) than that

of the foreground (0.1) to prevent the background module from also capturing

the foreground objects. A Gaussian likelihood with a smaller standard deviation

leads to a sharper distribution and thus results in a very low likelihood when the

reconstructed colour deviates even slightly from the target. This will force the

background module to focus on the more uniform background pixels which are

easier to reconstruct compared to the foreground pixels. This is further examined in

section 4.4.2. While space manages to segment the robot arm from the background,
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ARI-FG MSC-FG ARI MSC
apex 0.89 ± 0.02 0.73 ± 0.01 0.93 ± 0.00 0.80 ± 0.01
Image space STN 0.71 ± 0.27 0.62 ± 0.10 0.91 ± 0.01 0.71 ± 0.08
No entropy loss 0.63 ± 0.18 0.63 ± 0.07 0.92 ± 0.01 0.73 ± 0.05
scalor-norm 0.62 ± 0.30 0.60 ± 0.13 0.90 ± 0.03 0.70 ± 0.09
Gaussian likelihood * 0.10 ± 0.01 0.06 ± 0.00 0.00 ± 0.00 0.28 ± 0.00
Gaussian likelihood & scalor-norm. * 0.02 ± 0.00 0.06 ± 0.00 0.00 ± 0.00 0.28 ± 0.00
* These models consistently fail to meaningfully segment the images.

Table 4.3: Mean and standard deviation of the segmentation metrics on P2D from four
random seeds.

it fails to segment the small objects accurately. Unlike apex, space operates on

static images and can thus not leverage temporal information. We argue that this

helps apex to learn to distinguish objects even when they are physically very close

to each other in one frame, as they might move relative to each other in other

frames. Both op3 and slot-attention are able to roughly segment the objects

but the segmentation results are noisy and inaccurate.

In fig. 4.4, apex accurately segments all the objects in the scene – even the

cables of the manipulator. We attribute the segmentation of the robot manipulator

into left and right grippers to the relative motion (open/close) of the two gripper

handles. In contrast, scalor fails to segment the objects and while space is

able to segment the arm, it omits the other foreground objects. This might

be caused by the fact that the objects have a uniform colour and are therefore

easily reconstructed by the background module. g-swm successfully segments the

objects, but part of the arm is treated as background. op3 and slot-attention

struggle to predict accurate masks.

4.4.2 Ablation Study

A set of ablation experiments is performed to validate the efficacy of the key design

choices that set apart apex from prior art: better scene encoding, principled

mask normalisation, and a mask entropy loss. The results are summarised in

table 4.3. Rather than re-using features extracted by the backbone with STNs

when inferring object latents, it can be observed that using STNs to extract
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information from the input images, such as in scalor, performs consistently worse.

Re-using the backbone features also facilitates a reduction in model parameters

and computation. The foreground scores when training without the additional

mask entropy loss are also smaller, indicating that the entropy loss is indeed

beneficial for learning to disambiguate foreground objects. It can be seen that

mimicking the normalisation scheme from scalor results in lower scores compared

to the mask normalisation introduced in section 4.3. For the former, the STN

outputs a mask 𝛼𝑠
𝑘
∈ [0, 1] for each component and the masks are normalised

according to (𝛼𝑠
𝑘
)2/∑𝑘 𝛼

𝑠
𝑘
, which is numerically less stable than a softmax. This

might also explain the increased standard deviation of the scores, especially for the

foreground ARI. Finally, we compare the use of apex’s SGMM image likelihood

formulation to using a standard Gaussian likelihood. Both variants of apex with

a standard Gaussian likelihood fail to learn object-centric scene decompositions,

highlighting the benefit of the SGMM formulation with separate standard deviations

for foreground and background modules.

4.4.3 Object Arrangement Task

Generative models can be used to learn concise and informative representations

that can be used in downstream tasks. In contrast to methods where a single latent

vector encapsulates all object-relevant information (e.g. [42, 66]), further factorising

the information into [𝑧pres
𝑘,𝑡

, zwhere
𝑘,𝑡

, zwhat
𝑘,𝑡

] as well as foreground and background

latents allows us to directly use these representations as inputs to a controller.

We demonstrate this in an object arrangement task where a robot is required

to pick and place objects on a table according to a goal image. This image is first

parsed into foreground objects and background. Assuming depth information is

available, e.g. via a stereo camera, the 3D location and shape of an object are

obtained by filtering a depth image according to the object mask. The current scene

is processed in the same fashion, which allows the current objects to be matched to

the associated objects in the goal image according to the smallest L2 distance in

terms of the objects’ appearances encoded by zwhat
𝑘

. This is facilitated by discarding
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  Input Segmentation Point cloud Result

Figure 4.5: Object arrangement task illustration. Given an input of the current scene
and a goal image (a), objects are segmented (b) and matched (c). Depth information is
used to obtain the 3D locations and shapes of all objects, which are used as inputs to a
heuristic control policy that tries to move the objects to the desired locations specified by
the target image.

empty detections according to 𝑧pres
𝑘

and the explicit separation of foreground and

background components. The current and desired location and shape of each object

serve as inputs to a heuristic control policy that executes a sequence of sub-tasks

to move the objects. This is illustrated in fig. 4.5. To avoid collisions, a check

for whether the target location is occupied by other objects is conducted before

executing a sub-task. If all target locations are occupied, one of the unsorted objects

is moved to an edge of the table to make space for the other objects. This object

will be moved to its target space at the end of the re-arrangement process.

Three object arrangement tasks are created involving two to four objects on a

table. For each task, we create 150 test scenarios with the same group of objects

spawned in different locations. The performance of apex is compared to scalor,

space and g-swm. Comparisons against op3 and slot-attention are omitted

here as neither explicitly models foreground and background components which are

required for task execution. Performance is quantified using the mean distance of

the final object locations relative to the desired object locations. We set a fixed

penalty of 1m for outliers where an object falls off the table.

The results are summarised in table 4.4. apex performs better than space

and scalor on all three tasks. Some failures are caused by missing detections

or incorrect object matches. g-swm performs better than APEX on tasks with

two or three objects but fails to segment the goal image properly on task with
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Two objects Three objects Four objects
space 0.07 ± 0.16 0.23 ± 0.25 0.23 ± 0.20
scalor 0.22 ± 0.17 0.15 ± 0.17 0.18 ± 0.21
g-swm 0.02 ± 0.09 0.04 ± 0.12 0.25 ± 0.21
apex 0.04 ± 0.10 0.06 ± 0.13 0.09 ± 0.18

Table 4.4: Mean and standard deviation of the object distance to the desired goal
positions in metres.

four objects. Although G-SWM outperforms APEX when there are fewer objects,

APEX appears to pull ahead as the number of objects increases. APEX also

performs better on segmenting the robot arm (fig. 4.3, fig. 4.4), which is excluded

from this task. space performs worst on tasks with three objects, but better than

scalor for two objects. We find that space tends to oversegment the objects, i.e.,

a single object is divided into several components, which reduces the efficacy of both

object matching and location estimation. We hypothesise that the improvement of

scalor compared to space is facilitated by the propagation module which is also

incorporated into apex and aids the learning of higher quality segmentations.
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4.5 Conclusions

This chapter proposes apex , a novel, object-centric generative model designed to

provide state-of-the-art unsupervised object segmentation and tracking on datasets

commonly encountered in robotics. apex is evaluated on the established Sketchy

dataset [29] for qualitative results and on a custom Panda Pushing Dataset (P2D)

for both quantitative and qualitative results. We show that apex comprehensively

outperforms prior art in terms of segmentation and tracking by leveraging improved

feature encoding modules as well as a principled normalisation scheme for object

and background masks. Finally, we demonstrate the efficacy of the unsupervised

object representations learned by apex on a robot manipulation task that involves

the rearrangement of several objects on a table. apex outperforms most of the

baselines due to consistently providing segmentations of significantly higher quality,

leading to improvements in object matching and 3D shape extraction.
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ObPose: Leveraging Pose for

Object-Centric Scene Inference and
Generation in 3D

In last chapter, we have proposed an unsupervised OCGM for the robotic tasks.

Nevertheless, the 2D OCGM can only capture the projected 2D shapes of the objects

in the image space, which can provide limited information in robotic applications. In

this chapter, we thus present ObPose, an unsupervised object-centric inference and

generation model which learns 3D-structured latent representations from RGB-D

scenes. Inspired by prior art in 2D representation learning, ObPose considers a

factorised latent space, separately encoding object location (where) and appearance

(what). ObPose further leverages an object’s pose (i.e. location and orientation),

defined via a minimum volume principle, as a novel inductive bias for learning the

where component. To achieve this, we propose an efficient, voxelised approximation

approach to recover the object shape directly from a neural radiance field (NeRF).

As a consequence, ObPose models each scene as a composition of NeRFs, richly

representing individual objects. To evaluate the quality of the learned represen-

tations, ObPose is evaluated quantitatively on the YCB, MultiShapeNet, and

CLEVR datatasets for unsupervised scene segmentation, outperforming the current

state-of-the-art in 3D scene inference (ObSuRF) by a significant margin. Generative

69
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results provide qualitative demonstration that the same ObPose model can both

generate novel scenes and flexibly edit the objects in them. These capacities again

reflect the quality of the learned latents and the benefits of disentangling the where

and what components of a scene. Key design choices made in the ObPose encoder

are validated with ablations. This work is published as pre-print:

Y. Wu, O. Parker Jones, and I. Posner. "ObPose: Leveraging Pose for Object-

Centric Scene Inference and Generation in 3D." In: arXiv preprint arXiv:2206.03591.
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5.1 Introduction

In recent years, object-centric representations have emerged as a paradigm shift in

machine perception. Intuitively, inference or prediction tasks in down-stream

applications are significantly simplified by reducing the dimensionality of the

hypothesis space from raw perceptual inputs, such as pixels or point-clouds, to

something more akin to a traditional state-space representation. While reasoning

over objects rather than pixels has long been the aspiration of machine vision

research, it is the ability to learn such a representation in an unsupervised, generative

way that unlocks the use of large-scale, unlabelled data for this purpose. As

consequence, research into object-centric generative models (OCGMs) is rapidly

gathering pace.

Central to the success of an OCGM are the inductive biases used to encourage the

decomposition of a scene into its constituent components. With the field still largely

in its infancy, much of the work to date has confined itself to 2D scene observations

to achieve both scene inference [e.g. 10, 11, 31, 42, 45, 115, 116] and, in some cases,

generation [e.g. 31, 45]. In contrast, unsupervised methods for object-centric scene

decomposition operating directly on 3D inputs remain comparatively unexplored [18,

134] – despite the benefits due to the added information contained in the input. As

a case in point, [18] recently established that access to 3D information significantly

speeds up learning. Another benefit is that, for the parts of an object visible to a

3D sensor, object shape is readily accessible and does not have to be inferred, either

from a single view [e.g. 21, 105] or from multiple views [e.g. 70, 135]. We conjecture

that object shape can serve as a highly informative inductive bias for object-centric

learning. As we elaborate below, we reason that the asymmetry of a shape can be

used to discover an object’s pose, and pose can help to identify and locate an object

in space. Here we present ObPose, an unsupervised OCGM that takes RGB-D

images (or video) as input and learns to segment the underlying scene into its

constituent 3D objects, as well as into an explicit background representation. As we

will show, ObPose can also be used for scene generation and editing. Inspired by

prior art in 2D settings [11–13, 17, 27, 59], ObPose factorises its latent embedding
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Figure 5.1: Overview. Front-view observations can be fed into ObPose (e.g. video of
objects on a table, top left). ObPose then reconstructs the sparse voxelised point cloud
and normalised pose of each object (two objects shown, top right). Each point within a
slot is coloured to represent a specific object.

into a component capturing an object’s location and appearance (where and what

components, respectively). This factorisation provides a strong inductive bias,

helping the model to disentangle its input into meaningful concepts for downstream

use. A key contribution of ObPose is the introduction of pose (i.e. location and

orientation) as a novel inductive bias.

ObPose is not a pose-estimation model. Rather, ObPose infers pose infor-

mation from an object’s shape to reduce apparent variance and to simplify the

learning of the model’s what component in 3D (see fig. 5.2) – ultimately for use

in downstream tasks like segmentation and scene editing. ObPose infers pose

information without supervision, using a minimum volume principle defined using

the tightest bounding box that constrains the object. Effectively, the tightest

bounding box will reveal asymmetries in an object’s shape, if there are any, which

can be used to constrain the object’s orientation. We further propose a voxelised

approximation approach that recovers an object’s shape in a computationally

tractable way from a neural radiance field (NeRF) [136]. Although the recovery

of an object’s shape from a NeRF can be prohibitively expensive, our approach

allows this to be integrated efficiently into the training loop.

In a series of experiments, ObPose outperforms the current state-of-the-art in

3D scene inference, ObSuRF [18], by significant margins. Evaluations are performed

on the CLEVR dataset [137], the MultiShapeNet dataset [18, 138], and the YCB

dataset for unsupervised scene segmentation [28], in the latter case using both
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RGB-D moving-objects (video) and multi-view static scenes. An ablation study

on the ObPose encoder serves to validate the design decisions that distinguish

its use of attention from alternative attention mechanisms represented by Slot

Attention [42] and GENESIS-v2 [31]. In summary, the key contributions of this

chapter are: (1) a new state-of-the-art unsupervised scene segmentation model for

3D, ObPose, together with insights into its design decisions; (2) a novel inductive

bias for 3D OCGMs, pose, together with its motivation; and (3) a general method

for fast shape evaluation from NeRFs.

(a) shape-based poses (b) no condition

(c) conditioned on location only (d) conditioned on location and orientation

Figure 5.2: Visualisation of the recovered bounding boxes estimated from the object
shape. We additionally illustrate the object (wooden box) appearance viewed by (b) being
not conditioned on any location information (c) being conditioned on the shape-based
estimated object location and (d) being conditioned on the shape-based estimated object
location and orientation. We show that the variance of the object appearance is reduced
leveraging the pose information.
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5.2 Related Work

ObPose builds upon prior OCGM work on unsupervised segmentation in both

2D and 3D. Most OCGMs for 2D scene segmentation are formulated as variational

autoencoders (VAEs) [33, 114], where different likelihood models serve to explain

observations. One set of VAE-OCGMs use bounding boxes, derived from spatial

transformer networks (STNs) to represent (glimpse) individual objects [11–13, 27,

59, 139]. Another set represents objects via unsupervised instance segmentation,

using pixel-wise mixture models [10, 26, 42, 45, 61, 66, 115–117]. This latter

set relaxes the spatial-consistency requirements imposed by bounding boxes [40],

permitting more flexible modelling of objects with complex shapes and textures.

However, relaxing spatial consistency has the side-effect that performance can

sometimes be biased by features such as the colour of the object [140], which has

motivated the search for additional inductive biases. A promising candidate is

temporal information. To this end, some works [66, 122, 141] operate on video data

and model the correlations between objects explicitly using graph neural networks

(GNNs) [142, 143] or Transformers [144].

The idea of a reference pose for an object, has precedent in the context of 6D

pose estimation, which aims to find the translation and rotation of an object with

respect to some frame of reference. In the supervised setting, labels are defined with

respect to a given reference frame [145–150]. Recently, it has been shown that pose

between views of an object, or objects from a common category, can be inferred

without labels. Such relative poses have been found for point clouds [151] and

RGB-D images [152]. To the best of our knowledge, we are the first to propose a

minimum volume approach for discovering pose without supervision and to include

pose information, to reduce its variance in the latent code, as an inductive bias.
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Figure 5.3: Model architecture. Given an input RGB-D image x, the KPConv backbone
extracts point embeddings Z𝑐 and a background component z𝑏𝑔. The point embeddings are
clustered by the IC-SBP into soft attention masks, m1 . . .m𝐾 , for each object slot. Given
these object masks, a where module infers the location of each object encoded by zwhere.
Conditioned on object poses, which are recovered via the minimum volume principle, the
what latents, zwhat , are encoded and then decoded into object NeRFs. Object NeRFs are
finally composed with the background component to reconstruct the observed scene.

5.3 Methods

ObPose takes RGB-D videos (or images) as input and learns to segment scenes

into a set of foreground objects, with a single background component. The location

and orientation of objects can be estimated from the respective shapes which we

reconstruct using NeRFs [136]. In contrast to previous works [18] where object

NeRFs have to model object appearance and location jointly, each object NeRF in

ObPose only models the 3D geometry and the texture of the objects by conditioning

on the predicted object locations and orientations. To perform location and

orientation conditioned inference, ObPose clusters pointwise embeddings that

are encoded from a standard (KPConv-based) backbone [39] into a soft attention

mask for each object using an instance colouring stick-breaking process (IC-SBP).

Then a where-inference step predicts the object locations and orientations given the

object-wise attention masks from the IC-SBP. Finally, a what-inference step encodes

the appearance and shape information (conditioned on the object locations and

orientations). This information is then decoded into NeRFs and all of the NeRFs

are composed with the background component to reconstruct the original scene. A

schematic overview of the ObPose architecture is provided in Figure 5.3.
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5.3.1 Encoder

The input observation x𝑡 is a RGB-D image of height 𝐻 and width 𝑊 for each

time-step 𝑡 ∈ {1 . . . 𝑇}. RGB-D depth images are converted into the point clouds

p𝑡 using the known camera parameters (extrinsic and intrinsic). The point clouds

p𝑡 and the RGB channels of x𝑡 are then concatenated and encoded into a point

embedding Z𝐻1×𝑊1×𝐷
𝑡 . This is achieved using a U-Net-like backbone module [37]

consisting of several KPConv layers [39]. A KPConv layer is an extension of a 2D

convolutional neural network (CNN) layer for point clouds, which preserves the

translation invariance properties of CNNs. For computational efficiency, output

embeddings are upsampled to the resolution of the first downsampled embedding

using trilinear interpolation. Following prior work [31], we additionally build two

heads (point-wise MLPs) upon the output embedding Z𝑡 , with one predicting the

colour embedding Z𝐻1×𝑊1×𝐷𝑐
𝑐,𝑡 for the IC-SBP, and the other the feature embedding

Z
𝐻1×𝑊1×𝐷 𝑓

𝑓 ,𝑡
for other encoding tasks.

Instance Colouring Stick-Breaking Process for Video

An instance colouring stick-breaking process (IC-SBP) is a clustering algorithm

that takes point embeddings Z𝐻1×𝑊1×𝐷𝑐
𝑐,𝑡 as inputs and outputs 𝐾 predicted soft

attention masks m𝑘 ∈ [0, 1]𝐻1×𝑊1 . The stick-breaking process [10] guarantees

that the masks are normalised:

m1 = 𝛼1, m𝑘 = s𝑘−1 ⊙ 𝛼𝑘 , m𝐾 = s𝐾 , (5.1)

where the scope s𝑘 ∈ [0, 1]𝐻1×𝑊1 tracks which pixels have not yet been explained.

s𝑘 is initialised and updated as follows:

s0 = 1𝐻1×𝑊1 , s𝑘 = s𝑘−1 ⊙ (1 − 𝛼𝑘 ) (5.2)

The alpha mask 𝛼𝑘 is computed as the distance between a cluster seed Z𝑖, 𝑗 and

all individual point embeddings according to a kernel 𝜓. Readers are referred
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to [31] for details on kernel selection and seed sampling. We compute the back-

ground component by passing the pixel embeddings Z𝐻1×𝑊1×𝐷𝑐
𝑐,𝑡 through a multilayer

perceptron (MLP) 𝜌 to compute a pre-scope s𝑝:

sp = softmax(𝜌(Z) ∈ R𝐻1×𝑊1×2) (5.3)

By convention, we take the first channel of s𝑝 to be the background mask and

the last channel to be the scope s0 in the IC-SBP.

For the video input, we extend the original IC-SBP to include an additional

propagation step. The cluster seed Z𝑖, 𝑗 can be used as an ID for each slot throughout

the video. The cluster seed sampled at 𝑡 = 1 is stored and used to compute the

alpha masks for frames of 𝑡 ≥ 2. To ensure the normalisation of the masks m𝑘 ,

the SBP operation takes the remaining scope s𝐾 as the last component mask m𝐾 .

This does not have an associated seed for propagation. We run one more step

of the SBP for the last component and flag the remaining scope s𝐾 as unused.

Concretely, we add an additional penalty loss to encourage the final remaining

scope s𝐾 to be zero everywhere, thereby motivating the model to explain the whole

observation using only the previous slots.

Object Location and Orientation Conditioned Encoding

To facilitate a disentangled encoding of what and where, we firstly introduce

shape-based object location and orientation estimation. We note that a point

cloud P𝑡,𝑘 = {p 𝑗 | 𝑗 ∈ {1, ..., 𝑁𝑘 }} of object 𝑘 at time step 𝑡 can be viewed as a

discrete sampling from the object surface and thus preserves the shape information

of the objects. Intuitively, the location of the object T𝑡,𝑘 can be initialised at

the centre of mass of P𝑡,𝑘 :

T𝑡,𝑘 =
1
𝑁𝑘

∑︁
𝑗∈{1,...,𝑁𝑘}

p 𝑗 (5.4)

with 𝑁𝑘 being the number of points of object 𝑘. For the orientation of the object,

which can be represented by a rotation matrix R𝑡,𝑘 ∈ SO(3), we propose the following

minimum volume principle to define a unique shape-based object orientation: given
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a set of points, we set the orientation of the object represented by those points to

the orientation of the tightest bounding box that contains those points. Concretely,

we find this bounding box by first transforming the points under several selection

rotation matrices R𝑠 ∈ SO(3) and then computing the volume of the axis-aligned

bounding boxes (AABBs) that contain these points. Selection rotation matrices

are generated as equivolumetric grids on the SO(3) manifold [153, 154]. This

method is based on the HEALPix method of generating equal area grids on the

2-sphere [155]. Due to the symmetry property of the bounding boxes, the smallest

bounding box can have multiple solutions, e.g. swapping the x-axis and the y-axis

of the coordinates of the bounding box will result in another bounding box that

has the same volume. Therefore, we select all the bounding boxes whose volumes

are in the range [𝑉min, (1 + 𝛽)𝑉min] to account for this issue, where 𝑉min is the

minimum volume of all the AABBs and 𝛽 is a small tolerance factor. We pick the

AABB whose orientation is closest to the world coordinates and whose orientation

is represented by the identity matrix I ∈ R3×3 for the first time step, and otherwise

to the orientation in the previous time step. The distance 𝑑SO(3) is measured by

the geodesic distance on the SO(3) manifold:

𝑑SO(3) = arccos
(
tr(R𝑡,𝑘R−1

𝑡−1,𝑘 ) − 1
2

)
(5.5)

The points p 𝑗 ∈ P𝑡,𝑘 are then transformed to their object coordinates given a

pair of pose parameters {T,R} as follows:

𝑘
(
p 𝑗 ,R,T

)
=

2
𝑠
(R)−1 (

p 𝑗 − T
)

(5.6)

The bounding box size 𝑠 ∈ R is initialised to a sufficiently large number for all objects.

For each object slot at time step 𝑡, we find its associated point cloud P𝑡,𝑘 by

computing the argmax over the attention masks m𝑡,𝑘 predicted from the IC-SBP.

The point features Z 𝑓 ,𝑡 at time step 𝑡 are also masked by the attention masks, i.e.

Z𝑡,𝑘 = Z 𝑓 ,𝑡 ⊙ no_grad(m𝑡,𝑘 ). The object location T𝑡,𝑘 estimated from the observed

points P𝑡,𝑘 is, however, biased toward object surface as the object is only partially

observed. We thus use a where module that takes P𝑡,𝑘 and Z𝑡,𝑘 as input and predicts a
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ΔT𝑡,𝑘 to correct the bias. To learn a relative translation we first transform P𝑡,𝑘 using

the pose parameters {T𝑡,𝑘 , I} as in eq. (5.6). Concretely, we use a KPConv-based

encoder followed by a recurrent neural network (RNN) as the where module to predict

the mean and the variance of the posterior distribution 𝑞(zwhere
𝑡,𝑘

|𝑥≤𝑡) parameterised

as a Gaussian. The zwhere
𝑡,𝑘

is decoded to the ΔT𝑡,𝑘 through an MLP 𝑓 where such that:

ΔT𝑡,𝑘 = 𝑇maxtanh( 𝑓 where (zwhere
𝑡,𝑘 )) (5.7)

with 𝑇max ∈ R being the maximum delta translation. Given the updated object

location T̂𝑡,𝑘 = T𝑡,𝑘 + ΔT𝑡,𝑘 , we encode the shape and the appearance of the object

from the observations transformed in the object pose {T̂𝑡,𝑘 ,R𝑡,𝑘 }. Similar to the

where module, the posterior distribution 𝑞(zwhat
𝑡,𝑘

|z≤𝑡,𝑘 , 𝑥≤𝑡) is also parameterised by

a KPConv encoder appended by an RNN. We use two RNN networks to model

the prior distributions 𝑝(zwhere
𝑡,𝑘

|zwhere
<𝑡,𝑘

) and 𝑝(zwhat
𝑡,𝑘

|zwhat
<𝑡,𝑘

), whose hidden states are

decoded by an MLP to the mean and standard deviation. The prior distribution at

𝑡 = 0 are Gaussian distributions of zero mean for both the zwhere and the zwhat .

5.3.2 Decoder

To explicitly model the 3D geometry of scenes, we represent each object and the

background as a generative Neural Radiance Field (NeRF) [46, 71, 136]. Each

generative NeRF is a function parameterised by an MLP that maps the world

coordinates p, the viewing direction d and the latent encoding z to a color value

c and a density value 𝜎: f : (p, d, z) → (c, 𝜎). To compose the individual NeRFs

into a single scene function, we propose to model the scene function as:

𝜎 = 𝜎maxtanh
(
𝐾∑︁
𝑘=1

softplus (𝜎𝑘 )
)
, �̂�𝑘 = 𝜎softmax

𝐾
(𝜎𝑘 ) (5.8)

In our case, 𝜎𝑘 can be interpreted as the logits of the probability, indicating whether

this voxel is occupied or not, and �̂�𝑘 is the normalised density with a range of

[0, 𝜎max]. For the colours, we can compute the weighted mean: c = 1
𝜎max

∑𝐾
1 �̂�𝑘c𝑘 .

We use the softmax function to account for the fact that the objects should not

overlap, without needing to introduce extra hyper-parameters as in [18]. To estimate
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the shape of the objects reconstructed from the NeRFs, we would like a fast

approximation approach, as the full evaluation of the volumetric rendering is

computationally expensive. Inspired by prior work [156], we divide each object

bounding box into S sparse voxels along each dimension. The occupancy at these

voxel centres p𝑣 can then be evaluated by 𝜎𝑣 = tanh (softplus ( 𝑓 (p𝑣, z𝑘 ))). We

denote the voxels as occupied if 𝜎𝑣 > 𝜎𝑇 , with the 𝜎𝑇 being a threshold. Given the

set of the occupied voxels and their centre positions p𝑣, we can recover the object

centre Tshape
𝑡,𝑘

and the object orientation Rshape
𝑡,𝑘

as discussed in 5.3.1.

5.4 Training

Training a NeRF with known depth requires relatively few evaluations. For example,

[18] propose to use only two evaluations of the NeRF for each training iteration,

i.e. one evaluation at the surface and one evaluation at points between the camera

and the surface. The observation loss can be divided into two terms, i.e. a texture

loss term and a depth loss term[18]:

Lobs = − log
(
𝐾∑︁
𝑘=1

N(x|c𝑘 , 𝜎2
std) ⊙ �̂�

surface
𝑘 /𝜎max

)
+ (− log(𝜎(psurface)) + 𝜎(pair)/𝜌air)

(5.9)

with 𝜎std denoting a fixed standard deviation, and 𝜌air is a probability density of

the point pair being sampled. For the attention mask of the IC-SBP, the learning of

the attention masks can be either supervised via a mixtures of Gaussian loss:

Latt = −
(
log

(
𝐾∑︁
𝑘=1

m𝑘 ⊙ (N (x|c𝑘 , 𝜎2
std) ⊙ �̂�

surface
𝑘 /𝜎max)

)
+ log

(
𝐾∑︁
𝑘=1

m𝑘 ⊙ �̂�surface
𝑘 /𝜎max

))
(5.10)

or a L2 loss:

Latt =
𝐾∑︁
𝑘=1

((N (x|c𝑘 , 𝜎2
std)/N (0|0, 𝜎2

std)−m𝑘 )2⊙�̂�surface
𝑘 /𝜎max)+

𝐾∑︁
𝑘=1

(m𝑘−�̂�surface
𝑘 /𝜎max)2

(5.11)

Empirically, we find that using a L2 loss can be beneficial for complex 3D scenes.

In the end, we supervise the where module, penalise the remaining scope s𝐾 and
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regularize the latent embedding as follows:

Lothers =
∑︁
𝑘

(T̂𝑡,𝑘 − Tshape
𝑡,𝑘

)2 +
𝐻1∑︁
𝑖=1

𝑊1∑︁
𝑗=1

𝑠𝐾,𝑖, 𝑗 + KL(𝑞𝜙 (z𝑡 |z≤𝑡 , x≤𝑡) | |𝑝\ (z𝑡 |z<𝑡)) (5.12)

Taken together, these losses contribute straightforwardly to the overall loss: L =

Lobs + Latt + Lothers. In training, we use the Adam optimizer with a fixed learning

rate of 4𝑒−4 without any learning rate warm-up or decay strategy.
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5.5 Experiments

To evaluate ObPose’s performance on unsupervised object-centric inference and

generation of 3D scenes we conduct experiments on the CLEVR-3D dataset [137]

and the MultiShapeNet dataset used by ObSuRF [18], and on two YCB object

datasets [28]. One of the YCB object datasets is a moving-object (video) dataset of

RGB-D images captured from a fixed front view. The other YCB dataset contains

static images captured from three different points of view, where the three views

are obtained by rotating the camera by 120◦/240◦ around the z-axis of the world

frame. Performance on all datasets is compared against the recent baseline of

ObSuRF [18], which, to the best of our knowledge, is the only unsupervised scene

inference and generation model that operates on RGB-D images of 3D scenes. To

validate our model design decisions, we compare performance using two alternative

attention mechanisms in the encoder, one from slot attention [42] and another from

an IC-SBP that does not explicitly model object location and orientation [31]. We

further compare two ablations of the ObPose encoder: one conditioned only on

the locations of the objects, and one conditioned on the full 6D poses.

5.5.1 Metrics

In the evaluations, we quantify segmentation quality using the Adjusted Rand Index

(ARI) [130, 157] and Mean Segmentation Covering (MSC) as metrics. ARI measures

the clustering similarity between the predicted segmentation masks and the ground-

truth segmentation masks in a permutation-invariant fashion. This is appropriate for

unsupervised segmentation approaches where there are no fixed associations between

slots and objects. We evaluate segmentation accuracy on foreground objects using

the foreground-only ARI and MSC (denoted ARI-FG and MSC-FG, respectively),

and on the background using mean Intersection over Union (mIoU). All metrics are

normalised between 0 and 1 where a score of 1 indicates perfect segmentation.
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CLEVR-3D MultiShapeNet
ARI-FG↑ ARI↑ ARI-FG↑ ARI↑

ObSuRF 0.96 0.95 0.81 0.64
ObSuRF w/o overlap 0.86 0.06 0.94 0.16
slot att. 0.46 0.01 0.52 0.08
ObPose (ours) 0.99 0.84 0.99 0.81

Table 5.1: The segmentation results on the CLEVR-3D dataset and MultiShapeNet.
The results are rounded to two decimal places.

YCB Moving-Object YCB Static
mIoU-BG↑ ARI-FG↑ MSC-FG↑ mIoU-BG↑ ARI-FG↑ MSC-FG↑

ObSuRF w/o overlap with depth 0.89 ± 0.09 0.18 ± 0.21 0.21 ± 0.02 0.92 ± 0.04 0.31 ± 0.15 0.37 ± 0.07
ObSuRF w/o overlap 0.97 ± 0.02 0.28 ± 0.36 0.28 ± 0.26 0.98 ± 0.00 0.22 ± 0.12 0.36 ± 0.05
slot att. * 0.98 ± 0.02 0.13 ± 0.05 0.19 ± 0.02 1.00 ± 0.00 0.80 ± 0.01 0.84 ± 0.00
ic-sbp 0.96 ± 0.05 0.87 ± 0.02 0.90 ± 0.02 0.97 ± 0.03 0.83 ± 0.09 0.80 ± 0.15
ObPose loc. only (ours) 1.00 ± 0.00 0.96 ± 0.00 0.97 ± 0.00 0.99 ± 0.00 0.89 ± 0.01 0.87 ± 0.03
ObPose loc.& rot. (ours) 1.00 ± 0.00 0.96 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 0.88 ± 0.01 0.84 ± 0.03
* The slot att results are computed with one failed random seed being excluded for the YCB static dataset.

Table 5.2: Mean and standard deviation of the segmentation metrics on the YCB
moving-object dataset and the YCB static dataset from three random seeds. The results
are rounded to two decimal places. ObPose outperforms the baseline and the ablations
as it explicitly estimates the locations and the orientations of the objects, disentangling
object location and appearance.

5.5.2 Unsupervised 3D Object Segmentation

Quantitative results for the CLEVR dataset and the MultiShapeNet dataset are

shown in section 5.5.2. We first observe that ObPose achieves better foreground

segmentation performance (ARI-FG) compared to ObSuRF, which indicates that

ObPose can perform better scene inference by conditioning on the location and

the orientation. The lower full ARI score is caused by the fact that ObPose learns

to include shadows caused by the existence of the objects in each object slot,

whereas object shadows are labelled as background in the ground-truth masks.

Quantitative segmentation results on the YCB dataset are additionally summarised

in section 5.5.2. Here we only report ObSuRF results without using the overlap loss

as we first observe that the ObSuRF baseline fails to segment the scenes properly

using the default setting for 3D data from the open-sourced code. This might be

attributed to the weight of a overlap loss used in ObSuRF, to discourage the objects

from overlapping. In [18] the same failure mode is reported. In ObPose, we instead
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account for the overlap using a hyper-parameter-free function (softmax) in eq. (5.8).

This alleviates the computationally expensive hyper-parameter searching process.

Interestingly, using the full 6D pose including the orientation and the location of the

objects does not strongly affect the segmentation performance compared to using

only the object positions as a way to condition the encoding. This suggests that

for object segmentation tasks, the object location itself already provides a strong

inductive bias for successful decomposition. Similar results are observed elsewhere

in the literature [141], where simple ground-truth position information for objects is

used in the first video frame, allowing the model to perform scene segmentation of

2D video data in a weakly supervised fashion. In our approach, we explicitly leverage

the 3D reconstruction of the objects whose shape is estimated by the proposed

voxelised shape approximation approach. This allows the model to infer the locations

and the orientations of objects in a computationally efficient way without using

any ground-truth labels. ObPose also achieves lower variation on metrics for both

datasets, suggesting more stable training compared to the original IC-SBP.

5.5.3 Scene Generation and Scene Editing

Leveraging the disentangled where and what object-centric representation, Ob-

Pose can perform more flexible scene generation and scene editing than previous

works[18, 31]. We demonstrate this benefit with the CLEVR-3D dataset. In

fig. 5.4(a), we show scenes that are generated from ObPose by first sampling

from the learned object and the background latent space and then rendering

from the composition of object and background NeRFs. The object locations and

orientations can be arbitrarily set to user-defined values. fig. 5.4(b–d) demonstrates

that ObPose can further be used for flexible scene editing (i.e. adding, removing,

or manipulating objects in a generated or inferred scene). The object-level scene

manipulation fig. 5.4(d) as an important function of OCGMs has raised people’s

attention in generative models [71], ObPose thus for the first time implements

this in an inference model.
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Figure 5.4: We demonstrate the rendered RGB and depth results of the scenes generated
by sampling from the learned latent space (a). We also show the scene editing functions
of object addition (b), object removal (c) and object-level scene manipulation (d).
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5.6 Conclusion

We present ObPose, an object-centric inference and generation model that learns

3D-structured latent representations. The model extends IC-SBP for video input,

and is noteworthy for introducing poses as an inductive bias for scene inference.

The model’s ability to infer object pose is facilitated by several recent innovations,

including the use of NeRFs and the fast voxelised shape approximation proposed

in this chapter. Our experimental results are validated on the CLEVR dataset,

the MultiShapeNet dataset, and two synthetic YCB objects datasets. Given its

empirical success, outperforming the prior state-of-the-art for static 3D scenes

[18] and establishing a baseline for video, we plan to apply ObPose as a vision

backbone for robot applications.
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DreamUp3D: Object-Centric Generative

Models for Single-View 3D Scene
Understanding and Real-to-Sim Transfer

In this chapter, we propose an OCGM for the 3D scene understanding task and

deploy it in real-world robotic scenarios. 3D scene understanding for robotic

applications exhibits a unique set of requirements including real-time inference,

object-centric latent representation learning, accurate 6D pose estimation and

3D reconstruction of objects. Current methods for scene understanding typically

rely on a combination of trained models paired with either an explicit or learnt

volumetric representation, all of which have their own drawbacks and limitations. We

introduce DreamUp3D, a novel Object-Centric Generative Model (OCGM) designed

explicitly to perform inference on a 3D scene informed only by a single RGB-D

image. DreamUp3D is a self-supervised model, trained end-to-end, and is capable of

segmenting objects, providing 3D object reconstructions, generating object-centric

latent representations and accurate per-object 6D pose estimates. We compare

DreamUp3D to baselines including NeRFs, pre-trained CLIP-features, ObSurf, and

ObPose, in a range of tasks including 3D scene reconstruction, object-matching

and object pose estimation. Our experiments show that our model outperforms all

baselines by a significant margin in real-world scenarios displaying its applicability

87
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for 3D scene understanding tasks while meeting the strict demands exhibited in

robotics applications. This work is published as:

Y. Wu, H. Sáez de Ocáriz Borde, J. Collins, O. Parker Jones, I. Posner.

"DreamUp3D: Object-Centric Generative Models for Single-View 3D Scene Under-

standing and Real-to-Sim Transfer." In: IEEE Robotics and Automation Letters (RA-

L)
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Observation
(RGB-D Image)

IC-SBP

Robot's scene understanding in 3D:

Object Rendering in 3D

Pose EstimationScene Point Cloud Object-centric 
latent embedding

Manipulation Tasks

Segmentation, object poses and
object latent embedding

Figure 6.1: DreamUp3D interprets a single view RGB-D image in a 3D object-centric
manner. It uses the IC-SBP algorithm to cluster the input point cloud into object masks.
Then, it infers the object pose and the object-centric latent representation for each
detected object. Each object is reconstructed in 3D and then together with the other
objects and background component merged to form the entire 3D scene reconstruction.
Predictions can then be leveraged for downstream manipulation tasks.

6.1 Introduction

Robots deployed in the real world face unique challenges as agents operating in

unstructured 3D environments with only partial observability. For this reason,

3D scene understanding from limited observations is of paramount importance

in facilitating tasks such as real-to-sim transfer and object manipulation. In

online applications, observations need to be processed frequently through the 3D

perception system to react to changes in the scene. Additionally, task-level planning

requires a representation of the scene that is typically object-centric. To this

end, the desiderata for robots operating in these settings are real-time operation,

3D reconstruction based on single-viewpoint observations, object-centric latent

representations, and accurate per-object 6D pose.

Currently, NeRFs [136, 158] are employed as an implicit representation for 3D

scene perception and understanding, and they have been widely explored in robotics.

Recent studies have tested their capabilities in robotics for grasping [159], localisa-

tion [160] and tactile sensing [161]. However, NeRFs face significant limitations as

they are formulated to represent the environment as a unified entity [159, 162]. In

particular, for each new scene a new NeRF needs to be trained adding significant

overhead in time and compute. Extensions of the original NeRF formulation
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have reduced the impact of these limitations by leveraging multiresolution hash

encoding to reduce the training time of NeRFs [163] and by extending NeRFs to

reason about individual objects in a scene [164]. However, training NeRFs requires

collecting images from multiple views with maximally varied viewing angles. In

addition to this, identifying objects within a scene also relies on known object

masks. Therefore, the NeRF formulation fails to stand up to the desiderata for

real time robot operations in unstructured environments.

In comparison to NeRFs, OCGMs are inherently object-centric and operate

in real time at inference. OCGMs leverage different attention mechanisms [27,

165, 166] that promote disentanglement for scene decomposition. The individual

components are subsequently encoded into object-centric latent representations

and decoded to reconstruct the scene. OCGMs can also be combined with

NeRFs to model 3D scenes [19]. Recent advancements have enhanced the learning

process by incorporating depth supervision [167], enabling the training of NeRFs

using RGB-D inputs without the need for explicit ray marching. However, this

approach encodes both object appearance and spatial information into a single

latent representation, and thus object poses cannot be inferred independently. On

the contrary, ObPose [168] proposes finding the minimum volume bounding box

containing the object and uses the pose of the bounding box as the object pose. This

enables pose estimation without labelled supervision. However, this shape-based

pose estimation can be inaccurate under occlusions. Moreover, these previously

proposed 3D OCGMs have only been evaluated in simulated 3D scenes, leaving the

investigation of their applicability to real-world scenes to future work.

In this chapter, we propose DreamUp3D, an OCGM that integrates generative

radiance fields (GRAFs) [46, 71, 136] to enhance 3D scene comprehension by

overcoming the limitations of past models. DreamUp3D demonstrates transfer across

real-world environments and overcomes occlusions via a shape completion module

which is trained by a shape distillation mechanism that reuses the GRAF predictions

as a training signal. This significantly reduces computational requirements by

minimising the need for repetitive evaluations of the NeRF model to retrieve object
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shapes, which traditionally involves thousands of evaluations using ray marching.

Experimentally, we evaluate DreamUp3D against the desiderata for 3D scene

understanding in robotics tasks. Concretely, we evaluate DreamUp3D in scene

reconstruction, object-centric representation learning, and pose estimation.
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6.2 Related Work

Recently, NeRFs have shown their potential as a compact 3D representation of

the environment and are currently being applied to many robotics tasks, such as

reinforcement learning [169], SLAM [170], and for grasping transparent objects [159,

171]. Among NeRF implementations, instant-NGP [163] is commonly chosen due to

its fast reconstruction speed. However, these approaches often require retraining the

NeRF model before each grasp to update the environment states. GraspNeRF [172]

addresses this constraint by proposing a generalisable NeRF that is free from per-

scene optimisation. Nevertheless, GraspNeRF is not object-centric and thus cannot

interpret the scene at the object level. In contrast, [173] proposes to decode grasping

from a learned object-centric latent representation, but the method lacks the ability

to decompose a scene and requires a priori knowledge of object poses and the

number of objects in the scene. Considering the desiderata for scene understanding

for robots operating in the real-world, NeRFs, despite their ability to provide

high-fidelity 3D reconstructions given multi-view observations, fundamentally face

limitations in terms of object-level inference and real-time operation.

OCGMs are another type of scene understanding model that offer an unsu-

pervised method for learning latent representations at the object level, enabling

reasoning at a higher level of abstraction instead of at the pixel or point cloud level.

In particular, they rely on inductive biases to promote the decomposition of a scene

into its individual components. This enables the models to better understand the

underlying structure of a scene and capture the relationships between its constituent

objects. Early works have conducted unsupervised scene inference and generation

in 2D (MONet [174], Slot Attention [165], GENESIS [175], GENESIS-V2 [166]),

and for robotics applications using APEX [17, 176]. In both [17, 176] the 2D

OCGM, APEX, is utilised for object matching using the learned object-centric

latent representation in an object rearrangement task in simulation and a peg-

in-hole task in the real world respectively. Nevertheless, the 2D reconstruction

and 2D bounding boxes predicted by such OCGM are of limited use in a 3D

world. Recent research [19] has thus focused on combining the 3D representation



6. DreamUp3D 93

power of NeRFs with the versatility of OCGMs. ObSuRF [167] proposes to further

accelerate training by leveraging the depth channel of RGB-D images to guide the

sampling of the NeRF queries. However, ObSuRF encodes the object appearance

and location jointly into a single latent representation, and thus cannot infer per-

object pose. ObPose [168] addresses this problem by introducing a minimum volume

principle for shape-based 6D pose estimation without using human labels. ObPose

is thus the first 3D OCGM that fulfils the desiderata for scene understanding by

providing real-time inference, object segmentation and 3D reconstruction, object-

centric latent representation learning and unsupervised 6D pose estimation, as

DreamUp3D does. ObPose also demonstrates superior performance in terms of

segmentation accuracy compared to ObSuRF on the YCB [28], MultiShapeNet [167],

and CLEVR datasets [137]. We therefore choose ObPose as the main baseline for

the unsupervised pose estimation task.
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6.3 DreamUp3D

The following subsections divide the model into modules with distinct functions,

starting with data preprocessing, scene segmentation for extracting object masks,

pose estimation with shape completion for improved estimates, GRAF representation

of objects, and concluding with an overview of model training. The overall model

pipeline is depicted in Fig. 6.1. Additionally, an architectural diagram of our

model can be found in Fig. 6.2.
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Figure 6.2: Architectural diagram of DreamUp3D. The model is composed of several
distinct modules for data preprocessing, scene segmentation, pose estimation and object
encoding. See Section 6.3 for details.

6.3.1 Data Pre-processing

Given a single RGB-D image input, x ∈ RH×W×4, we utilize the depth information to

convert the input into a point cloud. Depth images are known to be noisy, especially

at object edges or when there is reflectance from metal surfaces. Therefore, we

employ a clustering algorithm, DBSCAN [177], to filter out noisy point observations

from the raw input. The point cloud is then downsampled to a fixed number of

points, 𝑁, and used, along with the RGB color, as input to a U-Net-like backbone

module [37], which consists of several KPConv layers [39]. The KPConv layer

extends the standard 2D convolutional layer to preserve the translation invariance

of point cloud inputs. The output encoding produced by the U-Net, denoted as

Z ∈ R𝑁×𝐷 , is then passed through two MLP heads for scene segmentation and

feature encoding, as detailed in [166], where 𝐷 represents the dimension of the



6. DreamUp3D 95

feature map. Specifically, based on Z ∈ R𝑁×𝐷 and the two respective MLPs, we

obtain the encodings Z 𝑠𝑒𝑔 ∈ R𝑁×𝐷 and Z 𝑓 𝑒𝑎𝑡 ∈ R𝑁×𝐷 . The encoding Z 𝑠𝑒𝑔 ∈ R𝑁×𝐷 is

used for scene segmentation (Section 6.3.2), while Z 𝑓 𝑒𝑎𝑡 ∈ R𝑁×𝐷 is directly used for

scene reconstruction (Section 6.4.2). This preprocessing step adeptly transforms the

input into these two embeddings in a noise-robust manner, which are subsequently

utilised by the rest of the model architecture.

6.3.2 Scene Segmentation

Given the point-wise embedding Z 𝑠𝑒𝑔, we apply an instance colouring stick-breaking

process (IC-SBP) [166] for scene segmentation. IC-SBP is a clustering algorithm

that predicts 𝐾 soft attention masks {m𝑘 }𝐾𝑘=1 ∈ [0, 1]𝑁×1 that follow a stick-breaking

process. The predicted attention masks are randomly ordered, which is achieved

by stochastically sampling cluster seeds from the point-wise embeddings. We

denote the first attention mask, m0, as the background mask and the last attention

mask, m𝐾 , as the redundant scope that tracks the unexplained pixels. We refer

readers to [166, 168] for the implementation details. The observed scene point

cloud can then be segmented into several object point clouds denoted by P𝑜𝑏𝑠
𝑘

where 𝑘 is the object index.

6.3.3 Pose Estimation with Shape Completion

A 6D pose for each segmented object can be estimated by computing a minimum

volume bounding box over the object’s masked point cloud [168]. However,

estimating a full 6D pose for a partially observed object is challenging and prone to

inaccuracies and high variance when estimated from only the information available

from a single view. To overcome this challenge, we propose a shape completion

module that estimates the shape of occluded parts of objects.

First, each observed object point cloud, P𝑜𝑏𝑠
𝑘

, is transformed into a canonical

pose, P𝑐𝑎𝑛
𝑘

, by transforming each point in the point cloud as follows (in the same

manner as [168]):

P𝑐𝑎𝑛
𝑘 =

2
𝑏
(R𝑘 )−1

(
P𝑜𝑏𝑠
𝑘 − T𝑘

)
(6.1)
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where T𝑘 is the location of the sampled seed of the object mask m𝑘 in the

IC-SBP algorithm and R𝑘 is the rotation matrix. For the first transformation,

R𝑘 is set to the identity matrix. The bounding box size 𝑏 ∈ R+ is initialised to

a sufficiently large number for all objects.

For each object, the shape completion module encodes the transformed point

cloud P𝑐𝑎𝑛
𝑘

and the masked scene embedding, Z 𝑓 𝑒𝑎𝑡
𝑘

= Z 𝑓 𝑒𝑎𝑡 ⊙ m𝑘 , using a KPConv-

based autoencoder into a shape embedding e𝑘 . Using a tri-plane-based GRAF [46,

71, 136, 178], which we denote as 𝜋𝑠ℎ𝑎𝑝𝑒, each shape embedding, e𝑘 , is decoded

into a voxelised representation which is used for shape completion. A GRAF is

a generative NeRF that models the 3D geometry and texture of an object by

predicting the occupancy and the colour of any given query point p. Specifically,

𝜋𝑠ℎ𝑎𝑝𝑒 learns to map the latent encoding e𝑘 to the occupancy logits,

𝜎𝑘 (p) = 𝜋𝑠ℎ𝑎𝑝𝑒 (p, e𝑘 (Z 𝑓 𝑒𝑎𝑡𝑘
)), (6.2)

at the given query point p. The colour prediction from the original GRAF

formulation is discarded here as only occupancy is needed for shape completion,

resulting in the shape-GRAF, 𝜋𝑠ℎ𝑎𝑝𝑒.

To reduce the computational overhead of approximating the 3D shape of the

object, we divide each object bounding box into S voxels along each dimension.

The centre position of each voxel, p𝑣,𝑘 , is evaluated with an occupancy probability

scalar value computed as in [168]:

𝜙𝑘 (p𝑣,𝑘 ) = tanh
(
softplus

(
𝜎𝑘 (p𝑣,𝑘 )

) )
. (6.3)

Voxels are considered occupied if 𝜙(p𝑣,𝑘 ) > 𝜙𝑇 , with 𝜙𝑇 acting as a threshold.

Occupied voxels are used as the shape completion points, P𝑐𝑜𝑚𝑝

𝑘
. A minimum

volume bounding box that contains both P𝑐𝑜𝑚𝑝

𝑘
and P𝑜𝑏𝑠

𝑘
is used to represent the

object pose. Again, the object point cloud, P𝑜𝑏𝑠
𝑘

, is transformed to a canonical pose,

P𝑐𝑎𝑛
𝑘

, using the improved object pose estimate and eq. (6.1), where the improved

estimate of the object’s position is T𝑘 and the rotation is R𝑘 .
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6.3.4 Scene Reconstruction

A latent embedding z𝑘 is created by encoding the updated P𝑐𝑎𝑛
𝑘

and Z
𝑓 𝑒𝑎𝑡

𝑘
using

a KPConv-based encoder. z𝑘 is parameterised as a Gaussian and then used by

a tri-plane-based GRAF to decode the 3D shape and colour of each object. We

denote the GRAF that decodes the object embedding z𝑘 as the object-GRAF.

We follow the method of [178] to predict colour and occupancy logits for each

object given the object embedding.

To reconstruct the entire scene each object must be reconstructed individually

along with the background component. The occupancy and colour of the background

are reconstructed by first encoding the observed point cloud together with the

masked scene embedding, Z 𝑓 𝑒𝑎𝑡0 = Z 𝑓 𝑒𝑎𝑡 ⊙ m0, using a KPConv encoder to predict

a background latent embedding z𝑏𝑔 before being decoded by a third tri-plane-

based background-GRAF.

Computing the occupancy probability of the entire scene, 𝜙scene(p), at the

queried points p given the viewing direction, d, using the outputs of the object

and background GRAFs can be completed as follows [168]:

𝜙scene(p) = tanh
(∑𝐾−1

𝑘=0 softplus (𝜎𝑘 (p))
)

(6.4)

For the colours of the scene cscene(p, d), we can compute the weighted mean [167,

168]:

cscene(p, d) =
∑𝐾−1

0 𝜙𝑘 (p)c𝑘 (p, d), (6.5)

with 𝜙𝑘 (p) = 𝜙scene(p)softmax
𝐾

(𝜎𝑘 (p)).

6.3.5 Training

With known depth, the object-GRAF, shape-GRAF and background-GRAF only

require two evaluations in each training iteration [167], i.e. one evaluation at

the surface and one evaluation at points sampled between the camera and the

surface. We denote these two points as p𝑠𝑢𝑟 𝑓 and p𝑒𝑚𝑝𝑡𝑦 respectively. We refer

readers to [167] for how p𝑠𝑢𝑟 𝑓 and p𝑒𝑚𝑝𝑡𝑦 are sampled with the known depth.
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The object-GRAF and the background-GRAF are queried at p𝑠𝑢𝑟 𝑓 to learn the

reconstruction of the geometry and the colour of the scene by maximising the

likelihood of the observations:

Lobs = − log
(
𝜙scene(p𝑠𝑢𝑟 𝑓 )

( ∑𝐾−1
𝑘=0

(
N(x|c𝑘 (p𝑠𝑢𝑟 𝑓 , d𝑠𝑢𝑟 𝑓 ), 𝜎2

std) ⊙ 𝜙𝑘 (p𝑠𝑢𝑟 𝑓 )
))[) (6.6)

with [ ∼ 𝐵𝑒𝑟 (𝜙scene(p𝑠𝑢𝑟 𝑓 )) and d𝑠𝑢𝑟 𝑓 being the view directions of points

p𝑠𝑢𝑟 𝑓 . To prevent the background module from overfitting to the scene, we use

RANSAC [179] to detect the largest plane, e.g. the table, in the scene and constraint

the background module to only learn to reconstruct the detected plane as the

background. The GRAFs are queried at p𝑒𝑚𝑝𝑡𝑦 to learn to fit the empty space of the

scene. However, p𝑒𝑚𝑝𝑡𝑦 can be sampled at places that are known to be empty, e.g.

the points outside of the object bounding boxes. Instead, for the object-GRAFs,

we choose the voxel centres of the object bounding boxes p𝑣,𝑘,obj, and find those in

the empty space as the sampled points denoted as p𝑒,𝑘,𝑜𝑏 𝑗 . The points p𝑒,𝑘,𝑜𝑏 𝑗 are

determined using the known camera parameters and the depth observations. We

thus only evaluate the background-GRAF at p𝑒𝑚𝑝𝑡𝑦 and minimise the occupancy

in the empty space by computing the Lempty as follows:

Lempty = 𝜙0(p𝑒𝑚𝑝𝑡𝑦)/𝜌𝑒𝑚𝑝𝑡𝑦 −
∑𝐾−1
𝑘=1 log(1 − 𝜙𝑘 (p𝑒,𝑘,𝑜𝑏 𝑗 )) (6.7)

where 𝜌𝑒𝑚𝑝𝑡𝑦 is the probability density of the point p𝑒𝑚𝑝𝑡𝑦 being sampled for the

background-GRAF. To further improve the reconstruction accuracy, we sample 𝑁𝑟
points of p𝑒𝑚𝑝𝑡𝑦 and p𝑠𝑢𝑟 𝑓 from multi-view observations in each training iteration.

Note that this is only used for training, and at test time, the inference only uses single-

view input. To supervise the shape-GRAF, 𝜋𝑠ℎ𝑎𝑝𝑒, we use a self-distillation loss to

save computation by reusing the evaluations of the object-GRAF. Concretely, we

compute the trilinear interpolation 𝑇𝑡𝑟 (p𝑣,𝑘 , 𝜙(p𝑣,𝑘,obj)) of the occupancy predictions

of the object-GRAF at p𝑣,𝑘 . We then distil the shape information from the object-

GRAF to the shape-GRAF by minimising the KL divergence between the Bernoulli

distribution of 𝑇𝑡𝑟 (p𝑣,𝑘 , 𝜙(p𝑣,𝑘,obj)) and 𝜙(p𝑣,𝑘 ):

Lshape =
∑𝐾−1
𝑘=0 KL(𝐵𝑒𝑟 (𝑇𝑡𝑟 (p𝑣,𝑘 , 𝜙(p𝑣,𝑘,obj))) | |𝐵𝑒𝑟 (𝜙(p𝑣,𝑘 ))) (6.8)
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The IC-SBP attention masks are supervised via a L2 Loss:

Latt =
∑𝐾−1
𝑘=0 (m𝑘 − 𝜙𝑘 (p𝑠𝑢𝑟 𝑓 ))2 + (m𝐾 − (1 − 𝜙scene(p𝑠𝑢𝑟 𝑓 )))2 (6.9)

Here, m𝐾 is the redundant scope. The last term in eq. (6.9) encourages the redundant

scope to treat points that have a low observation likelihood as not explained points.

We also apply the sparsity loss Lsparsity introduced in [180] to encourage the model

to choose empty space when no observations are available, e.g. the space beneath

the table in the table-top scene. The total loss is computed as an aggregation of

all the aforementioned losses: L = Lempty + Lobs + Lshape + Latt + Lsparsity.
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6.4 Experiments

In this section, we describe the experimental setup and hardware employed in our

experiments, the performance metrics used to evaluate the effectiveness of our model

alongside baselines, and present the primary outcomes of our study. Specifically,

we investigate the following questions: (i) Does DreamUp3D achieve improved

performance for scene understanding compared to NeRFs, especially in terms of

inference time and reconstruction accuracy? (ii) Compared to pre-trained object-

centric features, can the object-centric latent representation improve performance

on downstream tasks such as object matching? and, (iii) Does DreamUp3D with

shape completion have better pose estimation compared to other unsupervised,

object-centric pose estimation methods in real-world scenarios?

6.4.1 Experimental Setup

Data collection and real-world testing of DreamUp3D utilised a 7-DoF Franka Panda

manipulator equipped with an Intel RealSense camera. The system also included

a computer with an NVIDIA GeForce RTX 3090 GPU. A subset of YCB objects,

including the mustard bottle, fish can, banana, apple, lemon, orange, potted meat,

cracker box, pringles, chocolate pudding box, soup can, sponge, gelatin box and

spray bottle, were employed for experiments. Each scene collected in the training set

consisted of two to four objects randomly arranged on the table (see Figure 6.3). The

objects were arranged in graspable poses with inter-objects occlusions. For model

training, 200 scenes were collected with each scene captured from four viewpoints,

providing camera extrinsics and RGB-D images as model inputs. For assessing 3D

reconstruction performance from a single viewpoint, a test set of scenes following

the same configuration as the training set were collected. Training of the model

took approximately 3 days on a single NVIDIA RTX A6000 GPU.

6.4.2 Scene Reconstruction

In this section, we assess the scene reconstruction capabilities of DreamUp3D com-

pared to a recent state-of-the-art baseline. Additionally, we demonstrate DreamUp3D’s
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(a) (b) (c)

Figure 6.3: Example configurations used in the experiments. Panels depict the 7-DoF
Franka Panda robot together with YCB objects randomly selected and configured on the
tabletop.

capacity to imagine missing parts in the scene in an object-centric fashion based

on only a single-view.

Metric. To evaluate the 3D reconstruction capabilities of our model, we use

the directed Hausdorff distance (DHD) as our metric.

𝑑𝐻 (𝐴, 𝐵) =
∑︁
𝑎∈𝐴

min
𝑏∈𝐵

∥𝑎 − 𝑏∥. (6.10)

In our case, 𝐴 is the observed ground truth point set, 𝐵 is the reconstructed point

set, and the ∥ · ∥ represents the Euclidean distance. Note that, the directed Hausdorff

distance only performs the calculation based on the points from the original ground

truth point set as reference. This is different from the Chamfer distance, a metric

commonly used to measure the dissimilarity between two sets of points. We use

the directed Hausdorff distance instead of the Chamfer distance as the point set 𝐵

generated by DreamUp3D can contain imagined points that do not exist in set 𝐴 (see

Fig. 6.4). The absence of reference points in the original set prevents the comparison

of minimum distances for these generated points using the Chamfer distance.

Baselines. We use depth-nerfacto from nerfstudio [181] as one of our baselines.

According to the official documentation, the model is not based on any single

existing published work. Instead, it integrates numerous published methods that

have been identified as highly effective for reconstructing real data when used jointly.

In particular, the model combines camera pose refinement, per-image appearance
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conditioning, proposal sampling, scene contraction, and hash encoding to accelerate

training. In terms of 3D reconstruction, we compare our model to depth-nerfacto

using several different configurations. We provide the NeRF with 8, 16, and 32 views

for reconstruction and optimize it for between 5000 to 15000 training iterations. We

also compare our model to another OCGM, ObSuRF [167]. ObSuRF also employs

generalizable NeRFs as the object decoder but encodes the spatial information and

object appearance into a single latent embedding, preventing the estimation of a

6D pose.We compare the directed Hausdorff distance between ground truth and

reconstructions across 12 test scenes, assessing the time taken by each model to

reconstruct a given scene. The 12 test scenes are collected in the same way as the

training scenes, although, with unseen, random configurations.

Reconstruction Results. DreamUp3D only needs to be trained once and does

not necessitate retraining when the tabletop configuration is altered. In contrast,

depth-nerfacto lacks the ability to generalise and requires retraining for each modified

scene configuration. Additionally, DreamUp3D can reconstruct the scene from a

single-view RGB-D image and imagine the 3D shapes, while depth-nerfacto requires

multiple views as inputs for each new scene. The results are presented in Table 6.11.

It is evident that DreamUp3D achieves significantly faster test time inference,

taking only a fraction of a second, whilst also exhibiting superior reconstruction

performance, surpassing the performance of the baseline method by an order of

magnitude. This improved test-time efficiency of DreamUp3D satisfies the outlined

desiderata for real-time robot operations not exhibited by NeRFs. We observe that

ObSuRF, another OCGM, also elicits fast test time inference, however, it does not

perform as well as DreamUp3D in reconstruction accuracy.

Example RGB and depth reconstructions are depicted in Figure 6.4. Note that

in the case of Figure 6.4 (a), it can be observed that part of the objects in the

input image are out of frame. DreamUp3D demonstrates its ability to imagine the
1The NeRFs are off-the-shelf models without any modifications, we observe that providing

more views or additional training time does not necessarily improve performance. This indicates
that training for 5000 iterations is sufficient.
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Model Views ↓ Fitting steps Test Time (s) ↓ DHD ↓
DreamUp3D 1 0 0.24 ± 0.01 0.0075 ± 0.0010

DreamUp3D (FG only) 1 0 0.23 ± 0.01 0.0081 ± 0.0023
ObSuRF 1 0 0.01 ± 0.01 0.0130 ± 0.0060

NeRF 8 5000 127.41 ± 1.11 0.0351 ± 0.0086
NeRF 16 5000 129.12 ± 1.31 0.0384 ± 0.0077
NeRF 32 5000 128.02 ± 1.34 0.0423 ± 0.0057
NeRF 32 10000 245.73 ± 2.11 0.0463 ± 0.0079
NeRF 32 15000 364.83 ± 1.33 0.0501 ± 0.0109

Table 6.1: 3D reconstruction results for DreamUp3D vs NeRF and ObSuRF baselines.
DreamUp3D outperforms the NeRF baselines with up to 32 views and 15000 fitting steps
both in terms of speed and reconstruction error (distance to ground-truth). The results
for foreground reconstruction is summarised in DreamUp3D (FG only). DreamUp3D also
outperforms ObSuRF in terms of reconstruction accuracy.

missing parts of the objects, this characteristic can be attributed to the object-

centric scene factorisation of the model. Concretely, DreamUp3D first recognises

the partially observed objects in the scene using the learned object encoder and

reconstructs the full shape via the learned object decoder. Also, in Figure 6.5, we

compare the ground truth point cloud to those reconstructed by depth-nerfacto and

DreamUp3D. All images are taken from the same camera view. It is evident that

DreamUp3D captures the underlying point cloud geometry and objects with greater

precision (see Table 6.1). ObSuRF encodes spatial information and appearance

information of the object into a single latent embedding, which poses a higher

requirement on the learning capacity. We thus find that despite ObSuRF’s ability to

reconstruct the scene, it fails to segment the scene into meaningful objects, leading

to strong reconstruction accuracy although without sufficient scene understanding.

6.4.3 Object-centric Representation

We consider an object matching task to evaluate the real-world applicability of

the learned object-centric representations.

Metric. For the object matching task, we report the matching accuracy

as our metric.

Baselines. We first conduct an evaluation of our model by comparing it with

recent visual-semantic matching techniques, namely CLIPSEMFEAT-N [182], which

utilises the pre-trained CLIP model [183] for object matching. Following [183], an
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(a)

(b)

Figure 6.4: Given a single view of the scene, DreamUp3D produces full scene
reconstructions from arbitrary vantage points. For two examples, (a) and (b), the
top two rows show the scene reconstructions for RGB and depth respectively from
various viewpoints. The following two rows show RGB and depth reconstructions for
individual objects and the background components. Example (a) demonstrates the ability
of DreamUp3D to reconstruct the shapes of the cracker box and the the chips despite
being partially out of view in the input image.

instance segmentation network [184] first extracts crops of all the objects present

in both the current scene and the given goal image. Cropped objects are then

encoded into visual features using the CLIP model. A classification matrix is

constructed as the dot product between the normalised visual features and the

semantic features acquired by encoding the known class names into a text embedding

using the text encoder of the CLIP model. For DreamUp3D, we directly compute

the L2-distance and the cosine distance (dot product) of the normalised object-

centric latent representations for object matching. We evaluate our model and

baselines on a tabletop scene involving multiple objects. For each experiment,

we randomly select two to four objects from the YCB dataset, with evaluations

conducted across 20 unique scenes in the real-world.

Object Matching Results. The quantitative results for our object-matching
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Ground Truth NeRF DreamUp3D

Figure 6.5: Comparison of point cloud ground truth, NeRF reconstruction using 32
views, and DreamUp3D reconstruction using a single view image as input. In the case of
DreamUp3D we superimpose the ground truth (white) to the reconstruction (red). All
images are taken from the same view point with the size of the point clouds increased for
visual clarity.

experiment are summarised in Table 6.2. We observed that the CLIPSEMFEAT-N

approach fails to perform object matching well in our experiment as the CLIPSEMFEAT-

N approach requires semantically distinguishable visual inputs. However, objects

such as the potted meat can only expose a metal surface from the fixed top-down

view, which is required by the GG-CNN grasping planner [185] used in [182]. This

partial observation leads to the low accuracy of the CLIPSEMFEAT-N approach.

DreamUp3D, on the other hand, performs object matching using the object-centric

latent representation learned from the scene reconstruction. Our approach thus

does not require known object classes and allows for fully self-supervised learning.

Using the learned object latent representation DreamUp3D achieves a significantly

improved matching accuracy compared to CLIPSEMFEAT-N. However, we also

find that matching among objects that share similar shapes, e.g. the chocolate

pudding box and the strawberry gelatin box, can be erroneous, which indicates



106 6.4. Experiments

the limitation of performing object matching using latent representations learned

only from scene reconstruction. As an ablation, we include the accuracy of the

L2-distance versus the cosine distance (dot product) for the object matching and

see a notable improvement when using the cosine distance.

Model Accuracy [%]
DreamUp3D (cosine distance) 57.6

DreamUp3D (L2-distance) 55.9
CLIPSEMFEAT-N 27.1

Table 6.2: Object matching results DreamUp3D vs CLIPSEMFEAT-N baseline.

6.4.4 Unsupervised Pose Estimation

In this section, we assess the unsupervised pose estimation capabilities of DreamUp3D

compared to a recent state-of-the-art baseline, ObPose [168]. We also analyse

the common failure modes of shape-based pose estimation caused by the partial

observation of the scene.

Metric. Due to the symmetry of some objects, it is possible that there is no

unique correct orientation, we thus evaluate the pose using the mean intersection

over union (mIoU) accuracy of the predicted bounding boxes and the ground-truth

bounding boxes with various thresholds [186, 187] as the metric.

Baseline. The pose estimation performance of DreamUp3D is evaluated

compared to the ObPose model [168]. ObPose is the first OCGM that performs

unsupervised 6D pose estimation but without the use of a shape completion module

to predict the full object shape.

Pose Estimation Results. The quantitative results for pose estimation

performance comparing ObPose [168] to DreamUp3D are summarised in Table

6.3. We observe two main failure modes of ObPose, occlusions and noisy scene

observations, and demonstrate these in Figure 6.6. With occlusion, the observed

object point clouds are not sufficient to accurately approximate the full object

shape, which thus leads to an erroneously oriented minimum bounding box (see

Figure 6.6 (a)). The noisy scene point clouds are caused by the accuracy-drop
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(a)
DreamUp3D ObPose

(b)

Figure 6.6: Object pose estimation in the real world. (a): The pose estimation with
shape completion (DreamUp3D) and without shape completion (ObPose). The predicted
object point clouds are visualised using green points. (b) The noisy point clouds projected
from the depth observation at the edges of the objects, which become outliers for the
minimum bounding box.

of the depth sensor at the object edges. Part of the object point clouds can be

mistakenly projected to the table surface and therefore become outliers for the

minimum bounding box (see Figure 6.6 (b)). To alleviate this problem, we randomly

drop part of the observed point clouds to reduce the outliers and preserve the in-

painted point clouds generated from the shape completion module. We observe

a clear improvement as the observed object point clouds reduce (see Table 6.3).

This indicates the proposed shape completion module can provide more robust

shape information compared to the ObPose baseline.

Model mIoU (0.3) ↑ mIoU (0.5) ↑ mIoU (0.7) ↑
DreamUp3D (SC only) 0.97 0.75 0.15

DreamUp3D (SC + 10% obs. pcds) 0.95 0.75 0.17
DreamUp3D (SC + 30% obs. pcds) 0.90 0.69 0.17
DreamUp3D (SC + 50% obs. pcds) 0.92 0.68 0.14
DreamUp3D (SC + 70% obs. pcds) 0.88 0.68 0.08

ObPose (obs. pcds only) 0.90 0.61 0.03

Table 6.3: Pose estimation results DreamUp3D vs ObPose baseline. The mean IoU
(mIoU) accuracy with thresholds of 0.3, 0.5 and 0.7 are reported. The pose estimation
using less observed (obs.) point clouds (pcds) with shape completion (SC) achieves
improved performance.

Leveraging the estimated object pose, we additionally demonstrate DreamUp3D’s

ability to flexibly rearrange real-world objects, with the use of object position and
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orientation, in Figure 6.7.

  

Figure 6.7: Object manipulation in the real world. The agent detects and moves the
objects to their canonical poses using the inferred object poses. The robot arm moves the
blue and green box away from the apple (first row, left to right). The robot arm moves
the can from behind the apple to the front (second row, left to right).

6.4.5 Limitations

Although our method has the advantage of providing strong scene reconstructions,

latent object embeddings and 6D pose estimation, the reconstruction could see

significant improvements using an RGB-D sensor with greater accuracy. It is

important to note that due to sensor limitations, point clouds captured from

different angles do not perfectly overlap. This lack of alignment can partly be

attributed to errors in camera pose estimation, which are influenced by the robot’s

forward kinematic accuracy and camera calibration accuracy. Additionally, depth

errors can significantly impact the accuracy of our reconstructions, this typically

occurs when scenes include shiny surfaces like metals and reflective plastics. These

factors collectively contribute to the reconstruction error.

There is potential for DreamUp3D to generalise to out-of-distribution cases

where scenes feature a greater number of objects than those seen in training thanks

to the the IC-SBP algorithm and the object-centric learning paradigm. We test

this hypothesis by collecting additional highly clustered scenes with 4-6 objects
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including scenes with unseen objects not included in our training set. As expected,

DreamUp3D does not generalise to scenes with unseen objects, achieving a DHD

of 0.0105 ± 0.0039. This is a known limitation of OCGMs, as the encoder-based

approach of single-view 3D reconstruction is essentially a recognition model [188].

Note that reconstructing unseen objects from single-view observation is a highly

ill-posed task. Generalisation to scenes with a greater number of objects is also

limited (DHD of 0.0090 ± 0.0021) likely caused by the closeness of objects within

the test scenes. Both of these limitations could potentially be addressed by scaling

up both data and computational resources to the model.

Finally, our model and experiments focus specifically on table-top scenes due

to the RANSAC plan detection. Extending our model to more complex scenes

in the wild requires the adaptation of the model and specifically the background

modelling component. The hyperparameters such as the kernel sizes of the KPConv

encoder and the GRAF network sizes are environment-dependent. They need to

be chosen according to the sizes and the complexity of the scene.
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6.5 Conclusion

We propose DreamUp3D as an efficient and robust approach for performing 3D

object-centric scene inference, object-level representation learning, and 6D pose

estimation. In contrast to related work, DreamUp3D achieves these tasks without

the need for retraining on new scenes at test time and without requiring multiple

views of a static scene. This makes DreamUp3D more readily suited to robotics

tasks. Compared to recent baselines, we demonstrate DreamUp3D’s improved

reconstruction quality and its ability to imagine occluded or missing parts of

objects in the input image.

Further work is needed to pursue reconstructions in challenging scenarios

involving reflective surfaces, although acquiring accurate depth estimates in these

conditions using RGB-D cameras is a well-known problem. In the context of object

manipulation, incorporating 3D reconstruction for improved grasping presents a

promising avenue for future research.



7
Discussion

OCGMs discover the structure in data by reconstructing observations and learning

to represent data in a compact fashion. The structured representations of the scenes

then lay the foundation for downstream tasks including object manipulation and

task planning. In the previous chapters of this thesis, we have introduced several

OCGMs and investigated their applications in various manipulation scenarios. In

this final chapter we summarise the key contributions of the thesis and revisit

the guiding questions discussed in Chapter 1. We also reflect on the limitations

of the models proposed and point out future research directions to address the

identified shortcomings.

7.1 Key Contributions

In Chapter 1, we have layed out the guiding questions this thesis investigates:

1. Given that generative models naturally capture factors of variation, could

they also be used to expose these factors such that they can be modified in a

task-driven way?

2. How well does the OCGM learn disentangled components from robot

interaction datasets in a fully unsupervised fashion?

111
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3. Can OCGMs explicitly model the 3D geometry of objects and the background

while still being able to disentangle object spatial information from its appearance

information as in the 2D OCGMs without using any known CAD models or

templates of the objects?

4. Can the 3D OCGM be eventually applied to real-world robotics scenarios

and achieve a suitably broad range of functionalities for scene understanding, such

as the object detection, 6D pose estimation, object-centric latent representation

learning and 3D reconstruction, in order to facilitate downstream robotic tasks

still without using any human supervision?

In this thesis, we first demonstrate how to leverage a latent space learned from

the tool-use experiences for the tool synthesis task. To simulate the trial-and-errors

of the robot using the tool for the reaching task, a dataset of labelled feasibility of

the given tools with respect to a task scene specified by a RGB image is collected

and used to train an affordance predictor. Given a tool that is originally infeasible

for the task, the model can leverage the trained affordance predictor to generate

gradients to modify the latent embedding of the tool via activation maximisation.

By decoding the modified tool latent embedding, we observed that the tool can

morph from being infeasible to being feasible for the given task (see figure 3.5).

This process endows the robot with the ability of task-driven tool synthesis. From

the visualisation of the tool synthesis process, we found that morphing of tool shape

is a continuous process. This indicates that there exists a trajectory in the latent

space that corresponds to the high-level concept of object affordance. We also found

an unseen T-shape tool can be created in some tasks (see the right-middle example

of 3.4). This result suggests the model is able to identify the task-relevant part

of the tool and modify that part of the tool intentionally.

Next, we explored the unsupervised OCGM performance on robotic tasks,

where the scene contains objects of various shapes and textures including the

robot arm itself. Experiments demonstrate that the unsupervised OCGM can still

discover meaningful entities including the objects and robot arm, despite there being

intensive interactions between the objects and the robot. The learned object-centric
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latent representations can also be leveraged for the object matching in the object

rearrangement task. Another interesting finding is that the segmentation results

of the robot arm are different in the two dataset we conducted in the experiment.

In the Panda pushing dataset, the robot arm is segmented as a single entity (see

fig. 4.3), whereas the robot gripper is segmented into two separate components

in the Sketchy dataset due to the relative motion between the two grippers for

the pick-and-place action (see fig. 4.4). This result demonstrates that the correct

segmentation is not unique if the optimisation target is only the reconstruction loss

of the observations. This indicates the limitation of unsupervised scene segmentation

learned from self-supervised reconstruction. To these ends, additional inductive

bias is necessary to concretely define how the complex objects such as the robot

arm should be properly segmented.

The applicability of 2D OCGMs to robotic tasks is limited by the 2D object

decoder employed in the model as the robot manipulation is not only object-centric

but is also in 3D. Moreover, the learned latent space in 2D OCGMs only capture

the variations of the discovered objects in the projected image space, and therefore

provide limited information compared to the latent space that directly models the

object shapes in 3D. For 3D OCGMs, it is also beneficial to learn a disentangled

spatial and appearance representation of the object as in the 2D OCGMs, but there

is no available object template to pre-define the canonical 6D pose of the object. To

address these problems, we propose ObPose, a model that leverages NeRFs as the

object decoder that directly models the 3D geometry of the objects. To estimate the

object pose without labels and object templates, ObPose uses a minimum volume

heuristic to compute the object poses. Concretely, the model uses the smallest

bounding box to contain the object and represents the object pose using the pose of

that bounding box. To the best of our knowledge, ObPose is the first NeRF-based

OCGM that is able to learn disentangled object pose and appearance representations.

The proposed model thus allows the user to sample from the learned latent space

to generate objects that always in the canonical poses. Consequently, the user can

translate and rotate the generated objects into arbitrary targeted poses, which
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provides additional flexibility for the scene editing. Moreover, we also found that

despite trained on single-view RGB-D images, the NeRF decoder can still learn to

approximately reconstruct the shapes of the objects, although having multi-view

supervision can further improve the reconstruction accuracy if available.

In the last part of this thesis, we apply a 3D OCGM in real-world robotic tasks.

We found that the heuristic-based pose estimation can be inaccurate when the

object is occluded. We thus propose the model DreamUp3D, that introduces a

shape completion module before the pose estimation step to inpaint the unobserved

part of the objects. The shape completion module is trained in a computationally

efficient way. Concretely, we employ a self distillation step to reuse the outputs of

the NeRFs to provide the learning signal for the shape completion module. In the

experiment, we evaluate the performance of DreamUp3D on several tasks, including

the reconstruction accuracy and efficiency, the representation learning for object

matching and the pose estimation. We find that DreamUp3D is more suitable as

scene understanding module for robotic tasks compared to the NeRF baselines

as it does not require retraining before every action. We also demonstrate that

the estimated object poses can facilitate the object rearrangement by moving the

object to not only targeted locations but also to targeted orientations. We hope

that the proposed DreamUp3D can be a convenient vision backbone for the scene

understanding integrated into the robot’s perception pipeline.

7.2 Limitations

In the previous section, we summarised the key contributions made in this thesis

and explained how each of them are evaluated with respect to the hypothesis

postulated in Chapter 1. The experiments conducted in Chapter 3-6 demonstrate

that OCGM can discover the structure in data in a unsupervised fashion and

then be leveraged by robotic tasks. Nevertheless, it is also pivotal to point out

the limitations of the current approaches to specify the scope of its application

and to identify future research directions.
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Firstly, although the proposed OCGMs employ different attention mechanisms

to motivate the disentanglement of the scene components, the unsupervised instance

segmentation still struggles to decompose scenes into meaningful components in

scenes that has tightly-packed objects. The optimisation target used for the training

of the OCGMs is the ELBO, which consists of a log-likelihood term for learning the

reconstruction of the observations and a regularization term, such as KL divergence,

to regularise the learned object-centric latent representations. The multivariate

Gaussian is commonly chosen as the prior distribution, which encourages the

latent representations to be disentangled along each dimension. However, this

regularisation loss can not directly motivate the segmentation behavior of the model.

The instance segmentation functionality is therefore a side-effect of maximising the

ELBO. In [26], the authors point out that the reconstruction bottlenecks induced

by this regularisation term appear to be a sufficient mechanism for discovering the

object-like entities in the scene. Nevertheless, the size of the bottlenecks should

adjust adaptively according to the visual complexity of the data to balance the

trade off between satisfying reconstruction quality and segmentation accuracy. This

leads to the difficulty of the hyper-parameter selection of the model. The above

discussion indicates the necessity of introducing additional inductive biases that

directly defines what is an object, i.e. the objectness.

Secondly, the OCGMs can not handle real-world data that has complex and

dynamic background such as the dataset in the autonomous driving tasks. For

other vision models, such as the models for the instance segmentation tasks, the

models can learn to ignore the background pixels by learning object features from

human supervision. However, learning to reconstruct is a more challenging task

than learning to classify. Especially in outdoor scenarios, the street views can be

totally different from the scenes in the training dataset, e.g. a street in another city

that is not in the training dataset. The unexplained background pixels will then

be taken as inputs to the downstream object modules and thus lead to erroneous

learning signal for the learning of the object representations, including both the

object spatial representations such as the object locations and orientations and
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the object appearance representations. Learning to reconstruct scenes in the wild

poses an extremely hard challenge to the modelling capacity of the decoder and

the generalisation ability of the encoder. This thus makes us rethink the necessity

of reconstructing all observations from the inputs despite the key learning signal

it provides for the unsupervised learning framework.

Finally, in Chapter 6 we have demonstrated how a 3D OCGM can be applied to

real-world robotic applications. The learning of a 3D decoder endows the robot with

the ability to infer the object 3D shapes in the scenes within a second. The explicit 3D

shape of the objects can then be leveraged by several downstream tasks such as path

planing with collision avoidance, object grasping and 6D pose estimation. However,

learning the 3D reconstruction of the objects and the backgrounds poses two main

challenges. First, it is expensive to collect data for learning the 3D reconstruction

of the scene. Although in Chapter 5 we showed that it is possible to learn the 3D

shape given only single view inputs of each scene, the reconstruction quality can be

drastically improved if multi-view observations of the same scene are available. But

in Chapter 6, we found that collecting multi-view observations in the real-world

takes a longer time for the robot arm to move from one observation pose to another.

Moreover, the calibration error can accumulate from the camera calibration error

and the forward kinematics error, which further increases the cost of data collection.

Second, the recently proposed GRAF[46] as a generative NeRF can learn to map the

object-centric latent representations to an implicit representation of the objects in

3D. But there are not many works that have conducted investigations into the model

capacity of the GRAF. To improve the decoder capacity for modelling more complex

dataset, recent work [189] proposes to first generate randomly posed 2D images

and then train a NeRF or diffusion model [190] from scratch to reconstruct the

3D geometry of the generated objects. However, this is computationally expensive

and cannot be integrated into the training loop of the OCGMs. A more powerful

generative 3D decoder and a thorough evaluation of its capacity for learning from a

large-scale 3D dataset is thus important for developing stronger OCGMs.
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7.3 Future Work

Regarding the bottleneck of unsupervised segmentation performance of the OCGMs,

using semi-supervised learning could be an approach that drastically broadens the

applicability of the OCGMs. Recent works [191] have proposed foundation models,

e.g. the Segment Anything Model (SAM), for instance segmentation trained on large

amount of data. The SAM can be prompted with various inputs, including boxes,

or text, making it flexible to be integrated into other applications. The foundation

models can perform zero-shot generalisation to unseen objects, without the need

for additional training. The segmentation performance of the OCGM can thus be

improved by using the segmentation predictions from the foundation model as labels

to train the attention module in the model. Moreover, the pre-trained encoder of

SAM can also be integrated into the OCGMs as the SAM has learned a general

notion of what objects are. The learning of the object segmentation in OCGMs

can thus be facilitated by directly training on the predicted embedding from the

SAM encoder. When the segmentation performance of the OCGMs is drastically

improved, the learning tasks of the OCGMs can thus focus on the object pose

estimation, the object-centric latent representation learning, and 3D reconstruction.

Moreover, the accurate object masks also contribute to the data collection for

training the object-VAE in the OCGMs. This could motivate the investigation on

the generalisation ability of the object encoder and the decoder, which has not

been thoroughly conducted in previous works. Another approach to improve the

segmentation performance is to train the attention module not directly using the

raw observation (e.g. image pixels or point clouds) but with the pre-trained features

such as DINO [73] or CLIP [192] features. Recent work [72] has investigated the

performance of an OCGM trained on DINO features for complex real-world scenarios.

For robotic tasks, in addition to the functionalities such as the object detection,

pose estimation, representation learning and 3D reconstruction, that the current

OCGM can provide, the modelling of the interactions between the objects is also a

valuable puzzle. Given the segmented objects in the scene, the agent can simulate

the outcome of a given sequence of actions based on the Newtonian physics. This
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prediction ability thus facilitates the control-level planning such as MPC. One

way to endow the robot with the ability of physical-aware predictions is to reuse

the physics engine from existing simulation software. On this basis, the inputs to

the simulation include the detected objects and their 3D meshes, which can be

inferred from the scene observation using our proposed 3D OCGM. We thus hope

our model might ultimately unlock the control-level planning ability by integrating

the existing physics engine into the current pipeline.

7.4 Closing Remarks

In this thesis, we have proposed several 2D and 3D OCGMs for robotic tasks and

investigated tool synthesis tasks utilising a learned latent space of various tools

and an affordance predictor trained from tool-use experiences. We demonstrated

that there exists a task-relevant trajectory in latent space that corresponds to a

high-level concept of affordance. For the OCGMs, we find that the unsupervised

OCGMs can be applied to robotic tasks despite there existing intensive interactions

between the objects and the robot arm. The inconsistent segmentation results of the

robot arms in the two different manipulation tasks indicates that the model needs

additional inductive bias to define the desirable segmentation performance within

the unsupervised learning framework. We next upgrade the 2D OCGM to 3D and

achieve disentanglement of the spatial information from the appearance information

of the objects via introducing the minimum volume principle for self-supervised

object pose estimation in 3D. In the last part of this thesis, we deploy the 3D

OCGM in a real-world robotics scenario and evaluate its performance in terms of

3D reconstruction, pose estimation and representation learning.

In conclusion, this thesis contributes to self-supervised, object-centric scene

understanding models in 2D and 3D and demonstrated the existence of task-

relevant manifold in the object latent space. It is our hope that the OCGMs

proposed in this thesis can serve as the perception module that facilitates the scene

understanding for the robotic applications. Finally, we believe that our findings
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could potentially inspire future research with respect to real-to-sim and unsupervised

scene understanding in more challenging real-world scenarios.
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