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The field of genomic epidemiology is rapidly growing as many jurisdictions
begin to deploy whole-genome sequencing (WGS) in their national or
regional pathogen surveillance programmes. WGS data offer a rich view
of the shared ancestry of a set of taxa, typically visualized with phylogenetic
trees illustrating the clusters or subtypes present in a group of taxa, their
relatedness and the extent of diversification within and between them.
When methicillin-resistant Staphylococcus aureus (MRSA) arose and dissemi-
nated widely, phylogenetic trees of MRSA-containing types of S. aureus had
a distinctive ‘comet’ shape, with a ‘comet head’ of recently adapted drug-
resistant isolates in the context of a ‘comet tail’ that was predominantly
drug-sensitive. Placing an S. aureus isolate in the context of such a ‘comet’
helped public health laboratories interpret local data within the broader set-
ting of S. aureus evolution. In this work, we ask what other tree shapes,
analogous to the MRSA comet, are present in bacterial WGS datasets. We
extract trees from large bacterial genomic datasets, visualize them as
images and cluster the images. We find nine major groups of tree images,
including the ‘comets’, star-like phylogenies, ‘barbell’ phylogenies and
other shapes, and comment on the evolutionary and epidemiological stories
these shapes might illustrate.

This article is part of a discussion meeting issue ‘Genomic population
structures of microbial pathogens’.
1. Introduction
Genomic epidemiology is increasingly used as a toolkit in public health surveil-
lance. In many jurisdictions, public health laboratories gather large numbers of
bacterial isolates and perform whole-genome sequencing (WGS) to monitor for
antibiotic resistance, detect recent transmission clusters, determine the nature
and extent of introductions from outside their community, and monitor bac-
terial populations for newly emerging resistance. These datasets provide a
rich view of the ongoing diversification, evolution and selection in pathogens.
However, the interpretation of WGS data for public health can be challenging.
For example, while molecular typing schemes (VNTR [1], MIRU-VNTR [2],
spoligotyping [3], RFLP [4], PFGE [5] and RAPD-PCR [6]) typically offer a
clear ‘in or out’ signal for whether a new isolate is in a defined cluster or not,
WGS data may have no established cutoff that performs well at grouping
isolates together or denoting them as distinct.

WGS data do offer a detailed view of the relatedness among a set of isolates,
typically seen through the lens of a phylogenetic tree. When a local isolate can
be placed on a phylogenetic tree containing previous isolates from the same
area and also isolates from the global population of the pathogen, this can
build perspective and offer useful information for public health. For example,
phylogeographic tools may be used to infer the origin of a locally circulating
strain, if sequencing in the source region is sufficiently comprehensive and
global databases contain representative information [7,8]. Placing isolates on
a tree and annotating the tree with antibiotic resistance phenotypes help
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visualize the evolution and spread of resistance and can help
determine whether resistance is predominantly acquired de
novo or transmitted from person to person.

The proximity of an isolate or group of interest to other
annotated clusters, the relative frequency and placement of
resistance, the time and location when resistance was
acquired in the tree and the extent of geographical mixing
are examples of features that WGS data, annotation and
phylogenetic trees can help us understand [9–11].

Methicillin-resistant Staphylococcus aureus (MRSA) is a major
cause of hospital-acquired infections that are becoming increas-
ingly difficult to combat because of emerging resistance to all
current antibiotic classes [12]. When MRSA first emerged in
the UK Midlands it was rapidly geographically disseminated,
and it diversified rapidly as well [13]. The rapid emergence of
methicillin-resistant isolates resulted in a distinct comet-like
phylogenetic tree (when visualized in a radial way), which has
two distinct parts. The comet ‘head’ represents the recent rapid
expansion of MRSA isolates, and has a ‘burst’ of divergent
lineages with a common origin. The ‘tail’ reflects the predomi-
nantly drug-sensitive isolates (MSSA) [14], which are more
genetically diverse (as characterized by longer branches, both
immediatelyancestral to the tips andwithin the clades in the tail).

More broadly, the shape of a phylogenetic tree is known
to contain information about the process that created the
tree [15,16]. In this context, the phrase ‘tree shape’ is usually
used to denote the connectivity structure of the tree, in the
sense of a graph: nodes and edges (often without considering
the lengths of the branches). Key summary measures of tree
shape include measures of asymmetry (Colless [17] or
Sackin [18] imbalance), the numbers of ‘cherries’ (two tips
joined by their common parent in the tree), and so on. By con-
trast, in the MRSA example, the image of the phylogeny has
helped researchers to understand the process of MRSA emer-
gence and how it is reflected in the patterns of relatedness
among S. aureus taxa. The tree image reflects the edge connec-
tivity, the branch lengths and the choice of layout algorithm.
The MRSA example illustrates one prominent case in which
the image of the tree has a clear interpretation. Anecdotally,
researchers use and interpret such tree images, often with
metadata annotated as colour on the trees, in addition to
using trees to group taxa into sub-populations and other
tasks. However, there is not a clear taxonomy of the different
sorts of images that arise in bacterial whole-genome datasets.

Here, we take the first steps towards such a taxonomy. In
particular, we seek to determine whether there are clear recog-
nizable tree images, analogous to the ‘comet-like’ phylogenies
that illustrate MRSA emergence, in other bacterial pathogens
and other settings of S. aureus. These characteristic images
might signify shared epidemiology, ecology or evolution,
and like the comet, provide a set of reference tree shapes to
aid public health laboratories in placing new isolates in con-
text. To this aim, we collected a set of bacterial trees from
the NCBI Pathogen Detection Pipeline [19] and built a set of
tree images from the subtrees of the original trees. We use con-
volutional neural networks and a consensus approach to
clustering to explore tree shapes in this large dataset.
2. Methods
We cluster a collection of images derived from bacterial phyloge-
netic trees. Our method proceeds according to the following
stages. We begin by applying a deep learning-based dimension-
ality reduction method to extract the important features of the
images. We then apply three clustering algorithms (K-means
clustering, hierarchical clustering, and affinity propagation) on
reduced-size representations of the images. Lastly, we ensemble
the three clustering algorithms to identify groups of tree
images that are present in the data.

(a) Data preprocessing and data augmentation
We use phylogenetic trees from the NCBI Pathogen Detection
Pipeline [19] as this is a large, publicly available repository of
sequence data where phylogenetic trees are available. We down-
loaded the trees in 2018. This dataset incorporates bacterial
pathogen genomic sequences originating in food, environmental
sources and human hosts. The bacterial pathogen genera or
species present in the dataset are summarized in table 1.

We extracted two sets of subtrees for training and clustering.
The first set contains all the subtrees of sizes 35–100, and is
obtained by traversing all the subtrees of a large tree (defined
by the subtrees’ roots, which are the internal nodes of the tree)
in a pre-order traversal, and keeping those subtrees whose size
falls within the accepted range. We chose this size range largely
for pragmatic reasons, as it allows a sufficient number of trees to
be obtained (particularly where we seek non-overlapping trees)
given the data available, yet 35–100 taxa are sufficient to illustrate
patterns of evolution like the MRSA ‘comet’ (with a head, a tail,
and distinct patterns of relatedness in each). The second set con-
tains a non-overlapping collection of these subtrees obtained by
the following greedy algorithm: We iteratively traverse the set of
all subtrees of an appropriate size, listed in pre-order, from left to
right, and construct a final list of non-overlapping subtrees start-
ing from an empty list. At each iteration, the node under
consideration gets appended to the final list if and only if none
of its ancestors appears in the final list.

All the subtrees are saved as images of size 160� 160 pixels
in the portable network graphics (PNG) format. We use a radial
layout algorithm, originally implemented in PHYLIP [20] and
subsequently implemented in other algorithms. The radial
layout gives each subtree an angular space that is proportional
to the number of tips in it. It iterates through internal nodes of
the tree, allocating the (angular) space for a subtree among its
descendant subtrees. This approach places closely related tips
very close together in the image. This is an advantage in our con-
text, because it means that the image is relatively robust to
instances where many very similar tips are sequenced (which
could occur in an outbreak investigation, for example).

This results in two sets of images, with sizes 5626 (overlapping)
and 1254 (non-overlapping), respectively. We used a data augmenta-
tion technique and added the rotation of each image by 45n degrees
for 1≤ n≤ 7 (i.e. all the multiples of one-eighth of a turn). This pro-
cedure results in 45 008 images (from overlapping trees) and 10 032
images (from non-overlapping trees), respectively. These images
were used to train the auto-encoder, to obtain a low-dimensional
faithful representation of the images. We note that because our
auto-encoder is not doing classification, we did not train the network
to classify rotated versions of an image as the same class (rather, we
did clustering, in a two-stage approach that does not lend itself to
including a condition that pre-specified images cluster together in
its optimization. Furthermore, the layout algorithm is not rotation-
invariant). We therefore used auto-augmentation primarily to
obtain more images on which to train an auto-encoder that
generates a faithful reproduction of its input image.

(b) Dimensionality reduction with convolutional
auto-encoders

To reduce the dimensionality of our data (images, initially
in 1602 = 25 600 dimensions), we use an auto-encoder. An



Table 1. Phylogenetic trees downloaded from NCBI Pathogen Detection Pipeline. We extracted all the subtrees of size 35–100 from each tree. The second
column shows the size of each tree, while the third and the fourth columns state the number of extracted subtrees and the number of non-overlapping
subtrees, respectively.

species no. tips no. subtrees non-overlapping

Acinetobacter 1646 75 14

Campylobacter 9180 406 106

Citrobacter_freundii 241 3 1

Clostridioides_difficile 550 24 7

Clostridium_botulinum 163 4 1

Clostridium_perfringens 191 7 2

Corynebacterium_striatum 46 1 1

Cronobacter 349 10 6

Elizabethkingia 157 15 2

Enterobacter 1524 86 16

Escherichia_coli_Shigella 35 063 1838 416

Klebsiella 5812 271 61

Klebsiella_oxytoca 273 14 3

Kluyvera_intermedia 15 0 0

Legionella_pneumophila 295 9 4

Listeria 7253 411 78

Morganella 72 6 1

Mycobacterium_tuberculosis 2844 121 32

Neisseria 1890 103 23

Photobacterium_damselae 42 1 1

Providencia 156 7 1

Pseudomonas_aeruginosa 2789 144 35

Salmonella 34 939 1965 403

Serratia 273 16 4

Staphylococcus_pseudintermedius 377 13 3

Vibrio_cholerae 569 26 5

Vibrio_parahaemolyticus 740 28 8

Vibrio_vulnificus 245 22 2
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auto-encoder is a neural network that is trained to create a
low-dimensional representation of its input, from which it can
reproduce that input (as its output). The network consists of
two parts. The first part, called the encoder and denoted by
h = f (x), maps the input x to a latent space h also called hidden
layer or code. The second part, called the decoder and denoted
by r = g(h), produces a reconstruction of the input from the
latent space representation in the hidden layer h [21]. In our
work, we use a convolutional auto-encoder (CAE). CAEs use
convolutional layers in addition to fully connected layers. The
advantages of using a CAE for image compression is that it
can capture the most salient features of the images efficiently
while preserving the local structure of the data and avoiding dis-
tortion of the feature space [22]. In designing the network, we use
convolutional layers with stride (instead of convolutional layers
followed by a pooling layer) in the encoder, and convolutional
transpose layers with stride in the decoder, since the use of stride
allows the network to learn spatial sub-sampling (up-sampling)
from the data. For more details, see figure 1. The challenging part
of designing an auto-encoder is determining the size of the embed-
ding layer. Larger sizes would result in a network whose output is
simply a copy of its input, defeating the purpose of an auto-
encoder. Instead, we use undercomplete auto-encoders, whose
hidden layer has a dimensionality considerably smaller than that
of the input data, forcing the auto-encoder to learn its key features.
We trieddifferent code sizes to find theoptimumone (see electronic
supplementary material).

(c) Clustering
We apply K-means clustering [23,24] with K = 3, affinity propa-
gation [25,26] and hierarchical clustering [27,28] (also set to
obtain K ¼ 3 clusters) to the low-dimensional representations h
of our images. Affinity propagation uses a parameter called the
‘preference’, which influences the number of clusters; we tune
this parameter manually to obtain K = 3 clusters, which results
in a preference equal to −100. We then create a clustering
graph with a node for each image and an edge between
those pairs of images that are clustered together by all three
methods. We use all sufficiently large connected components of
this graph (those with at least 10 subtrees) as our final clusters.
In other words, we create three partitions of the dataset, one
per clustering algorithm, and compute the meeting point of
these partitions.
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Figure 1. (a) The architecture of the CAE that we use to compress our images. The encoder consists of three convolutional layers followed by an embedded layer.
The decoder consists of a fully connected layer and three convolutional transpose layers. (b) Some examples of the original images, compressed representation of the
images (code) and the reconstructed images. (c) The average binary cross-entropy loss per epoch for training and validation steps. The title shows the parameters we
used for training our model.
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Figure 2. Our approach for combining three clustering algorithms using a graph-based method. In the intermediate clustering graph, the cliques determine the
final clusters.
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(d) Statistical analysis
Once the clusters have been identified, we carry out a statistical
analysis to evaluate whether they can simply be explained by
data characteristics such as sampling dates, sampling regions,
sampling environments, or the bacterial species. Since the cluster
C and sampling featuresFare categorical variables,we obtain a con-
tingency table of C and F, and analyse the strength of association
between them using three statistics. First, we use a corrected



comet

1 2 3

4 5 6

7 8 9

barbell/multi-bellshooting star

bursting starwater striderbarbell-comet

burst starstarstar-comet hybrid

cluster 1 2 3 4 5 6 7 8 9

no. subtrees 125 223 258 267 111 29 76 130 14

Figure 3. Representatives of the nine clusters resulting from the graph-based clustering method (we randomly chose six images from each cluster). They include
familiar shapes such as comets and star phylogenies; we have named the other clusters, but there is a range of increasing population structure moving from the star
phylogenies (cluster 2; relatively little separation between distinct sub-populations) to the ‘water striders’ (cluster 8 strong separation). Clusters 3, 5, 7 and 9 are
along this continuum. The bottom panel shows the numbers of subtrees in each cluster.
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Figure 4. This figure shows the distribution of the species across the clusters. Some species (Citrobacter freundii (3), Clostridium botulinum (4), Corynebacterium
striatum (1) and Vibrio vulnificus (22)) as well as genera (Elizabethkingia (15), Morganella (6) and Providencia (7)) are found in a single cluster (C2 or C8). Numbers
of trees are in parentheses; except for Vibrio vulnificus species whose trees are in a single cluster simply have few subtrees in the data—see table 1.
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Cramér’s V (CCV) statistic, which is a χ2 statistic adjusted for the
number of categories in C and F. The CCV takes on values in [0,
1], with values below 0.3 considered to indicate weak association
[29]. We also report the 95% confidence interval on this statistic
from theDescToolspackage [30].We alsouse two clustering qual-
ity metrics, the adjusted Rand Index (ARI) and the normalized
mutual information (NMI). The ARI is the fraction of pairs (i, j) of
items assigned consistent values by C and F and adjusted for the
chance expectation of this fraction; it takes on values bounded
above by1,with small or negative values indicatinga chance associ-
ation [31]. The NMI is the mutual information between C and F, i.e.
the amount of information that the distribution of one conveys
about the other, normalized by the maximum of the entropies of
C and F; it lies in [0, 1],with values near 0 indicating a chance associ-
ation, and is known to be a similarity metric [32]. These clustering
quality metrics are computed using the aricode package [33].
We also evaluate the association of the clusters with a set S of
common (continuous) tree shape statistics by carrying out a
Welch’s t-test [34] from the stats package [35] for every statistic
and pair of clusters, performing a Bonferroni multiple testing

correction [36] for a hypothesis space of size N ¼ jCj
2

� �
� jSj,

i.e. the number of cluster pairs times the number of statistics,
meaning that only tests with a p-value below 0.05/N are
considered to be statistically significant.
3. Results
The CAE that produces the best performance in the dimension-
ality reduction of our images has the following architecture: the
encoder consists of three convolutional layers followed by an
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embedded layer (fully connected layer). The optimal code size
in this network has 256 units. The decoder consists of a fully con-
nected layer and three convolutional transpose layers. The
trained network efficiently encodes the original images of size
160 × 160 into feature space arrays of size 16 × 16. For more
details on the structure of the CAE and the parameters that
we used, see figure 1 and the electronic supplementarymaterial.
We focus on the non-overlapping subtrees as they create a
clearer clustering structure.

The resulting clustering graph (figure 2) has 16 connected
components with sizes ranging from 1 to 267. We use the
components of size at least 10 as our final clusters, which
results in nine clusters. We find that 98% (1233/1254) of the
original images are in these nine clusters. Figure 3 shows
six trees randomly chosen from each cluster. Electronic sup-
plementary material, figure S3 also shows the central
representatives of the clusters. The complete set of tree
images from each cluster are available at https://github.
com/MarHayat/TreeShapeVAE. Cluster 2 is a star phylo-
geny, showing relatively little population structure. This can
reflect high levels of recombination, disrupting population
structure, or rapid diversification without much selection.
Cluster 6 shows the classic ‘comet’ shape, with lower-diver-
sity relatively unstructured ‘heads’ in the context of more
diverse ‘tails’. We have dubbed cluster 4 the ‘shooting star’
shape, which has similarities to the comet. These have
lower-diversity, here tightly grouped sets of taxa at one end
of a more linear tree shape, and longer edges capturing com-
paratively diverse populations. The shape arises because
there are more taxa in the less-diverse tight groups typically
appearing on the top right. Clusters 3, 5, 7 and 9 reflect a con-
tinuum of population structure, moving from the star
phylogeny (long and relatively similar terminal branches
and relatively short internal branches) to more ‘barbell’
shapes illustrating two or more distinct populations separ-
ated by longer internal branches. The sub-populations
themselves have limited additional structure in clusters 3
and 9, but have more in clusters 5 and 7. The corresponding
shapes are less circular as a result. Finally, we have dubbed
cluster 8 the ‘water striders’; these are at the other end of
the population structure spectrum from the star phylogeny,
with long internal branches separating very distinct sub-
populations. We note that the clusters do share elements,
and some trees in cluster 4 are similar to the comets in cluster
6, and so on. Furthermore, we have named the clusters for
reference and to begin to characterize the kinds of trees we
have found, but we recognize that these names are somewhat
ad hoc. Images of the trees in each cluster can be found at
https://github.com/MarHayat/TreeShapeVAE/blob/main/
Clusters.zip.

Figure 4 shows the distribution of the species across
the clusters. The subtrees of some species including Elizabeth-
kingia are entirely in a single cluster (cluster 8), though these
are predominantly species for which there are very few sub-
trees (table 1). A few species including Salmonella are
distributed among all the nine clusters, probably because
these are groups with large numbers of taxa and subtrees
in the data. Some of the species, such as Serratia, are distrib-
uted equally among several clusters. Overall, the cross-
tabulation of species by cluster has a CCV statistic of 0.16

https://github.com/MarHayat/TreeShapeVAE
https://github.com/MarHayat/TreeShapeVAE
https://github.com/MarHayat/TreeShapeVAE
https://github.com/MarHayat/TreeShapeVAE/blob/main/Clusters.zip
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Figure 6. Percentages of the tips in a subtree in each geographical region, by cluster.
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(0.14–0.18), indicating a weak association. Similarly, the
ARI of 0.054 and the NMI of 0.095 indicate that the
distribution of species across the clusters is consistent with
chance allocation.

Figure 5 shows the composition of each cluster. Cluster 2
has fewer P. aeruginosa trees than the dataset at large; cluster 6
has fewer Listeria (cluster 9 has more) and cluster 8 has fewer
E. coli than the dataset at large. However, we do not have a
clear interpretation for these results because the presence or
absence of a particular shape is not just determined by the
species, but by the sampling process, the species’ ecology
and epidemiology, and its overall population structure.

We also visualize the geographical distributions of the
species on each cluster in figure 6. This plot reveals that our
data originate more in North America, Europe and central
Asia than other regions. It also shows that species are
approximately equally distributed among the clusters from
the geographical perspective except for cluster 9, which is
by far the smallest of the clusters. This approximated inde-
pendence of clusters by region is corroborated by a CCV of
0.046 (0.043–0.048), an ARI of 0.001 and an NMI of 0.004,
indicating a very week association between clusters and
region. The distribution of the dates of the species on each
cluster is shown in figure 7. As shown in this figure, the
dates are also distributed approximately equally among the
clusters, as also evidenced by a CCV of 0.031 (0.029–0.033),
an ARI of 0.003 and an NMI of 0.002.
The distribution of the subtrees in each cluster by
epidemiological origin, namely, clinical, environmental or
unspecified, is shown in figure 8. As for the other character-
istics, the distribution of the origin does not vary significantly
between clusters. The CCV value of 0.092 (0.087–0.097),
the ARI of 0.004 and the NMI of 0.004 suggest that the distri-
bution of the epidemiological origin is not significantly
different from one that is independent of cluster. Overall, this
suggests that the clusters capture subtree variation that is not
accounted for by simple sampling biases, whether temporal,
regional, contextual or species-specific. However, there are
known biological origins for the kinds of images we have
found, in particular, the comet and star images (e.g. adaptation
followed by rapid diversification from a common origin). Such
evolutionary processes can happen in any year or part of the
world, and can occur in human or environmental settings.

We also compared tree shape statistics and our clustering
patterns. For this purpose, we computed a set of tree shape
statistics [37,38] for the trees on each cluster. We computed
both unnormalized (electronic supplementary material,
figure S2) as well as normalized versions (figure 9) of each
statistic, with the exception of those that are intrinsically nor-
malized. See electronic supplementary material, table S1 for
the details of the tree shape statistics and the normalizations.
Figure 9 shows the tree shape statistics.

We begin by noting that among all the statistics, the tree
size itself is only able to distinguish between 6 out of
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Figure 7. Percentages of the tips in subtrees in each year, organized by cluster.
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9
2

� �
¼ 36 pairs of clusters, meaning that very few cluster

pairs have mean tree size differences that are statistically sig-
nificant according to Welch’s t-test with Bonferroni
correction. Nevertheless, we prefer to focus on the normal-
ized statistics, which take into account (albeit imperfectly)
the distribution of the statistic among all trees of the same
size, by dividing the results by their maximum possible
value. We find that the Sackin imbalance is able to dis-
tinguish between 18 out of 36 cluster pairs, while the
Colless imbalance, B2, and maxHeight distinguish between
15, 14 and 14 out of the 36 pairs, respectively. None of the
other statistics can distinguish more than 10 pairs of clusters.
Overall, 13 of the 36 pairs of clusters cannot be discriminated
by any of the statistics individually while another 5 of the
pairs can only be discriminated by 1 statistic each. The
most challenging clusters to differentiate using shape stat-
istics alone are clusters 6, 7 and 9, which happen to be the
three smallest clusters, with shape statistics being able to
differentiate each of them from only 3 of the other clusters.
This result is in general agreement with the findings in
[39,40] which evaluate the power of tree shape statistics in
distinguishing between different tree shapes.
4. Discussion
Phylogenetic trees are a powerful tool to visualize biological
diversity and evolution, showing relatedness patterns among
a set of organisms. Tree images are a familiar graphical
description of microbial evolution and are a convenient
way to place new WGS data into an interpretable context.
We clustered tree images extracted from large-scale bacterial
phylogenetic trees. We found nine major groups of tree
images, including ‘comet’, ‘star’ and ‘barbell’ phylogenies,
and commented on the evolutionary and epidemiological
scenarios that these shapes illustrate. These human-friendly
graphical descriptions of trees may become convenient
ways for researchers to place new WGS datasets within an
interpretable context, for example ‘this new isolate is in the
tail of a comet in this organism’.

Our key interest is in uncovering what kinds of trees are
present in bacterial genomic data. We take a ‘natural history’
approach, using an exploratory analysis of a large number of
phylogenetic trees from wide-ranging pathogenic bacterial
species to group and catalogue trees. In this endeavour, we
have aimed to use a qualitative piece of information—the
tree image—as a unit of analysis, informed by interpretations
of the MRSA emergence ‘comet’ and by what we see as sev-
eral advantages of radial tree images. The radial style of tree
visualization is relatively robust to the sampling density and
tree size, within reason. For example, a ‘star phylogeny’ (clus-
ter 2) will have a similar radial shape whether it has 50 tips
or 500 tips, and the radial layout ensures that the visualiza-
tion of the tree will attempt to fill the angles around the
tree’s centre. For these reasons, we did not use circular or
rectangular layouts, though these are more commonly used
when illustrating taxon-level metadata alongside phylo-
genies. The comet, and other shapes, are not likely to be
consistently recognizable as such in different layouts. We con-
sidered using tree statistics (imbalance and so on) for
clustering, but these depend strongly on the number of tips
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and there is no ready interpretation for the linear combi-
nations of tree statistics that would emerge as characteristic
of clusters (if derived from those statistics). We also con-
sidered using the graph structure (nodes and edges) of
the tree, but there are many ways to write an edge list that
define the same graph (or tree), and as with tree shape stat-
istics, these representations will depend strongly on the tree
size. Most fundamentally, though, trees and the tree visual-
izations we have used capture relatedness at the level of a
collection of taxa. Using images also allows us to leverage
deep learning tools, which are powerful and are optimized
to analyse images.

While the shapes in our images are relatively robust to tree
size and therefore to random uniform sampling, they are not
always robust to biased sampling (although they are relatively
robust to multiple observations of nearly identical taxa). This
is true of any analysis of phylogenetic trees, but large compi-
lations of data from multiple studies have an additional
vulnerability as the sampling approach is likely to be highly
variable across the dataset (unlike in a single study where
it is understood and/or chosen by the study authors). Our
dataset is large and ranges widely, and it is unlikely that
sampling biases (also likely to be diverse) drive the results
we have obtained. However, the clusters we identify reflect
the clusters in phylogenetic trees from pathogens on
NCBI, and not necessarily the patterns in the phylogenetic
trees in bacteria, or pathogenic bacteria, in general. An
apparent ‘comet shape’ could be obtained by compiling
focused and sequencing-intensive studies sampling a particu-
lar strain or complex that has diversified relatively recently,
together with less intensive surveillance collecting additional
‘background’ isolates. Or, as with MRSA, the apparent
expansion could be due to selection, adaptation and rapid
dissemination. A research and sampling focus may occur
precisely because of a phenomenon of interest such as
antimicrobial resistance, unusually large outbreaks, increased
pathogenicity or increased virulence.

Linking ‘metadata’ to the taxa in large databases like NCBI
would help to elucidate shared evolutionary, ecological and
epidemiological processes giving rise to similar trees. It
would also help to distinguish among distinct processes that
may give rise to similar trees, for example distinguishing
rapid growth from an increase in sampling. While in many
studies phylogenies are used to illustrate the extent to which
metadata fields such as geography or antibiotic resistance are
grouped according to shared ancestry, here we would seek
to determine how the phylogenies group according to the
metadata. Particular helpful metadata would include the
reason for isolate collection, the reason for sequencing, a link
to a relevant study and study design, information about
antimicrobial resistance, pathogenicity/virulence, information
about recombination and other relevant context. These
would add a tremendous amount of value to large
compilations of sequence data (and phylogenetic trees).

Our method can be applied to phylogenetic trees recon-
structed from different species and organisms. Clustering
tree images reconstructed from viruses such as influenza
virus, HIV and SARS-CoV-2, and seeing what tree images
occur in different phylogenetic trees of viruses, could
similarly illustrate a range of evolutionary patterns. A com-
parison between the clustering of bacterial tree images and
the clustering of viral tree images might reveal insights
about different evolutionary scenarios between viruses and
bacteria. However, the largest advances will likely be through
linking data to inform sampling, selection, ecology and epi-
demiology to these large-scale analyses; this will enable
both improved interpretation and hypothesis generation
and testing. All the tree images and codes are available at
https://github.com/MarHayat/TreeShapeVAE.
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