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Incorporating Machine Learning
into Sociological Model-Building
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Abstract

Quantitative sociologists frequently use simple linear functional forms to estimate associations among

variables. However, there is little guidance on whether such simple functional forms correctly reflect the

underlying data-generating process. Incorrect model specification can lead to misspecification bias, and a

lack of scrutiny of functional forms fosters interference of researcher degrees of freedom in sociological

work. In this article, I propose a framework that uses flexible machine learning (ML) methods to provide

an indication of the fit potential in a dataset containing the exact same covariates as a researcher’s

hypothesized model. When this ML-based fit potential strongly outperforms the researcher’s self-

hypothesized functional form, it implies a lack of complexity in the latter. Advances in the field of

explainable AI, like the increasingly popular Shapley values, can be used to generate understanding into

the ML model such that the researcher’s original functional form can be improved accordingly. The pro-

posed framework aims to use ML beyond solely predictive questions, helping sociologists exploit the

potential of ML to identify intricate patterns in data to specify better-fitting, interpretable models. I illus-

trate the proposed framework using a simulation and real-world examples.
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It is common knowledge that valid inference crucially depends on a correctly specified

relationship between the outcome of interest, y, and the explanatory variables, X

(Buja, Brown, et al. 2019; Cameron and Trivedi 2005; Long and Trivedi 1992). In

practice, much more attention is typically paid to identifying relevant variables to

include in a model rather than to making sure the functional relationship among these

variables is correctly specified. This is evidenced by the fact that variables are often

simply assumed to affect the outcome in a linear and additive way (Hindman 2015).

However, there is little reason to believe linear additive models appropriately reflect

the underlying data-generating process (DGP). At the same time, estimating incor-

rectly specified models can lead to biased findings; there are noteworthy examples

throughout the social sciences—and likely many more that have gone unnoticed—

where more complicated functional relationships, which might include nonlinearities
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or interactions, have led to reversed findings (Christensen and Christensen 2014;

Dougherty et al. 2015; Freedman 2009; Heckman, Humphries, and Veramendi 2018;

McClintock 2017; Muñoz and Young 2018). Despite this type of criticism of the stan-

dard linear additive model having been around for many decades, it remains the work-

horse throughout most empirical sociology today (Abbott 1988; Berk 2004; Duncan

1984; Lundberg, Johnson, and Stewart 2021). In this article, I incorporate methods

from machine learning (ML) and explainable A.I. (X-AI) into the standard empirical

workflow to help sociologists (1) assess whether their hypothesized model fits the data

well by comparing its fit against a flexible ML model, and (2) improve their model

when it does not accurately represent the patterns in the data by unpacking the ML

model using X-AI techniques.

In the past, simple models like the linear additive functional form were often a

necessity due to computational constraints.1 Yet these historical limitations are no lon-

ger a factor, giving rise to ML methods that instead exploit the exponential increase in

available computational power. These methods let the data dictate the relationship

among variables, rather than relying on the researcher to hypothesize the functional

form between the two.2 Often, this flexibility leads to better-fitting models that

improve on researcher-hypothesized models in fitting the data (Brand et al. 2021;

Grimmer, Roberts, and Stewart 2021); this has led to increased adoption of ML

throughout industry and academia (Athey 2018; Rahal, Verhagen, and Kirk 2022).3

However, ML methods are almost exclusively applied within a predictive context due

to their “black box” nature (Mullainathan and Spiess 2017; Shmueli 2010); their inclu-

sion into sociological inquiry, which has an overwhelmingly explanatory focus,

remains limited.4 This is unnecessary, as the fact that ML methods can identify asso-

ciations among variables holds value for explanatory work as well.

Concretely, I propose to incorporate ML methods into the typical quantitative

empirical workflow in the following way. Assume a researcher is interested in model-

ing the association between some interest variable and an outcome. To this effect, they

apply a conditioning-on-observables approach to control for confounders and develop

a hypothesized functional form, ~f ( � ). However, it is unclear a priori whether this

model correctly represents the underlying relationship among variables in the data. In

the first step of the proposed approach, ~f ( � ) is estimated and, in parallel, a flexible

ML model, or preferably an ensemble method like a Super Learner that combines mul-

tiple ML methods, is estimated to the same data (Baćak and Kennedy 2019). The flex-

ible model thus uses the same set of variables as identified by the researcher in their

hypothesized model and follows the same inferential logic.5 However, the functional

form in which variables relate to one another is left to be decided by the data, effec-

tively considering a much wider range of possible model specifications than a

researcher would typically do during model-building. Second, the fit of both the

hypothesized model and the flexible ML model is evaluated out-of-sample, either

through cross-validation or a formal holdout set, to identify a possible difference in fit

between the two models. Third, in case a lack of appropriate specification in ~f ( � ) is

found, the flexible model is unpacked to better understand the lack of specification in
~f ( � ), such that it can be improved.
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The framework relies on a number of concepts from ML or closely adjacent fields.

First, that out-of-sample estimates of model fit can be used to compare the ability of

widely varying modeling approaches to fit the data (Rose 2013; Stone 1977; Verhagen

2022). Second, that ML methods can be used as efficient function approximators that

can uncover relevant patterns in data (Baćak and Kennedy 2019; Van der Laan,

Polley, and Hubbard 2007). Third, that methods from the rapidly evolving field of X-

AI—like the Shapley values approach explored in this article that decomposes model

predictions along covariates—allow researchers to distill understanding from ML

methods, which can then be used to improve hypothesized models (Samek et al.

2019). These elements, in particular the last, allow for an iterative process where ML

is used in a supporting role in model-building. The novelty of the framework thus lies

in using ML methods as a guide, in such a way that the overarching goal of the frame-

work is still to generate interpretable models (Agrawal, Peterson, and Griffiths 2020;

Rudin 2019). This complementary role should be juxtaposed with the overwhelmingly

predictive focus of ML methods in sociology up until now (Molina and Garip 2019).

The framework is also in line with increasing calls to use ML in a supportive role

throughout the empirical pipeline, rather than completely replacing interpretable meth-

ods for ML equivalents (Agrawal et al. 2020; Rudin 2019; Rudin et al. 2010).6,7

Incorporating ML and X-AI methods into empirical work should not only improve

model-building but also improve transparency into the research process. A lack of

emphasis on functional form specification provides researchers with relative freedom

in evaluating multiple functional forms and choosing which one to report (Muñoz and

Young 2018; Sala-i Martin 1997; Simonsohn, Simmons, and Nelson 2020). Such

“researcher degrees of freedom” are to blame for a large number of important empiri-

cal findings turning out to be un-reproducible and a more general “crisis in science,”

where results are often dependent on over-engineered models (Gelman and Loken

2013; Ioannidis 2005; Young 2018). Comparing a researcher’s carefully tailored

model to the fit of an ML method estimated to the same data can help identify such an

over-engineered model, by providing insights into model fit that are not a result of a

researcher’s decision-making process but rather a feature of the data. More generally,

overfitting is a central concern throughout ML, and the frequent re-estimating of mod-

els on subsets—standard practice throughout ML—can further protect against “p-

hacking” (Gelman and Loken 2013).

More generally, the proposed framework provides a welcome realignment of

empirical methods with today’s computational reality (Efron and Hastie 2016) and is

in line with increasing calls for a re-appreciation of the predictive power of social the-

ories that can be observed more broadly throughout sociology (Hofman, Sharma, and

Watts 2017; Verhagen 2022; Watts 2014, 2017).

The rest of this article is structured as follows. I first introduce a toy example to

illustrate the risk of model misspecification to inference. Then, I introduce the three

steps of the proposed framework and illustrate each by applying them to the same toy

example. I next compare the proposed approach to other computational frameworks.

In the empirical section, I apply the framework to one simulated and two real-world

case studies. In doing so, I illustrate how the framework identifies (1) missing
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nonlinearities and interactions in a simulated dataset on the association between

schooling and earnings, (2) nonlinearities and spatial heterogeneity in a large dataset

on London house sales, and (3) various intricate patterns in voting preferences among

U.S. voters in the General Social Survey (GSS).

MISSPECIFICATION AND RISKS TO INFERENCE

Consider the following toy example. Our interest lies in whether having grandchildren

affects elderly individuals’ worries about climate change. We analyze a survey

(N = 900) in which respondents were asked their level of concern with climate change

on a seven-point scale. In addition, we have information on respondents’ age, sex,

whether they completed high school, and, our interest variable, whether they have

grandchildren. We might propose the following model (Model 1) within a

conditioning-on-observables framework:

yi = b0 + b1xage, i + b2xsex, i + b3xhigh school, i + b4xgrandchildren, i + εi, ð1Þ

which simply plugs all the relevant controls and our interest variable into a linear addi-

tive model. We might also consider including a nonlinearity in the effect of age by add-

ing a square (Model 2):

yi = b0 + b1xage, i + b2xsex, i + b3xhigh school, i + b4xgrandchildren, i + b5x2
age, i + εi: ð2Þ

Results for estimating both models on a simulated dataset are presented in the first

two columns in the left-hand panel of Table 1. We find a substantial difference

between the two models in terms of the estimated association between having grand-

children and concerns with climate change. The effect is statistically insignificant for

Model 1 with a point estimate of 20.02, whereas it is negative and significant

(p\0:01) for Model 2 with a point estimate of 20.68. A Likelihood Ratio (LR) test

strongly prefers the second model over the first (p\0:001). We might feel comfortable

concluding our empirical analysis at this stage.

Imagine, however, that the true effect of age is indeed nonlinear, but piece-wise lin-

ear rather than a second-degree polynomial. Specifically, there is a stronger increase

in concern by age among people age 65 to 75, with more modest increases at other

ages. If we had estimated a functional form in line with this nonlinearity, we would

find results as reported in the third column of the left panel of Table 1. These results

show that the effect of having grandchildren is in fact associated with a higher level of

concern. The estimated age effect per functional form is illustrated in the right panel

of Table 1, with the dashed line representing the “true” effect in the DGP and the

colored lines the best-fitting effect given the flexibility of the model. The problem is

that both the linear and the quadratic function of age overshoots the true effect as the

respondent’s age increases. Coupled with the fact that grandchildren are more preva-

lent among the older population, this effect leads to incorrect inference.
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The issue with doing inference into the first two models is that the assumption of

exogeneity, that is, E(εjX ) = 0, is violated. The error term for the first two models will

be small for observations around ages 60, 70, and 80, as the estimated effect lies close

to the true effect, but it will be larger at the ends of the age distribution. The coeffi-

cient estimates still reflect the best-fitting model given the functional form, but clearly

lead to incorrect inference. The more general phenomenon of exogeneity is further

illustrated by the four bivariate relationships plotted in Figure 1.8 Three of the four

models include a nonlinear relationship, although a linear coefficient estimated to the

data (N = 80) is statistically significant at the conventional 5 percent level. These

examples illustrate two typical risks of misspecification: that we wrongfully assume

an effect to be linear when it is not, and that correlation of our interest variable with a

misspecified control can lead to omitted variable bias (Cameron and Trivedi 2005;

Long and Trivedi 1992).9

Various statistical tests have been proposed to combat misspecification. The most

popular ones are White’s test for functional misspecification (White 1980, 1981) and

Ramsey’s RESET test (Ramsey 1969). White’s test statistic is based on a comparison

of the estimated coefficients from a hypothesized model b̂ with those from a weighted

regression b̂WLS, whereas the Ramsey test statistic compares the hypothesized model

with a model that includes higher-order versions of the explanatory variables and

Table 1. Table on the left shows regression results when estimating a functional form
assuming linear age, quadratic age, and a step function for age; Plot on the right shows
implied effect of age for the three model specifications.

Model 1 Model 2 Model 3

(Intercept) 219.02*** 22.16 9.97***

(0.51) (3.42) (0.23)
Age: linear 0.52*** 0.03

(0.01) (0.10)
Grandchildren 20.02 20.68** 0.57*

(0.21) (0.25) (0.23)
Sex: female 20.97*** 20.99*** 20.95***

(0.10) (0.10) (0.08)
High school 0.41*** 0.38*** 0.36***

(0.10) (0.10) (0.08)
Age: squared 0.00***

(0.00)
Age: 50 + 0.26***

(0.02)
Age: 65 + 0.49***

(0.03)
Age: 75 + 20.41***

(0.04)
Age: 85 + 20.17

(0.13)

R2 0.88 0.89 0.91
Adj. R2 0.88 0.89 0.91
Num. obs. 900 900 900
RMSE 1.44 1.42 1.23

Note: Table shows OLS regression coefficients. Standard errors are in parentheses. The outcome variable of interest

is a seven-point scale indicating respondent’s concerns with climate change (7 = highest, 1 = lowest).

*p \ 0.05. **p \ 0.01. ***p \ 0.001.
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evaluates their statistical significance. Both provide computationally efficient statistics to

assess misspecification of the functional form, although both assume the true model lies

within a specific class of functions M with possibly restrictive assumptions (Golden

et al. 2016).10 Since the introduction of the White and Ramsey tests, more computation-

ally intensive (semi-)parametric methods have been developed (Robinson 1988a, 1988b;

Yatchew 1997), and substantial follow-up research has built on their principles (Golden

et al. 2016). Unfortunately, misspecification tests have a number of well-known theoreti-

cal and practical problems (Buja, Brown, et al. 2019; Long and Trivedi 1992).

First, they are generally under-powered and can struggle to identify misspecifica-

tion in multivariate settings (Buja, Kuchibhotla, et al. 2019:616).11 Second, they pro-

vide limited insight into what to do next, if a test is rejected. Third, and perhaps most

important, the actual implementation of misspecification tests is limited in published

empirical work (Long and Trivedi 1992; Open Science Collaboration 2015). As a case

in point, the two flagship journals in sociology—the American Sociological Review

and American Journal of Sociology—totalled 70 research articles in 2022. Of these,

40 included quantitative analyses, of which 32 implemented a conditioning-on-

observables approach. None of these articles implement any of the standard misspeci-

fication tests like the White or RESET tests.12 In practice, researchers enjoy relative

freedom in specifying their functional form, as well as the robustness and specification

Figure 1. Implied association from a linear model (dashed line) relative to the true effect
(solid line).
Note: The linear models are estimated based on 80 uniformly distributed observations for the X variable,

plugged into one of four functional forms (see the Appendix) with an additive normally distributed error.

Data points are shown in green.
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tests they use to verify its appropriateness. The crisis in reproducibility and the effect

of researcher degrees of freedom on empirical results thus extends to the (lack of) spe-

cification checks chosen by researchers to validate their model assumptions

(Simonsohn et al. 2020; Young 2018).

Even without malicious intent, many functional forms are from an outdated age of

computational limitations (Buja, Kuchibhotla, et al. 2019:615; Efron and Hastie 2016;

Muñoz and Young 2018). The linear additive functional forms plugged into exponen-

tial family probability distributions were historically preferred due to their ease of esti-

mation and interpretation, not their de facto appropriateness to study social life. This

pragmatic preference for parsimony has led to the continued prevalence of simplistic

functional forms, even though the computational constraints under which they were

developed are no longer present, and the wealth of qualitative research in the social

sciences consistently implies that social life is in fact highly complex and probably not

appropriately modeled using such simple functional forms (Abbott 1988). As the toy

example above illustrates, inference can easily go astray given the often blind accep-

tance of simplistic functional forms in empirical work.

A COMPUTATIONAL FRAMEWORK TO IMPROVE MODEL-
BUILDING

I propose a computational framework that exploits ML methods to obtain an indication

of the potential model fit in a dataset. This potential can then be compared to the fit of

a researcher’s own hypothesized model, and thus used to diagnose a possible lack of

specification in the latter. This estimate provides researchers with an intuitive assess-

ment of how well the data could be modeled versus how well the data is modeled by

their hypothesized model. ML thus takes a guiding role in model-building. Whenever

it is found that the ML model improves on the researcher-hypothesized model, meth-

ods from the X-AI domain can be implemented to unpack and better understand the

ML model and subsequently improve the hypothesized model.

Given a dataset D and a researcher-hypothesized functional form ~f ( � ), relating out-

come of interest y with independent variables X , the proposed framework consists of

the following three simple steps (see Figure 2 for a schematic illustration):

1. Estimate hypothesized model ~f ( � ) to the data, as well as an ML model �f ( � ).
2. Evaluate the model fit of both ~f ( � ) and �f ( � ) and assess a possible lack of fit in ~f ( � ).
3. Diagnose why �f ( � ) improves on the hypothesized model and improve ~f ( � )

accordingly.

Crucial to the framework is that the ML method is estimated using the same vari-

ables as present in the model originally hypothesized by the researcher. The framework

is not designed for data-mining, where a large number of possible explanatory vari-

ables are included in the model. In such a case, one risks including variables that might

improve model fit but could harm understanding of the underlying processes—typical
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examples would be (accidentally) including post-treatment variables or colliders.

Instead, the functional form is scrutinized given the exact same inferential curation of

variables and logic as present in the researcher’s originally hypothesized model.13 The

following sections describe the three components of the proposed framework in more

detail and illustrate them using the toy example.

Step I: The benchmarking model

The first component of the proposed framework is a flexible form model �f ( � ), which

serves as a benchmark of the possible model fit in the data. This model uses the same

variables and thus follows the same inferential logic as the hypothesized model ~f ( � ),
but it evaluates patterns not necessarily considered by the researcher’s functional form.

The ML methods do not rely on prespecified functional forms, but distill the func-

tional form from the observed data (Baćak and Kennedy 2019; Grimmer et al. 2021).

However, they retain more structure than do non-parametric approaches like local

regression and often suffer less from the “curse of dimensionality,” where the number

of data points required scales exponentially with the covariate space (Bishop 2006).

Many different ML methods can be applied to datasets commonly encountered in

the social sciences (Athey 2018; Hastie, Tibshirani, and Friedman 2009). In fact, limit-

ing the benchmarking step to a single researcher-curated ML model to serve as �f ( � )
would invite some of the very risks this framework is designed to address in terms of

researcher degrees of freedom in model-building. Tuning parameters in ML models

can easily be calibrated to diminish model fit and thus imply appropriate fit of ~f ( � ),
when this is not the case. Relatedly, some methods fit certain patterns in data better

than others with often limited a priori guidance (Berk and Bleich 2013; Rose 2013). A

principled approach would thus estimate not a single but an ensemble of flexible form

models during the benchmarking phase (Baćak and Kennedy 2019).

Figure 2. Schematic illustration of the proposed framework.
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The Super Learner is an example of such an ensemble method, consisting of multi-

ple ML methods or the same method with different parameter settings. Among these,

the most appropriate model is identified using cross-validation. The oracle result by

Van Der Laan and Dudoit (2003) shows that a Super Learner is indeed optimal to

identify the best-fitting model to approximate an unknown DGP among evaluated

models, and the price of including large numbers of models into the Super Learner is

minor in terms of performance (Baćak and Kennedy 2019; Van der Laan et al. 2007;

Van der Vaart, Dudoit, and van der Laan 2006). Therefore, many models can and

should be evaluated, and ensembles of various methods are typically preferred as func-

tion approximators over single models (Agrawal et al. 2020).14 A Super Learner can

also be specified prior to model estimation and preregistered, improving transparency

in the research process (Open Science Collaboration 2015). Naturally, the full set of

models and the resulting fit of each should be part of the research output.15

Among the broader set of ML methods, some approaches lend themselves better

than others to modeling social science data (Chen and Guestrin 2016; Lundberg et al.

2020). In particular, tree-based methods deal well with various types of data often

encountered in the social sciences (e.g., categorical and numerical variables) and can

handle missing data. They also do not require exponential increases in sample size as

the feature space increases. Furthermore, the most popular tree-based methods, like the

Random Forest (RF) or Gradient Boosting (GB) model, require relatively little tuning

on the part of the researcher and can be applied out-of-the-box or with limited effort to

most social science datasets (Breiman 1996; Freund and Schapire 1996).16 These

advantages make tree-based approaches an attractive class of ML methods to include

in the benchmarking step. As a case in point, consider the nonlinear associations in

Figure 3, which were introduced earlier. As before, the black lines illustrate true asso-

ciations and the green diamonds are a hypothetical dataset generated by the true associ-

ation and some white noise. The blue dots and red squares are out-of-sample predicted

values based on a GB and an RF model trained to 80 observed data points and fed with

100 uniformly distributed X values to generate ŷ-predictions. Both models learn the

nonlinearity in the data well and do so without requiring any pre-hypothesized func-

tional relationship.

I illustrate the first step of the framework by estimating a Super Learner including a

number of GB and RF models with various parameter estimates to the toy example

introduced earlier. I also include the two researcher-hypothesized models to the Super

Learner, reflecting the model including linear (SL.GLM_Linear) and quadratic

(SL.GLM_Quadratic) specifications of age. For illustrative purposes, I add the true

model (SL.GLM_PieceLinear), even though this model was not hypothesized

originally. Table 2 shows a truncated output from the Super Learner and the root mean

squared error (RMSE)17 of various models included in the Super Learner, estimated

based on 10 folds using cross-validation (for the full output, see Appendix Table A1).

The best-performing model is, unsurprisingly, the true model, but its performance is

closely tracked by a GB model that strongly outperforms the linear and the quadratic

specifications. Including the GB model with different parameters (in this case a slow

learning rate combined with high or low tree depth) leads to overfitting and a strong
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Table 2. Truncated Super Learner Performance Using the Toy Example Data.

Model Ave. SD Min. Max.

SL.GLM_PieceLinear 1.218 0.060 1.046 1.320
SL.GB_200_1_0.1 1.229 0.059 1.107 1.327
SL.GB_500_1_0.1 1.231 0.059 1.104 1.323
SL.GB_100_1_0.1 1.241 0.059 1.129 1.351
RF_200_2 1.383 0.064 1.229 1.544
SL.GLM_Quadratic 1.384 0.063 1.174 1.536
SL.GLM_Linear 1.413 0.065 1.321 1.569
SL.GB_200_5_0.01 2.698 0.088 2.484 2.926
SL.GB_200_6_0.01 2.698 0.088 2.486 2.927

Note: The models included in the Super Learner are a GB model with parameter grid: ntrees = [100, 200, 500],

max depth = [1, 2, 3, 4, 5, 6], shrinkage = [0.01, 0.1], and a Random Forest model with parameter grid:

mtry =
ffiffiffi
n
p

, 2
ffiffiffi
n
p½ �, ntree = [100, 200, 500]. Super Learner performance based on RMSE & 10-fold CV. GB

parameters: n_rounds_max_depth_eta, RF parameters: n_trees_mtry. Output is truncated for brevity, see

Appendix Table A1 for the full output.

Sine Step

Linear Polynomial

−4 −2 0 2 4 −4 −2 0 2 4

−4

0

4

8

−4

0

4

8

X

Y
True effect Gradient Boosting Random Forest Simulated data

Figure 3. Predicted outcome using a GB (blue dots) and RF (red squares) model fit to noisy
data (green diamonds).
Note: True effect is depicted with the black line. Each model is estimated based on 80 uniformly

distributed observations for the X variable, plugged into the specified functional forms (see the

Appendix). Predictions are made using another 100 uniformly distributed observations. The default

parameter values for the RF and GB (with nrounds set to 200) models are used from the

randomForest and xgboost packages in R.
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underperformance in terms of fit. This further illustrates the necessity of including a

large set of models into an ensemble like the Super Learner.

Step II: Estimating and comparing model fit

The second component of the proposed framework is a metric to compare the fit of

benchmarking model �f ( � ) from the previous step with that of the hypothesized model
~f ( � ). Typically, comparative statistics like the Akaike Information Criterion (AIC) or

LR tests (in case of nested models) are used to compare two or more explicitly

hypothesized models. These statistics are not easily transferred to ML methods,

mainly because they rely on in-sample diagnostics and specified functional forms or

require estimation of degrees of freedom, which are challenging for ML models

(Janson, Fithian, and Hastie 2015). As a result, ML methods are typically evaluated on

their out-of-sample performance (Hastie et al. 2009; Shmueli 2010). The broad com-

parability of out-of-sample predictions across modeling domains makes them an

attractive fit metric for the framework (Stone 1977; Van Der Laan and Dudoit 2003;

Verhagen 2022).

Formally, the out-of-sample estimation of model fit would require splitting the total

dataset D into two partitions, a training set, Dtrain, used to estimate the model, and a

test set, Dtest, used to evaluate the model’s fit. By making predictions with the model

estimated based on Dtrain but using data from Dtest to make predictions, the latter pre-

dictions can be compared with the actually observed outcomes, and summary metrics

of fit like the RMSE can be calculated (Hastie et al. 2009). Separating off a testing set

is generally preferred for a truly out-of-sample estimate of fit, but it does sacrifice part

of the sample available for estimation (usually 20–30 percent).18 A common alterna-

tive is K-fold cross-validation, where the data are split into K equal-sized folds. The

model is estimated K times, each time omitting one fold and using the omitted fold to

generate predictions (Kohavi 1995).19 The Super Learner approach discussed in Step 1

similarly relies on K-fold cross-validation. A closely related approach is Monte Carlo

cross-validation, where M random splits of D into training and testing sets are made

rather than mutually exclusive folds. The latter can be helpful when the data have

additional structure that complicates separation of D into distinct subsets. The two

approaches have been shown to be similar in practice (Yousef 2020). Another benefit

of implementing cross-validation to obtain a metric of model fit is that bootstrapped

estimates of the coefficients for the researcher-hypothesized model ~f ( � ) are obtained,

which can further help identify a lack of robustness in an estimated coefficient.20

As others have noted, fit need not automatically equate with the best model from an

inferential perspective (Grimmer et al. 2021; Muñoz and Young 2018). This discus-

sion is often concerned with including colliders or post-treatment variables in a model,

or simply including as many variables as a researcher can possibly think of. Such prac-

tices typically improve fit, but they can invalidate inference. This is the central reason

why the proposed framework uses the same inferential reasoning in terms of which

explanatory variables are included in the flexible model as the originally hypothesized

model. Much of the criticism regarding blind “fit-hunting,” where all causal or
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inferential logic is effectively abandoned in favor of model fit, is thus not applicable,

and variable selection is driven by the substantive question rather than fit (Grimmer

et al. 2021:412).21 However, it can be challenging to identify when a difference in fit

between the flexible and researcher-hypothesized model warrants a re-evaluation of

the latter. For example, improvements in fit for a covariate uncorrelated with the inter-

est variable may have little bearing on the consistency of the interest variable.22

Ideally, we would like clear statistical guidance on the extent of bias in an underspeci-

fied model. In practice, the decision to unpack the flexible form model will likely

depend on the willingness of both the researcher to defend a specification with an

apparent lack of fit, and the research community to accept it. This is not a conse-

quence of the framework, but a level of uncertainty resulting from embracing a state

of the world where we acknowledge that we have very little knowledge about the true

DGP and are unwilling to make stringent assumptions on it a priori.

Putting the second step of the framework into practice, I compare the model fit of

the GB model identified in Step 1 with the two hypothesized alternatives for the toy

example. I include two fit metrics: the R-squared (R2) and the RMSE, and evaluate

both using 1,000 splits of the dataset into train and test sets. The results are summar-

ized in Table 3. For illustration’s sake, the true piece-wise model is included in this

step as well. The bottom three rows for both metrics show the difference in the fit

metric between the flexible model and the hypothesized models. The flexible model

Table 3. Three linear additive models and a GB model estimated on a train set consisting of
80 percent of the total dataset.

Variable N Mean SD Min. Pctl. 5 Pctl. 95 Max.

RMSE
GB 1000 1.241 0.06 1.062 1.145 1.34 1.414
Linear 1000 1.417 0.064 1.195 1.314 1.522 1.643
Quadratic 1000 1.391 0.065 1.181 1.284 1.495 1.602
PieceLinear 1000 1.222 0.06 1.049 1.124 1.316 1.414
GB vs. Linear 1000 –0.176 0.049 –0.315 –0.254 –0.097 –0.024
GB vs. Quadratic 1000 –0.149 0.046 –0.284 –0.222 –0.073 0.008
GB vs. PieceLinear 1000 0.019 0.02 –0.042 –0.013 0.051 0.109
R2

GB 1000 0.656 0.005 0.638 0.647 0.664 0.671
Linear 1000 0.626 0.005 0.609 0.617 0.635 0.64
Quadratic 1000 0.630 0.005 0.613 0.621 0.639 0.645
PieceLinear 1000 0.656 0.005 0.639 0.648 0.665 0.672
GB vs. Linear 1000 0.030 0.002 0.024 0.027 0.033 0.037
GB vs. Quadratic 1000 0.025 0.002 0.019 0.022 0.028 0.032
GB vs. PieceLinear 1000 –0.001 0.000 –0.002 –0.001 0.000 0.000

Note: The three linear additive models assume the effect of age to be linear, quadratic, or piece-wise linear,

respectively. A GB model is also fit using the xgboost package in R with the following parameters: depth = 1,

nrounds = 200, eta = 0.1, which were shown to be optimal in the Super Learner routine (see Table 2). RMSE and

OOS R2 is calculated for each model based on the remaining 20 percent of the data. The last three rows of the RMSE

and R2 parts show bootstrapped results of the difference between the optimal GB model and each of the linear

additive models. 1,000 splits of the total dataset into train and test sets are evaluated.
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strongly outperforms the linear and quadratic models, but it does not improve on the

true model, as should be expected.23

Step III: Unpacking the ML model

The third and final component of the proposed framework is a method to generate

understanding of the ML model whenever it outperforms the hypothesized model in a

way that warrants re-evaluation of the originally hypothesized functional form. The

increasing application of ML models in everyday life has led to pressure to improve

understanding of the inner workings of ML models.24 These developments have led to

the emergence of X-AI, which focuses on understanding the patterns underlying ML

models. Two general approaches can be identified within X-AI: global and local

explainability. The former attempts to describe the mechanics of a model in general

terms, that is, which variables tend to be important for the model’s overall perfor-

mance. The reporting of variable importance measures are an example of this approach

(Baćak and Kennedy 2019; Brand et al. 2021). In local explainability, the goal is to

explain the drivers of singular predictions made by a model. Local explanation meth-

ods are more appropriate for the framework, as they provide insights into the actual

functional patterns between covariates and the outcome.

Various local explanation methods have been developed for different substantive

questions that may be asked of a model (Doshi-Velez and Kim 2017; Lipton 2018;

Zhou et al. 2021).25 For example, much explainability research is focused on providing

additional ad-hoc context into a model’s predictions for practitioners making (high-

stakes) decisions. In such cases, the ability to quickly calculate and extract information

underlying a model’s prediction could be more relevant than emphasizing fidelity.

Conversely, an ethical reviewer of a system-in-action might require more fine-grained

and detailed explanations. Within the proposed framework, the onus is on understand-

ing the underlying patterns found by the ML model, rather than any practical or regula-

tory concerns. This motivates the use of Shapley values, which have a number of

unique and attractive properties with extensive theoretical grounding (discussed in

more detail below).26 Importantly, recent advances have made their estimation compu-

tationally feasible and rekindled a general interest in their use (Aas, Jullum, and

Løland 2021; Heskes et al. 2020; Samek et al. 2019). Shapley values also align closely

with human intuitions of model interpretation, making them appropriate for the itera-

tive process envisioned in the framework (Doshi-Velez and Kim 2017; Lundberg and

Lee 2017; Rudin 2019). Shapley values have been applied in various fields, notably

medicine (Lundberg et al. 2020; Tang et al. 2021), but have also found applications in

sociological research, for instance, as a way to understand complex network dynamics

(van der Laan et al. 2022) and to resolve path dependencies in decomposition metrics

like segregation indices (Elbers 2023).

Shapley values for model explanation

Shapley values were originally developed within cooperative game theory to assist

in the task of distributing a game’s overall payout to its participants. Because a
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game’s payout can depend on its participants’ actions in a potentially complex man-

ner, such an attribution function is not trivial to determine—for instance, some

players’ participation may have no bearing on the outcome at all. Shapley (1953)

developed a perturbation-based approach to determine such an allocation mechan-

ism for games of arbitrary complexity that possesses various attractive theoretical

guarantees.

When used for model explanation, every single prediction ŷi that is made by a model

is viewed as the payout of a potentially complex game, where the covariate values xik

underlying the prediction are viewed as the game’s K participants. The goal of Shapley

values is to attribute the value of the prediction ŷi among its K covariates xik:

ŷi = f0 +
PK
k = 1

fik : ð3Þ

Here, ŷi is a single prediction made by some potentially complex model and f0 resem-

bles the overall mean across predictions. The Shapley values thus attempt to decom-

pose the deviance of a specific prediction made by the model with respect to the mean

prediction across all observations. The additive decomposition of a prediction ŷi

amongst its covariates leads to the typical waterfall plots associated with Shapley val-

ues (see Figure 4). In this example, the difference between ŷi and the overall mean f0

is decomposed among the four covariates. The first and fourth covariates, xi1 and xi4,

have a negative impact on ŷi as their associated Shapley values drive the prediction to

the left. The second and third covariates, xi2 and xi3, have a positive impact. Taken

together, they add up to the total difference between ŷi and the mean. Each prediction

ŷi thus has its own K Shapley values fik that precisely determine the difference

between ŷi and f0.

As every single prediction ŷi is decomposed into K Shapley values, one for each

covariate, the approach effectively leads to a matrix of N3K Shapley values:

Difference between prediction and mean outcome

Figure 4. Prediction ŷ and mean value f0 based on a model with four explanatory variables.
Note: The difference between the prediction and overall mean is decomposed along the Shapley values

of each of the four variables.
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for that observation:
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Note that if the model was a standard linear additive model without an intercept (i.e.,

ŷi =
PK

k = 1 b̂kxik) then calculating Shapley values that satisfy the additive function

ŷi = f0 +
PK

k = 1 fik is simple. Every Shapley value should simply correspond to the

estimated coefficient b̂k times the covariate value xki for that observation:

fki : = b̂kxki, as shown by Aas et al. (2021). If we were to plot the N tuples consisting

of the Shapley values fik and the covariates xik for a single variable k, this would

result in a perfect linear relationship between the covariates and the Shapley values

with slope b̂k . When more complex predictive models are used, plotting the Shapley

values fik and the covariate values xik in such a joint manner provides a graphical

way to study the implied association between a covariate and the outcome (Lundberg

et al. 2020:59).

The process of calculating the K Shapley values for a single prediction ŷi relies on

a perturbation-based approach, where we assess the effect of omitting information on

a covariate xik on that model’s prediction.27 This is done by defining all possible

“information sets” consisting of a set of s out of the total K covariates. DefineMk
i to

be some information set including covariate k, and Mk
i =k to be its complement,

excluding information on covariate k. For eachMk
i , we also make a prediction for its

equivalent in Mk
i =k. This leads to two predictions—one including information on

variable k and one without—which are then differenced. The Shapley value fik for

some prediction ŷi and covariate xik is defined as a weighted mean over all informa-

tion setsMk:

fik =
X
I2Mk

zffl}|ffl{Sum over all information sets

jI j!(jMj � jIj � 1)!

M!|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Weighting function

(�f (I [ k)� �f (I ))
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{Difference in prediction

: ð6Þ

This process is then repeated for every variable k and for every prediction ŷi, leading

to the N3K matrix in Equation 4.

Shapley values have a number of unique theoretical properties that make them

attractive as a method to generate understanding of models. First, the sum of all
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Shapley values fik and the mean prediction, f0, match the actually observed predic-

tion ŷi. Second, whenever the inclusion of variable k into the information set has no

effect on the model’s prediction—�f (I ) = �f (I [ k) for all I— its Shapley value is zero.

Third, whenever two covariates j and k contribute equally to every prediction—
�f (I [ j)� �f (I ) = �f (I [ k)� �f (I ) for all I—their Shapley values are the same:

fij = fik . Fourth, they are consistent with respect to addition and multiplication across

models. Prior work shows Shapley values are the only local explanation method to

possess these properties (for detailed discussions and proofs, see Lundberg and Lee

2017; Lundberg et al. 2020; Shapley 1953; Young 1985).

The computational burden of calculating Shapley values stems from three elements.

First, the number of possible information sets is 2K and scales exponentially with the

number of covariates. Second, calculating the prediction �f (I ) when the information

set I consists of a subset S � K requires an expectation E½xjx� = xs� to be evaluated

for the variables �S not in the information set. Typically, the empirical density of the

missing variables is used, but this assumes independence of the feature space. Joint

Gaussian and copula-based methods have been proposed as an alternative, which fur-

ther increase computation time (Aas et al. 2021; Heskes et al. 2020). Finally, many

predictions have to be assessed to ensure sufficient tuples ½fik , xik� to infer patterns in

the model of interest, thus further scaling the computational requirements linearly.

Fortunately, computationally efficient methods have been developed to calculate

Shapley values. Here, I use the Shapley value estimation method optimized for tree-

based models, Tree SHAP, following Lundberg et al. (2020).

Tree SHAP exploits the structure of the estimated tree, allowing for a much smaller

set of relevant information sets to be assessed. Specifically, information sets that only

differ from one another in terms of variables that do not feature in the branches of the

tree can be ignored, as they will not lead to different predictions.28 This has made esti-

mation efficient to the point that exact Shapley values can be calculated, rather than

having to rely on numerical approximations (Lundberg et al. 2020:64–65), and even

renders pairwise Shapley values feasible to calculate in reasonable time (Lapuschkin

et al. 2019; Lundberg et al. 2020). Pairwise Shapley values assess the joint omission of

two variables from the model and the subsequent effect on the outcome, allowing inter-

actions to be explicated. In the standard Shapley decomposition in Equation 3, interac-

tions would be divided among the relevant interacting variables.29 A final benefit of

the Tree SHAP approach is that the independence assumption when making expecta-

tions for those variables outside of the information set, �S, is relaxed. A more detailed

discussion of Shapley values, pairwise Shapley values, and the Tree SHAP algorithm

is provided in the Appendix.

To illustrate how Shapley values can be used to generate understanding into an ML

model, I calculate all N Shapley values for the age variable based on predictions using

the GB model identified in the toy example above. Figure 5 presents a joint scatterplot

of the N Shapley values fi, age together with the N values of the covariate xi, age. I nor-

malize the Shapley values as well as the true underlying effect such that they can be

visualized jointly.30 The Shapley values accurately recover the piecewise linear associ-

ation in the underlying data, and would provide concrete insights into how the
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hypothesized functional forms could be improved from the linear and quadratic specifi-

cations of age.

RESEMBLANCES TO OTHER COMPUTATIONAL FRAMEWORKS

Before applying the framework to three empirical cases, I briefly discuss a number of

methods and frameworks that share a similar intuition and computational appetite to

the proposed framework. In spirit, the first two steps of the framework are indebted to

modern types of specification tests that rely on comparing residuals from classic non-

parametric regression to those provided by a researcher’s own hypothesized model.31

Such approaches can identify a broader range of nonlinear functional forms than those

considered by the RESET test, for example, although formal tests of improved fit

remain challenging to compute due to the dependence of local estimates to the data at

hand. More generally, the amount of data required to compute such local estimates

scales exponentially with the number of independent variables (Bishop 2006; Yatchew

2003). The ML methods proposed for the framework presented here retain consider-

ably more structure and are more efficient from a data perspective than non-parametric

tests are, improving efficiency and allowing for better post-estimation analysis.32

The proposed framework also shares similar goals to the field of model robustness.

The emphasis in model robustness lies in exposing the potential role of researcher

degrees of freedom during the model-building process (Sala-i Martin 1997; Simonsohn

et al. 2020; Young 2019). A large number of “plausible” models are estimated that

slightly differ to the hypothesized model to guard against researchers cherrypicking a

specification. The key difference in model robustness is that variation is typically

induced by excluding variables in the model, rather than assessing different functional
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Figure 5. Implied effect size of age through Shapley values versus the correctly specified
model.
Note: Both implied effects have been normalized to allow for comparisons with the true functional form.
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relationships among variables (Young and Holsteen 2017).33 The functional complex-

ity and the fit of the models is of limited importance (Slez 2019; Young 2019). The

proposed framework instead focuses on the functional relationship among a set number

of variables and the emphasis is on specification.34 Both approaches could be com-

bined by applying the proposed framework to different sets of explanatory variables, as

I will illustrate in two empirical case studies. Despite their differences, both frame-

works are similarly indebted to the growth in computational power that allows

researchers to consider many different functional forms and to use these computational

riches to be more critical of modeling assumptions and improve transparency into the

research process (Muñoz and Young 2018:4).35

Closest in spirit to the proposed framework is an emerging literature in behavioral

economics and psychology using ML models to find the predictive limit of behavioral

theories (Agrawal et al. 2020; Kleinberg, Liang, and Mullainathan 2017; Peterson et al.

2021). The typical approach is to compare the performance of some behavioral theory

to predict the outcomes of a stylized experiment (e.g., the fairness perception of two

vignettes [Agrawal et al. 2020]) with a flexible ML model trained to the same data. If

the ML method leads to better predictions than a behavioral theory, cases where the

behavioral theory underperformed relative to the ML benchmark are studied. This

research focuses solely on large-scale experimental data and has not been extended to

empirical work as broadly as I propose here. The onus in this literature is on theory

completeness rather than correct functional form specification. Post-estimation inter-

pretation of the ML method—the third step in the proposed framework—is mostly ad

hoc, if present at all.36 However, the central premise of using ML to find patterns in

data not necessarily hypothesized by a researcher is a key similarity between the two

approaches.

A final strand of research similar to the proposed framework is the field of

“autometrics,” which also aims to find better-fitting models than a researcher’s own

hypothesizing might yield. The autometrics approach includes a large number of base

transformations of the explanatory variables into a linear additive functional form.

This “stacked” model is then iteratively trimmed to reach an optimal model using in-

sample fit metrics and specification tests (Doornik and Hendry 2015). Autometrics is

a more classical approach to flexible model-building compared to the ML methods

proposed here. Specifically, the autometrics setup can be subsumed by the set of ML

methods called “generalized additive models” and spline-based methods, which can

be folded into Step I of the proposed framework (Hastie and Tibshirani 1987; Hastie

et al. 2009).37 Related, scholars have put forward similarly stacked models that include

interactions but then apply variable selection through least absolute shrinkage and

selection operator regression (Blackwell and Olson 2022; Beiser-McGrath and Beiser-

McGrath 2020). The proposed framework shares the same general intuition of the

above approaches but uses a broader set of methods such that a wider range of patterns

can be identified, and it emphasizes out-of-sample evaluation to reduce the risk of

overfitting and path dependence in eliminating regressors from the model. As with all

frameworks mentioned here, the inclusion of the third step in the proposed framework

is another key difference with the above approach.
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APPLYING THE FRAMEWORK IN PRACTICE

I apply the proposed framework to three case studies. The first is a simulation based

on the Mincerian wage equation, a classic field of research investigating the returns of

additional years of schooling on a person’s income (Lemieux 2006). The second is a

hedonic regression of house prices applied to a large dataset of transactions in the

London retail market (Malpezzi 2003). The third is a study of the demographic deter-

minants of voting preferences in the United States using the General Social Survey

(GSS) (Davis and Smith 1991). The Mincerian wage application is relevant because it

provides an example of a functional form that has been actively innovated upon over

the past decades and illustrates how the proposed framework can speed up model-

building. I chose the hedonic regression and voting examples because both enjoy con-

siderable academic interest, and models typically include a number of standard control

variables with a (novel) interest variable. Because the latter is often correlated with

the control variables, a correct functional relationship is crucial for inference. For

these latter two case studies, I evaluate whether the typical complexity in which con-

trol variables feature in the functional form is sufficient, and improve them where nec-

essary. Across these cases, I identify various nonlinearities and interaction effects

using the framework.38

Application I: Mincerian wage simulation

The Mincerian wage equation is a classic economic tool used to estimate the effect of

an additional year of education on an individual’s wages—the “return to education”

(Lemieux 2006). As mentioned above, the Mincerian wage equation has been actively

innovated upon over the past decades. In the original functional form, log yearly wages

was related to years of education and work experience in a linear additive fashion:

ln(wagesi) = b0 + b1xeduc, i + b2xexp, i + εi: ð7Þ

Subsequently, a square term was added to allow for a level of nonlinearity in the effect

of work experience:

ln(wagesi) = b0 + b1xeduc, i + b2xexp, i + b3x2
exp, i + εi: ð8Þ

More recently, a step function was added in the effect of education to allow for differ-

ent linear effects by level of education:

ln(wagesi) = b0 + b1xeduc 0 8, i + b2xeduc 9 10, i + b3xeduc 11 12, i +

b4xeduc 13 14, i + b5xeduc 15 + , i + b6xexp, i + b7x2
exp, i + εi:

ð9Þ

For illustrative purposes, I also study a fourth, hypothetical functional form where each

coefficient slightly differs by sex:
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ln(wagesi) = I(xsex, i = Female)½b�0 + b�1xeduc 0 8, i + b�2xeduc 9 10, i + b�3xeduc 11 12, i +

b�4xeduc 13 14, i + b�5xeduc 15 + , i + b�6xexp, i + b�7x2
exp, i + εi�+

I(xsex, i = Male)½b0 + b1xeduc 0 8, i + b2xeduc 9 10, i + b3xeduc 11 12, i +

b4xeduc 13 14, i + b5xeduc 15 + , i + b6xexp, i + b7x2
exp, i + εi�:

ð10Þ

To illustrate the proposed framework, I simulate data using the four specifications

above as DGPs, plugging coefficient estimates as found in the recent empirical litera-

ture into each specification. For the final specification, I vary the coefficients of sex to

fall within a standard error of the coefficients found in the literature (see the Appendix

for the DGPs) (Heckman et al. 2018; Lemieux 2006).

Based on these four DGPs and a synthetic sample of 50,000 individuals’ age, years

of education, years of work experience, and sex, I generate four outcomes: one using

each DGP. The synthetic sample is based on the GSS 2018, such that the distribution

of the explanatory variables is representative of an actual working population. For

illustrative purposes, I calibrate the error term in each functional form such that the

proportion of explainable variance is constant in every dataset irrespective of the DGP

used to generate the outcome variable. Descriptives for the dataset can be found in

Appendix Table A2. Linear-I refers to the first functional form above provided by

Equation 7, Linear-II refers to Equation 8, and so on.

The above leads to four datasets consisting of a distinct vector of outcomes y and

the same matrix of explanatory variables X , where each outcome vector follows from

one of the four underlying functional forms in Equations 7 to 10. The first is based on

a DGP where both education and work experience affect the outcome linearly, the sec-

ond where work experience follows a second-degree polynomial relationship, and so

on. I next propose four hypothetical functional forms, ~f ( � ), to estimate to each of the

four datasets. The first three functional forms are equal to those defined in Equations

7 to 9, as well as a fourth functional form that is equal to Equation 9 but includes a

dummy for sex. This means none of the four hypothesized models aligns with the true

DGP in the fourth dataset, which follows the DGP provided in Equation 10. I include

this fourth form for illustrative purposes, as it is common practice to “control” for

group differences by including a dummy variable, although this might simplify the

true pattern in the data, which in this case concerns an interactive effect rather than a

level difference. Estimating these four functional forms means that for the first dataset,

all four hypothesized models should have the appropriate flexibility to model the data.

For the second dataset, only the second, third, and fourth functional forms should, and

for the third dataset, only the third and fourth functional forms should be able to fit

the data well. None of the proposed functional forms have sufficient flexibility to esti-

mate the underlying DGP in the fourth dataset appropriately.

In addition to the four hypothesized functional forms, I estimate a Super Learner

including various tree-based ML methods—the first step of the framework. A GB

model performs best for each of the four datasets (see Appendix Tables A3 and A4).

In the second step of the framework, I compare the model fit of the flexible model

with the four hypothesized models using Monte Carlo cross-validation. The results

show that the flexible model is able to match the true functional form’s performance

in the first three datasets and strongly outperforms the most flexible functional form in
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the fourth dataset (see Figure 6). The framework thus identifies the underlying model

without requiring the researcher to hypothesize a functional form in all four datasets.

Finally, the flexible model can be unpacked to infer why it improved on the

hypothesized functional forms—the third step in the framework. We know the true

DGP in this case, making it obvious why the flexible model outperformed the under-

specified functional forms, but the Shapley values easily identify the correct associa-

tion of the independent variables with the outcome (Figure 7). The Shapley values

capture the linearity of both explanatory variables in the first dataset, the nonlinearity

in years of work experience in the second dataset, and the step-wise function in the

third dataset. The Shapley values also pick up the interaction with sex in the fourth

dataset, as illustrated by varying the Shapley values by sex. Clearly, assuming linearity

where none is present leads to a misrepresentation of the true returns to education;

incorporating the correct flexibility is crucial for inference.

Application II: London house prices

As a second case study, I use a large dataset on transactions in the London housing

market. The typical approach to modeling house prices is through a hedonic pricing

model that assumes each house is composed of various traits for which buyers have

certain preferences. Buyers effectively combine the value of individual traits to deter-

mine the (monetary) value of an entire house. In hedonic regression, interest typically
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Figure 6. Out-of-sample R2 for the four datasets with varying DGPs, using four functional
forms and the GB model.
Note: The GB model converges on the correct functional form’s model fit in each dataset, whereas the

prespecified models only reach the maximum explanatory power when the functional form’s complexity

equals or outperforms that of the DGP. I used 100 splits into an estimation set of 80 percent and

evaluation set of 20 percent.
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lies in the price elasticity of certain traits, for example, how much the house price

increases with an additional square meter of living space or the inclusion of a garden.

In practice, linear additive models are typically estimated relating observed house

characteristics with log prices, although many authors have suggested that the assump-

tions of additive linearity implicit in this functional form might be unreasonable (Fan,

Ong, and Koh 2006; Malpezzi 2003).

In this application I use typical house characteristics, like house size, number of

rooms, and property type as explanatory variables. I also include a number of neigh-

borhood characteristics. In many applications, researchers attempt to address spatial

heterogeneity by including neighborhood-level observables like crime indices, travel

distances to local centers, or deprivation scores. Again, in the typical model these vari-

ables are added in a linear additive framework, although it is often argued that spatial

heterogeneity is considerably more complex (Elhorst 2010). To estimate the hedonic

regression, I use a dataset of nearly 630,000 house sales containing basic house char-

acteristics and a neighborhood identifier. The transaction data were collected and

merged by the Reshare project hosted at the UK Data Service (Chi et al. 2021). I

include neighborhood-level data from the Department of Transport and Communities

and Ministry of Housing, Communities and Local Government.39 I also include the
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Figure 7. Effect of work experience (red squares) and schooling (blue circles) as predicted
by the four estimated functional forms, and as implied by Shapley values.
Note: The correct functional form is approximated well by the Shapley values for each dataset and

clearly shows an interaction effect between sex and both effects in the fourth dataset. Shapley values and

implied effects from the estimated models were scaled such that they can be easily compared visually.
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year and month of the transaction. Descriptive statistics of the dataset are shown in

Appendix Table A5.

For the hypothesized model, I estimate a linear additive functional form relating log

house prices to the variables depicted in Appendix Table A5. As is customary in the lit-

erature, I assume linear trends for all continuous variables, including the temporal vari-

ables. The exact functional form is as follows:

ln(House pricei) = b0 + b1xarea, i + b2xrooms, i + b3, :::, 5xpropertytype, i + b6xnew, i +

b7xtravel time, i + b8xcrime, i + b9xdeprivation, i + b10xyear, i +

b11xmonth, i + b12, :::, 16xtransaction type, i + ei:
ð11Þ

Following the framework, I start by estimating both the hypothesized model and a

Super Learner to the data. In addition to the model in Equation 11, I also apply the

framework to subsets of the full model. The best-fitting flexible model is again a GB

approach, which will be used as the flexible model (see Appendix Tables A6 and A7

for the Super Learner output for the full set of covariates, and the selected models for

the covariate subsets, respectively). In the next step, the fit of the flexible model is

compared to the hypothesized model. The results are summarized in Figure 8 and are

striking. Already among the simplest housing characteristics, like size and property

Figure 8. Out-of-sample R2 for the hypothesized model and the flexible model.
Note: “Temp” contains yearly and monthly time trends. “Area” contains the house size and number of

rooms. “Housing” includes the property type, and whether the house was newly built. “Transaction”

reflects the type of transaction. “Crime,” “deprivation,” and “travel time” reflect the crime index, the

deprivation index, and the travel time from the house to the nearest local hub, respectively. 100 splits

into an estimation set of 80 percent and evaluation set of 20 percent are used.

Verhagen 23



type, the flexible model improves on the linear additive functional form by about 5 pp

in terms of the out-of-sample R2. We see the largest improvement when adding neigh-

borhood variables like “travel time to hub,” with the difference in R2 more than 30 pp.

This strongly implies that spatial heterogeneity is poorly addressed by the functional

form in Equation 11, a point to which I will return.

To evaluate why the flexible model outperforms the linear additive framework, I

calculate Shapley values for the flexible model. These are visualized for six explana-

tory variables: the size of the house, the travel time to the nearest local hub, the crime

index, number of rooms in the house, and the two temporal variables (year and month

of sale). Figure 9 shows the results. We see nonlinearities for most of these variables,

ranging from a slightly decreasing elasticity for the size of the house to piece-wise lin-

earity in the effect for travel time and the crime index. It is also clear that the number

of rooms, year, and month variables should all be modeled in a nonlinear way. When

including these nonlinearities into the linear additive model, the fit improves and is

strictly preferred according to an LR test,40 although a remaining gap in model fit still

points at further interactions and nonlinearities among variables, possibly across time.

Specifically, the considerable noise in the Shapley values of the neighborhood-level

variables implies that these variables do not follow a very precise pattern with respect

to the neighborhood characteristics, and including nonlinearities may not suffice to

capture the underlying patterns well.
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Figure 9. Plots show implied effect from a typical linear additive model (dashed line), when
adding a squared term (dotted) and as implied by Shapley values (scatter).
Note: A LOESS fit is included in the Shapley plots to indicate the association between each variable and

the outcome. Implied effects are scaled to allow for visual comparisons.
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Given the stark increase in model fit when adding neighborhood-level variables, I

include random intercepts on the neighborhood level to a simple model including the

house size and temporal explanatory variables. This effectively provides a fully non-

linear association for each neighborhood’s characteristics and the outcome variable,

which seems reasonable based on the large increases in model fit when adding any of

the neighborhood characteristics to the flexible model, combined with the variation in

their Shapley values. Based on this modification of the functional form, the out-of-

sample R2 of the model strongly improves to 84 percent, which is much closer to that

of the flexible model. In other words, the heterogeneity among neighborhoods could

not be captured by the three variables when included in the model in either a linear or

polynomial form—although this strategy is often encountered in the literature

(Malpezzi 2003)—and requires more intricate modeling. In this case, the model’s abil-

ity to estimate flexible patterns led to the identification of individual neighborhoods,

thus mimicking a random intercept approach, and the framework illustrates that spatial

heterogeneity is highly predictive, but poorly accounted for by the available neighbor-

hood characteristics (Elhorst 2010). As in the previous example, assuming linearity

would have led to incorrect inferences in the elasticities of most house characteristics

in the data. It would be particularly problematic for inference to ignore the consider-

able variation at the neighborhood level, as this clearly points at important omitted

variables that could bias inference.

Application III: Party identification in the United States

As a third and final case study, I evaluate the demographic determinants of party iden-

tification in the United States using the GSS (Davis and Smith 1991). Party identifica-

tion is of substantive interest in the social sciences (Freeden, Sargent, and Stears

2013), and the GSS is an often-used resource for this purpose. Throughout this litera-

ture, a number of demographic variables are used as typical controls, including respon-

dent’s age, sex, race, educational attainment, and income. Another variable of

substantive interest is usually included in the analysis, like cognitive ability

(Meisenberg 2015) or social class (Morgan and Lee 2017). These interest variables

naturally tend to correlate with the control variables, making correct specification

critical.

Appendix Table A8 shows descriptive statistics of the GSS containing information

on voting preferences and demographic characteristics between 1974 and 2018. The

outcome of interest is a seven-point scale indicating whether the respondent identifies

strongly with the Democratic party (value of 1) or the Republican party (value of 7).

The GSS also includes the respondent’s age, years of schooling, income level across

12 brackets, sex, and race, as well as the year of the survey wave. As the hypothesized

model, I use a standard linear additive model as often encountered in the literature

(Freeden et al. 2013). Most functional forms include a linear time trend for the year of

the survey, and add most demographic variables as a linear determinant or dummy.

The hypothesized functional form is as follows:
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yi = b0 + b1xage; i + b2xfemale; i + b3xblack; i + b4xother; i +

b7xeducation; i + b8xincome; i + b9xsurvey year; i + εi,
ð12Þ

and resembles that found in Meisenberg (2015).

I start by estimating Equation 12 as well as a Super Learner containing various tree-

based ML models using both the full set of covariates and subsets. The best-performing

model is again a GB model, although the RF also performs well (see Appendix Tables

A9 and A10 for the Super Learner output for the full set of covariates, and the selected

models for the covariate subsets, respectively). Figure 10 shows results from bench-

marking the out-of-sample R2 with the hypothesized models. The explanatory power

of the flexible model is almost double that of the hypothesized model across subsets,

indicating a considerable lack of appropriate specification in Equation 12. The flexible

model improves most when race is added to the model, although the hypothesized

model already underperforms when simply including temporal, age, and sex variables.

It is also noteworthy that overall fit is comparatively low.

Using the full set of covariates, Figure 11 illustrates Shapley values and Shapley

interaction values for the age, schooling, and income variables. These Shapley values

show there are clear nonlinearities in the associations of age, income, and years of

schooling with the outcome. Assuming these associations to be linear does not fit the

implied effect well, and adding square terms improves the model fit considerably

(Figure 11A).41 Ignoring these complexities and assuming a linear functional form

would wrongfully imply a decreasing effect by age, even though there is a clear
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Figure 10. Out-of-sample R2 for the hypothesized model compared to the flexible model.
Note: The “year” set reflects the survey wave. The “age” set reflects the respondent’s age, “sex” their

sex, “race” their race, “income” their income, and “education” their years of education. The optimal

models from the Super Learner routine and the hypothesized models were estimated to 80 percent of the

data, and the out-of-sample R2 was calculated on the remaining 20 percent for each of the models. The

data were split 1,000 times into estimation- and evaluation-sets.
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upward association at later ages. Similar incorrect conclusions would be drawn for

both the education and income associations when assuming a linear additive model.

These direct effects can be further decomposed into a number of interactions by esti-

mating pairwise Shapley values, allowing each Shapley value to be decomposed into a

direct and indirect effect. The indirect effects indicate how Shapley values for certain

observed characteristics deviate from the overall effect of the variable, conditional on a

second variable. The estimates in panels B to E all show indirect effects and illustrate

that younger respondents associated less strongly with Democrats in earlier waves than

in later waves (Figure 11B), but also that White individuals have a stronger positive

age effect than do non-White individuals (Figure 11C). We see similarly interesting

dynamics when interacting sex and race, which show that the sex effect is more pro-

nounced for Black respondents but is less pronounced for others (Figure 11D). The

effect of income shows similarly complicated dynamics, where higher income is asso-

ciated more strongly with Republican identification for White individuals than for non-

White individuals (Figure 11E). Adding race interactions for sex, income, and age as

implied by the Shapley values improves the fit of the hypothesized model using con-

ventional in-sample fit statistics.42

DISCUSSION

This article set out to address a key problem in quantitative sociology: that we do not

know what the appropriate functional form might be to model a dataset. In addition, a

historic preference for parsimonious and easy-to-estimate models due to computational

limitations has led to researchers hypothesizing relatively simplistic functional forms

with little scrutiny. Not only does this lead to risks of misspecification bias and incor-

rect inference, but a lack of emphasis on appropriate specification can lead to

researcher degrees of freedom muddying empirical findings. I argue that instead of

trusting researchers to conjure up the correct functional form, we should use methods

that embrace the fundamental uncertainty regarding the underlying patterns in a data-

set to help sociologists improve their model-building.

I proposed a framework using ML methods to generate a data-driven estimate of the

fit potential in a dataset. This fit potential indicates how well an outcome could be

modeled when the functional relationship among variables is dictated by the data. Such

an estimate provides an indication of whether a researcher’s own functional form might

miss important nuances like interactions or nonlinearities. Crucially, the fit potential is

a feature of the data and not a result of the researcher’s choices, improving transpar-

ency in the empirical process. Whenever the ML method finds more intricate patterns

in the data than our own models do, we can unpack the former to provide guidance on

how to improve the latter. This is contrary to popular belief that ML models are funda-

mentally black boxes that cannot convey any intuition into the patterns they identify.

More generally, the proposed framework provides a bridge between the ability of ML

methods to identify intricate patterns in data and a desire for interpretable models. By

incorporating existing methods into the standard empirical workflow, ML models
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become complementary tools in the sociologist’s empirical toolkit, as opposed to the

near exclusive use of ML for predictive questions, as is the status quo in sociology.

Illustrating the framework, I showed how the historic process of model-development

could have been sped up considerably, using the example of the Mincerian wage equa-

tion. The framework effortlessly identified underspecification, and subsequent analysis

of the ML models identified the necessary improvements to the functional form. The

other two empirical examples, a hedonic regression of house prices and a model

explaining party identification, both illustrate how often-encountered modeling strate-

gies lead to considerably lower fit than does a flexible ML model. In the case of house

prices in London, a number of simple nonlinearities were identified. Most importantly,

the fundamental inability to address spatial heterogeneity through the inclusion of stan-

dard neighborhood characteristics became clear through the considerable differences in

fit between the hypothesized and ML method when including neighborhood data. For

party identification, a lack of complexity was similarly evident from applying the

framework, and unpacking the flexible models showed important interactions and non-

linearities between the explanatory variables and outcome, which are not commonly

implemented in the functional forms used to study party identification.

Existing misspecification tests have known limitations, but appropriate use would

have identified a lack of specification in some of the examples presented in this arti-

cle.43 However, classic misspecification tests are known to be underpowered, espe-

cially in multivariate settings, and limited in the types of misspecification they

consider. Fully non-parametric tests are more flexible, but suffer heavily from the curse

of dimensionality. In addition, misspecification tests do not provide clear guidance on

how to improve a functional form after misspecification is identified. Perhaps most

importantly, use of even the most basic of misspecification tests is practically nonexis-

tent in sociological work, and its selective implementation can suffer from the very

same researcher degrees of freedom they are meant to address. Conversely, the only

source of selectivity in the proposed framework is what models to include in a Super

Learner to provide an estimate of the fit potential. As the price of considering a large

amount of models is small, this risk is minimal and we can simply include a large

amount of different types of methods. In contrast to classic misspecification tests, the

proposed framework also provides researchers with concrete guidance into the type of

patterns that may have been missed.

The approach presented here also has limitations. First, uncovering intricate patterns

will still depend on the available data and might provide limited guidance in low N

settings, although many of the ML methods proposed here can be applied to datasets

typically encountered in sociology. Second, although considerable progress has been

made in recent years, unpacking flexible ML methods remains challenging. This is in

part because patterns can become complex to the degree that even local explanation

methods like Shapley values will not yield easily digestible insights into the underlying

functional form, especially when multiple interactions may be at play. More generally,

active debate regarding the practical and philosophical aspects of explanation methods’

accuracy to reflect how ML methods operate remains ongoing. However, the constant

developments in the X-AI field are reassuring and exciting. Finally, when causal
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questions rather than optimal fit are of interest, there is limited guidance on whether a

difference in model fit between a hypothesized model and ML alternative is actually

problematic. However, as the framework follows the same inferential curation of vari-

ables as a researcher’s own model, missed functional relationships among variables

should be expected to affect inference.

Perhaps the most challenging part of the framework is determining how much

improvement in fit is enough to warrant a re-evaluation of the functional form.

Unfortunately, this question will fundamentally depend on a combination of the sub-

stantive research question being asked and the true underlying DGP. As a result, the

choice to accept a functional form will likely remain a debate among the academic

community. This is not so much a consequence of the framework, but rather one of

embracing the fact that we know very little about the true DGP and are unwilling to

make stringent assumptions on it, nor blindly trust that a researcher-hypothesized

model includes all the relevant intricacies in the data. A result of increasingly letting

go of assumptions regarding the underlying DGP will be that we are left more fre-

quently with questions like the one posed above, where we can rely less on statistical

guidance and will instead have to rely on academic discussion.

At the root of most empirical sociological findings lies a functional form that is

assumed to be correctly specified. Limited evaluation of whether this functional form is

appropriate for the data leads to a number of serious risks. The model might not accu-

rately reflect the patterns in the data, affecting the validity of statistical inference. Simply

allowing researchers to report a single or curated number of functional forms without

much scrutiny further exposes sociology to p-hacking. These practices stem from a time

when limitations on computational power necessitated parsimony. These constraints are

no longer applicable, yet the models we estimate retain a simplicity that likely belies the

intricacies of the social mechanisms we are interested in. This is evidenced in the work

of our qualitative colleagues, as well as the ever-increasing number of empirical exam-

ples where ML models outperform the linear additive models usually estimated by

sociologists. I proposed a framework to address this issue by exploiting the benefits of

ML methods—to find intricate patterns in data—to address this key issue throughout

empirical work. This symbiosis of quantitative sociological work and the computational

riches of today is long overdue, and it will only bear more fruit as the goals of the ML

community increasingly align with the explanatory focus of sociologists.

APPENDIX

Shapley values

In game theory, Shapley values are defined as follows. Consider a game G consisting of M
possible players. Further assume the game has some outcome v(S) where S �M. Thus, there

might be a subset of the total set of players who play the game. Shapley values were developed

as a way to allocate each of the players in S a part of the game’s outcome v(S). Clearly, there

are many ways to divide v(S) among S, but Shapley values are the only division that satisfy a

number of properties discussed below. Shapley values are estimated as follows, where each

player j gets their part of the payoff, equal to fj:
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fj(v(S)) = fj =
P
S�M=j

jSj!(M�jSj�1)!
M ! (v(S [ j)� v(S)), j = 1; :::;M : ðA1Þ

The Shapley value fj for player j should be seen as a weighted sum of the differences in the

outcome of the game v( � ) given some set of players S when including player j to the set of

players, versus the payoff without including player j.

Take as an exampleM= ½1, 2, 3, 4�, then the exact Shapley values are:

f1 = 1
4

(v(½1, 2, 3, 4�)� v(½2, 3, 4�)) + 1
12
½(v(½1, 3, 4�)� v(½3, 4�)) +

(v(½1, 2, 4�)� v(½2, 4�)) + (v(½1, 2, 3�)� v(½2, 3�)) + (v(½1, 4�)� v(½4�)) +

(v(½1, 2�)� v(½2�)) + (v(½1, 3�)� v(½3�))�+ 1
4

(v(½1�)� v(½��))
f2 = 1

4
(v(½1, 2, 3, 4�)� v(½1, 3, 4�)) + 1

12
½(v(½2, 3, 4�)� v(½3, 4�)) +

(v(½1, 2, 4�)� v(½1, 4�)) + (v(½1, 2, 3�)� v(½1, 3�)) + (v(½1, 2�)� v(½1�)) +

(v(½2, 4�)� v(½4�)) + (v(½2, 3�)� v(½3�))�+ 1
4

(v(½2�)� v(½��))
f3 = 1

4
(v(½1, 2, 3, 4�)� v(½1, 2, 4�)) + 1

12
½(v(½2, 3, 4�)� v(½2, 4�)) +

(v(½1, 3, 4�)� v(½1, 4�)) + (v(½1, 2, 3�)� v(½1, 2�)) + (v(½1, 3�)� v(½1�)) +

(v(½2, 3�)� v(½2�))�+ 1
4

(v(½3�)� v(½��))
f4 = 1

4
(v(½1, 2, 3, 4�)� v(½1, 2, 3�)) + 1

12
½(v(½2, 3, 4�)� v(½2, 3�)) +

(v(½1, 3�)� v(½1, 3, 4�)) + (v(½1, 2, 4�)� v(½1, 2�)) + (v(½1, 4�)� v(½1�)) +

(v(½2, 4�)� v(½2�))�+ 1
4

(v(½4�)� v(½��)):

ðA2Þ

By adding all four Shapley values together and defining f0 = v(� ), we see that

f0 + f1 + f2 + f3 + f4 = v(½1, 2, 3, 4�). In other words, the Shapley values sum to the outcome

of the game. This is the “completeness” property. Three other properties of Shapley values are:

1. If v(S [ i) = v(S [ j) for all coalitions S then fi = fj.

2. If including player j to the coalition S never changes v(S) then fj = 0.

3. If two games with outcomes v( � ) and w( � ) are combined then fj(v + w) = fj(v) + fj(w)

and for any real number a, fj(av) = afj.

As shown by Shapley (1953) and Young (1985), the Shapley values as defined in Equation A1

are the only distribution function for which these properties hold.

To adapt Shapley values as a method to explain a prediction ŷi made by some model f̂ ( � ),
we exchange v(S) with f̂ (xi) and define:

f̂ (xi) = f0 +
PK
k = 1

fik , ðA3Þ

where f0 = E(f̂ (x)). In other words, the Shapley values fik capture the difference between an

individual prediction f̂ (xi) and the overall mean prediction f0. As was the case for the game

theoretic setup, Shapley values for predictions are the only additive method that satisfy the

above-mentioned properties (Lundberg and Lee 2017).

To calculate Shapley values for the prediction case, we substitute f̂ ( � ) for v( � ) where we

consider subsets S � K of covariates instead of players. In other words, each player’s contribu-

tion to the outcome in the game theoretical setup now represents each covariate’s contribution

to the prediction of a model. This requires evaluating the function f̂ ( � ) while excluding some

covariates from the model. That is, replacing v(S) in Equation A1 with E½f̂ (xjx = xS)�.
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Generally speaking, calculating exact Shapley values is computationally challenging as the

number of sets S is 2jKj.

Kernel SHAP

Lundberg and Lee (2017) developed a computationally efficient way of estimating Shapley val-

ues. Their approach, Kernel SHAP, relies on reformulating the problem of estimating fj for

j = 0, :::, K as the following weighted least squares (WLS) problem:

P
S�K

(E½f̂ (xijxi = xi,S)� � (f0 +
P
k2S

fik))2k(K,S): ðA4Þ

In this setup, the function k( � ) reflects the Shapley kernel weights:

k(K,S) =
jKj�1

jKj
jSj

� �
jSj(jKj�jSj)

.44 If we define Z to be a 2K3(K + 1) matrix consisting of zeroes

and ones indicating the inclusion of covariate k into the set K with a leading column of ones

for f0, and if we then define W to be a 2K32K matrix with the Shapley kernel weights defined

above, and finally f to be a vector containing f̂i(K) = E½f̂ (xijxi = xi,S)� for all S and ordered in

line with Z, the setup in Equation A4 can be rewritten as:

(f � Zf)TW(f � Zf), ðA5Þ

which leads to the standard WLS solution f = (ZTWZ)�1ZTWf . The benefit of this formulation

is that the matrix multiplication R = (ZTWZ)�1ZTW only has to be calculated. Calculating R

still requires a considerable matrix inversion, but by sampling a subset K0 of K according to the

Shapley kernel weights and including only the associated elements in f 0 and Z0 allows for a con-

siderably more computationally tractable approximation to Equation A4. This is Lundberg and

Lee’s (2017) first key innovation; it makes Kernel SHAP a computationally feasible approxi-

mation to the exact Shapley values in Equation A1.

The second component required to calculate Shapley values is the vector f , which consists

of the function evaluation under all 2K possible combinations of covariates—or 2K
0

in case of

the sampling scheme mentioned above. To assess f̂ (S) = E½f̂ (xijxi = xi,S)�, one approach is to

integrate out all covariates that are not included in S from the expectation:

E½f̂ (xi)jxi = xi,S�=
R

f̂ (xi, �S , xi,S)p(xi, �Sjx = xi,S)dxi, �S , ðA6Þ

where p(xi, �Sjx = xi,S) is the conditional distribution of the covariates not included in S, indi-

cated with �S. In principle, this density is conditional on the observed values of the covariates

that are included in S: xi,S . The standard Kernel SHAP by Lundberg and Lee (2017) assumes

independence among covariates and thus removes the conditionality in the distribution and

simply implements p(xi, �S), the empirical density of the variables. When such independence

assumptions are unlikely, various alternative solutions have been developed to incorporate the

conditionality between xi,S and xi, �S (Aas et al. 2021).

32 Sociological Methodology



Tree SHAP

An alternative estimation approach to f̂ (S) = E½f̂ (xijxi = xi,S)� is available for tree-based meth-

ods, Tree SHAP, from Lundberg et al. (2020). By exploiting tree structures, exact Shapley val-

ues can be calculated instead of relying on the sampling approach applied in Kernel SHAP.

Whereas exact Shapley value calculation would require a summation over all possible sets S,

Tree SHAP only evaluates the decision paths for a set xi,S throughout the tree and is thus effec-

tively capped through the number of partitions in the tree. The basic approach to estimate

f̂ (S) = E½f (xijxi = xi,S)� using a tree is the following recursive algorithm:

This algorithm G( � ) is initialized at the root node of the tree and first evaluates whether the

node is a leaf—that is, a terminal node. If so, the leaf estimate is simply returned as f̂ (S). If the

node is not a leaf, the algorithm assesses whether the split variable xj used to split the node fur-

ther into ½jL, jR� is in the set S. If so, we evaluate whether the observed value of xj for the obser-

vation for which a prediction is being explained lies in jL or jR, and the algorithm is repeated on

the child node within which the observation falls. If xj 62 S the algorithm is applied to both

nodes, and a weighted average of both is used based on rL or rR, which are the proportions of

data points falling in either of the two nodes. In other words, recursively applying G( � ) the

algorithm follows the effective tree structure until it reaches a node j for which the split variable

is not part of S and from there onward uses a weighted average of G( � ) applied to both nodes.

A key development in Lundberg et al. (2020) is a computationally efficient version of

Algorithm 1 that elegantly stores information of paths that have already been followed within

previous passes of the algorithm (see the discussion in Lundberg et al. 2020:65, and the source

code documentation, located at https://github.com/slundberg/shap). The advantage of the Tree

SHAP approach is that the assumption of covariate independence is relaxed in the process of

determining f̂ (S) = E½f̂ (xijxi = xi,S)�, as the approach is conditional on the tree P to generate

estimates of f̂ (S) while using the information available in S (cf. Aas et al. 2021).

Algorithm 1. Tree SHAP algorithm.

G jð Þ : = ;
Receive node j;
if node j is a leaf then

return fitted value of leaf

else

if node’s split variable xj 2 xS then

if xj\= sj then

return G(jL)

else

return G(jR)

end

else

return G(jL)�rL + G(jR)�rR

rL + rR

end

end
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Pairwise Shapley values

The dramatic decrease in computation time required to estimate Tree SHAP as compared to

Kernel SHAP allows for the calculation of exact Shapley values, but also for calculation of local

interaction effects through pairwise Shapley values. These pairwise Shapley values go beyond the

more simple linear decomposition of a prediction along the K covariates as reflected in Equation

A3. SHAP interaction values calculate the difference between a Shapley value fik for some obser-

vation i when covariate j is present versus when it is absent. Specifically, it is estimated through:

Fi, j, k(f , x) =
P

S�K=k; j

=
jSj!(jKj�jSj�2)!)

2(jKj�1)! ri, j, k(f , x,S), ðA7Þ

for j 6¼ k where

ri, j, k(f , xi,S) = fxi
(S [ j, k)� fxi

(S [ j)� fxi
(S [ k) + fxi

(S): ðA8Þ

Here, fxi
( � ) is the standard formula to estimate a Shapley value as defined in Equation A1.

Effectively, the direct Shapley value for variable j is Fj, j(f , x) and is defined as the standard

Shapley value fj(f , x) minus the interaction values
P

j 6¼k Fi, j, k(f , x). The intuition behind A8 is

that the pairwise Shapley value between variable k and variable j is a weighted average of all

sets of covariates excluding k and j: S=fj, kg. For each set, the Shapley value is first estimated

when including both k and j—the first term in Equation A8. From this, the Shapley values

when including either k or j are subtracted—the second and third terms in A8. Finally, the

Shapley value from including neither k nor j is added—the last term in A8. Again, using the

same efficient implementation as discussed above allows for computationally tractable estima-

tion of these pairwise values (Lundberg et al. 2020:66).
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Figure A1. Bootstrapped distributions of the coefficient of interest from Step II of the
framework.
Note: A natural result of estimating the fit of the hypothesized model over a large amount of resampled

sets during the second step of the framework is that it allows for insights into the variability of the

coefficients of the researcher-hypothesized model across samples. In this case, 80 percent of the data are

randomly sampled 1,000 times to generate these distributions.
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Table A1. Super Learner performance using the Toy Example data.

Model Mean Std. Dev. Min. Max.

SL.GLM_PieceLinear 1.218 0.060 1.046 1.320
SL.GB_200_1_0.1 1.229 0.059 1.107 1.327
SL.GB_500_1_0.1 1.231 0.059 1.104 1.323
SL.GB_100_1_0.1 1.241 0.059 1.129 1.351
SL.GB_100_2_0.1 1.242 0.060 1.113 1.342
SL.GB_500_3_0.01 1.247 0.060 1.122 1.357
SL.GB_100_3_0.1 1.252 0.061 1.098 1.349
SL.GB_200_2_0.1 1.253 0.061 1.107 1.354
SL.GB_500_2_0.01 1.254 0.059 1.139 1.364
SL.GB_500_4_0.01 1.259 0.060 1.120 1.364
SL.GB_500_5_0.01 1.268 0.061 1.125 1.364
SL.GB_200_3_0.1 1.268 0.062 1.101 1.351
SL.GB_100_4_0.1 1.271 0.062 1.103 1.362
SL.GB_500_6_0.01 1.275 0.061 1.116 1.376
SL.GB_100_5_0.1 1.279 0.061 1.094 1.366
SL.GB_500_2_0.1 1.284 0.063 1.120 1.367
SL.GB_100_6_0.1 1.286 0.062 1.110 1.363
SL.GB_200_4_0.1 1.292 0.063 1.107 1.381
SL.GB_200_5_0.1 1.297 0.062 1.106 1.385
SL.GB_500_3_0.1 1.302 0.063 1.116 1.393
SL.GB_200_6_0.1 1.313 0.063 1.132 1.394
SL.GB_500_4_0.1 1.330 0.064 1.139 1.419
SL.GB_500_5_0.1 1.341 0.064 1.157 1.440
SL.GB_500_6_0.1 1.357 0.065 1.198 1.443
SL.GB_500_1_0.01 1.366 0.062 1.255 1.503
SL.RF_200_2 1.383 0.064 1.229 1.544
SL.GLM_Quadratic 1.384 0.063 1.174 1.536
SL.RF_200_4 1.393 0.066 1.224 1.538
SL.RF_500_4 1.394 0.066 1.220 1.545
SL.RF_500_2 1.398 0.065 1.233 1.578
SL.RF_100_4 1.398 0.066 1.229 1.552
SL.RF_100_2 1.408 0.067 1.250 1.675
SL.GLM_Linear 1.413 0.065 1.321 1.569
SL.RF_200_1 2.342 0.098 2.029 2.671
SL.RF_100_1 2.394 0.100 2.106 2.815
SL.GB_200_3_0.01 2.696 0.089 2.477 2.919
SL.GB_200_4_0.01 2.697 0.088 2.483 2.925
SL.GB_200_5_0.01 2.698 0.088 2.484 2.926
SL.GB_200_6_0.01 2.698 0.088 2.486 2.927
SL.GB_200_2_0.01 2.725 0.093 2.488 2.952
SL.GB_200_1_0.01 2.911 0.114 2.567 3.188

Note: The models included in the Super Learner are a GB model with parameter grid: ntrees = [100, 200, 500],

max_depth = [1, 2, 3, 4, 5, 6], shrinkage = [0.01, 0.1], and a Random Forest model with parameter grid:

mtry =
ffiffiffi
n
p

, 2
ffiffiffi
n
p½ �, ntree = [100, 200, 500]. Super Learner performance based on RMSE & 10-fold CV. Selected

model in boldface. Hypothesized models in italics. GB parameters: n_rounds_max_depth_eta. RF parameters:

n_trees_mtry.
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Table A2. Descriptive statistics of the simulated wage data based on a synthetic sample of the
2018 General Social Survey and using four DGPs to generate four different outcome variables.

Variable N Mean Std. Dev. Min. Pctl. 25 Pctl. 75 Max.

Age 50,000 41.09 13.70 18 29 53 65
Schooling (years) 50,000 13.79 2.97 0 12 16 20
Work experience (years) 50,000 23.01 13.7 0 11 35 51
Sex: Female 50,000 50.1% - - - - -
Sex: Male 50,000 49.9% - - - - -
Log wages (Linear-I) 50,000 8.29 1.25 5.24 7.238 9.38 10.96
Log wages (Linear-II) 50,000 7.58 0.69 5.20 7.066 8.09 9.17
Log wages (Linear-III) 50,000 6.74 0.64 4.62 6.254 7.30 7.99
Log wages (Linear-IV) 50,000 6.70 0.80 3.73 6.325 7.16 8.56

Table A3. Super Learner performance, Mincerian wage simulation Linear-I and Linear-II.

Model Mean Std. Dev. Min. Max.

Mincerian wage simulation Linear-I.

SL.GLM_Linear 0.12 0.00 0.12 0.12
SL.GB_100_3_0.1 0.12 0.00 0.12 0.13
SL.GB_200_3_0.1 0.12 0.00 0.12 0.12
SL.GB_500_3_0.1 0.12 0.00 0.12 0.12
SL.GB_100_4_0.1 0.12 0.00 0.12 0.12
SL.GB_200_4_0.1 0.12 0.00 0.12 0.12
SL.GB_500_4_0.1 0.12 0.00 0.12 0.12
SL.GB_100_5_0.1 0.12 0.00 0.12 0.12
SL.GB_200_5_0.1 0.12 0.00 0.12 0.12
SL.GB_500_5_0.1 0.12 0.00 0.12 0.12
SL.GB_500_5_0.01 0.13 0.00 0.13 0.14
SL.GB_500_4_0.01 0.13 0.00 0.13 0.14
SL.GB_500_3_0.01 0.14 0.00 0.14 0.14
SL.GB_200_4_0.01 1.07 0.00 1.07 1.08
SL.GB_200_5_0.01 1.07 0.00 1.07 1.08
SL.GB_200_3_0.01 1.08 0.00 1.08 1.09
SL.RF_3_200 0.47 0.00 0.46 0.48
SL.RF_3_500 0.47 0.00 0.46 0.49
SL.RF_1_100 0.48 0.00 0.47 0.50
SL.RF_3_100 0.48 0.00 0.46 0.51
SL.RF_1_200 0.48 0.00 0.45 0.50
SL.RF_1_500 0.48 0.00 0.45 0.49
SL.GB_100_3_0.01 2.90 0.01 2.90 2.92
SL.GB_100_4_0.01 2.90 0.01 2.89 2.92
SL.GB_100_5_0.01 2.90 0.01 2.89 2.91

Mincerian wage simulation Linear-II.

SL.GLM_Linear 0.07 0.00 0.07 0.07
SL.GB_100_3_0.1 0.07 0.00 0.07 0.07
SL.GB_200_3_0.1 0.07 0.00 0.07 0.07
SL.GB_500_3_0.1 0.07 0.00 0.07 0.07
SL.GB_100_4_0.1 0.07 0.00 0.07 0.07
SL.GB_200_4_0.1 0.07 0.00 0.07 0.07
SL.GB_500_4_0.1 0.07 0.00 0.07 0.07
SL.GB_100_5_0.1 0.07 0.00 0.07 0.07
SL.GB_200_5_0.1 0.07 0.00 0.07 0.07
SL.GB_500_5_0.1 0.07 0.00 0.07 0.07
SL.GB_500_3_0.01 0.09 0.00 0.09 0.09

(continued)
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(Continued)

Mincerian wage simulation Linear-II.

SL.GB_500_4_0.01 0.09 0.00 0.08 0.09
SL.GB_500_5_0.01 0.09 0.00 0.08 0.09
SL.RF_3_100 0.26 0.00 0.25 0.28
SL.RF_1_200 0.26 0.00 0.26 0.28
SL.RF_3_200 0.26 0.00 0.26 0.28
SL.RF_1_100 0.27 0.00 0.25 0.28
SL.RF_1_500 0.27 0.00 0.25 0.28
SL.RF_3_500 0.27 0.00 0.26 0.27
SL.GB_200_3_0.01 0.96 0.00 0.96 0.97
SL.GB_200_4_0.01 0.96 0.00 0.96 0.96
SL.GB_200_5_0.01 0.96 0.00 0.95 0.96
SL.GB_100_3_0.01 2.61 0.00 2.60 2.62
SL.GB_100_4_0.01 2.61 0.00 2.60 2.61
SL.GB_100_5_0.01 2.61 0.00 2.60 2.61

Note: The models included in the Super Learner are a GB model with parameter grid: ntrees = [100, 200, 500],

max_depth = [3, 4, 5], shrinkage = [0.01, 0.1], and a Random Forest model with parameter grid: mtry =ffiffiffi
n
p

, 2
ffiffiffi
n
p½ �, ntree = [100, 200, 500]. Super Learner performance based on RMSE & 10-fold CV. Selected model in

boldface. True model in italics. GB parameters: n_rounds_max_depth_eta. RF parameters: n_trees_mtry.

Mincerian wage simulation Linear-IV.

SL.GB_200_3_0.1 0.09 0.00 0.09 0.09
SL.GB_500_3_0.1 0.09 0.00 0.09 0.09
SL.GB_100_4_0.1 0.09 0.00 0.09 0.09
SL.GB_200_4_0.1 0.09 0.00 0.09 0.09

(continued)

Table A4. Super Learner performance, Mincerian wage simulation Linear-III and Linear-IV.

Model Mean Std. Dev. Min. Max.

Mincerian wage simulation Linear-III.

SL.GLM_Linear 0.07 0.00 0.07 0.07
SL.GB_100_3_0.1 0.07 0.00 0.07 0.07
SL.GB_200_3_0.1 0.07 0.00 0.07 0.07
SL.GB_500_3_0.1 0.07 0.00 0.07 0.07
SL.GB_100_4_0.1 0.07 0.00 0.07 0.07
SL.GB_200_4_0.1 0.07 0.00 0.07 0.07
SL.GB_500_4_0.1 0.07 0.00 0.07 0.07
SL.GB_100_5_0.1 0.07 0.00 0.07 0.07
SL.GB_200_5_0.1 0.07 0.00 0.07 0.07
SL.GB_500_5_0.1 0.07 0.00 0.07 0.07
SL.GB_500_5_0.01 0.08 0.00 0.08 0.08
SL.GB_500_4_0.01 0.08 0.00 0.08 0.08
SL.GB_500_3_0.01 0.09 0.00 0.08 0.09
SL.RF_1_100 0.24 0.00 0.23 0.26
SL.RF_3_100 0.24 0.00 0.23 0.24
SL.RF_1_200 0.24 0.00 0.22 0.26
SL.RF_3_200 0.24 0.00 0.23 0.25
SL.RF_1_500 0.24 0.00 0.23 0.25
SL.RF_3_500 0.24 0.00 0.23 0.25
SL.GB_200_3_0.01 0.85 0.00 0.85 0.85
SL.GB_200_4_0.01 0.85 0.00 0.84 0.85
SL.GB_200_5_0.01 0.85 0.00 0.84 0.85
SL.GB_100_4_0.01 2.30 0.00 2.30 2.30
SL.GB_100_3_0.01 2.30 0.00 2.30 2.31
SL.GB_100_5_0.01 2.30 0.00 2.30 2.30

Table A3. (Continued)
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Table A5. Descriptive statistics of the London house price data.

Variable N Mean Std. Dev. Min. Pctl. 25 Pctl. 75 Max.

Log House Price 629,669 12.92 0.63 9.21 12.49 13.25 17.44
House size (square meter) 629,669 88.89 46.45 10 60 104 959.74
Number of rooms 629,669 4.17 1.71 1 3 5 20
Distance to local center

(minutes)
629,669 11.52 4.79 5 8.87 13.28 60.74

Crime and disorder index 629,669 0.35 0.57 –2.01 –0.05 0.75 2.17
Deprivation index 629,669 21.72 11.85 1.7 12.17 29.75 66.21
Property type: Detached 629,669 0.06 - - - - -
Property type: Flats/

Maisonettes
629,669 0.44 - - - - -

Property type: Semi-
Detached

629,669 0.18 - - - - -

Property type: Terraced 629,669 0.33 - - - - -
Transaction type: Marketed

sale
629,669 0.76 - - - - -

Transaction type: Private
rental

629,669 0.17 - - - - -

Transaction type:
Non-marketed sale

629,669 0.01 - - - - -

Transaction type: Marketed
Sale

629,669 0.76 - - - - -

Transaction type: Other 629,669 0.05 - - - - -
New property 629,669 0.01 - - - - -
Year 629,669 2015 2.40 2011 2013 2017 2019
Month 629,669 6.61 3.36 1 4 9 12

Source: Reshare Project, UK Data Services, Department for Transport (2011) and Ministry of Housing, Communities

& Local Government (2010).

(Continued)

Mincerian wage simulation Linear-IV.

SL.GB_500_4_0.1 0.09 0.00 0.09 0.09
SL.GB_100_5_0.1 0.09 0.00 0.09 0.09
SL.GB_200_5_0.1 0.09 0.00 0.09 0.09
SL.GB_500_5_0.1 0.09 0.00 0.09 0.09
SL.GB_100_3_0.1 0.10 0.00 0.10 0.10
SL.GB_500_5_0.01 0.10 0.00 0.10 0.10
SL.GB_500_4_0.01 0.11 0.00 0.11 0.11
SL.GB_500_3_0.01 0.13 0.00 0.12 0.13
SL.RF_1_100 0.30 0.00 0.29 0.33
SL.RF_3_100 0.30 0.00 0.28 0.32
SL.RF_1_200 0.31 0.00 0.29 0.32
SL.RF_3_200 0.30 0.00 0.29 0.32
SL.RF_1_500 0.30 0.00 0.28 0.33
SL.RF_3_500 0.31 0.00 0.29 0.32
SL.GLM_Linear 0.44 0.00 0.44 0.45
SL.GB_200_4_0.01 0.85 0.00 0.85 0.86
SL.GB_200_5_0.01 0.85 0.00 0.84 0.85
SL.GB_200_3_0.01 0.87 0.00 0.86 0.87
SL.GB_100_3_0.01 2.30 0.00 2.30 2.31
SL.GB_100_4_0.01 2.30 0.00 2.29 2.30
SL.GB_100_5_0.01 2.29 0.00 2.29 2.30

Note: The models included in the Super Learner are a GB model with parameter grid: ntrees = [100, 200, 500],

max_depth = [3, 4, 5], shrinkage = [0.01, 0.1], and a Random Forest model with parameter grid: mtry =ffiffiffi
n
p

, 2
ffiffiffi
n
p½ �, ntree = [100, 200, 500]. Super Learner performance based on RMSE & 10-fold CV. Selected model in

boldface. Hypothesized model in italics. GB parameters: n rounds max depth eta. RF parameters: n trees mtry.

Table A4. (Continued)
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Table A6. Super Learner performance, London house price data.

Model Mean Std. Dev. Min. Max.

SL.GB_1500_7_0.3 0.227 0.001 0.226 0.228
SL.GB_1750_7_0.3 0.227 0.001 0.224 0.229
SL.GB_1250_6_0.3 0.227 0.001 0.226 0.228
SL.GB_1500_7_0.3 0.227 0.001 0.224 0.230
SL.GB_1250_7_0.3 0.227 0.001 0.227 0.228
SL.GB_1250_6_0.4 0.228 0.001 0.226 0.229
SL.GB_1250_7_0.3 0.228 0.001 0.227 0.229
SL.GB_1000_6_0.4 0.229 0.001 0.227 0.231
SL.GB_1000_7_0.3 0.229 0.001 0.228 0.231
SL.GB_1000_6_0.3 0.230 0.001 0.229 0.231
SL.GB_1250_6_0.5 0.231 0.001 0.229 0.232
SL.GB_1500_8_0.3 0.231 0.001 0.229 0.232
SL.GB_1250_8_0.3 0.231 0.001 0.229 0.232
SL.GB_1500_8_0.3 0.231 0.001 0.228 0.233
SL.GB_1250_7_0.4 0.231 0.001 0.230 0.232
SL.GB_1000_6_0.5 0.231 0.001 0.229 0.233
SL.GB_1000_7_0.4 0.231 0.001 0.230 0.233
SL.GB_1750_8_0.3 0.231 0.001 0.229 0.233
SL.GB_1250_8_0.3 0.231 0.001 0.230 0.233
SL.GB_1000_8_0.3 0.231 0.001 0.230 0.233
SL.GB_1500_7_0.4 0.232 0.001 0.229 0.233
SL.GB_1750_7_0.4 0.232 0.001 0.230 0.234
SL.GB_750_7_0.4 0.232 0.001 0.231 0.234
SL.GB_750_6_0.5 0.233 0.001 0.231 0.234
SL.GB_750_8_0.3 0.233 0.001 0.232 0.235
SL.GB_750_6_0.4 0.233 0.001 0.231 0.235
SL.GB_750_7_0.3 0.233 0.001 0.231 0.235
SL.GB_1250_9_0.3 0.235 0.001 0.233 0.236
SL.GB_1500_9_0.3 0.235 0.001 0.234 0.236
SL.GB_750_7_0.5 0.235 0.001 0.234 0.236
SL.GB_1000_7_0.5 0.236 0.001 0.234 0.237
SL.GB_1250_7_0.5 0.236 0.001 0.235 0.237
SL.GB_1000_8_0.4 0.237 0.001 0.235 0.237
SL.GB_750_8_0.4 0.237 0.001 0.235 0.238
SL.GB_1250_8_0.4 0.237 0.001 0.236 0.238
SL.GB_1500_8_0.4 0.237 0.001 0.236 0.239
SL.GB_750_6_0.3 0.237 0.001 0.236 0.238
SL.GB_1750_8_0.4 0.238 0.001 0.236 0.239
SL.GB_500_6_0.4 0.242 0.001 0.239 0.244
SL.GB_750_8_0.5 0.242 0.001 0.240 0.244
SL.GB_1000_8_0.5 0.243 0.001 0.241 0.244
SL.GB_1250_8_0.5 0.244 0.001 0.242 0.245
SL.GLM 0.421 0.002 0.419 0.423

Note: The models included in the Super Learner are a GB model with parameter grid: ntrees = [100, 200, 500,

750, 1000, 1250, 1500, 1750], max_depth = [4, 5, 6, 7, 8, 9], shrinkage = [0.3, 0.4, 0.5], and a Random Forest

model with parameter grid: mtry =
ffiffiffi
n
p

, 2
ffiffiffi
n
p½ �, ntree = [200, 500, 1000]. Results from the Random Forest models

are omitted for brevity, as are results from the Gradient Boosting models for ntrees = [100, 200] and

max_depth = [4, 5]. None of the omitted models featured among the better-performing models. Super Learner

performance based on RMSE & 10-fold CV. Selected model in boldface. Hypothesized model in italics. GB

parameters: n_rounds_max_depth_eta. RF parameters: n_trees_mtry.
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Table A7. Selected model from the Super Learner routine when applied to subsets of the full
covariate set for the London house price data.

Covariate subset Selected model
Mean RMSE
(linear model)

Mean RMSE
(flexible model)

Area SL.GB_100_4_0.1 0.463 0.447
Temp SL.GB_500_2_0.3 0.610 0.609
Area + Temp SL.GB_100_4_0.1 0.439 0.421
Area + Temp + Housing SL.GB_100_4_0.1 0.437 0.419
Area + Temp + Housing +

Transaction
SL.GB_100_4_0.1 0.437 0.419

Area + Temp + Housing +
Transaction + IMD

SL.GB_1000_6_0.3 0.431 0.341

Area + Temp + Housing +
Transaction + Crime

SL.GB_750_4_0.1 0.432 0.404

Area + Temp + Housing +
Transaction + Travel

SL.GB_1000_6_0.3 0.437 0.305

Area + Temp + Housing +
Transaction + Travel +
Crime

SL.GB_1000_6_0.3 0.431 0.272

Area + Temp + Housing +
Transaction + Travel +
IMD

SL.GB_1000_6_0.3 0.430 0.265

Area + Temp + Housing +
Transaction + IMD +
Crime

SL.GB_1000_6_0.3 0.431 0.274

Note: The models included in the Super Learner are a GB model with parameter grid: ntrees = [100, 200, 500,

750, 1000, 1250, 1500, 1750], max_depth = [4, 5, 6, 7, 8], shrinkage = [0.1, 0.2, 0.3, 0.4, 0.5], and a Random

Forest model with parameter grid: mtry =
ffiffiffi
n
p

, 2
ffiffiffi
n
p½ �, ntree = [200, 500, 1000]. Super Learner performance

based on RMSE & 10-fold CV. GB parameters: n_rounds_max_depth_eta. RF parameters: n_trees_mtry.

Table A8. Descriptive statistics of the GSS.

Variable N Mean Std. Dev. Min. Pctl. 25 Pctl. 75 Max.

Party Identification 26,011 3.67 1.99 1 2 6 7
Age 26,011 45.31 17.14 18 31 58 89
Schooling (Years) 26,011 13.13 3.00 0 12 15 20
Income 26,011 10.19 2.74 1 9 12 12
Sex: Female 26,011 0.56 - - - - -
Sex: Male 26,011 0.44 - - - - -
Race: Black 26,011 0.14 - - - - -
Race: Other 26,011 0.05 - - - - -
Race: White 26,011 0.81 - - - - -
Survey Year 26,011 1996 13.46 1974 1987 2010 2018

Source: The General Social Survey (2018).
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Table A9. Super Learner performance, GSS data.

Model Mean Std. Dev. Min. Max.

SL.GB_50_4_0.15 1.86 0.01 1.83 1.89
SL.GB_75_4_0.15 1.86 0.01 1.83 1.89
SL.GB_100_3_0.1 1.86 0.01 1.83 1.89
SL.GB_75_3_0.15 1.86 0.01 1.83 1.89
SL.GB_100_4_0.1 1.86 0.01 1.83 1.89
SL.GB_75_4_0.1 1.86 0.01 1.83 1.89
SL.GB_100_3_0.15 1.86 0.01 1.83 1.89
SL.GB_50_5_0.15 1.86 0.01 1.83 1.89
SL.GB_50_5_0.1 1.86 0.01 1.83 1.89
SL.GB_75_3_0.1 1.86 0.01 1.84 1.89
SL.GB_50_3_0.15 1.86 0.01 1.84 1.89
SL.GB_75_5_0.1 1.86 0.01 1.83 1.89
SL.GB_50_4_0.1 1.86 0.01 1.84 1.89
SL.GB_100_3_0.1 1.86 0.01 1.82 1.91
SL.GB_100_4_0.15 1.86 0.01 1.83 1.89
SL.GB_100_5_0.1 1.86 0.01 1.83 1.89
SL.GB_200_3_0.1 1.86 0.01 1.82 1.90
SL.GB_100_4_0.1 1.86 0.01 1.81 1.91
SL.GB_75_5_0.15 1.86 0.01 1.83 1.89
SL.GB_50_3_0.1 1.86 0.01 1.84 1.89
SL.GB_100_3_0.2 1.86 0.01 1.82 1.91
SL.GB_100_5_0.15 1.86 0.01 1.84 1.90
SL.GB_200_3_0.2 1.87 0.01 1.82 1.91
SL.GB_100_5_0.1 1.87 0.01 1.82 1.92
SL.GB_200_4_0.1 1.87 0.01 1.82 1.91
SL.GB_100_4_0.2 1.87 0.01 1.82 1.91
SL.RF_4_200 1.87 0.01 1.83 1.93
SL.RF_4_100 1.87 0.01 1.83 1.93
SL.RF_2_100 1.87 0.01 1.83 1.93
SL.RF_4_500 1.87 0.01 1.83 1.93
SL.RF_2_500 1.87 0.01 1.83 1.93
SL.RF_2_200 1.87 0.01 1.83 1.93
SL.GB_200_5_0.1 1.87 0.01 1.83 1.93
SL.GB_100_5_0.2 1.87 0.01 1.83 1.92
SL.GB_200_4_0.2 1.87 0.01 1.83 1.92
SL.GB_200_5_0.01 1.89 0.01 1.84 1.94
SL.GB_200_4_0.01 1.89 0.01 1.84 1.95
SL.GB_200_5_0.2 1.89 0.01 1.85 1.95
SL.GB_200_3_0.01 1.90 0.01 1.84 1.95
SL.GLM 1.92 0.01 1.90 1.95
SL.GB_100_5_0.01 2.04 0.02 1.98 2.10
SL.GB_100_4_0.01 2.05 0.02 1.98 2.11
SL.GB_100_3_0.01 2.05 0.02 1.98 2.11

Note: The models included in the Super Learner are a GB model with parameter grid: ntrees = [50, 75, 100, 200,

500], max_depth = [1, 2, 3, 4, 5, 6], shrinkage = [0.01, 0.1, 0.15, 0.2], and a Random Forest model with

parameter grid: mtry =
ffiffiffi
n
p

, 2
ffiffiffi
n
p½ �, ntree = [100, 200, 500]. Results from the Gradient Boosting models were

omitted for brevity for ntrees = [500] and max_depth = [1, 2, 6]. None of the omitted models featured among

the better-performing models. Super Learner performance based on RMSE & 10-fold CV. Selected model in boldface.

Hypothesized model in italics. GB parameters: n_rounds_max_depth_eta. RF parameters: n_trees_mtry.
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SIMULATIONS

Nonlinear DGPs

The four DGPs used to generate the true data in Figures 1 and 3 are as follows:

ylinear = � 1 + 0:9X + ε1 ðA9Þ

ypolynomial = � 6 + 0:4X � 0:36X 2 + 0:005X 3 + ε2 ðA10Þ

ysine = 2:83sin( p
2X

) + ε3 ðA11Þ

ystep = � 2I(X.0) + 4I(X.2)� I(X.3) + ε4 ðA12Þ

Where X;Unif(� 4, 4) and each error term is normally distributed and calibrated in such a

way that the total variance of each outcome is 5.

Mincerian wage equation simulation

The four DGPs used to generate the four Mincerian wage outcomes in Figures 6 and 7 are the

following:

Linear-I

ln(wages) = 4:5 + 0:125xeduc + 0:09xexp + ε

ε;N (0, 0:07)
ðA13Þ

Linear-II

ln(wages) = 4:5 + 0:125xeduc + 0:09xexp � 0:001x2
educ + ε

ε;N (0, 0:07)
ðA14Þ

Table A10. Selected model from the Super Learner routine when applied to subsets of the
full covariate set, GSS data.

Covariate subset Selected model
Mean RMSE
(linear model)

Mean RMSE
(flexible model)

Year SL.GB_600_2_0.01 1.985 1.978
Year + Age SL.GB_500_3_0.01 1.985 1.974
Year + Age + Sex SL.GB_500_3_0.01 1.980 1.969
Year + Age + Race SL.GB_50_3_0.1 1.933 1.888
Year + Age + Sex + Race SL.GB_50_2_0.2 1.927 1.881
Year + Age + Sex + Race

+ Income
SL.GB_50_3_0.15 1.919 1.873

Year + Age + Sex + Race
+ Education

SL.GB_200_3_0.05 1.921 1.865

Note: The models included in the Super Learner are a GB model with parameter grid: ntrees = [50, 75, 100, 200,

300, 400, 500, 600], max_depth = [1, 2, 3, 4, 5, 6], shrinkage = [0.01, 0.1, 0.15, 0.2], and a Random Forest

model with parameter grid: mtry =
ffiffiffi
n
p

, 2
ffiffiffi
n
p½ �, ntree = [100, 200, 500].
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Linear-III

ln(wages) = 4:5 + 0:02xeduc 0 8 + 0:03xeduc 9 10 + 0:3xeduc 11 12 +

0:06xeduc 13 14 + 0:06xeduc 15þ; i + 0:09xexp +

0:001x2
exp + ε

ε;N (0, 0:07)

ðA15Þ

Linear-IV

ln(wages) = I(xsex = Female)½3:5 + 0:025xeduc 0 8 + 0:06xeduc 9 10 + ðA:16Þ

0:35xeduc 11 12 + 0:06xeduc 13 14 + 0:06xeduc 15þ +

0:1xexp � 0:0005x2
exp + ε�+

I(xsex = Male)½5:5 + 0:015xeduc 0 8 + 0:02xeduc 9 10 +

0:25xeduc 11 12 + 0:04xeduc 13 14 + 0:04xeduc 15þ +

0:06xexp � 0:001x2
exp + ε�� ðA:17Þ

ε;N (0, 0:09)

ε�;N (0, 0:08)
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Notes

1. Linear additive functional forms plugged into exponential family distributions have convenient prop-

erties that make estimation considerably more straightforward from a computational perspective than

non-parametric or Bayesian approaches to inference (Efron and Hastie 2016). This historic limitation

still dictates the dominance of the former approach in empirical work today.

2. Breiman (2001) describes the difference as “the two cultures in the use of statistical modeling.” In

the first, we assume the researcher knows the underlying functional form and simply has to estimate

its parameters from data. In the second, we assume the functional form is fundamentally unknown

and has to be learned from the data. As Breiman (2001:199) notes, we typically reside in the latter

of the two worlds, although the majority of statistical work uses empirical approaches that assume

we reside in the former.
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3. The potential of ML-based methods to find intricate patterns in data has been illustrated in sociology

(Baćak and Kennedy 2019; Brand et al. 2021), psychology (Agrawal et al. 2020), and behavioral

work (Kleinberg et al. 2017; Peterson et al. 2021; Peysakhovich and Naecker 2017). Furthermore,

their increased structure makes ML methods more applicable from a practical perspective than fully

non-parametric regression, which suffers from exponential data requirements (Bishop 2006;

Yatchew 1997).

4. Indicative of the predictive focus of ML is the discussion by Mullainathan and Spiess (2017), who

explicitly call for the application of ML in predictive contexts or even reformulating explanatory

questions into predictive ones. Similar assessments can be found in reviews by Molina and Garip

(2019) and Shmueli (2010).

5. By following a set inferential logic (namely that of the original model), complexity in the proposed

framework is introduced solely through the functional relationship among variables and distinguishes

itself from “model complexity” as is often understood as the problem of selecting among a (large)

set of potential covariates (Bucca and Urbina 2019).

6. Grimmer et al. (2021:406–408) discuss a similar iterative perspective on ML, envisioning a “human

in the loop” approach, where ML models provide insights to the researcher but do not completely

supplant the researcher in model-building.

7. In cases where there is no need to understand the underlying functional form (e.g., in the imputation

of missing data), there is little need to combine both parametric and ML methods, and one can sim-

ply resort to the optimal model.

8. Choice of functional forms for this example were inspired by Polley, Rose, and Van der Laan

(2011).

9. Assume some covariate X affects the outcome in a nonlinear way (e.g., through a polynomial rela-

tionship), then the exclusion of the higher-order terms effectively boils down to omitted variable

bias.

10. An example of the restrictive nature of the White and RESET tests is that neither will pick up an

interaction of some continuous variable x and a binary variable D if the (linear) slopes are mirrored

for the interacting groups.

11. To illustrate, misspecification tests are generally able to identify the bivariate nonlinearities in

Figure 1, although a standard RESET test assessing a possible second-degree polynomial fails to

reject the step function and requires a third-degree polynomial. For the toy example, White’s test

fails to reject misspecification of the quadratic model.

12. One of the 32 papers used Huber-White standard errors to address possible heteroskedasticity of the

error term. The coded articles are available from the author on request.

13. In the taxonomy laid out by Grimmer et al. (2021:412), the framework would still use variables that

are relevant from an inferential perspective rather than those that give the best possible fit. Given

these variables, though, we are interested in a model that fits the data well. Note that a different

approach to ML methods is to identify relevant variables among a (large) set of possible covariates

(Bucca and Urbina 2019; Grimmer et al. 2021). This is another fruitful application of ML into socio-

logical model-building, but outside the scope of this article.

14. Neural networks with sigmoidal activation functions have been formally shown to approximate

functions of arbitrary complexity given sufficient hidden units (Hornik, Stinchcombe, and White

1989). Ensembles including tree-based methods like Random Forests also approximate highly com-

plex functions, although mathematical proof of universal approximation has proven complicated due

to the piece-wise linear nature inherent in tree-based methods, as opposed to the continuous approxi-

mation of neural networks (Breiman 2001). However, Biau (2012), for example, provides theoretical

properties of the Random Forest model suggestive of its flexibility to estimate highly complex

functions.

15. Throughout the empirical examples in this article, I use the Super Learner approach as implemented

in the R package SuperLearner; various alternatives exist in different programming languages

(Polley et al. 2021).
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16. In contrast to tree-based methods, for some ML approaches the optimal solution is dependent on the

scale of the explanatory variables. Examples include least absolute shrinkage and selection operator

regression that introduces an additional term to the squared error loss of a standard OLS regression,

which reflects the absolute size of all coefficients b̂. This effectively shrinks large coefficients that

provide limited improvement to fit toward zero. Clearly, dividing or multiplying an explanatory vari-

able xik by 100 would focus or divert attention of the algorithm on b̂k . Decision trees are scale invar-

iant, as single binary splits are placed on individual explanatory variables.

17. Given a vector of predictions ŷ and a vector of actually observed outcomes y the RMSE is defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i = 1 (yi � ŷi)

2
q

.

18. Even within a conventional conditioning-on-observables approach, the use of a test set is generally

recommended whenever a model is intermittently assessed during model-building, as is often the

case in quantitative sociology (Cameron and Trivedi 2005).

19. Prior work has noted some limitations to cross-validation, specifically that the standard errors of the

fit estimates from such routines can be biased downward (Vehtari, Gelman, and Gabry 2017). In case

correct standard errors are of interest, a truly heldout set of data is preferred or post-estimation scal-

ing of the standard errors can be applied (Bates, Hastie, and Tibshirani 2021).

20. By exposing the researcher-hypothesized model to cross-validation, bootstrapped standard errors of

the coefficient estimates are calculated (Cameron and Trivedi 2005). In case a model has been over-

engineered to a sample at hand, this should be reflected by the empirical standard errors from re-

estimating the model to resampled datasets compared to those from estimating the researcher’s pre-

ferred specification on the full data.

21. A case in point is the example brought up by Young (2019) of a study into the gender wage gap done

at Google, which included job promotions as an explanatory variable. Clearly, including promotions

would improve fit, but it would invalidate any inference, as it is a result (i.e., post-treatment) of the

very process of interest. This example shows that a singular focus on fit is problematic, but it mostly

emphasizes that any analysis of an inferential question still requires causal or inferential logic.

22. However, including relevant predictors and correct model specification will generally improve preci-

sion of estimation and is generally advised.

23. As mentioned, a complementary benefit of using a cross-validation approach is that the 1,000

repeated estimations of the hypothesized models provide bootstrapped standard errors of the coeffi-

cient estimates. These are visualized in Appendix Figure A1, together with the estimated coefficient

on the full set. The reported coefficients when estimating the models to the full set lie at the extremes

of the bootstrapped distribution of b̂’s for the two misspecified models.

24. As a case in point, recent legislation in the European Union requires companies that use algorithms

to support decision-making to have explainable algorithms, the so-called “Right to Explanation”

(Goodman and Flaxman 2017).

25. The variety of perspectives in explainability have led some to call for a more rigorous reporting of

the envisioned goals of generating explanations (Doshi-Velez and Kim 2017). Following the taxon-

omy of Doshi-Velez and Kim (2017), explanation in this framework is meant to generate understand-

ing into the unknown patterns in the data, leading to the choice for local explainability at the model

level. Conversely, temporal efficiency and alignment with operational processes, which sometimes

constrain explainability when deployed as a decision support system, are not relevant in this setup.

26. Another consequence of the wide variety in perspectives on what matters in explanation is that there

are few generally accepted quantitative metrics to assess explanation quality, and different methodo-

logical approaches can provide differing explanations. As explanation becomes more critical to ML

research, such metrics and comparative approaches are increasingly being introduced into the field

(Krishna et al. 2022). The uniqueness of Shapley values in providing a number of theoretical guaran-

tees makes them especially attractive for generating model understanding as understood in this

article.

27. The approach has many resemblances to the do-operator popularized by Pearl (2009), as it effectively

concerns intervention on the covariate space (Heskes et al. 2020; Lundberg and Lee 2017).
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28. Assume a decision tree is fit to a dataset with three covariates and the resultant model only splits the

data on two of the three covariates. For this model, it is only necessary to consider information sets

that differ in terms of the two covariates used in the splitting process; variation in the third omitted

covariate will have no bearing on the model’s behavior.

29. Interactions can still be identified without the use of pairwise Shapley values. This can be done by

separately visualizing Shapley values for a variable xik , conditional on values of another variable xij.

This approach is illustrated in the first empirical example.

30. The Shapley value for variable k reflects the effect of xik relative to f0. In linear regression including

an intercept, interpretation is relative to the overall mean.

31. Typically in non-parametric regression, a general function yi = mh(xi) is estimated as a simple

weighted average of observations close to the observed xi in Euclidean space. Inclusion of data

points is generally governed by a bandwidth parameter h defining a region ½xi � h, xi + h�. Different

weighting functions or kernels can be used to determine the importance of the data points within the

interval, for example, by weighing points closer to xi more than those further away (Yatchew 2003).

As the dimensionality of X increases, the number of data points required increases exponentially,

limiting the practical applicability of the approach— the so-called “curse of dimensionality” (Bishop

2006).

32. Some ML methods are similarly affected by the “curse of dimensionality.” Notably, methods like

neural networks require considerable amounts of data to estimate (Bishop 2006). This is the main

reason why tree-based or shrinkage methods are usually applied within the social sciences, as such

methods remain applicable for very small N cases (Athey 2018; Liao 2017).

33. Muñoz and Young (2018:8) explicitly contrast their approach to ML methods by stating that ML

methods are “generally about model selection in high-dimensional space (where conventional

approaches to variable selection are impractical—e.g., when there are thousands of potential predic-

tor variables).” As the proposed framework shows, there is no reason to exclusively implement ML

in high dimensional settings.

34. The focus of model robustness on variable inclusion raises questions of whether the various alterna-

tive specifications are equally plausible in practice (see O’Brien 2018; Slez 2019). For example, if

an important confounder is omitted in 50 percent of the alternative “reasonable” specifications, we

should not be surprised to see high variation in estimates of the coefficient of interest.

35. Young and Stewart (2021) have expanded model robustness to “Multiverse” analysis by, in addition

to varying the number of variables in the model, including a number of “reasonable” functional

forms to assess the degree to which different findings can be supported by data. Like model robust-

ness, fit is of secondary importance, and the framework relies on an a priori specified set of reason-

able functional forms. However, in spirit it is more closely aligned to the proposed framework, even

though it remains fundamentally reliant on the researcher to determine what constitutes “plausible”

specifications, rather than letting computational power and model fit dictate the patterns in the data.

36. Effectively, one would abort the framework after the second step and instead investigate which

observations tend to be fitted better by the ML model. Salganik et al. (2020) and Verhagen (2022)

suggest a similar approach to studying predictions, in which the predictive output of ML models is

assessed.

37. The MARS algorithm takes a similar approach to finding better-specified models from a stacked spe-

cification by iteratively trimming variables from a full specification (Friedman 1991).

38. Code and instructions to obtain the data to reproduce each empirical example in this article, includ-

ing the toy example, are available in this article’s online GitHub repository (https://github.com/

MarkDVerhagen/Functional_Form_Complexity).

39. I include these indices at the Lower Super Output Area level, for which the average population in

London is around 1,700.

40. Adding squared versions of the neighborhood indicators, area, number of rooms, and temporal vari-

ables improves the adjusted R2 by 2.5 pp. An LR test accordingly prefers the updated model

(p \ 0.001).
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41. Adding square terms to all three variables and separate intercepts for each survey year improves the

R2 from 6.1 to 7.0 percent. Unsurprisingly, an LR test comparing both models prefers the updated

model (p \ 0.001).

42. Adding age by race and sex by race interactions further improves the adjusted R2 to 7.2 percent. An

LR test again prefers the updated model (p \ 0.001). Finally, adding income by race improves the

adjusted R2 by another 0.1 pp, with an LR test preferring the added flexibility to the functional form

(p \ 0.001).

43. Classic White and RESET tests failed to identify all the misspecification across the toy example and

simulations discussed in the Misspecification and Risks to Inference section (see note 11). The

RESET test did identify misspecification of the standard linear model for the Housing and GSS

examples, as should be expected given the considerable nonlinearities in the data.

44. The Shapley kernel weights are not defined for k(K,K) as the denominator is zero. This can be

addressed by setting k(K,K) to some high constant or setting f0 = f̂ (� ) and
PK

k = 0 = f̂ (K) as addi-

tional constraints instead (Lundberg and Lee 2017:6).
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Klaus-Robert Müller. 2019. “Unmasking Clever Hans Predictors and Assessing What Machines Really

Learn.” Nature Communications 10(1):1–8.

Lemieux, Thomas. 2006. “The ‘Mincer Equation’ Thirty Years After Schooling, Experience, and

Earnings.” Pp. 127–45 in Jacob Mincer a Pioneer of Modern Labor Economics, edited by Grossbard,

S.. New York, NY: Springer.

Liao, Yung-Sheng. 2017. “Machine Learning in Macro-Economic Series Forecasting.” International

Journal of Economics and Finance 9(12):71–76.

Lipton, Zachary C. 2018. “The Mythos of Model Interpretability: In Machine Learning, the Concept of

Interpretability is Both Important and Slippery.” Queue 16(3):31–57.

Long, J. Scott, and Pravin K. Trivedi. 1992. “Some Specification Tests for the Linear Regression Model.”

Sociological Methods & Research 21(2):161–204.

Lundberg, Scott M., Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala Nair, Ronit Katz,

Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. 2020. “From Local Explanations to Global

Understanding with Explainable AI for Trees.” Nature Machine Intelligence 2(1):56–67.

Lundberg, Ian, Rebecca Johnson, and Brandon M. Stewart. 2021. “What is Your Estimand? Defining the

Target Quantity Connects Statistical Evidence to Theory.” American Sociological Review 86(3):

532–65.

Lundberg, Scott M., and Su-In Lee. 2017. “A Unified Approach to Interpreting Model Predictions.”

Advances in Neural Information Processing Systems 30: 4765–4774.

Malpezzi, Stephen. 2003. “Hedonic Pricing Models: A Selective and Applied Review.” Housing

Economics and Public Policy 1:67–89.

McClintock, Elizabeth Aura. 2017. “Occupational Sex Composition and Gendered Housework

Performance: Compensation or Conventionality?” Journal of Marriage and Family 79(2):475–510.

Meisenberg, Gerhard. 2015. “Verbal Ability as a Predictor of Political Preferences in the United States,

1974–2012.” Intelligence 50:135–43.

Verhagen 49

https://doi.org/10.48550/arXiv.2202.01602


Molina, Mario, and Filiz Garip. 2019. “Machine Learning for Sociology.” Annual Review of Sociology 45:

27–45.

Morgan, Stephen L., and Jiwon Lee. 2017. “Social Class and Party Identification during the Clinton, Bush,

and Obama Presidencies.” Sociological Science 4:394–423.

Mullainathan, Sendhil, and Jann Spiess. 2017. “Machine Learning: An Applied Econometric Approach.”

Journal of Economic Perspectives 31(2):87–106.
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