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ABSTRACT 

 

Infants’ ability to engage in joint attention with others towards the end of the first year is 

fundamental to language acquisition and shared cognition. Despite this, our understanding of 

the endogenous cognitive mechanisms that drive infant attention during shared caregiver-

infant interaction, and support dynamic inter-personal co-ordination is, at the moment, 

limited. 

  

Traditional approaches to joint attention development centred on understanding how 

caregivers didactically structure infant learning through ostensive communication. More 

recent perspectives, however, drawing on dynamic systems views of early cognition, have 

emphasised the role of fast-acting, multi-level, sensorimotor processes that operate across the 

dyad to support joint action and social learning. Newly developed micro-analysis approaches 

to studying early interaction have shown that infants use sensory cues to rapidly coordinate 

their attention with an adult partner, and statistical regularities in these cues are thought to 

extend infant attention and support word learning. 

  

To fully understand the contribution of joint interactions to early cognitive development 

however, we need to examine the mechanisms, endogenous to the infant, that support infant 

engagement and interpersonal contingency on a moment-by-moment basis. One way we can 

examine this is through the application of neurocognitive methods, such as 

electroencephalogram (EEG) recordings, to studying the dynamics of naturalistic, free-

flowing interactions. 
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Analysing time-locked and continuous associations between infants’ neural activity, infant 

attention, and inter-dyadic behavioural coordination, this thesis assesses the sub-second 

cognitive processes that influence how infants allocate their attention during triadic 

caregiver-infant play. 

  

First, neural evidence is presented to show that, whilst infants do not play a proactive role in 

creating episodes of mutual attention, they are sensitive to when their gaze is followed by an 

adult partner. Second, extended infant attention episodes are shown to be influenced, jointly, 

by attentional processes endogenous to the infant and reactive modulations in caregiver 

behaviour in response to changes in infant attention and cognitive engagement. Finally, the 

applicability of continuous methods to assessing speech-brain tracking by infants to their 

caregivers’ speech signal during naturalistic interactions is examined, and the role of 

behaviour-brain entrainment in creating and maintaining episodes of joint attention 

considered. 

  

Discussion focusses on the contribution of the findings to our understanding of active 

learning processes that operate across the dyad during early interaction, and that support the 

development of shared cognition. Models of early language learning in the context of the 

findings are considered, and directions for future work put forward.  

 

 

 

 

 

 



 4 

DECLARATION 

 

This thesis focusses on data collected in one large study, a Research Project Grant from the 

Leverhulme Trust RPG-2018-281 (PI: Sam Wass). The ethics approval letter and ethics 

application forms for the project are located in Appendix D (section 1.1 and 1.2). 

 

Data collection was primarily performed by myself and two other PhD students working on 

the project, Megan Whitehorn and Ira Marriott Haresign. All three PhD students were 

responsible for writing the ethics application for this study, the design of the paradigms used 

for data collection, as well as data management and participant recruitment.  I was 

responsible for the supervision and training of all the behavioural coding included in this 

thesis.  

 

In Chapters 3, 4 and 5 the pre-processing of the EEG data was conducted by one of the other 

PhD students working on the project, Ira Marriott-Haresign. 

 

Otherwise all of the data analysis, as well as the formulation and testing of the hypotheses 

and the writing of the text, was entirely my own work.  

 

First-author publications arising from this thesis 

 

Chapter 3 represents the work of the following publication: 

 

Phillips, E.A.M, Goupil, L., Whitehorn, M., Bruce-Gardyne, E., Csolsim, F.A., Marriott-

Haresign, I. & Wass, S.V. (in press). Proactive or reactive? Neural oscillatory insight 



 5 

into the leader-follower dynamics of early infant-caregiver interaction. Proceedings 

of the National Academy of Science. 

 

Chapter 4 represents the work of an article in preparation for publication: 

 

Phillips, E.A.M, Goupil, L., Whitehorn, M., Bruce-Gardyne, E., Csolsim, F.A., Navsheen, 

k., Marriott-Haresign, I. & Wass, S.V. (pre-print). Endogenous oscillatory rhythms 

and interactive contingencies jointly influence infant attention during early infant-

caregiver interaction. 

 

During my PhD I also contributed to the following publications 

 

Marriott Haresign, I., Phillips, E. A. M., Whitehorn, M., Lamagna, F., Eliano, M., Goupil, 

L., Jones, E. J. H., & Wass, S. V. (2022). Gaze onsets during naturalistic infant-

caregiver interaction associate with ‘sender’ but not ‘receiver’ neural responses, and 

do not lead to changes in inter-brain synchrony. BioRxiv, 2022.05.27.493545. 

https://doi.org/10.1101/2022.05.27.493545 

 

Marriott Haresign, I., Phillips, E., Whitehorn, M., Noreika, V., Jones, E. J. H., Leong, V., & 

Wass, S. V. (2021). Automatic classification of ICA components from infant EEG 

using MARA. Developmental Cognitive Neuroscience, 52, 101024. 

https://doi.org/10.1016/j.dcn.2021.101024 

 



 6 

Wass, S. V., Whitehorn, M., Marriott Haresign, I., Phillips, E., & Leong, V. (2020). 

Interpersonal Neural Entrainment during Early Social Interaction. Trends in Cognitive 

Sciences, 24(4), 329–342. https://doi.org/10.1016/j.tics.2020.01.006 

 

Marriott Haresign, I., Phillips, E. A. M., Whitehorn, M., Goupil, L., Noreika, V., Leong, V., 

& Wass, S. V. (2022). Measuring the temporal dynamics of inter-personal neural 

entrainment in continuous child-adult EEG hyperscanning data. Developmental 

cognitive neuroscience, 54, 101093. 

 

Wass, S., Phillips, E., Smith, C., Fatimehin, E. O., & Goupil, L. (2022). Vocal 

communication is tied to interpersonal arousal coupling in caregiver-infant 

dyads. Elife, 11, e77399. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 7 

TABLE OF CONTENTS 

 

ABSTRACT ................................................................................................................................. 2 

DECLARATION ......................................................................................................................... 4 

TABLE OF CONTENTS ............................................................................................................. 7 

TABLE OF FIGURES .............................................................................................................. 13 

ACKNOWLEDGEMENTS ....................................................................................................... 19 

CHAPTER 2 -  General introduction ....................................................................................... 25 

2.1 Introduction .................................................................................................................... 25 

2.2 Joint attention and the development of shared intentionality ........................................ 26 

2.3 Development of the ability to respond to social signals in the first year ....................... 27 

2.4 Infants deliberately direct the attention of a social partner towards the end of the first 

year ....................................................................................................................................... 29 

2.5 Active learning from a socio-pragmatic perspective ..................................................... 32 

2.6 Embodied approaches to understanding the influence of early interactions on infant 

cognition .............................................................................................................................. 35 

2.7 Sensorimotor contingencies and joint attention at the end of the first year ................... 37 

2.8 Implications of embodied cognitive approaches to understanding the mechanisms that 

drive infant attention and support early language acquisition ............................................. 40 

2.9 Models of the endogenous and interactive contingencies driving and maintaining infant 

attention in shared interactions ............................................................................................ 42 



 8 

CHAPTER 3 - Proactive or reactive? Neural oscillatory insight into the leader-follower 

dynamics of early infant-caregiver interaction ........................................................................ 53 

3.1 Introduction .................................................................................................................... 54 

3.2 Methods.......................................................................................................................... 60 

3.2.1 Participants .............................................................................................................. 60 

3.2.2 Experimental set-up ................................................................................................ 61 

3.2.3 Equipment ............................................................................................................... 62 

3.2.4 Video coding ........................................................................................................... 64 

3.2.5 Vocalisation coding ................................................................................................ 64 

3.2.6 Behavioural look extraction and analysis ............................................................... 65 

3.2.6.1 Data pre-processing ......................................................................................... 65 

3.2.6.2 Cluster-based permutation analysis ................................................................. 66 

3.2.7 Infant EEG analysis ................................................................................................ 67 

3.2.7.1 Artifact rejection and pre-processing ............................................................... 67 

3.2.7.2 Time-frequency analysis .................................................................................. 68 

3.3 Results ............................................................................................................................ 71 

3.3.1 Descriptive statistics ............................................................................................... 71 

3.3.2 Before look onset: are infants proactively initiating joint attention episodes? ....... 74 

3.3.2.1 Infant-led vs adult-led mutual attention ........................................................... 74 

3.3.2.2 Followed vs not followed infant-led looks ...................................................... 80 

3.3.2.3 Summary .......................................................................................................... 81 

3.3.3 After look onset: do infants anticipate their gaze being followed? ........................ 81 

3.3.3.1 Infant-led vs adult-led mutual attention ........................................................... 81 

3.3.3.2 Followed vs not followed infant-led attention ................................................. 87 

3.3.3.3 Summary .......................................................................................................... 88 



 9 

3.4 Discussion ...................................................................................................................... 88 

CHAPTER 4 - Endogenous oscillatory rhythms and interactive contingencies jointly 

influence infant attention during early infant-caregiver interaction ....................................... 96 

4.1 Introduction .................................................................................................................... 97 

4.2.1 Participants ............................................................................................................ 105 

4.2.2 Experimental set-up .............................................................................................. 106 

4.2.3. Equipment ............................................................................................................ 106 

4.2.4 Video coding ......................................................................................................... 107 

4.2.5 Vocalisation coding .............................................................................................. 108 

4.2.6 Infant EEG artifact rejection and pre-processing .................................................. 109 

4.2.7.1 Infant theta activity ........................................................................................ 111 

4.2.7.2 Attention durations ......................................................................................... 112 

4.2.7.3 Binary attention variable ................................................................................ 112 

4.2.7.5 Caregiver vocalisation durations .................................................................... 113 

4.2.7.6 Rate of change in the fundamental frequency (F0) of the caregiver’s voice . 113 

4.2.7.7 Caregiver amplitude modulations .................................................................. 114 

4.2.8 Analysis procedures .............................................................................................. 115 

4.2.8.1 Partial autocorrelation function ...................................................................... 115 

4.2.8.2 Cross-correlation analyses ............................................................................. 116 

4.2.8.3 Linear mixed effect models ........................................................................... 118 

4.2.8.4 Attention onset event-related analysis ........................................................... 118 

4.2.8.5 Modulation during attention episodes ............................................................ 119 

4.3. Results ......................................................................................................................... 122 

4.3.1 Oscillatory structures in caregiver and infant attention ........................................ 122 



 10 

4.3.2 Does endogenous infant neural activity forwards-predict infant attention, or 

reactively change following the onset of a new infant attention episode? .................... 126 

4.3.2.1 Forwards predictive relationship between attention and infant theta activity126 

4.3.2.2 Reactive change in infant theta activity following look onset ....................... 126 

4.3.3 Do modulations in caregiver behaviours forwards-predict infant attention, or 

reactively change following the onset of a new infant attention episode? .................... 129 

4.3.3.1 Forwards-predictive relationships between infant attention durations and adult 

attention durations ...................................................................................................... 129 

4.3.3.2 Reactive change in caregiver look durations following infant look onset ..... 131 

4.3.3.3 Summary of caregiver gaze behaviour .......................................................... 132 

4.3.3.4 Forwards-predictive relationships between infant look durations and caregiver 

vocal behaviour .......................................................................................................... 134 

4.3.3.5. Reactive change in caregiver vocal behaviour following infant look onset . 136 

4.3.3.6 Summary of caregiver vocal behaviour ......................................................... 136 

4.4. Discussion ................................................................................................................... 138 

CHAPTER 5 - Using continuous methods of analysis to examine speech-brain tracking 

during naturalistic caregiver-infant object play .................................................................... 145 

5.1 Introduction .................................................................................................................. 146 

5.2 Method ......................................................................................................................... 154 

5.2.1 Participants ............................................................................................................ 154 

5.2.2 Experimental set-up .............................................................................................. 154 

5.2.3 Equipment ............................................................................................................. 156 

5.2.4 Vocalisation coding .............................................................................................. 157 

5.2.6.1 Pre-processing ................................................................................................ 160 



 11 

5.2.6.2 Separating data into individual folds for training and testing ........................ 161 

5.2.6.3 mTRF computation ........................................................................................ 165 

5.3 Results .......................................................................................................................... 170 

5.4 Discussion .................................................................................................................... 183 

CHAPTER 6 – General discussion ........................................................................................ 189 

6.1 Summary and integration of findings .......................................................................... 189 

6.2 Implications for theories of early language development ............................................ 197 

6.3 Limitations and future directions ................................................................................. 200 

6.4 Overall conclusions ...................................................................................................... 203 

References .............................................................................................................................. 205 

APPENDIX A – Supplementary Materials for: Proactive or reactive? Neural oscillatory 

insight into the leader-follow dynamics of early caregiver-infant interaction ...................... 234 

1.1 Methods........................................................................................................................ 234 

1.2 Results .......................................................................................................................... 235 

APPENDIX B– Supplementary Materials for: Endogenous oscillatory rhythms and 

interactive contingencies jointly influence infant attention during early infant-caregiver 

interaction .............................................................................................................................. 250 

1.1 Methods........................................................................................................................ 250 

1.1.1 Clipping identification algorithm .......................................................................... 250 

1.2 Results .......................................................................................................................... 251 

APPENDIX C – Supplementary Materials for: Using continuous methods of analysis to 

examine speech-brain tracking during naturalistic caregiver-infant object play ................. 256 



 12 

1.1 Results .......................................................................................................................... 256 

APPENDIX D – Ethics ........................................................................................................... 258 

1.1 Ethical approval letter .................................................................................................. 258 

1.2  Ethics Application ....................................................................................................... 259 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 13 

TABLE OF FIGURES 

Figure 3.1 Example data collected during one five minute interaction for one dyad, camera 

angles used for coding and EEG montage (…) ....................................................................... 63 

Figure 3.2 Caregiver and infant attention, and vocal behaviour in shared play (…) ............... 73 

Figure 3.3 Probability of ostensive signals (partner looks and vocalisations) and infant 

attentiveness in the time-period before infant look onset (…) ................................................ 76 

Figure 3.4 Comparison of infant EEG activity in the 2000ms preceding infant- and adult-led 

attention episodes (..) ............................................................................................................... 79 

Figure 3.5 Probability of ostensive signals (partner looks and vocalisations), infant 

attentiveness, and the time adults took to follow infant attention in the time-period after infant 

look onset (…) ......................................................................................................................... 83 

Figure 3.6 Comparison of infant EEG activity in the 2000ms following infant- and adult-led 

attention episodes (…) ............................................................................................................. 86 

 

Figure 4. 1  Experimental set-up and example of continuous variables.(…) ........................ 121 

Figure 4. 2 Testing for oscillatory patterns of attention behaviour in infants and 

caregivers.(…) ....................................................................................................................... 125 

Figure 4. 3 Relationship between infant attention duration and infant theta activity.(…) .... 128 

Figure 4. 4 Assessing forwards-predictive associations between caregiver attention durations, 

infant attention durations, and infant theta activity (…) ........................................................ 130 

Figure 4. 5 Dynamic event-locked associations between infant object attention and caregiver 

attention durations.(…) .......................................................................................................... 133 

Figure 4. 6 Assessing forwards-predictive associations between caregiver vocal behaviour, 

infant attention durations, and infant theta activity.(…). ....................................................... 135 



 14 

Figure 4. 7 Reactive change in caregiver vocal behaviour relative to infant attention onsets. 

(…) ......................................................................................................................................... 137 

 

Figure 5. 1 Experimental set-up (…) ..................................................................................... 155 

Figure 5. 2 Schematic representation of the pre-processing steps to split data into individual 

folds for model training and testing ( …). ............................................................................. 164 

Figure 5. 3 Schematic representation of mTRF model computation (…). ............................ 166 

Figure 5. 4 Temporal characteristics of caregiver vocal behaviours (…). ............................. 172 

Figure 5. 5 Continuous individual models (…) ..................................................................... 174 

Figure 5. 6 Vocal chunk individual models(…) .................................................................... 177 

Figure 5. 7 Continuous and vocal chunk generic models. Grand average predicative accuracy 

values for each frequency band(…) ....................................................................................... 181 

 

Appendix A - Figure S1 a) Bar plot shows the mean number of looks included in each 

category after EEG epoching.(…)…………………………………………………………234 

Appendix A - Figure S2. a) Bar plots show the proportion of looks without an object or 

partner look in the 2000ms preceding look onset for each type of attention episode (error bars 

show the standard deviation (n=37) (…) ............................................................................... 235 

Appendix A - Figure S3 a) Proportion of looks without an object or partner look in the 2000-

1000ms preceding look onset for each type of attention episode (error bars show the standard 

deviation(n=37)) (…) ............................................................................................................. 237 

Appendix A - Figure S4 a) Proportion of looks without an object or partner look in the 1000-

0ms preceding look onset for each type of attention episode (error bars show the standard 

deviation(n=37)) (…) ............................................................................................................. 238 



 15 

Appendix A - Figure S5 Secondary analysis excluding EEG activity in each look, where the 

infant is not focussed continuously on one object in the 2000ms before look onset (…) ..... 239 

Appendix A - Figure S6 Time-frequency plots show infant EEG activity (2-16Hz) occurring 

5000ms before look onset, for (a) adult-led looks to mutual attention (b) infant-led looks to 

mutual attention and (c) infant-led looks to nonmutual attention, over fronto-central 

electrodes (…) ........................................................................................................................ 240 

Appendix A - Figure S7 a) Time-course of the trend-level time*frequency*electrode positive 

cluster identified by the 3-dimensional cluster-based permutation analysis, in time*electrode 

space, in 500ms time-windows; channels included in the cluster at each time-point are 

highlighted in black (…) ........................................................................................................ 241 

Appendix A - Figure S8 a) Bar plots show the proportion of looks without an object or 

partner look in the 2000ms post look onset for each type of attention episode (error bars show 

the standard deviation (…) ..................................................................................................... 242 

Appendix A - Figure S9 Proportion of looks without an object or partner look in the 0-

1000ms post look onset for each attention episode (error bars show the standard deviation  

(…) ......................................................................................................................................... 244 

Appendix A - Figure S10 Proportion of looks without an object or partner look in the 1000-

2000ms post look onset for each attention episode. (…) ....................................................... 245 

Appendix A - Figure S11 Secondary analysis excluding EEG activity in each look, where the 

infant shifts attention from the target object to another object/ the partner in the 2000ms after 

look onset (…) ....................................................................................................................... 246 

Appendix A - Figure S12 Time-frequency plots show infant EEG activity (2-16Hz) occurring 

5000ms after look onset, for (a) adult-led looks to mutual attention and (b) infant-led looks to 

mutual attention, over fronto-central electrodes (…) ............................................................ 247 



 16 

Appendix A - Figure S13 Probability of caregiver ostensive signals (partner looks and 

vocalisations) occurring in the time-period before attention episodes.(…) ........................... 248 

Appendix A - Figure S14 Probability of caregiver ostensive cues (partner looks and 

vocalisations) occurring in the time-period after attention episodes.(…) .............................. 249 

 

Appendix B - Figure S1 Percentage of caregiver vocalisations that were co-vocalisations. 

Box plot showing the percentage of caregiver vocalisations that were vocalisations across 

participants. ............................................................................................................................ 250 

Appendix B - Figure S2 Percentage of clipped vocalisations. The bar plot shows the 

percentage of clipped vocalisations, for each participant. The pink horizontal line indicates 

the threshold at which participants were excluded from analyses (30%). ............................. 251 

Appendix B - Figure S3 Event-related analysis for relative infant theta activity. a) Event-

related analysis showing change in infant theta activity around infant attention onsets to 

objects  (…) ............................................................................................................................ 251 

Appendix B - Figure S4 Assessing forwards-predictive associations between caregiver vocal 

behaviour, and infant attention, and endogenous oscillatory activity. Black lines show the 

Pearson cross-correlation between two variables; shaded areas indicate the SEM.(…) ....... 253 

Appendix B - Figure S5 Reactive change in caregiver vocal behaviour relative to infant 

attention onsets. First row: scatter plots of the association between infant attention duration 

and a) caregiver vocal durations, e) caregiver amplitude modulations. (…) ......................... 254 

 

Appendix C - Figure S1 Grand average predicative accuracy values for individual continuous 

models before outlier removal, for each frequency band (Pearson’s r). Blue circles show the 

mean across participants for each frequency band.(…) ......................................................... 256 



 17 

Appendix C - Figure S2 Grand average predictive accuracy values for generic continuous 

models before outlier removal, for each frequency band (Pearson’s r).(…) ......................... 257 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 18 

TABLE OF TABLES 

Table 1.1 Definition of infant attention episode categories. .................................................... 66 

 

Table 5.1 Individual model results of the paired sample t-tests of the difference between 

observed predictive accuracy scores and the permutation distribution for each frequency 

band, for each analysis. .......................................................................................................... 179 

Table 5.2 Generic model results of the paired sample t-tests of the difference between 

observed predictive accuracy scores and the permutation distribution for each frequency 

band, for each analysis. .......................................................................................................... 182 

 

 

 

 

 

 

 

 

 

 

 

 



 19 

ACKNOWLEDGEMENTS  

There are a number of people I would like to thank for their role in supporting this piece of 

work. First, I would like to thank Sam Wass for the opportunity to be involved with this 

project, with whom it has been a fantastic experience to work. Sam’s energy, interest and 

commitment to the research, and to the people involved in it, has made conducting this work, 

and working at the BabyLab more generally, not only academically rigorous and challenging, 

but fun, meaningful and exciting. I am very grateful for all the opportunities I have had to 

develop professionally, analytically and, most of all, technically, and for all the support and 

expertise Sam has provided in this.  

 

Second to that, of course, thank you to Megan Whitehorn and Ira Marriott-Haresign who 

have been such brilliant colleagues and friends to work with over the past four years. We 

have definitely faced a good few challenges on the way, including a global pandemic, and 

multiple lockdowns, but our complementary approaches and skills, and commitment to the 

research and each other have driven all our projects’ achievements. A big thank you also to 

Louise Goupil who has played a fundamental part in the development of the theoretical 

grounding of much of my work, and whose comments on my work are always so insightful 

and meticulous. More widely, thank you to all members of the UEL BabyLab, which is now 

so big and buzzy! What a great experience it has been to work with such a talented, driven 

and accepting group of people from whom I have learnt so much. 

 

An important mention also to John Duncan and Lynne Murray with whom I worked before I 

joined the PhD. The opportunity to work with two such experienced and influential 

academics was brilliant, and a time I feel will always influence my work. 



 20 

On a personal note, I’d like to thank all wider family and friends for their support, in Ullapool 

(all those with fur and feathers included), Sidmouth, Shrewsbury, Machynlleth and London, 

particularly, of course, Grandma. A mention also to Peter Roderick; no doubt about your 

influence on my career in academia. Special thanks also to my three oldest and closest 

friends, Alice Stevenson, Ellie Reid and Lizzie Griffin, who are always there for words of 

positivity, encouragement and advice. Finally, thank you to my Mum and Dad, to whom this 

thesis is dedicated: thank you for all your brilliant support, unerring encouragement, your 

insightfulness, and your values, and everything else.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 21 

 
 
 
 
 

This thesis is dedicated to my Mum and Dad. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 22 

CHAPTER 1 – Thesis overview 
 

This thesis aims to examine the neural and cognitive mechanisms that drive infant attention 

and support inter-personal coordination during early joint interactions. In doing so, the thesis 

elucidates the sub-second interactive processes that govern the allocation of infant attention 

on a moment-by-moment basis, which might be particularly important to understanding the 

learning mechanisms involved in the development of intentionally mediated forms of 

communication, and language acquisition. The thesis incorporates 3 separate empirical 

analyses conducted on data collected in the same interactive context, where infant EEG 

activity was recorded during naturalistic, free-flowing interactions with their caregiver. 

Beginning with a focus on the cognitive mechanisms that drive and maintain shared episodes 

of caregiver and infant attention (Chapter 3), Chapters 4 and 5 go on to examine the micro-

processes that structure infant attention and drive fluctuations in infants’ endogenous control 

over their attention. 

 

In Chapter 2 the thesis starts by outlining traditional socio-pragmatic accounts of the 

development of joint attention and communication that emphasise the role of intentionally-

mediated behaviours in guiding infant attention in shared interactions. This is contrasted with 

dynamic-systems perspectives that emphasise instead the importance of dynamic 

sensorimotor contingencies in structuring infant behaviour and in driving shared perceptions. 

Differential theories on early language acquisition derived from these models is outlined. The 

chapter ends with a discussion on the potential for neurocognitive methods to support new 

insight into the intra-individual and bidirectional processes that drive the allocation of infant 

attention in shared interactions.  
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Chapter 3 examines the leader-follower dynamics that drive the development of co-ordinated 

attention in shared interaction, combining neural and behavioural analyses to test whether 

infants, at the end of the first year, show signs of proactive attention-sharing. In particular, 

this chapter examines fluctuations in infant neural oscillatory activity and the probability of 

their behaviourally ostensive cues increasing around moments of infant- vs. adult-led 

episodes of shared attention. Findings are discussed relative to embodied accounts of the 

learning mechanisms involved in the development of infants’ active control over their own 

behaviour, and the attention of their partner.  

 

Chapters 4 and 5 build on these findings in examining the continuous and event-locked intra- 

and inter-personal dynamics that structure infant attention and drive fluctuations in infants’ 

endogenous cognitive processing. Specifically, in Chapter 3, forwards-predicative and 

reactive changes in caregiver behaviour. and infants’ endogenous neural activity, are assessed 

relative the duration of infant attention episodes towards objects and their partner. In Chapter 

5, the applicability of continuous methods of analysis to examining speech-brain tracking in 

early naturalistic interactions is assessed, and the implications of the development of these 

methods of analysis for assessing behaviour-brain tracking in naturalistic interactions is 

considered relative to dynamic systems perspectives on early cognitive development.  

 

In the General Discussion of Chapter 6, the thesis considers the implications of the findings 

of Chapters 3, 4 and 5 for our understanding of the development of infants’ active control 

over their own behaviour and attention in social interactions. The thesis ends with a 

consideration of the development of further analytical procedures and methods for examining 

the mechanisms that drive shared attention, perceptions and cognitions in shared interactions, 
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and how we might use these methods to further our understanding of the inter-dyadic 

processes that support early language acquisition.  
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CHAPTER 2 -  General introduction  

 

2.1 Introduction 

 

The influence of early joint attentional interactions with a caregiver on infants’ language, 

attention and socio-cognitive development is well established. We know, for example, that 

consistent and contingent responding by a caregiver to their infants’ communicative 

behaviours associates with superior language outcomes (Tamis-LeMonda et al., 2001), that 

more reciprocal interactions predict developments in aspects of cognition and attention 

(Murray, De Pascalis, Tomlinson, et al., 2016), and that, infants who more frequently engage 

in attention-sharing behaviours with their caregiver develop a better understanding of the 

pragmatic and referential aspects of shared communication (Goldin-Meadow et al., 2007). 

Despite this, we currently know little about the neural and cognitive mechanisms that drive 

infant attention and support inter-personal coordination on a moment-by-moment basis. 

Examining this is crucial to our understanding of how infants begin to integrate and learn 

from the multi-level, dynamic and hierarchically nested processes that organise joint action 

and behaviour.  

 

In the sections that follow, different accounts of the cognitive mechanisms that influence how 

infants allocate their attention in shared interactions are outlined. First, socio-pragmatic 

accounts of early joint attention development and their implications for how we understand 

infant attention and learning in early interaction are considered. Second, dynamic systems 

perspectives of the influence of social interactions on early cognition are contrasted to the 

traditional perspective; considering, in particular, the multi-level, micro-behavioural 

processes associated with the development and maintenance of co-ordinated attention. Third, 
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the application of neurocognitive methods to studying early social interactions and informing 

our understanding of the mechanisms that drive micro-second modulations in infant attention 

and behaviour when interacting with a social partner are discussed.  

 

2.2 Joint attention and the development of shared intentionality 

 

Traditional approaches to understanding early joint attention development have largely 

focussed on identifying at what stage in development infants begin to engage in intentionally 

mediated forms of shared communication (Csibra & Gergely, 2009; Tomasello, 2016; 

Tomasello et al., 2007; Tomasello & Carpenter, 2007). Infants are sensitive to ostensive 

signals such as direct gaze (Farroni et al., 2002) and infant-directed speech (IDS) from the 

first few days of life (Cooper & Aslin, 1994), and, over the first six months develop in their 

ability to respond to the social cues of a communicative partner (Senju et al., 2008). Towards 

the end of the first year, at around 9-12 months, infants are thought to begin to engage in 

episodes of attention sharing, where they understand others as intentional agents, whose 

communicative behaviours are the result of goal-directed thought, and that their own 

intentionally motivated behaviours can influence the attention, actions and mental states of 

their social partner (Siposova & Carpenter, 2019; Tomasello et al., 2007). This is often 

referred to as the ‘9-month revolution’, and is thought to result from the ontogenetic 

motivation of human infants to engage in collaborative forms of joint action (Tomasello et 

al., 2005).  

 

In particular, the socio-pragmatic model emphasises the role of intentionally-mediated 

communication in driving early language development: asserting that only once infants can 

understand and create shared internal representations with others can they begin to learn from 
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the referential and pragmatic aspects of joint attention (Lieven, 2016; Tomasello, 2000). This 

perspective has driven prolific research aimed at examining how infants begin to respond to a 

social partners’ initiations for joint attention, at what stage infants begin to initiate episodes 

of joint attention during shared interactions, as well as the longitudinal associations between 

early joint attention and later language abilities (Behne et al., 2005; Brooks & Meltzoff, 

2015; Carpenter et al., 1998; Donnellan et al., 2020; Liszkowski, Carpenter, et al., 2008; 

Liszkowski & Tomasello, 2011).  

 

In the sections that follow, work tracking the development of infants’ ability to respond to 

and initiate ostensively guided episodes of shared communication with a social partner is 

outlined and discussed relative theories of the mechanisms that drive infant attention in early 

interactions.  

 

2.3 Development of the ability to respond to social signals in the first year 

 

During joint interactions, participating individuals are thought to act alternately as senders 

and receivers of social information (Csibra & Gergely, 2009). Ostensive cues are used by 

both partners to signal communicative intent: sending information at moments they wish to 

convey particularly important information to the recipient (Csibra, 2010; Csibra & Gergely, 

2009). A vast literature documents the development of infants’ sensitivity to ostensive signals 

over the course of the first year (Brooks & Meltzoff, 2015; Farroni et al., 2002, 2003; Senju 

et al., 2008), and a particular focus of this work has been on how and when infant begin to 

understand the referential nature of these cues. 
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Infants are sensitive to eye gaze soon after birth, preferentially orienting towards faces with 

direct gaze from 3-5 days (Farroni et al., 2002), and by 4 months, show increased attention 

and greater neural responses to images of adults engaged in direct gaze (Farroni et al., 2002; 

Grossmann et al., 2013). For example, recording electroencephalography (EEG) from 4-

month-olds whilst they viewed pictures of adults engaging in direct vs. indirect gaze, Farroni 

et al. (2002) showed that averaged N170 event-related potential (ERP) amplitudes, over 

occipital electrodes, were greater where infants viewed images of adults looking directly 

towards them. Similarly, infants prefer infant-directed speech (IDS), compared to adult-

directed speech (ADS) from the first few days of life (Cooper & Aslin, 1994), and by 5 

months show an enhanced Nc ERP component to words produced with IDS intonation 

(Parise & Csibra, 2013). Compared to ADS, IDS is less syntactically complex, more 

repetitive, involves more prosodic variability, has a slower tempo, and has recently been 

associated with a shift in timbre (Papoušek et al., 1990; Piazza et al., 2017; Soderstrom, 

2007).  

 

The mechanisms driving infants’ responsivity to ostensively produced signals produced by a 

social partner develop over the course of the first year. Newborns and 3-month-old infants, 

for example, have been shown to orient towards targets cued by gaze shifts (Hood et al., 

1998). It is thought that this early gaze-following reflects rudimentary mechanisms, with 

infants shifting their attention in the direction of lateral motion, rather than using gaze 

direction as a referential cue (Farroni et al., 2000, 2003). In the latter half of the first year, 

however, infants are thought to begin to understand the referential nature of eye gaze. For 

example, at 6 and 9 months, infants have been found to only follow an adults’ gaze when 

their attention shift is preceded by an ostensive signal (Senju et al., 2006, 2008; Senju & 

Csibra, 2008). Senju et al., (2008) presented 6-month-old infants with a video of an 
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experimenter shifting their gaze towards one of two objects located on either side of them. In 

one condition, the experimenter looked directly towards the infant before shifting their gaze 

to the target object, whilst, in the other, a cartoon covered the experimenters’ head during the 

period of direct eye contact. Only infants in the direct eye contact condition were more likely 

to look towards the target object when the experimenter shifted their attention. Where infants 

in the no eye contact condition heard IDS before the attention-shift, however, they looked 

towards the target object reliably more often, compared to infants who heard ADS. This 

finding has been interpreted as evidence that, by 6 months, infants interpret a social partner’s 

directed gaze to indicate their referential intent.  

 

In the socio-pragmatic perspective, infants’ ability to respond to and understand the meaning 

of ostensive signals is fundamental to early language acquisition, whereby infants’ relational 

understanding between an interacting partners’ cues and the objects to which their attention is 

directed supports early word-object mappings (Carpenter et al., 1998; Donnellan et al., 2020; 

Tomasello & Carpenter, 2007). Corresponding to this prediction, for example, Brooks and 

Meltzoff (2008) demonstrated that 10-12 month old infants’ ability to accurately and 

contingently follow the gaze of an adult partner towards one of two objects on a table 

predicted infants’ receptive and expressive vocabulary at two years of age.  

 

2.4 Infants deliberately direct the attention of a social partner towards the end of the 

first year 

 

Towards the end of the first year, as well responding to adults’ signals for shared attention, 

infants are thought to begin to deliberately initiate episodes of shared attention, through  

intentionally-produced communicative cues such as gestures and vocalisations (Carpenter et 
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al., 1998; Donnellan et al., 2020; Liszkowski & Tomasello, 2011; Tomasello et al., 2007). 

This later emerging ability is, in-part, thought to reflect the development of the executive 

attention system, which develops rapidly over the course of the first year, corresponding to 

the maturation of the pre-frontal cortex (Colombo, 2001; Gogtay et al., 2004; Mundy & 

Newell, 2007).   

 

It is generally thought that infant pointing at the end of the first year serves a declarative 

function (Liszkowski, Carpenter, et al., 2008; Liszkowski & Tomasello, 2011; Tomasello et 

al., 2007): i.e. that infants proactively create episodes of joint attention with a social partner 

so that attention towards a stimulus is not only shared, but common ground between the two 

partners (Siposova & Carpenter, 2019). A series of studies conducted by Liszkowski and 

colleagues supports this perspective. In their paradigm, infants were seated next to an 

experimenter and on each trial an object appeared from behind a curtain. In one condition, the 

adult experimenter responded to infant points towards the object with joint attentional 

behaviours (looking back and forth between the infant and the object) whilst, in the other, the 

adult spoke excitedly about the object but did not alternate their gaze between the object and 

the infant (Liszkowski et al., 2004; Liszkowski et al., 2008). Recording the pointing 

behaviour of infants in each condition, they found that in the non-JA trials, infants pointed 

more frequently towards the object (Liszkowski et al., 2004), and increased the frequency of 

their vocalisations (Liszkowski et al., 2008). The authors interpreted findings to suggest that 

infants point to modulate the behaviours of their partner, and persist in gesturing where their 

gestures are not met with the predicted contingent response.  

 

Developments in infants’ knowledge that their own behavioural cues signal intention to share 

attention with an interactive partner are thought to be particularly important in driving the 
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development of a communication system (Donnellan et al., 2020; Goldin-Meadow et al., 

2007). Socio-pragmatic perspectives have emphasised that where infants initiate shared 

attention with a social partner, infants are able to map caregivers’ speech inputs to the object 

of their joint focus, based on the understanding that they have influenced the focus of their 

caregivers’ attention, and the caregiver is aware of their focus of attention, and the infants’ 

intention to share attention (Tomasello et al., 2007). Supporting this perspective, the 

frequency with which infants engage in pointing gestures towards objects during interactions 

with their caregivers at the end of the first year positively associates with later language 

outcomes (Carpenter et al., 1998; Fenson et al., 1994; Goldin-Meadow et al., 2007), 

particularly where infants engage in joint attentional referencing (Carpenter et al., 1998; 

Donnellan et al., 2020).  

 

Overall, the socio-pragmatic account has emphasised that, towards the end of the first year, 

infant attention during social interactions begins to be driven by their engagement in 

intentionally mediated forms of communication. Largely, this work emphasises the role of 

the caregiver in structuring infant attention and learning in joint attentional frames: infants 

follow, or later, lead an adult partners’ attention towards a shared focus of attention, and the 

caregiver didactically scaffolds infant learning on the basis of shared internal representations 

(Csibra & Gergely, 2009; Tomasello & Carpenter, 2007). More recent work, however, has 

highlighted the active role infants might play in selecting the information they learn about 

and in regulating the behavioural inputs of their partner. This works is outlined in the next 

section.  
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2.5 Active learning from a socio-pragmatic perspective  

 
Active information seeking strategies have been shown to influence where infants look and 

for how long they engage with stimuli in their environment (Goupil & Proust, 2023; Kidd et 

al., 2012; Poli et al., 2020). For example, as early as 7-8 months, infants allocate their 

attention towards stimuli that are neither too complex nor too predictable (Kidd et al., 2012; 

Kidd et al., 2014). Kidd et al. (2012) presented infants with a sequence of images designed so 

that each image, as it occurred in sequence, varied in terms of its predictability (i.e. its 

likelihood of occurring, based on the sequence of images leading up to that image being 

presented). The authors found that infants’ likelihood of looking away from the image 

showed a U-shaped relationship with image complexity, such that infants were less likely to 

look away from an image with mid-range levels of predictability. Infants therefore appeared 

to direct their attention towards stimuli with most opportunity for information gain (i.e. 

stimuli that were not too complex and therefore cognitively demanding to process, nor 

stimuli that were overly simple; Kidd et al., 2012; Kidd & Hayden, 2015). Presenting 8-

month-old infants with different shapes, appearing as targets and cues within each trial frame, 

Poli et al. (2020) have also recently shown that, as well as allocating their attention towards 

stimuli with mid-range levels of predictability, infants look longer to sequencies of stimuli 

with greater opportunity for learning progress. Rather than passive recipients of information, 

these findings suggest that intrinsic, motivational factors, such as interest and curiosity can 

guide how infants allocate their attention in the environment (Kidd & Hayden, 2015). The 

influence of these endogenous factors is likely to vary as a function of individual differences 

in infants’ information processing abilities (Piccardi et al., 2020), as well as moment-by-

moment fluctuations in their cognitive engagement with external changes in the environment 

(Piccardi & Gliga, 2022).  
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These findings have informed the view that, in shared interactions at the end of the first year, 

infants’ ostensive communication with an adult partner might be guided by epistemic feelings 

of curiosity: actively directing their partners’ attention towards specific stimuli in order to 

receive new information about their environment (Begus et al., 2014; Begus & Southgate, 

2018). Building on previous theories of the intentionally-motivated behaviours of infants in 

social interactions (Tomasello et al., 2007), these accounts argue that infants are aware of 

how their ostensive behaviours influence the behaviours of a social partner, and use these 

cues to regulate the amount and the timing of the information they receive (Begus & 

Southgate, 2018).  

 

Beyond declarative signalling, a series of findings have revealed that, by the end of the first 

year, infants use ostensive signals interrogatively, with the aim of directly eliciting 

information from a social partner about their environment (Begus et al., 2014; Goupil et al., 

2016; Kovács et al., 2014). Engaging in shared attention episodes towards objects with an 

experimenter, 12-month-old infants have been found to increase the frequency of their 

pointing across experimental trails where the experimenter consistently provides new 

information about an object. In comparison, infants decrease their rate of pointing where 

experimenters provide information the infant already knows, or no information at all (Kovács 

et al., 2014). This replicated previous findings among infants aged 16 months (Begus et al., 

2014), and is also in line with reports that, in naturalistic interactions with their caregiver, 11-

12-month-old infants increase the rate of their pointing gestures and vocalisations, where 

caregivers are consistently and contingently responsive to these cues (Gros-Louis et al., 

2014).  
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Responding to infants’ ostensive signals has also been shown to have immediate effects on 

infant learning, possibly indicating a readiness by the infant to receive new information 

(Begus & Southgate, 2018). For example, Begus et al. (2014) have shown that, among infants 

aged 16 months, infant learning about the function of objects is better where this information 

is presented contingent to their interests. Engaging in a structured paradigm with an 

experimenter, infants were presented with 4 objects. Once infants pointed towards one of the 

four objects, the experimenter either demonstrated the function of that object, or an object to 

which the infant had not gestured towards. Recording infant actions on the demonstrated 

objects in the time after the experimental phase, infants were found to more accurately 

replicate the actions of the objects that they had pointed towards. As early as 12 months, 

infants have also been found to learn object labels better where this information is presented 

contingent on their object-directed vocalisations (Goldstein et al., 2010). These findings of 

the direct association between infant learning and the contingent placement of object labels 

relative to their cues is in line with many previous findings documenting associations 

between caregiver responsivity to infant behaviour, and later language development (Murray 

et al., 1993; Tamis-LeMonda et al., 2001).  

 

Similar to the traditional socio-pragmatic perspective, then, active learning accounts 

emphasise that, by the end of the first year, infants are proactive in creating episodes of 

shared attention with their adult partner, and, beyond this, learn better where their interests 

are responded to. However, much of this work on joint attention development and active 

ostensive signalling has been conducted using structured, experimental paradigms, where a 

researcher engages in clear, repetitive behaviours aimed at eliciting either a response to their 

initiations for shared attention in the infant, or an initiation for shared attention by the infant. 

On each experimental trial, therefore, the adult’s behaviour is spatially precise and 
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temporally stable (Yu & Smith, 2013): far from the fast-changing multi-layered complexity 

of naturalistic, free-flowing interactions (Knoblich & Sebanz, 2008; Wass et al., 2020). To 

understand the processes that support infants’ engagement in coordinated episodes of 

attention, as well as the mechanisms that support language learning, recent dynamic system 

perspectives have emphasised that we need to study social interactions in naturalistic contexts 

and at the micro-behaviural level. The dynamic systems approach and its implications to our 

understanding of the mechanisms that drive infant attention in shared interactions is outlined 

in the next section.  

 

2.6 Embodied approaches to understanding the influence of early interactions on infant 

cognition  

 

Dynamic systems approaches to understanding social interaction emphasise the role of 

sensorimotor process in driving attention and social learning. Rather than the consolidation  

of abstract representations, based on experience and cultural knowledge (Tomasello & 

Carpenter, 2007), embodied perspectives emphasise that cognition emerges through the 

interaction of an individual with their immediate environment, where mental constructs are 

generated in-the-moment through the integration of disparate and nonstationary sensorimotor 

activity (L. B. Smith, 2005; L. Smith & Gasser, 2005, p. 200). Applying this perspective to 

social interaction, dynamic system theorists propose that the fast-acting sensory-motor 

coordination of both interacting partners drives and maintains shared perceptions and 

cognitions, such that social interactions are hierarchically nested and characterised by a 

dynamic, inter-dyadic flow of information from cognition to action to sensory experience 

(Knoblich & Sebanz, 2008; Yu & Smith, 2012, 2017).  
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In very early face-to-face interactions, consistent and timely sensorimotor inputs by the 

caregiver as a function of infant behaviours are thought catalytic to the development of 

higher-order cognitive processing (L. B. Smith & Breazeal, 2007). In particular, repeated and 

consistent feedback to the production of specific infant behaviours assigns meaning to infant 

behaviour, driving the development of their understanding about the intentions of others, and 

how their own intentionally-motivated behaviours affect those of their partner (Oudeyer & 

Smith, 2016; L. B. Smith & Breazeal, 2007; L. Smith & Gasser, 2005). Indeed, even in the 

first few months of life, modulations in infant behaviours, and communicative cues elicit 

temporally contingent and functionally relevant change in caregiver behaviours (Cohn & 

Tronick, 1987; Murray, De Pascalis, Bozicevic, et al., 2016; Murray & Trevarthen, 1986, p. 

198). In very early face-to-face interactions, caregiver facial expressions frequently mirror 

and dynamically adapt to micro-second fluctuations in infant affect and vocalisations 

(Feldman, 2007; Murray, De Pascalis, Bozicevic, et al., 2016; Tronick et al., 1977), 

responding differentially to varied affective behaviours. Recording caregiver-infant face-to-

face interactions at 2 months, for example, Murray and colleagues showed that social 

expressions produced by the infant were more likely to be mirrored by the caregiver or 

marked with positive affect, compared to negative expressions, and biological movements 

(Murray, De Pascalis, Bozicevic, et al., 2016).  

 

Similarly, throughout the first year, caregivers respond to infant vocalisations with 

temporally consistent contingency (Bornstein & Azuma, 1992; Gratier et al., 2015; Jaffe et 

al., 2001; Van Egeren et al., 2001), and modulate their vocal feedback, depending on the type 

of sound produced by the infant (Albert et al., 2018; Goldstein et al., 2003; Yoo et al., 2018). 

For example, analysing day-long home recordings of caregivers and 3-month-old infants Yoo 

et al. (2018) showed that a pause-response sequence largely characterised the behaviour of 
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caregivers in the time after speech-like vocalisations produced by the infant. In comparison, 

infant cry vocalisations, defined as distresses sounds produced with negative affect, elicited 

vocal responses from the caregiver that over-lapped with the end of the vocalisation. 

Interacting in lab-based settings with infants aged 9 months, caregivers have also been shown 

to respond more often and with grater semantic complexity to more mature protophones 

produced by infants (Albert et al., 2018).  

 

Not just passively receptive to these responses, infants are sensitive to the contingencies of an 

adult partner from early in the first year. For example, at 2-3 months, where caregivers pause 

interacting with their infant after a period of free play, infants increase their frequency of 

smiles, as well as the number and duration of their vocalisations (Bigelow & Power, 2016; 

Bourvis et al., 2018), and increase the length of their vocalisations once caregivers begin 

interacting again (Bourvis et al., 2018).  Repeated experience of contingency at 3 months has 

also been shown to already influence how infants interact in novel situations (Bigelow & 

Rochat, 2006). Comparing 2-3-month-old infants’ interactions with their caregivers to where 

they interacted with a stranger, Bigelow et al. (2006) showed that infants were less 

responsive to the smiles and vocalisations of the stranger when the frequency of their 

behavioural responsivity was either greater or less frequent compared to the responsivity of 

their caregiver.  

 

2.7 Sensorimotor contingencies and joint attention at the end of the first year 

 
Recently, there has been a move towards understanding how fast-acting sensorimotor 

contingencies operate across the dyad during inter-dyadic interactions in later infancy, to 

support triadic and coordinated visual attention. Rather than focussing on the developmental 

onset of the production of ostensive communication and referential understanding 
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(Tomasello, et al., 2007), dynamic systems approaches have begun to examine the moment-

by-moment fluctuations in each individuals’ behaviour, that create and maintain episodes of 

joint attention towards a common referent (e.g. an object; Yu & Smith, 2012). This work is 

opening new avenues for understanding the inter-dyadic sensorimotor dynamics that support 

the development of intentionally-mediated communication, with important implications for 

our understanding of early language acquisition (Yu et al., 2021).  

 

In a series of recent studies conducted by Yu and Smith, micro-behavioural analysis of 

caregiver-infant behaviours during triadic play with objects at the end of the first year has 

suggested that, rather than controlled, intentionally-mediated ostensive signalling (Begus et 

al., 2014; Tomasello et al., 2007), fast-acting, sensorimotor contingencies largely drive the 

allocation and coordination of infant attention. For example, analysing the intra- and inter-

dyadic associations between caregiver and infant touch to objects and their visual attention, 

Yu and Smith (2013) showed that episodes of joint attention were largely achieved and 

perceived by infants through attending towards their own hand actions, and that of their adult 

partners’. Caregivers and infants engaged in mutual gaze for less than 10% of the interaction, 

and, whereas caregivers increased looking towards the infants’ face 2000ms before following 

the infants’ attention, infants only increased looking 200ms before jointly attending to the 

same object as their partner. Instead, infant attention was strongly associated with the hand 

actions of both partners, and coupling between their attention, and the adult’s hand actions 

markedly increased where infants followed their partners’ attention towards an abject.  

 

In a later longitudinal analysis of infants aged 12 and 18 months, Yu and Smith (2017) also 

showed that, at both ages, caregivers and infants used multiple coordination pathways to 

achieve episodes of joint attention, varying in the sequence of each individuals’ hand and eye 
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movements towards an object in the time before and just after the onset of joint attention. 

Again, at both 12 and 18 months, infants rarely followed the gaze of their partner towards the 

object, though infant-led pathways to joint attention became more common at 18 months. The 

finding that 12-18-month-old infants rarely use the gaze of their partner to co-ordinate their 

attention during triadic interactions has now been replicated across different labs, employing 

eye-tracking techniques during table-top play (Custode & Tamis-LeMonda, 2020; Franchak 

et al., 2011), as well as floor-based, free-moving interactions with their caregivers (Franchak 

et al., 2018).  

 

Challenging the view that, towards the end of the first year, infant attention is driven by 

intentionally mediated forms of communication (Tomasello et al., 2007), then, infants do not 

appear to routinely engage in active attention-sharing behaviours in naturalistic, free-flowing 

interactions. Instead, similar to observations of early face-to-face interactions (Bigelow & 

Power, 2016; Murray, De Pascalis, Bozicevic, et al., 2016), their attention is largely reactive 

to the sensorimotor coordination dynamics of the interaction: following and leading their 

partners’ attention towards objects via fast-acting, salient and visually precise object 

manipulations (Yu & Smith, 2017).  

 

Despite that infants do not look to their caregiver to identify where they are attending, jointly 

looking towards an object at the same time as the adult has been found to lead to immediate 

increases in infants’ attention towards an object. In a sample of infants aged 11 – 13 months, 

Yu and Smith (2016) tested differences in the duration of episodes of sustained attention 

(defined as unbroken infant object looks lasting 3s or longer) by the infant where their 

caregiver jointly attended towards the object, compared to where they looked towards the 

object on their own. They found that sustained attention episodes accompanied by their adult 
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partners’ gaze lasted significantly longer; a difference that could not be explained by the time 

it took caregivers to join their infants’ object look. This finding has since been replicated 

among infants aged 12 months (Abney et al., 2020; Suarez-Rivera et al., 2019), and, 

comparing joint table-top play to solo infant play, Wass et al. (2018a) have shown that infant 

attention durations during joint play are, overall, longer, compared to where infants play with 

the same objects on their own (see also McQuillan et al., 2020 for similar findings).  

 

Taken together, these micro-behavioural findings suggest that, towards the end of the first 

year, rather than the organisation of shared attentional episodes through ostensive 

communication and the establishment of shared internal representations, infant attention in 

social interaction is largely responsive to and possibly scaffolded by low-level sensory inputs 

that operate across the infant-caregiver dyad (Yu & Smith, 2013, 2017). In the next section, 

the implications of these findings to understanding early language acquisition, in the context 

of the possible mechanisms driving infant attention is considered.  

 

2.8 Implications of embodied cognitive approaches to understanding the mechanisms 

that drive infant attention and support early language acquisition 

 

That infant attention is most often focussed on objects during shared interactions is difficult 

to reconcile with the socio-pragmatic perspective on early language development that 

emphasises the role of shared intentions in creating clean referential mappings between the 

caregivers’ speech inputs and the objects to which they are attending (Lieven, 2016; 

Tomasello et al., 2007). Recent work examining micro-second relationships between infant 

gaze and caregiver speech, during online, free-flowing interactions has highlighted, instead, 

the quality of infant attention at the time of object naming, as well as the timing of object 
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labels produced by the caregiver, relative to infant attention (Yu et al., 2019; Yu & Smith, 

2012). For example, recording infant gaze behaviour with head-mounted eye trackers, Yu and 

Smith (2012) have shown that infants learnt object labels better where the caregiver provided 

an object label at a time that one object was most dominant in the infants’ field of view, and 

that caregivers most often produced labels at these moments. Associating the duration and 

timing of caregiver and infant looking behaviour with later language outcomes, the duration 

of infant attention towards objects at 12 months has been found to predict language 

development at 15 months, whilst the extent to which caregivers’ monitor their infants’ 

attention by alternating their gaze between the object and the infant at 9 months, predicts 

infant vocabulary aged 12 months (Abney et al., 2020; Yu et al., 2019).  

 

Overall, these studies suggest that infant learning is associated with child-centred factors (i.e. 

the quality of their attention to objects) and adult centred factors (the attunedness of the 

caregiver to the infants’ behaviour and their timely placement of speech inputs). But, what 

we have little understanding of, and, at the moment, little theoretical discussion of (although 

see Yu et al., 2021; Yu & Smith, 2012), is the intra- and inter-individual hierarchical 

processes that drive the child- and adult-centred factors that associate with moment-by-

moment learning. For example, the visual dominance of an object in the child’s field of view 

could be the result of the sensorimotor behaviours of the infant, higher level cognitive factors 

such as interest, or adult-led factors, such as modulations in the saliency of their behaviour 

(Yu & Smith, 2012). Nor do we understand the inter-dyadic factors that increase the duration 

of infant attention in shared interactions, and how this might support infants’ early control 

over their own attention and behaviour. In the section below, different models to 

understanding the endogenous and interactive mechanisms that drive and maintain infant 

attention in shared interactions in the context of the embodiment perspective are discussed.  
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2.9 Models of the endogenous and interactive contingencies driving and maintaining 

infant attention in shared interactions  

 

One possibility is that the dynamics of the interaction, at different levels of hierarchical 

integration, are predominantly adult-led: i.e. the behaviours of the adult largely regulate the 

allocation of infant attention, and, possibly fluctuations in infants’ endogenous attention 

control, as well as the timing of the caregiver’s speech and behavioural inputs. As mentioned 

previously, for example, caregiver’s hand actions on objects could create visual saliencies in 

the environment to which the infant is responsive (Yu & Smith, 2017).  

 

As well as overt attention capture, other covert, fast-changing processes in the caregivers’ 

speech signal could also influence infant attention on a moment-by-moment basis. For 

example, prosodic features of IDS are particularly salient, indexed by the fundamental 

frequency (F0) of the voice, which is acoustically perceived as pitch (Spinelli et al., 2017). 

The mean F0 in IDS is higher compared to ADS speech, and the width of F0 variation within 

and between utterances is greater (Soderstrom, 2007).  In controlled looking-time paradigms 

variation in the fundamental frequency of speech has been shown to influence infant attention 

more than other features of IDS, as well as affecting infants’ own vocal production (Cooper 

& Aslin, 1994). In a recent study, Nencheva et al. (2019) have also shown that infant arousal 

synchrony to a speech stimulus (indexed by inter-participant pupil synchrony) was higher 

when they listened to rising and bell shaped F0 contours, compared to where they heard flat, 

or falling contours, and greater arousal synchrony predicted better learning.  
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Whilst little work has examined associations between infant attention and fluctuations in 

caregiver F0 on a moment-by-moment basis, early work conducted by Stern showed that, 

during interaction with infants aged 2-6 months, mothers used rising contours to re-engage 

infant attention toward their face, and bell-shaped contours to maintain infant positive affect 

(Stern et al., 1983). It is possible that, during triadic interactions, caregivers modulate the 

saliency of their voice to capture and maintain infant attention, and to highlight and regulate 

moments of information transfer (Wass et al., 2018a). Similarly, beyond the environmental 

saliencies created through their actions on objects (Yu & Smith, 2013, 2017), the temporal 

patterning of caregiver body and hand movement could also operate as an exogenous 

mechanism of attention capture (Meyer et al., 2022). For example, in an experimental 

paradigm, Meyer et al. (2022) recently showed that variability in the hand movements of an 

experimenter associated with increased cognitive engagement among infants aged 15 months 

(as indexed by infant electroencephalography (EEG) activity, occurring at theta frequencies 

(4-5Hz)); and that variability, rather than the amplitude of the adults’ hand and arm 

movements, predicted greater infant engagement.  

 

Within this framework, it is possible that, rather than repeated and reactive contingent 

responsivity to isolated behaviours, temporal dependency between infant and caregiver 

attention is driven by infant behaviours becoming periodically coupled to the behavioural 

modulations of their partner (Wass et al., 2022). Similar to inter-dyadic patterns of 

vocalisations in adults and marmoset monkeys (Takahashi et al., 2013; Wilson & Wilson, 

2005), in early infant-caregiver interactions, vocal pauses in one partner’s vocalisations can 

be predicted from those of the other (Gratier et al., 2015; Jaffe et al., 2001), and, during face-

to-face interactions at the end of the first year, caregiver-infant facial affects become 

consistently temporally aligned (Feldman et al., 1999). Oscillatory entrainment by the infant 
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to their caregivers’ behaviour could, in particular, support the organisation and stability of 

their own attention and sensorimotor behaviours, as well as driving the development of 

expectancies and predictions related to the inter-dyadic contingencies of the interaction (K. J. 

Friston, 2019; S. Wass, 2022).   

 

Alternatively, rather than leading the infants’ attention, it could be that the adults’ role is in  

monitoring and contingently responding to re-orientations in their infant’s gaze. In following 

the focus of their infant’s attention at moments that they reorient towards a new object, the 

caregiver ‘catches’ and extends infant attention with reactive and dynamic change in their 

salient ostensive behaviours, which infants are responsive to (Yu & Smith, 2012, 2016). 

Indeed, we know that at the macro-level, caregiver responsivity to their infant’s behavioural 

cues and vocalisations associates with better infant learning and language outcomes 

(Bornstein & Azuma, 2020; Tamis-LeMonda et al., 2001). In more recent work, the 

behavioural contingency of the caregiver to micro-dynamic shifts in infant attention has been 

found to increase the duration and quality of infant attention to objects in shared interaction 

(Miller & Gros-Louis, 2013; Yu & Smith, 2012). Examining the relationship between the 

micro-second leader-follower dynamics and infant learning, Yu and Smith (2012) also 

showed that moment-to-moment object name learning was better where caregivers’ presented 

object labels contingent on infant-led looks towards objects.   

 

In this alternative infant-led perspective, we need to consider the mechanisms that might 

drive the timing of shifts in infant attention, to which adults respond. One possibility is that 

endogenous, motivational or epistemic processes, such as interest, cause re-orientations in 

infant attention (Kidd et al., 2012). Though infants at the end of the first year may not 

routinely engage in active attention-sharing behaviours (Begus et al., 2014), it is nevertheless 
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possible that they attend towards the things that interest them, and learn better from their 

caregivers’ inputs where their attention is intrinsically guided (Kidd et al., 2012; 2014). An 

alternative possibility, however, is that, rather than motivational factors, endogenous 

regulatory mechanisms drive temporally consistent shifts in infant attention (Nuthmann & 

Henderson, 2010; Stallworthy et al., 2020), and the contingent responsivity of the adult 

partner serves, in places, to extend the durations of infant attention through allostatic inter-

dyadic process (McQuillan et al., 2020; Wass et al., 2018a; Yu & Smith, 2016). In particular, 

the fast-changing behaviours of the caregiver, relative to the slow-moving behaviours of their 

infants, could serve as an up-regulatory mechanism: catching infant attention and increasing 

their engagement through amplificatory mechanisms that operate across the dyad (Abney et 

al., 2020; Gratier et al., 2015; Wass, 2021a). Supporting this perspective to some extent, 

Suarez-Rivera et al. (2019) showed that longer sustained attention episodes by infants during 

early interactions were associated with more frequent multi-modal behavioural inputs by the 

caregiver (Suarez-Rivera et al., 2019). Caregiver speech inputs to infants where they are 

successful in catching and scaffolding infant attention could be particularly important to 

driving early language development.   

 

Though micro-behavioural analyses of caregiver-infant interaction have attempted to 

delineate between exogenous and endogenous influences on infant attention, as well as their 

interaction, in maintaining infant attention (Suarez-Rivera et al., 2019; Wass et al., 2018a), 

using behavioural methods alone, it impossible to examine this fully ( Wass et al., 2020). The 

next section outlines the potential of neurocognitive methods to furthering our understanding 

of the mechanisms that drive infant attention in early infant-caregiver interactions.   
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2.10 Using neurocognitive methods to understand the mechanisms that drive infant 

attention during naturalistic free-flowing interactions  

 

Understanding the mechanisms that drive, and are elicited by, moment-to-moment inter-

dyadic contingencies in naturalistic social interactions is difficult using behavioural methods 

alone, given that similar behaviours (e.g. looks towards objects and partners) can occur 

across different levels of attentional and intentional engagement (Siposova & Carpenter, 

2019; Wass et al., 2018a), and, fluctuations in the relationship between endogenous 

processing and attention could be driven by both exogenous influence (i.e. factors external to 

the infant) and intrinsically-motivated process (those factors internal to the infant (e.g. 

epistemic reasoning (Kidd et al., 2012), or interest)). Using neurocognitive methods to 

examine associations between brain and behaviour during online interactions provides a way 

to more fully understand the hierarchically organised processes that operate across the dyad 

during early interactions, and how these processes dynamically structure the allocation of 

infant attention and influence learning at the sub-second scale (Hamilton, 2021; Redcay et al., 

2012; Sebanz & Knoblich, 2009; Wass et al., 2020).   

 

In recent years, the application of neurocognitive methods to examining the dynamics of 

social interactions has become increasingly popular among adult populations (Hamilton, 

2021; Hasson et al., 2012), and more recently, in caregiver-infant dyads (Leong, Byrne, 

Clackson, Georgieva, et al., 2017). Similar to much of the behavioural research conducted on 

early joint attention development, work examining the neurocognitive mechanisms 

supporting early social interaction and communication has largely been conducted in 

controlled experimental paradigms, where the neural activity of participants is recorded in 

response to pre-recorded and live experimenters engaging in socially ostensive signalling 
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(Parise & Csibra, 2013; Senju et al., 2006). This work has been insightful in demonstrating 

neural responsivity by infants to ostensive cues from as early as 2-3 months, as well as giving 

insight into socially guided information encoding processes that support early learning 

(Begus et al., 2016). Yet, it is clear from the micro-behavioural work outlined above that, to 

understand the mechanisms that control infant attention, and dynamically support learning, 

we need to record infant brain activity during reciprocal free-flowing interactions (Yu & 

Smith, 2017).  

 

Electroencephalography (EEG) measures electrical brain activity at the sub-second scale, and 

can be decomposed into different oscillatory frequency bands: delta (1-3Hz), theta (3-6Hz), 

alpha (6-9Hz), beta (9-20Hz) and gamma (> 20Hz), which are generally slower for infants, 

compared to the functionally equivalent bands examined in adults (Georgieva et al., 2020; 

Orekhova et al., 2006). Activity at different frequencies has been associated with a wide 

range of cognitive processes in early infancy, including attention (Xie et al., 2018), the 

processing of ostensive social signals (Senju et al., 2006), action imitation and production (C. 

D. Monroy et al., 2019), and object recognition (Begus et al., 2015). Infants’ oscillatory 

activity occurring at theta and alpha frequencies has been extensively investigated: 

associating with attentional and encoding processes particularly relevant to understanding the 

intra- and inter-individual dynamics that drive and maintain infant attention, and inter-dyadic 

entrainment in shared interactions.  

 

In infancy theta activity (occurring around 3-6Hz) has been associated with endogenously 

controlled episodes of attention, as well as information encoding processes (Begus & 

Bonawitz, 2020). For example, Orekhova et al. (1999) compared infant EEG activity during 

periods of anticipatory attention, where infants anticipated the re-appearance of an 
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experimenter from behind a screen during a peak-a-boo game, to a condition where infant 

attention was externally elicited by an object appearing abruptly in the infant’s visual field. 

Theta activity during episodes of anticipatory attention was significantly higher, compared to 

episodes of externally-driven attention, and infants’ ability to maintain their attention during 

these periods of anticipatory attention correlated with infant theta activity occurring over 

fronto-central electrodes. The association between endogenously-driven episodes of sustained 

attention and increases in infant theta activity has been further supported in both-screen-

based, and naturalistic object play (Orekhova, 1999; Wass et al., 2018; Xie et al., 2018). 

Recording infant EEG activity whilst 6-12-month-old infants watched cartoon videos, Xie et 

al. (2018) showed that infant theta activity fluctuated over the duration of an attention 

episode, such that activity over fronto-central electrodes increased where infants entered 

heart-rate defined periods of sustained attention. This effect reached significance at 10 

months. Corresponding to this finding, during solitary naturalistic play with objects, infant 

theta activity over central electrodes in the time before and just after infants look towards an 

object has been found to predict the duration of infant attention towards that object 

(Orekhova et al., 2006; Wass et al., 2018b).  

 

As well as associating with endogenously controlled patterns of attention in early infancy, 

increases in theta activity also correlate with information encoding processes. For example, 

averaging infant EEG activity over each object-directed attention episode during free-moving 

object exploration, Begus et al. (2015) have shown that infants’ later recognition of the same 

objects was better for those that elicited greater increases in fronto-central theta activity. In 

12-month-old infants, theta activity has also been associated with an expectation to receive 

information from an individual that they perceive as being informative (Begus et al., 2016). 

The extent to which these findings implicate theta in leaning processes in infancy is unclear 
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(cf. Begus & Bonawitz, 2020), but they nevertheless add further support to the association 

between theta activity and endogenously controlled attention. Given this association, theta 

power is a particularly informative oscillatory rhythm to study in naturalistic interactions to 

understand if, and where, infant attention is endogenously guided, and how fluctuations in 

endogenous neural activity associate with the interactive dynamics of the interaction ( Wass 

et al., 2018b). 

 

Alpha activity occurring at 8-12Hz in adults, and around 6-9Hz in infancy has also been 

extensively studied relative to attentional processes, and linked, in particular, to patterns of 

online predictive processing (C. D. Monroy et al., 2019; Rayson et al., 2019). In adults, alpha 

desychronisation (i.e. a reduction in alpha activity) is thought to represent release from 

inhibition during sensory information processing (Klimesch et al., 2007). Reduced alpha 

activity has been identified at the onset of a predicted stimulus (Thut, 2006) and, in social 

paradigms, predicting the outcome of another persons’ action is associated with alpha 

desychronisation over pre-central motor cortices (Hari et al., 2015; Kilner et al., 2004; 

Muthukumaraswamy et al., 2004). In infants similar patterns of alpha suppression (6-9Hz) 

have been shown over motor areas when observing the predicted outcome of another 

individuals’ manual behaviour (C. D. Monroy et al., 2019, 2019; Southgate et al., 2010), and 

has even been associated with infants’ learning of predictable regularities when viewing 

repeated behavioural sequencies (C. D. Monroy et al., 2019). Examining change in 

oscillatory activity at alpha frequencies around specific behavioural events in an interaction 

could therefore be particularly informative to our understanding of where infants are 

predicting and encoding the behavioural contingencies of their partner. In fact, one recent 

study, conducted in a controlled experimental setting, has shown that when a pre-recorded 

adult-experimenter follows an infant’s gaze towards a cued object presented on a screen, 
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infants aged 9 months showed greater reduction in EEG activity at alpha frequencies, 

compared to a condition where their gaze was not followed (Rayson et al., 2019). Whether 

similar patterns of neural activity associate with the online contingencies of naturalistic, free-

flowing interactions is yet to be investigated.  

 

To examine associations between infant neural oscillatory activity and their attention or 

sensitivity to the behaviours of their partner, event-locked and continuous methods of 

analysis can be employed (Begus et al., 2016; Wass et al., 2018b). In studies where the 

neurocognitive mechanisms of infant attention are studied in isolation, it is common to event-

lock neural activity to a specific behavioural event, such as the direct eye gaze of a pre-

recorded experimenter, and analyse changes in neural oscillatory activity around these events, 

using time-frequency or averaging methods (Parise & Csibra, 2013). In shared interactions 

the same approach can be taken to compare differences in neural activity occurring in the 

time just before and after behaviourally defined inter-dyadic moments (e.g. mutual vs. non-

mutual gaze; adult- vs. infant-led episodes of shared attention), or over the duration of an 

attention episode.  

 

In continuous methods of analysis, the relationship between infants’ EEG activity and the 

behavioural time series of one or both interacting partners is assessed (Piazza et al., 2018; 

Wass et al., 2018b). This method of analysis involves computing the association between 

infant EEG activity and a continuous behavioural signal over a range of time lags in order to 

assess forwards- and backward-predictive relationships between the signals. In this way intra-

individual associations between fluctuations in infants’ own brain activity and modulations in 

their attention can be assessed: are, for example, longer infant look durations forward-

predicted by increased in their own endogenous neural activity. Critically, inter-individual 
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dynamics can also be examined. For example, recording fNIRS from 9-month-old infants 

whilst they engaged in shared interactions with their adult partner, Piazza et al. (2018) 

showed that fluctuations in infants’ pre-frontal cortex activity dynamically forward-predicted 

modulations in the fundamental frequency of their caregiver’s speech.  

 

Examining oscillatory structures in caregiver behavioural signals, it is also possible to assess 

oscillatory entrainment (see previous section) between infants’ neural activity and the 

behavioural time-series of their partner. In particular, slow varying amplitude modulations in 

the amplitude envelope of adult- and infant-directed speech oscillate at delta, theta and 

gamma-rate frequencies, corresponding to the stress, syllabic and phonetic patterning of the 

phonological information in speech (Goswami & Leong, 2013; Leong & Goswami, 2015). 

Neural entrainment to the amplitude envelope of the speech signal has been extensively 

investigated in adults, where concurrent entrainment to theta-rate frequencies is thought to be 

particularly important to speech processing and intelligibility (Luo & Poeppel, 2007).  Recent 

work with infants has also shown neural entrainment at delta and theta frequencies to pre-

recorded sung nursery rhymes (Attaheri et al., 2022), as well as IDS (Jessen et al., 2019; 

Kalashnikova et al., 2018). Examining speech-brain entrainment during naturalistic free-

flowing interactions is particularly important to informing our understanding of early 

language acquisition and inter-dyadic attention, in opening avenues to test how early 

phonological processing drives and is driven by intra- and inter-personal attentional process, 

as well as its association with the timing and complexity of the caregivers’ semantic inputs 

(Nencheva & Lew-Williams, 2022; Yu & Smith, 2012).   
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2.11 Summary 

 

In summary, micro-behavioural work conducted in naturalistic settings has shown that infant 

attention is largely dependent on the sensorimotor contingencies of early interaction, and 

attending with an adult partner leads to immediate increases in infant attentiveness and 

learning (Yu & Smith, 2013, 2016, 2017). To understand the mechanisms guiding infant 

attention and supporting inter-dyadic behavioural coordination, however, we need to record 

infant neural activity at the sub-second scale and examine associations between their 

endogenous oscillatory activity and inter-dyadic patterns of attention and behaviour.  
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CHAPTER 3 - Proactive or reactive? Neural oscillatory insight 

into the leader-follower dynamics of early infant-caregiver 

interaction 

 

This chapter is a publication of the original article examining infants’ neural and behavioural 

activity in the time before and after infants either lead or follow their partners’ attention 

during an interaction, to test whether infants play a proactive role in creating and maintaining 

episodes of mutual attention during naturalistic interactions at the end of the first year 

(Phillips et al., in press). Subheadings, figure placement, figure and table style, and citation 

style have been adapted to conform to the thesis format. The supplementary materials for this 

chapter are available in Appendix A.  

 

Abstract  

 

We know that infants’ ability to coordinate attention with others towards the end of the first 

year is fundamental to language acquisition and social cognition. Yet, we understand little 

about the neural and cognitive mechanisms driving infant attention in shared interaction: do 

infants play a proactive role in creating episodes of joint attention? Recording EEG from 12-

month-old infants whilst they engaged in table-top play with their caregiver, we examined the 

communicative behaviours and neural activity preceding and following infant- vs. adult-led 

joint attention. Infant-led episodes of joint attention appeared largely reactive: they were not 

associated with increased theta power, a neural marker of endogenously driven attention, and 

infants did not increase their ostensive signals before the initiation.  Infants were, however, 

sensitive to whether their initiations were responded to. When caregivers joined their 
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attentional focus, infants showed increased alpha suppression, a pattern of neural activity 

associated with predictive processing. Our results suggest that at 10-12 months, infants are 

not routinely proactive in creating joint attention episodes yet. They do, however, anticipate 

behavioural contingency, a potentially foundational mechanism for the emergence of 

intentional communication.  

 

3.1 Introduction  

 

Temporal and spatial coordination of one’s gaze with another’s, or joint attention, is 

fundamental to successful social interaction and shared cognition (Tomasello et al., 2005). 

Shared perception, afforded by joint attention, is thought to form the basis of shared 

intentions and human-specific forms of collective actions (Frith & Frith, 2007; Sebanz & 

Knoblich, 2009). The ability to engage in reciprocally mediated joint attention, where both 

partners lead and follow each others’ attention, develops towards the end of the first year, and 

is a key milestone in developmental trajectories of language learning and social cognition 

(Carpenter et al., 1998; Donnellan et al., 2020; Iverson & Goldin-Meadow, 2005). A 

distinction is made between ‘mutual’ and ‘shared’ joint attention. The former involves two 

individuals mutually attending to the same environmental stimulus together, at the same time; 

to be considered shared attention, however, mutual attention must be intentional – i.e. the 

partner who leads the other’s attention towards a stimulus checks that the other partner has 

perceived it (e.g. by checking the partner’s gaze), and the follower communicates that 

attention is shared (Siposova & Carpenter, 2019).  

 

The onset of intentional, proactive communication is debated (Donnellan et al., 2020), but a 

popular view has been that, already by the end of the first year, infants achieve episodes of 
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joint attention through the establishment of shared intentionality; using ostensive signals 

deliberately, to direct and share the attention of a communicative partner (Donnellan et al., 

2020; Tomasello et al., 2005, 2007). For example, 9-12-month-old infants are thought to use 

declarative gestures and vocalisations to direct the attention of an experimenter (Carpenter et 

al., 1998), and modify their behaviour depending on their success (Liszkowski, Albrecht, et 

al., 2008; Liszkowski et al., 2004).  It is argued that infants’ ability to proactively initiate and 

engage in triadic forms of shared attention towards the end of the first year is catalytic to 

early language acquisition and socio-cognitive learning, in creating a joint attentional frame 

where the focus and meaning of the adult partner’s communication is not only shared 

between the adult and the infant, but also common ground between them (i.e., both partners 

are attending to the same thing, and they both know that the other partner is attending to the 

same thing as them (Siposova & Carpenter, 2019; Tomasello et al., 2007)). More recently, it 

has been suggested that infants initiate joint attention, not only to share attention, but to 

directly elicit information from a social partner about their environment: communicating 

intentionally and actively to regulate when and how they learn (Begus & Southgate, 2018). 

For example, infants aged 12-months point in an interrogative manner (Begus et al., 2014; 

Kovács et al., 2014), and, by 20-months, they look towards their caregiver to ask for help 

when uncertain (Goupil et al., 2016).  

 

However, much previous work on joint attention development has been conducted using 

structured, experimental paradigms, where a researcher engages in clear, repetitive 

behaviours aimed at eliciting either a response to their initiations for shared attention in the 

infant, or an initiation for shared attention by the infant. On each experimental trial, therefore, 

the adult’s behaviour is spatially precise and temporally stable (Yu & Smith, 2013): far from 

the fast-changing multi-layered complexity of naturalistic, free-flowing interactions (Sebanz 
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& Knoblich, 2009; Wass et al., 2018a; Wass et al., 2020). This saliency and predictability 

may help infants deploy specific “communicative” behaviours at an age where they would 

not necessarily do so spontaneously during naturalistic interactions with their caregivers, and 

without necessarily grasping the communicative nature of these behaviours yet.  That is, over 

the course of the trial-by-trial repetitions, infants might learn that a change in their behaviour 

affects change in the experimenter, giving rise to a behavioural response otherwise absent in 

sporadic, isolated, naturalistic contexts.  

 

Consistent with this idea, recent micro-behavioural analysis of caregiver-infant table-top play 

has shown that, in fact, during naturalistic interactions at the end of the first year, infants 

rarely engage in active attention-sharing behaviours. For instance, they have been found to 

look to their caregivers infrequently (Wass et al., 2018a; Yu & Smith, 2013, 2017), and check 

the focus of their partners’ gaze before following their attention less than 10% of the time 

(Yu & Smith, 2013). Instead of routinely deploying communicative behaviours, infants at this 

age most often look directly towards objects, and join their caregiver’s gaze through 

attending towards the adults’ hands, as they manipulate the attended object (Yu & Smith, 

2013, 2017). Infrequent looks to the caregivers’ face by 13-14-month-old infants has also 

been observed during free-moving, naturalistic interactions, both in laboratory settings, and 

home-based recordings (Custode & Tamis-LeMonda, 2020; Franchak et al., 2011).   

 

These findings from naturalistic interactions challenge the view that, towards the end of the 

first year, joint attention is already frequently achieved through proactive communication 

from the infant (i.e. using ones’ own gaze to signal communicative intention, and using 

partner gaze to infer intention), and suggest that, at this point, shifts in infant attention might 

instead be mostly reactive to the behaviours of their partner. That infant attention is 
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predominantly reactive during online social interaction has important implications for our 

current understanding of the learning mechanisms involved in the development of joint 

attention, and how these mechanisms support language acquisition, as well as early socio-

cognitive skills (Yu & Smith, 2012).  

 

However, understanding how joint attention is established in caregiver-infant dyads, and 

addressing the mechanisms driving infant attention in shared interaction, is difficult using 

behavioural methods alone. This is because similar behaviours (e.g., looks towards objects or 

partners) can occur across different levels of attentional and intentional engagement 

(Siposova & Carpenter, 2019; Wass et al., 2018a). Electroencephalography (EEG) provides a 

method to explore sub-second changes in neural activity at different oscillatory frequencies, 

which have previously been associated with broad mechanisms of cognitive engagement, in 

infancy and adulthood (Wass et al., 2020). Comparing EEG activity before, after and during 

specific inter-dyadic moments in a free-flowing interaction thus allows insight into the fast-

changing cognitive processes that govern how each partner’s attention is allocated.  

 

Theta activity (3-6Hz) is an oscillatory rhythm associated with endogenously driven attention 

and information-encoding processes in early infancy (Begus & Bonawitz, 2020). In 

particular, EEG activity in the theta range has been found to increase over fronto-central 

electrodes during episodes of endogenously controlled attention. For example, theta activity 

increases where infants anticipate the next action of an experimenter (Orekhova et al., 1999), 

and whilst 10-12 month-old infants view cartoon videos, theta activity increases over frontal 

electrodes during heart-rate defined periods of sustained attention (Xie et al., 2018). Both 

anticipatory looking and engaging in bouts of sustained attention rely on infants’ skill in 

endogenously controlling how their attention is allocated in the environment. Corresponding 
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to this, fronto-central theta activity increases during self-guided object exploration, and theta 

activity occurring in the time before infants look towards an object has been found to predict 

the length of time infants pay attention to that object during solitary play (Orekhova et al., 

2006; Wass et al., 2018b).   

 

We hypothesised that, if controlled top-down processes drive infant attention when they lead 

their partner’s attention towards an object, theta activity would increase in the time-window 

preceding infant-initiated looks to mutual attention, compared to adult-led looks. To explore 

whether communicative signalling necessary for shared joint attention (Siposova & 

Carpenter, 2019) also preceded moments of infant-led mutual attention, we compared the 

probability of infants looking to their partner or vocalising in the time before look onset. 

Based on findings from experimental paradigms, an increase in ostensive signalling before 

infant-led attention was expected (Liszkowski, Albrecht, et al., 2008; Liszkowski et al., 

2004). As a secondary research question, we also examined whether proactive engagement 

with their partner in the time before an infant-led look affected whether the look was 

followed by the caregiver. It was hypothesised that infant theta activity and their use of 

ostensive signals would increase in the time before infant-led looks to mutual attention, 

compared to nonmutual attention.  

 

A key process involved in the deliberate and intentional re-orientation of a social-partners’ 

attention in shared interaction, is the anticipation of the partner’s response in the time after 

the initiation (Hamilton, 2021; Hasson & Frith, 2016; Konvalinka & Roepstorff, 2012; 

Siposova & Carpenter, 2019). We therefore also compared infant neural oscillatory activity 

and ostensive signalling occurring immediately after the onset of infant- and adult-led looks 

to mutual attention. Naturalistic, observational studies have shown that infants are sensitive 
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to the contingency of an adult partner. For example, responding contingently to an infant’s 

gestures immediately improves the quality and quantity of the attention that they pay to 

objects (Mason, 2019; Mason et al., 2019); and when caregivers behave redirectively (i.e. 

non-contingently), infants’ visual attention durations immediately decrease (Miller et al., 

2018; Miller & Gros-Louis, 2013). To our knowledge, however, no previous work has 

investigated whether infants proactively anticipate, or predict, a response by the partner to 

their behaviour, i.e. do they check whether their partner has perceived their new attentional 

focus, and communicate about it, once attention is shared (Siposova & Carpenter, 2019).  

 

As well as examining infants’ behavioural cues signalling the anticipation of joint attention 

after leading their partner’s attention, here, we also investigate whether we can identify 

neural markers of predictive processing in the time following gaze onset. In adults, alpha 

desychronisation is thought to represent release from inhibition during sensory information 

processing (Klimesch et al., 2007). Reduced alpha activity has been identified at the onset of 

a predicted stimulus (Thut, 2006) and, in social paradigms, predicting the outcome of another 

persons’ action is associated with alpha desychronisation over pre-central motor cortices 

(Hari et al., 1998; Kilner et al., 2004; Muthukumaraswamy et al., 2004). In infancy, similar 

patterns of alpha suppression (6-9Hz) have been shown over motor areas when observing the 

predicted outcome of another individuals’ manual behaviour (M. Meyer et al., 2016; C. 

Monroy et al., 2021; Southgate et al., 2010), and one recent study also showed alpha 

desynchronisation over central-parietal areas when infants viewed the behavioural response 

of a video-recorded experimenter to their own behaviour, who followed the infant’s gaze 

towards an object (Rayson et al., 2019) (see also ref. Hoehl et al., 2014)). If infants anticipate 

the behavioural response of their partner where they lead a look towards an object, alpha 

desychronisation would be expected to occur in the time after infant-led looks to mutual 
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attention; with infants encoding the predicted outcome of their initiation towards an object, 

on their partner’s behaviour (i.e. following their attention).  

 

Based on the view that infants deliberately and proactively initiate shared attention with their 

partner during social interaction (Tomasello et al., 2005, 2007), we hypothesised that infant 

looks to their partner’s face would increase in the time after infant-led looks to mutual 

attention (i.e. that they would check whether their partner had followed their attention 

towards a new object of interest). It was further hypothesised that infant vocalisations would 

show some increase in the time after infant- and adult-led looks to mutual attention, with the 

infant communicating, intentionally, to their partner about the shared focus of attention 

(Siposova & Carpenter, 2019; Tomasello et al., 2007). Consistent with previous 

neurophysiological findings (Hoehl et al., 2014; M. Meyer et al., 2016; C. Monroy et al., 

2021; Rayson et al., 2019; Southgate et al., 2010), we hypothesised that, if infants anticipate 

the behavioural contingency of their adult partner where they lead attention towards an 

object, decreased oscillatory activity in the alpha range (6-9Hz) would occur in the time after 

infant-initiated looks to mutual attention, compared to adult-initiated looks, and infant-

initiated looks to nonmutual attention. 

 

3.2 Methods 

 

3.2.1 Participants 

 

Fifty-eight caregiver-infant dyads took part in the study; 37 participants contributed useable 

data (13 excluded due to recording error, 2 excluded due to infant fussiness, 6 excluded due 

to poor quality infant EEG (see artifact rejection and pre-processing section for more 
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information on EEG exclusion criteria)). Power calculations estimated in the Leverhulme 

Trust grant (RPG-2018-281) suggested that a sample of this size should offer >96% power 

for two-tailed significance of 0.05. The final sample included 18 females and 19 males; mean 

age, 11.12 months (SD=1.33). All caregivers were female. Participants were recruited 

through baby groups and Children’s’ Centers in the Boroughs of Newham and Tower 

Hamlets, as well as through online platforms such as Facebook, Twitter and Instagram. 

Written informed consent was obtained from all participants before taking part in the study, 

and consent to publish was obtained for all identifiable images used. All experimental 

procedures were reviewed and approved by the University of East London Ethics Committee.  

 

3.2.2 Experimental set-up 

 

Caregivers and infants were seated facing each other on opposite sides of a 65cm wide table. 

Infants were seated in a high-chair, within easy reach of the toys (see Figure 3.1c). The 

shared toy play comprised two sections, with a different set of toys in each section, each 

lasting ~5 minutes each. Two different sets of three small, age-appropriate toys were used in 

each section; this number was chosen to encourage caregiver and infant attention to move 

between the objects, whilst leaving the table uncluttered enough for caregiver and infant gaze 

behaviour to be accurately recorded (cf. Yu & Smith, 2017).  

 

At the beginning of the play session, a researcher placed the toys on the table, in the same 

order for each participant, and asked the caregiver to play with their infant just as they would 

at home. Both researchers stayed behind a screen out of view of caregiver and infant, except 

for the short break between play sessions. The mean length of joint toy play recorded, 

combining the first and second play sections was 9.92 minutes (SD=2.31). 
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3.2.3 Equipment 

 

EEG signals were recorded using a 32-channel BioSemi gel-based ActiveTwo system with a 

sampling rate of 512Hz with no online filtering using Actiview Software. The interaction was 

filmed using three Canon LEGRIA HF R806 camcorders recording at 50 fps. Caregiver and 

infant vocalisations were also recorded throughout the play session, using a ZOOM H4n Pro 

Handy Recorder and Sennheiner EW 112P G4-R receiver.  

 

Two cameras faced the infant: one placed on the left of the caregiver, and one on the right 

(see Figure 3.1c). Cameras were placed so that the infant’s gaze and the three objects placed 

on the table were clearly visible, as well as a side-view of the caregiver’s torso and head. One 

camera faced the caregiver, positioned just behind the left or right side of the infant’s high-

chair (counter-balanced across participants). One microphone was attached to the caregiver’s 

clothing and the other to the infant’s high-chair.  

 

Caregiver and infant cameras were synchronised to the EEG via radio frequency (RF) 

receiver LED boxes attached to each camera. The RF boxes simultaneously received trigger 

signals from a single source (computer running MATLAB) at the beginning of each play 

section, and concurrently emitted light impulses, visible in each camera. Microphone data 

was synchronised with the infants’ video stream via a xylophone ding recorded in the infant 

camera and both microphones, which was hand identified in the recordings by trained coders. 

All systems were extensively tested and found to be free of latency and drift between EEG, 

camera and microphone to an accuracy of +/- 20 ms.  
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Figure 3. 1 Example data collected during one five minute interaction for one dyad, 

camera angles used for coding and EEG montage.  a) Raw data sample, showing (from top) 

infant EEG over fronto-central electrodes, after pre-processing, infant gaze behaviour, infant 

vocalisations, adult EEG over fronto-central electrodes, adult gaze behaviour, adult vocalisations. b) 

Example of interpolated looks (thin black lines) superimposed on caregiver and infant looking 

behaviour before interpolation (thick grey lines). Coloured dashed lined indicate examples of different 

look types in the infant gaze time series (top).  Spike trains for infant and caregiver looks, coloured 

according to look type (bottom). c) Example camera angles for caregiver and infant (right and left), as 

well as zoomed-in images of caregiver and infant faces, used for coding. d) Topographical map 

showing electrode locations on the bio-semi 32-cap; fronto-central electrodes included in the infant 

time-frequency analysis are highlighted in orange (AF3, AF4, FC1, FC2, F3, F4, Fz). 
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3.2.4 Video coding 

 

The visual attention of caregiver and infant was manually coded using custom-built 

MATLAB scripts that provided a zoomed-in image of caregiver and infant faces (see Figure 

3.1c). Coders indicated the start frame (i.e. to the closest 20ms, at 50fps) that caregiver or 

infant looked to one of the three objects, to their partner, or looked away from the objects or 

their partner (i.e. became inattentive). Partner looks included all looks to the partner’s face; 

looks to any other parts of the body or the cap were coded as inattentive. Periods where the 

researcher was within camera frame were marked as uncodable, as well as instances where 

the caregiver or infant gaze was blocked or obscured by an object, or their eyes were outside 

the camera frame. Video coding was completed by two coders, who were trained by the first 

author. Inter-rater reliability analysis on 10% of coded interactions (conducted on either play 

section 1 or play section 2), dividing data into 20ms bins, indicated strong reliability between 

coders (kappa=0.9 for caregiver coding and kappa=0.8 for infant coding).  

 

3.2.5 Vocalisation coding 

 

The onset and offset times of caregiver and infant vocalisations were coded using custom-

built MATLAB scripts that allowed coders to identify the onset and offset of a vocalisation 

based on the spectrogram, as well as auditory sound. A vocalisation was defined as a 

continuous sound produced by the caregiver or infant, with a pause less than 500ms. Due to 

the labour-intensive nature of the vocalisation coding, vocal coding was completed for a sub-

sample of the caregiver-infant dyads (n=19). Inter-rater reliability on 10% of coded 

interactions (conducted on either play section 1 or play section 2), dividing data into 1ms 

bins, again indicated strong reliability between coders (kappa=0.8).  
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3.2.6 Behavioural look extraction and analysis 

 

3.2.6.1 Data pre-processing 

 

The aim of our analysis was to identify moments where the infant’s attention transitioned 

from one play object to another, and to examine whether the infant or the caregiver initiated 

the transition. Before doing this, however, we first interpolated through infant and caregiver 

looks to their partner. This is because, as shown in Figure 3.1a, 3.1b, during periods of 

concurrent looking towards an object, caregivers, and, to a lesser extent, infants, alternated 

their attention frequently between the object and their partner. Without interpolation, each 

subsequent look back to the object would be classified as a separate follower look to the 

object. This procedure thus allowed us to accurately identify moments in the interaction 

where the infant was leading and following their partner’s attention, while considering the 

dynamic nature of joint attention documented in previous studies (Yu & Smith, 2013).    

 

Interpolation involved identifying moments where the caregiver or infant looked up to their 

partner and then interpolating through that look, so that the partner look became an extension 

of the preceding object look. No threshold was set for interpolation: a new look was 

considered to have started at the beginning of each new object look (see Figure 3.1b). After 

interpolation, the first and last frame of all attention episodes were extracted. Infant object 

looks were categorised into adult-led and infant-led looks. Infant-led looks were subdivided 

into two further categories: infant-led looks to mutual and nonmutual attention (see Table 1 

for description of each look category). Looks that followed or preceded uncodable gaze 

behaviour were excluded from analysis, as well as leader looks where the partner’s gaze in 

the time after look onset preceded an uncodable period.   
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Table 1.1 Definition of infant attention episode categories. 

 

3.2.6.2 Cluster-based permutation analysis  

 

To test for significant differences in the likelihood of ostensive signals during the time-

periods before and after infant-led and adult-led looks, a permutation-based temporal 

clustering analysis was conducted (Maris & Oostenveld, 2007). This approach controls for 

family-wise error rate using a non-parametric Monte Carlo method. For each comparison, a t-

statistic was independently calculated at each frame, using a paired t-test, and significant 

effects were thresholded at an alpha level of 0.05 (two-tailed). Clusters constituted 

consecutive frames with significant effects. One thousand permutations were then conducted 

whereby one data stream was shuffled randomly in time, and the largest cluster of contiguous 

significant effects identified. The Monte Carlo estimate of the permutation p-value was 

calculated as the proportion of random clusters longer than the clusters found in the observed 

data. Contiguous clusters >95th centile were considered significant, corresponding to a critical 

alpha level of 0.05 (two-sided test).   

 

Infant-led looks to mutual attention The start of the attention episode was taken from the 
frame that the infant first shifted their gaze towards an 
object that the parent was not already looking at, and 
the adult subsequently joined the infant’s gaze towards 
the object, at any point in the time that the infant was 
still attending towards the object. 

Adult-led looks to mutual attention The start of the attention episode was taken from the 
frame that the infant first shifted their gaze towards an 
object that the adult was already looking towards, at any 
point in the time that the adult was still attending towards 
the object. 

Infant-led looks to nonmutual attention The start of the attention episode was taken from the 
frame that the infant first shifted their gaze towards an 
object that the adult  was not already looking at, and the 
adult did not follow the infant’s look towards the object at 
any point in the time that the infant was still attending 
towards the object. 

Attention episode Definition
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3.2.7 Infant EEG analysis 

 

3.2.7.1 Artifact rejection and pre-processing 

 

A fully automatic artifact rejection procedure including ICA was adopted, following procedures 

from commonly used toolboxes for EEG pre-processing in adults (Bigdely-Shamlo et al., 2015; 

Mullen, 2012) and infants (Debnath et al., 2020; Gabard-Durnam et al., 2018), and optimised and 

tested for use with our naturalistic infant EEG data (Georgieva et al., 2020; Marriott Haresign et 

al., 2021). This was composed of the following steps: first, EEG data were high-pass filtered at 

1Hz (FIR filter with a Hamming window applied: order 3381 and 0.25/ 25% transition 

slope, passband edge of 1Hz and a cut-off frequency at -6dB of 0.75Hz). Although there is debate 

over the appropriateness of high pass filters when measuring ERPs (see (Widmann & Schröger, 

2012), previous work suggests that this approach obtains the best possible ICA decomposition 

with our data (Dimigen, 2020; Marriott Haresign et al., 2021). Second, line noise was eliminated 

using the EEGLAB (Bigdely-Shamlo et al., 2015) function clean_line.m (Mullen, 2012).   

 

Third, the data were referenced to a robust average reference (Bigdely-Shamlo et al., 2015). The 

robust reference was obtained by rejecting channels using the 

EEGLAB clean_channels.m function with the default settings and averaging the remaining 

channels. Fourth, noisy channels were rejected, using the EEGLAB 

function clean_channels.m. The function input parameters ‘correlation threshold’ and ‘noise 

threshold’ (inputs one and two) were set at 0.7 and 3 respectively; all other input parameters were 

set at their default values. Fifth, the channels identified in the previous stage were interpolated 

back, using the EEGLAB function eeg_interp.m. Interpolation is commonly carried out either 

before or after ICA cleaning but, in general, has been shown to make little difference to the 

overall decomposition (Delorme & Makeig, 2004) . Infants with over 21% (7) electrodes 
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interpolated were excluded from analysis. After exclusion, the mean number of electrodes 

interpolated for infants was 0.19 (SD=0.67) for play section 1, and 2.36 (SD=1.87) for play 

section 2.  

 

Sixth, the data were low-pass filtered at 20Hz, again using an FIR filter with a Hamming window 

applied identically to the high-pass filter. Seventh, continuous data were automatically rejected in 

a sliding 1s epoch based on the percentage of channels (set here at 70% of channels) that exceed 

5 standard deviations of the mean channel EEG power. For example, if more than 70% of 

channels in each 1-sec epoch exceed 5 times the standard deviation of the mean power for all 

channels then this epoch is marked for rejection. This step was applied very coarsely to remove 

only the very worst sections of data (where almost all channels were affected), which can arise 

during times when infants fuss or pull the caps. This step was applied at this point in the pipeline 

so that these sections of data were not inputted into the ICA. The mean percentage of data 

removed in play section 1 was 7.96 (SD=7.44), and 3.16 (SD=4.32) for play section 2.   

 

Data collected from the entire course of the play session (including play section 1 and play 

section two, as well as two further five minute interactions) were then concatenated and ICAs 

were computed on the continuous data using the EEGLAB function runica.m. The mean 

percentage of ICA components rejected was 52.03% (SD=19.18). After ICA rejection, data from 

each play section were re-split. For representative examples of artifactual ICA components 

identified in our naturalistic EEG data, see Marriott-Haresign et al. (2021).  

 

3.2.7.2 Time-frequency analysis 

 

Each infant look onset was identified in the EEG signal, and activity occurring 2500ms 

before to 2500ms after look onset extracted, across all channels. An additional 200ms was 
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also extracted immediately prior to this segment to serve as the pre-look baseline. Only look 

epochs with 25% or fewer data points excluded during artifact rejection were included in 

analysis, and missing data points were set to NaN.  

 

Time-frequency decomposition was conducted on each look epoch via continuous Morlet 

wavelet convolution, whereby the EEG signal at each channel was convolved with Gaussian-

windowed complex sine-waves, ranging from 1-16Hz, in linearly spaced intervals. This 

frequency range was selected as the frequency range least sensitive to movement artifacts 

inherent in naturalistic infant EEG, which affects both low (<2Hz) and high (>16Hz) 

frequency activity (Georgieva et al., 2020). The width of the Gaussian was set to 7 cycles. 

Before wavelet convolution, the epoched data was reshaped into continuous data, and 

afterwards transformed back to individual epochs. To remove distortion introduced by 

wavelet convolution, the first and last 500ms of each epoch was chopped off, so that the 

epochs were 4200ms in length. After convolution, power was extracted as the absolute value 

squared, resulting from the complex signal, before averaging power values at each time point 

over all looks. The condition-specific baseline period used was 2200-2000ms before look 

onset. Averaged power time-series occurring 2000ms before and after look onset were 

normalised by transforming the baseline-corrected signal to a decibel (dB) scale (Cohen, 

2014).  

 

3.2.7.3 Cluster-based permutation analysis – EEG data 

 

Two approaches were used for analysing the EEG data. First, 2-dimensional (frequency x 

time) clusters were calculated based on data collapsed in topographical space, over fronto-

central electrodes (Figure 3.1d). Second, 3-dimensional (frequency x time x electrode) 
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clusters were calculated based on the entire data. For the first analysis, normalised power was 

averaged over fronto-central electrodes (AF3, AF4, FC1, FC2, F3, F4, Fz; see Figure 3.1d for 

locations), and compared between looks. This electrode cluster was chosen based on previous 

infant literature (Braithwaite et al., 2020). Only participants contributing 5 usable trials or 

more to both look categories, in one comparison, were included in each analysis (see Figure 

S1 for details on the number of epochs included before and after artifact rejection, for each 

type of attention episode).  

 

For the first analysis, the normalised power time-series before and after look onset was 

compared for each look category, using the FieldTrip function ft_frqstatistics (Maris & 

Oostenveld, 2007). The cluster-based permutation approach controls for family-wise error 

rate using a non-parametric Monte Carlo method. Corresponding time*frequency points were 

compared between conditions using paired sample t-tests, and adjacent significant 

time*frequency points (p<0.05, two-tailed) were clustered together using the ‘maxsum’ 

cluster statistic, which sums together the t statistics of each significant time-frequency point 

in each cluster. The largest cluster was retained. This procedure was then repeated 1000 

times, randomising and reshuffling participant data points between conditions on each 

permutation. The Monte Carlo estimate of the permutation p-value was calculated as the 

proportion summed test statistics larger than the observed summed t-statistic: here, clusters 

with a summed t-statistic >95th centile (corresponding to a p-value of 0.025 (two-sided test)) 

were accepted as significant.  

 

Second, in order to examine how the distribution of results varied topographically over the 

brain, an additional 3-dimensional cluster-based permutation analysis was conducted to 

examine time-frequency-electrode space for clusters of significant data points. All 32 
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channels, at frequencies 2-16Hz were included in the permutation. The ‘minnbchan’ 

parameter was set to 0. Clusters with a p-value <0.025 (two-sided test) were considered 

significant.  

 

3.3 Results  

 

The results section is in three parts. Section 3.3.1 presents descriptive statistics on infant and 

adult gaze and vocal behaviour. Section 3.3.2 compares the attentional, behavioural and 

neural dynamics preceding a) infant-led vs adult-led looks to mutual attention, and b) infant-

led looks to mutual vs nonmutual attention. Section 3.3.3 repeats this analysis in the time-

period following look onset.  As behavioural cues are slower-changing in comparison to EEG 

activity, a 5000ms time-window was used to compare infant behaviour in the time before and 

after a look onset (customary for this type of research (Yu & Smith, 2013)), whilst a 2000ms 

time-window examined infant EEG activity. See Table 3.1 (Methods section) for a detailed 

description of how adult-led looks to mutual attention and infant-led looks to mutual attention 

and nonmutual attention were defined.  

3.3.1 Descriptive statistics  

 
Prior to testing our main hypotheses, we conducted three descriptive analyses. Before 

interpolating through looks to partner, we investigated the proportion of time that caregivers 

and infants spent vocalising, looking to their partner, attending to objects, and inattentive 

during the interaction (Figure 3.2a, 3.2b). Second, after interpolating through looks to 

partner, we tested how many times per minute infants and adults engaged in episodes of 

mutual attention (infant or adult-led), and nonmutual attention. Finally, we examined the 

length of infant attention episodes, and of caregiver-infant mutual attention episodes (Figure 

3.2c, 3.2d).  
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Infants spent the majority of the time looking towards objects, whereas caregivers divided 

their attention between their infant and the objects (consistent with Yu & Smith, 2013; Figure 

3.2a). Infant vocalisations were infrequent, whereas adult vocalisations were more frequent 

(Figure 3.2b). Comparisons between caregivers and infants were significant using two-tailed 

independent t-tests: looks to objects [t(72)=10.81, p<0.001, d=0.84], looks to partner [t(72)=-

14.01, p<0.001, d=-1.02] and vocalisations [t(36)=-5.61, p<0.001, d=-0.60]. The proportion 

of time spent in states of inattention did not differ [t (72)=1.32, p=0.198, d=0.08].  

 

Infant object look durations were positively skewed before log transform (consistent with Yu 

& Smith, 2016), as were episodes of caregiver-infant mutual attention (Figure 3.1c). The 

number of times each type of attention episode occurred per minute was similar for 

caregivers and infants, with leader looks to mutual attention the most infrequently occurring 

category (Figure 3.1d). Two-tailed independent t-tests showed that infants followed their 

partner’s attention significantly more often per minute compared to their caregivers 

[t(72)=2.94, p=0.004, d=0.77]; all other comparisons were not significant (leader to 

nonmutual looks [t(72)=1.49, p=0.139, d=0.35]; leader to mutual looks [t(72)=-0.73, 

p=0.467, d=-0.14]). 
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Figure 3. 2 Caregiver and infant attention, and vocal behaviour in shared play. a) Bar 

plots show the proportion of time caregivers and infants spent looking to their partner, 

towards objects, and inattentive, during the interaction. Two-tailed independent t-tests (n=37) 

compared proportions between caregivers and infants for each look category (*p<0.05, 

**p<0.01; error bars show the SEM). b) Bar plot shows the mean proportion of time 

caregivers and infants spent vocalising during the interaction. A two-tailed independent t-test 

(n=37) compared proportions between caregivers and infants (*p<0.05, **p<0.01; error bars 

show the SEM).  c) Histograms show log-transformed infant object look durations, and 

length of mutual attention episodes, across all types of looks, after interpolation. d) Bar plots 

show the number of times infants and adults engaged in one of three possible attentional 

states per minute: partner-led looks to mutual attention, leader looks to mutual attention, 

leader looks to nonmutual attention. Two-tailed independent t-tests compared the number of 
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attention episodes per minute between caregivers and infants, for each look category (n=37; 

*p<0.05, **p<0.01). 

 

3.3.2 Before look onset: are infants proactively initiating joint attention episodes? 

 

This section is in two parts. Section 3.2.2.1 compares infants’ use of ostensive signals and 

their neural oscillatory activity occurring before infant-led looks to mutual attention, and 

adult-led looks to mutual attention, in order to test for differences between infant- and adult-

initiated mutual attention episodes. Section 3.3.2.2 subsequently compares infant-led object 

looks resulting in mutual and nonmutual attention, in order to test for differences between 

infant-led looks that were followed, or not followed, by their adult partner.  

 

3.3.2.1 Infant-led vs adult-led mutual attention 

 

Ostensive signals and infant attention 

 

First, we tested whether infants were more likely to use ostensive signals before an infant-led 

mutual attention episode, compared to where they followed their caregiver’s look into mutual 

attention. If true, this would support the hypothesis that infants proactively lead their 

caregiver’s attention to objects during naturalistic table-top play. To investigate this, we 

conducted a probability analysis examining ostensive signals in the time-window +/- 5000ms 

relative to each look type.  

 

For each look type (infant-led to mutual and adult-led to mutual), the frame at which an 

object look onset occurred was identified in the vocalisation and partner look time-series 
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separately, and the 5000ms preceding look onset extracted. The probability of the behaviour 

occurring at each 20ms frame was then calculated as the proportion of looks where each 

ostensive signal (looks to the partner’s face and vocalisations) was present in that frame. 

Results of the probability analysis are presented in Figure 3.3a-d. Cluster-based permutation 

analysis (see Methods) indicated that infants were significantly more likely to look towards 

their caregiver in the time-period immediately preceding an episode of infant-led mutual 

attention, compared to an adult-led mutual attention episode (Figure 3.3a). There were no 

other significant differences between look types (Figure 3.3a, 3.3b).  

 

Any significant difference between adult-led and infant-led attention could, however, be 

driven either by an increase relative to baseline in looking prior to infant-led attention 

episodes, or by a decrease relative to baseline prior to adult-led attention episodes. To 

differentiate between these hypotheses, we generated a random probability time-series of 

partner looks and vocalisations in the time immediately before and after each type of infant 

object look by inserting a random event into each ostensive cue time series, and extracting 

the 5000ms preceding the event. A cluster-based permutation analysis was again conducted 

using paired t-tests to investigate where the behavioural time-series differed from chance 

(Figure 3.3a-d). Results indicated that the probability of infants looking to their partner was 

below levels expected by chance in the 1s time-period before the onset of adult-led attention. 

Overall, then, these results suggest that infants are less likely to look to their partner during 

the time-window preceding adult-led looks to mutual attention.  

 

In addition, to investigate whether infant attentiveness differed in the time before look onset 

between each look type, using the uninterpolated gaze time series, we also examined how 

frequently infant attention changed in the 5000ms time-period leading up to each attention 
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episode, and the length of infant gaze towards the previous object for each type of look 

(Figure 3.3e, 3.3f). Two-tailed paired t-tests showed no difference in the number of object 

looks occurring 5s before the onset of an infant-led look to mutual attention [mean=1.85, 

SEM=0.08], compared to an adult-led look to mutual attention [mean=1.17, SEM=0.06; 

t(36)=-0.27, p=0.792, d=-0.24]; nor was there a difference in the length of infant attention to 

the previous object [t(36)=-0.61, p=0.544, d=-0.10]. 

 

 

 

Figure 3. 3 Probability of ostensive signals (partner looks and vocalisations) and infant 

attentiveness in the time-period before infant look onset. Probability time-course for: a) 

Partner looks before infant-led mutual attention vs adult-led mutual attention; b) 

Vocalisations before infant-led mutual attention vs adult-led mutual attention; c) Partner 

looks before infant-led mutual attention vs infant-led nonmutual attention; d) Vocalisations 

before infant-led mutual attention vs infant-led nonmutual attention. In each case shaded 

areas show the SEM (n=37 for a) and c), n=19 for b) and d)), and horizontal black lines show 
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the areas of significant difference, between attention episodes, identified by the cluster-based 

permutation analysis (Monte-Carlo p value<0.05). Dotted lines show the baseline time-series, 

plotted for each attention episode. Horizontal coloured lines show the areas of significant 

difference between each attention episode and baseline, identified by the cluster-based 

permutation analysis (Monte-Carlo p value<0.05). e) Histograms show the distribution of the 

number of object looks in the 5s time-period before look onset for each attention episode. f) 

Bar plots show the mean length of infant attention towards the object immediately preceding 

look onset for all three attentional states. Error bars indicate the SEM (n=37). Two-tailed 

paired t-tests compared the length of infant attention towards the previous object, between 

each attention episode, which indicated no significant differences. 

 

Neural oscillatory activity  

 

We compared how the neural oscillatory activity differed in the time before infant-led and 

adult-led mutual attention episodes. Results of the time-frequency analysis are presented in 

Figure 3.4. Two-dimensional cluster-based permutation analysis revealed no significant 

clusters of time*frequency points, comparing between infant-led looks to mutual attention, 

and adult-led looks to mutual attention. Three-dimensional cluster-based permutation 

analysis, including all electrode by time by frequency points, also revealed no significant 

clusters. Contrary to what would be expected if infants were deliberately orienting their 

partners towards objects when shifting their gaze to an unattended object, this primary 

analysis suggests that there were no significant differences in infants’ neural activity in the 

time-windows before they led their partner’s attention towards an object.  
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In our naturalistic data, some of the epochs included in each look category will also have 

contained additional object and partner looks during the 2000ms before the onset of the look 

to which the data were event-locked. Even though eye movement-related artifacts were 

removed through ICA decomposition during pre-processing (see Methods), we also 

conducted an additional analysis to examine the possibility that this may have contributed to 

the null result. The results suggested that it did not: the average proportion of looks with 

object and partner looks occurring in the time before look onset did not differ between 

attention episodes (Figure S2, S3, S4). Conducting analyses including looks with no shifts in 

infant attention before look onset only was not possible due to low trial numbers (Figure S2). 

We therefore conducted a secondary analysis excluding neural activity within each look 

epoch, in the time before look onset, where an infant was not continuously focused on one 

object/ the partner (see Figure S5). Two-dimensional cluster-based permutation analysis 

again revealed no significant clusters of time*frequency points (Figure S5).  

 

For comparison with the behavioral analysis presented at the beginning of this section, Figure 

S6 shows EEG activity over the same time-windows (-5000ms). Two-dimensional cluster-

based permutation analysis again revealed no significant clusters of time*frequency points, 

comparing between infant-led looks and adult-led looks to mutual attention.  
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Figure 3. 4 Comparison of infant EEG activity in the 2000ms preceding infant- and 

adult-led attention episodes. Time-frequency plots show infant EEG activity (2-16Hz) 

occurring 2000ms before look onset, for (a) adult-led looks to mutual attention, (b) infant-led 

looks to mutual attention and (c) infant-led looks to nonmutual attention, over fronto-central 

electrodes (AF3, AF4, FC1, FC2, F3, F4, Fz). Time 0 indicates infant gaze onset. d) 

Difference in EEG activity between infant- and adult-led looks to mutual attention (adult-led 

– infant-led). Cluster-based permutation analyses showed no significant clusters of 

time*frequency points of the difference between attention episodes, and so no significant 

clusters have been highlighted. e) Difference in EEG activity between infant-led looks to 

mutual and nonmutual attention (infant-led to mutual - infant-led to nonmutual). Cluster-

based permutation analyses showed no significant clusters of time*frequency points of the 

difference between attention episodes, and so no significant clusters have been highlighted.    
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3.3.2.2 Followed vs not followed infant-led looks 

 

Ostensive signals and infant attention 

 

Here, we also tested whether infants were more likely to use ostensive signals before an 

infant-led mutual attention episode, compared to an infant-led nonmutual attention episode, 

in order to examine differences between infant-led looks that were followed, or not, by their 

adult partner. No significant differences were observed either in the likelihood of the infant 

looking to their caregiver in the time-period preceding a look (Figure 3.3c), or in the 

likelihood of the infant vocalising (Figure 3.3d). In addition, no significant differences were 

observed in the duration [t(36)=1.01, p=0.321, d=0.12; Figure 3.3f], or number [t(36)=1.45, 

p=0.157, d=0.24] of infant objects looks in the time-period preceding infant-led looks to 

mutual attention [mean=1.85, SEM=0.08], and nonmutual attention [mean=1.06, SEM=0.07; 

Figure 3.3e].  

 

Neural oscillatory activity  

 

We also compared how neural oscillatory activity differed in the time before infant-led 

mutual attention episodes and infant-led nonmutual attention episodes (Figure 3.4). No 

significant differences were observed using either the 2-dimensional (Figure 3.4) or the 3-

dimensional cluster-based permutation analyses. Again, the number of looks including object 

and partner looks before each attention episode did not differ (Figure S2, S3, S4). EEG 

activity occurring 5000ms before look onset for each type of look is presented in Figure S5. 

Two-dimensional cluster-based permutation analysis revealed no significant clusters of 

time*frequency points of the difference between attention episodes. 
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3.3.2.3 Summary 

 

In summary, these results suggest that there is little change in infants’ behaviourally 

ostensive signalling before infant-led mutual attention episodes, compared with adult-led 

mutual attention. The main finding was a decrease in infant looks to their caregiver in the 

time before adult-initiated mutual attention. There were no differences in infants’ ostensive 

signalling between infant-led looks that were followed vs not followed by their adult partner. 

 

The neural analyses suggested that there were no differences in neural oscillatory activity 

before infant-initiated and adult-initiated mutual attention. There were also no differences in 

neural oscillatory activity between followed vs not followed infant-led attention episodes. 

There was thus very little evidence that 12-month-old infants proactively initiate joint 

attention with their partner during shared play. 

 

3.3.3 After look onset: do infants anticipate their gaze being followed? 

 

In this section, we present a similar analysis to section 3.3.2, investigating change in infant 

behaviour and neural oscilatory activity in the time-period after look onset. Again, the section 

is organised in two parts: first we examine mutual attention, comparing infant-led and adult-

led mutual attention episodes (section 3.3.3.1). Second, we compare infant-led attention that 

was followed vs. not followed by their adult partner (section 3.3.3.2).  

 

3.3.3.1 Infant-led vs adult-led mutual attention 
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Ostensive signals and infant attention 

 

First, we tested whether infants were more likely to use ostensive signals during the time-

period after the start of infant-led, compared to adult-led mutual attention. To investigate this, 

we conducted the same probability analysis described in section 3.3.2.1, extracting the 

5000ms following look-onset from the vocalisation and partner-look time-series. No 

significant difference in the likelihood of partner looks was observed, but a significant 

increase in the likelihood of infant vocalisations following adult-led mutual attention was 

shown (Figure 3.5b). Baseline comparisons suggested that infant vocalisations significantly 

decreased from baseline in the time after infant-led looks to mutual attention, potentially 

driving this difference (Figure 3.5b).  

 

We also examined whether infant-led mutual attention episodes tended to be longer lasting 

than adult-led mutual attention (Figure 3.5e). No significant difference was observed [t(36)=-

1.17, p=0.248, d=-0.19]. Finally, we examined the time interval it took caregivers to follow 

their infant’s attention during infant-led looks to mutual attention (Figure 3.5f). This analysis 

suggested that most looks were followed within 1-2s after look onset [mean=1.49s, 

SEM=6.91].  
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Figure 3. 5 Probability of ostensive signals (partner looks and vocalisations), infant 

attentiveness, and the time adults took to follow infant attention in the time-period after 

infant look onset. Probability time-course for: a) Partner looks after infant-led mutual 

attention vs adult-led mutual attention; b) Vocalisations after infant-led mutual attention vs 

adult-led mutual attention; c) Partner looks after infant-led mutual attention vs infant-led 

nonmutual attention; d) Vocalisations after infant-led mutual attention vs infant-led 

nonmutual attention. In each case shaded areas show the SEM and horizontal black lines 

show the areas of significant difference, between attention episodes, identified by the cluster-

based permutation analysis (Monte-Carlo p value<0.05). Dotted lines show the baseline time-

series, plotted for each attention episode. Horizontal coloured lines show the areas of 

significant difference between each look type and baseline, identified by the cluster-based 

permutation analysis (Monte-Carlo p value<0.05). e) Length of infant attention towards an 

object after look onset, for each type of attention episode. The bar plot shows the mean length 
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of infant attention averaged over participants (error bars show the SEM (n=37)); scatter plot 

shows the length of each individual look contributing to each object look category, across all 

participants, after outlier removal. Two-tailed paired t-tests (n=37) compared the difference 

in the length of infant attention between each type of attention episode (*p<0.05, **p<0.01).  

f) Histogram shows the distribution of the time it took caregivers to follow infant attention. 

 

Neural oscillatory activity  

 

In this section, we compare differences in infant EEG activity occurring over fronto-central 

electrodes after look onset for infant-led and adult-led looks to mutual attention (Figure 3.6). 

Consistent with our hypothesis, infant-led mutual attention episodes led to a decrease in EEG 

power, particularly in the theta/alpha range towards the end of the 2000ms time-period, as 

compared to adult-led looks (Figure 3.6a, 3.6b). The 2-dimensional cluster-based permutation 

analysis identified a significant positive cluster with an average frequency of 7Hz (ranging 5-

9Hz), 92-2000ms post look onset (p=0.003; Figure 3.6c). Three-dimensional cluster-based 

permutation analysis also revealed one trend-level positive cluster, with a wide topographical 

distribution, in the 5-9Hz range (p=0.099; see Figure S6).  

 

Again, due to the naturalistic nature of our data, some of the epochs included in these 

analyses contain additional object and partner looks. Similar to the pre-look analysis, there 

were too few trials per participant to compare EEG activity occurring during looks without 

any gaze shifts (see Figure S8). A higher proportion of adult-led looks involved looks to 

other objects and the partner in the 2000ms time-window, an effect that was driven by a 

greater number of object looks after the onset of adult-led attention (Figure S8). When the 

post-look time-period was broken down into 1000ms intervals, however, the difference 
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between infant-led and adult-led looks was only seen in the first 1000ms after look onset 

(Figure S9,S10), and a high proportion (>70%) of infant- and adult-led looks to mutual 

attention did not contain any object or partner looks (Figure S7). We nevertheless conducted 

a secondary analysis, excluding EEG activity for each look, in the time after infants shifted 

their attention away from the target object, towards another object/ the partner in the 2000ms 

after look onset. Two-dimensional cluster-based permutation analysis again revealed a 

significant positive cluster with an average frequency of 7Hz (ranging 5-9Hz), 104-1994ms 

post look onset (p=0.01; Figure S11). 

 

For comparison with the behavioral analysis presented at the beginning of this section, Figure 

S13 shows EEG activity over the same time-windows (+5000ms). Two-dimensional cluster-

based permutation analysis revealed no significant clusters of time*frequency points, 

comparing between infant-led looks and adult-led looks to mutual attention.  
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Figure 3. 6 Comparison of infant EEG activity in the 2000ms following infant- and 

adult-led attention episodes. Time-frequency plots show infant EEG activity (2-16Hz) 

occurring 2000ms after look onset, for (a) adult-led looks to mutual attention and (b) infant-

led looks to mutual attention, over fronto-central electrodes (AF3, AF4, FC1, FC2, F3, F4, 

Fz). Time 0 indicates infant gaze onset. c) Difference in EEG activity between infant- and 

adult-led looks to mutual attention (adult-led – infant-led); highlighted area shows the 

significant positive cluster identified by the cluster-based permutation analysis (p=0.003). 

The cluster ranges from 5-9Hz, from 92-2000ms post look-onset.  
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3.3.3.2 Followed vs not followed infant-led attention  

 

Ostensive signals and infant attention 

 

We examined whether ostensive signals differed between infant-led looks that were followed 

vs. not followed by their adult partner, in the time after look onset. No significant difference 

in the likelihood of partner looks was observed, but there was a significant increase in the 

likelihood of infant vocalisations following infant-led nonmutual attention, 3s after look 

onset (Figure 3.5d). Again, this effect is likely driven by the significant reduction in infant 

vocalisations from baseline following infant-led looks to mutual attention (Figure 3.3d). 

Infant-led looks to nonmutual attention lasted a significantly shorter amount of time, 

compared to infant-led looks to mutual attention, and this difference was marked [t(36)=6.84, 

p<0.001, d=1.13; Figure 3.5e]. Indeed, mutual attention extended infant attention, 

irrespective of whether the attention episode was adult- or infant-led, with adult-led mutual 

attention episodes also lasting significantly longer compared to infant-led nonmutual 

attention [t(36)=8.25, p<0.001, d=1.36; Figure 3.5e].  

 

Neural oscillatory activity 

 

Corresponding to the significantly shorter object looks during episodes of nonmutual 

attention, infant-led looks to nonmutual attention included significantly fewer looks that 

lasted the whole 2000ms after look onset, compared to infant-led looks to mutual attention, 

resulting in more looks containing object looks and looks to partner combined, both 0-

1000ms, and 1000-2000ms after look onset (Figure S7, S8, S9). Due to there being so few 

infant-led looks resulting in nonmutual attention that lasted the whole 2000ms time-period 
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(<50%; Figure S7), cluster-based permutation comparing infant-led looks to mutual and 

nonmutual attention was excluded from analysis.  

 

3.3.3.3 Summary 

 

Consistent with our hypothesis, infant-led mutual attention episodes were accompanied by 

significantly greater alpha desynchronisation after look onset, compared with adult-led 

mutual attention. Against our predictions, infants also showed some decrease in their 

vocalisations after infant-led looks to mutual attention, compared to adult-led looks, and 

infant-led looks to nonmutual attention, corresponding to a marked decrease from baseline 

after infant-led looks to mutual attention. No differences in partner looks were observed.  

 

3.4 Discussion  

 

This study investigated whether infants play a proactive role in creating episodes of joint 

attention during naturalistic tabletop play. In contrast to the results observed using structured, 

experimental paradigms (Carpenter et al., 1998; Liszkowski, Albrecht, et al., 2008; 

Liszkowski et al., 2004), our results suggested that, in free-flowing interaction, 12-month-old 

infants do not readily use their gaze or vocalise before an infant-initiated mutual attention 

episode; the occurrence of these behaviours throughout the interaction was generally low 

(Figure 3.2a, 3.2b). Though a significant difference in the probability of partner looks 1s 

before look onset was identified, baseline comparisons indicated that this was driven by a 

reduction in infant looks to their partner before adult-initiated looks, rather than an increase 

before infant-initiated looks (Figure 3.3a). Corresponding to the behavioural findings, and 

against what would be expected if infants were attempting to proactively drive their 
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caregiver’s attention towards an object, EEG activity at theta frequencies (3-6Hz) did not 

increase in the 2s before infant-led looks to mutual attention, compared to adult-led looks: 

cluster-based permutation analysis revealed no significant clusters at any frequency band 

investigated (Figure 3.4d).  

 

Contrary to our prediction that infants’ proactive engagement with their partner would affect 

whether a look was followed by the adult, no differences were identified between infant-led 

looks in ostensive signals (Figure 3.3c, 3.3d), or EEG activity (Figure 3.4e), before look 

onset. Taken together, the combination of our neural and behavioural results are inconsistent 

with the idea that infants routinely exert active and intentional control over the allocation of 

their attention where they lead their partner’s attention, and could suggest that similar 

processes drive infant attention, when leading a mutual attention episode, and joining the 

attentional focus of their partner (i.e. adult-led attention).  

 

The null findings reported here are unlikely to be driven by eye-movement related artifact, 

introduced by temporally variable shifts in infant looking in the time before each look onset. 

Eye-movement artifacts were removed using ICA decomposition, and, though this does not 

remove all artifact introduced to the EEG signal (Marriott Haresign et al., 2021), we also 

show that each look type was equally affected by object and partner looks occurring in the 

2000ms preceding look onset (Figure S2). The large sample size included here, particularly 

for infant EEG research (Noreika et al., 2020), will have also increased signal-to-noise ratio 

in our data. It is also unlikely that this effect is driven by removal of neural activity during 

ICA decomposition: the algorithm used to reject ICA components during pre-processing (see 

Methods), has been shown to be successful in retaining neural signal, especially in 

comparison to traditional manual rejection techniques (Marriott Haresign et al., 2021). 



 90 

Furthermore, the secondary analysis conducted, excluding infant neural activity within each 

epoch, where the infant was not continuously focussed on one object/the partner before look 

onset also showed no increase in theta power in the time before infant-led looks to mutual 

attention (Figure S5).  

 

Though infant-led episodes of mutual attention did not appear proactively driven, infants 

were nevertheless sensitive to whether their look was followed by the adult. In line with 

hypotheses, in the time-period after look onset, a significant decrease in EEG activity was 

observed over fronto-central electrodes in the alpha band (7Hz), after infant-led looks to 

mutual attention, compared to adult-led looks (Figure 3.6c). This finding reflects the pattern 

of neural activity observed in infants whilst observing the predicted outcome of another 

persons’ goal-directed behaviour (Meyer et al., 2022; C. Monroy et al., 2021; Southgate et 

al., 2010), and is consistent with previous experimental work showing reduced alpha activity 

where infant gaze was contingently responded to by a video-recorded experimenter (Rayson 

et al., 2017). Thus, the reduction in EEG activity after infant-led looks to mutual attention 

may be interpreted as a neural marker of predictive processing during online social 

interaction, with infants predicting and encoding the behavioural contingency of their partner 

where they lead a look towards an object, and their partner follows.  Against hypotheses, 

however, infants did not show an increase in looking to their partner in the time after look 

onset; suggesting that the anticipated contingency of their caregiver was not realised by the 

infant through observing partner behaviours signalling intention to share attention (Siposova 

& Carpenter, 2019).  

 

A possible interpretation of our findings is that, rather than shared intentionality, inter-dyadic 

coordination is largely achieved and perceived by the infant through attending towards their 
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partner’s sensorimotor behaviours. In line with previous findings in naturalistic studies, infants 

did not readily follow their partner’s gaze (Yu & Smith, 2013). In fact, infants looked to objects 

more (rather than to their partner) in the 1s time-period before adult-initiated looks. This is 

consistent with Yu and Smith’s observation that moments infants join their partner’s attention 

are driven by the partner’s manual activity on objects (Yu & Smith, 2013, 2017). The neural 

analyses of the current study, that show no increase in endogenous oscillatory activity before 

infant-led looks, relative to adult-led looks, suggest that similar, external inputs might also 

drive infant attention where they lead a look towards an object. As well as overt behaviours 

such as object manipulations and gestural communication, other sensory inputs could also 

influence shifts in infant gaze. For example, in very early face-to-face interactions, salient 

events such as pauses in adult vocalisations, and changes in the fundamental frequency of their 

voice modulate infant attention towards and away from the partners’ face (Crown et al., 2002; 

Stern et al., 1983). In the current study, analysis of caregivers’ ostensive signalling revealed 

that partner looks increased and vocalisations decreased in the time before infant-led looks to 

mutual attention, compared to adult-led looks, and infant-led looks to nonmutual attention 

(Figure S13).  

 

Entrainment to the low-level sensorimotor dynamics of shared interactions (Sebanz & 

Knoblich, 2009) could be the mechanism through which infants perceive the behavioural 

contingency of their communicative partner, suggested by the alpha suppression observed 

after infant-led looks to mutual attention. Research into action-oriented predictive processing 

suggests that motor intentions actively elicit active predictions about the ongoing 

consequences of our own actions (Clark, 2013; K. Friston et al., 2012). Perhaps similar 

processes operate across the dyad during early behavioural coordination, with the infant 

anticipating the effect of their own action on the behaviour of their partner (Hamilton, 2021; 
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Konvalinka & Roepstorff, 2012). Again, as well as overt manual behaviours (Yu & Smith, 

2013), other fast-changing cues such as temporal and spectral modulations in the partner’s 

vocalisations could also signal behavioural contingency to the infant (Crown et al., 2002; 

Stern et al., 1983). Interestingly, the probability of infants vocalising falls below baseline in 

the time after infant-led looks to mutual attention. This finding is possibly indicative of the 

sensorimotor turn-taking processes occurring after infant-led looks to mutual attention; i.e. 

that infants are anticipating the behavioural response of their partner in the time after they 

shift their attention towards a new object.   

 

That said, whilst the findings of the current analysis suggest that infants do not routinely 

show signs of proactively leading their partner’s attention during shared interaction, it is still 

possible that moments of proactive engagement by the infant are infrequent but nevertheless 

important to the ongoing interactive exchange (Murray, De Pascalis, Bozicevic, et al., 2016). 

The results of the behavioural analysis, investigating ostensive signals occurring in the time 

before and after infant-led looks to mutual and nonmutual attention, show that the probability 

of these behaviours occurring before infants lead a look to their partner is low, but not absent 

(Figure 3.3a-d; Figure 3.5a-d). An interesting question is whether moments ostensive signals 

do occur before infants initiate an attention episode with their partner are largely incidental; 

or whether all or some of these moments occur as a result of the infant attempting to actively 

engage their adult partner’s attention, but remain too rare to make a difference at the 

statistical level. The mechanisms through which infants perceive the behavioural contingency 

of their partner during active attention sharing episodes, if they occur, could be functionally 

different to those engaged during externally driven attention.  
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Our findings have important implications for how we view and understand the learning 

processes involved in early joint attention development.  Associative learning accounts 

postulate that infants learn about their environment, and how to act on it, through repeated 

reinforcement, where the value given to an action is based on previous experience of how 

that action affected the environment (Deák et al., 2014; Oudeyer & Smith, 2016; L. B. Smith 

& Breazeal, 2007). In the context of social interaction, infant behaviour is assigned meaning 

by the adult through consistent and contingent behavioural feedback. Over time, these 

statistical regularities form the basis for infant representations about the intentions of others, 

and how their own intentionally-motivated behaviours affect those of their partner (L. B. 

Smith & Breazeal, 2007). In line with this, the current EEG findings suggest that infants 

predict and encode the behavioural contingency of their partner to their own actions before 

they show signs of intentionally initiating joint attention episodes in a routine manner. 

Caregiver responses to infrequent moments that infants engage in proactive attention-sharing 

may therefore be particularly important to the development of infants’ representations about 

their own intentionally-motivated behaviour, and, over time, increase the extent to which 

infants use these behaviourally re-enforced cues to proactively direct the attention of their 

partner (L. B. Smith & Breazeal, 2007). 

 

This perspective has potential implications for current theories of how infants begin to 

acquire a language system. A popular view has been that, it is only once infants are able to 

establish and understand a joint-attentional frame, or ‘common ground’, between themselves, 

an object and their partner, that they can begin to engage with and learn from the pragmatic 

and referential aspects of shared communication (Carpenter et al., 1998; Lieven, 2016; 

Tomasello & Carpenter, 2007). Our findings, however, consistent with an associative 

learning framework of joint attention development (L. B. Smith & Breazeal, 2007), suggest 
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that before infants routinely engage in triadic forms of shared attention, infant attunement to 

their partner’s sensorimotor behaviours, and the timing of adult inputs as a function of infant 

behaviours, may already be contributing towards infants’ developing understanding of the 

principles underlying communication. Recent behavioural work has, in fact, suggested that 

infants’ engagement with objects at the time object labels are presented  by their 

communicative partner could go some way in solving the problem of referential ambiguity 

(Yu et al., 2021; Yu & Smith, 2012). Combining neural and behavioural methods to explore 

how infant attunement to action-generated contingencies during naturalistic free-flowing 

interactions supports early language acquisition should be a key focus for future research. 

 

Whilst this study is the first to show how infant neural activity changes around moments of 

infant- vs. adult-led episodes of mutual attention during naturalistic interactions, predictive 

encoding models, investigating the dynamic relationship between infant attention, inter-

dyadic behaviour and infant neural activity should be a next step (Jessen et al., 2021). Neural 

tracking of auditory information to controlled experimental stimuli has been shown in both 

adults (Zion Golumbic et al., 2013) and more recently, infants (Attaheri et al., 2022; 

Kalashnikova et al., 2018). Whether and how infants’ neural activity dynamically responds to 

modulations in their partners’ behaviours, including features and the timing of caregiver 

vocalisations, manual activity, and bodily movement, and how this associates with the timing 

of infant- and adult-led episodes of joint action is yet to be investigated. Examining these 

questions developmentally will be integral to understanding the development of intentional 

communication in infancy, and in identifying atypical trajectories (Gaffan et al., 2010). 

 

Our use of naturalistic data is a limitation, as well as a strength, as we were unable to control 

for how much infants moved their attention between objects in the time before and after look 
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onsets. This not only introduces artifact to the EEG signal, but also means that the extent to 

which oscillatory activity is influenced by object processing, differs between looks. However, 

we showed that the number of object and partner looks did not differ in the 2000ms before 

look onset for either comparison, and differed only in the first 1000ms after look onset, 

comparing infant- and adult-led looks to mutual attention (Figure S2, S8, S9). Our secondary 

analyses, excluding infant EEG activity where the infant was not continually focussed on one 

object or the partner before/after look onset, also showed similar differences in patterns of 

neural oscillatory activity between looks, reported in the main text (Figure S5, S11). 

Increased gaze shifts after infant-led looks to nonmutual attention did, however, mean that we 

were unable to compare infant-initiated looks to mutual and nonmutual attention in the time 

after look onset. Employing continuous methods of analysis to naturalistic data would 

overcome this issue (Jessen et al., 2021).   

 

The ability to engage in reciprocally mediated joint attention towards the end of the first year 

is catalytic to developments in language and social cognition (Carpenter et al., 1998; Yu & 

Smith, 2012). The findings reported here suggest that at 10-12-months, infants are not yet 

predominantly proactive in creating and maintaining episodes of joint attention with their 

adult partner. They are, however, sensitive to whether their behaviour is contingently 

responded to, potentially forming the basis for the emergence of intentionally-mediated 

communication.  
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CHAPTER 4 - Endogenous oscillatory rhythms and interactive 

contingencies jointly influence infant attention during early 

infant-caregiver interaction 

 

This chapter is a publication of a pre-print article, about to be submitted for publication, 

examining the mechanisms that structure infant attention in early interaction, assessing 

forwards-predictive and reactive changes in caregiver behaviour and infants’ endogenous 

neural activity relative to the duration of infant attention episodes towards objects and their 

partner (Phillips et al., pre-print). Subheadings, figure placement, figure and table style, and 

citation style have been adapted to conform to the thesis format. The supplementary materials 

for this chapter are available in Appendix B.  

 

Abstract 

 

Almost all early cognitive development and learning take place in social contexts. At the 

moment, however, we know little about the neural and cognitive mechanisms that underpin 

infants’ attention during free-flowing interactions. Recording EEG during naturalistic 

caregiver-infant interactions, we compare two different accounts. Attentional scaffolding 

perspectives emphasise the role of the caregiver in structuring the interaction, whilst active 

learning models focus on motivational factors, endogenous to the infant, that guide their 

attention. Our results show that intrinsic cognitive processes control infant attention: 

fluctuations in oscillatory neural activity, indexing endogenous cognitive processes, were a 

cause and a consequence of changes in infants’ attentiveness. In comparison, infant attention 

was not forwards-predicted by caregiver gaze or vocal behaviours. Instead, caregivers rapidly 
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modulated their behaviours in response to changes in infant attention and cognitive 

engagement: greater reactive changes associated with longer infant attention. Our findings 

suggest attention emerges through interactive but asymmetric, infant-led processes that 

operate across the caregiver-child dyad.  

 

4.1 Introduction 

 

Almost all early cognitive development and learning takes place in social contexts 

(Trevarthen, 2001). We know that caregiver behaviours influence where, how, and for how 

long children allocate their attention in real-world settings (Yu & Smith, 2016), and that 

individual differences in how caregivers behave while interacting their child can predict later 

language learning and socio-cognitive development (Donnellan et al., 2020; Henning et al., 

2005; Murray et al., 2016). But we currently understand little about how intrapersonal and 

bidirectional neural mechanisms influence how infants allocate their attention to learn from 

their environment during naturalistic, free-flowing interactions.  

 

A number of different theoretical models try to explain how social partners influence infants’ 

attention. The first, and probably the oldest, proposes that caregivers directly and didactically 

scaffold their infant’s attention, for example, by building a structure of how they pay 

attention, and when, and encouraging the child to follow their attentional focus (a process 

sometimes known as ‘attentional scaffolding’ (Bornstein, 1985). This might take place 

through children copying where caregivers are paying attention, second by second, while 

they complete a shared task (Yu & Smith, 2016). Or, it might happen through adults 

organisedly and actively using ostensive signalling to guide infant attention (Csibra & 

Gergely, 2009). To do this, the adult partner might be using salient behaviours (e.g., eye 
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gaze, high pitched speech, etc) to exogenously influence where children allocate their 

attention. In either of these cases, infant attention is reactive to changes in the behaviour of 

the caregiver (Sebanz & Knoblich, 2009; Yu & Smith, 2013).  

 

Recent micro-behavioural analyses of caregiver and infant gaze behaviour during joint table-

top interactions support this perspective, to some extent. Multimodal behavioural inputs by 

the caregiver are known to support episodes of sustained attention towards objects: for 

example, infant attention durations lasting over 3 seconds are directly predicted by the 

amount and timing of caregiver speech and touch to objects (Suarez-Rivera et al., 2019). 

More indirectly, other research has shown that infant attention is more fast-changing in joint 

compared to solo play, despite infant attention durations being, overall, longer in joint play 

(Wass et al., 2018a) - suggesting that endogenous cognitive processes such as attentional 

inertia (the finding that, the longer a look lasts, the less likely it is to end (Richards & 

Anderson, 2004)) have less of an influence on infant attention in social contexts. Further 

research suggests that, rather than following the focus of the adults’ gaze, infants most often 

co-ordinate their attention with the adult through attending towards their partners’ object 

manipulations, which corresponds to the idea that adults use exogenous attention capture to 

drive infant attention (Yu & Smith, 2013). Other salient behaviours might also be important, 

but are under-investigated. For example, IDS is known to contain more variability in 

amplitude and pitch (Spinelli et al., 2017), which increases its auditory salience (Nencheva et 

al., 2019); but although it is known that children generally pay more attention to IDS (Cooper 

& Aslin, 1994), no previous research has examined whether caregivers use moment-by-

moment variability in the salience of their voice to influence how children allocate attention.  
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Within this framework, it is possible that, rather than repeated and reactive contingent 

responsivity to isolated behaviours, temporal dependency between infant and caregiver 

attention is driven by infant behaviour becoming periodically coupled to the behavioural 

modulations of their partner (L. Meyer et al., 2019; Wass et al., 2022). Similar to inter-dyadic 

patterns of vocalisations in adults and marmoset monkeys (Takahashi et al., 2013; Wilson & 

Wilson, 2005), in early infant-caregiver interactions, vocal pauses in one partner’s 

vocalisations can be predicted from those of the other (Gratier et al., 2015; Jaffe et al., 2001), 

and, during face-to-face interactions at the end of the first year, caregiver-infant facial affects 

become temporally aligned (Feldman et al., 1999). Oscillatory entrainment, that is, consistent 

temporal alignment between fluctuations in caregiver and infant behaviour, could be 

particularly important in ensuring that salient sensory and information-rich inputs by the 

caregiver occur at moments infants are most receptive to receiving information (Wass et al., 

2022).  

 

An alternative interpretation of these micro-behavioural findings, however, is that, rather than 

structuring infant behaviour through leading infant attention, caregivers instead scaffold how 

infants pay attention by following and responding to re-orientations in their infant’s attention. 

This second model suggests that, rather than considering unidirectional caregiver->child 

influences we should instead be considering bidirectional child<->caregiver influences. In 

following the focus of their infants’ attention at moments that they reorient towards a new 

object, the caregiver ‘catches’ and extends infant attention with reactive and dynamic change 

in their salient ostensive behaviours, to which infants are responsive (Yu & Smith, 2016). 

The contingent adaptation of the caregiver to modulations in infant attention serves to 

maintain and extend infant attention, and provides inputs at points where infants anticipate to 

receive new information (Yu & Smith, 2012). Indeed, from early infancy, caregivers are 
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contingently responsive to modulations in their infant’s behaviour. From 2-3 months, 

caregivers respond differentially to distinct facial affects produced by the infant (Murray, et 

al., 2016), modulate their vocal feedback to infant babbling (Albert et al., 2018; Goldstein & 

Schwade, 2008; Yoo et al., 2018); and, towards the end of the first year, provide more 

labelling responses relative to infant’s pointing than to their object-directed vocalisations 

(Wu & Gros-Louis, 2015).  

 

According to the first model, then, caregivers drive and actively control infants’ attention 

during joint interaction. According to the alternative model, caregivers influence infants’ 

attention by reactively and contingently responding to the infant’s attention shifts. But 

according to the latter model, what drives how infants initially allocate their attention in the 

first place? In caregivers, the timing of attention shifts can be partially described using an 

oscillatory, or periodic, structure, reflecting rhythmic attention reorientations that possibly 

correspond to fluctuations in the central nervous system (Nuthmann et al., 2010; Nuthmann 

& Henderson, 2010; Nuthmann & Matthias, 2014). Research with infants has also suggested 

that, even in the first 3 months of life, infants’ attention shifting is not purely random 

(Robertson, 2014), and, in free-viewing paradigms, the allocation of infant attention has been 

shown to become more periodic and less stochastic over the course of the first year 

(Renswoude et al., 2019; Stallworthy et al., 2020). Regulatory mechanisms endogenous to the 

infant could therefore be one mechanism that influences when infants reorient their attention 

during real-world naturalistic interactions.  

 

By the end of the first year, however, as well as periodic attention reorientations, fluctuations 

in top-down attentional control processes, thought to be driven by the executive attention 

system, begin to influence where and when infants shift their attention. For example, research 
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has shown that infants routinely deploy active and effortful information-sampling strategies 

to maximise their opportunities for learning (Gottlieb et al., 2013; Goupil & Proust, 2023; 

Kidd et al., 2012; Oudeyer & Smith, 2016; Poli et al., 2020). For example, infants aged 8-9 

months optimise information gain by directing their attention towards stimuli that are neither 

too complex, nor too predictable (Kidd et al., 2012, 2014) and disengage from stimuli that are 

less informative compared to past observations (Poli et al., 2020). Corresponding to 

developments in intentionally-mediated forms of joint communication (Tomasello et al., 

2007), infants are also thought to begin to use active strategies to directly elicit information 

from a social partner about their environment. For example, infants aged 12-14 months point 

in an interrogative manner (Begus & Southgate, 2012; Kovács et al., 2014), and look towards 

their caregiver to ask for help when uncertain (Bazhydai et al., 2020; Goupil et al., 2016). 

 

These approaches suggest that infants’ endogenous engagement or interest forward-predicts 

their attention patterns. In addition, though, there is an alternative, complementary 

possibility. Infants’ attention shifts may initially happen as reactive or spontaneous 

behaviours (driven by external attention capture, or, as discussed above, internal regulatory 

functions; Robertson, 2014; Stephens & Charnov, 1982) that are not forward-predicted by 

fluctuations in infants’ endogenous engagement or interest; processes after the attention shift 

(determined by what information is present at the attended-to location) may drive increases in 

infants’ endogenous engagement or interest which prolong that attention episode. (This 

distinction is similar to that we discussed above, about whether caregiver behaviours 

forwards-predict infant attention, or whether caregivers influence infants by reactively 

responding to their attention shifts, but operates at the individual level.) Consistent with this 

possibility, dynamic, generative models based on this framework can accurately predict 

attention patterns at least in younger infants (Robertson, 2014; Robertson et al., 2004). 
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Dynamic, amplificatory processes that take place after an attention shift can also explain 

patterns of attention inertia observed in naturalistic settings (Richards & Anderson, 2004).  

 

To examine how fluctuations in endogenous engagement or interest drive and/or maintain 

infant attention during naturalistic interactions, we can measure theta activity (3-6Hz), which 

is an oscillatory rhythm associated with intrinsically guided cognitive process in early 

infancy (Begus & Bonawitz, 2020). In particular, EEG activity in the theta range has been 

found to increase over fronto-central electrodes during episodes of endogenously controlled 

attention. For example, theta activity over fronto-central electrodes increases where infants 

anticipate the next actions of an experimenter, and theta activity occurring in the time before 

infants look towards an object has been found to predict the length of time infants pay 

attention to that object during solitary play (Orekhova et al., 2006; Wass et al., 2018b).  

Recent work has also shown dynamic fluctuations in theta activity over the course of 

sustained attention episodes: Xie et al., 2018 found that, whilst 10-12 month-old infants 

viewed cartoon videos, theta activity increased during heart-rate defined periods of 

attentional engagement (see also Jones et al., 2020).   

 

In summary, therefore, research has examined two separate influences that could support how 

infants pay attention in social settings. The first type of influence is endogenous engagement 

or interest. The second is caregivers’ exogenous behaviour. But for both of them, it is unclear 

whether the influences are forwards-predictive or reactive. Does infants’ endogenous 

attention engagement forwards-predict attention, or do fluctuations in engagement that take 

place after an attention shift predict how long that episode lasts? And do caregivers drive 

infant attention using salience cues, or do they reactively change their behaviours in response 

to infant behaviours?  



 103 

 

Here, recording EEG from infants during naturalistic interactions with their caregiver, we 

examined the (inter)-dependent influences of infants’ endogenous oscillatory neural activity, 

and inter-dyadic behavioural contingencies in organising infant attention. First, we examined 

processes endogenous to the infant that determine the timing of their attention during the 

interaction (section 4.2). Second, we examine caregiver behaviours (part 4.3).  

 

First, in section 4.1, we test whether oscillatory structures can be derived from the patterns of 

infant and caregiver looking behaviour at an individual level, by computing the partial auto-

correlation function (PACF) for caregiver and infant attention durations. We then test 

whether infant and caregiver behaviours act as coupled oscillators, by examining the time-

course of the cross-correlation function between infant and adult gaze (Takahashi et al., 

2013). If true, this would point to the existence of mechanisms of influence between infant 

and adult gaze that our other analyses, examining forwards- and backwards-predictive 

relationships, would be unable to detect.   

 

In section 4.2 we then assess whether infants’ endogenous cognitive processing forward-

predicts infant attention, by using a cross-correlations to estimate the forwards- and 

backwards-predictive associations between infant theta activity and look durations. In 

addition, we further examined reactive changes in infant endogenous oscillatory neural 

activity that take place after the onset of an attention episode towards objects. To do so, we 

used two analyses: first, using linear-mixed effects models, we examined the direct temporal 

associations between the infant attention durations and the average levels of infant theta 

activity during that look. Next, we examined how theta activity changes dynamically across 

the course of individual looks.  
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In section 4.3 we examined the (inter)-dependent relationships between caregiver behaviours 

and infant attention. We examined two aspects of caregiver behaviour in particular. First 

(section  4.3.1, and 4.3.2), we examined caregiver gaze behaviour, using cross-correlations to 

test whether increases in caregiver attention towards objects forwards- or backwards-

predicted changes in infant attention. In order to test whether any association between infant 

attention and caregiver behaviour was independent of the relationship between infant 

attention and their endogenous oscillatory neural activity, we also conducted cross-

correlations to examine the associations between caregiver attention and infant theta activity. 

And we used the same two analyses as used in section 3.2 to examine how caregiver gaze 

behaviour changes reactively following the onset of an infant attention episode.   

 

Second (section 3.3.3 and 3.3.4) we examined saliency in the caregiver’s speech signal by 

computing the rate of change in the fundamental frequency of their voice (Cooper & Aslin, 

1994).  For this, we used the same analysis approach. First, we conducted cross-correlations 

to examine whether changes in caregiver vocal behaviour forwards- or backwards-predict 

changes in infant attention. Second, we examined how caregiver vocal behaviour changes 

reactively following the onset of an infant attention episode. Allostatic attentional-structuring 

models predict reactive change in caregiver behaviour at the onset of infant attention, and 

over the duration of the look, that associate with the length of infant looking.   
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4.2 Methods 

 

4.2.1 Participants 

 

Ninety-four caregiver-infant dyads took part in this study. The final overall sample with 

usable, coded, gaze data was 66 (17 infants were excluded due to recording error or 

equipment failure, 4 infants were excluded for fussiness and 6 infants were excluded due to 

poor quality EEG data, and limited coding resources). Of the infants with usable gaze data, 

51 had additional vocal data (15 excluded due to recording error/equipment failure: overall 

exclusion 46%). Of those with gaze data, 60 infants had usable EEG data (a further 6 

excluded due to noisy EEG data (see artifact rejection section below); 36% data loss from 

overall sample. All usable data sets available for each separate analysis were used in the 

results reported below (e.g. infants with gaze and EEG data but no vocal data are included in 

analyses exploring the relationship between infant EEG and gaze). In the final sample, the 

mean age of infants was 11.18 months (SD=1.27; 36 females, 30 males). All caregivers were 

female. Participants were recruited through baby groups and Childrens’ Centers in the 

Boroughs of Newham and Tower Hamlets, as well as through online platforms such as 

Facebook, Twitter and Instagram. Written informed consent was obtained from all 

participants before taking part in the study, and consent to publish was obtained for all 

identifiable images used. All experimental procedures were reviewed and approved by the 

University of East London Ethics Committee.  
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4.2.2 Experimental set-up 

 

Parents and infants were seated facing each other on opposite sides of a 65cm wide table. 

Infants were seated in a high-chair, within easy reach of the toys (see Figure 4.1b). The 

shared toy play comprised two sections, with a different set of toys in each section, each 

lasting ~5 minutes each. Two different sets of three small, age-appropriate toys were used in 

each section; this number was chosen to encourage caregiver and infant attention to move 

between the objects, whilst leaving the table uncluttered enough for caregiver and infant gaze 

behaviour to be accurately recorded (cf. Yu & Smith, 2013).  

 

At the beginning of the play session, a researcher placed the toys on the table, in the same 

order for each participant, and asked the caregiver to play with their infant just as they would 

at home. Both researchers stayed behind a screen out of view of caregiver and infant, except 

for the short break between play sessions. The mean length of joint toy play recorded for play 

section 1 was 297.28s (SD=54.93) and 323.18s (SD=83.45) for play section 2.  

 

4.2.3. Equipment 

 

EEG signals were recorded using a 32-channel BioSemi gel-based ActiveTwo system with a 

sampling rate of 512Hz with no online filtering using Actiview Software. The interaction was 

filmed using three Canon LEGRIA HF R806 camcorders recording at 50 fps. Parent and 

infant vocalisations were also recorded throughout the play session, using a ZOOM H4n Pro 

Handy Recorder and Sennheiner EW 112P G4-R receiver.  
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Two cameras faced the infant: one placed on the left of the caregiver, and one on the right 

(see Figure 4.1b). Cameras were placed so that the infant’s gaze and the three objects placed 

on the table were clearly visible, as well as a side-view of the caregiver’s torso and head. One 

camera faced the caregiver, positioned just behind the left or right side of the infant’s high-

chair (counter-balanced across participants). One microphone was attached to the caregiver’s 

clothing and the other to the infant’s high-chair.  

 

Caregiver and infant cameras were synchronised to the EEG via radio frequency (RF) 

receiver LED boxes attached to each camera. The RF boxes simultaneously received trigger 

signals from a single source (computer running MATLAB) at the beginning of each play 

section, and concurrently emitted light impulses, visible in each camera. Microphone data 

was synchronised with the infants’ video stream via a xylophone tone recorded in the infant 

camera and both microphones, which was hand identified in the recordings by trained coders. 

All systems were extensively tested and found to be free of latency and drift between EEG, 

camera and microphone to an accuracy of +/- 20 ms.  

 

4.2.4 Video coding 

 

The visual attention of caregiver and infant was manually coded using custom-built 

MATLAB scripts that provided a zoomed-in image of parent and infant faces (see Figure 

4.1b). Coders indicated the start frame (i.e. to the closest 20ms, at 50fps) that caregiver or 

infant looked to one of the three objects, to their partner, or looked away from the objects or 

their partner (i.e. became inattentive). Partner attention epsiodes included all looks to the 

partner’s face; looks to any other parts of the body or the cap were coded as inattentive. 

Periods where the researcher was within camera frame were marked as uncodable, as well as 
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instances where the caregiver or infant gaze was blocked or obscured by an object, or their 

eyes were outside the camera frame. Video coding was completed by two coders, who were 

trained by the first author. Inter-rater reliability analysis on 10% of coded interactions 

(conducted on either play section 1 or play section 2), dividing data into 20ms bins, indicated 

strong reliability between coders (kappa=0.9 for caregiver coding and kappa=0.8 for infant 

coding).  

 

4.2.5 Vocalisation coding 

 

The onset and offset times of caregiver and infant vocalisations were identified using an 

automatic detector. The algorithm detected voiced segments and compared the volume and 

fundamental frequency detected in each recorded channel to infer the probable speaker 

(mother vs. infant). Identification of the onset and offset times of the detector then underwent 

a secondary analysis by trained coders, who identified misidentification of utterances by the 

automatic decoder, as well as classifying the speaker for each vocalisation. As the decoder 

did not accurately identify onset and offset times of caregiver and infant during co-

vocalisations, and, as these vocalisations could not be included in analyses of the spectral 

properties of caregiver vocalisations, these were excluded from all analyses. The mean 

percentage of caregiver vocalisations that were co-vocalisations was less than 20%:  19.43 

(SD=12.36; a box plot across all participants is presented in Figure S1). In a previous 

analysis conducted on a sub-sample of the data (Phillips et al., in press), we have shown that 

there is no significant change in infant vocalisations, relative to the onset of infant attention 

episodes, and their vocal beahviour did not distinguish between moments that they either led 

or followed their partners’ attention during the interaction. It is therefore unlikely that 
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inclusion of co-vocalisations in the current analyses would affect the main findings, time-

locking caregiver vocalisations to infant attention.  

 

4.2.6 Infant EEG artifact rejection and pre-processing 

 

A fully automatic artifact rejection procedure including ICA was adopted, following procedures 

from commonly used toolboxes for EEG pre-processing in adults (Bigdely-Shamlo et al., 2015; 

Mullen, 2012) and infants (Debnath et al., 2020; Gabard-Durnam et al., 2018), and optimised and 

tested for use with our naturalistic infant EEG data (Georgieva et al., 2020; Marriott Haresign et 

al., 2021). This was composed of the following steps: first, EEG data were high-pass filtered at 

1Hz (FIR filter with a Hamming window applied: order 3381 and 0.25/ 25% transition 

slope, passband edge of 1Hz and a cut-off frequency at -6dB of 0.75Hz). Although there is debate 

over the appropriateness of high pass filters when measuring ERPs (see (Widmann & Schröger, 

2012), previous work suggests that this approach obtains the best possible ICA decomposition 

with our data (Dimigen, 2020; Marriott Haresign et al., 2021). Second, line noise was eliminated 

using the EEGLAB (Bigdely-Shamlo et al., 2015) function clean_line.m (Mullen, 2012).   

 

Third, the data were referenced to a robust average reference (Bigdely-Shamlo et al., 2015). The 

robust reference was obtained by rejecting channels using the 

EEGLAB clean_channels.m function with the default settings and averaging the remaining 

channels. Fourth, noisy channels were rejected, using the EEGLAB 

function clean_channels.m. The function input parameters ‘correlation threshold’ and ‘noise 

threshold’ (inputs one and two) were set at 0.7 and 3 respectively; all other input parameters were 

set at their default values. Fifth, the channels identified in the previous stage were interpolated 

back, using the EEGLAB function eeg_interp.m. Interpolation is commonly carried out either 

before or after ICA cleaning but, in general, has been shown to make little difference to the 
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overall decomposition (Delorme & Makeig, 2004). Infants with over 21% (7) electrodes 

interpolated were excluded from analysis. After exclusion, the mean number of electrodes 

interpolated for infants was 3.37 (SD=2.27) for play section 1, and 3 (SD=2.16) for play 

section 2.  

 

Sixth, the data were low-pass filtered at 20Hz, again using an FIR filter with a Hamming window 

applied identically to the high-pass filter. Seventh, continuous data were automatically rejected in 

a sliding 1s epoch based on the percentage of channels (set here at 70% of channels) that exceed 

5 standard deviations of the mean channel EEG power. For example, if more than 70% of 

channels in each 1-sec epoch exceed 5 times the standard deviation of the mean power for all 

channels then this epoch is marked for rejection. This step was applied very coarsely to remove 

only the very worst sections of data (where almost all channels were affected), which can arise 

during times when infants fuss or pull the caps. This step was applied at this point in the pipeline 

so that these sections of data were not inputted into the ICA. The mean percentage of data 

removed in play section 1 was 11.30 (SD=14.97), and 6.57(SD=6.57) for play section 2.   

 

Data collected from the entire course of the play session (including play section 1 and play 

section two, as well as two further five minute interactions) were then concatenated and ICAs 

were computed on the continuous data using the EEGLAB function runica.m.  The mean 

percentage of ICA components rejected was 52.03% (SD=18.38). After ICA rejection, data from 

each play section were re-split. For representative examples of artifactual ICA components 

identified in our naturalistic EEG data, see Marriott-Haresign et al. (2021).  
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4.2.7 Pre-processing of continuous variables 

 

Prior to conducting our main analyses, all primary variables of interest were converted into 

continuous variables, in order to perform time-lagged and event-locked methods of analysis, 

relative to infant attention (see Figure 4.1d). All continuous variables were downsampled to 

match the sampling rate of the video cameras (50Hz).  

 

4.2.7.1 Infant theta activity  

 

First, missing data points were excluded from the continuous time-series. Where one or more 

of the fronto-central electrodes of an individual infant exceeded 100uV for more than 15% of 

the interaction, the infant’s continuous theta time-series was excluded from analyses. Next, 

time-frequency decomposition was conducted via continuous morlet wavelet analysis to 

extract EEG activity occurring at frequencies ranging from 1-16Hz. Specifically, the EEG 

signal at each channel was convolved with Gaussian-windowed complex sine-waves, ranging 

from 1-16Hz, in linearly spaced intervals. The width of the guassian was set to 7 cycles.  

Power was subsequently extracted as the absolute value squared, resulting from the complex 

signal. After decomposition, to get rid of edge artifacts caused by convolution, the first and 

last 500ms of the time series were treated as missing data points. Missing data points were 

then re-inserted into the continuous variable as blank values, and the 500ms before and after 

these chunks of data also excluded. For each time point, for each frequency, power was 

expressed as relative power (i.e. the total power at that frequency, divided by the total power 

over all frequencies). EEG activity was then averaged over frequencies ranging from 3-6Hz, 

and averaged over fronto-central electrodes (see Figure 4.1).  
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This continuous, one-dimensional variable was then downsampled from 512 to 50Hz by 

taking the median theta activity for every 10 samples of data, and, in each second, taking an 

extra 1 sample for 3 time points and an extra 2 samples for 1 time point. The spacing of these 

added samples was shuffled for each second of data.  

4.2.7.2 Attention durations 

 

An attention episode was defined as a discrete period of attention towards one of the play 

objects on the table, or to the partner. The end of each attention episode was defined as the 

moment where the participant first looked away from the target towards another object, 

towards the partner, or towards another location that was not either the object or the partner 

(coded as non-target attention). See Figure 4.1d for an example. Parts of the caregiver/infant 

gaze coded as uncodable were treated as missing data points, as well as the looks occurring in 

the time just before and after (in order to account for the fact that we do not know how long 

these looks last).  

 

4.2.7.3 Binary attention variable 

 

 For the analyses in section 4.3.1, which examine the temporal oscillatory patterns of 

attention shifts, we recoded each look alternatively as a 0 or 1 from the first look of the 

interaction to the last (see Figure 4.1d). These analyses examine therefore the temporal inter-

dependencies between attention durations (within an individual and across the dyad), 

irrespective of where the attention is directed.  
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4.2.7.4 Continuous attention duration variable  

 

For the analyses in section 4.3.2 and section 4.3.3, which examine the associations between 

attention durations and other measures, we recoded each look based on the duration in 

seconds of that look. The durations of each look were then used to produce a continuous look 

duration variable, irrespective of whether that look was towards the object, partner, or non-

target (see Figure 4.1d). These analyses examine therefore the associations between the 

durations of attention episodes and, respectively, endogenous infant neural activity (section 

4.3.2) and caregiver behaviour (4.3.3). 

 

4.2.7.5 Caregiver vocalisation durations 

 

The length of each caregiver vocalisation was computed in seconds and inserted into the 

video-frame time series for the duration of that vocalisation. Periods where the caregiver was 

not vocalising (i.e. vocal pauses) were set to missing data points. Times where co-

vocalisations occurred were also set to missing data points. 

 

4.2.7.6 Rate of change in the fundamental frequency (F0) of the caregiver’s voice 

 

The fundamental frequency of the caregiver’s voice was extracted using Praat (Borsema & 

Weenik, 2019)with floor and ceiling parameters set between 75-600Hz. Caregiver 

fundamental frequency was placed into the continuous variable only where the coder had 

identified that section of speech as the caregiver speaking, so that infant vocalisations were 

not included in the analysis. Due to the caregiver being within variable distance of their 

microphones, some clipping was identified in a sample of the microphone recordings. A 
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stringent clipping identification algorithm was used (see Figure S2) to remove parts of the 

microphone data where clipping occurred (Hansen et al., 2021; see SM, section 1.1.1). 

Vocalisations where any clipping was identified were set to missing data points. Interactions 

with more than 30% missing vocalisations were excluded from the analyses. Statistics on the 

number of vocalisations excluded on this basis is presented in Figure S2. Co-vocalisations 

were again set to missing data points. 

 

Next, unvoiced sounds and periods between vocalisations were interpolated, using 

MATLAB’s interp1 function. To reduce the likelihood of background noise (e.g. toy clacks) 

affecting the fundamental frequency, the interpolated variable was low-pass filtered at 20Hz 

using a 9th order butterworth filter. The rate of change in the caregiver’s fundamental 

frequency was computed by taking the sum of the derivative in 1000ms intervals. The start 

and end points of each interval were then converted to time in camera frames, and the rate of 

change values inserted for the 50 corresponding frames.  

 

4.2.7.7 Caregiver amplitude modulations 

 

Amplitude modulations in the caregivers’ speech were extracted using the NSL toolbox (Chi 

et al., 2005). First, the speech signal was downsampled to 16kHz. The 128-channel auditory 

spectrogram, with centre frequencies ranging from 180-7246Hz was then computed (frame 

length=5ms, time constant=8ms, no nonlinear filtering), and the band-specific envelopes 

summed across frequencies to obtain the broadband envelope of the speech signal. The 

amplitude envelope was inserted into the continuous variable only where the coder had 

identified the caregiver as vocalising: all vocal pauses were treated as missing data points. 

Clipped vocalisations were also identified using the same method described above, and set as 
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missing values. Finally, the continuous amplitude variable was synchronised to the video 

frames.  

 

4.2.8 Analysis procedures 

 

4.2.8.1 Partial autocorrelation function  

 

Computation 

 

The partial auto-correlation function (PACF) of the caregiver and infant gaze time series was 

computed separately, over a range of time intervals, from 100-1000ms. First, the gaze time 

series was converted to a continuous binary variable, with either a 1 or 0 inserted into the 

time series for the duration of each attention episode, alternated for each consecutive look. 

The PACF was then computed by fitting an ordinary least squares regression model, at time-

lags ranging from 0 to 10s, in 100ms intervals, controlling for all previous time-lags on each 

iteration. This analysis was repeated at intervals of 200, 500 and 1000ms.  

 

Shuffled time series 

 

To investigate whether the shape of the PACF reflected the temporal distribution of 

infant/caregiver attention episodes or more simply the frequency distribution (i.e. 

infant/caregiver attention episodes frequently last a similar length; Brookshire, 2022), we 

conducted a permutation procedure, whereby, for each infant, their attention duration time 

series was shuffled randomly in time to produce a binary gaze time series of shuffled 

attention durations. The PACF was then computed for this time series in exactly the same 
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way described above. This procedure was subsequently repeated 100 times for each 

participant, before averaging over all permutations and participants.  

 

Poisson baselines 

 

Poisson baselines were created by computing time series of the Poisson point process with 

the length of look durations matching the average length of look durations in the actual data 

(Takahashi et al., 2013). This variable was then converted to a binary look duration variable 

(see above) for the binary cross-correlation analysis.  

 

4.2.8.2 Cross-correlation analyses 

 

Cross-correlations were computed between infant attention durations, the continuous 

caregiver variables and infant theta activity. All analyses for the continuous caregiver 

variables were subsequently repeated relative to infant theta activity.  

 

Computation  

 

First, the time series of each variable were log transformed, and outliers falling 2 inter-

quartile ranges above the upper quartile and two inter-quartile ranges below the lower 

quartile removed. A detrend was then applied to each variable; linear and quadratic bivariate 

polynomials were fit to each transformed time-series, and the residuals of the model of best 

fit computed. The cross-correlation between the two variables was then computed at lags -30 

to +30s in 500ms intervals. The zero-lagged cross-correlation was first computed between the 

two variables using a Pearson correlation. The caregiver’s time series (or infant theta activity 



 117 

where this was computed relative to infant attention durations) was then moved backwards in 

time (to compute negative lag correlations), or forwards in time (to compute positive lag 

correlations), and the Pearson correlation computed between the two time series at each 

500ms interval. In this way, we estimated how the association between the two variables 

changed with increasing time lags.  The cross-correlations at each time-lag were then 

averaged over the two interactions for each participant, and then averaged over all 

participants.  

 

Significance testing 

 

A cluster-based permutation approach was used to investigate whether the time-lagged cross 

correlation differed significantly from chance over any time-period. This approach controls 

for family-wise error rate using a non-parametric Monte Carlo method (Maris & Oostenveld, 

2007). To create a random permutation distribution at each time-lag, each participant was 

randomly paired with another participant, through a process of derangement, and the cross-

correlation between the caregiver and infant variables computed, and averaged over 

participants in exactly the same way described above. This procedure was then repeated 1000 

times, resulting in a random permutation distribution at each time lag. Next, the cross-

correlation at each time lag in the observed data was compared with the permutation 

distribution at that time lag, and values falling above the 97.5th centile and below the 2.5th 

centile were accepted as significant (corresponding to a significance level of 0.05). To 

examine the likelihood of clusters of significant time points in the observed data occurring by 

chance, a cluster-threshold was computed using a leave-on-out procedure on the permutation 

data. On each iteration, one permutation was compared with the 999 other permutations, and 

significant time-points identified using the same method described above. The largest cluster 
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found on each iteration was identified to create a random permutation distribution of cluster 

sizes. The clusters identified in the observed data were then compared with this permutation 

distribution of maximum cluster sizes, and clusters falling above the 95th centile were 

considered significant (corresponding to a significance level of 0.05).  

 

4.2.8.3 Linear mixed effect models 

 

Linear mixed effect models were used to investigate the relationship between caregiver 

behaviour, infant theta activity and infant attention duration. First, for each participant, for 

each attention duration, the continuous caregiver behavioural variable was averaged over the 

length of the infant episode, to obtain one value for caregiver behaviour per infant attention 

duration. Next, each variable was log-transformed, and outliers 2 inter-quartile ranges above 

the upper quartile and two inter-quartile ranges below the lower quartile removed.  Finally, 

linear mixed effects models were fitted, with caregiver behaviour, or infant theta activity as 

the fixed effect, and infant attention durations as the response variable, with a random effect 

of participant.  

 

4.2.8.4 Attention onset event-related analysis 

 

Computation 

 

Before event-locking the continuous variables to infant attention, the continuous variable was 

log-transformed, and outliers removed, applying a similar procedure to that described above. 

First, the frame of the onset of each infant object look, as well as the duration of that look 

was extracted from the infant gaze time series. Next, for each continuous variable, the frames 
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occurring five seconds before and five seconds after the onset of each infant look were 

extracted from the caregiver time series. Given the fact that we were interested in how 

caregiver behaviour changed around the onset of an attention episode, where the infant 

shifted gaze again in the 5 second time-period after attention onset, the values in the 

continuous caregiver variable were set to missing data points. The continuous frames 

occurring before and after each look were then averaged over looks, for each interaction, 

resulting in an averaged continuous variable along the time dimension. These values were 

then averaged over interactions for each participant, before averaging over all participants.  

 

In order to explore the possibility that the length of the infant attention episode might affect 

how the caregiver’s behaviour changed around the onset of that episode, exactly the same 

analysis was repeated on attention durations of different lengths, in 5 log-spaced intervals, 

ranging from 0 to the longest attention episode identified across the datasets (118s).  

 

Significance testing 

 

Significance testing followed exactly the same procedures outlined in the cross-correlation 

analysis section.  

 

4.2.8.5 Modulation during attention episodes 

 

For this analysis, all continuous data variables (caregiver behaviour / infant theta activity) 

were log transformed and outliers removed (see above). Then, for each infant object look, the 

continuous caregiver behaviour / infant theta activity was extracted over the length of that 

attention episode, and divided into 3 equal-spaced chunks. The continuous data variable 
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occurring in the first half of each chunk was then averaged for each attention episode, before 

being averaged over all episodes for that interaction. Averaged chunks from play section 1 

and play section 2 were then averaged together for each participant, and the mean over all 

participants, for each chunk, computed. A series of Wilcoxon Signed ranks tests assessed 

whether the chunks differed to each other, compared to that which would be expected by 

chance. The Benjamini-Hochberg false discovery rate procedure was applied to correct for 

multiple comparisons (p< 0.05; Benjamini Yoav & Hochberg Yosef, 1995). 

 

Similar to the ERP analysis, infant object look durations were divided into 5 log-spaced bins 

to assess whether modulations in infant endogenous cognitive processing or caregiver 

behavior differed for episodes lasting different lengths: exactly the same procedure was 

repeated for each duration bin.  

 

 

 

 

 



 121 

 

 

 

Figure 4. 1  Experimental set-up and example of continuous variables. a) Raw data 

sample, showing (from top) infant EEG over fronto-central electrodes, after pre-processing, 

infant gaze behaviour, infant vocalisations, adult EEG over fronto-central electrodes, adult 

gaze behaviour, adult vocalisations. b) Example camera angles for caregiver and infant (right 

and left), as well as zoomed-in images of caregiver and infant faces, used for coding. c) 

Topographical map showing electrode locations on the bio-semi 32-cap; fronto-central 

electrodes included in the infant time-frequency analysis are highlighted in orange (AF3, 

AF4, FC1, FC2, F3, F4, Fz). d) Continuous behaviour and EEG variables extracted from the 

caregiver and infant time-series, showing (from top), caregiver looks to objects, the partner, 

and off-task looks, caregiver binary attention durations, caregiver continuous attention 

durations, caregiver vocalisation durations, rate of change in caregiver F0, infant looks to 
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objects, their partner, and off-task looks, infant binary attention durations, infant continuous 

look durations, infant relative theta activity.  

 

4.3. Results 

 

The results section is divided into three sections. In section 4.3.1, we first conduct descriptive 

statistics of infant attention durations, and test for oscillatory structures in caregiver and 

infant attention. Then, in section 4.3.2, we examine whether endogenous infant neural 

activity forwards-predicts fluctuations in infant attention, and/or reactively changes in the 

time after the onset of an attention episode.  In section 4.3.3, we assess whether modulations 

in caregiver gaze and vocal behaviour forwards-predict fluctuations in infant attention, and/or 

reactively change in the time after infants shift their attention.  

 

4.3.1 Oscillatory structures in caregiver and infant attention  

 

First, as descriptive statistics, we report on the frequency distribution of caregiver and infant 

attention durations towards objects, the partner, and periods of inattention, dividing attention 

durations into 100ms bins. Histograms showing the distribution of caregiver and infant 

attention durations towards objects, partners, and non-targets are displayed in Figure 4.2a. In 

both distributions the mode is greater than the minimum value, consistent with previous 

observations that attention shifting is periodic (Saez de Urabain et al., 2017). The caregiver’s 

distribution is also more left-skewed compared to the infants’ distribution, reflecting the 

shorter and more frequent attention durations by the caregiver (c.f Wass et al., 2018a; Yu & 

Smith, 2012). Finally, consistent with previous reports (Yu & Smith, 2013), caregivers 
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tended to look towards their partner more frequently than infants, with infants attending most 

frequently to the objects (Fig 2a).  

 

Next, to investigate whether there was an oscillatory component in the caregiver and infant 

gaze time series, we computed the PACF of a binary attention variable separately for 

caregiver and infant using 100, 200, 500 and 1000ms lags (see Methods and Fig 1a for more 

detail). In order to explore whether the PACF reflected the temporal interdependencies 

between infant/caregiver attention episodes (i.e. how likely an attention episode of a given 

length was to be followed by another of a similar length), or, more simply, the overall 

distributions of attention episodes (i.e. how common attention episodes of a given length are 

overall), the PACF was repeated after shuffling the infant and caregiver attention durations in 

time (see Methods for permutation procedure).  

 

Figure 2b shows that for the 100ms, 200ms time bins (infant and caregiver) and 500ms time 

bin (infant only), the lag 1 terms are negative, indicating that attention at time t is negatively 

predictive of attention at time t+x where x is a short time interval. This pattern is also 

observed in the baseline data (in which looks have been randomly shuffled in time). It 

reflects therefore, the overall pattern already shown in the histograms in Figure 4.2a, that 

short looks (e.g. 100-200ms) are less frequent than longer looks (e.g. 500ms). It can also be 

seen that, at higher time lags, the observed PACF values are above the baseline rate. This 

indicates temporal interdependencies between look durations (i.e. that an attention episode of 

a given length is likely to be followed by another of a similar length), which are not present 

when the look durations are randomly shuffled to generate the baseline data.  
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Finally, we replicated previous analyses (Takahashi et al., 2013) to explore whether the inter-

dyadic dynamics of caregiver and infant looking behaviour could be modelled as coupled 

oscillators. We computed the same binary attention variables for the infant as for the 

caregiver (see Figure 4.1d), and calculated the cross-correlation function between the infant 

and caregiver binary attention variables. In this way, we examined whether caregiver and 

infant attention changes at consistent temporal latencies, as would be the case if they were 

acting as entrained oscillators ( Wass et al., 2022). If this is true, then the cross-correlation 

function should display significant peaks at regular intervals, reflecting these consistent 

latencies between attention shifts (Takahashi et al., 2013). In order to identify where peaks in 

the cross-correlation function exceeded chance, we computed Poisson point process 

timeseries with look duration lengths matching the average look duration in the actual data 

(see Methods for more details). Figure 4.2c shows the results of this. Cluster-based 

permutation analysis revealed no significant peaks in the cross-correlation function, 

compared to baselines created through poisson process.  

 

In summary, oscillatory mechanisms appear to govern both caregiver and infant attention 

durations; with infant attention durations centring around 1-2s in length, and adults’ around 

200-500ms. The cross-correlation analysis, however, suggested that caregiver and infant 

attention shifts do not act as coupled oscillators across the dyad (Figure 4.2c). 
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Figure 4. 2 Testing for oscillatory patterns of attention behaviour in infants and 

caregivers. a) Histogram of caregiver and infant attention episodes to objects, their partner 

and off-task episodes. Stacked bars show the number of episodes in each category for each 

100ms bin for all episodes up to 10s in duration. b) PACF computed at different time lags for 

caregiver and infant gaze time series. Coloured lines show the PACF for infants (green) and 

caregivers (pink); shaded areas show the SEM.  Dashed black lines show the PACF of 

shuffled attention duration data. c) Cross-correlation between caregiver and infant binary 

gaze variables. Black line shows the Spearman correlation coefficient at time-lags ranging 

from 0-10s; error bars indicated the SEM. Blue dashed line shows the permutation cross-

correlation between two time series of poisson point process; one matching the average look 

rate of caregivers and the other, the average look rate of infants.  
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4.3.2 Does endogenous infant neural activity forwards-predict infant attention, or 

reactively change following the onset of a new infant attention episode? 

 

In this section, we investigate the relationship between infant endogenous oscillatory neural 

activity and infant attention, considering both forwards-predictive relationships and reactive 

changes in infants’ endogenous neural activity after the onsets of attention episodes.  

 

4.3.2.1 Forwards predictive relationship between attention and infant theta activity 

 

To examine whether infant endogenous neural activity significantly forwards-predicted infant 

attentiveness, we calculated a cross-correlation between the continuous infant attention 

duration time-series (see Figure 4.1d), including all infant attention episodes to objects, the 

partner and looks elsewhere, and infant theta activity. Figure 4.3a shows the results of the 

cross-correlation analysis. This analysis revealed a significant, positive association between 

the two variables at time-lags ranging from -2 to +6s (p = 0.004). This indicates that infant 

theta power significantly forwards-predicted infant attention durations at lags up to 2 

seconds, as well as that infant attention durations significantly forwards-predicted infant theta 

at lags of up to 6 seconds.  

 

4.3.2.2 Reactive change in infant theta activity following look onset 

 

In addition to the cross-correlation, we also conducted two further analyses to investigate the 

relationship between theta activity and the duration of attention episodes. First, we calculated 

a linear mixed effects model to examine the relationship between the lengths of infant 
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attention episode and average theta activity during that episode. This showed a significant, 

positive association between the two variables (b =0.33; p<0.001); scatter plot between the 

two variables is shown in Figure 4.3b. This indicates that higher average theta power across 

the attention episode associates with longer attention durations. Second, we explored 

dynamic change in theta activity relative to the onset of infant attention episodes towards 

objects. The modulation analysis (Figure 4. 3c) showed that there was little change in infant 

theta activity over the duration of infant attention episodes, for any duration time-bin: a series 

of Wilcoxon signed rank tests indicated decreases in infant theta activity for attention 

episodes lasting 1-3s, but this did not survive Benjamini-Hochberg correction.  

 

In summary, there is a temporally specific relationship between infant attention durations and 

theta power, with attention durations forwards-predicting theta power more than vice versa 

(Figure 4.3a). Longer attention episodes are associated with increased average theta activity 

over the length of the episode (Figure 4.3b), but little dynamical change in theta activity is 

observed over the course of an attention episode.  
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Figure 4. 3 Relationship between infant attention duration and infant theta activity. a) 

Cross correlation between infant theta activity and infant attention durations.  Black line 

shows the Pearson correlation at each time lag, shaded areas indicate the SEM. Significant 

time lags identified by the cluster-based permutation analysis are indicated by black 

horizontal lines (*p <0.05). Cluster-based permutation analysis revealed a significant cluster 

of time points ranging from -2 to +6 seconds (p = 0.004). b) Linear mixed effects model, 

predicting infant object attention duration from infant theta activity. Coloured dots show each 

individual object attention duration; black line shows the linear line of best fit. The model 

reveals a significant positive association between infant theta activity and attention duration 

(b=0.33; p<0.001).  c) Infant theta activity split into 3 attention chunks across the duration of 

attention episodes, binned according to episode length. Wilcoxon signed ranks tests explored 

significant differences between attention chunks, for each duration bin (*p < 0.05).  
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4.3.3 Do modulations in caregiver behaviours forwards-predict infant attention, or 

reactively change following the onset of a new infant attention episode? 

 

In this section, we conduct similar analyses to those in section 4.3.2 to examine the 

relationship between modulations in caregiver behaviours and infant attention, considering, 

again, both forwards-predictive relationships and reactive changes in caregiver behaviour 

after the onsets of infant attention episodes. First, we examine the relationships in caregiver 

gaze behaviours (section 3.3.3.1 and 3.3.3.2); we then repeat these analyses relative to 

caregiver vocal behaviours, focusing on the rate of change of caregiver F0 as an index of 

auditory salience (section 3.3.3.4 and 3.3.3.5).  

 

4.3.3.1 Forwards-predictive relationships between infant attention durations and adult 

attention durations 

 

To examine whether caregiver attentiveness forwards-predicts infant attentiveness, we 

conducted cross-correlation analyses between the continuous infant and caregiver attention 

durations towards the objects. In order to test whether any association between infant 

attentiveness and caregiver attentiveness was independent of the relationship between infant 

attentiveness and their endogenous oscillatory neural activity shown in Figure 4.3a, we also 

repeated these analyses relative to infant theta activity. Results are reported in Figure 4.4. The 

cross-correlation between caregiver and infant attention durations appears to peak after lag 

zero, but cluster-based permutation analysis revealed no significant clusters of time points, 

though one cluster verged on significance (p=0.10). The cross-correlation function between 

caregiver attention durations and infant theta activity revealed a similar pattern (Figure 4.4b), 

peaking in the period after time 0, and the cluster-based permutation analysis revealed a 
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significant cluster ranging from -1 to 5s (p=0.012). This indicates that caregiver attention 

durations forwards-predicted infant theta at lags up to 1 second, as well as that infant theta 

forwards-predicted caregiver attention durations at lags of up to 5 seconds. 

 

 

 

 

 

Figure 4. 4 Assessing forwards-predictive associations between caregiver attention 

durations, infant attention durations, and infant theta activity. Black lines show the 

Pearson cross-correlation between two variables; shaded areas indicate the SEM. Black 

horizontal lines show significant clusters of time lags. a) Infant and caregiver attention 

durations to objects. Cluster based permutation analysis revealed no significant clusters of 

time points (*p < 0.05), although one cluster verged on significance (p=0.10). b) Infant theta 

activity and caregiver attention durations to objects. Cluster-based permutation analysis 

indicated one significant cluster ranging from -1 to 5s (p=0.012).  
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4.3.3.2 Reactive change in caregiver look durations following infant look onset 

 
To examine reactive change in caregiver attention to objects following the onsets of infant 

attention episodes to objects, we time-locked caregiver attention durations to infant attention 

onsets towards objects. Figure 4.5a shows changes in caregiver attention durations around the 

onset of infant attention towards an object. Cluster-based permutation analysis revealed a 

significant cluster of time points 0 to 4 seconds post attention onset (p = 0.009), indicating 

that caregiver attention durations significantly decreased after the onset of a new infant 

attention episode. Figure 4.5b shows the same event-related analysis subdivided by infant 

attention duration. This revealed that the decrease in caregiver attention durations after infant 

attention onsets was significant for attention episodes lasting over 3s.  

 

To investigate how caregiver behaviour changed over the course of infant object looks, we 

next employed the same modulation analysis as described in section 4.3.2, computing 

differences in mean caregiver attention durations between 3 equal-spaced chunks over the 

course of an infant object look. This analysis revealed that, in contrast to the first 4 seconds 

of an infant attention episode during which caregiver attention durations decreased, caregiver 

attention durations actually significantly increased over the course of the entire attention 

episode, with a Wilcoxon signed ranks tests indicating a significant difference between the 

first chunk of an attention episode and the third (Figure 4.5c). Dividing infant attention 

durations into log-spaced bins again revealed that this effect was driven by attention episodes 

lasting over 3s (Figure 4.5d). Finally, we computed a linear mixed effect model to examine 

the relationship between infant object attention durations and caregiver attention durations. 

Corresponding to the modulation analyses reported above, when we averaged over the course 

of the entire infant object attention episode, we found that longer infant object attention 
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durations associated with longer caregiver attention durations (b = 0.16, p < 0.001; Figure 

4.5e).  

 

4.3.3.3 Summary of caregiver gaze behaviour 

 

In summary, both the continuous and event-related analyses revealed that caregivers 

dynamically adapted their gaze behaviour in response to changes in infant attentiveness 

during the interaction. Infant theta activity significantly forwards-predicted caregiver 

attention durations, suggesting that caregivers dynamically adapt their behaviour according to 

infant engagement (Figure 4.4b). Caregiver attention durations to objects decreased around 

the start of a new infant attention episode (Fig 4.5a); but overall, longer infant attention 

durations associated with longer attention durations by the caregiver (Figure 4.5e). These 

analyses demonstrate immediate, reactive, change in caregiver behaviour at the onset of 

infant attention towards an object, as well as slower-changing modulations in their behaviour 

over the length of an attention episode.  
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Figure 4. 5 Dynamic event-locked associations between infant object attention and 

caregiver attention durations. a) Event-related analysis showing change in caregiver 

attention durations around infant attention onsets to objects: black line shows average 

caregiver attention durations (log); shaded areas indicate the SEM. Black horizontal line 

shows areas of significance revealed by the cluster-based permutation analysis (p < 0.05). 

Cluster-based permutation analysis reveals a significant cluster of time points 0 to 4 secs 
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before and after attention onset (p = 0.009). b) Event-related analysis split by infant object 

attention-duration time bins. Black lines show average caregiver attention durations (log); 

shaded areas indicate the SEM. Black horizontal lines shows areas of significance revealed 

by the cluster-based permutation analysis (p < 0.05). Permutation analysis again revealed a 

decrease in caregiver attention durations in the time after attention onset for looks 3-35s long. 

c) Modulation analysis: each bar shows the median caregiver attention duration, across 

participants, for each chunk, averaged across all infant object attention durations. Wilcoxon 

signed ranks tests investigated significant differences between chunks (*p < 0.05). d) Same as 

c), for each infant object attention duration time bin. e) Scatter-plot showing the association 

between infant object attention durations and adult attention durations. Coloured dots show 

each individual object attention duration; black line shows the linear line of best fit. A linear 

mixed effects model revealed a significant association between the two variables (b= 0.16, p< 

0.001).  

 

4.3.3.4 Forwards-predictive relationships between infant look durations and caregiver 

vocal behaviour 

 

Next, we used an identical analysis approach to examine forward-predictive and reactive 

associations between infant attention and caregiver vocal behaviours. Here, we concentrate 

on the rate of change in F0 as a marker of auditory saliency in the caregiver’s voice. In 

additional analyses presented in the SM, we also examine caregiver vocal durations, and 

caregiver amplitude modulations (Figure S4). First, we computed the cross-correlations 

between rate of change of caregiver F0, infant attention, and endogenous infant oscillatory 

activity. Results are shown in Figure 4.6. Cluster-based permutation analysis revealed that the 

time-lagged associations between infant attention and rate of change in caregiver F0 did not 
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exceed chance (both p>0.05). To test whether there was any direct influence of caregiver 

behaviour on modulations in infant endogenous neural activity, the same analyses were 

subsequently repeated relative to infant theta activity (Figure 4.6b): cluster-based permutation 

analysis again suggested no significant association between caregiver vocal saliency and 

infant endogenous neural activity (p>0.05). The same analyses are presented relative to 

caregiver vocal durations and amplitude modulations in Figure S4, which showed a similar 

pattern of results.  

 

 

 

 

Figure 4. 6 Assessing forwards-predictive associations between caregiver vocal 

behaviour, infant attention durations, and infant theta activity.  Cross correlation 

between the rate of change in caregiver F0 and a) infant look durations, and b) infant theta 

activity. Black lines show the Pearson cross-correlation between the two variables; shaded 

areas indicate the SEM. Black horizontal lines show significant clusters of time lags 

(*p<0.05). Cluster-based permutation analysis revealed no significant clusters of time-lags. 

 

0.05

0.04

0.03

0.02

0.01

0

-0.01

-0.02

-0.03

-0.04
-30 -20 -10 0 10 20 30

Rate of F0 change 
pre-attention

Rate of F0 change 
post-attention

0.03

0.02

0.01

0

-0.01

-0.02

-0.03-30 -20 -10 0 10 20 30
Time-lag (seconds) Rate of F0 change 

pre-attention
Rate of F0 change 

post-attention

a) b)

C
or

re
la

tio
n 

(r)
 

Time-lag (seconds) 



 136 

 

4.3.3.5. Reactive change in caregiver vocal behaviour following infant look onset  

 

To examine whether caregivers reactively adapted their vocal behaviour to changes in infant 

attention, we repeated the same analysis presented in section 3.3.2, with rate of change of 

caregiver F0 as the dependent variable. The event-related analysis revealed no change in the 

rate of change in caregiver F0 relative to infant attention onsets: cluster-based permutation 

analysis revealed no change above chance levels (p>0.05; Figure 4.7b). This suggests that 

modulations in the caregiver’s speech were not immediately reactive to infant attention 

onsets towards objects. Over the length of individual attention episodes towards objects, 

however, linear mixed effects models revealed that longer object looks associated with an 

increased rate of change in caregiver F0 (b = 0.13; p<0.001; Fig 4.7a,), whilst the modulation 

analysis revealed a decrease in the rate of change in F0 which appeared largely driven by 

looks lasting between 3-10s (Figure 4.7c, 4.7d). The exact same analysis relative to caregiver 

vocal durations and amplitude modulations showed a similar pattern of findings, which is 

presented in Figure S5.  

 

4.3.3.6 Summary of caregiver vocal behaviour  

 

In summary, longer infant object look durations associated with a greater rate of change in 

caregiver F0 overall. Caregiver vocal behaviour showed no event-related change relative to 

infant attention onsets, but longer attention durations were associated with a decrease in the 

rate of change in F0 over the length of an infant object look.  
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Figure 4. 7 Reactive change in caregiver vocal behaviour relative to infant attention 

onsets. a) Scatter plot of the association between infant attention duration and rate of change 

in caregiver fundamental frequency. A linear mixed effects model predicting infant look 

duration from the rate of change in caregiver F0 revealed a positive association between the 

two variables (b = 0.13; p<0.001. b) Event related analysis examining reactive change in 

caregiver F0 in the time after the onset of an infant object look. Black line indicates the 

average across participants; shaded area indicates SEM. Black horizontal line shows areas of 

significance revealed by the cluster-based permutation analysis (p < 0.05). c) Modulation 

analysis: each bar shows the median for each chunk across participants; errors bars show the 

SEM. Wilcoxon signed ranks tests explored significant differences between attention chunks 

(*p < 0.05), d) Same as c), binned by infant attention durations. 
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4.4. Discussion 

 

We recorded the microdynamics of infant attention whilst they engaged in naturalistic, free-

flowing interactions with their caregiver. We conducted three analyses. First, we examined 

oscillatory structures in caregiver and infant attention, and whether caregiver and infant 

attention patterns act as coupled oscillators (section 4.3.1). Second, we examined how 

infants’ endogenous neural activity forwards-predicted attention durations, and how it 

changed reactively relative to the onsets of infant attention episodes towards objects (section 

4.3.2). Third, we examined how caregiver gaze and vocal behaviour forwards-predicted 

infant attention durations, and how it changed reactively to the onsets of infant object looks 

(4.3.3).  

 

When we examined how intrinsic cognitive processes control infant attention we found 

evidence for two distinct mechanisms. First, oscillatory mechanisms govern infant attention 

durations (section 4.3.1, Figure 4.2), with a period centring around 1-2 seconds in length. 

Second, independently, fluctuations in neural markers of infants’ engagement or interest 

forward-predict their attentiveness towards objects (section 4.2.1). Cross-correlation analyses 

revealed associations between infant theta activity and infant attention durations, such that 

increases in infant attention durations forwards-predicted increases in infant theta activity 

more than vice versa (Figure 4.3a). Overall, average theta power during an attention episode 

correlated with the duration of that episode (Figure 4.3b). Infant theta activity did not, 

however, show any immediate change at the beginning of an attention episode, or modulate 

over the length of longer episodes (Figure 4.3c; S3).  
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Overall these findings suggest, consistent with the predictions of active learning models 

(Begus & Southgate, 2018; Kidd & Hayden, 2015), that infants’ own endogenous cognitive 

processing is one mechanism that drives and maintains infant attention during online 

interactions. Infant theta activity associated with the duration of infant looks towards objects, 

but did not show any immediate, reactive change in the time just after attention onset, or 

slower change over the duration of the attention episode. The findings presented here could 

suggest that longer object attention by the infant occurs where infant engagement is higher, 

pointing to a bidirectional association between infant look durations and infant theta activity, 

at time scales longer than a single look.  Corresponding to this, the cross correlation of the 

association between all infant look durations and infant theta activity suggested that infant 

attention durations showed both forwards- and backwards- predictive associations with infant 

theta activity. In this perspective, these findings can be interpreted relative to active sampling 

models of visual foraging in early infancy that predict a self-sustaining, bidirectional 

interaction between exploratory behaviours by the infant, and information gain from the 

environment (Kidd et al., 2012, 2014; Oudeyer & Smith, 2016; Saez de Urabain et al., 2017). 

 

Next, we examined the association between caregiver behaviours and infant attention. 

Consistent with previous research (Yu & Smith, 2016) we found that oscillatory mechanisms 

govern both caregiver and infant attention durations, but that the oscillatory period of infant 

attention durations is shorter (centring around 1-2 seconds in length) compared with 

caregivers’ (centring around 200- 500ms in length; Figure 2a, 2b). However, when we 

examined whether infant and caregiver attention patterns act as coupled oscillators, which is 

one mechanism through which caregiver gaze behaviour might support infant gaze behaviour 

(Nuthmann & Henderson, 2010), we found no evidence to support this (Figure 2c). This 

suggests that mechanisms of influence between infant and caregiver attention are more likely 
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to operate as lagged, forwards- or backwards- predictive relationships, as we investigated in 

section 4.3.3.  

 

We found little to no evidence in support of the hypothesis that adult gaze and vocal 

behaviours forwards-predict infant attention (4.3.3). Against adult-led attentional structuring 

perspectives of early interaction, the cross-correlation analyses showed that, overall, 

fluctuations in infant look durations were not forwards-predicted by changes in caregiver 

look durations (Figure 4.4a), or modulations in the temporal and spectral properties of their 

voice (Figure 4.6; Figure S4); rather, changes in infant neural engagement largely forward-

predicted changes in caregiver attention durations (Figure 4.4b). This association was likely 

partially mediated by the weaker and non-significant associations observed between infant 

attention and caregiver attention (Figure 4.4a). We also found no evidence for co-fluctuations 

between the rate of change of caregiver F0 (a marker of auditory salience) and infant theta 

activity (Figure 4.6b). 

 

We did, however, find evidence that caregivers rapidly modulated their behaviours in 

response to shifts in infant attention. This was particularly evident in adult gaze behaviour, 

where in addition to the cross-correlation findings (Figure 4.4) our event-locked analyses 

showed that caregiver attention durations significantly decreased after the onset of a new 

infant attention episode (Figure 5.5a). Over the duration of longer attention episodes, 

however, caregiver attention durations significantly increased (Figure 4.5c), so that, overall, 

the linear mixed effects model revealed that longer infant object looks were associated with 

longer looks by the adult partner (Figure 4.5e). Whilst linear mixed effects models revealed 

that infant attention durations co-occurred with longer caregiver vocalisations, along with a 

greater rate of change in caregiver F0 and an increase in caregiver amplitude (Figure 7a; S5), 
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we observed little dynamic change in caregiver vocal behaviour immediately after attention 

onset, or over the duration of attention episodes, of any length (Figure7, Figure S5).  

 

Overall, caregiver behaviours were largely reactive to changes in infant attention. The rapid 

change in caregiver gaze in response to the onset of infant attention towards objects, 

beginning just before attention onset, suggests that it is unlikely that caregivers are 

responding to active attention sharing cues produced by the infant (Begus et al., 2014; 

Kovács et al., 2014; Tomasello et al., 2007). Indeed, similar to previous micro-behavioural 

studies of 12-month-old infants in shared interactions, infants rarely looked towards their 

caregiver’s face (Figure 4.2a), and, in a previous analysis of this data, infants did not increase 

looks to their partner’s face in the time before leading an episode of joint attention (Phillips et 

al., in press).  It seems therefore unlikely that the relationship between infant attention and 

fluctuations in their own endogenous cognitive processing is related to intentionally mediated 

forms of communication by the infant, with the goal of directly eliciting information from 

their caregiver (Phillips et al., in press; Yu & Smith, 2013).  

 

Instead, caregivers are anticipating shifts in infant attention, and, in line with an allostatic 

model of inter-personal interaction, ‘catching’ infants’ attention, and monitoring their 

behaviour (Yu & Smith, 2016). This increase in the rate of caregiver behaviour after look 

onsets could reflect dynamic up-regulatory processes that serve to maintain infant attention: 

though not reflected in their vocalisations; other fast-changing salient cues such as hand 

movements and facial affect could also increase in variability (M. Meyer et al., 2022). The 

down-regulation of caregiver attention over the course of longer attention episodes by the 

infant might subsequently index decoupling of caregivers’ regulatory processes from infant 

attention; this is also reflected in the decreased rate of change in caregiver F0 (Figure 6c). 
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Combined, therefore, our findings suggest that, during interactions at the end of the first year, 

infant attention is structured through joint but independent influences of caregiver 

responsivity and regulation, and their own intrinsically motivated engagement. 

 

In this perspective, our results can be interpreted relative to neurocomputational, associative 

accounts of active learning in early infancy (Kidd & Hayden, 2015; Oudeyer & Smith, 2016). 

These accounts postulate that contingent changes in the environment in response to actions 

produced by the infant improves infants’ prediction and control over their own behaviour 

(Friston et al., 2012; Friston, 2019). In the context of shared interaction, consistent and 

contingent responsiveness by the caregiver to infant attention gives meaning to infants’ 

behaviour, increasing infant engagement and further exploratory behaviours (Oudeyer & 

Smith, 2016; Smith & Breazeal, 2007). Over time, therefore, infants’ experience of repeated 

interactive contingencies could influence how controlled processes begin to guide their 

attention, as well as their sensitivity to and engagement in intentionally mediated forms of 

shared communication (Smith & Breazeal, 2007).  

 

This has implications for how we view and understand the interactive processes that support 

how infants begin to use and engage with a language system. Previous accounts have 

emphasised the role of the caregiver in structuring infant learning in joint attentional frames, 

where they use clear ostensive signals to guide infant attention, and support word-object 

representations (Lieven, 2016; Tomasello et al., 2007). The present study, however found no 

evidence that increases in salient cues by the caregiver forward-predicted increases in infant 

attention durations. Increases in infant attentiveness are instead related to inter-dyadic, 

sensorimotor processes that are independent of the influence of infants’ own endogenous 

cognitive process. How these fast-acting intra- and inter-individual influences on infant 



 143 

attention support early language acquisition should be a key focus for future research (Yu et 

al., 2021; Yu & Smith, 2012). 

 

The naturalistic design of our study is a strength as well as a limitation. Of note, we were 

unable to control how much infants moved during the interaction, which may have 

contributed to eye movement artifacts time-locked to shifts in infant attention. However, eye-

movement artifacts were removed using ICA decomposition, and, though this does not 

remove all artifact introduced to the EEG signal (Marriott Haresign et al., 2021), the 

relationships observed between infant attention and theta activity suggest that this did not 

affect our main findings. If eye-movement artifact influenced the association between infant 

attention duration and theta activity, shorter attention episodes ought to associate with more 

theta activity, which was not the case.  

 

In future work it will be important to take a more holistic, computational and multi-modal 

approach to studying how factors intrinsic to the infant, and the inter-personal behavioural 

contingencies of the dyad, structure infant attention and behaviour (Xu et al., 2017). For 

example, studying how inter-related multi-modal patterns of caregiver behaviour, such as 

body movement ( Meyer et al., 2022), facial affect (Murray et al., 2016; Rayson et al., 2017) 

and vocalisations (Goldstein & Schwade, 2008) support infants’ engagement in joint 

attention, will build on the work that we reported here. In addition to the micro-dynamic 

analyses that we present here, it will also be important for future work to employ modelling 

approaches to further investigate infants’ neural entrainment to the unidirectional and inter-

dyadic action-generated contingencies of shared interaction (Jessen et al., 2019; Jessen et al., 

2021). A particular focus of this work should be on studying the temporal latencies at which 
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entrainment and/or behavioural responsivity occur; utilising eye tracking methods will help 

with this.  

 

Overall, our findings suggest that infant attention in early interaction is asymmetric, related to 

their own endogenous cognitive processing and to consistent, reactive contingency to 

changes in their attention by the caregiver. Active learning strategies operate across the dyad; 

and are likely foundational to early language acquisition and socio-cognitive learning.  
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CHAPTER 5 - Using continuous methods of analysis to examine 

speech-brain tracking during naturalistic caregiver-infant object 

play  

 

This chapter is a methods paper that aims to assess the methodological issues involved in 

examining speech-brain tracking during naturalistic social interactions. The manuscript is 

currently in preparation for publication. The supplementary materials for this chapter are 

presented in Appendix C.  

 

Abstract 

 

Entrainment to slow modulations in the amplitude envelope of infant-directed speech is 

thought to drive early phonological learning (Leong et al., 2017). Whilst recent research with 

infants has applied continuous modelling approaches to examining speech-brain tracking, this 

work has so far been conducted in controlled experimental settings: far from the fast-

changing, complex and cluttered environments of everyday interactions. Here we aim to test 

the applicability of mTRF modelling to examining speech-brain tracking in naturalistic 

interactions of 9-12-month-old infants interacting with their caregivers. To do so, using a 

multivariate, backwards modelling approach we test both individual and generic training 

procedures to examine the effects of data quantity and quality on model fitting. We show that 

model fitting is most optimal using a subject-dependent approach, and, corresponding to 

previous findings, we find significant speech-brain tracking at delta modulation frequencies. 

This work is important in opening up new avenues to examining the dynamic interactive 

mechanisms that support speech-brain tracking and drive early language learning in 
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naturalistic settings. In future work, it will be important to explore, in more detail, and across 

varied naturalistic paradigms, the effects of data quality on model performance.  

 

5.1 Introduction 

 

Infants’ ability to learn a language system from inconsistent and irregular environmental 

input has been a key focus of developmental research (Aslin & Newport, 2012; Yu & Smith, 

2012). The neural mechanisms foundational to acquiring language are, however, only just 

beginning to be understood (Leong & Goswami, 2015). A large body of literature has shown 

that adults’ neural oscillations entrain to the syllabic structure of speech, corresponding to 

theta rate modulations in the amplitude envelope (Luo & Poeppel, 2007). Recent work has 

begun to explore when and how infants begin to entrain to the temporal modulation structure 

of speech (e.g. Attaheri et al., 2022). This work has, however, so far been conducted in 

structured, experimental paradigms; far from the cluttered, dynamic and complex nature of 

naturalistic interactions in which infants begin to learn a phonological system (Leong & 

Goswami, 2015; Yu & Smith, 2012).  

 

Neural tracking of the speech amplitude envelope at different temporal modulation 

frequencies supports our ability to parse the speech signal into linguistically relevant units 

(Giraud & Poeppel, 2012; Gross et al., 2013; Poeppel, 2014). In adults, neural tracking has 

been shown at delta, theta and low gamma frequencies, corresponding to the stress, syllabic 

and phonetic patterning of the phonological information in speech (Ding et al., 2016; Gross et 

al., 2013). Oscillatory tracking of a speech signal in the auditory cortex is thought to be 

hierarchically nested, with slower theta-rate oscillations dynamically modulating the activity 

of oscillations occurring at higher frequencies (Giraud & Poeppel, 2012). In particular, the 
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phase of theta-rate oscillations is thought to modulate the power and phase of gamma 

oscillations, supporting the integration of syllabic and phonetic information (e.g. Gross et al., 

2013).  

 

Whilst neural tracking at theta-rate modulations is particularly important to speech encoding 

and intelligibility in adults (Doelling et al., 2014), it is thought that, in early infancy, delta-

rate modulations might play a fundamental role in early phonological development (Leong & 

Goswami, 2015). Recent work has shown that the peak modulation frequency of IDS – i.e. 

the modulation rate with the most energy, occurs at delta frequencies (~2Hz; Leong et al., 

2017). This is in contrast to ADS, where peak modulation rates occur within the theta band 

(Greenberg et al., 2003; Leong et al., 2017). It has been suggested that the stress-shifted 

rhythm of infant directed might support neural entrainment to delta-rate temporal speech 

patterns in infancy, which could be particularly important to locating word boundaries during 

early language learning (Leong & Goswami, 2015; Power et al., 2013). Supporting this 

perspective, research on children with dyslexia has shown atypical entrainment to delta-rate 

amplitude modulations in pre-recorded speech, but typical entrainment at theta frequencies 

(Power et al., 2013, 2016).  

 

In adults, speech tracking has often been examined by recording the neural response of 

participants to short, repeated experimental stimuli. For example, one popular method 

involves presenting participants with a repeated speech stimulus, and calculating the inter-

trial phase consistency across neural responses (Luo & Poeppel, 2007; Zion Golumbic et al., 

2013) Alternatively, researchers compute the phase locking value between a participants’ 

neural response at a specific frequency and the amplitude envelope of the experimental 
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speech stimuli at the same frequency, and average the phase locking value across segments of 

short, repeated trials (Doelling et al., 2014; Peelle et al., 2013).  

 

In more recent years, however, the application of continuous methods of analysis to 

examining ongoing neural responses to a speech signal have become a particular focus 

(Crosse et al., 2015, 2016, 2021; Jessen et al., 2019; Lalor et al., 2009; Obleser & Kayser, 

2019). One popular approach is to model the impulse response function between the 

continuous speech signal, and ongoing EEG response (Brodbeck & Simon, 2020; Crosse et 

al., 2016, 2021; Ding & Simon, 2012). These models are referred to as temporal response 

functions (TRFs), that estimate the linear mapping from an environmental stimulus to the 

EEG response via a method of regularized regression (Crosse et al., 2016). Through an 

iterative process of training and testing, a regression model, describing the relationship 

between the speech amplitude envelope (e.g. 1-8Hz; (Kalashnikova et al., 2018)), and the 

EEG signal is computed at each electrode over a range of time-lags (Crosse et al., 2016). The 

resulting TRFs can be interpreted similarly to an ERP component; and the coefficients are 

directly neurophysiologically interpretable (i.e. the magnitude of a TRF coefficient 

corresponds to the extent of neural tracking to the stimulus signal at a particular channel, 

within a certain frequency range; Crosse et al., 2021; Fiedler et al., 2017; Jessen et al., 2021). 

The accuracy of the model is computed by calculating the correlation between the actual 

neural response and that predicted by the model (Crosse et al., 2016).  

 

As well as forwards models, backwards, or decoding, mTRF models can also be used to 

model the linear mapping from the stimulus (speech signal) back to the neural response. This 

method has become a widely used approach to investigating speech-brain tracking in the 

adult literature (Bednar & Lalor, 2020; Crosse et al., 2015; Ding & Simon, 2012). Unlike 
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forward encoding models, backwards models do not require the pre-selection of electrodes to 

enter into the model; instead, each channel is assigned weights at each time lag, based on 

how much information that channel provides for the reconstruction i.e. channels that track the 

speech signal to a very little extent and those that track the signal to a great extent will both 

have high weights because they provide most information to the reconstruction (Crosse et al., 

2016)). As a consequence, in contrast to encoding models, TRF weights are not directly 

neurophysiologically interpretable, but methods for forwards-transforming the weights are 

available (Haufe et al., 2014).  

 

Two different approaches to model training can be taken: an individual training approach, or 

a generic approach. Individual model training is the most commonly used method, whereby a 

TRF model is trained on the trials of an individual participants’ data, and then tested on held 

aside data for that participant. In this way, individual training methods identify consistencies 

in neural tracking within participants (Jessen et al., 2019; Jessen et al., 2021a). The second 

approach is a generic training approach: here, a TRF model for each participant is trained by 

pooling across the models constructed for all other participants. This method is advisable 

with small or noisier data sets in increasing the amount of data the model is trained on 

comparative to individual models (Crosse et al., 2021; Jessen et al., 2021). In training models 

across participants, generic models also inform our understanding of consistencies in neural 

tracking of the speech signal between participants (Jessen et al., 2021). This is particularly 

interesting relative to examining speech-brain tracking in naturalistic interactions where each 

infant listens to a different speech signal (i.e. their caregivers).  

 

Three studies have recently used this method to examine speech-brain tracking to naturalistic 

stimuli in early infancy. Jessen and colleagues used a forwards modelling generic training 
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approach to compute a TRF model of the relationship between infants’ broadband EEG 

signal (1-40Hz) and the amplitude envelope of a cartoon video that the infants engaged with 

for just over two minutes. They identified significant speech-brain tracking of the amplitude 

envelope in their sample of 11-12-month olds, which was also present but more variable with 

an individual modelling procedure (Jessen et al., 2019). More recently, Attaheri et al., 2022 

constructed a backwards mTRF to model the relationship between 4, 7 and 11-month-old 

infants’ continuous neural activity and sung nursery rhymes. Models were computed between 

the amplitude envelope of the nursery rhymes (filtered at 0.5-15Hz), and infants’ EEG 

responses, filtered into three frequency bands: delta (0.5-4Hz), theta (4-8Hz) and alpha (8-

12Hz), using an individual training approach. Alpha band tracking was examined as a 

control, based on the finding that alpha frequencies do not play a role in computational 

models of IDS (Leong et al., 2017). Corresponding to the prediction that infants track the 

amplitude envelope of speech at low modulation frequencies (Leong et al., 2017), across all 3 

ages, significant speech-brain tracking was identified at delta and theta frequencies but not 

alpha frequencies. This finding supports previous reports of significant speech-brain tracking 

to IDS (0.5-8Hz), but not adult direct speech, among infants aged 7 months using an 

individual training, forwards TRF modelling procedure (Kalashnikova et al., 2018). 

 

Almost all previous work examining neural tracking to the temporal modulation structure of 

speech in infant and adult populations has, however, been conducted using structured 

experimental paradigms, where participants are presented with a continuous speech sound, 

and their neural response to that speech sound recorded (Attaheri et al., 2022; Bednar & 

Lalor, 2020; Crosse et al., 2015; Jessen et al., 2019; Kalashnikova et al., 2018). This is very 

different to the speech infants hear in naturalistic, everyday settings where vocalisations are 

variable in length, often repetitive and short, and occur in the context of background noise. In 
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contrast to the lengthy speech stimuli often used in structured paradigms, in naturalistic, face-

to-face interactions caregiver vocalisations tend to be short, lasting an average of 1s, and 

ranging between 0.5-9s (Gratier et al., 2015; Jaffe et al., 2001). Examining speech-brain 

tracking during naturalistic free-flowing interactions is also important to informing our 

understanding of how infant processing of the temporal modulation structure of speech is 

related to the ongoing dynamics of shared interactions (joint attention behaviours, for 

example), as well as its relationship to the semantic timing and complexity of the caregivers’ 

speech inputs (Nencheva & Lew-Williams, 2022). Examining speech-brain tracking during 

naturalistic interactions, is, however particularly problematic, given the noise inherent to both 

the infants’ EEG signal and the caregivers’ speech (Georgieva et al., 2020; Noreika et al., 

2020). Naturalistic EEG recordings are particularly affected by movement artifact, and 

although ICA decomposition removes some of these components, it does not remove all 

(Marriott Haresign et al., 2021). During shared object play, the caregivers’ speech signal is 

also affected by background noise in the interaction, including toy clacks, as well as infant 

movement and co-vocalisations (Gratier et al., 2015).  

 

Here, we aim to examine speech-brain tracking during naturalistic interactive caregiver-infant 

interactions using a backwards mTRF modelling approach. To specifically test whether 

patterns of speech-brain tracking that are observed in controlled experimental paradigms, 

transfer to interactive contexts, we match the analysis design of Attaheri et al. (2022). In 

particular, we compute mTRF models that map the wideband amplitude envelope (0.5-15Hz) 

to the infant EEG signal at delta (1-4Hz), theta (4-8Hz) and alpha (8-12Hz) frequencies to 

test whether speech-brain tracking differs significantly from chance at slow modulation 

frequencies only.  
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Given that this is the first time continuous methods have been used to examine speech-brain 

tracking during naturalistic play, we take two different approaches to segmenting the 

caregivers’ speech signal as inputs to the mTRF model. First, we train the mTRF models on 

continuous data segments, dividing each interaction up into 10 equal-length parts, 

corresponding to the approach most often taken in experimental designs with adults, and 

infants, where a continuous stimulus is presented (Jessen et al., 2019). This approach also 

optimised the amount of data on which the model was trained. Data quality and quantity have 

been shown to affect the performance of mTRF models, such that noisier data, and models 

trained on small data sets, often lead to overfitting, resulting in models with poor 

transferability to new data (Crosse et al., 2021). Due to the fact that, in adult studies, data 

quality tends to be good and there is a lot of it, extensive testing of how data quality and 

quantity influence model performance has not been extensively tested (Mesik & Wojtczak, 

2022).  

 

Second, we computed mTRF models with each caregiver vocalisation serving as an 

individual fold in the model (see Sohoglu & Davis, 2020 for a similar approach with adults). 

Though this approach decreased the amount of data that the models are trained on, it also 

reduced the amount of noise in the data (i.e. in this way only periods that the caregiver is 

speaking are included in the model, and this also means that analyses can be run on 

vocalisations where no background noise or covocalisations occurred within a vocalisation). 

In this way we computed separate models for all vocalisations lasting 500ms or longer, 

vocalisations lasting 2000ms or longer, as well as vocalisations lasting 500ms or longer that 

included no background noise (e.g. toy clacks, and infant vocalisations).  
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Different to Attaheri et al. (2022), where an individual training method alone was used, due 

to the noisiness of our data, and the reduced amount of data entered into the vocal chunking 

models, we also present models computed according to generic training procedures. To test 

for potential overfitting where individual models are computed, we report predictive accuracy 

scores obtained during model training and testing to examine whether accuracy scores for 

training sets, computed during the cross-validation procedure, are much higher than testing 

sets (see Methods for more details): indicating poor transferability to new data, and therefore 

insufficient model fitting (Crosse et al., 2021). The generic models also provide an interesting 

comparison to the individual models in testing for consistencies in speech tracking by infants 

to their own caregiver’s speech signal across participants (Jessen et al., 2019). Something that 

has not previously been examined.  

 

We hypothesised that speech-brain tracking would be observed at slow amplitude modulation 

frequencies (delta and theta) for both individual and generic models (Attaheri et al., 2022), 

and that overfitting of the individual models to the training data would increase, the less data 

was entered into the model (Crosse et al., 2021). 
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5.2 Method 

 

5.2.1 Participants 

 

Ninety-four caregiver-infant dyads took part in this study. The final overall sample with 

usable, coded, gaze data was 46 (32 infants were excluded due to recording error or 

equipment failure, 4 infants were excluded for fussiness and 12 infants were excluded due to 

poor quality EEG data). Power analysis was conducted using the G*power tool (Faul et al., 

2007): data from a pre-existing data set using mTRF modelling to examine speech-brain 

tracking, among 10-12-month-old infants, to pre-recorded nursery rhyme speech was used as 

an estimator of expected effect size (0.571; Siew et al., in prep). Based on an Alpha level of 

0.05, the sample size reported here has a power of 95%. For the final, overall sample, the 

mean age of participants was 11.14 months (SD=1.30; 26 females, 20 males). All caregivers 

were female. Participants were recruited through baby groups and Children’s’ Centers in the 

Boroughs of Newham and Tower Hamlets, as well as through online platforms such as 

Facebook, Twitter and Instagram. Written informed consent was obtained from all 

participants before taking part in the study, and consent to publish was obtained for all 

identifiable images used. All experimental procedures were reviewed and approved by the 

University of East London Ethics Committee.  

 

5.2.2 Experimental set-up 

 

Parents and infants were seated facing each other on opposite sides of a 65cm wide table. 

Infants were seated in a high-chair, within easy reach of the toys (see Fig. 1b). The shared toy 

play comprised two sections, with a different set of toys in each section, each lasting ~5 
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minutes each. Two different sets of three small, age-appropriate toys were used in each 

section; this number was chosen to encourage caregiver and infant attention to move between 

the objects, whilst leaving the table uncluttered enough for caregiver and infant gaze 

behaviour to be accurately recorded (cf.Yu & Smith, 2013).  

 

At the beginning of the play session, a researcher placed the toys on the table, in the same 

order for each participant, and asked the caregiver to play with their infant just as they would 

at home. Both researchers stayed behind a screen out of view of caregiver and infant, except 

for the short break between play sessions. 

 

 

 

Figure 5. 1 Experimental set-up. a) Raw data sample, showing (from top) infant EEG over 

fronto-central electrodes, after pre-processing, infant gaze behaviour, infant vocalisations, 

adult EEG over fronto-central electrodes, adult gaze behaviour, adult vocalisations. b) 
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Example camera angles for caregiver and infant (right and left), as well as zoomed-in images 

of caregiver and infant faces, used for coding. 

 

5.2.3 Equipment 

 

EEG signals were recorded using a 32-channel BioSemi gel-based ActiveTwo system with a 

sampling rate of 512Hz with no online filtering using Actiview Software. The interaction was 

filmed using three Canon LEGRIA HF R806 camcorders recording at 50 fps. Parent and 

infant vocalisations were also recorded throughout the play session, using a ZOOM H4n Pro 

Handy Recorder and Sennheiner EW 112P G4-R receiver.  

 

Two cameras faced the infant: one placed on the left of the caregiver, and one on the right 

(see Fig. 1b). Cameras were placed so that the infant’s gaze and the three objects placed on 

the table were clearly visible, as well as a side-view of the caregiver’s torso and head. One 

camera faced the caregiver, positioned just behind the left or right side of the infant’s high-

chair (counter-balanced across participants). One microphone was attached to the caregiver’s 

clothing and the other to the infant’s high-chair.  

 

Caregiver and infant cameras were synchronised to the EEG via radio frequency (RF) 

receiver LED boxes attached to each camera. The RF boxes simultaneously received trigger 

signals from a single source (computer running MATLAB) at the beginning of each play 

section, and concurrently emitted light impulses, visible in each camera. Microphone data 

was synchronised with the infants’ video stream via a xylophone tone recorded in the infant 

camera and both microphones, which was hand identified in the recordings by trained coders. 
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All systems were extensively tested and found to be free of latency and drift between EEG, 

camera and microphone to an accuracy of +/- 20 ms.  

 

5.2.4 Vocalisation coding 

 

The onset and offset times of caregiver and infant vocalisations were identified using an 

automatic detector. The algorithm detected voiced segments and compared the volume and 

fundamental frequency detected in each recorded channel to infer the probable speaker 

(mother vs. infant). Identification of the onset and offset times of the detector then underwent 

a secondary analysis by trained coders, who identified misidentification of utterances by the 

automatic decoder, as well as classifying the speaker for each vocalisation. As the detector 

did not accurately identify onset and offset times of caregiver and infant speech during co-

vocalisations, and, as periods of vocalisation by the infant during the caregivers’ speech 

would introduce noise to the caregivers’ speech signal, as well as the possibility that infants’ 

were entraining to their own speech (Pérez et al., 2021), these segments of data were 

excluded from the vocal chunking analysis. Whilst the detector was programmed so that a 

gap of 250ms was placed between vocalisations, after the coder had identified inaccuracies in 

the detectors’ output, the vocalisations were re-processed so that a 1000ms gap was placed 

between each vocalisation. This step was taken to increase the lengths of the vocalisations 

included in the vocal chunking analysis.  
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5.2.5 Infant EEG artifact rejection and pre-processing 

 

A fully automatic artifact rejection procedure including ICA was adopted, following procedures 

from commonly used toolboxes for EEG pre-processing in adults (Bigdely-Shamlo et al., 2015; 

Mullen, 2012) and infants (Debnath et al., 2020; Gabard-Durnam et al., 2018), and optimised and 

tested for use with our naturalistic infant EEG data (Georgieva et al., 2020; Marriott Haresign et 

al., 2021). This was composed of the following steps: first, EEG data were high-pass filtered at 

1Hz (FIR filter with a Hamming window applied: order 3381 and 0.25/ 25% transition 

slope, passband edge of 1Hz and a cut-off frequency at -6dB of 0.75Hz). Although there is debate 

over the appropriateness of high pass filters when measuring ERPs (see (Widmann & Schröger, 

2012), previous work suggests that this approach obtains the best possible ICA decomposition 

with our data (Dimigen, 2020; Marriott Haresign et al., 2021). Second, line noise was eliminated 

using the EEGLAB (Bigdely-Shamlo et al., 2015) function clean_line.m (Mullen, 2012).   

 

Third, the data were referenced to a robust average reference (Bigdely-Shamlo et al., 2015). The 

robust reference was obtained by rejecting channels using the 

EEGLAB clean_channels.m function with the default settings and averaging the remaining 

channels. Fourth, noisy channels were rejected, using the EEGLAB 

function clean_channels.m. The function input parameters ‘correlation threshold’ and ‘noise 

threshold’ (inputs one and two) were set at 0.7 and 3 respectively; all other input parameters were 

set at their default values. Fifth, the channels identified in the previous stage were interpolated 

back, using the EEGLAB function eeg_interp.m. Interpolation is commonly carried out either 

before or after ICA cleaning but, in general, has been shown to make little difference to the 

overall decomposition (Delorme & Makeig, 2004). Infants with over 21% (7) electrodes 

interpolated were excluded from analysis. After exclusion, the mean number of electrodes 
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interpolated for infants was 0.244 (SD=1.11) for play section 1, and 3.12 (SD=2.16) for play 

section 2.  

 

Sixth, the data were low-pass filtered at 20Hz, again using an FIR filter with a Hamming window 

applied identically to the high-pass filter. Seventh, continuous data were automatically rejected in 

a sliding 1s epoch based on the percentage of channels (set here at 70% of channels) that exceed 

5 standard deviations of the mean channel EEG power. For example, if more than 70% of 

channels in each 1-sec epoch exceed 5 times the standard deviation of the mean power for all 

channels then this epoch is marked for rejection. This step was applied very coarsely to remove 

only the very worst sections of data (where almost all channels were affected), which can arise 

during times when infants fuss or pull the caps. This step was applied at this point in the pipeline 

so that these sections of data were not inputted into the ICA. The mean percentage of data 

removed in play section 1 was 13.433 (SD=16.617), and 5.11(SD=7.03) for play section 2.   

 

Data collected from the entire course of the play session (including play section 1 and play 

section two, as well as two further five minute interactions) were then concatenated and ICAs 

were computed on the continuous data using the EEGLAB function runica.m. The mean 

percentage of ICA components rejected was 51.90% (SD=16.92). After ICA rejection, data from 

each play section were re-split. For representative examples of artifactual ICA components 

identified in our naturalistic EEG data, see Marriott-Haresign et al. (2021).  
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5.2.6 mTRF analysis 

 

5.2.6.1 Pre-processing 

 

Removal of clipped segments from the speech signal 

 

Due to the caregiver being within variable distance of their microphones, some clipping was 

identified in a sample of the microphone recordings. A stringent clipping identification 

algorithm was used to remove parts of the microphone data where clipping occurred (Hansen 

et al., 2021). Parts of the signal for which clipping was identified for longer than a period of 

1ms were set as missing data points.  

 

Amplitude envelope 

 

The amplitude envelope of the caregivers’ speech signal was extracted and filtered below 

15Hz. First, the signal was band-pass filtered (using a 3rd order Butterworth filter (forwards 

and backward)) into 9 frequency bands, with equal spacing along the cochlear, according to 

Greenwood’s (1990) equation. The absolute value of the analytic signal generated by the 

Hilbert transform was then computed and averaged across frequency bands (Gross et al., 

2013). Next, the resulting wholeband amplitude envelope was filtered between 0.5 and 15Hz 

(low pass filter; 5th order butterworth filter (forwards and backwards), high-pass filter; 3rd 

order butterworth filter (forwards and backwards)). Finally, at this point, the speech signal 

was downsampled to the sample rate of the EEG signal (512Hz). 
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EEG data 

 

After pre-processing, the EEG signal, for each participant, was filtered into delta (1-4Hz), 

theta (4-8Hz) and alpha (8-12Hz) frequencies. First, missing data points were excluded from 

the time series. Next, the EEG signal was filtered into the 3 frequency bands of interest using 

the pop_eegfiltnew function in the EEGLab toolbox (Delorme & Makeig, 2004), using zero-

phase bandpass Hamming-windowed FIR filters.  

 

5.2.6.2 Separating data into individual folds for training and testing 
 

Continuous chunking analysis 

 

For the continuous analysis, the filtered EEG and speech streams for each interaction (play 

section 1 and play section 2), for each participant, were split into equal-length folds, and 

allotted into training and test sets (see Figure 5.2 for a schematic depiction). First, the filtered 

EEG signal and the amplitude envelope of the caregivers’ speech were both synchronised to 

the video-camera time-series, using the methods described above. Where one signal had been 

recorded longer than the other, that signal was shortened so that both data streams matched in 

length. The start and end video frames of each interaction were identified, and the beginning 

and end of the signals cut off where necessary. The start of each interaction was identified 

from the xylophone ding in the infants’ camera, whilst the end of the interaction was taken as 

the infants’ penultimate look of the interaction. 

 

Next, in order to exclude periods of the interaction where the researcher was visible in the 

infants’ camera frame, and possibly speaking, periods of the infant gaze time series that had 

been identified as uncodable were set as missing data points in both the EEG and speech 
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signals. This step was taken to exclude periods of the interaction where the researcher was 

present and possibly speaking to the infant and/or caregiver. Though we did not directly code 

for periods of the interaction where the researcher was speaking, this procedure is likely to 

have eliminated most and if not all periods of speech by the researcher given that it was rare 

for the researcher to speak whilst the interaction was in progress unless they appeared from 

behind the screen. It is important also to note that uncodable periods in the infant gaze time 

series could be coded where the infants’ eyes were blocked from view by one of the objects 

on the table; these periods were, however, rare, and only lasted for a short amount of time. 

 

Next, corresponding parts of the EEG (due to missing data) and speech signals (due to 

clipping) that were set as missing data points in one stream were identified in the other 

alternate stream and set to missing data points. To increase computational efficiency, both the 

EEG and speech streams were downsampled to 128Hz. These continuous data streams were 

then saved for permutation testing (see section below). Both the speech and EEG streams 

were z-scored (EEG data were z-scored across channels), a step that is recommended when 

computing generic models for more consistent tuning of model parameters across data sets 

(Crosse et al., 2021). Finally, corresponding missing data points in both data streams were set 

to 0 (Jessen et al., 2021).  

 

The speech and EEG signals for play section 1 and play section 2 were then split into 5 

equal-length folds, and randomised before one set was placed into the testing set. So that 90% 

of the folds were allotted to the training sets and 10% to the test set for each participant, one 

of the testing sets (from play section 1 or play section 2) was placed randomly into the 

training sets. Given that play section 1 and play section 2 were of variable lengths, the 

combined training folds were also of variable size. Where a participant had data for only play 
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section 1 or play section 2 (which occurred where, for example, the infants’ EEG data was 

over the acceptable number of interpolated channels for one interaction), one fold was kept as 

the test set and the rest as the training sets. This step was taken to ensure that folds for each 

participant were of similar lengths.  

 

Vocal chunking analysis 

 

For the vocal chunking analysis, each caregiver vocalisation was cut out of the EEG and 

speech time-series and treated as a separate data fold (see Figure 5.2 for a schematic 

depiction). First, the start and end of each caregiver vocalisation was identified in the 

synchronised time-series described above (up to the point that the data was downsampled to 

128Hz) and cut out of the corresponding time-series. Where any missing data points occurred 

in either the EEG or speech segment for one vocalisation, this vocalisation was removed from 

analysis. Next, the periods of vocalisation identified in both time-series were concatenated 

and z-scored, and then converted back into discrete vocalisations for both the EEG and 

speech signals. Finally, vocalisations for each play section were randomised and allotted to 

training and test sets, so that 90% went into the training set and 10% into the test set. By 

grouping together vocalisations of similar lengths, the randomisation procedure ensured that 

vocalisations in the training and test sets were of similar sizes. For participants with play 

section 1 and play section 2, training and test sets from each play section were concatenated, 

randomised and adjusted to ensure that 10% of the vocalisations were in the test set and 90% 

in the training set. The procedure was repeated for vocalisations with and without 

background noise lasting over 500ms and over 2000ms, resulting in four separate sets of 

vocalisation chunks. Where caregivers had less than 5 vocalisations for a respective set, that 

dyad was excluded from the analysis.  
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Figure 5. 2 Schematic representation of the pre-processing steps to split data into 

individual folds for model training and testing. Procedures for the continuous chunking 

analysis (left) and vocal chunking analysis (right) are depicted.  
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5.2.6.3 mTRF computation 

 

mTRF analysis was carried out using the mTRF toolbox (Cross et al., 2016). The backwards 

mTRF model can be expressed by the following equation, where the TRF (𝑔) represents the 

linear mapping from the neural response 𝑟(𝜏, 𝑛) back to the speech stimulus 𝑠(𝑡): 

 

ś(𝑡) = 	- 	
	

"

-𝑟(𝑡 + 𝜏, 𝑛)𝑔(𝜏, 𝑛)
	

#

 

 

where,  ś(𝑡) is the estimated stimulus envelope, 𝑔(𝜏, 𝑛)	is the TRF, and 𝑟(𝜏, 𝑛) is the EEG 

signal, over each time lag (𝜏), at each channel	(𝑛)	included in the model. The TRF (𝑔)	is 

estimated using a method of regularized regression: 

 

𝑔 = (𝑅$𝑅 + 𝜆𝐼)%&𝑅$𝑠 

 

where 𝑅 is the EEG data at each time lag, and 𝑠 is the zero-lagged stimulus. 𝑅$𝑅 is the 

autocovariance matrix of the neural response which is divided out from the model. In 

dividing out the autocovariance of the EEG response from the model, inter-channel 

redundancies are no longer included in the model, and, as a result, each TRF weight at each 

channel represents the amount of information that weight provides for the re-construction 

(Crosse et al., 2021). Both individual and generic models were computed over time-lags from 

-50 to 250ms (Attaheri et al., 2022).  
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Figure 5. 3 Schematic representation of mTRF model computation. a) Individual model 

computation. b) Generic model computation. Dashed boxes indicate procedures conducted on 

the data of each individual participant; hard-line boxes indicate procedures conducted across 

the data of all participants. The proportional size of the boxes reflects relative computation 

time. 
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each individual participant, models were trained over 𝜆 values ranging from 10-7  to 107 

(Jessen et al., 2021), using a ‘leave-one-out’ cross-validation procedure. The cross-validation 

procedure was implemented using the mTRFcrossval function in the mTRF toolbox. Using 

the data allotted to the training sets only, for each lambda parameter (𝜆), a TRF was 

calculated for every trial, bar one (left-out) trial, and then averaged over training trials. The 

predicted speech signal of the left-out trial was then calculated by convolving the EEG 

response of that trial with the averaged TRF at each channel, which was then compared to the 

actual speech signal of the left-out trial using Pearson’s correlation (r). The same procedure 

was iterated over the number of trials available for that participant and the resulting r value 

for each iteration averaged. This yielded a predictive power estimate (r) of the model for each 

lambda parameter (𝜆) tested.  

 

The most optimal ridge parameter for that participant (i.e. the parameter yielding the model 

associated with greatest predictive power) was identified (Crosse et al., 2016) and used to 

train the model on the training set using mTRFtrain. This function computes an mTRF model 

for each training set and then averages across models. Finally, the model was tested using the 

data left aside in the test set, using mTRFpredict: the averaged training model was convolved 

with the neural response to reconstruct the speech stimulus, and the predictive accuracy 

between the actual speech signal and that predicted by the model computed via Pearson’s 

correlation (r). The resulting r value was taken as the overall measure of speech-brain 

tracking for that participant. Model values were subsequently averaged across participants. 

 

To compare predictive accuracy values during model training and testing, the predictive 

accuracy values for the lambda parameter yielding the best predictive accuracy for each 
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participant during cross-validation were compared with the predictive accuracy scores 

obtained during model testing (Crosse et al., 2021) 

Generic model training and testing 

 

For the generic models, a model was trained and tested for each participant, by averaging 

over participant-specific mTRF models across all other participants (see Figure 5.3 for a 

schematic depiction). Whilst there are different approaches to training and testing procedures 

in computing generic models (Crosse et al., 2021; Di Liberto & Lalor, 2017), we follow the 

procedure outlined by Jessen et al. (2021). 

 

First, to identify the best 𝜆  parameter for each participant (using the same parameters as the 

individual model), an inter-participant cross-validation procedure was conducted. For each 𝜆 

value, for each participant, an mTRF model was estimated using the mTRFtrain function in 

the mTRF toolbox (see above for description).  Then, for each participant, a generic model 

was computed by averaging over the models of all other participants. The predictive accuracy 

of the averaged mTRF model for the left-out participants’ speech data was computed using 

the mTRFpredict function. This procedure was repeated for every participant at each 𝜆 value, 

and the 𝜆 term yielding the best predictive accuracy for each participant identified. Second, 

an mTRF model for each participant was computed using the mTRFtrain function, inputting 

their most optimal 𝜆 value. To train a generic model for each participant, the models resulting 

from the optimal 𝜆 terms were averaged across all other participants and the predictive 

accuracy of the averaged model tested on the target participants’ speech data, using 

mTRFpredict. Resulting r values were subsequently averaged across participants.  
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5.2.6.4 Permutation testing 

 

Continuous analysis 

 

To create a random permutation distribution for the continuous models, each participants’ 

synchronised and downsampled speech stream (see section 5.2.5.2) was randomly paired 

with another participants’ EEG stream. Similar to the procedures outlined above, the longer 

of the two data streams was shortened so that both data streams were of the same length. 

Corresponding parts of the EEG and speech signals that were set as missing data points in 

one stream were identified in the other alternate stream and set to missing data points. Each 

stream was then z scored, and corresponding missing data points set to 0. Exactly the same 

procedure for computing the continuous folds, and allotting folds to training and test sets was 

then repeated in the same way as the main analysis.  

 

A generic or individual mTRF model was then generated and the overall r value computed 

(see section 5.2.5.3). This same procedure was repeated 100 times, and r values averaged 

over the 100 iterations. To test whether the observed values in the actual data differed from 

chance, a t-test was computed between the observed values and the averaged permutation 

values, after outlier removal (Attaheri et al., 2022).  

 

Vocal chunking analysis 

 

To create a random permutation distribution, again, each participants’ synchronised and 

downsampled speech stream was randomly paired with another participants’ EEG stream. 

Here, each vocalisation, extracted from the participants’ synchronised speech stream was 
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paired with a segment of the randomly paired participants’ EEG signal, that matched the 

length of the vocalisation. Again, where either the speech segment or EEG segment contained 

any missing data points, this vocalisation was excluded from analysis. To optimise the 

number of vocalisations included in the permutation distribution, where a segment of the 

randomly paired EEG data contained missing data points, the algorithm searched a further 3 

times for a segment of data without any missing data values: this number was capped to deal 

with the fact that some caregivers had some vocalisations that lasted over 1 minute. The 

speech and EEG segments were then z scored and allotted to training and test sets, following 

exactly same procedures outlined above.  

 

Again, a generic or individual mTRF model was then generated and the overall r value 

computed. This same procedure was repeated 100 times, and r values averaged over the 100 

iterations. To test whether the observed values in the actual data differed from chance a t-test 

was computed between the observed values and the averaged permutation values, after outlier 

removal (Attaheri et al., 2022).  

 

5.3 Results 

 

The results section is organised in 3 sections. First, we present descriptive statistics relating 

to the temporal characteristics of the caregivers’ speech. Second, we present the results of the 

individual mTRFs, before the results of the generic mTRF models are described. 
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5.3.1 Descriptives 

 

First, we examined the temporal characteristics of caregiver vocal behaviours during the 

naturalistic interactions with their infants. The results of these analyses are presented in 

Figure 5.4. Figure 5.4a shows the proportion of time that caregivers and infants vocalised on 

their own, as well as the proportion of time they vocalised at the same time (co-

vocalisations). As mentioned in the Methods section, due to the automatic decoding 

algorithm used to identify periods that the caregivers and infants were speaking, co-

vocalisations were not divided into sections of caregiver and infant speech. Inspection of 

Figure 5.4b and 5.4c shows that the number of vocalisations lasting over 2000ms (M=23.70, 

SD=26.08) was much lower compared to those lasting over 500ms (M=59.12, SD=26.08), 

and the number of clean vocalisations were even lower per participant dyad: vocalisations 

lasting over 500ms (M=16.43, SD=11.02); vocalisations lasting over 2000ms (M=4.78, 

SD=4.66). Given the particularly low number of vocalisations that were clean and lasting 

over 2000ms, analyses including these vocalisations only were not conducted. For all 

vocalisations over 2000s, 2 participants were removed from analyses because they 

contributed fewer than 5 vocalisations. For clean vocalisations over 500ms, 7 participants 

were excluded from analyses for the same reason.  
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Figure 5. 4 Temporal characteristics of caregiver vocal behaviours. a) Proportion of time 

caregivers and infants spent vocalising, and co-vocalising. b) Histogram of the lengths of 

vocalisations for all vocalisations and clean vocalisations only, over 500ms (blue) and 

2000ms (red), after outlier removal. c) Number of participants with a certain number of 

vocalisations for all vocalisations and clean vocalisations only lasting over 500ms (blue) and 

over 2000ms (orange).  
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5.3.2 Individual mTRF models 

 

In this section, we outline the results of the individual mTRF models obtained for each 

frequency band, and consider the findings relative indexes of how well the trained model 

transfers to new data (see Methods for further description).  

 

Continuous individual models 

 

The results of the continuous individual models are presented in Figure 5.5. The number of 

outliers removed for each analysis are presented in Table 5.1. Figure 5.5a shows the mean 

predictive accuracy scores across participants for each frequency band. A series of two-tailed 

paired sample t-tests indicated that only the predictive accuracy values of the delta rate model 

were significantly higher than the values obtained in the permutation distribution (see Table 

5.1). Testing whether the models differed to chance with Wilcoxon Signed Ranks tests, 

before outlier removal, yielded a similar pattern of results, with predictive accuracy values 

significantly above chance for the delta model only (Figure S1).  

 

Across the different frequency bands, the lengths of the folds included in the training and test 

sets are similar, and these lengths are consistent across frequency bands (Figure 5.5b). 

Inspection of the error bars (Figure 5.5b) also reveals little variability between participants, 

suggesting that the models for each participant were trained and tested on continuous folds of 

a similar length. The predictive accuracy values computed in model testing, were, however, 

lower compared to those obtained during cross-validation, for all frequency bands (Figure 

5.5c), which could be an indication that the models are over-fit during model training and 
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therefore do not transfer well to the model at test. That said, for all frequencies, the difference 

in predictive accuracy values is small. 

 

 

 

 

Figure 5. 5 Continuous individual models. a) Grand average predicative accuracy values 

for each frequency band (Pearson’s r). Blue circles show the mean across participants for 

each frequency band. Blue lines indicate the SEM of the averaged predictive accuracy values. 

Red horizontal lines show the averaged permutation values, averaged across permutations 

and participants. Red vertical lines indicate the SEM. Two-tailed paired sample tests 

compared the observed r values to chance (*p<0.05). b) Lengths of the folds used in training 

and testing for each frequency band. Blue bars show the mean lengths of the training sets, 

and orange bars show the mean lengths of the test sets. Black lines show the SEM. c) 

Averaged predictive accuracy for training and testing sets. Blue bars show the training sets 

and orange bars show the test sets. Black lines indicate the SEM.  
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Vocalisation individual models 

 

Next, we examined the results of the individual mTRF models computed with individual 

vocalisations serving as the model folds. First, we tested the performance of individual 

models, trained and tested on vocalisations lasting 500ms or longer. The results of this 

analysis are shown in Figure 5.6. Inspection of Figure 5.6a shows that, across frequencies, the 

lengths of the training and test sets were similar, and there was little variability in this across 

participants. Comparing the predictive accuracy of the models during training and testing 

(Figure 5.6b) reveals, that, again, predictive accuracies were much lower for the testing sets 

compared to the training sets. Relative to Figure 5.5b, where the data for the continuous 

individual models is presented, this difference is much greater, and the predictive accuracy  

(r) values for both training and testing sets are much higher in comparison to those observed 

where continuous data chunks are used. The results of the individual mTRF model are 

presented in Figure 5.6c. A series of paired sample t-tests revealed that mean predictive 

accuracy values did not fall significantly above their permutation distribution at any 

frequency band examined (see Table 5.1 for the results of the t-tests and information on 

outlier removal).  

 

Next, we examined the performance of the individual models conducted with vocalisations 

lasting 2000s or longer. As mentioned in the Descriptives section (Figure 5.4b), excluding 

vocalisations between 500-2000ms led to the inclusion of much fewer vocalisations in the 

mTRF model. Corresponding to this, the lengths of the vocalisations included in the training 

and test sets are much longer, compared to the analysis using all vocalisations over 500ms 

(Figure 5.6d). Comparing the predictive accuracy values in the training and test sets indicated 

that predictive accuracies at test were substantially lower than those computed during model 
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training (Figure 5.6e). Though the predictive accuracies, across the models at different 

frequencies, showed a similar pattern to those obtained in the continuous analysis, correlation 

values were much lower, and no values were significantly above chance (see Table 5.1). 

Finally, we examined models for clean vocalisations lasting 500ms or longer (Figure 5.6, 

bottom row), including even fewer vocalisation again (see section 5.3.1). Here the difference 

in predictive accuracy values between training and testing values is very large, and the 

predictive accuracy values at test are uninterpretable; falling significantly below the 

permutation distribution for each frequency examined (Table 5.1). 
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Figure 5. 6 Vocal chunk individual models. First column shows the lengths of the 

vocalisations included in the training and tests sets for a) vocalisations over 500ms, d) 

vocalisations over 2000ms, g) clean vocalisations over 500ms. Blue bars show the mean for 

the training sets and orange show the mean for the tests sets. Black lines indicate the SEM.  

Second column shows the averaged predictive accuracy for training and testing sets for b) 

vocalisations over 500ms, e) vocalisations over 2000ms, h) clean vocalisations over 500ms. 

Blue bars show the training sets and orange bars show the testing sets. Black lines indicate 

the SEM. Last column shows the grand average predicative accuracy values for each 

frequency band (Pearson’s r), for c) vocalisations over 500ms, f) vocalisations over 2000ms, 

i) clean vocalisations over 500ms. Blue circles show the mean across participants for each 

frequency band. Blue lines indicate the SEM of the averaged predictive accuracy values. Red 

horizontal lines show the averaged permutation values, averaged across permutations and 

Delta Theta Alpha0

0.5

1

1.5

2

2.5

3

Le
ng

th
 (s

ec
on

ds
)

Le
ng

th
 (s

ec
on

ds
)

Le
ng

th
 (s

ec
on

ds
)

Delta Theta Alpha-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C
or

re
la

tio
n 

(r)

Delta Theta Alpha-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

C
or

re
la

tio
n 

(r)

Delta Theta Alpha-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

C
or

re
la

tio
n 

(r)

Delta Theta Alpha0

1

2

3

4

5

6

Delta Theta Alpha-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

C
or

re
la

tio
n 

(r)

Delta Theta Alpha0

0.5

1

1.5

2

2.5

3

3.5

Delta Theta Alpha-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

C
or

re
la

tio
n 

(r)

Train
Test

Train
Testa) b) c)

d) e) f)

g)
h)

i)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Delta Theta Alpha

C
or

re
la

tio
n 

(r)



 178 

participants. Red vertical lines indicate the SEM. Two-tailed paired sample tests compared 

the observed r values to chance (*p<0.05).  
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    df                t-statistic   p-values Outliers 
Continuous 
 
Delta    43  2.09   0.043  2 
Theta    44  1.40   0.170  1 
Alpha    41  0.09   0.930  4 
      
Vocalisations over 500ms 
 
Delta    43  1.31   0.521  2 
Theta    42  0.65   0.521  3 
Alpha    42  2.23   0.03  3 
 
Vocalisations over 2000ms  
 
Delta    41  0.24   0.814  2 
Theta    41  0.10   0.920  2 
Alpha    41  0.20   0.839  2 
  
Clean vocalisations  
over 500ms   
 
Delta    37  3.07   0.004  1 
Theta    36  4.41   <0.001  2 
Alpha    33  2.36   0.0240  5 
 

 

Table 5.1 Individual model results of the paired sample t-tests of the difference between 

observed predictive accuracy scores and the permutation distribution for each frequency 

band, for each analysis. 
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5.3.3 Generic mTRF models 

In this section, we examine the predictive accuracy of the mTRF models yielded by the 

subject-independent generic models.  

 

Continuous generic models 

 

The results of the continuous generic models are presented in Figure 5.7a. Similar to the 

individual models derived from the continuous data, inspection of Figure 5.7a indicates 

higher predictive accuracy values at delta and theta frequencies, compared to alpha 

frequencies. Corresponding to this, a series of paired sample t-tests revealed that only the r 

value of the theta frequency model fell significantly above chance (see Table 5.2 for the 

results of the t-tests and information on outlier removal). Of note, however, and in line with 

previous research with infants using a generic modelling approach (Jessen et al., 2019), the 

predictive accuracies of the models at all frequency bands are low, and much lower in 

comparison to the individual model (Figure 5.7a). Comparing the observed values to the 

permutation distribution using Wilcoxon signed ranks tests, before outlier removal, revealed 

significant speech-brain tracking at delta and theta frequencies (Figure S2).  

 

Vocalisation generic models 

 

The generic models conducted with vocalisations lasting over 500ms showed a similar 

pattern: with higher predictive accuracies at theta and delta frequencies, though their 

predictive accuracies were much lower and more variable (Figure 5.7b). None of the models 

at any of the frequency bands investigated differed significantly from the permutation 

distribution (Figure 5.7b). Inspection of Figure 5.7c shows that where models included 
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vocalisations only lasting over 2000ms, predictive accuracies were even lower, with even 

greater variability, and this was the same for models conducted with clean vocalisations 

lasting over 500ms (Figure 5.7d). Again, no r values for these models differed significantly to 

the permutation distribution (for further information on statistical testing see Table 5.2). 

 

 

 

 

 

Figure 5. 7 Continuous and vocal chunk generic models. Grand average predicative 

accuracy values for each frequency band (Pearson’s r) for a) continuous data, b) vocalisations 

over 500ms, c) vocalisations over 2000ms and d) clean vocalisations over 500ms. Blue 

circles show the mean across participants for each frequency band. Blue lines indicate the 

SEM of the averaged predictive accuracy values. Red horizontal lines show the averaged 

permutation values, averaged across permutations and participants. Red vertical lines indicate 
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the SEM. Two-tailed paired sample tests compared the observed r values to chance 

(*p<0.05). 

 
 

    df                t-statistic   p-values Outliers 
Continuous 
 
Delta    43  1.32   0.195  2 
Theta    41  2.46   0.018  4 
Alpha    40  1.35   0.184  5 
 
Vocalisations over 500ms 
 
Delta    45  1.04   0.305  0 
Theta    45  0.66   0.511  0 
Alpha    44  0.51   0.614  1 
 
Vocalisations over 2000ms  
 
Delta    41  0.31   0.758  2 
Theta    42  0.18   0.857  1 
Alpha    40  1.20   0.236  3 
 
Clean Vocalisations    
over 500ms 
 
Delta    37  0.93   0.360  1 
Theta    38  0.70   0.485  0 
Alpha    34  0.47   0.638  4 
 
 

Table 5. 2 Generic model results of the paired sample t-tests of the difference between 

observed predictive accuracy scores and the permutation distribution for each frequency 

band, for each analysis. 
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5.4 Discussion 

 

In this study we examined the applicability of continuous methods of analysis for assessing 

speech-brain tracking during naturalistic caregiver-infant table-top play. Whilst these 

methods are increasingly being used in adult and infant populations to assess speech-brain 

tracking relative to pre-recorded stimuli, no previous work has applied these methods to 

continuous, free-flowing interactions. Investigating neural tracking of the speech signal in 

naturalistic contexts is crucial to our understanding of how infants process the phonological 

information of speech during everyday communication (Attaheri et al., 2022; Leong, 

Kalashnikova, et al., 2017), as well the association of these micro-processes to the ongoing 

behavioural dynamics of the interaction. We conducted analyses similar to those outlined in 

Attaheri et al. (2022), employing a backwards modelling mTRF approach, that constructs a 

model from the infants’ continuous neural response back to the speech signal. To maximise 

the amount of data included in the models, we first conducted training and testing procedures 

on continuous folds of the interaction, and then on specific vocalisations of certain lengths. 

To train the models, both individual and generic methods were employed. 

 

For the individual models, where continuous folds were entered into the model, predictive 

accuracy values were greater during model training compared to testing, but this difference 

was small. This suggests that where individual mTRF models are trained and tested on 

continuous periods of data obtained by dividing the interactions up into folds of equal 

lengths, model over-fitting to the training data is low (Crosse et al., 2021). Given that the 

models were trained on large quantities of data (~10 minutes per dyad; see Figure 5.5), it is 

likely that the higher values obtained in model training are the result of the noisiness of the 

EEG data and the speech signal, where, with the continuous analysis, all background noise 
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(toy clacks and infant vocalisations) are included in the caregiver’s amplitude envelope. 

Corresponding, to the findings of Attaheri et al. (2022), as well as predictions based on the 

computational modelling of IDS (Leong & Goswami, 2015), significant speech-brain 

tracking was observed at delta frequencies, but not at theta or alpha frequencies. 

 

In the models that were trained and tested on individual vocalisation chunks of 500ms or 

more, the predictive accuracy values showed the same overall pattern but none of the values 

fell significantly above chance. In comparison to the continuous models, the difference in the 

predictive accuracy values acquired in model training and testing was much greater (Figure 5. 

6), suggesting that model overfitting to the training data was more problematic in this 

analysis compared to the continuous training method. Also of note, the predictive accuracy 

values for these models are much higher in comparison to the models trained on the 

continuous data sets, and unlike the continuous models, the permutation distributions fall 

above 0. For models constructed on vocalisation chunks over 2000ms and clean vocalisations 

over 500ms, where far fewer vocalisations were included in model training, comparison of 

the training and test values indicated large differences, and predictive accuracies were very 

low, and wholly uninterpretable for the clean vocalisations (Figure 5.6).  

 

Overall, the results of the individual models suggest that, with a subject-dependent training 

procedure, most reliable speech tracking values are obtained where the interaction is divided 

up into continuous folds, and, therefore, where the greatest amount of data is used in model 

training.  
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Given the issues of data quality and quantity inherent to naturalistic data recordings, in the 

second part of this paper, we computed mTRF models using generic training procedures, 

according to Jessen et al. (2019), which train models by utilising all the available data for 

each participant. Whilst generic models reduce the likelihood of overfitting with smaller and 

more noisy data sets, the predictive power of these models is often lower in being trained 

across participants, with data sets of variable quality (Jessen et al., 2021). The results of the 

generic models showed that, in both types of training procedures (continuous inputs and 

vocalisation chunks of variable lengths) the predictive accuracy values were extremely low 

and much more variable in comparison to previous studies of speech-brain tracking 

conducted with infants (Jessen et al., 2019; Jessen et al., 2021). Significant speech-brain 

tracking was observed at theta frequencies where the models were trained on continuous data 

folds, and the delta model fell significantly above the permutation distribution before outlier 

removal (Figure S2). Given the extremely low predictive accuracy of the models, however, 

the mTRF models are unlikely to be an accurate representation of the true neural response 

(Crosse et al., 2021).  

 

The particularly low and variable predictive accuracy values obtained with the generic 

models are likely driven by the fact that, in our naturalistic interactions, infants were 

interacting with their caregiver and therefore listening to different speech signals: 

comparative to controlled paradigms where each infant listens to the same stimulus. This will 

drive variation in model fitting in two ways: the amount of noise in the speech signal is likely 

to vary substantially across participants, and aspects of the noise and characteristics of the 

speech signal could also drive differences in how infants track the amplitude envelope. 

Furthermore, considering infant-centred factors, whereas in controlled paradigms infants are 

often seated on their caregiver’s lap and encouraged to stay still as much as possible 
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throughout the recording, in naturalistic interactions infants are free-moving, meaning that 

the amount of movement and, therefore, the amount of movement-related artefact affecting 

the EEG signal will also vary substantially across participants (Marriott Haresign et al., 

2021).  

 

Overall, the results of the individual and generic models indicate that the use of individual 

training procedures, conducted on continuous segments of the interaction may be most 

optimal to examining speech-brain tracking during naturalistic social interactions. The 

difference between the predicative accuracy scores for training and test sets was smallest for 

the continuous data models, compared to the vocal chunk models, and variability in 

predictive accuracy values was also low. Computing models using generic training 

procedures led to particularly low and likely uninterpretable speech-tracking values.  

 

The results of the continuous individual models are consistent with the prediction that delta 

rate modulations play a particularly important role in facilitating infants’ early ability to parse 

the speech signal (Leong, Kalashnikova, et al., 2017; Leong & Goswami, 2015). Leong et al., 

(2017), for example, showed that rather than containing most power at theta rate modulations 

(as in the case of ADS), IDS is associated with peak modulation frequencies at delta-rate 

modulations, with the peak frequency increasing from 7-11 months. The results of the 

individual models also correspond  to Attaheri et al.'s (2022) findings, where speech-brain 

tracking was found to be significantly above chance at both delta and theta frequencies but 

not alpha frequencies: and tracking at delta rate frequencies was significantly higher in 

comparison to theta frequencies at all 3 ages examined. That we find speech-brain tracking to 

delta frequencies only could be a result of the use of nursery rhyme stimuli in Attaheri’s 

experiment which would be inherently more rhythmic compared to the spoken IDS of the 
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caregivers in our study, likely resulting in a higher proportion of stressed syllables (Leong, 

Kalashnikova, et al., 2017; Leong & Goswami, 2015).  

 

Given that the inputs to the mTRF model with continuous analysis procedures contained 

frequent segments of noise unrelated to the speech of the caregiver, including toy clacks and 

infant vocalisations, it will be important to conduct further analyses to support that the neural 

tracking by infants to delta-rate frequencies is driven by the infant tracking the amplitude 

modulations in the caregiver’s speech. The mTRF modelling approach is particularly robust 

to the inclusion of missing data points (even up to 30-40%; Jessen et al., 2021). One option 

would therefore be to insert 0 values at points in the amplitude envelope that the caregivers 

are not speaking. That said, inspection of Figure 5.4a reveals that, in our data sets, caregivers 

vocalised on their own for an average of 35% of the interaction, meaning that, even with the 

robustness of the mTRF models to missing data points, this analysis would not be possible. 

To examine this in more detail, therefore, in future work, it will be important to apply mTRF 

modelling procedures to naturalistic interactions where the caregiver speaks more often and 

the interaction is less affected background noise (e.g. caregiver puppet shows with their 

infant). Another particularly important avenue for future work examining speech-brain 

tracking in naturalistic contexts is in testing the effects of different aspects of signal noise in 

the performance of the mTRF analysis, with infant populations . 

 

Overall, this methods paper has demonstrated the applicability of continuous modelling 

approaches to examining speech-brain entrainment by infants to their own caregivers’ speech 

signal during naturalistic, free-flowing interactions. The results are important in showing that 

the finding of significant speech-brain tracking in early infancy to controlled, often 

purposefully rhythmic stimuli, in experimental paradigms transfers to everyday, naturalistic 
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interactions. Developing these methods further will open up new avenues for investigating 

how speech-brain tracking by infants associates with the joint attention processes of real-time 

interactions (e.g. mutual gaze and shared attention towards objects), as well as the association 

of speech-brain tracking with the timing of caregiver object labelling, and the complexity of 

their inputs (Nencheva & Lew-Williams, 2022). 
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CHAPTER 6 – General discussion 

 

6.1 Summary and integration of findings 

 

Taking a multi-method approach to the study of early caregiver-infant interactions, this thesis 

aimed to examine the sub-second processes that drive infant attention during joint 

interactions with their caregiver, considering endogenous cognitive processes intrinsic to the 

infant, as well the interactive contingencies generated through dynamic inter-personal 

process. To do this, infants’ neural oscillatory activity was recorded during online social 

interactions with their caregivers. Using time-locked and continuous methods of analysis, this 

thesis advances our current understanding of the fast-acting processes that support the 

coordination of infant attention with a social partner, with fundamental implications for how 

we conceptualise the learning mechanisms involved in the development of intentionally 

mediated cognitive process and their role in driving early language acquisition.  

 

In Chapter 2, two approaches to understanding the processes that drive infant attention during 

naturalistic shared interactions were outlined. Traditional and active learning socio-pragmatic 

approaches had previously emphasised that, towards the end of the first year, infants are 

proactive in creating episodes of shared attention with a social partner (Tomasello et al., 

2007). In this perspective, infant attention is thought to be guided by intentionally mediated 

communication: infants begin to understand that other peoples’ behaviour is intentional and 

that they can influence the internal representations of others through modulations in their own 

intentionally guided behaviour (Carpenter et al., 1998; Donnellan et al., 2020). This 

perspective was contrasted with dynamic systems approaches to understanding infant 

attention during early interactions, where fast-acting sensorimotor contingencies are thought 
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to drive the moment-to-moment development and maintenance of shared perceptions and 

cognitions (L. B. Smith, 2005; Yu & Smith, 2017). A series of studies conducted by Yu and 

Smith were outlined, where micro-behavioural analytical techniques were employed to 

examine the fast-acting sensorimotor contingencies that drive behavioural coordination in 

early triadic interactions. This work showed that, rather than active attention sharing 

behaviours, coordinated attention was most often achieved and perceived by infants through 

attending towards their partners’ sensorimotor cues (Franchak et al., 2011; Yu & Smith, 

2013, 2017).  

 

It was highlighted, however, that, given similar behaviours can occur across different levels 

of attentional and intentional engagement, to understand the endogenous cognitive 

mechanisms and interactive contingencies that drive infant attention more fully, we need to 

apply neurocognitive techniques to the study of early inter-personal coordination. The rest of 

the chapters in this thesis subsequently combined event-locked and continuous methods of 

analysis to examine how sub-second changes in infants’ endogenous neural activity 

associated with intra and inter-dyadic behavioural process.  

 

In Chapter 3, we took a multi-method approach to examine whether, consistent with the 

socio-pragmatic perspective, infants showed patterns of neural and behavioural activity 

indicative of proactive attention-sharing in naturalistic, free-flowing interactions with their 

caregiver. Event-locked methods of analysis were employed to examine the micro-second 

fluctuations in infant neural activity 2000ms before and 2000ms after infant looks towards 

objects that resulted in mutual attention (where the caregiver joined the infants’ look towards 

an object) and nonmutual attention (where the caregiver did not join the infants’ attentional 

focus). Results indicated that infants, aged 9-12 months, were not routinely proactive in 



 191 

creating episodes of shared attention with their partner: in the 2000ms before leading their 

partners’ attention, infant EEG activity at theta frequencies did not increase and infants did 

not increase their use of ostensive cues. This finding is line with previous reports by Yu and 

Smith, where the gaze patterns of caregivers and infants were recorded with head-mounted 

eye trackers (Yu & Smith, 2013, 2017). 

 

Analysing the time-period after look onset, however, revealed that infants were nevertheless 

sensitive to moments that their adult partner followed their gaze towards an object: infants’ 

EEG activity showed a significant decrease at alpha frequencies in the time after infant-led 

looks to mutual attention, compared to adult-led looks. Based on previous reports of the 

association between alpha desynchronisation and predictive processing in early infancy (C. 

Monroy et al., 2021; Rayson et al., 2019), this finding was interpreted to suggest that infants 

predict and encode the behavioural contingency of their partner in the time after they lead a 

look towards an object and the partner contingently followed that look. Interestingly, infant 

ostensive signals in the time after look onset showed no differences between looks: 

suggesting that the behavioural contingency of the partner was not realised by the infant 

through attending towards their partners’ intentionally communicative behaviours. 

 

The findings of Chapter 3 highlight the importance of examining fluctuations in 

neurocognitive process that are otherwise unobservable behaviourally. Combining the results 

of the neural and behavioural analyses, the findings suggest that infant attention is largely 

reactive to the sensorimotor behaviours of their partner: the similarity in neural and 

behavioural activity before infant- and adult-led look onset suggested that modulations in the 

sensorimotor cues of their partner might guide infant attention at moments they both lead or 

follow their partners’ attention towards an object. It was postulated that the same interactive 
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sensorimotor process might also be the mechanisms that signal behavioural contingency to 

the infant in the time after they lead their partners’ attention towards an object. Findings were 

interpreted relative to embodied associative learning perspectives of the development of 

intentionally mediated communication in early infancy. These accounts assert that consistent 

and contingent feedback to infant behaviour gives meaning to infant behaviours, forming the 

basis for infant representations about the intentions of others, and how their own 

intentionally-motivated behaviours affect those of their partner (L. B. Smith & Breazeal, 

2007). 

 

Most important then, the findings of Chapter 3 indicate that, although infants are not 

engaging in active attention-sharing behaviours (Yu & Smith, 2013), they are, nevertheless, 

making online predictions relative to the inter-dynamic action-generated contingencies of the 

interaction. In doing so, they point towards the importance of cross-dyadic sensorimotor 

learning mechanisms in driving the development of intentionally guided communication, 

which have largely been omitted from traditional socio-pragmatic accounts of the 

development of early joint attention (Tomasello et al., 2007). It will be important for future 

work to examine longitudinal associations between infants’ early sensitivity to the contingent 

responsivity of their caregiver and the development of intentionally produced communicative 

behaviours. Modelling how associations between infants’ endogenous cognitive processing 

and their attention develop even over the course of an interaction, as a function of the 

responsivity of the caregiver could also be an important next step. For example, Goldstein 

and Shwade (2008) have shown that, where caregivers consistently and contingently respond 

to their 9-month olds’ vocalisations, infants increase the semantic complexity of their 

vocalisations over the duration of an interactive play episode, matching the phonological 

complexity of the speech inputs by the caregiver. Similar processes could operate relative to 
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moments that infants engage in episodes of attention-sharing with their caregiver, with 

repeated and contingent feedback to infant-led attention associating with immediate and long-

term increases in infants’ control over their own attention and behaviour (Oudeyer & Smith, 

2016).  

 

Chapter 4 built on these findings; testing dynamic associations between endogenous 

cognitive processes and exogenous interactive contingencies in driving the duration of infant 

attention episodes. Here, continuous methods of analysis were employed to examine the 

intra- and inter-individual processes that structured the timing of infant attention: testing, in 

particular, modulations in caregivers’ vocal saliency as a sensory-motor cue driving infant 

attention. At the intra-individual level, cross-correlation analyses showed that both 

fluctuations in infant attentiveness (indexed by the durations of infant attention episodes) 

forward-predicted longer attention durations, and, to a greater extent, increases in look 

durations forward-predicted modulations in their theta activity. Against the interpretation of 

the findings from Chapter 3, that infant attention is largely reactive to the sensorimotor 

behaviours of their partner, however, Chapter 4 showed that infant attention durations were 

not forwards-predicted by modulations in the adult partners’ behaviours. Neither change in 

caregiver gaze, nor the temporal or spectral properties of their voice associated with 

modulations in infant attentiveness. Instead, changes in caregiver behaviours were largely 

reactive to fluctuations in infant attention, and associated with the length of infant attention 

episodes: caregivers increased the rate of change in their gaze behaviour in the immediate 

time after infants shifted their attention towards a new object, and both the durations of 

caregiver looks, and modulations in their vocal saliency predicted the length of infant 

attention towards objects.  
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Taken together, the findings of Chapters 3 and 4 suggest that, rather than considering 

forwards-predictive associations between intra-individual process and infant attention, we 

need to consider the micro-processes that operate over the duration of infant attention 

episodes and, in particular, how these processes operate across the dyad (Richards & 

Anderson, 2004; Wass, 2021b). In Chapter 3, results indicated that infants predicted and 

encoded the behavioural contingency of their partner where they led a look that resulted in an 

episode of mutual attention. The findings of Chapter 4 further suggest that dynamic and 

reactive change in caregiver behaviours in response to re-orientations in infant attention drive 

increases in infant attentiveness. But processes operating in the time before an attentional 

reorientation by the infant do not distinguish its form (Chapter 3), or predict infant 

attentiveness (Chapter 4).  

 

As outlined in the Introduction section to Chapter 4, previous work examining infant 

attention whilst they observe dynamic screen-based stimuli has shown that infant attention 

can largely be characterised by patterns of attentional inertia: the finding that, the longer a 

look lasts, the less likely that look is to end (Richards & Anderson, 2004). It is thought that 

this pattern is driven by endogenous amplificatory mechanisms that operate between the 

infant and their environment: decreases in distractibility drive increases in engagement which 

drive further decreases in distractibility, decreasing the likelihood that the look will end 

(Richards, 2011). In naturalistic interactions similar processes could operate across the dyad, 

where modulations in caregiver behaviours in response to changes in infant attention, 

associate with increases in infant engagement, which drive further modulations in caregiver 

behaviours, and, possibly, other, fast-acting processes of inter-dyadic coordination ( Wass, 

2021a). In Chapter 4 caregivers were found to upregulate their behaviours in the time 
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immediately following infant looks towards objects, but, over the course of longer looks, 

down-regulated their gaze behaviour, as well as the rate of change in the F0 of their voice.  

 

Interpreting these results in the context of the cross-correlation between infant attention 

durations and theta activity shown in Chapter 4 has potentially important implications for our 

understanding of the pattern and function of the endogenous processes that mediate infant 

behaviour in shared interaction, and how these processes are emergent from the dynamic 

sensorimotor contingencies of inter-personal coordination ( Wass et al., 2018b; Yu & Smith, 

2017). In Chapter 4, the cross-correlation between infant attention durations and theta activity 

showed that increases in infant attentiveness largely forward-predicted increases in infant 

theta activity. Combined with the findings of reactive change in caregiver behaviour to infant 

attention episodes, these results could suggest that contingent responding by the caregiver to 

re-orientations in infant attention, dynamically increase infants’ endogenous control over 

their attention over the duration of a sustained attention episode, and over the course of 

successive attention episodes. 

 

In future work it will be important to examine, in more detail, the fast-acting sensorimotor 

processes that operate over the course of infant look durations to maintain infant attention, 

and how these processes associate with infants’ endogenous neural activity. In particular, 

given the finding that infant attention is most often directed towards objects in shared 

interactions, and use the position of the caregivers’ hand to coordinate their attention with 

their partners’ (Yu & Smith, 2012, 2013, 2017), the dynamic hand and body movement of the 

caregiver during infant attention episodes should be a key focus. As mentioned in the 

introduction, variability in the hand actions of video-recorded stimuli has been shown to 

increase infant engagement (M. Meyer et al., 2022). Examining the relationship of these fast-
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acting cues to infant neural activity over the duration of a look will be particularly important. 

Indeed, through continuous modelling procedures, Chapter 5 shows that it is possible to 

measure speech-brain entrainment by the infant to amplitude modulations in the caregivers’ 

speech signal. This finding opens up new avenues to examining the role of brain-behaviour 

entrainment in maintaining infant attention episodes, which could also be examined across 

different levels of fast-changing behavioural process, such as oscillatory structures in the 

caregivers’ hand and body movements (Jessen et al., 2019).  

 

Given, however, that, as shown in Chapter 4, infant attention patterns are characterised by 

longer attention episodes interspersed by shorter looks to their partner and objects; as well as 

processes operating within an attention episode, we need to examine the emergent patterns of 

behavioural contingency that characterise the organisation of infant attention and how this 

associates with fluctuations in infants’ endogenous cognitive process. As a result of the focus 

of the intra-individual and uni-modal associations with infant theta activity in Chapter 4, this 

was not examined in the present thesis. In line with embodied accounts of the active learning 

mechanisms that operate across the dyad in early infancy, consistent and contingent 

responding by the caregiver could lead to in-the moment increases in infants’ endogenous 

control over their own attention (Oudeyer & Smith, 2016). This could, in turn promote 

further active sampling strategies and effortfully controlled behaviours by the infant to 

maximise their opportunities for learning through their attunment to the low-level 

sensorimotor contingencies of the interaction (Kidd et al., 2012; McQuillan et al., 2020).  

 

Chapter 5 assessed the applicability of continuous methods of analysis to examining speech-

brain tracking during naturalistic infant-caregiver interactions. In Chapter 2, it was outlined 

that examining entrainment by the infant to amplitude modulations in the caregivers’ speech 
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is important to understanding infants’ sensitivity to the phonological information in speech, 

and how this process operates relative to aspects of inter-dyadic coordination and caregiver 

behavioural inputs (Leong, Byrne, Clackson, Harte, et al., 2017; Yu & Smith, 2013).  Our 

results indicated that, with continuous methods of data segmentation, which optimised the 

amount of data inputted to the model, it was possible to examine speech-brain tracking using 

subject-dependent modelling procedures. The overall results suggested, consistent with 

theories of early phonological processing, that speech-brain tracking was significantly above 

chance at delta frequencies only: tracking at theta and alpha frequencies did not differ to their 

permutation distributions. As mentioned above, the ability to examine fine-grained 

entrainment by the infant to oscillatory structures in the caregiver’s behaviour will be crucial 

to examining, in more detail, the patterns of behavioural contingencies that drive fluctuations 

in infants own endogenously mediated attention and behaviour, and that support online 

prediction by infants during the interaction (K. J. Friston, 2019; Hamilton, 2021; Rayson et 

al., 2019). How these processes interact to support the development of intentionally mediated 

behaviour and language acquisition should be a key focus for future research. Below, we 

outline the implications of the findings of all three empirical chapters to current theories of 

early language development.  

 

6.2 Implications for theories of early language development 

 

In Chapter 2, the emphasis of the socio-pragmatic model on the development of intentionally-

mediated understanding in driving early language learning was outlined (Lieven, 2016). This 

account argues that it is only once infants understand that a social partners’ behaviours are 

intentionally mediated, and they can engage in the co-creation of shared intentional 

representations, that they learn from the referential and pragmatic aspects of communication 
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(Tomasello et al., 2007). It is thought that clear ostensive cues by adults and infants create 

direct and clean object-word mappings between the caregivers’ speech inputs and the object 

to which they are both attending (Baldwin, 1991; Donnellan et al., 2020; Lieven, 2016). 

Recent active learning approaches have further suggested that infants might ostensively cue 

adult attention in order to directly elicit information from them about their environment 

(Begus et al., 2014). 

 

Concurrent with a number of micro-behavioural findings, Chapters 3 and 4 show that infants 

do not often engage in active attention-sharing behaviours, suggesting, as outlined in Chapter 

2, that other low-level sensorimotor processes, and statistical regularities in the caregivers’ 

inputs might drive infant language learning during naturalistic interactions (Yu & Smith, 

2012). Here we outlined four different models of the low-level processes that could drive 

infant attention during shared interactions: each with different implications for how infants 

learn from the speech inputs of their caregivers’. Integrating findings across neural and 

behavioural analyses in Chapters 3-5, we were able to delineate between these different 

models by examining the endogenous mechanisms and interactive contingencies that 

structure the allocation of infant attention and behaviour on a moment-by-moment basis in 

shared interactions.  

 

As mentioned above, we found no support for the suggestion that infant attention is 

controlled by the sensorimotor cues of their partner (Chapter 4); arguing against the idea that 

the timing, regularity and saliency of the caregivers’ speech inputs are the result of adult-

directed processes alone. The other two models implicated both adult- and infant-directed 

factors in driving language learning. The first implicates infant interest in driving and 

maintaining infant attention towards objects, and in caregivers providing object labels at 
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these moments. For example, it has been argued that moments of object dominance in the 

childs’ field of view, that reduce the referential uncertainty of the caregivers’ speech input, 

are as the result of infant interest in that object (Yu & Smith, 2012). However, somewhat 

against this perspective, in Chapter 3, analysis of infant neural activity in the time before they 

led their partners’ attention towards an object showed no increase in infant theta activity 

relative to where they followed their partners’ attention. This suggests that we may not be 

able consider language learning purely a result of interest-input associations; we need to 

consider, instead, how speech inputs occur relative to the dynamic patterning of interactive 

contingencies throughout the caregiver-infant interaction.  

 

Indeed, the findings of Chapters 3 and 4 are most consistent with the last model outlined in 

Chapter 2 where infant attention is structured through dynamic interactive contingencies that 

regulate infant attention through allostatic process (S. V. Wass, 2021a). As outlined above, 

Chapter 4 shows that longer infant look durations associate with reactive and dynamic 

changes in the caregivers’ salient sensorimotor behaviours, and combined with the cross-

correlation of infant attention to theta activity, suggest that repeated interpersonal 

contingences within and between joint attentional episodes could drive periods of increased 

attentional and intentional engagement by infants. The placement of speech inputs by the 

caregiver at moments of increased endogenous control by infants over their own attention, 

could, in turn, be particularly important to infant learning (McQuillan et al., 2020; Yu & 

Smith, 2012).  

 

These findings emphasise the need to examine caregiver speech inputs, not relative to the 

moment of interactive contingency where an object label is produced (Goldstein et al., 2010; 

Wu & Gros-Louis, 2015), but relative to the dynamic contingencies leading up to that 
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moment, and that associate with increased endogenous control by infants over their 

behaviour. Similarly, as well as contingent responsivity by adults and infants to each others’ 

behavioural cues, continuous neural tracking of the oscillatory structures in caregiver 

behaviours could increase infant sensitivity to both the attentional focus of their partner and 

their speech input around moments of object labelling. For example, in interactions with 14-

month-old infants, object labels provided by caregivers occur at peaks in the amplitude 

envelope (Messer, 1981; Nencheva & Lew-Williams, 2022), and, during book-sharing 

interactions, caregivers produce object labels with exaggerated pitch intonation, which are 

often placed at the end of sentences (Fernald & Mazzie, 1991). How neural tracking of the 

caregivers’ speech signal during naturalistic interactions associates with coordination by the 

infant to the focus of their caregivers’ speech inputs is a crucial question for future research.  

 

6.3 Limitations and future directions  

 

The findings of the present thesis show the potential for neurocognitive methods of analysis 

in studying early infant-caregiver interactions for furthering our understanding of the 

endogenous cognitive mechanisms and bidirectional contingencies that give rise to the 

structure of infant attention during shared interactions that, using behavioural methods alone, 

would be unidentifiable.  

 

As outlined in the Chapters 3, 4 and 5, however, examining the relationship of infant neural 

activity to their naturalistic interactive behaviours does face some limitations. One limitation 

considered in the analysis and interpretation of the findings in all 3 chapters is the issue of 

movement-related artifact in the EEG signal, which is particularly problematic in naturalistic 

datasets where the infant is freely moving (Georgieva et al., 2020; Marriott Haresign et al., 
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2021). In all 3 chapters movement-related artifacts were removed using an automated 

algorithm for identifying artifactual components with ICA decomposition (Marriott Haresign 

et al., 2021). This, however, does not remove all movement-related artifact from the data, 

which is often time-locked to the behaviour events of interest (e.g. re-orientations of infant 

attention towards objects and their partner (Marriott Haresign et al., 2021; Noreika et al., 

2020)). That said, in Chapters 2 and 3, through detailed behavioural analysis of infant 

attention, and consideration of the direction of the relationships between infant attention and 

their neural activity, we showed that it was unlikely that the reported effects were driven by 

artifact in the EEG signal. In Chapter 5, however, this was more difficult, and a key area for 

future work should be in examining the influence of EEG artifact in testing speech-brain 

tracking in naturalistic interactions. As the field of naturalistic EEG recording moves 

forward, more sophisticated techniques for artifact removal are being developed (Marriott-

Haresign et al., 2021).  

 

Another of the limitations associated with recording EEG from infants during live, free 

flowing naturalistic interactions is that some infant behaviours occur too infrequently to 

examine associations of EEG activity to infant behaviour at the individual level. In Chapter 3, 

for example, it was shown that the probability of infant vocalising during the course of the 

interaction was low, which is common in lab-based experiments (Gratier et al., 2015). In the 

discussion section of Chapter 3 it was considered that, whilst we did not find an increase in 

infant theta activity in the time before all infant-led looks towards objects, it could be the case 

that certain infant behaviours are more endogenously guided than others, and that, caregiver 

responses to these behaviours might be particularly important to infants’ socio-

communicative understanding and language development (Murray et al., 2016). As well as 
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infant vocalisations, gestures, and specific body movements would be particularly relevant to 

the current investigation (Lucca & Wilbourn, 2018).  

 

In the sections above, it was argued that the patterning of action generated contingencies 

throughout the course of the interaction, as well as infants’ attunement to micro-oscillatory 

processes of the caregiver, could drive moments of endogenously driven behaviour and 

cognitive process, unidentifiable in the unimodal and intra-personal relationships examined in 

Chapter 4. Similar to much previous work conducted in social interactions (Yu & Smith, 

2013, 2017), this thesis examined a wide, but, nevertheless, limited number of interactive 

behaviours. In Chapter 3, for example we conducted analyses on the temporal structure of 

caregiver and infant gaze and vocal behaviours, and, in Chapters 4 and 5, the spectral 

qualities in caregiver speech were also examined relative to infant attention and neural 

activity. Researchers are often limited by resources for coding the micro-dynamics of 

interactions, given the time and resources it takes to code these fine-grained behaviours. 

 

To advance the findings of the current thesis, we need to move towards continuous modelling 

and data-driven methods of analysis, that utilise automated behavioural coding packages and 

online motion-tracking software (Pereira et al., 2008) to examine the dynamic associations 

between infant brain activity and inter-dyadic behaviour. A key focus of this work should be 

on examining multimodal behavioural process in supporting the development of early joint 

attention and cognition, and in tracking the longitudinal relationships between these 

influences over time (Gaffan et al., 2010). For example, one particularly interesting avenue 

for future work would be in using data-driven approaches to examine the intra- and inter-

dyadic behavioural process associated with specific patterns of neural activity in infants 

(Bayet et al., 2020).  
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The results presented in Chapter 5 show that it is possible to measure infant neural tracking 

of their caregivers’ speech signal during shared naturalistic interactions, using continuous 

modelling approaches. Similar methods should be utilised in future work to examine how 

infants track multi-modal patterns of caregiver behaviour that operate across multiple time 

scales, as well as their neural responsivity to the contingencies that these multimodal 

behaviours create (Jessen et al., 2019). For example, in mTRF analyses, it is possible to 

regress numerous behavioural variables on to the infants’ continuous EEG signal, opening 

exciting opportunities to examine how infants attune to multiple levels of interactive process. 

This work will aid further insight into the attentional mechanisms through which early 

interactions support infants’ developing capacity for attentional control over their own 

behaviours, as well as their role in driving early language development.  

 

6.4 Overall conclusions 

 

The contribution of this thesis is in taking a new, multi-method approach, combining neural 

and behavioural techniques, to examining the intra-individual and bidirectional processes that 

characterise early triadic caregiver-infant interactions. In all 3 empirical chapters, this work 

has provided insight into the sub-second neural activity associated with the timing of infant 

attention, as well as their sensitivity to the dynamic interactive contingencies that drive and 

maintain inter-personal coordination on a moment-by-moment basis. In particular, the 

findings of the present thesis advance our understanding of the endogenous cognitive activity 

and predictive processing strategies that structure infant attention in shared interactions. From 

this, the work generates new perspectives on the learning mechanisms involved in the 

development of intentionally mediated behaviours, with cascading implications for our 
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understanding of how inter-dyadic process supports early development (Murray, De Pascalis, 

Bozicevic, et al., 2016; Murray et al., 1993; Murray & Trevarthen, 1986; Tamis-LeMonda et 

al., 2001). These are mechanisms that have only previously been considered as possibilities 

in explaining the timing of infant attention and the organisation of inter-dyadic co-ordination 

using behavioural methods alone (Yu & Smith, 2012). 

 

This, however, is only the first step. The development of well-designed, and purposefully 

constructed set-ups to examining the continuous associations between intra-personal neural 

activity and inter-dyadic sensorimotor process in naturalistic interactions, with attention to 

multi-modal behaviours across multiple time-scales, as well as advances in sophisticated 

analytical deigns will advance the findings reported here. Through the integration of different 

micro-analysis methods this work will be crucial to furthering our understanding of how 

infants begin to learn from and engage with a language system. 
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APPENDIX A – Supplementary Materials for: Proactive or 

reactive? Neural oscillatory insight into the leader-follow 

dynamics of early caregiver-infant interaction  

 
1.1 Methods 

 

 

Figure S1 a) Bar plot shows the mean number of looks included in each category after EEG 

epoching. Error bars show the standard deviation (n=37). b) Histograms show the number of 

participants contributing a certain number of look epochs for each attention episode.  One 
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participant contributed fewer than five trials for adult-led looks to mutual attention; 5 for 

infant-led looks to mutual attention, and 2 for infant-led looks to nonmutual attention. 

Participants contributing fewer than 5 looks for one attention episode in each comparison 

(e.g., infant-led mutual attention compared to adult-led mutual attention) were excluded from 

the cluster-based permutation analysis.  

 

1.2 Results 

 

 

 

Figure S2. a) Bar plots show the proportion of looks without an object or partner look in the 

2000ms preceding look onset for each type of attention episode (error bars show the 

standard deviation (n=37)). Paired t-tests indicated no differences between attention episodes 
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onset (all p>0.05). Histograms show the number of trials that participants contributed without 

(b) and with (c ) object or partner looks. d) and e) show the breakdown of proportions 

without object and partner looks, respectively; shaded areas show average proportions with 

looks for each attention episode (error bars show the standard deviation (n=37)). Paired t-

tests showed that adult-led attention episodes have significantly fewer partner looks in the 

2000ms before look onset compared to infant-led looks to mutual attention (p<0.05), and 

non-mutual attention (p<0.05). Adult-led looks also have fewer object looks compared to 

infant-led looks to nonmutual attention (p<0.05).  All other comparisons (p>0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 237 

 

 

Figure S3 a) Proportion of looks without an object or partner look in the 2000-1000ms 

preceding look onset for each type of attention episode (error bars show the standard 

deviation(n=37)). Paired t-tests indicated no differences between attention episodes (all 

p>0.05). b) and c) show the breakdown of proportions for object and partner looks, 

respectively, for each type of attention episode (error bars show the standard 

deviation(n=37)). Paired t-tests indicated no differences between attention episodes in the 

proportion of looks with object looks; partner looks differed between all three attention 

episodes (p<0.05).  
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Figure S4 a) Proportion of looks without an object or partner look in the 1000-0ms 

preceding look onset for each type of attention episode (error bars show the standard 

deviation(n=37)) .Paired t-tests indicated no differences in proportions between attention 

episodes (all p>0.05). b) and c) show the breakdown of proportions for object and partner 

looks, for each type of look (error bars show the standard deviation(n=37)). Paired t-tests 

again indicated that there were no differences between attention episodes in the number of 

object or partner looks (all p<0.05). 
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Figure S5 Secondary analysis excluding EEG activity in each look, where the infant is not 

focussed continuously on one object in the 2000ms before look onset. Time-frequency plots 

show infant EEG activity (2-16Hz) occurring 2000ms before look onset, for (a) adult-led 

looks to mutual attention (b) infant-led looks to mutual attention and (c) infant-led looks to 

nonmutual attention, over fronto-central electrodes (AF3, AF4, FC1, FC2, F3, F4, Fz). d) 

Difference in EEG activity between infant- and adult-led looks to mutual attention (adult-led 

– infant-led). Cluster-based permutation analyses showed no significant clusters of 

time*frequency points of the difference between attention episodes. e) Difference in EEG 

activity between infant-led looks to mutual and nonmutual attention (infant-led to mutual - 

infant-led to nonmutual). Cluster-based permutation analyses showed no significant clusters 

of time*frequency points of the difference between attention episodes. 
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Figure S6 Time-frequency plots show infant EEG activity (2-16Hz) occurring 5000ms 

before look onset, for (a) adult-led looks to mutual attention (b) infant-led looks to mutual 

attention and (c) infant-led looks to nonmutual attention, over fronto-central electrodes (AF3, 

AF4, FC1, FC2, F3, F4, Fz). d) Difference in EEG activity between infant- and adult-led 

looks to mutual attention (adult-led – infant-led). Cluster-based permutation analyses showed 

no significant clusters of time*frequency points of the difference between attention episodes. 

e) Difference in EEG activity between infant-led looks to mutual and nonmutual attention 

(infant-led to mutual - infant-led to nonmutual). Cluster-based permutation analyses showed 

no significant clusters of time*frequency points of the difference between attention episodes. 
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Figure S7 a) Time-course of the trend-level time*frequency*electrode positive cluster 

identified by the 3-dimensional cluster-based permutation analysis, in time*electrode space, 

in 500ms time-windows; channels included in the cluster at each time-point are highlighted in 

black. b) Time-frequency plot shows the difference between looks in time*frequency space 

averaged over electrodes included in the cluster (adult-led mutual – infant-led mutual). 

Highlighted area shows time-course of the cluster (p=0.099). 

 

 

 

 

 

 

0 to 500ms 500 to 1000ms 1000 to 1500ms 1500 to 2000ms

b)
Adult-led to mutual - infant-led to mutual

a)

12

8

4

16

0

-0.4
2000

Po
w

er
 (d

B)

EE
G

 F
re

qu
en

cy
 (H

z)

0 1000

0.8

Time (milliseconds)



 242 

 

 

Figure S8 a) Bar plots show the proportion of looks without an object or partner look in the 

2000ms post look onset for each type of attention episode (error bars show the standard 

deviation (n=37)). Paired t-tests indicated significant differences between all attention 

episodes in the proportion of looks with object and partner looks combined occurring in the 

2000ms after look onset (all p<0.05). Histograms show the number of trials that participants 

contributed without (b) and with (c ) object or partner looks. d) and e) show the breakdown of 

proportions without object and partner looks, respectively; shaded areas show average 

proportions with looks for each attention episode (error bars show the standard deviation 

(n=37)). Paired t-tests showed that infant-led looks to nonmutual attention had significantly 

more looks with object looks in the 2000ms post look onset compared to adult-led looks and 

infant-led looks to mutual attention (p<0.05). Comparisons also showed that infant-led looks 
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to mutual attention involved significantly fewer object looks, compared to adult-led looks 

(p<0.05). No differences in the number of partner looks were observed (all p>0.05).  
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Figure S9 Proportion of looks without an object or partner look in the 0-1000ms post look 

onset for each attention episode (error bars show the standard deviation (n=37)). Paired t-

tests indicated significant differences between all attention episodes in the proportion of looks 

with object and partner looks combined occurring in the 1000ms after look onset (all p<0.05). 

b) and c) show the breakdown of proportions for object and partner looks for each attention 

episode. Paired t-tests showed that all looks have significantly different proportions of looks 

with object looks in the time-period 1000ms after look onset (all p<0.05). There were no 

differences in the proportion of looks involving partner looks (all p>0.05).  
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Figure S10 Proportion of looks without an object or partner look in the 1000-2000ms post 

look onset for each attention episode. Paired t-tests showed that infant-led looks to nonmutal 

attention included significantly more looks with object and partner looks compared to infant-

led looks to mutual attention, and adult-led looks ( p<0.05).  b) and c) show the breakdown of 

proportions for object and partner looks for each type of look. All looks have significantly 

different proportions of looks including object looks in the time-period 1000-2000ms after 

look onset (all p<0.05). There were no differences in the proportion of partner looks, p>0.05).  
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Figure S11 Secondary analysis excluding EEG activity in each look, where the infant shifts 

attention from the target object to another object/ the partner in the 2000ms after look onset. 

Time-frequency plots show infant EEG activity (2-16Hz) occurring 2000ms after look onset, 

for (a) adult-led looks to mutual attention and (b) infant-led looks to mutual attention, over 

fronto-central electrodes (AF3, AF4, FC1, FC2, F3, F4, Fz). c) Difference in EEG activity 

between infant- and adult-led looks to mutual attention (adult-led – infant-led); highlighted 

area shows the significant positive cluster identified by the cluster-based permutation analysis 

(p=0.01). The cluster ranges from 5-9Hz, from 104-1994ms post look-onset.  
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Figure S12 Time-frequency plots show infant EEG activity (2-16Hz) occurring 5000ms after 

look onset, for (a) adult-led looks to mutual attention and (b) infant-led looks to mutual 

attention, over fronto-central electrodes (AF3, AF4, FC1, FC2, F3, F4, Fz). d) Difference in 

EEG activity between infant- and adult-led looks to mutual attention (adult-led – infant-led). 

Cluster-based permutation analyses showed no significant clusters of time*frequency points 

of the difference between attention episodes. 
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Figure S13 Probability of caregiver ostensive signals (partner looks and vocalisations) 

occurring in the time-period before attention episodes. a) Partner looks after infant-led mutual 

attention vs adult-led mutual attention; b) Vocalisations after infant-led mutual attention vs 

adult-led mutual attention. c) Partner looks after infant-led mutual attention vs infant-led 

nonmutual attention. d) Vocalisations after infant-led mutual attention vs infant-led 

nonmutual attention. In each case shaded areas show the SEM and horizontal black lines 

show the areas of significant difference, between attention episodes, identified by the cluster-

based permutation analysis (Monte-Carlo p value<0.05). Dotted lines show the baseline time-

series, plotted for each attention episode. Horizontal coloured lines show the areas of 

significant difference between each look type and baseline, identified by the cluster-based 

permutation analysis (Monte-Carlo p value<0.05). 
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Figure S14 Probability of caregiver ostensive cues (partner looks and vocalisations) 

occurring in the time-period after attention episodes. a) partner looks after infant-led mutual 

attention vs adult-led mutual attention; b) vocalisations after infant-led mutual attention vs 

adult-led mutual attention. c) partner looks after infant-led mutual attention vs infant-led 

nonmutual attention. d) vocalisations after infant-led mutual attention vs infant-led 

nonmutual attention. In each case shaded areas show the SEM and horizontal black lines 

show the areas of significant difference, between attention episodes, identified by the cluster-

based permutation analysis (Monte-Carlo p value<0.05). Dotted lines show the baseline time-

series, plotted for each attention episode. Horizontal coloured lines show the areas of 

significant difference between each look type and baseline, identified by the cluster-based 

permutation analysis (Monte-Carlo p value<0.05). 
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APPENDIX B– Supplementary Materials for: Endogenous 

oscillatory rhythms and interactive contingencies jointly influence 

infant attention during early infant-caregiver interaction 

 

1.1 Methods 

 

 

 

 

 

 

Figure S1 Percentage of caregiver vocalisations that were co-vocalisations. Box plot 

showing the percentage of caregiver vocalisations that were vocalisations across participants.  

 

1.1.1 Clipping identification algorithm 

 

The clipping algorithm was based on that outlined by Hansen et al. (2021). First, points in the 

speech signal reaching the maximum or minimum amplitude were identified. Next, to 

identify whether each max/min value was the beginning of a clipping event, the algorithm 

detected whether the value next to this point was 99.5% +/-  of the max/min. A clipping event 

was considered to have ended where 3 consecutive values below/above the 99.5% threshold 

occurred. All vocalisations involving any clipping were excluded from analyses.  
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 Figure S2 Percentage of clipped vocalisations. The bar plot shows the percentage of clipped 

vocalisations, for each participant. The pink horizontal line indicates the threshold at which 

participants were excluded from analyses (30%).  

 

1.2 Results 

 
 

 

 

Figure S3 Event-related analysis for relative infant theta activity. a) Event-related analysis 

showing change in infant theta activity around infant attention onsets to objects: black line 

shows average relative theta activity (log); shaded areas indicate the SEM. Black horizontal 

line shows areas of significance revealed by the cluster-based permutation analysis (p < 
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0.05). Cluster-based permutation analysis revealed no significant clusters of time points (all p 

> 0.05). b) event-related analysis split by infant object attention-duration time bins. Black 

lines shows average infant relative theta activity  (log); shaded areas indicate the SEM. Black 

horizontal lines shows areas of significance revealed by the cluster-based permutation 

analysis (p < 0.05). Permutation analysis again revealed no significant clusters of time points 

(all p >0.05). 
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Figure S4 Assessing forwards-predictive associations between caregiver vocal behaviour, 

and infant attention, and endogenous oscillatory activity. Black lines show the Pearson cross-

correlation between two variables; shaded areas indicate the SEM. Black horizontal lines 

show significant clusters of time lags (*p<0.05). First column shows the association between 

caregiver vocal durations and a) infant attention durations, and b) infant theta activity. 

Second column shows the association between caregiver amplitude modulations and c) infant 

attention durations and d) infant theta activity. 
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Figure S5 Reactive change in caregiver vocal behaviour relative to infant attention onsets. 

First row: scatter plots of the association between infant attention duration and a) caregiver 

vocal durations, e) caregiver amplitude modulations. Coloured dots show each infant object 

look; black line indicates linear line of best fit. Second row: attention chunk analysis for each 

infant object look for b) caregiver vocal durations, f) caregiver amplitude modulations. Each 

bar shows the median for each chunk across participants; errors bars show the SEM. 

Wilcoxon signed ranks tests explored significant differences between attention chunks (*p < 

0.05). Third row: same as second row, binned by infant attention durations, for c) caregiver 
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vocal durations, g) caregiver amplitude modulations. Bottom row: event related analysis to 

all infant object looks for d) caregiver vocal durations, h) caregiver amplitude modulations. 

Black line indicates the average across participants; shaded area indicates SEM. 
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APPENDIX C – Supplementary Materials for: Using continuous 

methods of analysis to examine speech-brain tracking during 

naturalistic caregiver-infant object play  

1.1 Results 

Figure S1 Grand average predicative accuracy values for individual continuous models 

before outlier removal, for each frequency band (Pearson’s r). Blue circles show the mean 

across participants for each frequency band. Blue lines indicate the SEM of the averaged 

predictive accuracy values. Red horizontal lines show the averaged permutation values, 

averaged across permutations and participants. Red vertical lines indicate the SEM. Wilcoxon 

Signed Rank tests compared the observed r values to chance (*p<0.05). 
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Figure S2 Grand average predictive accuracy values for generic continuous models before 

outlier removal, for each frequency band (Pearson’s r). Blue circles show the mean across 

participants for each frequency band. Blue lines indicate the SEM of the averaged predictive 

accuracy values. Red horizontal lines show the averaged permutation values, averaged across 

permutations and participants. Red vertical lines indicate the SEM. Wilcoxon Signed Rank 

tests compared the observed r values to chance (*p<0.05). 
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APPENDIX D – Ethics 

1.1 Ethical approval letter 

The ethical approval letter received for our project is copied below. Note that our project was 

based on a joint application between myself, Megan Whitehorn and Ira Marriott-Haresign. 



Ethics ETH1819-0141: Ms Megan Whitehorn (High risk)
Date 10 Apr 2019

Researcher Ms Megan Whitehorn

Student ID 1920537

Project The effects of Attention Training on Neural and Behavioural 
Responsivity in Infants During Parental Dyadic Play 

School Psychology

Ethics application
Checklist for research projects conducted during a pandemic

Project details
1.1 Is your research project taking place during a pandemic?

1. Project details
1.1. Title of proposed research or consultancy project
New insights into how the infant brain subserves dynamic social interactions

1.2. UEL Researchers or Consultancy lead’
Ms Megan Whitehorn

Ms Emily Phillips

Mr Ira Marriott Haresign

Prof Samuel Wass

1.3. Start date of project for which ethical approval is being sought
24 Jun 2019

1.4. Anticipated end date of project for which ethical approval is being sought
21 Jan 2022

1.5. If this project is part of wider research or consultancy work, please provide the UREC, 
EISC, URES, RRDE, SREC, CREB or NHS research ethics approval number
n/a

1.6. If this project is part of a wider research study or consultancy work please state the start 
and end dates
n/a

1.7. Specify where the research or consultancy project will take place
UEL, Stratford Campus 

/83v51/ms-megan-whitehorn
/83qzw/ms-emily-phillips
/83qyy/mr-ira-marriott-haresign
/801w3/prof-samuel-wass


2. Aims and methodology
2.1. Aims and objectives of the project
Most early cognitive learning takes place in the presence of an adult social partner. Behavioural and 
psychophysiological research has suggested that as infants and parents communicate they adapt to 
each-other on a moment-by-moment basis- through, for example, cycles of vocalizing and pausing, 
of looking towards and away from each other, and of matching each-others’ positive, negative and 
neutral affect (Feldman, 2007). Less well understood is whether similar mechanisms of mutual 
attunement also operate at the neural level, and if/how shared patterns of oscillatory activity between 
individuals sub-serve interpersonal influences on attention. 

Using dual-EEG recordings, recent work has found that when interacting with an adult partner, 
increased neural synchronisation is observed during moments of direct gaze (Leong et al., 2017). A 
further study conducted with mothers and infants has also shown that when parents engage in joint 
play with their infant, parents’ neural activity tracks and responds to infant attention, with greater 
responsivity associated with increased infant attentiveness. 

The primary aim of the project is to further our understanding of interpersonal mechanisms that give 
rise to parent-infant neural “phase locking” (a phenomenon whereby two oscillatory signals become 
temporally aligned). Our secondary aim is to investigate the effects of child-focussed vs. parent-
focussed intervention on parent-child behavioural synchrony, and how these effects are 
substantiated at the neural and physiological level. The child-focussed intervention group will 
undergo a computerised attention training intervention, previously shown to lead to increased 
voluntary attentional control and responsiveness to social cues (Wass et al.; Wass & Forssman, 
2017). The parent-focussed intervention group will receive a parent-child book-sharing training 
programme. This intervention has been shown to increase parent responsivity to infant cues, leading 
to gains in child attentional control, as well as receptive and expressive language abilities (Valley et 
al., 2016). By comparing parent-child interactions in the two groups before and after intervention, we 
aim to identify casual mechanisms to behavioural, physiological (ECG) and neural (EEG) synchrony. 

2.2. Methodology, data analysis and recruitment for the project
To assess neural phase locking, we shall record simultaneous Electrocardiography (ECG) and dual 
Electroencephalography (EEG) from N=210 typically developing 10-12-month-old infants and adults 
before and after intervention. 

Participation in the study will involve attending 8 sessions, which will be scheduled weekly. The first 2 
visits will be pre-intervention sessions; these will be identical for all participating infants. Then, the 
subsequent 5 visits will be intervention visits. The exact schedule for these will vary depending on 
which group the participant is in (see further details below). The last visit will be a post-intervention 
session. These will, again, be identical for all participants. 

Allocation of participants to intervention group will be fully randomised and performed prior to the 
participants’ first testing session. 

Infants will be recruited from the participant database at UEL, as well as various local ‘baby-groups’, 
following the same procedures as used in multiple previous studies. Participants will also be 
recruiting from our pre-existing participant database. All participants will be aged between 270 and 
330 days at the date of the first visit. Exclusion criteria will be: complex medical conditions, skin 



allergies, heart conditions, parents below 18 years of age, and parents receiving care from a mental 
health organisation or professional. 

Pre-intervention assessment (visits 1 and 2)

The infant’s parent will be with them at all times. During these pre-intervention visits, both parents 
and their parents will have their electrical brain activity measured using Electroencephalography 
(EEG) and Electrocardiography (ECG). EEG will be measured using a Biosemi 32-channel system 
optimised for dual EEG recording. This is a gel-based system that is already in use in multiple sites 
across the world for infant testing. ECG will be measured using stick-on electrodes placed in a 
modified lead II position. 

Participants will complete three conditions, spread across two visits:

In Condition 1 (Video), infants will view a pre-recorded adult experimenter continually reciting nursery 
rhymes. Adult’s pre-recorded EEG will be compared with the infant’s live EEG during viewing. 
Behavioural data will be videoed and coded post-hoc.

In Condition 2 (Live), we shall record dual EEG and ECG from an infant and an unfamiliar adult 
(researcher) simultaneously, while they engage in table-top play. Behavioural data will be videoed 
and coded post hoc. 

In Condition 3, the same procedure will be repeated while the infant interacts with their parent, we 
shall record dual EEG and ECG from an infant and and parent simultaneously, while they engage in 
table-top play. Behavioural data will be videoed and coded post hoc.

Participants will also be administered a battery of cartoon-based cognitive and language outcome 
measures using eyetracking. The eyetracker used will be a Tobii TX300, that has been used in 
numerous studies around the world. Parent questionnaires will also be administered, namely the: 
MacArthur Communicative Development Inventory; the Infant Behaviour Questionnaire (short 
version); the GAD-7 and PHQ-9 (clinical assessments of parental anxiety and depression 
symptoms); the Penn State Worry Questionnaire, and a demographics questionnaire. All 
questionnaires proposed for inclusion are given in the appendix. Sessions will last a total of 2 hours. 
This is a standard length of time for lab visits with infants of this age; although assessments will last 
around 30-60 minutes, we like to allow enough time for the infant to settle in, and have breaks (for 
naps, snacks etc). 

Intervention 1- Child focused attention training intervention 

This intervention will be delivered once a week over a five-week period, with each session lasting 30 
(+/- 10) minutes. Each session will involve the child being positioned on their parent’s lap in front of 
an eye-tracker, while training stimuli are presented on a computer monitor. Training stimuli consist of 
6 tasks presented consecutively in the same order for each session; different events take place in the 
stimuli contingent on where the infant is looking. The intervention has already been published (Wass 
et al., 2011, 2018) and been used in several studies without any problems or unintended negative 
outcomes being reported. 

Intervention 2 – Parent focussed book sharing intervention 

This intervention trains parents in ‘dialogic’ book-sharing techniques; active and evocative behaviours 
that engage children in reciprocal communication during book-sharing. The intervention will be 
delivered once a week over five weeks by one of the PhD students on a one-to-one basis, with each 
session lasting 60 +/- 10 minutes. Each week will involve a specific theme, e.g. ‘elaborating and 



linking’, as well as a book-of-the-week for parents to take home and practice the book-sharing 
techniques with their children. The intervention has already been published (Vally et al., 2015) and 
been used in several studies without any problems or unintended negative outcomes being reported. 

Intervention 3 – Control

Infant in the control group will make similar lab visits to the intervention groups; they will watch some 
computerised animations, and the researcher will discuss ways to incorporate foods into the child’s 
diet that may be particularly helpful to supporting their early development. 

Post Intervention

Following training, all participants will attend two post-assessments. These assessments will follow 
exactly the same format as the pre-assessment sessions. Participants will receive the same battery 
of pre-assessment outcome measures. 

Through analysis we aim to explore interpersonal neural and physiological correlates of social 
interaction. We will compare parent-child behavioural, physiological and neural synchrony before and 
after intervention, in order to investigate the effects of receiving each intervention, and in comparison 
to no intervention at all. 

2.3. Is the data accessed, collected or generated of a sensitive nature?
Yes

2.3.1. If yes, please provide details. Please ensure that all data of a sensitive nature is handled 
carefully and stored appropriately.
We will be collecting heart rate and EEG data. These will be stored securely on a password-
protected drive kept under lock and key in the university and accessible only by project researchers. 

3. About your project
3.1. Is the research/consultancy project funded?
Yes

3.2. Does the project involve external collaborators?
No

3.3. Does the project involve human participants?
Yes

3.4. Does the project involve non-human animals?
No

3.4.1. If yes, where is the research project taking place?

3.5. Does your project involve access to, or use of, material (including internet use) covered 
by the Terrorism Act (2006) and / or Counter-Terrorism and Border Security Act (2019) or 
which could be classified as security sensitive?
No



3.6. Does the project involve secondary research, secondary data or analysing an existing 
data set?
No

3.7. Does the project raise ethical issues that may impact on the natural environment over and 
above that of normal daily activity?
No

3.8 Does the research/consultancy project involve data collected online via social media, 
advertising the project online or via social media or include a questionnaire/survey?
No

If yes, please provide details.

3.9. Will the research/consultancy project take place overseas?
No

3.10. Will the researcher or research team be responsible for the security of all data collected 
in connection with the research/consultancy project?
Yes

3.11. Does your research/consultancy project require third-party permission?
No

If yes, please provide details.

3.12. Does your research/consultancy project involve any circumstances where the 
professional judgement of you and/or the team is likely to be influenced by personal, 
institutional, financial or commercial interests?

If yes, please provide details.

3.13. Does the project involve consultancy or contract research?

If yes, please provide details.

4. Funding
4.1. Funder(s)
Leverhulme Trust

4.2. Grant type
Research Council

If you selected other, please provide further details.



4.3. Value of grant
£ 327093

4.4. Please upload a letter advising of the award of the grant.

6. Recruitment
6.1. Are the research participants able to give informed consent (in written or verbal form)?
No

6.1.1. If no, is this because they are perceived to lack mental capacity or because they are 
vulnerable?
Vulnerable

6.1.2. If the participants are perceived to lack mental capacity, please provide the reason(s).

6.1.3. Further details

6.1.4. If the participants are perceived to be vulnerable, please provide details of the 
vulnerability.
Research will involve children aged 10-12 months at time of training and testing. In line with previous 
studies of this type undertaken by the university, parents will be asked to consent to each test 
proposed in this study. Written information about each test will be emailed to parents at least a week 
before their visit to the lab, and they will be encouraged to ask for any clarification they feel they 
need. All participants are invited to ask questions and voice concerns about our consent and 
information documents, so that we can respond to or expand on any part of the process that is not 
clear. 

6.1.5. Does the research/consultancy project involve children or young people under the age 
of 16?
Yes

6.1.6 If yes, are the children or young people able to give informed assent?
No

6.1.7. If no, is this because they are perceived to lack mental capacity or because they are 
vulnerable?
Vulnerable

6.1.8. If the participants are perceived to lack mental capacity, please provide the reason(s).

6.1.9. Further details

6.1.10. If the participants are perceived to be vulnerable, please provide details of the 
vulnerability.
The infant participants will be aged between 10 and 12 months at the time of training and testing. At 
these ages, the babies will be too young to give informed consent before starting, therefore parents 



will consent on behalf of their infants/children, as standard in this age cohort. In addition, they will be 
constantly monitored for signs of distress, and any procedure that is deemed upsetting to either 
parent, researcher or the baby will be halted. All participants will be informed that they have the right 
to halt proceedings at any stage. Babies and children will be constantly monitored, and any test will 
be discontinued should they become distressed or show signs of discomfort. This includes both 
training and testing sessions.

6.2. How will participants be recruited?
Infants will be recruited from the participant database at UEL, as well as from various recruitment 
drives at local baby-groups and Children’s Centres. Fully informed consent will be obtained before 
testing commences.

All of the parents of babies in this study will have received an information sheet and been given an 
explanation of the aims of this study before providing their contact details. Different information 
sheets will be given depending on which group the participants have been pre-allocated to. When 
they are initially contacted, they will be given more detailed information about what participation in the 
study involves via an information sheet, which will be emailed to them. At each interaction, an 
opportunity will be given to ask any questions or gain clarification. Before any data is collected, the 
parent/carer will be asked to sign a consent form. All participants are invited to ask questions and 
voice concerns about our consent and information documents, so that we can respond to or expand 
on any part of the process that is not clear. 

6.3. Please upload recruitment documents.
6.4. How many participants are being sought for the project?
210

6.5. How long will participants be required for the project?
The intervention blocks will take place over 9 weeks, with testing sessions once each week. The pre- 
and post- assessments will each last for two hours. Intervention sessions will last 30 +/- 10 minutes 
for the attention training and 60 +/- 10 minutes for the book-sharing. 

6.6. Will the participants be remunerated for their contribution?
Yes

6.6.1. If yes, please specify monetary value of cash or giftcard / vouchers.
£50 in shopping vouchers for those who receive the interventions and £30 in vouchers for those who 
do not. 

7. DBS
7.1. Do you require Disclosure Barring Service clearance (DBS) to conduct the 
research/consultancy project??
Yes

7.2. Is your DBS clearance valid for the duration of the research/consultancy project?
Yes



7.2.1. If you have current DBS clearance, please provide your DBS certificate number.
001659510034

8. Medical
8.1. Is your project a clinical trial and / or involves the administration of drugs, substances or 
agents, placebos or medical devices?
No

8.1.1. If you answered yes, please explain why you have chosen to use this application form 
instead of the NHS/HRA ethics application form. If you have selected yes, your project 
requires approval by the NHS/HRA, as it is falls under the classification of Medicines for 
Human Use (Clinical Trials) Regulations (2004) or Medical Devices Regulations (2002) or any 
subsequent amendments to the regulations.

8.2. Does your project involve the collecting, testing or storing of human tissue / DNA 
including organs, plasma, serum, saliva, urine, hair, nails or any other associated material?
No

8.2.1. If you answered yes, please explain why you have chosen to use this application form 
instead of the NHS/HRA ethics application form. If you have selected yes your project 
requires approval by the NHS/HRA, as it is falls under the classification of the Human Tissue 
Act (2004).

9. Risk
9.1. Does the project have the potential to cause physical or psychological harm or offence to 
participants and / or researchers?
No

9.1.1. If yes, please provide details of the risk or harm explaining how this will be minimised.

9.1.2. Please complete and upload a research risk assessment form
9.2. Does the project involve potential hazards and/or emotional distress?
Yes

9.2.1. If yes, provide an outline of support, feedback or debriefing protocol.
Infants sometime express mild distress on the application of the EEG equipment. However, we have 
received extensive training in how to minimise this. We do not obtain any usable EEG recordings if 
infants are at all distressed, so we take every possible step to minimise this when it occurs. The 
process of recording EEG data from infants is in place in numerous other research labs across the 
world, and the process we follow will be identical to those used in other labs. 

9.3. Provide an outline of any measures you have in place in the event of an adverse event or 
reaction or unexpected outcome, the potential impact on the project and, if applicable, the 
participants.



We do not expect adverse events arising from the study procedures. Under circumstances of an 
unexpected adverse event, the participants’ health and safety will be the highest priority. If health and 
safety is in any way compromised, the participant will be withdrawn from the study, with clear 
reasoning given. 

10. Anonymisation
10.1. Will the participants be anonymised at source?
No

10.1.1. If yes, please provide details of how the data will be anonymised.

10.2. Are participants' responses anonymised or are an anonymised sample?
No

10.2.1. If yes, please provide details of how the data will be anonymised.

10.3. Are the samples and data de-identified?
Yes

10.3.1. If yes, please provide details of how the data will be anonymised/pseudonymised.
Direct and indirect identifiers will be removed from data and participants will be assigned a participant 
code. This will be entered along with the date and time of testing on the files containing raw data, and 
will be used to record all other data collected during pre-post assessments. Participant names and ID 
numbers will be stored in a separate password protected database. This is so that participants can 
withdraw their data up to the point at which it is included in the final analysis. Consent forms will be 
kept securely and separately from the raw data in a locked cabinet. Only members of the research 
team will have access to both the raw data and consent forms. Data will be retained in a secure place 
at the end of the project as, should funding allow, we might wish to follow up the sample over a 
longer time period. Video recording of the behavioural paradigms will only be viewed by members of 
the research team.

10.4. Please provide details of data transcription.
All data will be analysed using MATLAB software. Behavioural paradigms will be coded according to 
their manuals. External research assistants may be recruited in order to code videos; assistants will 
be fully briefed on ethics related to the study and will not be allowed access to consent forms, code 
keys, or any other data that would allow them to identify the participant. Research assistants will only 
be permitted to code data on university computers (that are disconnected from the internet) and will 
not be allowed to copy or move video files from the university. Research assistants will be asked to 
complete a confidentiality agreement before undertaking any work on the project. 

10.4.1 Will the data be transcribed by person(s) outside of the project team?

If yes, please upload a blank copy of the confidentiality agreement.



10.5. If applicable, will all members of the project team know how the code links the data to 
the individual participant?
Yes

10.5.1. If no, in the event of a researcher's absence please specify the process should access 
to the research data be required.

10.6. Will participants be anonymised/pseudonymised in publications that arise from the 
research/consultancy project?
Yes

10.6.1. If no, please provide details.

10.7. Will participants have the option of being identified in the study and dissemination of 
research findings and / or publication?
No

10.7.1. If yes, please provide details.

16. Data security
16.1. Will the researcher or the project team be responsible for the security of all data 
collected in connection with the proposed research/ consultancy project?
Yes

16.1.1. If no, please provide details.

16.2. Will the research/consultancy data be stored safely on a password protected computer?
Yes

16.2.1. If no, please provide details.

16.3. Will the research/consultancy project data be stored on a UEL data managed device?
Yes

16.3.1. If no, please specify where the electronic data will be stored and how the data will be 
kept secure.

16.4. Will you keep research/consultancy project data, codes and identifying information in a 
separate location?
Yes

16.4.1. If yes, please explain how you will store the research data.
Consent forms will be kept in hard copies in a locked cupboard on university premises. Only the 
research team will have access to this cupboard. The cupboard will be locked when not in use. Data 
and audio/video recordings will be stored separately from the consent forms. Hard copies of personal 



data will be stored in locked cupboards in the lab. Electronic versions of personal data will be stored 
on a secure computer network (to which only the research team have access) on password protected 
computers at the University of East London. Participant names and IDs will be stored on a separate 
password-protected database. 

16.5. Will the raw data be shared with individuals outside of the project team?
No

16.5.1. If yes, please specify the names, positions and their relationship to the research/ 
consultancy project
Name

Position

Relationship to research

16.6. Will participants be audio and/or video recorded?
Yes

16.6.1. If yes, please explain how you will transfer, store and, where relevant, dispose of audio 
and/or video recordings.
Digital audio-video recordings will be transferred onto the UEL secure computer network that only the 
research team will have access. Video files may need to be stored externally; in this case, recordings 
will be stored and transferred on a password-encrypted hard drive with access limited to members of 
the research team. 

16.7. If audio and/or video recordings will be retained, please provide details and state how 
long the recordings will be kept.
Recording will be kept for up to a year after the data has been analysed unless further funding can be 
obtained and the data is used again in further analyses, for which ethics approval of analyses of 
secondary data will be sought. 

16.8. Will you retain hard copies of the data?
Yes

16.8.1. If yes, please provide details of how the data will be transported safely and, where 
relevant, undergo secure disposal.
Data will be collected and stored in the BabyLab at UEL. Hard copies of any data will be kept in 
locked cabinets in the BabyLab offices. Only members of the research team will have keys to those 
cabinets. The data will not leave the premises. These will be shredded by a team member when 
appropriate. 

16.9. Will the research/consultancy project data be encrypted and transferred inside of the 
UK?



Yes

16.10. How long will the research data that details personal identifiers be stored?
Any personal identifiers will only be retained until the research has been published and it is no longer 
possible for participants to request to withdraw their data 

16.11. Please upload a copy of your Data Management Plan.

18. Dissemination
18.1. Will the results be disseminated?
Yes

18.1.1. If yes, how will the results of the research/consultancy project be reported and 
disseminated?
Dissertation / Thesis
Peer reviewed journal
Internal report
Conference presentation

18.1.2. If you selected other, please provide further details.

18.1.3. If the results of the research/consultancy /project will not be reported and 
disseminated, please provide a reason

20. Attachments
You can generate a Participant Information Sheet and Consent Form using the answers provided in 
your ethics application form. The Word files generated can be edited. You should upload the final 
version(s) before submitting your application form.

20.1. Upload any additional files to support your application which have not already been 
uploaded within your application.
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