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Abstract 8 

Anthropogenic climate change is increasing rapidly and already impacting biodiversity. Despite the 9 
importance for future projections, understanding of the underlying mechanisms by which climate 10 
mediates extinction remains limited. We present an integrated approach examining the role of 11 
intrinsic traits vs. extrinsic climate change in mediating extinction risk for marine invertebrates 12 
over the past 485 million years. We found that a combination of physiological traits and the 13 
magnitude of climate change are necessary to explain marine invertebrate extinction patterns. 14 
Our results suggest that taxa previously identified as extinction resistant may still succumb to 15 
extinction if the magnitude of climate change is great enough.  16 

 17 

Introduction 18 

Climate has changed rapidly over the last several decades (1) and is projected to continue into the 19 
coming centuries (2, 3). Changes in climate are already impacting modern biodiversity (4–6) and are 20 
expected to impact biodiversity in the future (7). Significant biodiversity loss has also been linked to 21 
climate change in the past (7–10). However, relatively little is known regarding the impact of climate 22 
change on extinction risk for taxa over Phanerozoic timescales, or how the rate and magnitude of 23 
climate change affects extinction risk compared to other known predictors. Determining the traits 24 
that promote or inhibit extinction provides critical insight on the causal mechanisms generating 25 
biodiversity over geological time scales (11, 12) and may help to identify species at risk of extinction 26 
today (13–16).  27 

Previous work has identified correlates of extinction in modern and ancient taxa, including 28 
abundance (17, 18), body size (15, 19, 20), niche breadth (21–26), thermal tolerance (15, 22, 27, 28), 29 
and geographic range size (11, 12, 17, 18, 22, 28–30). The latter trait in particular has been identified 30 
as a key predictor of extinction over the Phanerozoic (11, 14, 17, 20, 29). Despite this important past 31 
work, tests of extinction determinants over macroevolutionary timescales have been conducted for 32 
only a few predictor variables, and are often tested in isolation, limiting our understanding of 33 
evolutionary drivers and our ability to forecast the effects of anthropogenic climate change on 34 
biodiversity.  35 

Thermal tolerance, for example, has been posited to impact the vulnerability of species to 36 
anthropogenic climate change today (31–34) and in the past (27), but has not been assessed over 37 
Phanerozoic timescales relative to other extinction risk predictors. Here we hypothesize that the  38 
thermal tolerance of a taxon influences its risk of extinction, since this trait mediates responses to 39 
climate change, and fossil data suggest extinction patterns tend to vary latitudinally (35–37). We 40 
additionally hypothesise that the magnitude of climate change experienced by a taxon will affect its 41 



extinction risk. The rate and magnitude of current climate change is considered a significant threat 42 
to global biodiversity (2), with myriad impacts already observed (5). Critically, however, the degree 43 
to which taxon-specific climate change estimates are able to predict extinction remains unknown, 44 
including whether this extrinsic factor is a stronger predictor of extinction than traits intrinsic to 45 
taxa, such as geographic range size or body size.   46 

Paleontological occurrence data and predictors of extinction 47 

Here we use three novel approaches to quantify thermal tolerance and the magnitude of climate 48 
change experienced by taxa for 9,264 unique genera in 81 stages across the Phanerozoic (Fig. 1; fig. 49 
S2). We assessed thermal tolerance by estimating the realized thermal preference and realized 50 
thermal niche breadth for each taxon. Realized thermal preference is estimated as the absolute 51 
deviation in occupied temperature from the median occupied temperature for a stage, representing 52 
thermal preference, while realized thermal niche breadth is estimated as the occupied range of 53 
temperatures for a taxon, representing degree of climate specialization (38) (see SI Methods and 54 
Materials (39)).  55 

We compare proxies for thermal physiology to known correlates of extinction, including geographic 56 
range size and body size, to examine their relative weights in governing macroevolutionary dynamics 57 
over the last 485 million years, while recognizing the complex interactions between variables (40, 58 
41). Using the Paleobiology Database (42), we focus on nine classes of marine invertebrates 59 
belonging to Cephalopoda, Gastropoda, Echinoidea, Crinoidea, Trilobita, Ostracoda, Bivalvia, and the 60 
brachiopods Rynchonellata and Strophemenata. Marine invertebrates are well suited for our 61 
analyses, since they are regarded as the most complete and reliable constituents of the fossil record 62 
(43), and their geographic ranges are thought to closely approximate their true thermal tolerances 63 
based on the correlation between realized and fundamental thermal niches calculated through lab 64 
experiments in marine ectotherms (32, 44). 65 

Paleoclimate reconstruction 66 

Spatial estimates of past climate used in the calculation of extinction risk predictors (see SI Methods 67 
and Materials (39); data S1; fig. S1) were derived from new HadCM3 climate simulations for 81 68 
stages over the Phanerozoic (Fig. 1). These simulations improve on those in Valdes et al. (45) in a 69 
number of ways, including tuning of climate model variables (46) so that the model has increased 70 
polar amplification during past climates (47) and more realistic prescribed pCO2 during the Cenozoic 71 
(48) (fig. S1). The climate model is appropriate for this study in that it can successfully simulate polar 72 
warmth of the early Eocene and Cretaceous and produce accurate simulations of the Last Glacial 73 
Maximum and pre-industrial climates (49). We use several versions of the climate simulations to test 74 
the sensitivity of our results to the climate model input (see SI Methods and Materials (39); fig. S5).  75 

Statistical model parametrization  76 

We examined patterns of extinction selectivity over the Phanerozoic for a combined total of 292,940 77 
spatially- and temporally-unique fossil occurrences using generalized linear mixed effects models 78 
that accounted for variance in selectivity temporally and taxonomically (see SI Methods and 79 
Materials (39); table S1; fig. S2,S3). Patterns of extinction were modelled as a function of five 80 
predictors, both with (table S8) and without interaction terms, including geographic range size, body 81 
size, absolute realized thermal preference, realized thermal niche breadth, and the absolute value of 82 
taxon-specific climate change estimates (Fig. 1). Trait estimates were based on both jackknife and 83 
bootstrap subsampling to mitigate potential spatial and sample size biases (see SI Methods and 84 
Materials (39); fig. S4). Analyses were performed at both the generic- and species-level (50). We 85 



focus here on generic-level patterns because species-level measures and temporal ranges are often 86 
poorly constrained on macroevolutionary timescales (13, 51), although modelled results were 87 
consistent across both approaches (table S6).  88 

Extinction selectivity patterns  89 

The best model for all combinations of predictors based on AIC (52, 53) was the most saturated, with 90 
all predictors significant at α < 0.05 and a model weight of 0.98 (52) (Fig. 2; table S3). Model results 91 
were robust to the choice of subsampling approach (see SI Methods and Materials (39); fig. S4; table 92 
S4,S5), to the taxonomic rank of analysis (species or genus; table S6), and to different climate model 93 
simulations used to characterize our thermal traits (see SI Methods and Materials (39); fig. S5), 94 
corroborating the importance of these variables in regulating macroevolutionary patterns over 485 95 
million years. Furthermore, power analyses conducted on simulated datasets suggest our model can 96 
reliably detect selectivity signals for all five predictors (see SI Methods and Materials (39)). 97 

The absolute magnitude of climate change experienced by a taxon emerged as an important 98 
predictor of extinction risk in the best-supported model, suggesting that taxa exposed to greater 99 
climate change preferentially went extinct. This extrinsic environmental trait showed the same 100 
strength of correlation with extinction risk as did realized thermal niche breadth, realized thermal 101 
preference, and body size, evidenced by the overlap in confidence intervals for coefficient estimates 102 
(Fig. 2, fig. S4; table S3). The only trait with a significantly stronger signal of selectivity was 103 
geographic range size. Geographic range size was also the most important predictor when 104 
controlling for sample size (fig. S4), and the coefficient of -0.44 was larger than the second largest of 105 
-0.29 for body size and realized thermal niche breadth (Fig. 2; table S3). This supports past work that 106 
found smaller-ranged species are consistently more vulnerable to extinction on geological timescales 107 
(15, 18, 22, 29) (Fig. 2).  108 

Using spatio-temporal estimates of climate change experienced by each taxon (see SI methods and 109 
materials (39); Fig. 1), we find that a localized mean annual temperature change of ~7oC could 110 
greatly increase a taxon’s probability of extinction, calculated as the temperature when the marginal 111 
effects are greater than zero (Fig. 2). This threshold is slightly higher than that found by Song et al. 112 
(54), who suggested an increase of 5.2oC could result in a mass extinction in the modern. However, 113 
Song and colleagues (54) used globally-averaged rates of climate change to predict magnitude of 114 
extinction over the Phanerozoic, rather than the taxon-specific magnitude of localized climate 115 
change used here.  116 

Realized thermal niche breadth and realized thermal tolerance were both strong and consistent 117 
predictors of extinction risk over the Phanerozoic (Fig. 1; Fig. 2). These results are robust to the 118 
number of occurrences used to estimate thermal tolerance (see SI Methods and Materials (39); fig. 119 
S4). Taxa that occupied climatic extremes were more extinction prone than taxa occupying more 120 
thermally intermediate isotherms (Fig. 2), suggesting a significant evolutionary advantage for taxa 121 
living in temperate isotherms over those living near the equator or at the poles. This pattern is 122 
congruent with past studies that found taxa adapted to living in climatic extremes were more prone 123 
to extinction during hyperthermal events (27, 35, 55, 56), which could be explained by the loss of 124 
thermal habitat, or ecophysiotypes, at the poles and equator due to climate change (9, 56). 125 

Taxa with narrower thermal breadths were more susceptible to extinction than taxa with broader 126 
thermal tolerances in the best-supported model (Fig. 2), and this trait was as important as realized 127 
thermal tolerance in explaining patterns of extinction over the Phanerozoic (Fig. 2). The strength of 128 
this correlate suggests extinctions are physiologically selective based on thermal limits. However, it 129 



is important to note that the thermal breadth of a taxon is mediated by both temperature and 130 
oxygen availability, which has increased over the Phanerozoic, as well as other biotic factors such as 131 
competition and nutrient availability (8, 56–58). Based on our models, taxa with narrow realized 132 
thermal breadths of less than 15oC may be at greatest risk of extinction (Fig. 2). 133 

Body size was a significant predictor of extinction in the best-supported model, with smaller-bodied 134 
marine invertebrates more prone to extinction on geological time scales (Fig. 2; table S3), consistent 135 
with previous studies (15, 20). Body size, however, had a relatively small effect size on patterns of 136 
extinction over the Phanerozoic compared to geographic range size, especially when controlling for 137 
sample size (fig. S4). This pattern is surprising, considering that body size is often regarded as one of 138 
the primary traits selected for during extinction events (11, 20, 59, 60). The relatively weak 139 
predictive performance of body size could result from methodological constraints, which required us 140 
to assume body size was constant over time for a taxon. Thus, we were unable to identify any 141 
reductions in body size that may have occurred prior to extinction events. We also tested whether 142 
the inclusion of small-bodied taxa, such as ostracods, had an impact on body size selectivity, and 143 
found no change in overall patterns when excluding ostracods (table S3,S7).  144 

Many of the predictors considered here may interact to influence taxon extinction risk (34, 40, 41, 145 
61), despite their low collinearity (table S2). For example, species that have both small geographic 146 
ranges and narrow niche breadths may be even more susceptible to extinction than a taxon with 147 
either a small geographic range or a narrow niche breadth. We therefore ran an additional stepwise 148 
model selection procedure considering all combinations of two-way and three-way interaction terms 149 
for the five predictor variables (n=32 predictors). All five main effect predictors remain statistically 150 
significant in these models, with significant interactions found between geographic range and 151 
realized thermal tolerance, geographic range size and realized thermal niche breadth, and 152 
geographic range size and body size (see SI Methods and Materials (39)). The overall best model was 153 
found to contain the five main effect variables plus the three significant interaction terms (table S8). 154 
Therefore, there are likely cumulative impacts of these variables on extinction risk, where the 155 
importance of one variable in predicting extinction outcomes can increase or decrease depending on 156 
the level of another term.  157 

Discussion  158 

Our analyses suggest that intrinsic, taxon-specific traits were insufficient to explain empirical 159 
patterns in extinction dynamics over the Phanerozoic, and that the magnitude of climate change 160 
should also be considered. Climate change affected taxa within a stage, regardless of their traits 161 
(table S8), although its impact varied spatially. For example, localized temperature changes may 162 
have exceeded 140C (data S1) for some taxa during the Late Permian, which potentially explains why 163 
some species with large geographic ranges and realized thermal breadths (i.e., species predicted to 164 
be buffered from extinction) go extinct, especially during mass extinction events that are often 165 
characterized by severe climate perturbations (fig. S2). However, we do find a decrease in extinction 166 
selectivity during mass extinction intervals (fig. S2), similar to past studies (20). The effect of climate 167 
change on a taxon’s risk of extinction is likely mediated by additional factors, including a taxon’s 168 
dispersal ability and the shape and orientation of shallow marine habitat (62).  169 

Although proxies of thermal physiology emerged as important predictors in our model, geographic 170 
range size was the strongest correlate of extinction over the Phanerozoic, consistent with previous 171 
studies that found realized thermal niche breadth and geographic range size can be decoupled (22, 172 
63). However, the effects of geographic range are complex and may be more or less important based 173 
on the other predictors included here (table S8). Geographic range size may be a strong and 174 



consistent predictor of extinction because this trait emerges from the effects of many other factors, 175 
including climatic tolerances, dispersal ability, nutrient availability, and biotic interactions (17, 18). 176 
Moreover, a larger geographic range size could serve as a buffer against localized perturbations (be 177 
they abiotic or biotic in nature), since regional events would be unlikely to affect all populations 178 
equally (22, 29). Thus, large geographic range size may buffer taxa from stochastic events, which 179 
could lead to extinction, independent of thermal niche breadth. 180 

Model uncertainty 181 

The extinction risk models presented here represent our current best estimate for constraints on 182 
marine invertebrate extinction over the Phanerozoic and serve as a framework for future work 183 
incorporating additional parameters. For example, other intrinsic traits and factors, such as 184 
abundance (17), might affect extinction risk over geological timescales. These factors, however, are 185 
difficult to characterise for extinct taxa spanning millions of years. Abundance, in particular, is 186 
challenging to determine even in the modern (17), and thus we focus only on traits that can be 187 
estimated more reliably. In addition, there are many other potential extrinsic drivers not considered 188 
here, such as anoxia (8), euxinia, and ocean acidification (64). These extrinsic factors may be 189 
especially important during mass extinction events (64), but geochemical proxies are not available in 190 
our climate models and difficult to estimate over the Phanerozoic.  191 

Our analyses may also be affected by uncertainty in both paleogeographic reconstructions, 192 
especially pre-Jurassic (45, 65), and in climate simulations (49), since the physiological and extrinsic 193 
predictors are based on proxies for spatiotemporal climate that contain uncertainty (see SI Methods 194 
and Materials (39)). New paleoclimate estimates may impact our understanding of extinction 195 
correlates over Phanerozoic timescales. However, the insensitivity of our results to different climate 196 
model boundary conditions suggests our patterns may be robust to some degree of climate model 197 
uncertainty (fig. S5).  198 

Finally, the temporal resolution of our stage-level analyses may affect our ability to compare climate 199 
changes between the past and present (66, 67). However, our analyses find a robust selectivity 200 
signal that has persisted over 485 Ma (Fig. 2, fig. S2), despite major changes in boundary conditions 201 
(62, 68, 69), suggesting the determinants of extinction risk studied here may be constant regardless 202 
of temporal scale.  203 

Conclusions 204 

The predictable nature of extinction on geological timescales, despite major variations in boundary 205 
conditions, environment, biota, and extinction magnitude, is striking. Our results have implications 206 
for understanding the fate of biodiversity in response to changing climate today and into the future. 207 
Based on our models, taxa with narrow realized thermal breadths of less than 15oC, living 208 
predominantly in the poles or tropics, are likely to be at greatest risk of extinction (Fig. 2). These 209 
results reinforce the importance of climate in driving extinction on macroevolutionary timescales (8–210 
10, 70). We find that extinction dynamics over the past 485 Ma cannot be explained fully without 211 
considering the magnitude of climate change in addition to the other physiological and taxonomic 212 
trait predictors. Our baseline extinction risk estimates derived from the geological past suggest that 213 
biodiversity may face a harrowing future given projected climate change estimates (2), which could 214 
be made worse when interacting with other anthropogenic extinction drivers (5, 13).  215 

 216 
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 633 

Fig. 1. Sea surface temperature estimates and predictor variable distributions for Phanerozoic 634 
taxa. (A,C,E) Sea surface temperature estimates for the Visean (335 Ma), Maastrictian (69 Ma), and 635 
Pliocene (5 Ma) using the HadCM3 coupled atmosphere-ocean generalized circulation model, 636 
overlain with taxon occurrences (white) used in estimating predictors in (B,D,F). (B,D,F) Boxplots of 637 
taxon trait estimates for taxa that survived versus those that went extinct in the Visean, 638 
Maastrichtian, and Pliocene, respectively, where the line represents the median, the black dots the 639 
unique estimates for each genus, and the whiskers the 95% confidence interval estimates. The 640 
variables were centered and standardized to enable direct comparison between distributions for 641 
each predictor, so a value of 0 indicates the mean estimate, positive values represent values greater 642 
than the mean, and negative values indicate values less than the mean. N = the number of unique 643 
taxon occurrences in the stage, S = the number of survivors, and E = the number of taxa that go 644 
extinct in the respective time interval.  645 
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 647 

Fig. 2. Extinction risk estimates for each predictor variable included in the best-supported model. 648 
(A to E) Marginal effects plots for each predictor variable in the best model. The y-axis corresponds 649 
to the scaled probability of a taxon going extinct with a given trait value, holding the other predictors 650 
constant (see SI Methods and Materials (39)). The dark lines correspond to the median estimate and 651 
the shaded regions the 95% confidence intervals. Positive values indicate greater probability for 652 
extinction at the given predictor values, and negative values indicate a taxon is less likely to go 653 
extinct at the given predictor values. (D) Realized thermal preference was measured as the absolute 654 
value of the deviation of a taxon’s median occupied temperature from the median occupied 655 
temperatures of all taxon occurrences within a stage. (E) The absolute value of climate change 656 
experienced by each unique taxon was calculated from a given stage (n) to stage n+1. (F) Extinction 657 
selectivity in log-odds for each predictor variable. The y-axis corresponds to the probability of 658 
extinction in log-odds. Positive values indicate a positive relationship with extinction risk, and 659 
negative values indicate an inverse relationship with extinction risk (refer to table S3 for the detailed 660 
coefficients).  661 
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Methods and Materials 

Taxon occurrence data 

We focus on marine invertebrates belonging to nine classes, including Cephalopoda, Gastropoda, 
Echinoidea, Crinoidea, Trilobita, Ostracoda, Bivalvia, and the brachiopods Rynchonellata and 
Strophemenata. Spatio-temporal occurrence data for these groups were downloaded from the 
Paleobiology Database on January 22nd, 2023 (42, 71), and processed and cleaned using the 
specifications in Kocsis et al. (72). Downloaded data were filtered to only include genera with 
associated body size information, belonging to classes that contain more than 200 genera, from 
Heim et al. (73) and Monarrez et. al. (20). Bony fish were removed from our dataset, since the focus 
of our study is on marine invertebrate ectotherms. We included genera with three or more 
occurrences, to ensure robust calculation of geographic range sizes (74, 75). The resulting dataset 
contained 292,940 spatiotemporally unique occurrences for 9,264 unique genera across 81 
Phanerozoic stages. Taxon occurrence data were binned per stage using the stage names and 
durations found in Gradstein and Ogg (76) in the divDyn v. 0.8.2 R package and the pipeline found in 
Kocsis et al. (72). We excluded the Cambrian from our analyses, following previous studies (20, 27), 
due to the difficulties in stratigraphic resolution and the scarcity of occurrence data for this time 
interval.  

 

Model parameters 

We examine patterns of extinction selectivity across 485 million years of evolution using five 
predictor variables at the genus level: body size, geographic range size, absolute realized thermal 
preference, realized thermal niche breadth, and absolute temperature change at occupied sites. 
Models were re-run at the species level without body size, since body size was measured at the 
genus-level. All analyses were conducted in the R v. 4.3.1 statistical environment. 

Extinction 

We determined when each genus went extinct using the modeltab() function within divDyn to 
calculate first and last occurrences for each genus. The Cambrian and Holocene were only included 
in range calculation to remove edge effects (20, 27). Analyses were run both with (table S3) and 
without (table S4) (10–12) singletons to test the effects of potentially-spurious occurrences on 
extinction selectivity patterns (18, 77, 78). The range-through method was used to calculate 
extinction and determine temporal ranges for generic-level taxa. Since we estimate spatio-
temporally unique traits that vary across time bins, we excluded occurrences for stages where we 
could not estimate their traits, following previous studies (78–80). Species-level analyses were run 
using the temporal ranges of cleaned, accepted species names, determined using the specifications 
in Kocsis et al. (72). 

Body size 

Body size is thought to be a significant predictor of extinction due to its metabolic and life history 
implications (19, 20, 59, 73, 81, 82) and is correlated with fecundity and dispersal ability for marine 
invertebrates (20, 83). We downloaded body size data for marine invertebrates from Monarrez et al. 
(20) to test the relative importance of body size compared to other predictors. Body size was 
approximated as the log10 of the biovolume of a genus in mm3, calculated from an ellipsoid based on 
axis lengths in 3-dimensions from primarily figured specimens (73). The maximum body size 
achieved by each genus over their temporal range was used as proxy for body size. Body size was 



assumed to be constant over the range of a genera (20, 73) and was the only variable that did not 
vary among stages.  

Geographic range size 

Geographic range size is often regarded as the most important predictor of extinction risk (18, 28, 
77, 78, 80, 84). Geographic range size may serve as a proxy for the ability to withstand a broad array 
of environmental and biotic conditions, and may also signal good dispersal ability (85, 86). A large 
geographic range size could serve as a buffer against localized climatic or biotic perturbations, as 
these changes would be unlikely to affect every population equally (78, 84). Geographic range size 
was estimated by fitting a minimum convex hull (17, 74, 87) to generic (or species) level occurrence 
data in each stage using the Albers equal area conic map projection in km2 (17). Analyses were 
performed using spatially-unique occurrences for each unique stage x taxon x paleocoordinate 
combination. Minimum convex hulls were used for area calculations, as they showed good 
performance for fossil data, whereas alpha convex hull and great circle distance performed less well 
at identifying geographic range patterns at smaller sample sizes (87).  

To account for spatial and sample size biases across taxa and time, we employed two subsampling 
approaches. In the first approach, we aimed to account for spatial outliers / erroneous occurrences, 
which may lead to inflated trait estimates using jackknife subsampling (88). In this approach, we 
used jackknife subsampling to iteratively remove one occurrence from each unique stage-by-taxon 
occurrence dataset and calculate geographic range size (88). If there were only three occurrences, a 
10 km buffer was implemented using the gbuffer() function within the rgeos v. 0.6 R package (89) to 
obtain a non-zero estimate for geographic range (17). Minimum convex hull areas were calculated 
using gconvexhull() and garea() within the rgeos v. 0.6 R package (89). The median estimate from the 
jackknife iterations was used as the estimate of geographic range size for a given taxon and stage. 
The median was chosen over the mean, since it is better suited for dealing with outliers and changes 
in data distributions that can occur in paleontological datasets (90).  

In the second approach, bootstrap subsampling was used to control for both sample size and spatial 
heterogeneity (88). For each stage-by-taxon dataset, we subsampled down to a set number of 
occurrences and used this subsample to calculate geographic range size. The upper 95% confidence 
interval from the 100 bootstrap replicates served as the estimate of geographic range size for a given 
taxon and stage. The upper confidence interval was used because it may better approximate the 
maximum geographic extent that can be reconstructed using only a minimal number (three, four, or 
five) of occurrences over 100 iterations. We also ran analyses using the median of the bootstrap 
replicates, which produced similar results. The number of subsampled occurrences was held 
constant across taxa and stages, and we repeated analyses by subsampling from three to five 
occurrences, in increments of one. The main text analyses present selectivity patterns using three 
subsampled occurrences, to reduce data loss and avoid exclusion of genuinely rare taxa (91). 
However, use of higher subsampled numbers of occurrences produced congruent results (Figs. S4). 

Realized thermal niche breath.  

Realized niches are those conditions actually occupied by a taxon, which typically represents a 
subset of the fundamental niche (38). The realized niche is governed by myriad factors including 
climate, biotic interactions, and dispersal ability (85). Realized niche breadth in the modern (92) and 
recent geologic past (84) has been found to be an important determinant of extinction risk.  

Realized thermal niche breath was estimated as the temperature range occupied by a given taxon in 
a given stage (species and genus level). For example, if a taxon was found in five grid cells 



characterized by temperatures of 11°C, 10°C, 11 °C, 14°C, and 20°C for a given stage, the taxon 
would be estimated to have a realized thermal niche breadth of 10°C.  

Spatio-temporally unique temperature estimates for each occurrence were derived from AOGCM’s 
(see “Paleoclimate Simulations” below) for 81 stages over the Phanerozoic (data S1). AOGCM’s were 
assigned to stages based on the midpoints of each stage and the age of the climate model. Taxon 
occurrences were projected onto the AOGCM’s, and the temperature values were extracted using 
the extract() function from the raster v. 3.6-20 R package (93). Temperatures were interpolated for 
inland occurrences using the points2nearestcell() function from the rSDM v. 0.3.9 R package (94); 
erroneous occurrences more than 1000 km from a data-complete grid cell were removed.  

As with geographic range size, we used both jackknife and bootstrap subsampling to correct for 
spatial and sample size biases. For jackknifing, we iteratively removed one occurrence and calculated 
the temperature range (°C) occupied by a given taxon in a given stage; the median from the jackknife 
iterations was used as our realized niche breadth estimate.  

The bootstrapping subsampling procedure followed that for geographic range size, wherein each 
unique taxon-by-stage combination was subsampled down to a set number of occurrences, and the 
realized thermal breadth calculated (°C). Bootstrap subsampling was repeated 100 times for a 
unique taxon-by-stage combination, and the upper confidence interval estimate was used to 
approximate the thermal range.   

Realized thermal preference 

We tested the selectivity of realized thermal preference using the absolute value of the deviation of 
a taxon’s median occupied temperature from the median occupied temperatures of all taxon 
occurrences within a stage. This approach was used as a means of standardizing thermal preferences 
within each stage, since a temperature preference of 350C, for example, may not have the same 
relationship with extinction risk for each stage over the Phanerozoic, and since our statistical 
modelling framework is not optimized for polynomials and complex relationships. Therefore, the 
deviation from the median occupied temperature within a stage is a more consistent way of 
identifying whether a taxon is occupying extreme temperatures prior to extinction. We also ran our 
analyses using the median occupied temperature as a proxy for thermal preference and our results 
and conclusions were unchanged. As with realized thermal niche breadth, temperature estimates 
were derived from AOGCM’s for 81 stages over the Phanerozoic. We used both jackknife and 
bootstrap subsampling to calculate median estimates at both generic and species level, following the 
approach outlined for realized thermal niche breadth. These realized thermal preferences were used 
to test whether there is an evolutionary advantage to living in moderate isotherms over extreme 
isotherms.  

Absolute temperature change 

We compared the effects of intrinsic trait estimates vs. extrinsic factors such as climate on extinction 
risk. The relationship between the magnitude of climate change and extinction rates has been 
studied on a per-stage basis over the Phanerozoic (54). However, previous studies (10, 54) have 
been limited to time series analyses where temperature and climate change were estimated using 
stage-averaged climate proxy estimates. We calculated the absolute value of climate change 
experienced by each unique taxon in a given stage from that stage (n) to stage n+1. We extracted 
the occupied temperatures for stage n and projected the coordinates for that stage onto the climate 
model for the next stage to calculate the absolute difference between each point in stage n+1 and 
stage n. The median value of the climate change experienced by each population was taken to 



represent the magnitude of occupied climate change for each genus (or species). Both jackknife and 
bootstrap subsampling approaches were applied to account for potential sampling biases, following 
the methodology outlined for geographic range size.  

Paleoclimate simulations 

To estimate realized thermal preference, realized thermal niche breadth, and absolute temperature 
change, we utilise a new set of paleoclimate model simulations, developed from the simulations 
presented in Valdes et al. (95).   

Here we summarise the climate model and simulations presented in Valdes et al. (95) and Fenton, et 
al. (96), and describe the developments that have been made since then. 

Valdes et al. (95) climate model and simulations  

The Valdes et al. (95) paleoclimate model simulations were carried out using an updated version of 
the UK Met Office coupled Atmosphere-Ocean General Circulation Model (AOGCM), HadCM3. 
Specifically, we used HadCM3BL-M2.1D, with the Nomenclature of Valdes, et al. (95), which has 
been heavily utilised in both contemporary and paleoclimate studies (see below). 

HadCM3L-M2.1D (HadCM3L hereafter) models the atmosphere and ocean using equations solved on 
the Arakawa B-grid. The climate model has a resolution of 3.75° longitude × 2.5° latitude in the 
atmosphere and ocean (~250 km grid squares in the tropics), containing 20 vertical levels in the 
ocean and 19 hybrid levels in the atmosphere. Parameterization is a process whereby small-scale, 
often complex, features of the climate system, which cannot be physically represented either 
spatially or temporally at the model grid size, are simplified. For example, cloud microphysics, 
convection, and oceanic eddies are parameterized, as they can occur at much finer scales from one 
meter (or less) to several kilometres. Unlike contemporary climate modelling studies, global-scale 
soil texture, porosity, and albedo are unknown in the deep past. Thus, a globally uniform medium 
loam soil from the model land surface scheme of MOSES 2.1 (97) is utilised. A major advantage of 
using HadCM3L is the ability to predict vegetation coverage through deep time (which is not 
common in many other paleoclimate models where vegetation is prescribed, often with little 
understanding of global vegetation coverage for deep time periods). Our dynamical vegetation 
model, TRIFFID (Top-Down Representation of Interactive Foliage and Flora Including Dynamics) 
produces a generalised vegetation representation that is appropriate for deep time simulation due 
to its simplified representation of common vegetation structures using five Plant Functional Types 
(PFTs), in this case, i) broadleaf trees, ii) deciduous trees, iii) shrubs, iv) C3, and v) C4 grasses. TRIFFID 
predicts the properties of global vegetation, and their distribution, in the form of fractional coverage 
(and thus PFT co-existence) within a grid cell.  The PFT co-existence is based on competition 
equations based on the climate tolerance of these five plant functional types.  

The ocean sub-model is the same as Cox et al. (98)—a  fully primitive equation, three-dimensional 
model of the ocean. This model includes a second-order numerical scheme and a centred advection 
scheme to remove nonlinear instabilities. Critically, flux adjustments (such as artificial heat and 
salinity adjustments in the ocean component model (99) to prevent it from drifting to unrealistic 
values) are not required in this model. This is crucial for long paleoclimate simulations (100), which 
require in excess of 5000 (often more) model years to reach an equilibrium state in the surface and 
deep ocean, and would not be scientifically justifiable. Sea ice was calculated assuming a consistent 
salinity for ice using a zero-layer model. Partial sea ice coverage was possible.  



The UKMO HadCM3 suite of models has been used in many international contemporary projects 
from the Coupled Model Intercomparison Project (CMIP 1-5) experiments to paleo-specific 
intercomparison projects, such as the latest Paleoclimate Modelling Intercomparison Project 
(PMIP4) (101) and the new Deep-time Model Intercomparison Project (DeepMIP) (102). The model 
has demonstrated expertise at simulating the modern-day climate (95) and a range of paleoclimate 
time periods (100, 103). A paleoclimate simulation is only scientifically robust once it has reached an 
equilibrium state—i.e.,  once the simulation has fully adjusted to the paleo-time specific boundary 
conditions (topography, bathymetry, land ice sheet, greenhouse gas concentrations in the 
atmosphere, solar luminosity), all of which need to be supplied to the model. Many thousands of 
model years are often required for the deep ocean to reach an equilibrium state where ocean 
circulation is fully representative of these boundary conditions (100, 103). Although the atmosphere 
and land surface respond more quickly (in the order of hundreds of years) due to a lower heat 
capacity than the ocean, both require the ocean to be in an equilibrium state first due to ocean-land-
atmosphere feedbacks that can modify one another. Unfortunately, due to computer and cost 
limitations, contemporary CMIP6 level models, which are often more complex and at a higher spatial 
resolution, are incapable of being fully equilibrated for paleo time periods currently. Moreover, 
multi-sensitivity studies cannot be run with such models to understand the processes and 
mechanisms responsible for the observed change in climate. 

A set of 109 ‘snapshot’ climate simulations, covering 540 Ma of the Phanerozoic, were utilised in this 
study following Valdes et al. (95), with time-specific temporal boundary conditions. The EarthByte 
group, which is part of the PALEOMAP project (48) produced each time-specific paleogeography, 
whereby each paleogeography informed the next to produce the set of Paleogeographic digital 
elevation models (DEMs). 

Each 1°x1° DEM was interpolated onto the HadCM3L 3.75°x2.5° grid. Ice sheet height (m) on land 
was estimated assuming a simple parabolic shape on the grid. Time-specific average pCO2 
concentrations produced from the proxy-record (104), were used for each simulation from the 
Fortunian (~540 Ma) to the Campanian (~75 Ma), with a further update to the Valdes et al. (95) 
simulations for the Maastrichtian (~69 Ma) to the Pre-industrial  (fig. S1). Time-specific solar 
luminosity is calculated from the solution of Gough (1981) (105). Orbital parameters and aerosol 
concentrations were held constant at pre-industrial values. For this paper, only the last 95 
simulations were used, covering the last 485 million years. An equilibrated Pre-industrial state was 
chosen as the initialisation point for each simulation in the atmosphere and ocean. Vegetation was 
set uniformly as shrub globally and allowed to evolve via the interactive dynamic vegetation sub-
model, TRIFFID (called every 10 model days).  

A three-stage protocol was used for each simulation and was fully equilibrated. i) The global volume-
integrated annual mean ocean temperature trend was less than 1°C per 1000 years; ii) trends in 
surface air temperature were less than 0.3°C per 1000 years; and iii) net energy balance at the top of 
the atmosphere, averaged over a 100-year period at the end of the simulation, was less than 0.25 
W m2. These simulations, in their entirety, spanned over 9,000 model years to guarantee a complete 
equilibrium within the Earth system. The last 100 years were then used to calculate the climate 
mean to avoid any influence from interannual variability.  

Developments since Valdes et al. (95) 

Compared to the simulations presented in Valdes et al. (95), the simulations used in this paper have 
undergone a number of developments, associated with improvements to the model itself, and to the 



experimental design.  The most significant of these are summarised here.  For a full discussion, see 
Ross (PhD thesis) (47). 

The version of the climate model used in this paper has an update that includes modification to 
Cloud Condensation Nuclei (CCN) density and cloud droplet effective radius, following the work of 
Sagoo et al. (46) and Kiehl and Shields (106). This update increases higher latitude temperatures 
without significantly changing tropical temperatures, thereby reducing the pole-to-equator 
temperature gradient, and better aligning higher latitude temperatures with proxy observations. 
This update has been verified to be effective under a range of climate conditions, including hot, cool, 
and icehouse conditions, as well as under pre-industrial boundary conditions. As a result, it is 
suitable for application throughout the Phanerozoic. In addition, other internal model parameters 
were tuned, following Irvine et al. (107). The ocean barotropic flow solver requires all islands in the 
paleogeography to be manually defined, to allow non-zero flow through ocean gateways.  Although 
Antarctica was defined as an island in the Valdes et al. (95) post-Eocene simulations, no other islands 
were defined.  For the simulations in this paper, all islands were defined through the Phanerozoic. 

Uncertainties 

Modelling of climate niches in deep time requires global-scale datasets of key environmental 
variables, such as mean annual sea surface temperature Global proxy data with broad 
spatiotemporal coverage exist for some past time periods (108). However, proxy evidence becomes 
scarcer and increasingly less well constrained in deep time, and thus niche modelling studies cannot 
be conducted without the use of paleoclimate models to extract site-specific climate information.  

Paleoclimate simulations of deep-time climates are uncertain. These uncertainties need to be 
considered when interpreting a paleoclimate model simulation which, depending on the time 
period, can be relatively unconstrained by proxy-observations. Uncertainties can generally be 
categorised into two main sources, i) boundary condition uncertainty, and ii) climate model 
uncertainty. 

i) Boundary conditions need to be prescribed by the user and are a product of both proxy-evidence, 
quantitative data (e.g. paleoaltimetry studies, pCO2 reconstructions), qualitative data (e.g. ice sheet 
height), and numerical techniques (e.g. tectonic plate models). Boundary conditions for the model 
that vary on timescales of the Phanerozoic include (a) paleogeographic reconstructions, (b) ice sheet 
height and extent, (c) vegetation, (d) solar luminosity, (e) orbital configuration, and (f) greenhouse 
gas concentrations.  

(a) One source of uncertainty arises from the paleogeographic reconstructions (topography, 
bathymetry, and land-sea distribution), which are produced as a DEM. These reconstructions 
are produced using plate models that make assumptions concerning spreading, collisional, 
deformational, and weathering rates, that become more difficult to constrain the further 
back in the past. However, paleogeographic topography can often be constrained using 
geologic data, in particular paleoaltimetry, giving a reasonable approximation of height, with 
associated uncertainties and assumptions (109). 

(b) Ice sheet reconstructions are also difficult to estimate, in particular their height. The amount 
of land ice will have an associated impact on paleogeography through sea-level change, 
which in certain time intervals could be critical to whether an ocean gateway is open or 
closed. Whether gateways are open or closed can have a material effect on both ocean and 
atmospheric circulation globally. Most deep-time paleoclimate simulations will prescribe the 
ice sheet extent and height based on available geologic evidence. However, this can be 



challenging further back in the past, where any direct evidence is not preserved in the rock 
record or currently inaccessible for investigation (.e.g. covered by land ice in Antarctica).  

(c) Vegetation reconstructions are an additional source of uncertainty since the TRIFFID 
dynamic vegetation model assumes modern PFTs. However, these PFTs likely changed 
significantly over the Phanerozoic.  

(d) Solar luminosity, the amount of incoming solar energy received at the top of Earth’s 
atmosphere (W/m2) is well constrained (105), However, there is decreasing precision 
through the Phanerozoic (110), but this is generally a second-order source of uncertainty 
compared to paleogeography and pCO2 (111). 

(e) Orbital configuration can have a large impact on the climate system over large time spans 
through varying the amount and location of incident solar radiation. This can, in turn, impact 
the seasonal and latitudinal climate signal, ice formation (land and sea), sea level change, 
etc. However, the simulations used in this paper employ a modern-day orbital configuration 
for two reasons: i) there is large uncertainty associated with the dating of geologic proxies in 
deep time; and ii) each simulation in any case represents a long-term average of several 
million years, which consists of multiple orbital cycles; the modern orbit with relatively low 
eccentricity therefore can be considered representative of a long-term average over 
multiple orbital cycles.  

(f) Greenhouse gas concentrations (GHG) (e.g. pCO2 and CH4 concentrations) have shown large 
swings in concentrations throughout Earth’s history (48, 104). There are many assumptions 
and uncertainties made when converting geologic data into a GHG estimate due to the proxy 
type, location, age, techniques, and calibration, all of which can lead to widely varying 
estimates, making constraining past GHGs challenging (104).  

 

ii) Climate model uncertainty can be one of the most difficult sources of uncertainty to estimate. Due 
to the cost and complexity of running paleoclimate models and the expertise needed, it is often 
prohibitive for one research group to run more than one climate model. However, understanding 
this source of uncertainty is fundamental, since previous studies have shown contrasting results in 
different models (112), even though different paleoclimate models essentially use the same  
equations of state to simulate the large-scale behaviour of the Earth system. There can be 
differences in how these equations are implemented in different climate models, as well as 
differences in complexity and spatial resolution that will have a material impact on the climate 
simulated between different models using the same boundary conditions.  

It is outside the scope of this manuscript to fully address questions of model uncertainty, due to the 
computational resources required to run multiple sets of Phanerozoic simulations to full Earth 
system equilibrium.  There is confidence in the robustness of these results because: (1) The HadCM3 
family of models still shows good skill at reproducing modern climate when compared to previous 
IPCC Coupled CMIP fifth assessment generation models (113). (2) There has been continual 
development of HadCM3BL-M2.1D (113), such as the addition of the new CCN scheme. Current 
generation paleoclimate models still suffer from a decades-old problem, whereby simulated high-
latitude temperatures are too cool compared to the proxies (known as the 'cold-pole-paradox'), in 
particular in the winter. Our new scheme now produces much warmer high latitude temperatures, 
without overheating the tropics. (3) Our climate simulations have been run in excess of 9000 model 
years, reaching a fully equilibrated state for each time period. (4) While constraining model 



uncertainty is important, scenario uncertainty (i.e., climate model boundary conditions), is often a 
larger source of climate model error than model uncertainty(114). (5) Critically, we found that the 
effect of changes in boundary conditions does not impact our model results (see Section “Sensitivity 
analyses”, below). 

Statistical model framework  

To model extinction risk over the Phanerozoic as a function of the five predictor variables (body size, 
geographic range size, absolute realized thermal preference, realized thermal niche breadth, and 
absolute temperature change experienced by a taxon), we used generalized linear mixed effects 
models (glmm) using the Glmer() function in the lme4 v.1.1-33 R package (115). We chose a glmm 
framework over other statistical models, such as capture mark recapture Pradel Seniority (20, 116), 
to account for the hierarchical structure in paleontological data by incorporating temporal and 
phylogenetic variance in our models. Temporal and phylogenetic hierarchical structure was 
incorporated using stage and family as random effects. By accounting for the temporal grouping 
structure in the data, we are partially accounting for differences in boundary conditions and biases 
among stages, such as changes in paleogeography (62), changes in tectonics (69), changes in 
macroevolutionary regime (17, 20, 78), changes in biota and biotic interactions over time (117), 
changes in outcrop area (68), changes in lithology and environments (118, 119), differences in spatial 
coverage (120), and differences in sampling intensity over the Phanerozoic (119). The variance 
explained and conditional modes estimates (fig. S2, table S1) support the inclusion of stage as a 
random effect.  

Families were used for taxonomic grouping in our mixed-effect modelling framework as a proxy for 
phylogenetic relatedness. Taxa within each family are more likely to share physiological, ecological, 
and life history traits than more distant relatives (79, 121). Thus, accounting for phylogenetic 
structure and selectivity differences among groups allows for evaluation of broad-scale patterns in 
selectivity over geologic time (121).  

The slope was held constant and the intercept was allowed to vary for each level of the random 
effects. Variance inflation factors (VIF) were calculated for each of the predictors in the model to 
check for multicollinearity. We retained all predictors in our model, since VIF’s were <2.5 (Table S2) 
(122).  

Predictor variables were centered and standardized prior to running models by subtracting the mean 
and dividing by the standard deviation for each variable. Standardization enables comparison of the 
strength of model coefficients and will not affect the model selection process (123) (fig. 2).  

We tested all possible combinations of predictor variables using the dredge() function within the 
MuMIn v. 1.47 R package (124) and compared model estimates using the Akaike Information 
Criterion (AIC) (125). We calculated AIC weights to select the best model following (52). AIC was 
used for the analysis, since the ratio of our observations and model parameters was >40 (126). 
Species-level models were assessed using AICc, since observations within our hierarchical model 
framework did not always meet this suggested threshold.  

For the best model, residual qq plots and model diagnostics were used to assess the model residuals 
and whether model assumptions were met. We used the plotResiduals() function within the 
DHARMa v. 0.4.6 R package (127, 128), which is designed specifically for hierarchical modeling 
frameworks, to confirm that our statistical model met the assumptions required for generalized 
linear mixed effects models.  



To assess the ability of our model to detect an extinction selectivity signal, we performed a power 
analysis using the powerSim() function within the SIMR v. 1.0.7 R package (129). Power analyses are 
a critical tool for paleontologists, since they can directly test the effect size and probability of 
incurring a type-II error, while considering sample size and spatial biases, for a statistical model 
(130). We constructed 100 null models with a significant selectivity signal for all five predictor 
variables by simulating data based on the fixed-effect and random-effect model structure. We 
subsequently evaluated our ability to refute the null hypothesis, which posits a lack of selectivity, by 
determining whether a significant selectivity signal was detected (indicated by p-values less than 
0.05) when such a signal actually exists. We found that geographic range size, realized thermal niche 
breadth, body size, and absolute temperature change had a power of 100%, whereas realized 
thermal preference had a power of 89%, which indicates we would reject the null-hypothesis 
100/100 and 89/100 times, respectively. Thus, our model has sufficient power to detect a selectivity 
signal for all five of our predictors based on the commonly used threshold of 80% (131). 

The individual effects of each predictor variable on extinction risk were evaluated by examining the 
marginal effects whilst holding all other predictors constant. We calculated marginal effects 
specifically for a generalized mixed modeling framework by accounting for the variance in the 
random effects using the ggeffects() function within the ggeffects v. 1.2.2 R package (132). The 
probability of extinction, whilst holding all other predictors constant, was centered and standardized 
by subtracting the mean and dividing by the standard deviation, similar to previous studies (79) (fig. 
2). This procedure allows for comparison of trends in marginal effects despite differences in the 
scaling of the predictors, while still allowing for the interpretation of risk associated with certain 
values. 

Sensitivity analyses 

Sample size is a difficult factor to account for when studying extinction, since a small number of 
occurrences for a taxon could result from preservational or taxonomic biases, or could reflect true 
population size or rarity prior to extinction (18). Instead of removing taxa with a small number of 
occurrences, we controlled for sample size using our bootstrap subsampling method. We ran our 
analyses at three, four, and five occurrences per stage x taxon combination. That is, all calculations 
of the predictor values for each unique taxon by stage combination were made with only three (or 
four or five) occurrences per taxon in each stage. We found that the relative importance and 
magnitude of coefficients did not substantially vary between sampling thresholds, with variation of 
up to 0.02 log-odds between 3 and 5 samples (fig. S4).   

Taxa that occur in one stage (or ‘singletons’) have been posited to result from potential sampling 
and taxonomic biases (133). However, these singleton taxa could also reflect true rarity (18) and the 
exclusion of these taxa could result in the loss of valuable information on the selectivity of short-
lived taxa (18, 36, 134). Thus, we followed the approaches of previous studies (18, 77, 78) and ran 
our models both with and without singletons to test the sensitivity of our results to their inclusion. 
We found that patterns in selectivity were largely the same when including and excluding singletons 
in our models (table S3, S4).  

Taxonomic rank is also important to consider when quantifying extinction risk over the Phanerozoic. 
Extinction rates and selectivity are often evaluated at the genus level due to the poor temporal 
constraint on species ranges (51, 79). However, a genus is an imperfect proxy for species-level 
dynamics on geologic timescales (50). Thus, we ran our analyses at both the species- and genus-level 
to assess whether results remained congruent. Results of species-level analyses (table S6) were 
mostly consistent with genus-level results, with all five predictors included in the best model (table 



S3). However, the selectivity of geographic range was muted relative to the genus-level analyses. 
The muted signal between the species- and genus-level results is likely due to differences in sample 
size, reduced number of spatially-unique temporal occurrences per species, and the taxonomic and 
temporal uncertainty when studying species over the Phanerozoic (13).  

Another potential source of uncertainty when studying extinction on macroevolutionary timescales 
is data quality and reliability. Certain fossil groups may be more well-studied and reliable than other 
groups, and this reliability could vary over the Phanerozoic. To test the impact of data quality on our 
results, we re-ran our analyses when excluding ostracods, since ostracods are often regarded as an 
underrepresented group in the PBDB, with uneven spatial and temporal data contributions (135). 
Ostracods are also significantly smaller in body size than the other classes included in our study, 
which could potentially bias our extinction selectivity estimates for body size (19). However, we 
found no difference in our results when including (table S3) or excluding (table S7) ostracods, 
despite a slight increase in body size selectivity from -0.29 to -0.31.  

The glmm framework used to study extinction risk did not include interaction terms. However, 
although the predictors were not highly collinear (table S2), the importance of one variable in 
predicting extinction outcomes may increase or decrease depending on the level of another term. 
For example, traits such as body size and geographic range (40, 61), and thermal niche and 
geographic range (63), are not entirely independent. To test the impact of interactions on our 
extinction risk models over the Phanerozoic, we repeated the model selection procedure including 
all possible two-way and three-way interactions between variables (table. S7).  

Our results are heavily reliant on the climate model data. The climate model used in this analysis are 
state-of-the-art for long-term paleoclimate simulations, and represent our current best estimates of 
climate change over the Phanerozoic. The boundary conditions and methodology used to model 
physical processes have an impact on the reliability of the climate model simulations. We tested the 
climate model’s sensitivity to pCO2 and the physical processes by repeating our analyses using 
climate model simulations with fixed concentrations of atmospheric CO2 (560 ppm and 1,120 ppm) 
and using the original Valdes et al climate simulation (see Paleoclimate simulations). We also tested 
our climate model’s sensitivity using the new model but without the correct definition of islands (see 
Paleoclimate simulations). We found that our results were largely consistent regardless of the 
climate model used (fig. S5), although the strength of the climate change coefficient was more 
variable than the coefficients of the other predictors, since it relied on two climate models for its 
estimation (fig. S5). The strength of the climate change predictor also improved with the quality of 
climate model, suggesting we may be better able to approximate climate change between stages 
using this ‘best’ climate model simulation.  

All analyses detailed in the main text were performed including singletons with jackknife 
subsampling and were run at the genus-level, with parameter estimates that relied on the ‘best’ 
climate model that included island paleogeography. All subsequent sensitivity tests were performed 
by varying one of these variables for direct comparison with the main text model. The sample size 
sensitivity test was performed with the exclusion of singletons (fig. S4), since we aimed to test the 
impact of sample size on our analyses without the confounding effect of single-stage taxon 
occurrences. 

 



 

Fig. S1. Phanerozoic pCO2 estimates used to estimate boundary conditions for our best climate 
model. The blue pCO2 line is reproduced from Foster et al. (104) and the yellow pCO2 line is from Rae 
et al. (48). Red box/triangle show the realistic target pCO2 for each snapshot simulation over a 9000- 
year simulation period.  

 

 



 

Fig. S2. Conditional mode estimates over the Phanerozoic. Estimates of conditional modes for each 
level of our temporal random effect, where each point represents the deviation of the intercept 
measured at each level from the intercept for the best model, which was -1.6. Positive conditional 
modes represent a weaker relationship between the predictor and response for that level. Model 
results are presented for genus-level data that included singletons; parameter estimates relied on 
jackknife subsampling and used the ‘best’ climate model with islands included in paleogeographic 
estimates.   

 

 

 

 

 



 

Fig. S3. Conditional mode estimates for each taxonomic group. Estimates of conditional modes for 
each family within 9 major taxonomic groups showing the distribution of family-level estimates for 
each group. Each point represents the deviation of the intercept measured at each level from the 
intercept for the best model, which was -1.6. Positive conditional modes represent a weaker 
relationship between the predictor and response for that level. The line represents the median 
estimate for each taxonomic grouping and the whiskers represent the 95th percentile estimates. 
Model results are presented for genus-level data that included singletons; parameter estimates 
relied on jackknife subsampling and used the ‘best’ climate model with islands included in 
paleogeographic estimates.   

 

 



 

Fig. S4. Model sensitivity test for different sampling thresholds. Model coefficient estimates for the 
most saturated model while controlling for sample size using bootstrapped replicates at three, four, 
and five sample size cut-offs. Singletons were excluded from analysis. The points represent the 
coefficient estimates, and the lines represent the 95% confidence intervals. Parameter estimates 
relied on the ‘best’ climate model with islands included in paleogeographic estimates.   

 

 

 

 



 

Fig. S5. Model sensitivity test for different climate models. Model coefficient estimates for the 
most saturated model using different AOGCM simulations. Model 1 is the best climate model used in 
the main text analyses, which incorporates the new physical parameters, realistic CO2 estimates, and 
includes island geography. Model two had the same parameters as model one, except it does not 
incorporate island geography. Models three, four, and five were run using the old physical 
parameters, with realistic pCO2, at 560 ppm pCO2 and 1,120 ppm pCO2, respectively. The points 
represent the model coefficient estimates and the lines indicate the 95% confidence intervals. 
Model results are presented for genus-level data that included singletons; parameter estimates 
relied on jackknife subsampling and used the ‘best’ climate model with islands included in 
paleogeographic estimates.   

 

 

 

 

 

 

 

 

 

 



Random 
Effect 

Variance Levels Standard deviation 

(1|Family) 0.3701 1,138 0.6084 
(1|Stage) 0.8714 81 0.9335 

 

Table S1 Variance, standard deviation and sample size for each random effect. Variance and 
standard deviation in the random effects for stage and family for the best model, where the random 
effects column shows the structure used in the model formula, and levels shows the number of 
unique levels to the random effect structure. Model results are presented for genus-level data that 
included singletons; parameter estimates relied on jackknife subsampling and used the ‘best’ climate 
model with islands included in paleogeographic estimates.   

 

Term VIF VIF_CI_low VIF_CI_high Tolerance Tolerance_CI_low Tolerance_CI_high 

Geographic range 
size 

1.62 1.59 1.66 0.61 0.60 0.62 

Body size 1.02 1.01 1.04 0.98 0.96 0.99 

Realized thermal 
preference 

1.02 1.01 1.04 0.97 0.95 0.98 

Realized thermal 
breadth 

1.60 1.57 1.63 0.62 0.61 0.64 

Absolute 
temperature change 

1.00 1.00 1.04 0.99 0.95 0.99 

 

Table S2. Variance inflation factor and tolerance estimates for the best model. VIF and tolerance 
were calculated for each variable in our mixed-effects model. Predictors showed little collinearity 
between variables (VIF<2.5; Tolerance > 0.2). Estimates and confidence intervals were estimated 
using the check_collinearity() function within the Performance v. 0.010 package within R (136). 
Results are presented for genus-level data that included singletons; parameter estimates relied on 
jackknife subsampling. 

 

 

 

 

 

 



Model 
rank 

Geographic 
range size 

Absolute realized 
thermal preference 

Body 
size 

Absolute 
temperature 

change 

Realized 
thermal 
breadth 

Df AIC Delta Weight 

1 -0.44 0.07 -0.29 0.14 -0.29 8 21773.65 0.00 0.98 
2 -0.45 NA -0.29 0.15 -0.29 7 21781.55 7.90 0.02 
3 -0.45 0.07 -0.29 NA -0.29 7 21797.38 23.73 0.00 
4 -0.46 NA -0.29 NA -0.29 6 21807.54 33.89 0.00 
5 -0.45 0.06 NA 0.15 -0.31 7 21868.75 95.09 0.00 
6 -0.46 NA NA 0.15 -0.30 6 21874.22 100.57 0.00 
7 -0.60 0.06 -0.31 0.13 NA 7 21887.69 114.04 0.00 
8 -0.61 NA -0.30 0.14 NA 6 21894.08 120.43 0.00 
9 -0.46 0.06 NA NA -0.30 6 21894.19 120.53 0.00 

10 -0.47 NA NA NA -0.30 5 21901.71 128.06 0.00 
11 -0.61 0.07 -0.31 NA NA 6 21908.88 135.23 0.00 
12 -0.61 NA -0.31 NA NA 5 21917.32 143.66 0.00 
13 -0.62 0.05 NA 0.14 NA 6 21997.15 223.50 0.00 
14 -0.63 NA NA 0.14 NA 5 22000.99 227.34 0.00 
15 -0.63 0.06 NA NA NA 5 22019.90 246.25 0.00 
16 -0.64 NA NA NA NA 4 22025.53 251.88 0.00 
17 NA 0.11 -0.32 0.17 -0.59 7 22092.16 318.50 0.00 
18 NA NA -0.32 0.18 -0.60 6 22117.78 344.13 0.00 
19 NA 0.12 -0.32 NA -0.59 6 22125.90 352.24 0.00 
20 NA NA -0.32 NA -0.60 5 22156.32 382.67 0.00 
21 NA 0.10 NA 0.17 -0.62 6 22213.71 440.06 0.00 
22 NA NA NA 0.18 -0.62 5 22235.50 461.84 0.00 
23 NA 0.11 NA NA -0.62 5 22250.25 476.60 0.00 
24 NA NA NA NA -0.63 4 22276.67 503.02 0.00 
25 NA 0.14 -0.43 0.17 NA 6 22851.21 1077.56 0.00 
26 NA 0.15 -0.43 NA NA 5 22887.23 1113.58 0.00 
27 NA NA -0.42 0.18 NA 5 22901.41 1127.76 0.00 
28 NA NA -0.42 NA NA 4 22944.64 1170.99 0.00 
29 NA 0.13 NA 0.17 NA 5 23082.42 1308.77 0.00 
30 NA 0.14 NA NA NA 4 23122.59 1348.94 0.00 
31 NA NA NA 0.19 NA 4 23126.42 1352.77 0.00 
32 NA NA NA NA NA 3 23173.79 1400.14 0.00 

 

Table S3. Model selection results for the jackknife subsampling approach. All possible model 
combinations of our five predictor variables are ranked based on AIC weight. Model coefficient 
estimates in log-odds are listed under each predictor variable, and all listed predictors had standard 
error estimates that were exclusive of zero. 

 



Model 
rank 

Geographic 
range size 

Absolute realized 
thermal preference 

Body 
size 

Absolute 
temperature 

change 

Realized 
thermal 
breadth 

Df AIC Delta Weight 

1 -0.33 0.05 -0.12 0.12 -0.26 8.00 17035.36 0.00 0.80 
2 -0.34 NA -0.12 0.12 -0.26 7.00 17038.13 2.77 0.20 
3 -0.33 0.05 -0.12 NA -0.26 7.00 17046.50 11.13 0.00 
4 -0.34 NA -0.12 NA -0.25 6.00 17050.20 14.84 0.00 
5 -0.34 0.04 NA 0.12 -0.27 7.00 17054.67 19.31 0.00 
6 -0.34 NA NA 0.12 -0.27 6.00 17056.40 21.04 0.00 
7 -0.34 0.05 NA NA -0.27 6.00 17066.15 30.79 0.00 
8 -0.35 NA NA NA -0.26 5.00 17068.72 33.36 0.00 
9 -0.47 0.04 -0.14 0.11 NA 7.00 17107.94 72.58 0.00 

10 -0.48 NA -0.14 0.11 NA 6.00 17109.33 73.97 0.00 
11 -0.48 0.05 -0.14 NA NA 6.00 17117.18 81.81 0.00 
12 -0.48 NA -0.14 NA NA 5.00 17119.33 83.97 0.00 
13 -0.49 0.03 NA 0.11 NA 6.00 17134.22 98.85 0.00 
14 -0.49 NA NA 0.11 NA 5.00 17134.53 99.17 0.00 
15 -0.49 0.04 NA NA NA 5.00 17143.74 108.37 0.00 
16 -0.50 NA NA NA NA 4.00 17144.71 109.35 0.00 
17 NA 0.08 -0.14 0.14 -0.49 7.00 17179.05 143.69 0.00 
18 NA NA -0.14 0.15 -0.49 6.00 17191.45 156.09 0.00 
19 NA 0.09 -0.15 NA -0.49 6.00 17196.57 161.21 0.00 
20 NA 0.08 NA 0.14 -0.51 6.00 17206.85 171.49 0.00 
21 NA NA -0.14 NA -0.50 5.00 17211.25 175.88 0.00 
22 NA NA NA 0.15 -0.51 5.00 17217.39 182.02 0.00 
23 NA 0.08 NA NA -0.51 5.00 17225.07 189.71 0.00 
24 NA NA NA NA -0.51 4.00 17237.78 202.41 0.00 
25 NA 0.11 -0.24 0.14 NA 6.00 17605.08 569.72 0.00 
26 NA 0.12 -0.24 NA NA 5.00 17623.69 588.32 0.00 
27 NA NA -0.23 0.15 NA 5.00 17629.30 593.94 0.00 
28 NA NA -0.23 NA NA 4.00 17651.28 615.91 0.00 
29 NA 0.10 NA 0.15 NA 5.00 17684.20 648.84 0.00 
30 NA 0.11 NA NA NA 4.00 17704.15 668.79 0.00 
31 NA NA NA 0.16 NA 4.00 17704.97 669.61 0.00 
32 NA NA NA NA NA 3.00 17728.19 692.83 0.00 

 

Table S4. Model selection results for the jackknife subsampling approach without singletons. All 
possible model combinations of our five predictor variables ranked based on AIC weight. Model 
coefficient estimates in log-odds are listed under each predictor variable, and all listed predictors 
had standard error estimates that were exclusive of zero.  

 



Model 
rank 

Geographic 
range size 

Absolute realized 
thermal 

preference 

Body 
size 

Absolute 
temperature 

change 

Realized 
thermal 
breadth 

Df AIC Delta Weight 

1 -0.30 0.07 -0.14 0.11 -0.21 8.00 17186.25 0.00 0.96 
2 -0.31 NA -0.13 0.11 -0.20 7.00 17192.96 6.72 0.03 
3 -0.31 0.07 -0.14 NA -0.20 7.00 17195.87 9.63 0.01 
4 -0.32 NA -0.13 NA -0.19 6.00 17203.56 17.31 0.00 
5 -0.31 0.06 NA 0.11 -0.21 7.00 17210.59 24.35 0.00 
6 -0.32 NA NA 0.12 -0.21 6.00 17215.87 29.62 0.00 
7 -0.32 0.06 NA NA -0.21 6.00 17220.48 34.24 0.00 
8 -0.33 NA NA NA -0.20 5.00 17226.67 40.42 0.00 
9 -0.42 0.05 -0.15 0.09 NA 7.00 17235.00 48.75 0.00 

10 -0.42 NA -0.14 0.10 NA 6.00 17238.35 52.11 0.00 
11 -0.42 0.05 -0.15 NA NA 6.00 17241.25 55.00 0.00 
12 -0.42 NA -0.14 NA NA 5.00 17245.34 59.09 0.00 
13 -0.44 0.04 NA 0.09 NA 6.00 17263.79 77.55 0.00 
14 -0.44 NA NA 0.10 NA 5.00 17265.80 79.55 0.00 
15 -0.44 0.05 NA NA NA 5.00 17270.16 83.91 0.00 
16 -0.44 NA NA NA NA 4.00 17272.81 86.57 0.00 
17 NA 0.09 -0.16 0.13 -0.41 7.00 17315.08 128.83 0.00 
18 NA 0.10 -0.16 NA -0.41 6.00 17330.18 143.93 0.00 
19 NA NA -0.16 0.14 -0.41 6.00 17331.06 144.81 0.00 
20 NA NA -0.16 NA -0.40 5.00 17348.19 161.94 0.00 
21 NA 0.09 NA 0.13 -0.43 6.00 17351.93 165.68 0.00 
22 NA NA NA 0.14 -0.43 5.00 17365.83 179.59 0.00 
23 NA 0.09 NA NA -0.43 5.00 17367.73 181.48 0.00 
24 NA NA NA NA -0.42 4.00 17383.60 197.36 0.00 
25 NA 0.08 -0.24 0.10 NA 6.00 17629.83 443.59 0.00 
26 NA 0.09 -0.24 NA NA 5.00 17637.60 451.35 0.00 
27 NA NA -0.23 0.11 NA 5.00 17642.14 455.89 0.00 
28 NA NA -0.23 NA NA 4.00 17651.28 465.03 0.00 
29 NA 0.07 NA 0.10 NA 5.00 17709.60 523.36 0.00 
30 NA 0.08 NA NA NA 4.00 17717.64 531.40 0.00 
31 NA NA NA 0.11 NA 4.00 17718.90 532.65 0.00 
32 NA NA NA NA NA 3.00 17728.19 541.95 0.00 

 

Table S5. Model selection results for the bootstrap subsampling approach, which excluded 
singletons. All possible model combinations of our five predictor variables are ranked based on AIC 
weight. Model coefficient estimates in log-odds are listed under each predictor variable, and all 
listed predictors had standard error estimates that were exclusive of zero.  

 

 

 

 

 



Model 
rank 

Geographic 
range size 

Absolute realized 
thermal preference 

Absolute 
temperature 

change 

Realized 
thermal 
breadth 

Df AICc Delta Weight 

1 -0.08 0.12 0.16 -0.28 7 18765.37 0.00 0.99 

2 NA 0.12 0.16 -0.29 6 18774.46 9.09 0.01 

3 -0.08 0.13 NA -0.27 6 18789.48 24.11 0.00 

4 -0.08 NA 0.17 -0.28 6 18791.78 26.41 0.00 

5 NA 0.13 NA -0.28 5 18798.71 33.34 0.00 

6 NA NA 0.17 -0.29 5 18800.18 34.81 0.00 

7 -0.08 NA NA -0.27 5 18819.12 53.75 0.00 

8 NA NA NA -0.28 4 18827.60 62.23 0.00 

9 -0.14 0.13 0.14 NA 6 19000.66 235.29 0.00 

10 -0.14 0.13 NA NA 5 19018.22 252.86 0.00 

11 -0.13 NA 0.14 NA 5 19032.13 266.76 0.00 

12 NA 0.13 0.14 NA 5 19033.26 267.89 0.00 

13 NA 0.13 NA NA 4 19050.66 285.29 0.00 

14 -0.13 NA NA NA 4 19052.30 286.94 0.00 

15 NA NA 0.14 NA 4 19063.49 298.12 0.00 

16 NA NA NA NA 3 19083.40 318.03 0.00 

 

Table S6. Model selection results for the jackknife subsampling approach at the species level. All 
possible model combinations of our five predictor variables are ranked based on AICc weight. Model 
coefficient estimates in log-odds are listed under each predictor variable, and all listed predictors 
had standard error estimates that were exclusive of zero. Singletons were included in parameter 
estimation and relied on the ‘best’ climate model that included islands in paleogeographic estimates.  

 

 

 

 

 

 

 

 

 



Model 
rank 

Geographic 
range size 

Absolute realized 
thermal preference 

Body 
size 

Absolute 
temperature 

change 

Realized 
thermal 
breadth 

Df AIC Delta Weight 

1 -0.44 0.08 -0.32 0.14 -0.29 8 21528.77 0.00 1.00 
2 -0.45 NA -0.31 0.15 -0.29 7 21541.15 12.38 0.00 
3 -0.45 0.09 -0.32 NA -0.29 7 21552.71 23.94 0.00 
4 -0.46 NA -0.31 NA -0.29 6 21567.85 39.08 0.00 
5 -0.60 0.07 -0.33 0.14 NA 7 21639.76 110.99 0.00 
6 -0.61 NA -0.33 0.14 NA 6 21650.18 121.41 0.00 
7 -0.61 0.08 -0.34 NA NA 6 21661.30 132.52 0.00 
8 -0.46 0.07 NA 0.14 -0.31 7 21668.12 139.34 0.00 
9 -0.62 NA -0.33 NA NA 5 21674.22 145.44 0.00 
10 -0.47 NA NA 0.15 -0.31 6 21676.53 147.76 0.00 
11 -0.46 0.07 NA NA -0.30 6 21692.88 164.11 0.00 
12 -0.47 NA NA NA -0.30 5 21703.67 174.90 0.00 
13 -0.63 0.06 NA 0.14 NA 6 21795.09 266.32 0.00 
14 -0.64 NA NA 0.14 NA 5 21801.45 272.68 0.00 
15 -0.63 0.07 NA NA NA 5 21817.21 288.44 0.00 
16 -0.64 NA NA NA NA 4 21825.65 296.88 0.00 
17 NA 0.12 -0.34 0.17 -0.60 7 21842.91 314.14 0.00 
18 NA NA -0.34 0.18 -0.60 6 21875.52 346.75 0.00 
19 NA 0.13 -0.35 NA -0.60 6 21877.02 348.25 0.00 
20 NA NA -0.34 NA -0.61 5 21915.09 386.32 0.00 
21 NA 0.11 NA 0.17 -0.63 6 22010.95 482.18 0.00 
22 NA NA NA 0.18 -0.63 5 22037.66 508.88 0.00 
23 NA 0.12 NA NA -0.63 5 22046.77 518.00 0.00 
24 NA NA NA NA -0.63 4 22078.53 549.76 0.00 
25 NA 0.16 -0.44 0.17 NA 6 22614.05 1085.28 0.00 
26 NA 0.16 -0.44 NA NA 5 22651.68 1122.91 0.00 
27 NA NA -0.43 0.19 NA 5 22673.28 1144.51 0.00 
28 NA NA -0.43 NA NA 4 22718.92 1190.15 0.00 
29 NA 0.14 NA 0.18 NA 5 22900.41 1371.63 0.00 
30 NA 0.15 NA NA NA 4 22940.54 1411.76 0.00 
31 NA NA NA 0.19 NA 4 22951.12 1422.35 0.00 
32 NA NA NA NA NA 3 22998.90 1470.13 0.00 

Table S7. Model selection results with the removal of ostracods. All possible model combinations of 
our five predictor variables are ranked based on AIC weight. Model coefficient estimates in log-odds 
are listed under each predictor variable, and all listed predictors had standard error estimates that 
were exclusive of zero. Singletons were included in parameter estimation and relied on the ‘best’ 
climate model that included islands in paleogeographic estimates.  

 



Model predictor Coefficient Standard error P-value 
Grs -0.49 0.03 0.000*** 
Bsz -0.28 0.04 0.000*** 
Artp 0.11 0.03 0.000*** 
Rtb -0.25 0.04 0.000*** 
Atc 0.10 0.03 0.002*** 
Grs:Bsz 0.10 0.03 0.003*** 
Grs:Artp 0.08 0.03 0.005** 
Grs:Rtb -0.08 0.03 0.007** 
Bsz:Artp -0.01 0.03 0.785 
Bsz:Rtb -0.04 0.04 0.309 
Artp:Rtb 0.01 0.03 0.702 
Grs:Atc -0.01 0.03 0.786 
Bsz:Atc 0.03 0.03 0.265 
Artp:Atc 0.01 0.02 0.530 
Rtb:Atc -0.05 0.03 0.116 
Grs:Bsz:Artp -0.04 0.04 0.312 
Grs:Bsz:Rtb 0.03 0.03 0.366 
Grs:Artp:Rtb -0.01 0.03 0.701 
Bsz:Artp:Rtb -0.03 0.04 0.394 
Grs:Bsz:Atc -0.01 0.03 0.855 
Grs:Artp:Atc 0.03 0.02 0.133 
Bsz:Artp:Atc -0.01 0.02 0.804 
Grs:Rtb:Atc 0.04 0.03 0.147 
Bsz:Rtb:Atc 0.01 0.04 0.872 
Artp:Rtb:Atc 0.02 0.03 0.451 
Grs:Bsz:Artp:Rtb 0.02 0.03 0.533 
Grs:Bsz:Artp:Atc 0.03 0.03 0.334 
Grs:Bsz:Rtb:Atc -0.04 0.03 0.169 
Grs:Artp:Rtb:Atc 0.00 0.02 0.875 
Bsz:Artp:Rtb:Atc 0.00 0.03 0.940 
Grs:Bsz:Artp:Rtb:Atc 0.02 0.03 0.423 

 

Table S8. Model coefficient table for all interaction terms among predictor variables. All possible 
model combinations of our five predictor variables and 27 interaction terms. Model coefficient 
estimates in log-odds, standard error, and p-values are listed for each variable. Levels of statistical 
significance are marked as follows: * α<0.05, ** α<0.01, and *** α<0.001. Interaction terms are 
indicated by colons: "Grs" stands for Geographic range size, "Bsz" for Body size, "Artp" for Absolute 
realized thermal preference, "Atc" for Absolute temperature change, and "Rtb" for Realized thermal 
breadth. The best model includes Grs, Bsz, Artp, Atc, Grs:Bsz, Grs:Artp, Grs:Rtb based on a 0.96 AIC 
weight, after testing all possible model combinations.  

 



Data S1. Dryad data repository containing all data for the main analyses in this paper.  

All data and code to run the main text analyses are included on the Dryad repository at 
https://doi.org/10.5061/dryad.1ns1rn91g. 

 

 

 

 

 

 

 

 
 


