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ABSTRACT 

The urban heat island (UHI) is a concerning environmental phenomenon, and 

mitigation strategies have been proposed to reduce its adverse effects. This study 

conducted a literature review of UHI and UHI mitigation strategies, finding that 

urban cooling technologies such as green roofs, cool roofs, and urban vegetation 

can comprehensively  affect meteorological parameters (temperature, sky view 

factor, radiation, etc.), urban building energy use, carbon emissions and improve 

human comfort. Additionally, thermal energy storage technologies were also 

reviewed, with a focus on mitigating UHI. The study assessed the effectiveness 

of conventional and thermal energy storage-based UHI mitigation strategies 

through meteorological simulations using the software ENVI-met and a novel 

model called UHIMS-ECHE. The simulation results showed that conventional 

UHI mitigation scenarios can reduce UHI intensity, building cooling energy use, 

carbon emissions, and improve human thermal comfort. Moreover, the 

integration of phase change materials (PCMs) and photovoltaic (PV) systems 

was analysed by the UHIMS-ECHE model, which demonstrated that the 

integration of PCM and PV technologies can significantly reduce UHI, improve 

energy efficiency, and enhance human thermal comfort in urban environments. 

A case study has been conducted in Osaka, Japan, which is a typical city under 

subtropical monsoon weather condition.  Consequently, the PCM-Roof -A36H -

10cm model reduced outdoor air temperatures by up to 7.09°C and total urban 

building cooling energy use cooling loads by up to 23.68% compared to the 

baseline case. These findings provide insights for policymakers, urban planners, 

and building designers to create sustainable urban environments. Further 
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research is recommended to investigate the feasibility and cost-effectiveness of 

these technologies in different urban contexts and climatic conditions. 
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1 CHAPTER I: INTRODUCTION 

1.1 Research background  

The emergence of the urban heat island (UHI) effect can be attributed to the 

Industrial Revolution, which led to its initial observation in London during the 

19th century [1]. This phenomenon is characterised by the occurrence of 

elevated temperatures in urban areas when compared to the surrounding rural 

areas  [2]. Fig.1-1 shows a visual representation of the UHI effect in urban 

environments, based on World meteorological organization [3]. 

 

Figure 1-1 Visual representation of the UHI phenomenon [3] 

In recent years, global warming and extreme climate events have emerged as 

pressing issues, presenting complex challenges for both scientists and 

policymakers. According to the Sixth Assessment Report by the 

Intergovernmental Panel on Climate Change (IPCC) [4], limiting global 

warming to 1.5°C (2.7°F) before 2025 requires reducing global greenhouse gas 

(GHG) emissions by 43% by 2030. However, despite this urgent need, total net 

anthropogenic GHG emissions have continued to rise between 2010 and 2019, 

including cumulative net CO2 emissions since 1850.  

Moreover, UHI effects have been identified as a contributing factor to global 

warming, and it is prevalent in numerous cities worldwide. Recent research [5] 
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assessed summer temperature data from more than 30,000 cities globally. 

Consequently, the issues associated with UHI have become a significant concern 

globally. Researchers face the challenge of analysing UHI trends and developing 

strategies to adapt to and mitigate the serious challenges posed by urban heat 

islands, including energy poverty, carbon emissions, and human comfort, among 

others. 

1.2 Statement of problems 

Urban heat island mitigation strategies such as green roofs, cool roofs and cool 

pavement have long been recognised as effective approaches to improve 

building energy efficiency, reduce associated carbon emissions, and 

continuously improve occupant living standards in terms of improved indoor 

comfort level, and air quality. 

However, the obstacles to UHI mitigation are also multi-dimensional and vary 

primarily according to the local climatic conditions, city characters, building 

typologies and energy usage by occupants. Thus, determining the most effective 

UHI mitigation strategies to achieve a sustainable future in cities is a pressing 

issue and will have an immediate impact on the city in terms of microclimate, 

micro-environment, economics and human life quality. However, it is apparent 

that several limitations exist in UHI mitigation strategies.  

Most research [6] [7] only uses ambient temperature change to evaluate the 

efficiency of UHI mitigation strategies and did not analyse the change of 

radiation or other meteorological parameters. For example, a study [7]was 

conducted to evaluate the effectiveness of several UHI mitigation strategies in 

three locations in Toronto. The study found that using the cool pavement, cool 

roofs, and adding urban vegetation can significantly reduce surface temperatures 
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and contribute to UHI mitigation. The combination of these techniques can lead 

to a "cool city" model that can reduce outdoor air temperature by 3.3-4.6 °C. 

However, the other meteorological parameters have not been considered when 

assessing the effectiveness of UHI mitigation strategies such as the sky view 

factor which can affect the intensity of UHI. Therefore, there is a lack of a 

coupled meteorological assessment system to analyse UHI mitigation. 

Besides, some studies [11] [12] [13] [15] [16] only analysed the effectiveness of 

UHI mitigation strategies without assessing the urban building energy 

consumption change, human comfort or carbon emissions. Additionally, some 

research [16] [18] only focused on the single reference building to predict UHI 

mitigation strategies on building energy consumption, ignoring the dynamic 

interaction of outdoor air among buildings in a neighbourhood. Moreover, 

various studies [12] [18] [19] [21] adopted field measurement experiments and 

observation meteorological data to analyse the UHI mitigation strategies the 

building energy consumption. However, the experiments are usually conducted 

from 24 hours to a few days and did not account for the long-term influence of 

UHI and energy consumption. Furthermore, several research [15] [17] [20] only 

analysed the effects of UHI mitigation strategies on individual building energy 

performance by adopting existing meteorological data, such as the EPW files, 

which are usually collected and managed by the rural weather station and do not 

accurately reflect the urban microclimate situation in the city centre [22]. 

Therefore, there is a lack of a comprehensive understanding of the relationship 

between UHI, energy use, carbon emissions and human comfort.  

Furthermore, the current body of research falls short in providing insight into 

effective methods of utilising and preserving excess heat in urban centres to 
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mitigate the intensity of UHI. Thermal energy storage (TES) technologies have 

been developed to store thermal energy for later use. These technologies have 

gained significant attention in recent years due to their potential to reduce peak 

loads and conserve energy [26] [27] [28] [29]. Despite the potential of TES 

technologies to mitigate UHI effects by absorbing and storing thermal energy, 

there is a lack of analysis on their effectiveness on various aspects of UHI 

phenomena, such as energy consumption, carbon emissions, economics, and 

human comfort. 

1.3 Aim and objectives 

Based on research background and current challenges, this PhD research aims to 

investigate the most effective urban heat island mitigation strategies in 

subtropical cities, seeking to improve human thermal comfort, reduce energy 

consumption and carbon emissions, and promote sustainable urban development 

in subtropical regions.  

To achieve the aim, the following specific objectives have been established: 

1. A comprehensive literature review of the development of UHI in subtropical 

cities and the mechanisms affecting the microclimate were carried out. 

2. An impact assessment modelling of different UHI mitigation strategies for the 

selected subtropical city was undertaken based on different green coverage ratios 

and urban fabric albedo. 

3. A comprehensive model for mitigating subtropical UHI in the research area 

was developed by considering urban building energy use, human thermal 

comfort, and carbon emissions. 

4. An advanced model for analysing the feasibility, building energy and city 

micro-environmental prediction of thermal energy storage technologies as urban 
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heat island mitigation strategies were produced. 

5. A case study to evaluate the effectiveness of the developed UHI mitigation 

strategies in a selected subtropical city was carried out by assessing their impact 

on human thermal comfort, energy use, carbon emissions, and sustainable urban 

development. 

1.4 Novelty of the research 

1.4.1 Performance determination of UHI mitigation strategies by 

comprehensive meteorological assessment  

While previous methods and models have utilized meteorological parameters as 

assessment criteria, a comprehensive meteorological assessment has yet to be 

established for accurate UHI intensity estimation. In this study, the effectiveness 

of UHI mitigation technologies is evaluated using comprehensive 

meteorological criteria, which include ambient temperature, radiation, and sky 

view factor. A more thorough analysis is required to review these aspects, 

identifying the reasons why specific UHI mitigation strategy models were 

selected and the respective advantages and disadvantages of each. 

1.4.2 Rapid and accurate prediction of the relationship between UHI 

mitigation strategies with energy use, carbon emissions, and human 

comfort in the subtropical city centre 

This doctoral thesis introduces the UHIMS-ECHE model (urban heat island 

mitigation strategies-energy consumption, carbon emissions, human thermal 

comfort and economic analysis), which predicts and evaluates the effectiveness 

of urban heat island (UHI) mitigation strategies at the city level. Unlike previous 

studies that focused on individual buildings or neighbourhoods, the UHIMS-

ECHE model considers the broader urban context and quantifies the effects of 
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mitigation strategies on a city-wide scale. The model integrates a range of data 

sets and advanced algorithms to accurately predict the impacts of UHI mitigation 

strategies on building energy consumption, carbon emissions reduction, thermal 

comfort enhancement, and economic benefits. The UHIMS-ECHE model 

represents a significant advancement in urban sustainability research and 

provides a comprehensive approach for policymakers and urban planners to 

adopt effective and efficient UHI mitigation strategies. 

1.4.3 Thermal energy storage technologies as urban heat island mitigation 

strategies 

UHI is characterised by the storage of massive amounts of thermal energy in 

urban objects and materials with impervious surfaces that have a higher capacity 

for heat absorption. This PhD research analyses the effectiveness of thermal 

energy storage technologies as strategies to mitigate UHI in urban areas. 

1.5 Scope of the research 

In this study, the effect and performance of different urban heat island mitigation 

strategies are investigated, focusing on the following points:  

(1) The impact of different building materials and design features on urban heat 

island mitigation. For example, exploring the use of green roofs, reflective 

surfaces, and ventilation systems in buildings to reduce the urban heat island 

effect. 

(2) The impact of UHI mitigation strategies on air quality. This could involve 

exploring how UHI mitigation strategies may impact air quality by reducing the 

formation of ground-level ozone and other pollutants, as well as examining 

potential trade-offs between UHI mitigation and air quality goals. 
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(3) The relationship between urban heat island mitigation strategies and public 

health. For example, examining the impact of extreme heat on vulnerable 

populations, such as the elderly and those with pre-existing medical conditions, 

and how mitigation strategies can be tailored to address their needs. 

(4) The potential for thermal energy storage technologies in UHI mitigation 

efforts. This could involve exploring how thermal energy storage technologies 

can be involved in monitoring the urban heat island effect and implementing 

mitigation strategies, as well as examining the potential of thermal energy 

storage technologies on the success of UHI mitigation.  

1.6 Research methodology 

In this thesis, the methodology is mainly based on the following stages: 

1.6.1 Background investigation and literature review 

The challenges of mitigating urban heat islands in tropical city centres have been 

studied and compared. A literature review was conducted to understand the 

causes and effects of UHI, as well as the main approaches for studying it. The 

development of UHI intensity and assessment criteria were also reviewed. The 

literature review analysed previous research on UHI mitigation strategies that 

focus on urban building energy use, carbon emissions, and human thermal 

comfort, to identify the advantages and drawbacks of existing modelling 

concepts. The review of thermal energy storage technologies aimed to assess 

their performance and limitations, and to analyse the relationship between 

thermal energy storage and UHI mitigation. 

1.6.2 Modelling analysis 

To conduct a comprehensive assessment of urban heat island (UHI) mitigation 

strategies, it is imperative to employ robust and reliable tools that can provide 
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accurate predictions and evaluations. In this regard, the software ENVI-met has 

been selected to assess the effects of various mitigation strategies on subtropical 

UHI. The research area will be subjected to different scenarios with varying 

green coverage ratios and urban fabric albedo to investigate the effects of these 

strategies on UHI. The main criteria of assessment will include temperature and 

radiation, among others. 

Furthermore, an hourly parametric model known as UHIMS-ECHE has been 

developed using the software rhinos and grasshopper. This model will consider 

various factors such as urban building energy use, carbon emissions, human 

comfort, and economics to investigate the effectiveness of UHI mitigation 

strategies comprehensively. By using the UHIMS-ECHE model, it will be 

possible to identify the most effective strategies for mitigating UHI while 

considering their economic viability and environmental impact. 

Additionally, an advanced UHIMS-ECHE model will be developed to explore 

the relationship between thermal energy storage and UHI. This model will 

provide valuable insights into how thermal energy storage can be effectively 

used to mitigate UHI in subtropical regions. By employing these sophisticated 

models and tools, it will be possible to conduct a comprehensive assessment of 

UHI mitigation strategies and identify the most effective approaches for 

mitigating UHI in subtropical regions. 

In conclusion, this study will employ advanced modelling tools and techniques 

to evaluate the effectiveness of various UHI mitigation strategies 

comprehensively. The findings of this study will provide important insights into 

how UHI can be mitigated in subtropical regions while considering economic 

and environmental factors. This study will contribute to the development of 
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sustainable urban environments and enhance our understanding of the complex 

interplay between urbanization, energy use, and climate change. 

1.6.3 Modelling operation, validation, and uncertainty analysis 

To ensure the operability and universality of the novel model, the use of case 

studies was implemented. The incorporation of case studies allowed for the 

evaluation of the model performance in various conditions. Additionally, a field 

measurement was conducted within the research area to validate the accuracy of 

the model. 

This approach serves to provide robustness to the model, ensuring that it can be 

applied to a range of scenarios. The inclusion of case studies allows for the 

exploration of the model's applicability and performance across a variety of 

contexts. Moreover, the field measurement provides a practical validation of the 

model's accuracy, giving confidence in its potential use. 

The use of case studies offers a valuable methodological approach for testing 

and refining the model. It provides an opportunity to examine the model's 

efficacy in real-world scenarios, which can provide critical insights into its 

performance. The field measurement further contributes to the validation 

process, ensuring that the model's accuracy is verified within a relevant context. 

Overall, the adoption of case studies and field measurements strengthens the 

novel model, increasing its practical applicability and theoretical soundness. 

Through this approach, the model capabilities can be confidently assessed and 

applied in various settings. 

1.7 Thesis structure 

The thesis consists of five main chapters to ensure a systematic investigation of 

the urban heat island and its mitigation strategies. This thesis follows rigorous 
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logic, starting with a deep understanding of the urban heat island and its 

mitigation strategies, followed by an assessment of the efficiency of these 

strategies. Finally, the negative impacts of UHI are thoroughly analysed to 

provide a comprehensive understanding of the issues, ultimately leading to the 

solution of the problem through advanced and novel technologies. The thesis 

structure is illustrated in Fig. 1-2.  
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Figure 1-2 Structure of the thesis 
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The research structure details are summarised below: 

CHAPTER I: Introduction: This chapter provides an introduction to the 

research, including a statement of the background, motivation, aims and 

objectives, novelty, scope, and main methods of the thesis. 

CHAPTER II: literature review: This literature review covers various aspects 

of UHI, including its definition, causes, and effects. The main conventional 

mitigation strategies for UHI are also reviewed. The review examines the 

relationship between UHI mitigation strategies and urban building energy use, 

carbon emissions, and human comfort. Finally, the review discusses the current 

development of TES technologies for urban cooling as a potential solution to 

mitigate UHI, due to the limitations of conventional strategies. 

CHAPTER III: Methodology: ENVI-met software is used to simulate these 

conventional mitigation strategies to comprehensively determine the effects in 

meteorological parameters. Additionally, an innovative and comprehensive 

model is proposed to analyse the relationship between UHI mitigation strategies 

with urban building energy use, carbon emissions, human comfort and economic 

analysis (UHIMS-ECHE). The UHIMS-ECHE is a more accurate and 

universally feasible model workflow based on a taxonomic literature review that 

can model the integration effect between urban building energy consumption, 

carbon emissions and human comfort and conventional or novel UHI mitigation 

strategies.  

CHAPTER  IV: Research results: findings of a study that analysed simulation 

results to evaluate the effectiveness of UHI mitigation strategies are presented. 

The study simulated the effects of conventional UHI mitigation strategies on 

energy use, environment, and human comfort and presented the results. The 
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study also examined the potential of TES technologies to mitigate UHI and 

analysed the association between TES technologies and UHI mitigation 

strategies through modelling, calibration, and validation. 

CHAPTER V: Conclusion, recommendation and future work: the main 

conclusions and discussions of this thesis, along with suggestions for further 

research and future directions are presented.  
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2 CHAPTER II: LITERATURE REVIEW  

2.1 Introduction 

Several factors such as urbanisation, migration of population into cities, etc., 

have led to the creation of urban heat islands, thus resulting in significantly 

higher temperatures in urban areas than in surrounding rural areas. UHI can have 

detrimental effects on human thermal comfort levels, energy consumption in 

buildings, and carbon emissions. This chapter was therefore aimed at providing 

a comprehensive literature review of existing mitigation strategies and 

technologies to establish their limitations and towards achieving effective 

strategies for sustainable building designs. The review examined the impact of 

the existing strategies on meteorological parameter variations, building energy 

use, carbon emissions, and human thermal comfort. The review also covered 

energy storage technologies, low-carbon cooling systems, and their integration 

into the processes of sustainable building designs. 

2.2 The types of urban heat island 

UHI is a complex phenomenon that exhibits a variety of types, and through 

extensive research, it has been classified primarily into two categories based on 

the location and source of the temperature increase, namely Atmospheric Urban 

Heat Island (AUHI) and Surface Urban Heat Island (SUHI). [8]. AUHI is 

classified into urban canyon layer UHI and urban boundary layer AUHI. Table 1 

shows the comparison between AUHI with SUHI.  

SUHI: This type of UHI refers to the increased temperature at the surface of 

urban areas, including roads, buildings, and other man-made structures. The 

elevated temperatures of the urban surface result from the high density of heat-

absorbing materials, such as concrete and asphalt, as well as the absence of 
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natural features such as vegetation and water bodies, which provide shade and 

evaporative cooling [9]. 

 AUHI: This type of UHI is characterized by elevated temperatures in the lower 

atmosphere above urban areas, due to the emission of heat from human activities 

and the concentration of air pollutants. The increased heat emission from 

buildings, vehicles, and industrial processes leads to a reduction in the vertical 

mixing of the atmosphere and an increase in atmospheric stability, leading to a 

localized increase in temperature [10]. The combination of the urban canyon 

layer and the urban boundary layer contributes to the AUHI effect. The urban 

canyon layer traps heat and limits cooling, while the altered airflow patterns and 

reduced mixing in the urban boundary layer contribute to the retention of heat 

and pollutants near the surface [11]. 

Table 2-1 The comparison of AUHI and SUHI [12] 
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 Urban canyon layer 

AUHI 

Urban boundary 

layer AUHI 

SUHI 

Concept The surface energy 

balance that influences 

the air volume inside the 

canyon through sensible 

heat transfer from the 

surface 

The extension of 

urban heat into the 

UBL by the 

entrainment of 

warmer air from 

above the UBL. 

Higher air temperature in 

an urban area during hot 

summer days due to 

intense solar radiation on 

heat-absorbing materials. 

Temporal 

development 

Occurs during the night, 

pronounced diurnal 

variations. 

Occurs during both 

day and night and 

decreases linearly 

with the height of 

UBL  

Occurs during both day 

and night, highest intensity 

during the daytime  

Spatial 

coverage 

Local-scale with limited 

coverage (1-10km) 

Meso-scale with 

high coverage  

Micro-scale with limited 

coverage (1-100m) 

Measuring 

techniques 

Stationary weather 

station 

Temperature sensor Remote sensor and GIS 

application 

Presentation 

methods 

Temperature graphs and 

isotherm maps 

Temperature 

graphs 

Thermal images 

Impacts Energy and water use, 

thermal comfort and air 

quality.  

Local air 

circulation and 

quality, 

Precipitation and 

thunder storm 

activity  

 Human thermal comfort, 

air quality, energy 

consumption, even local 

ecosystems.   

  

AUHI occurs due to the accumulation of hotter air in urban areas compared to 

the cooler air in rural surroundings [8]. The AUHI is categorised into the urban 

canopy layer (UCL) UHI and the urban boundary layer (UBL) UHI (Fig.2-1). 
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UCL is extended closest to surfaces of cities, whilst the UBL is above UCL level 

in a few kilometres. The UCL contributes microscale climate conditions and the 

UBL contributes mesoscale climate conditions [13]. UCL-AUHI mainly occurs 

in the urban layer below the tops of trees and roofs, while the UBL-AUHI occurs 

from the rooftop or treetop level up to the level where urban buildings or trees 

no longer influence the atmosphere [14].  

 

Figure 2-1 The different layers of the urban atmosphere [15]  

2.3 Main causes of urban heat island  

Several causes can be attributed to the occurrence of UHI in urban areas. The 

UHI effect is intensified by altered urban microclimates with reduced vegetation 

and evapotranspiration, increased solar absorption, low albedo, impermeable 

surfaces, and anthropogenic heat [16]. Fig.2-2. illustrates the relationship 

between atmospheric heat, increased use of manufactured materials, and various 

other factors that contribute to the UHI.   
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Figure 2-2 Main occurs and effects of UHI [16] 

2.3.1 Artificial material 

Firstly, the widespread use of construction materials with greater heat storage 

capacity and low albedo contributes to UHI. These manufactured materials in 

the building and pavement, characterised by low albedo and higher thermal 

admittance, can capture, absorb and store the shortwave radiations during the 

day time and release the absorbed and stored energy by longwave radiations 

during the night time [17]. Asphalt is widely used as the surface of the pavement, 

covering 95% of roads in the UK [18] and 94% in the USA [19]. Asphalt 

pavement can absorb approximately 95% radiation with a thermal conductivity 

of around 1- 2 W/mK, resulting in a relatively low albedo and high affinity for 

thermal absorption and conductivity [16], the surface temperature can reach up 

to 60℃ in summer [20] [21] [22]. 

2.3.2 Less green space 

Increased manufactured materials are associated reduction of vegetation and 
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green space in urban areas is also another important factor influencing the UHI. 

It can result in a lack of evapotranspiration as well as increased ozone 

concentrations [6]. There is a significant temperature difference between the 

most and the least green spaces, such as 2℃ in New York City[23], 2-3℃ in 

Mexico city [24] 4.01℃ in Singapore [25], 5.26-7.32℃ in Suzhou China [26].  

2.3.3 Narrow urban street canyon 

The deep urban canyon and intricate street geometry that have a higher height-

to-width ratio of the street (Fig.2-3.) can have a substantial impact on UHI by 

the impeded release of sensible and latent heat, enhancing the penetration of 

short-wave radiation into the canyons, and result in the increase in energy 

absorption [27].  

Besides, the narrow street canyon can block the natural airflow, leading to 

stagnant air and reduced ventilation. This can trap heat and pollutants, 

exacerbating the UHI effect. Moreover, the vertical walls of the buildings in a 

street canyon create a larger surface area for solar radiation to be absorbed, 

leading to increased surface temperatures [28] 

During the diurnal cycle, urban environments tend to exhibit higher heat 

retention compared to rural areas. This is due to the reduced sky view factor and 

constricted street canyons, which impede the cooling rate in urban areas. 

Conversely, rural objects are characterised by rapid heat loss during the night 

time, attributed to the greater sky view factor and open exposure [29].  
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Figure 2-3 Streets with narrower widths (W) and taller buildings height (H) 

2.3.4 Increased population and urbanisation 

Anthropogenic heat release has been identified as a significant contributor to the 

intensification of the urban heat island (UHI) phenomenon, Previous research 

[30] [31] [32] demonstrates a positive correlation between population density in 

urban centres and the severity of the UHI. Besides, over the last decade, the 

world has added approximately one billion population and increased population, 

implying that the world’s population numbered is over 8 billion. Based on the 

medium-variant scenario, indicate a further increase to 11.2 billion by the end of 

the century [33]. Table 2-2 shows the population trends for the world and various 

regions. 

Table 2-2 Globally population trends [33] 

 
Region Population in 2030 Population in 2050 Population in 2100 

World 8551 9772 11184 

Asia 4947 5257 4780 

Africa 1704 2528 4468 

Europe 739 716 653 

Latin America and 718 780 712 
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the Caribbean 

Northern America 395 435 499 

Oceania 48 57 72 

 

The 2018 Revision of World Urbanization Prospects highlights the rapid growth 

of the urban population, which increased from 751 million in 1950 to 4.2 billion 

in 2018 [33]. This remarkable increase in the global population has led to the 

emergence of new megacities, while existing ones have experienced a significant 

rise in population density. Conversely, the rural population has grown at a much 

slower pace. As presented in Table 2-2, Africa and Asia are the regions 

experiencing the most concentrated population growth.  

Currently, Tokyo (35.6895°N, 193.6917°E) is the largest city in the world, with 

an estimated population of 37 million. It is followed by New Delhi (28.6139° N, 

77.2090° E), which has 29 million inhabitants, Shanghai (31.2304° N, 121.4737° 

E) with 26 million, and Mexico City (19.4326° N, 99.1332° W) and São Paulo 

(23.5505° S, 46.6333° W), both with approximately 22 million inhabitants [33]. 

All of these cities are located in the tropical (23.5 °N and 23.5° S) or subtropical 

(up to 30° N and 30°S) climate zone. Therefore, investigating the subtropical 

UHI is crucial for a comprehensive understanding of the global UHI 

phenomenon.  

Fig. 2-4. presents the world map of climate classification, based on the Köppen-

Geiger climate classification system, revealing four  sub-climate types in tropical 

climate as defined by this map Tropical Rainforest or Equatorial (Af), Tropical 

Monsoon (Am), Tropical Dry summer (As) and Tropical Dry summer winter 

(Aw) [34].  
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Figure 2-4 The world map of climate classification [34] 

2.4 Main urban heat island effects 

The development of the UHI is a result of urban construction and human 

activities. The UHI increase lands to increase land surface temperature, affecting 

the influence of material flow and energy flow, also exerts a series of ecological 

and environmental effects on urban climates, urban hydrologic situations, soil 

properties, atmospheric environment, biological habits, material cycles, energy 

metabolism and human health [35].  

2.4.1 Urban heat island impacts energy consumption 

Building energy consumption is influenced by multiple factors such as ambient 

temperature, building characteristics, performance and occupancy behaviour [36, 

37] [38] [39]. Among those factors, the ambient temperature is one of the most 

important factors that directly drives the operation of the cooling and heating 

system, which influences the corresponding building cooling and heating energy 

consumption [39]. Previous studies show that UHI can significantly increase 
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energy use, especially can increase cooling energy consumption [40] and 

increase peak energy demand [41] by increased using air conditioning [36]. 

Existing study studies report the response function for the peak energy demand 

and the hourly, daily, monthly or annual energy consumption, and also show that 

The intensity of  UHI increase can rise peak energy demand and increase energy 

consumption [42]. Table 2-3 summarises the existing literature concerning the 

impact of ambient temperature on peak energy demand or energy consumption.  

Table 2-3 Impact of ambient temperature on the peak energy demand or 

consumption 

Research area Increased peak load 

per ℃ 

Percentage increase of 

base electricity load per 

degree of temperature 

increase 

Threshold 

inflexion 

temperature 

Ref. 

Thailand Additional Peak 

demand of 

810 MW/℃ 

4.6% N/a [43] 

Athens, Greece Increase the daily 

energy consumption 

of 1300 MW h/℃ 

4.1% 22 [44] 

New Orleans, 

USA 

Increase the daily 

average electrical 

load by 15 MW h/℃ 

3% 22 [45] 

Hong Kong, 

China 

Increase the monthly 

consumption by 

111 GW h/℃ 

4% 18 [46] 

Louisiana Increase the monthly 

consumption by 

40 kW h/person/℃ 

8.5% 20 [47] 

Maryland, 

USA 

Increase the monthly 

electricity 

consumption by 

22 kW h/p/℃ for the 

residential sector 

8.5% 15.6 °C for 

residential 

and 11.7 °C 

for 

commercial 

 

[48] 

Singapore Hourly electricity 1.2% N/A [49] 

https://www.sciencedirect.com/science/article/pii/S0378778814007907#tbl0005
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2.4.2 Urban heat island impacts on outdoor air quality 

UHI has been shown to significantly impact outdoor air quality in cities [50]. 

The high temperatures in the city centre facilitate photochemical reactions in 

ambient air, which result from chemical interactions between nitrogen 

oxides and hydrocarbons, resulting in the formation of tropospheric ozone [51].  

Numerous studies [52]  [53]  [54] have demonstrated a substantial association 

between the formation of tropospheric ozone and high ambient temperature. In 

addition, the formation of ground ozone is influenced by several factors, 

including ambient temperature, solar radiation intensity, concentrations of 

nitrogen oxides and volatile organic compounds, and the ratio of volatile organic 

compounds to nitrogen oxides [53]. High-ground ozone concentrations are 

strongly associated with the UHII [55] [56] [57]. Research has indicated that a 

1°F increase in temperature corresponds with the days exceeding the ozone 

thresholds increase by 10% [58] and 18% [53]. Furthermore, a linear correlation 

between the ozone concentration and the ambient temperature in the city centre. 

Some research  [59]  [60] [52] has shown that while the ozone concentration is 

low in rural areas, it is twice as in the city centre.  

In addition to impacting air quality, UHI affects the air flow and turbulent 

exchange leading to increased concentration of air pollutants [61]. Studies [62] 

[63] [64] have shown the effect of UHIs on the concentration of atmospheric 

particulate matter (PM). Increased PM concentration results from increased 

aerosol-radiation interaction, with increased temperature [65].  

demand crease 

California, 

USA 

Increase of the 

monthly consumption 

by 27 kW h/℃ 

7.7% 17 [47] 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/photochemical-reaction
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/nitrogen-oxide
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/nitrogen-oxide
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/tropospheric-ozone
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Moreover, building energy consumption primarily depends on domestic 

electricity load for air conditioning and other cooling systems generated from 

fossil fuel combustion [66]. This increased energy use rises carbon emissions of 

energy in coal-fired power plants, and thus, UHI directly impacts the carbon 

emissions. A study conducted in London predicted the CO2  increase by 13-15 % 

due to UHIs [67]. Besides, high energy use and carbon emissions cause high 

energy bills. 12-year research [68] analysed the cost that UHI imposes on the 

$120B residential market with CO2 emissions that exceed 550 M tons in 48 US 

states. The results indicated that, on average, a 1°C increase in UHI intensity 

leads to a 40% increase in UHI energy costs, while a 1°C reduction results in a 

46% decrease in UHI energy costs. Another 5- year study [69] was carried out 

in the urban and rural in Baltimore city, and the results showed that atmospheric 

CO2 was consistently and significantly increased, on average, by 66 ppm from 

the rural to the urban site. 

2.4.3 Urban heat island impact on human health 

Research has exposed that both high and low temperatures can be associated 

with illness [70] [71]. UHIs represent a noteworthy form of anthropogenic 

environmental modification, constituting a threat to human health of 

considerable magnitude. When exposed to temperatures beyond a certain 

threshold, the human thermoregulation system is unable to counteract the impact 

of extreme heat, leading to increased indoor and outdoor discomfort [72], and 

even morbidity and mortality [73]. The human body gains heat by absorption 

from radiation from the sun and sky and losses heat through respiration and 

evaporation from the skin. The negative impacts of UHI are able to effect 

respiration and evaporation of the human body [6], leading to heat syncope, 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/thermoregulation
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cardiovascular stress, thermal exhaustion, heart stroke and cardiorespiratory 

diseases [67]. An investigation was conducted to examine the association 

between mortality and UHIs, revealing that UHIs had a discernible impact on 

heat-related fatalities, with an estimated rise of 1.1 deaths per million population 

[74].  

The analysis of the intra-urban variability in heat-related health problems is 

important as cities are characterised by spatial variabilities in the exposure and 

spatial variabilities related to the distribution of vulnerable populations [75]. 

UHI can result in higher ambient temperatures affecting socioeconomic, 

demographic and health problems and leading to differences in urban 

vulnerability between the neighbourhoods in a city [76].  

There is a well-established association between the local thermal 

environment and demographic and socioeconomic risk factors. Results indicate 

that individuals belonging to lower socioeconomic groups are more susceptible 

to the impacts of heat stress, as they are more likely to reside in urban areas 

characterized by elevated levels of UHII, reduced vegetation cover, and high 

population density [77]. Thus, the examination of heat-related health outcomes 

in cities necessitates a holistic consideration of the interplay between thermal, 

social, economic, and demographic factors. Table 2-4 summaries the main 

characteristics and results of intra-cities heat-related mortality with UHI.

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/thermal-environment
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/thermal-environment
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Table 2-4 Intra-cities heat-related mortality with UHI 

 

Location Population 

concerned 

Research 

period 

Outcome Considered 

factors 

Remark Ref. 

Lisbon, 

Portugal 

All 

population 

1998 to 2008 All-cause 

mortality 

N/a For universal thermal climate index 

(UTCI) > 24.8°C, mortality is 14.7, 

5.4, 5.1%, and 3.0%/deg. 

[78] 

Michigan, 

USA 

All 

population 

May to Sept 

1990 to 2007 

Cardiovascular 

Mortality 

Socioeconomic factors Cardiovascular mortality during 

extreme heat events was higher by 

39% in the city without green spaces.  

[79] 

Berlin, 

Germany 

All 

population 

Heat wave 

1990 to 2006 

All mortality Socioeconomic factors Significant correlation between the 

number of deaths and the proportion 

of land covered by impervious 

surfaces during heat waves 

[80] 



28 

 

London, 

UK 

All 

population 

May 26th–July 

19th, 2006 

All mortality N/a The strong relationship between UHI 

and heat-related mortality 

[81] 

Shanghai, 

China 

All 

population 

Heat waves 

1998 to 2004  

All mortality N/a The maximum additional heat 

mortality, (27 deaths/million), was 

reported in Shanghai during the 1998 

heat wave and for a heat island 

intensity close to 3 ℃ 

[82] 

Western 

Europe  

All 

population 

May to 

August 2003 

All mortality N/a More than 70,000 additional deaths 

occurred in Europe during the 

summer 2003. 

[83] 
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Overall, Studies have shown that urban areas, owing to their positive thermal 

balance and the presence of the UHI, exhibit a higher incidence of heat-related 

morbidity when compared to rural or suburban regions [74]. The UHI is 

responsible and has been identified as a contributor to elevated levels of heat-

related mortality, with a range of an additional death between 1.0 to 27 per 

million of the population [84]. Research has also indicated a significant the UHII 

increased, and heat-related mortality increases considerably [70]. 

2.4.4 Impact of urban heat island on vulnerable and low-income population 

It is widely accepted that UHI exhibits a strong correlation with biophysical and 

socioeconomic vulnerability [85] [86] [87]. Several studies [88] [81] [89] have 

investigated the association between high ambient temperatures in cities 

and socioeconomic factors such as income, education, racial characteristics, 

quality of housing, etc. The results have consistently indicated that low-income 

populations are disproportionately affected by UHI, residing in areas with 

elevated levels of heat stress and poor thermal quality buildings [89]. 

Furthermore, low-income and vulnerable populations live in low thermal-quality 

buildings [90], and the cooling energy bill induced by UHI is higher than that of 

the rest of the population [91]. Given that the cost of air conditioning is a serious 

additional burden for the low-income population, most of them cannot afford 

space cooling [92]. Table 2-5 presents in a tabulated form the main impact of 

UHI on low-income and vulnerable populations.

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/socioeconomic-factor
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/low-income-population
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/low-income-population
https://www.sciencedirect.com/science/article/pii/S0378778819326696#tbl0004
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Table 2-5 Main impacts of UHI on low-income and vulnerable population 

Location Research 

Population  

Research 

period 

Weather data Outcome Considered factors Remark  Ref. 

London, 

UK 

All 

population 

26.05.2006-

19.06.2006 

Weather 

station 

All cause 

mortality 

House quality Estimated UHI attributable deaths 

between 6.1 to 8.14 deaths per 

million of population. Dwelling 

characteristics cause a larger 

variation in temperature exposure 

and risk, than UHI 

[81] 

Hong 

Kong, 

China 

All 

population 

June to 

September 

2001-2009 

Weather 

stations 

All cause 

mortality 

Meteorological 

parameters and 

PM10 

concentration 

A 1 ℃ rise above 29 ℃ caused a 

4.1% and 0.7% increase in mortality 

in high and low UHI zones 

correspondingly. 

[93] 
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St Louis 

Missouri, 

USA 

Older than 

65 years 

old 

Heat wave 

days 1980, 

1983,1988 

and 1995 

One weather 

station 

All-cause 

mortality 

Age, 

Socioeconomic 

deprivation score 

When UHII is 1℃, the risk of heat 

death by 1.004 and 1.070 when 

acclimatisation or no acclimatisation 

[94] 

Sydney, 

Australia 

Older than 

65 years 

old 

Warm 

months 

1993-2004 

Field 

measurement 

All-cause 

Mortality 

Socioeconomic 

factors 

10℃ temperature increased, 0.8-

10%higher mortality risk. 

[95] 

Sao 

Paolo, 

Brazil 

All 

population 

1993 

to1994 

Three 

weather 

stations 

Cardiovascular 

and 

Respiratory 

N/a  Old people usually live in small old 

apartments with windows closed, 

that presented  upper  temperatures  

that  were  on average  2  to   4C  

higher  than  those  at  the  other  

stations. 

[96] 
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Paris, 

France 

Older than 

65 years 

8-13 

August 

2003 

LANDSAT 

surface T 

data 

Mean Daily 

Surface Temp 

Social factors and 

house 

The odds ratio concerning the 

surface temperature around the 

dwelling was high, 1.82℃ 

[75] 
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2.5 Summary of urban heat island causes and effects 

UHI phenomenon is the warming of urban areas relative to their rural 

surroundings. UHIs occur due to the interaction of various factors, including 

land use changes, urban morphology, anthropogenic heat emissions, and weather 

patterns. The main causes of UHIs are changes in land use, such as the 

replacement of vegetation with impervious surfaces like asphalt and concrete, 

and the construction of buildings, which reduce the ability of the urban landscape 

to regulate temperature through natural processes like evapotranspiration. 

Additionally, human activities such as transportation and industrial processes 

also contribute to UHIs by releasing heat into the environment. 

The effects of UHIs include increased energy consumption for cooling, 

worsened air quality, and negative impacts on human health. UHIs also have 

ecological impacts, such as altering plant and animal species composition and 

behaviour and disrupting ecosystem services such as pollination and nutrient 

cycling. The UHI effect can also exacerbate climate change by increasing the 

demand for energy and contributing to greenhouse gas emissions. 

2.6 Main evaluation approaches of UHI 

Previous studies have employed a range of evaluation approaches, such as multi-

scale phenomena, observational and simulation methods, to explore the 

existence of the UHI and potential mitigation strategies[17]. Table 2-5 presented 

an overview of the diverse approaches used to study UHI along with their 

respective limitations [97].  
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Figure 2-5 Approaches for studying subtropical UHI [97] 

2.6.1 Multi-scale approach 

The multi-scale approach is a commonly used method for investigating the UHI 

phenomenon. It involves examining the UHI effect across different spatial and 

temporal scales, from local to regional and from diurnal to seasonal. This 

approach has several advantages, including the ability to capture the complexity 

of the urban environment and provide a comprehensive understanding of the 

UHI phenomenon. The multi-scale approach includes small-scale processes 

(human metabolism) and mesoscale processes (atmospheric forces) to evaluate 

the overall urban thermal pattern [97]. However, there are some limitations to 

this technique. Firstly, the complexities of the multi-scale approach are to collect 

an inclusive and comprehensive database for the whole city. Secondly, there is 

an incompatible phenomenon that happened in the existing theories for analysing 

the UHI in each scale [98]. 

2.6.2 Observational approach 

The observational approach is a commonly used method for investigating the 

UHI phenomenon. It involves collecting temperature data at different locations 

within an urban area to identify areas where the UHI effect is most pronounced. 

Observational studies can be conducted at different spatial scales and provide 
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accurate measurements of temperature at specific locations. However, this 

approach may have limitations related to the identification of the cause of 

temperature changes and the spatial and temporal resolution of the 

measurements. Despite these limitations, the observational approach remains an 

important tool for investigating UHI and has been used in numerous studies to 

provide valuable insights into the phenomenon. The observational approach 

includes field measurement, thermal remote sensing and small-scale modelling 

[97]. 

2.6.2.1 Field measurement approach 

The field measurement approach involves a comparative analysis of near-surface 

temperature patterns between urban and rural areas, utilizing meteorological 

statistics obtained from weather stations to assess the urban heat island (UHI) 

effect in a city. The main variables considered in this approach are the near-

surface temperature in urban areas, wind velocity, the concentration of pollutants 

in the air, and turbulence flow. The results obtained through this approach are 

primarily used to determine the spatial distribution and intensity of the UHI. 

Many studies have applied the field measurement approach to investigate the 

UHI and to determine the effect of building elements on reducing the UHI. 

However, the field measurement approach as an independent approach also 

possesses certain limitations. Firstly, to achieve reliable results, comprehensive 

data must be collected, which is often costly and time-consuming, given the high 

cost of purchasing and installing measurement devices across a city. Secondly, 

due to the usage of a limited stationary network and relatively fewer measured 

parameters, the field measurement approach cannot identify the three-
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dimensional spatial distribution of the quantities in the urban area 

comprehensively. Lastly, the results obtained through field measurement may 

not accurately reflect the UHI effect due to the influence of other parameters, 

making it difficult to correlate the data with the UHI effect, even with sufficient 

data collection [97]. 

2.6.2.2 Thermal remote sensing approach 

The thermal remote sensing approach involves the use of satellite, airborne, and 

aircraft platforms to analyse the UHI effect and assess variables such as surface 

temperature, surface albedo, turbulent transfer from the surface, and surface 

emissivity. The remote sensing data provides an excellent opportunity to monitor 

and analyse the UHI effect in a city at a large scale. The thermal remote sensing 

approach provides an effective way to quantify the magnitude and spatial 

distribution of the UHI effect. 

Researchers can compare the UHI effect in different cities using satellite data, 

which is readily available for most parts of the world. Satellite data has a high 

temporal resolution, which enables researchers to analyse the UHI effect over a 

long period, and thus study the seasonal and temporal variations of the UHI 

effect. The thermal remote sensing approach can provide valuable information 

on the UHI effect for city planners and policymakers. 

However, the thermal remote sensing approach is costly, and collecting steady 

and complete images of urban surfaces can be challenging. The accuracy of the 

thermal remote sensing data is dependent on the spatial resolution of the data. 

The thermal remote sensing approach can provide useful information at a larger 

scale, but the spatial resolution of the data may not be sufficient to capture the 
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fine-scale variations in the UHI effect. 

Additionally, the three-dimensional structures of urban environments can limit 

the vertical extent of the research area that can be fully captured. As a result, the 

UHI distribution must be extracted from thermal data obtained from a bird-eye 

point of view by using sensor-view models. Sensor-view models are used to 

simulate the view of a sensor from a particular location, which can help to extract 

the UHI distribution from thermal data [99].  

2.6.2.3 Small-scale modelling approach 

The small-scale modelling approach involves substituting the urban area with a 

small area model, which is then evaluated in a wind tunnel or outdoor setting to 

investigate the effect. This method can be used to verify, calibrate, and enhance 

mathematical models. However, ensuring the similarity between the small-scale 

model and the real outdoor environment is challenging [97]. Additionally, this 

approach enables the analysis of the influence of building environment 

parameters (such as pollution dispersion and dimensions) on a small urban area. 

Nevertheless, its utilization is limited due to its high cost, time-consuming 

nature, and complexity in experimentally creating thermal stratification [100]. 

2.6.3 Simulation approach 

In addition to observational methods, a simulation approach has been developed 

to analyse the UHI phenomenon at a large-scale model. These simulation models 

simulate the physical processes that occur in the urban environment and can 

predict the temperature and other meteorological variables at different spatial 

and temporal scales. There are two types of simulation models commonly used 

to study UHI: meso-scale models and micro-scale models. 
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The Weather Research and Forecasting (WRF) model [101] [102] [103], a 

mesoscale model and the computational fluid dynamics (CFD) model [104], a 

micro-scale model, are both widely used models to simulate UHII. 

2.6.3.1 Weather Research and Forecasting 

The Weather Research and Forecasting (WRF) model is a state-of-the-art 

mesoscale numerical weather prediction system that has been designed for both 

atmospheric research and operational forecasting applications. The model is 

built upon a robust software architecture that supports parallel computation and 

system extensibility, enabling it to provide accurate and reliable predictions for 

a wide range of meteorological applications at the mesoscale [105]. 

The WRF model is composed of two dynamical solvers, namely, the Advanced 

Research WRF (WRF-ARW) [106] and the Non-Hydrostatic Mesoscale Model 

(WRF-NMM) [107]. These solvers are specifically designed to compute the 

atmospheric governing equations and provide accurate and reliable predictions 

for weather phenomena at the mesoscale. 

In addition to its dynamical solvers, the WRF model also features a data 

assimilation system, which enables the model to incorporate real-time 

observational data and improve the accuracy of its forecasts. The data 

assimilation system is based on the ensemble Kalman filter method and is 

capable of assimilating a variety of observation types, including radar, satellite, 

and conventional observations [108]. 

The WRF model has been extensively tested and validated, and its performance 

has been shown to be superior to that of other mesoscale numerical weather 

prediction systems. The model has been used in a variety of meteorological 
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applications, including severe weather forecasting, air quality forecasting, and 

wind energy forecasting, among others [109]. The WRF model has a broad range 

of users, including atmospheric researchers, operational forecasters, and 

decision-makers in various sectors, such as agriculture, energy, transportation, 

and emergency management. Its versatility and accuracy have made it an 

essential tool for weather prediction and research in both academic and 

operational settings [106]. 

2.6.3.2 Computational fluid dynamics 

Computational fluid dynamics (CFD) has proven to be a valuable tool for 

simulating UHI intensity at the microscale, as it provides more precise data on 

the distribution of UHI within and above building canopies compared to Urban 

Canopy Models (UCM). Unlike UCM, CFD does not segregate velocity and 

temperature fields and can solve all fluid governing equations simultaneously 

across the urban area [110]. However, CFD simulations are limited by the 

number of control volumes or nodes required to simulate the research area and 

are typically divided into different scales, namely meso-scale and micro-scale, 

depending on the specific application and the resolution required. Meso-scale 

models have horizontal resolutions ranging from one to several hundred 

kilometres, and the vertical resolution changes with the depth of the Planetary 

Boundary Layer (PBL), ranging from two hundred meters to two kilometres. 

Furthermore, the accuracy of meso-scale model predictions depends on data 

from the Land-Use Land-Cover (LULC). Conversely, micro-scale models 

resolve conservation equations within the surface layer, but due to high 

computational costs, are not applicable to an entire city. Consequently, micro-
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scale models are horizontally limited to small areas, typically a few hundred 

meters. Unlike meso-scale models, micro-scale models do not have a 

comprehensive treatment of the PBL and lack atmospheric interactions. Table 2-

6 provides a comparison of each simulation approach for UHI [98]. 

 

Table 2-6 Comparison of simulation approaches for UHI [111]. 

 UCM Meso-scale  Micro-scale 

Approach Energy balance equation WRF CFD 

Governing 

equation 

1. Energy balance 

equation 

2. An input assumption 

for the velocity equation 

of the canopy layer 

3. Heat condition equation 

for surface 

Navier–stokes 

equations (Including 

Coriolis term with 

hydrostatic or non-

hydrostatic 

assumption) 

Monin–Obukhov for 

ground surface 

Heat conduction 

equation for soil 

 

Navier–stokes equations 

Monin--Obukhov for 

surfaces of the urban 

structures (e.g. wall, 

ground) 

Heat conduction 

equation for surface 

 

Limitations 1. Decoupled velocity 

field from temperature 

and moisture 

2. Assumption of a city 

with a similar 

homogeneous array of 

buildings 

3. Limited resolution of 

urban geometry 

4. Only good for a steady-

1. Assumption of the 

urban canopy layer as 

roughness 

2. Difficult to provide 

Land-Use Land-Cover 

database 

3. Accuracy dependent 

on field measurement 

4. Modelling of the 

turbulence 

1. Not including the 

atmospheric phenomena 

2. Difficult to create the 

database for canopy 

details 

3. Providing boundary 

conditions 

4. Modelling of the 

turbulence 

 



41 

 

state solution 

5. Neglecting the 

atmospheric effect 

6. Empirical assumption 

for convective latent and 

sensible heat 

 

 

Maximum 

Domain 

Size 

City City  Building block 

Spatial 

Resolution 

1-10m 1-10km 1-10m 

Temporal 

Resolution 

Hour Minute Second 

 

In summary, it can be elucidated that the Weather Research and Forecasting 

WRF and CFD models are numerical simulation tools that are employed to 

investigate atmospheric and fluid flow phenomena. Nevertheless, they are 

distinct in terms of their designated spatial and temporal scales, as well as the 

particular equations and numerical techniques utilized. 

2.7 Urban heat island intensity 

The measurement of urban heat island intensity (UHII) is based on the difference 

in temperature between an urban site and a rural site and is considered an 

indicator of the UHI effect [112]. However, the nature of subtropical UHI is 

complex and is influenced by climate change. The UHII varies in magnitude 

among different cities and is generally smaller in subtropical regions compared 

to temperate regions. Additionally, the urban-rural temperature differences in 
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subtropical UHI are often of the same magnitude as the intra-urban temperature 

differences, mainly due to the role of vegetation [113]. Roth (2007) [114] 

reviewed the findings of recent 10-year studies on subtropical urban climate and 

reported that the ratio of sensible heat to net radiation in rural areas was 

approximately 28%, while the corresponding ratio increased to around 40% in 

urban areas. 

Moreover, the differences in incoming and outgoing longwave radiative flux 

between urban and rural areas result in a unique subtropical UHI. The intensity 

of air temperature-based UHI is strongest during pre-monsoon and monsoon 

nights, whereas the intensity of surface temperature-based UHI is only strongest 

during the daytime and pre-monsoon [115]. There are two ways to conduct UHII 

[116]: measuring the air temperature difference between an urban area and its 

surrounding rural area, or measuring the land surface temperature difference 

between an urban area and its surrounding rural area (LST) [117]. 

2.7.1 Air-temperature based UHII 

Air-temperature based UHII encompasses differences in the pattern of air 

temperature between urban and rural settings. The air-temperature based UHII 

is an important indicator for evaluating urban heating. In general, UHII is 

determined by comparing the air temperature between an urban (Tu) and rural 

area (Tr) by Eq. (1). 

𝑈𝐻𝐼𝐼 = ∆𝑇𝑢−𝑟 = 𝑇𝑢 − 𝑇𝑟                                                                                                    (1) 

 

AUHI further falls into one of two categories: The canopy layer and the 

boundary layer. Canopy layer UHI influences the atmosphere extending from the 

surface to mean building height or tree canopy, while boundary layer UHI 

accounts for air beyond the canopy layer. In most studies, air-temperature based 
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UHII studies are conducted using statistical analysis of weather station data, site 

survey data, or computer simulation.  

2.7.1.1 Data from field measurement   

The data on air temperature in urban and rural areas can be collected by field 

measurement. The field measurement consisted of two types of measurements: 

fixed station measurements and mobile transverse measurements. Fixed stations 

can be used for long-term measurements, while mobile transverse measurements 

can give a full picture of the detailed, spatial distribution of temperature. Some 

previous research has been collected and summarised in Table 2-7.
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Table 2-7 UHII data from filed measurement 

Research area UHII Method Research period Special issues Ref. 

Rotterdam 

agglomeration, 

Netherlands 

The maximum UHII 

were found in summer, 

with 95% values ranging 

from 4.3 K to more than 

8 K, 

14 automatic 

weather stations 

Three years (2010-

2012) 

The intra-urban variability in UHImax is 

significantly related to the building, 

impervious and green surface fractions, 

respectively, as well as to the mean building 

height. 

[118] 

Harrisburg, 

Pennsylvania, 

USA 

The average yearly UHI 

was 2.25 °C. 

20 weather stations 

(sensors) 

June 1st 2014 to May 

31st 2015 

Relationships between mean UHII and 

distance to the river indicate that the river 

provides a warming effect during the UHI 

hours. For every 1000 m increase in distance 

from the river, the UHI will decrease by 0.6 

°C in summer, 0.5 °C in fall and spring, and 

0.3 °C in winter. 

[119] 

Chongqing, 

China 

The maximum UHII in 

Chongqing was 2.5℃ at 

midnight. 

Fixed weather 

stations and mobile 

transverse 

June 2012 to January 

2013 

An urban cool island exists during the day 

time.  

local greenery space can mitigate UHI 

[120] 
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measurement. 

Rome, Italy UHII up to 8℃ Five monitor  Summers of 2015 and 

2016 

he urban heat island increases the building 

cooling energy needs by 12% in the 

peripheral neighbourhood and by up to 46% 

in the city centre, 

[121] 

Hong Kong, 

China 

UHII is 0.1 °C during 

the daytime 2.39 °C 

during the nighttime 

12 HOBO weather 

station 

3 days Floor area ratio, building density and tree 

cover ratio have negative effects on daytime 

UHI. 

[122] 

Shenzhen, 

China 

UHII varied between -

1°C and 1.5 °C 

9 data logger 

(HOBO U23- 002) 

and a GPS 

From 9 am to 17 pm, 

during both the hottest 

and the coldest month  

Spatial factors influencing UHI  [123] 

Ulsan, Korea UHII is 2.5 °C in 

summer 3.5°C in winter 

44 data loggers 

(DS1922T) 

12 months of 2016 The sky view factor (SVF) was positively 

related to daytime air temperature.  

[124] 

Tainan, 

Taiwan 

UHII can be at least 3 °C 

every month and can 

reach up to 5 °C in the 

hot season daytime. 

100 LOGPRO TR-

32 

N/A The impermeable surface and urban 

development pattern affect UHI 
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2.7.1.2 Data from weather station   

The collection and organization of hourly data on ambient air temperature, 

relative humidity, wind speed and direction, radiation, and other relevant 

meteorological variables is an essential step in quantifying the urban heat island 

intensity (UHII) in a given area. Local weather stations are key resources for 

gathering this data, as they possess the necessary instruments and expertise to 

accurately measure and record these parameters over extended periods of time. 

To accurately calculate the UHII, it is necessary to compare the air temperature 

data collected from urban and rural areas, ideally over the same time period and 

under similar weather conditions. The temperature difference between the two 

areas can then be used as a proxy for the UHII, which is defined as the difference 

in temperature between an urban and rural area [125]. 

In addition to air temperature, other meteorological variables such as relative 

humidity, wind speed and direction, and radiation can also impact the UHII. For 

example, wind speed and direction can influence the transport of heat and 

pollutants within and between urban and rural areas, while radiation can affect 

the heating and cooling rates of different surfaces. Therefore, it is important to 

collect and consider data on these variables when quantifying the UHII [126]. 

Some previous research is summarised, as shown in Table 2-8. 

Table 2-8 UHII data from the local weather station 

Research area UHII Method Research 

period 

Special issues Ref. 

Bangkok, 

Thailand 

The 

maximum 

UHII is 

Four weather 

stations 

During 

2008-2012 

Seasonal UHII 

is analysed 

[118] 
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2.7.1.3 Data from simulation   

Previous studies have utilized software tools to model air temperature based on 

the urban heat island effect (UHII). One commonly-used software tool is the 

Weather Research and Forecasting Model (WRF), which is able to model actual 

atmospheric conditions and provides a flexible and computationally-efficient 

platform for operational forecasting. Furthermore, the use of simulation tools 

such as WRF has enabled researchers to explore the potential impacts of urban 

planning and development strategies on UHII and to evaluate the effectiveness 

of mitigation measures such as green infrastructure and cool roofs. By 

conducting simulations under different scenarios, researchers have been able to 

quantify the potential benefits of such measures in terms of reducing UHII and 

improving the thermal comfort of urban residents. Table 2-9 overviews the UHII 

data from simulations, including the research area and period, method and key 

findings.  

Overall, UHII simulations have emerged as a powerful tool for studying the 

impacts of urbanization on air temperature, and for evaluating potential 

mitigation measures. The continued development of simulation tools and 

modelling approaches will undoubtedly further enhance our understanding of 

around 6-

7 °C during 

the dry 

season. 

Delhi, India Diurnal 

UHII was 

from 2.8℃ 

to 3°C. 

Two local 

weather 

stations 

January 

2010 to 

December 

2013 

LULC 

influences 

UHII. 

UHI increases 

greenhouse gas 

emissions 

[127] 
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this important phenomenon, and develop more effective strategies for managing 

the impacts of urbanization on the environment and human health.
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Table 2-9 UHII data from the simulation 

Research 

area 

UHII Method Research period Special issues Ref. 

Singapore The maximum UHI is 2.2℃ 

during late night and early 

morning. 

weather 

research and 

forecasting 

(WRF) model 

April to May 2007 and 

2008 

Cool roofs and vegetation both can reduce 

air temperature, but at different times. 

Green vegetation is preferable in reducing 

the nocturnal UHI in a tropical city. 

 

[128] 

Kuala 

Lumpur 

(GKL), 

Malaysia 

The highest nocturnal UHII 

was 1.75°C and lowest 

nocturnal UHII was 1.11°C, 

and the diurnal UHII was 0.9 

°C. 

WRF-

ARW/Noah 

LSM 

N/A  The correct identification of urban 

fractions improves the model 

performance 

[129] 

Chengdu–

Chongqing, 

near-surface air temperature 

increases ranged from 1–1.5 

WRF model July of 2009–2011 Cool roof has a better cooling capability 

than a green roof when roof albedo 

[130] 
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China K from 2010 to2030 exceeds 0.68. 

Strasbourg–

Kehl, 

France–

Germany 

UHII was lower than in other 

studies, the value <1 °C 

WRF- 

SLEUTH* 

2010 The dominant land cover approach cannot 

represent scattered urban patterns. 

Realistic planning scenarios have little 

impact on building energy demands. 

[131] 

Brussels, 

Belgium 

mean nighttime UHI of 

Brussels ups to 3.15 ℃ 

Urban 

boundary layer 

climate model 

(UrbClim) 

2000 to 2009 UHII is found to be strongly correlated to 

inversion strength. 

Heat wave days in the city increase twice 

as fast as in the rural surroundings. 

[132] 

Nantes, 

Angers and 

La Roche-

sur-Yon,  

France 

UHII is 2.5 °C  Empirical 

models 

13th June 2013 UHI spatial variations are related to one 

or several heat fluxes 

[133] 

Abu Dhabi The average annual UHII 

was between 1.5℃ and 2℃. 

Average grey-

box dynamic 

model 

2010 Inverse grey-box dynamic model inferred 

from load and weather data. 

[134] 

Abu Dhabi The highest UHII occurred in EnergyPlus- 2008-2010 A straightforward methodology to [135] 
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the early morning ranging 

from 5.6°C and an average 

value of UHI was 3°C. 

Rhino- Matlab calibrate a large number of buildings, 

considering the 

urban microclimate condition. 

Montreal, 

Canada 

UHII was 5.0℃ at 12h in 

summer and fall. The 

maximum surface UHII 

occurred around 14h, and the 

diurnal variation of surface 

UHI ranged from 0.5–11 °C 

in summer 

CLASS and 

CLASS +TEB 

1981 to 2010 Surface UHI is very small compared to 

temperature changes. 

 

Surface fluxes are very small for urban 

regions compared to nonurban regions. 

[136] 

Continental 

United 

States 

Maximum UHII is 5 °C in 

summer 

LM3- GFDL- 

UCM- CMIP5 

1949–2000 Precipitation affects UHII mainly by 

altering the Bowen ratio in summer and 

winter, and also the albedo in winter. 

[137] 

https://www.sciencedirect.com/topics/engineering/microclimate
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2.7.2 Surface-temperature based UHII 

Surface temperature-based urban heat island intensity refers to the difference in 

land surface temperature between an urban area and its surrounding rural area. 

This type of UHII is mainly influenced by the physical properties of the surface 

materials, such as albedo, emissivity, and thermal conductivity. Urban areas 

typically have a higher fraction of impervious surfaces, such as concrete, asphalt, 

and buildings, compared to rural areas, which are typically covered with 

vegetation and soil. These impervious surfaces absorb and store more heat 

during the day and release it slowly at night, leading to a higher surface 

temperature in urban areas compared to rural areas [138]. 

Surface temperature-based UHII studies are typically conducted using remote 

sensing techniques, such as thermal infrared imaging or satellite imagery, to 

measure land surface temperature [139]. These methods enable researchers to 

obtain spatially explicit data on UHII, which can be used to map and analyse the 

spatial patterns and temporal dynamics of UHII [140]. However, satellite 

imagery requires the presence of the satellite over the study area and clear skies. 

Several papers deal with the LST retrieval from space for SUHI analysis [141]. 

Table 2-10 shows the surface-temperature based UHII in some typical cities with 

UHII diurnal variations, research area, period and methods. 

Table 2-10 Surface-temperature based UHII in some typical cities 

Study area UHII (°C)    

Daytime Night-time Research period Methods Ref. 

Budapest, 

Hungary 

+3.4(June) +2.3(March) 2001 to2003 Sensor MODIS 

on satellite 

Terra  

[142] 

Nyiregyha

za, 

+4.5(July) +2.3(August) 2001 to2003 Sensor MODIS 

on satellite 

[142] 
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Hungary Terra  

Szombathe

ly, 

Hungary 

+3.9(May) +2.1(May) 2001 to2003 Sensor MODIS 

on satellite 

Terra  

[142] 

Pécs, 

Hungary 

+4.1(June) +1.9(July) 2001 to2003 Sensor MODIS 

on satellite 

Terra  

[142] 

Phoenix, 

USA 

+1.5(June) +1.2(June) 7th June 2004 ASTER imaging [116] 

Athens, 

Greece 

+3.3(May)   08：57 

20th May 2000 

Landsat 

Enhanced 

Thematic 

Mapper (ETM+) 

sensor on board 

Landsat 7 

satellite 

[143] 

Thessaloni

ki, Greece 

+2.7(May)   09:00 

30th May 2001 

Landsat 

Enhanced 

Thematic 

Mapper (ETM+) 

sensor on board 

Landsat 7 

satellite 

[143] 

Petra, 

Greece 

+3.0(May)   09:02 

28th June 2000  

Landsat 

Enhanced 

Thematic 

Mapper (ETM+) 

sensor on board 

Landsat 7 

satellite 

[143] 

Volos, 

Greece 

+0.4(May)   08:56 

24th Aguste 

2000 

Landsat 

Enhanced 

Thematic 

Mapper (ETM+) 

sensor on board 

Landsat 7 

satellite 

[143] 

Heraklion, 

Greece 

+1.9(May)   08:45  

09th July 2000 

Landsat 

Enhanced 

Thematic 

[143] 
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Mapper (ETM+) 

sensor on board 

Landsat 7 

satellite 

Munich, 

Germany 

+5.3(June) +2.8(June) 2002 Satellite Terra [144] 

Milan, 

Italy 

+5.8(July) +4.0(January) 2002 Satellite Terra [144] 

Warsaw, 

Poland 

+3.5(June) +3.1(May) 2002 Satellite Terra [144] 

Budapest, 

Hungary 

+4.0(June) +2.9(June) 2002 Satellite Terra [144] 

Shanghai, 

China 

+6.4(April

) 

  1997 to 2008 Landsat 

TM/ETM+ 

images 

[145] 

Rotterdam, 

Netherland

s 

+12.0  9.0 2006 NOAA-AVHHR 

satellite images 

[146] 

Houston, 

USA 

+1.29k +0.36k 2000 to 2010  MODIS LST [147] 

Milan, 

Italy 

+10k +7k 15th July 2007 Terra and Aqua 

satellites 

[148] 

Chandigar

h, India 

+4.7k 

(monsoon 

season) 

+3.47k(Winter

) 

2009 to 2013 MODIS Re-

projection Tools 

(MRT) 

[149] 

Budapest

，

Hungary 

+3.17 +3.24 1992 to 1993 MODIS-

Weather 

Research and 

Forecasting 

(WRF) model 

[150] 

Beijing, 

China 

+4.2k(Su

mmer) 

+0.6K(winter) 2002 to 2014 LANDSAT-8 

data 

[151] 

Berlin, 

Germany 

+5.38K(Su

mmer) 

+2.84k(Summ

er) 

2010 to 2015 MODIS 

observed AOD 

product 

[10] 

Romania 

(country 

scale) 

 

2.4 

(summer) 

1.1(winter) 

1.4(summer) 

0.8(winter) 

2013 to 2018 MODIS-LST [152] 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/modis
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aqua-satellite
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aqua-satellite
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2.8 Meteorological parameters for assessing UHI mitigation 

strategies in the subtropical climate 

Meteorological parameters are important to analyse when assessing UHI 

mitigation strategies because the urban heat island effect is a phenomenon that 

is driven by changes in the atmospheric and surface energy balance. To mitigate 

UHI, it is necessary to understand how these factors interact with the local 

meteorological conditions.  

Meteorological indicators, such as the sky view factor, net radiation, thermal 

radiative power, and physiological equivalent temperature, provide a 

quantitative assessment of how different mitigation strategies impact the energy 

balance of the urban environment. By analysing these indicators, it is possible to 

determine how effective different strategies are at reducing the intensity of UHI 

and to identify the most promising approaches for future mitigation efforts. 

These meteorological indicators have been widely used in studies related to 

urban heat island mitigation and provide insight into the effectiveness of various 

strategies in reducing the intensity of UHI.  

By analysing the mitigation strategies through these parameters, a deeper 

understanding can be gained of the most effective solutions for mitigating the 

negative impacts of UHI in subtropical regions. In turn, this information can be 

used to inform decision-making processes and guide the implementation of 

mitigation strategies in a way that optimizes their impact on the environment and 

human health. 

2.8.1 Sky View Factor  

The Sky View Factor (SVF) is a widely used index of urban morphology for 

comparing thermal conditions in different building environments, as it reflects 
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the fraction of sky visible from a given location [153]. Despite its distinction as 

a geometric factor rather than a meteorological parameter, the SVF significantly 

contributes to comprehending the impact of urban configuration on local climate 

conditions. Beyond its geometric essence, the SVF emerges as a pivotal 

component in the broader context of urban climatology, as it profoundly 

influences the distribution of solar radiation [154], thermal patterns [155], and 

microclimate dynamics [156]within urban environments.  

The SVF is essential in describing microclimate at scales below 100m, and 

serves as a proxy for net radiation, which depends on the height of obstacles in 

the surrounding area. The SVF was calculated from a rasterized point cloud 

height dataset (with 6 − 10 points per m2) and depends on grid resolution, search 

radius and the number of directions [157]. Previous research [158] [159] related 

the diurnal maximum UHI of the canopy layer to various factors, including the 

diurnal temperature range, solar irradiance, wind speed, vegetation fraction and 

SVF.  

The SVF can be calculated by fish-eye photos [160] [158], which is an algorithm 

to divide the photograph into non-overlapping areas classifying sky or non-sky 

areas. The Sobel edge detection algorithm is used to identify the boundaries 

between sky and non-sky areas by evaluating the contrast between pixel colours 

in the surrounding neighbourhood. [161], which is a filter that assigns a value 

between zero and one to each pixel by evaluating the contrast between pixel 

colours in its 8-neighbourhood (adjacent pixels that share an edge or node). To 

make the edge detection more robust, the Sobel filter is modified to emphasize 

the edges between definite sky and non-sky pixel colours, i.e., if both colour 

classes are detected within the 8-neighbourhood, then the edge value for that 
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pixel is set to one. Thus, all edges with a value below a predefined threshold are 

removed, and the average colour and colour variance is calculated for each area. 

The remaining edges are subsequently used to flood-fill the obstructed areas 

(e.g., walls, roof, and trees) to separate the image into sky and non-sky regions 

[158]. Fig. 2-6 shows the SVF in GSV fisheye photos. The SVF plays a crucial 

role in urban morphology and is an important factor in describing microclimate 

conditions in urban environments. 

 

 (a)                                           (b)                                   (c) 

Figure 2-6 Examples of SVF in GSV fisheye photos, (a) Fisheye photos, (b) 

Sobel filters, (c) flood-fill algorithms [158] 

A modified Steyn method is used to compute the SVF in a fisheye photograph. 

Each fisheye is partitioned into n annular rings (default n = 36) to calculate the 
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SVF by summing up the contribution of each ring [162]. The SVF (ψ𝑠 ) is 

calculated by the following Eq. (2). 

ψ𝑠=
𝜋

2𝑛
∑ 𝑠𝑖𝑛 [

𝜋(2𝑖−1)

2𝑛
]

𝑛

𝑖−1
(
𝑝𝑖

𝑡𝑖
)                                                                                          (2) 

where s can be sky, tree, or building; n is the total number of rings (here we use 

100); i (from 1 to 100) is the index of the ring; pi and ti is the ratio between the 

number of sky pixels to the total number of pixels in ring i. The value of SVF 

from 0 to 1 to measure points in urban space. An SVF of 1 is an entirely open 

area without any buildings or large objects obstructing the view. On the contrary, 

an SVF of 0 is the completely closed indoor environment.  

2.8.2 Net radiation  

Net radiation (Rn) plays a crucial role in determining the temperature and energy 

balance of urban environments. A lower net radiation value corresponds to a 

lower heat generation in the urban area, as demonstrated in several studies. The 

below equation provides a means of evaluating the effect of net radiation on the 

urban environment by accounting for factors such as the albedo of the ground 

surface, incoming solar radiation, air temperature, and heat gain from the 

surrounding environment. The calculation of net radiation is essential in 

understanding the thermal conditions of urban environments and in developing 

effective strategies for mitigating urban heat [163].  Some studies [164] [165] 

showed that the lower the net radiation, the lower heat in the city area. 

Rn is calculated by the following Eq. (2) to evaluate its effect on the urban 

environment [164]. 

Rn=A+H+LE                                                                                                   (2)  

A = −λ
𝜕𝑇

𝜕𝑍
|𝑍 = 0, 

H = α(𝑇𝑠 − 𝑇𝑎), 
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LE = ιβ𝛼𝑊(𝑋𝑠 − 𝑋𝑎) = 𝜄𝛽𝛼/𝐶𝑝(𝑋𝑥 − 𝑋𝑎) 

Where A is the soil heat flux (W/m2), H is the sensible heat flux (W/𝑚2), and LE 

is the latent heat flux (W/m2). λ is the heat conductivity (W/mK), α  is the 

convective heat transfer coefficient (W/m2K), Ts is the surface temperature (℃), 

Ta is the air temperature (℃),ι is the von Karman constant, is approximately 0.41, 

β is the evaporative efficiency (-), Cp the Specific heat of air constant pressure 

(J/kg K), Xs is the Saturated humidity (kg/kg) and Xa is the Air absolute 

humidity (kg/kg), Xx is the saturation vapour pressure at the air temperature. 

2.8.3 Thermal Radiative Power  

Thermal radiative power (TRP) is the electromagnetic radiation emitted by a 

body with a temperature above absolute zero. The amount of energy emitted 

depends on the temperature of the surface and its ability to emit energy [166]. 

TRP is used to assess the impact of the solar reflectance of a surface on the UHI 

effect [167]. The calculation of TRP provides valuable insights into the heat 

emission properties of different urban surfaces and the contribution of these 

surfaces to the UHI effect. By considering factors such as emissivity, surface 

area, and temperature, the TRP helps to identify the sources of heat emission and 

their impact on the ambient environment. This information can then be used to 

inform urban planning and design decisions aimed at mitigating the UHI effect, 

such as selecting materials with higher reflectance and lower emissivity for 

building surfaces. In summary, the TRP is an important tool for understanding 

the energy balance and thermal conditions of urban environments and for 

developing effective strategies for mitigating the UHI effect. The calculation Eq. 

(3). can be used to calculate TRP by the Stefan-Boltzmann law: 

 

TRP = ε ·σ· A · 𝑇4                                                                                           (3) 
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Where ε is emissivity in this research (0.92-0.96 for soil, 0.94 for concrete, and 

0.90-0.98 for asphalt); σ is the Stefan–Boltzmann constant (5.67×10-8 Wm-2K-

4), A is the radiating area (m2), and T is the absolute temperature (K). 

2.8.4 Human Thermal Perception  

Human thermal comfort is an essential factor to assess the perceived quality of 

the urban microclimate [168] and UHI mitigation [169], which is defined as the 

condition of mind which expresses satisfaction with the thermal environment 

[170]. Human comfort and thermal stress can be subdivided into applicable 

indoor and outdoor human comfort. The indoor environment is based on the 

relative stability of the indoor environment in terms of air temperature, humidity 

radiation and human activity. On the contrary, outdoor thermal comfort is 

significantly influenced by the rapid variability of the outdoor environment, 

especially by solar exposure and wind speed [171].  

The assessment of human thermal comfort relies on the mean radiant 

temperature [172], which refers to the uniform temperature of the surroundings 

in which the radiant heat exchange from the human body is equal to the radiant 

heat exchange in the actual environment [173]. The Tmrt is influenced by two 

main components: solar shortwave radiation (direct, diffuse, and reflected) and 

terrestrial longwave radiation (atmospheric and environmental) [174]. 

To assess human thermal comfort, several indices have been developed such as 

the Physiological Equivalent Temperature (PET) [175], Universal Thermal 

Climate Index (UTCI) [176], and Predicted Mean Vote (PMV) [177]. These 

indices take into account various environmental factors based on the mean 

radiant temperature such as air temperature, relative humidity, wind speed, and 

radiation to calculate an index that represents human thermal comfort. By using 
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these indices, researchers and urban planners can assess the thermal environment 

in different urban areas and develop strategies for improving human comfort and 

reducing thermal stress. In conclusion, human thermal comfort is an important 

aspect of the urban environment, and a comprehensive understanding of the 

factors that affect it is crucial for mitigating the UHI effect and improving the 

quality of life in cities. 

2.9 Urban heat island and building energy consumption 

The majority of the world energy is consumed by cities, resulting in a more than 

70% increase in global carbon emissions in urban areas [178]. According to the 

United Nations, the global urban population is expected to reach 5.2 billion by 

2030 [179]. The overwhelming populations in urban areas are responsible for 

higher energy consumption and carbon emissions. Energy requirements in urban 

areas are rising rapidly with the increase in the urban population [180]. Therefore, 

As a result, the combination of urbanization problems, microclimate, and energy 

use has become one of the significant challenges worldwide. 

 In anticipation of emerging global urbanisation and notable reduce urban 

building energy consumption and GHG emissions for both new and existing 

neighbourhoods or cities, a better understanding and quantification of climate 

effects on urban building energy consumption is required. This includes 

identifying the current sources of high energy consumption and carbon 

emissions, as well as assessing the potential impact of comprehensive energy 

retrofitting programs and changes in energy supply infrastructure. 

One factor affecting building energy consumption in urban areas is the urban 

heat island phenomenon [181]. This occurs when temperatures in metropolitan 

areas are higher than in surrounding rural areas. The UHII refers to the extent to 
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which heat sources raise temperatures in an urban area compared to rural areas 

[29]. Studies indicated that increased UHII significantly impacts building energy 

demand due to land use land cover (LULC) modification and changes in global 

and regional climatic conditions inevitably increase energy demand [182] [183], 

such as increased cooling energy consumption [40] and increased peak energy 

demand [41]. Existing studies showed that each degree of UHII increase can rise 

peak electricity demand from 0.45%  to 4.6%, and increase overall energy 

consumption between 0.5%-8.5% [42]. Therefore, UHI significantly increases 

the energy bill as well due to varying heating and cooling costs [68]. In addition, 

previous studies presented that  UHI has positive effects on carbon emissions 

and has been associated with heat stress and the health of citizens, such as heat 

rash and cramps, heat exhaustion, and heat stroke [184]. As the consequence of 

UHII increases, heat-related health risks are raised further [73]. 

An increase in the ambient temperature affects adversely both the supply and the 

demand of energy use for cooling purposes. The increased cooling energy 

consumption of buildings can rises the peak electricity demand during the 

summer season and in general puts the power generation systems under higher 

strain [185]  [186]. Table 2-11 presents the implications of UHI on the demand 

and supply side components of electricity [185]. 

Table 2-11 Implications of UHI and energy [185] 

Side  System Component UHI effect Implications 

Demand  Cooling Load of 

Buildings 

Higher ambient 

temperature  

Increase in the cooling 

demand for buildings 

Demand Peak Energy Demand Higher ambient 

temperature  

Increase in the peak 

electricity demand 

https://www.sciencedirect.com/topics/engineering/power-generation-system
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Demand Load Duration curves Higher ambient 

temperature 

Higher demand curve 

peaks and load 

variability increase 

changing of breaching 

the market price cap 

Demand Non-Temperature 

Sensitive Demand 

Increased cooling 

water temperatures 

Generation 

curtailments and 

potential interruption 

of power to avoid 

blackouts 

Supply  Thermal Electricity 

Generation Plants and 

Components 

Increased Ambient 

Temperatures 

Increased Water 

Temperatures 

Decreased efficiency 

of electricity 

generating equipment 

like gas turbines, coal 

power plants, etc. 

Supply Transmission 

Network 

Higher ambient 

temperatures and 

longer spells of dry 

weather 

Power disruptions, and 

increased cost of 

adaptation designs. 

Reduced equipment 

lifetime. Reduced 

power-carrying 

capacity  

Supply Substations and 

Transformers 

High Ambient 

Temperatures 

Increased losses within 

substations and 

transformers 

Supply Fuel Stock High Ambient 

Temperatures 

Coal stocks may 

spontaneously 

combust or self-ignite 
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Supply Power Plants Increased Ambient 

temperature and 

Extreme events 

Extra power plants to 

cover the peaks. 

The increased cost of 

electricity production 

during the peak hours 

 

Six main types of studies are available to investigate and analyse the actual and 

future impact of UHI on the energy demand of buildings and the energy supply 

systems. The majority of these studies concentrate on the potential escalation of 

cooling energy demand and utilisation. Certain studies [187] [188] [189] 

evaluate the energy impact of  UHI on reference buildings (Table 2-12.). In most 

of these studies, climatic data from reference rural or suburban weather stations 

are used to perform comparative energy simulations

https://www.sciencedirect.com/topics/engineering/electricity-supply-system
https://www.sciencedirect.com/topics/engineering/electricity-supply-system
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Table 2-12 energy impact by UHI on reference buildings 

Research 

area 

UHII Research building Research method Setpoint COP Energy impacts Ref. 

Western 

Athens, 

Greece 

6 a four-apartment 

building (320m2) 

Simulation: 

DOE2.1.E 

26 2.25 66% (in 1997) and 33% (in 1998, a 

hotter year) increase in cooling energy. 

99% (in 1997) and 30% (in 1998) 

increase in peak cooling power 

[190] 

London, 

UK 

7 A 5-storey typical 

office (60 m2) 

Calculation: 

BRE’3TC 

24 3.0 Cooling energy increased by 19%  [40] 

Tokyo, 

Japan, 

2.5 Commercial sector 

and Residential sector 

Calculation: N/a N/a Cooling energy increased by 27.5%. [191] 
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STM (based on 

data from multiple 

years) 

15 cities, 

USA  

2 

(Houston) 

A typical office (size 

not reported) 

Simulation: 

EnergyPlus 

N/a N/a Cooling energy increased by 13-35%. [192] 

Singapore 2 An office building 

(24000–180000 m2) 

Simulation: 

IES 

N/a N/a Cooling energy increased by 4.6-

12.18%. 

[193] 

Pacific 

Ocean's 

coast  

Around 2 Four types of 

residential buildings 

(size not reported) 

Simulation: 

TRNSYS 

N/a N/a Cooling energy increased by 15-200%. [194] 

Rome, 

Italy 

8  A residential 

building (270 m2) 

Simulation: 

TRNSYS 

26 N/a Cooling energy increased by 12-46%. [121] 
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Overall, the magnitude of the energy consumption for cooling space in reference 

buildings depends highly on the levels of the ambient temperature and UHI 

impact. Higher temperatures correspond to increased use of air conditioning and 

also to a considerable rise in the urban energy demand. The induced by the UHI 

additional electricity penalty depends on the climatic characteristics of the 

research area, the quality of the building stock, the efficiency of the air 

conditioning, the indoor set point temperatures, and the characteristics of the 

electricity network. 

Moreover, some studies aim to investigate the impact of the ambient temperature 

increase on the total energy consumption of a city, country or global (Table 2-

13)
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Table 2-13 Impact of the ambient temperature increase on the total energy consumption of a city, country or global 

Research 

area 

UHII Research 

period 

Domain size Research 

method 

Energy impacts Ref. 

Global N/a 1970–

2010 

N/a Data collection The average increase in the cooling demand is 23%  [183] 

Tokyo, 

Japan 

Maximum 

2.5℃ by 

CSU-MM 

model 

Annual  2×2km Estimation  Annual energy use for space cooling increased by 

27.5%,  

[191] 

USA Annual 

average of 

2 ± 1 °C 

by TEB–

Annual Subdivide urban into tall-

building districts, and 

high-, medium-, and low-

density cities Based on 

EnergyPlus The UHI effect averages 17.25% and −17.04% over 

the 15 climate locations on cooling and heating, 

respectively. 

[195] 
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ISBA 

model 

the urban canyon aspect 

ration 

Bangkok, 

Thailand 

N/a 2002 to 

2006 

All Bangkok Metropolis RECB model if the average ambient temperature increases by 1 °C, 

it will cause a 7.49% rise in the monthly electricity 

consumption 

[196] 

Hong 

Kong, 

China 

N/a 1990-

2004 

All Hong Kong  city Linear 

regression 

1 °C ambient temperature rise, the electricity 

consumption would increase by 9.2%, 3.0%, and 

2.4% in domestic, commercial and industrial sectors, 

respectively. 

[46] 
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The levels of the additional energy consumption depend highly on the massive 

collected data of the selected building characteristics and climate conditions, 

which may not be fully compatible and representative of the energy impact at 

the city, country even global scale due to the data limitation and shortage. 

2.9.1 Urban building energy modelling 

Urban building energy modelling (UBEM) is the computational simulation of 

the energy performance of a group of buildings in the urban context to determine 

the inter-building effects and urban microclimate [197]. Besides, UBEM is not 

scaling up energy modelling from a single building to a group of buildings in a 

linear fashion. It captures the dynamic and complex interconnection and 

interdependencies between buildings and urban microclimate. Fig.2-7. shows 

the heat exchange between the envelope of buildings, the interaction of buildings 

with ambient air and the main mechanisms of heat loss from buildings to ambient 

air. 

 

Figure 2-7 Interconnections between buildings and urban microclimate [197] 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/urban-microclimate
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The existing methods for estimating urban building energy use have been 

categorised into two fundamental methods [198]: the top-down methods and 

bottom-up methods. Fig.2-8. shows the basic structure of urban building energy 

modelling approaches [199]. 

 

Figure 2-8 The structure of urban building energy modelling approaches 

2.9.1.1 The top-down methods 

Top-down methods to simulate urban building energy use are a promising 

approach for estimating energy consumption at a macro-level in urban areas. 

Such methods are often used in large-scale studies that aim to understand the 

energy performance of buildings in an entire city or region [200]. 

Top-down methods for typically predicting urban building energy consumption 

are based on analysing a long-term historical relationship between the energy 

use and the significantly associated variables of city building blocks, such as 

gross domestic product (GDP) fluctuation, the energy unit price floating, 

occupancy schedules, household sizes and weather condition, etc. One common 

approach to top-down modelling involves the use of statistical models, such as 

regression analysis or machine learning [201]. 
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The primary advantage of the top-down methods is that the interactions of 

energy and economy are utilised to explore energy use under different socio-

economic variables [198]. Moreover, the top-down methods can provide 

benchmarking and guidelines for building energy retrofit policies [202]. 

Additionally, top-down methods generally require fewer data as input, such as 

aggregated socio-economic data, without the need for detailed information on 

the building energy consumption technologies and data [203].  

However, top-down methods require a significant amount of historical data to 

make accurate predictions. They may also suffer from uncertainty and 

inaccuracies when predicting future energy consumption, due to the changing 

socio-economic and physical conditions in urban areas, such as rehabilitation 

and climate change [198].  

2.9.1.2 The bottom-up methods 

The bottom-up approach to estimating building energy consumption utilizes 

physical models that simulate heat and mass flow within and around buildings. 

These models are based on the principles of thermal physics and synthesis 

characteristics for groups of buildings, and provide a more accurate prediction 

of energy consumption compared to other methods [204].  

One of the key advantages of bottom-up methods is the level of detail in the input 

data required. This data includes building properties such as orientation, 

envelope fabric, equipment, climate conditions, indoor temperatures, and 

occupancy schedules [198]. This information is crucial for the bottom-up 

approach as it allows the selection of appropriate technological options and 
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retrofit areas, as well as the ability to perform dynamic energy simulations under 

different climate conditions [203].  

There are three main types of bottom-up energy consumption methods: data-

driven models (black-box models), physics-based models (white-box models), 

and integrated models (grey-box models). Data-driven models use statistical and 

machine learning techniques to predict building energy consumption based on 

past data. Physics-based models, on the other hand, use equations based on the 

laws of physics to simulate energy consumption. Integrated models, also known 

as grey-box models, combine elements of both data-driven and physics-based 

models to provide a more comprehensive prediction of building energy 

consumption. 

Overall, the bottom-up approach offers a detailed and comprehensive method 

for predicting building energy consumption, which is crucial for reducing energy 

consumption and achieving more sustainable buildings. By considering the 

various inputs and factors involved in building energy consumption, bottom-up 

methods provide a valuable tool for decision-makers and building professionals 

in the design and retrofitting of buildings. 

2.9.1.2.1 Data-driven models   

Data-driven models (Black-box models) evaluate building energy consumption 

by data mining and machine learning techniques with three approaches:  

regression analysis (R.A.), conditional demand analysis (CDA), and neural 

network analysis (NNA) [199]. The main requirements for a successful data-

driven model are a sufficient amount of clean data and appropriate algorithms. 

It has multiple advantages, such as lower engineering costs due to the data-in-

data-out process. Additionally, less professional knowledge is required as they 



74 

 

are based on is mapping of input and output data. They also have good 

adaptability as new data can be used to generate updated models [205].  

However, Black-box models also have some limitations, including a high 

requirement for historical consumption data, the need for large sample sizes, and 

the importance of data quality. In addition, these models lack interpretability and 

may have high computational costs, especially when deep learning-based 

algorithms are used. The process of the data-driven model is shown in Fig. 2-9. 

 

Figure 2-9 The process of the data-driven model 

2.9.1.2.2 Physics-based models 

Physics-based models also known as engineering models or white-box models 

are used to assess building energy consumption. These models are based on 

building characteristics and detailed thermal properties, which offer higher 

temporal resolution than the data-driven model [206]. Unlike the data-driven 

models, the physics-based models do not require socio-economic factors and 

historical energy consumption data.  

However, the implementation of physics-based models requires a more 

significant number of physical parameters, such as building shape, orientation, 

thermal properties of buildings envelope, types and performance characteristics 

of heating, ventilation, and air conditioning systems (HVAC), building 
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ventilation rates, thermostat set points, occupancy schedules, and internal loads 

[203].  

While physics-based models are known for their thoroughness, there are some 

limitations to consider. One of the main drawbacks is that the process of 

developing a physics-based model is often time-consuming due to the large 

number of detailed input parameters required. Additionally, there is a risk of 

oversimplification, which can compromise the accuracy of the results. 

In conclusion, physics-based models provide a comprehensive approach to 

evaluating building energy consumption. The input of a large number of physical 

parameters ensures that the results are accurate, but the time-consuming nature 

of the development process and the risk of oversimplification should be 

considered. Fig. 2-10 shows the steps to develop a physics-based model for 

calculating energy consumption. 

 

Figure 2-10 The processes of the physics-based models 

2.9.1.2.3 Integrated models 

Integrated models also known as grey-box models represent a unique approach 

to evaluating building energy consumption. By combining the advantages of 

both data-driven and physics-based methods, these models offer a more 
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comprehensive and accurate representation of energy consumption compared to 

either approach alone [207].  

The most common grey-box model is the resistance-capacitance (R.C.) model 

[208], which is based on the principle of thermal resistance and thermal 

capacitance. Thermal resistance represents the ability of a building to resist heat 

flow, while thermal capacitance refers to the ability of a building to store heat. 

The R.C. model is divided into two subcategories: the physics-based data-driven 

model (Forward approach) and the data-driven physical-based (Inverse approach) 

model [209]. The forward approach calculates the values of R and C using 

physical parameters, such as building shape, orientation, thermal properties of 

the envelope, and performance characteristics of heating, ventilation, and air 

conditioning (HVAC) systems, among others. The inverse approach, on the 

other hand, uses data-driven methods to obtain the values of R and C by 

analysing historical energy consumption data [209]. 

The R.C. model is beneficial because it combines the detailed physical 

parameters of physics-based models with the ease of data-driven models. This 

allows for a more comprehensive evaluation of building energy consumption, as 

it takes into account a wider range of factors and variables. In addition, the use 

of both physical and data-driven methods helps to reduce the limitations of each 

approach, such as the time-consuming nature of physics-based models or the 

oversimplification issue of data-driven models [210]. Fig. 2-11. shows the 

processes of the grey-box model. 
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Figure 2-11 The processes of the grey-box model [211] 

The forward approach is based on data-driven models that generate datasets 

through physical models while adopting the output datasets of the physics 

models as input data, and the urban energy consumption is predicted by the data-

driven models [212]. The great advantage is that the detailed occupant behaviour 

is unnecessary in the models, and the models can estimate energy use in a simple 

way that can increase the certainty and accuracy of the physics-based model part.  

The inverse model is based on the physics models that adopt measured data (e.g. 

Domestic hot water and lighting, etc.) into the data-driven model for training the 

data of occupancy appliances and use the results as input data into physical 

models [213].  

Overall, the integrated models (grey-box models) have an excellent ability to 

solve the limitations of data-driven (black-box models) and physics-based 

(white-box models) models with improved accuracy of prediction. However, due 

to the grey-box models integrating two modelling techniques, a limitation of the 

grey-box models is that the grey-box models require high skills from researchers.  
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2.9.2 Urban building energy use modelling tools  

The available UBEM tools have diverse characterises and usually require 

computational resources and input parameters. Some tools are web-based (e.g. 

CityBES and Urban Footprint), and some are individual applications (e.g. UMI, 

CitySim and TASER). Some tools are CityCML-based and use EPW (e.g. 

CityBES) or Meteonorm (e.g. SimStadt) weather data. Table 2-14 summarises 

the main UBEM tools for review.
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Table 2-14 UBEM modelling tools 

Tool Approach Marks Developer 

Calculation 

core 

Weather file Target Users Ref. 

Urban 

Footprint 

Black-box 

method 

Planning tool for access to land 

use, policy, and resource across 

a range of sectors 

Calthorpe 

Analytics 

Regression  

Historic 

weather data 

Policymakers, 

Urban planners 

https://urbanfoo

tprint.com/ 

CoBAM 

Black-box 

method 

The behaviours, interactions, 

and decision logic of building 

owners considering adopting 

energy-efficient technologies.  

ANL Regression 

Historic 

weather data 

Policymakers 

 

https://www.anl

.gov/esia/ 

commercial-

building-agent-

based-model 

 [214] 
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SimStadt 

Grey-box 

method 

The application scenarios 

range from high-resolution 

simulations of building heating 

requirements and potential 

studies for photovoltaics to the 

simulation of building 

refurbishment and renewable 

energy supply scenarios. 

HFT 

Stuttgart  

CityGML, 

Energy ADE, 

Java 

WFS, 

Meteonorm 

Policymakers, 

Urban planners 

https://www.hft

-

stuttgart.com/re

search/ 

projects/current/

simstadt-20  

[215] 

Energy 

Atlas 

Berlin 

Grey-box 

method 

Mapping and estimating the 

energy consumption and 

efficiency of buildings, power 

suppliers and network 

conditions  

Technische 

Universität 

München 

 

CityGML, 

Energy ADE, 

Generic City 

Objects and 

Real weather 

data, degree-

day 

Policymakers, 

Urban planners 

https://www.asg

.ed.tum.de/gis/p

rojekte/abgeschl

ossene-

projekte/energie

atlas-berlin/  

[216] 

https://www.hft-stuttgart.de/
https://www.hft-stuttgart.de/
https://www.tum.de/
https://www.tum.de/
https://www.tum.de/
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Generic 

Attributes 

TEASER 

White-box 

method 

(Reduced 

order 

model) 

An open framework for urban 

energy modelling of building 

stocks 

RWTH 

AACHEN 

university 

Modelica 

model,  Python 

 

Policymakers, 

Building energy 

managers 

https://ebc-

tools.eonerc.rwt

h-

aachen.de/en/te

aser  

[217] 

City 

Energy 

Analyst 

White-box 

method 

 (Reduced 

order 

model) 

An integrated simulation 

platform, which allows 

studying of the effects, trade-

offs, and synergies of urban 

design options and energy 

infrastructure plans 

ETH  Zürich 

ArcGIS, 

Python, 

Meteonorm 

Policymakers, 

Urban planners 

https://www.cit

yenergyanalyst.

com/ 

[218] 

https://www.cityenergyanalyst.com/
https://www.cityenergyanalyst.com/
https://www.cityenergyanalyst.com/
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OpenID

EAS 

Grey-box 

method 

An open framework developed 

for integrated district energy 

simulations rising in the 

multidisciplinary building 

energy domain 

K.U. Leuven Modelica 

IDEAS. 

climate 

Building energy 

managers and  

consultants  

https://github.co

m/open-

ideas/IDEAS  

[219] 

 

CityBES 

White-box 

method 

  

An open web-based data and 

computing platform are 

focusing on city energy 

modelling support district or 

city-scale efficiency programs.  

Lawrence 

Berkeley 

National 

Laboratory 

CityGML, 

Open Studio, 

EnergyPlus 

EPW 

Policymakers, 

Urban planners 

https://CityBES.

lbl.gov  

[220] 

 

 CitySim 

White-box 

method 

  

A software minimises the net 

use of non-renewable energy 

EPFL 

a command-

line Integrated 

Solver 

Meteonorm 

Policymakers, 

Urban planners 

https://www.epf

l.ch/labs/leso/tra

nsfer/software/c

itysim/  

[221] 

https://github.com/open-ideas/IDEAS
https://github.com/open-ideas/IDEAS
https://github.com/open-ideas/IDEAS
https://www.lbl.gov/
https://www.lbl.gov/
https://www.lbl.gov/
https://www.lbl.gov/
https://www.epfl.ch/labs/leso/transfer/software/citysim/
https://www.epfl.ch/labs/leso/transfer/software/citysim/
https://www.epfl.ch/labs/leso/transfer/software/citysim/
https://www.epfl.ch/labs/leso/transfer/software/citysim/
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sources and the GHG 

emissions  

UHES 

White-box 

method 

 

An open-source ecology of 

computational resources to 

support distributed energy 

system design and 

management 

Empa and 

ETH Zürich 

Energy plus, 

Aimms 

EPW 

Policymakers, 

Urban planners 

https://hues.emp

a.ch.  

[222] 

Boston 

Citywide 

Energy 

Model 

White-box 

method 

 

A citywide UBEM based on 

official GIS datasets and a 

custom building archetype 

library 

MIT 

Rhinoceros,  

Energy plus 

EPW 

Policymakers, 

Urban planners 

https://web.mit.

edu/sustainable

designlab/projec

ts/ 

BostonEnergyM

odel/index.html 

 [223] 

https://hues.empa.ch/
https://hues.empa.ch/
https://web.mit.edu/sustainabledesignlab/projects/
https://web.mit.edu/sustainabledesignlab/projects/
https://web.mit.edu/sustainabledesignlab/projects/
https://web.mit.edu/sustainabledesignlab/projects/
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Urban 

modellin

g 

interface 

(UMI) 

White-box 

method 

 

An urban modelling platform 

to evaluate the environmental 

performance of 

neighbourhoods and cities with 

respect to operational and 

embodied energy use, 

neighbourhood walkability, 

access to daylighting, urban 

food production and district-

level energy supply analysis. 

MIT 

Rhinoceros,  

Energy plus 

EPW 

Policymakers, 

Urban planners 

https://web.mit.

edu/ 

sustainabledesig

nlab/projects/u

mi/index.html 

[224] 

https://web.mit.edu/%20sustainabledesignlab/projects/umi/index.html
https://web.mit.edu/%20sustainabledesignlab/projects/umi/index.html
https://web.mit.edu/%20sustainabledesignlab/projects/umi/index.html
https://web.mit.edu/%20sustainabledesignlab/projects/umi/index.html
https://web.mit.edu/%20sustainabledesignlab/projects/umi/index.html
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2.9.3 Calibration and validation for building energy modelling 

It is essential to generate precise and dependable estimates of the energy-saving 

potential in urban areas to support stakeholders in making informed policy 

decisions. The accuracy of these estimates is often compromised by 

discrepancies between simulated and measured results, which are largely a result 

of assumptions regarding input parameters such as occupant behaviour, when 

simulating the aggregated group of buildings, inaccuracies in energy estimates 

have been observed to average out over time [225]. Previous studies have 

revealed that the total energy use intensity difference can range from 1% to 19% 

[204]. As such, it is imperative to conduct calibration and validation processes 

within the UBEM.  

Calibration is a crucial process that involves adjusting input parameters to 

obtain acceptable output parameters that are in line with measured data. 

Validation is a process of comparing the results obtained from simulation with 

actual measured data [226]. There are three main methods of calibration: 

Bayesian calibration [227] [228], bespoke calibration [229] and statistical 

training. There are three main validation methods: empirical validation [230], 

comparative studies [231]  and analytical verification [232]. 

Despite the importance of calibration and validation in ensuring the accuracy of 

energy savings estimates, a significant number of studies in the field have been 

found to omit these processes. This is particularly true for UBEM studies that 

use physics-based methods and those that adopt dynamic thermal simulation, 

where less than 50% of the models that have been examined provide evidence 

of calibration [226]. The lack of calibration and validation in these studies raises 
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serious concerns regarding the dependability of their results and the validity of 

their conclusions. 

2.10 Human thermal comfort modelling under urban heat island 

effects 

To achieve effective building use and the sustainability and resilience of cities, 

understanding the occupancy requirements is imperative, particularly, indoor 

and outdoor thermal comfort. The UHI mitigation strategies play a crucial role 

in human thermal comfort by reducing temperature reduction, providing shading 

or promoting the evapotranspiration process of plants [233].  

Assessing human thermal comfort involves the use of indices that reflect the 

energy balance between metabolic activities, clothing, and environmental 

parameters (air temperature, mean radiant temperature, wind speed, solar 

irradiation and relative humidity) on the pedestrian thermal perception. The 

models that were developed for this purpose are Predicted Mean Vote (PMV) 

and Standard Effective Temperature (SET*). Both were originally designed for 

indoor and then adapted to the outdoor environment [168]. 

It is important to note that individual thermal sensation can vary [234], PMV is 

an empirical index introduced to indicate indoor thermal comfort, and it is 

physiologically based on a steady-state model of heat exchanges between the 

human body and the ambient air [235]. Besides, SET is an outdoor comfort index 

based on a dynamic two-node model of human temperature regulation [235]. In 

addition to these indices, personal factors such as clothing and activity are also 

widely employed as variables to assess thermal comfort [236]. The use of these 

models and indices allows for a comprehensive understanding of thermal 

comfort and how it can be improved through UHI mitigation strategies. This 

https://www.sciencedirect.com/topics/engineering/mean-radiant-temperature
https://www.sciencedirect.com/topics/engineering/solar-irradiation
https://www.sciencedirect.com/topics/engineering/solar-irradiation
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understanding is crucial for ensuring effective building utilization and promoting 

the sustainability and resilience of cities. Additionally, it is essential for creating 

an environment that is comfortable and conducive to human activity. 

2.11 Carbon emissions modelling under urban heat island effects 

The Intergovernmental Panel on Climate Change (IPCC) has highlighted the 

significant role that buildings play in energy-related carbon emissions, 

accounting for approximately one-third of such emissions globally [237], 

Furthermore, the UHI effect has been shown to exacerbate carbon emissions in 

cities, contributing to the urgent need to reduce these emissions[68].  

To address this issue, various mitigation strategies have been proposed and 

tested, such as incorporating green roofs with high evapotranspiration rates [238], 

which can help to reduce the amount of energy needed for air conditioning, and 

highly reflective surfaces [239], which can reduce the amount of heat absorbed 

by buildings and the surrounding urban environment. 

To assess and quantify the carbon emissions associated with building energy use, 

researchers often adopt a life cycle assessment (LCA) approach [240] [241], 

which has been identified into four stages: the construction stage (production, 

transport and construction), the operation stage (use and maintenance), the 

disposal stage (Dissolution, transportation and landfill) [242]. By taking a 

comprehensive, life cycle perspective, the LCA approach provides a more 

accurate picture of the total carbon emissions generated by a building. 

In addition to the LCA approach, trend analysis, a form of technical analysis that 

uses past data to predict future carbon emissions, has been employed to 

determine urban building carbon emissions. The advantage of this method is its 

simplicity, as it provides a straightforward approach to analysing carbon 
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emissions trends over time. However, it is important to note that trend analysis 

only provides a prediction based on past data and may not fully account for 

future changes in energy use patterns, building designs, and other factors that 

could impact carbon emissions [243].  

In conclusion, reducing the carbon emissions of buildings is an urgent and 

critical challenge, and a range of strategies and analytical approaches have been 

proposed and tested to address this issue. Gaining a better understanding of the 

carbon emissions associated with building energy use and working to develop 

more effective and sustainable solutions. 

2.12 Economic analysis modelling under urban heat island effects 

In the context of investment decisions, it is imperative to consider the financial 

and environmental impacts of potential investments in UHI mitigation strategies. 

Carbon emissions and human thermal comfort are essential criteria that must be 

evaluated in this regard. Given the growing concerns over the adverse effects of 

UHI on the environment and human health, reducing UHI intensity, building 

energy usage, and carbon emissions has become increasingly crucial. Hence, 

investors need to carefully assess the UHI mitigation strategies of potential 

investments to make informed decisions that align with their values and goals. 

Another criterion in making investment decisions is economic analysis. 

Extensive studies [244] [245] analyse the economics of UHI mitigation 

strategies, focusing on quantifying the benefits. This research employs various 

financial metrics, such as net present value (NPV) and discounted Payback 

Period (DPP). NPV provides a comprehensive picture of the financial return on 

investment, taking into account the time value of money and the expected cash 

flows. On the other hand, DPP calculates the amount of time required to achieve 



89 

 

a breakeven point, providing insight into the short-term financial viability of an 

investment. [246].  

The findings of these studies indicate that UHI mitigation strategies often result 

in high potential profits with relatively low financial risk, making it an attractive 

investment opportunity for individual investors [245]. For example, by investing 

in energy-efficient building materials, green infrastructure, and other UHI 

mitigation strategies, investors can help reduce carbon emissions while also 

realizing a positive financial return on their investment. Given the dual benefits 

of UHI mitigation strategies, it is important for investors to consider them as a 

viable option in their investment portfolios. 

In conclusion, investment decisions require a careful evaluation of both financial 

and environmental factors, with a focus on reducing carbon emissions. The study 

of the economics of UHI mitigation strategies highlights the potential for high 

returns with low financial risk, making them a desirable investment opportunity 

for investors who are looking to align their investments with their values and 

goals. 

2.13 Urban heat island mitigation strategies  

In general, it is widely acknowledged that UHI may significantly as the quality 

and liveability of urban environment. Therefore, techniques for mitigating and 

controlling the variables regulating the urban environment are more and more 

impotent for academics, local authorities and policy makers[84].    

During the past decades, numerous studies have proposed the UHI mitigation 

strategies, such as reflective materials (cool materials) [247], high thermal 

performance materials [248], green roofs [249] [250], urban green spaces (street 

tree, park, etc.) [249] [251] and some novel technologies (PCM roof [252],  PCM 
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pavement [253], etc.).  

2.13.1 UHI mitigation strategies criteria 

A series of criteria to evaluate UHI mitigation strategies are discussed. Not all 

measures should be weighed equally across all mitigation strategies. However, 

these criteria must be judiciously prioritized under diverse conditions and 

constraints present in different urban regions. 

2.13.1.1 Environmental temperature 

Environmental temperatures, including air and surface temperatures, are the 

most important indicators for UHI. Moreover, the extreme vertical variability in 

air temperature should be considered in designing and implementing UHI 

mitigation strategies. The temperature in street canyons has a much steeper 

vertical gradient near the ground than that at a higher elevation (＞2 m). Though 

2-m air temperature is widely used as a measure of UHI intensity, there is a lack 

of the standard of air temperature to be used for mitigation strategies across all 

scales and regions, leading to a non-consensus on the measure of UHI mitigation 

for different strategies [97]. 

2.13.1.2 Energy Saving 

The reduction of environmental temperature, the result of using UHI mitigation 

strategies, can effectively decrease the cooling loads of buildings, or lead to 

substantial energy savings during hot seasons [254] [255]. Nevertheless, energy-

saving benefit needs to be evaluated in conjunction with other environmental 

impacts of these strategies, such as human thermal comfort. 
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2.13.1.3 Outdoor air quality 

The importance of outdoor air quality (OAQ) has been well-perceived in the 

literature in terms of its close association with health concerns (World Health 

Organization (WHO), 2018). UHI tends to decrease the OAQ as the heat 

increased the chemical reactions in the atmosphere. The UHI mitigation 

strategies, through the reduction of urban environmental temperatures, can 

directly affect urban OAQ [256]. 

2.13.2 Main conventional urban heat island mitigation strategies  

Mitigation techniques aim to balance the thermal budget of urban areas by 

increasing thermal losses and decreasing the corresponding gains [257]. For 

dissipating the excess heat, among the most important mitigation techniques are 

those targeting to increase the albedo of the urban environment and to expand 

the green spaces in cities, such as urban morphology design, green infrastructure 

developments, and expansion of highly reflective pavements or roofs. All 

mitigation strategies constitute common relationships between energy and water 

cycles, environmental and socioeconomic measures, human activities and 

natural systems. The primary assessment methods have criteria for UHI 

mitigation [258]. 

2.13.2.1 Green infrastructure developments 

Green infrastructure (GI) refers to natural structures that are environmentally 

friendly and often associated with the colour green. Examples of urban green 

infrastructure include permeable vegetated surfaces, green roofs, public parks, 

green walls, urban forests, green alleys and streets, community gardens, and 

urban wetlands [259]. The GI can reduce surface temperature through increased 
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evapotranspiration and shading. However, in developed areas, all the natural 

areas had been converted to artificial material surfaces [260], and roofs take 

areas for about 40-50% of the total impermeable surface in city centres [261], 

therefore, green roof offer a solution to change the surface with green spaces. 

Typically, green roofs are the conventional roof planted with vegetation on the 

top, as shown in Fig.2-12. 

 

Figure 2-12 Typical components of a green roof [260] 

Table 2-15 shows some previous research for analysing the relationship between 

UHI and green infrastructure. The table provides a detailed overview of the 

methodology, study area, research period and key findings of each study, 

enabling a comprehensive understanding of the different approaches employed 

to analyse the relationship between UHI and green infrastructure.
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Table 2-15 Some previous research for analysing the relationship between UHI and green infrastructure 

 Location Methods Research 

period 

Scale UHI change Remark Ref. 

green 

infrastructure 

Roma, 

Italy 

LST derived from Landsat-

8 data 

Yearly Meso-scale 

129,000 ha 

 

 The air temperatures of green areas 

were significantly lower than urban 

areas in both the overall summer 

and winter seasons 

[262] 

Trees on 

curbsides, 

green roofs 

and green 

walls 

Sri Lankan  ENVI-met microclimatic 

software (V4) 

Daily Microscale 

4.58 ha 

Trees on the 

curbsides reduce 

by 1.87 °C. 

100% green 

roofing reduced by 

1.76 °C. 

ENVI-met numerical model by 

ground monitoring. 

The cooling effect of green areas 

was positively correlated with the 

green area, the average leaf area 

index (LAI), and the average 

[263] 
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50% green roofing 

reduced by 1.79 

°C,  

50% green walls 

(T5) reduces by 

1.86 °C and a 

combination (T6) 

reduces by 1.90 

°C. 

canopy density. 

Tree and 

grass 

Cairo, 

Egypt 

Field measurements by 

mobile devices 

Motherly Micro- scale 

 

250 m*250 m 

daytime and night-

time ranging from 

3-4K 

The 50% Trees scenario has the 

most significant effect on PET as it 

reduces PET by 4 K during the 

daytime. 

[264] 
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Trees can reduce energy 

consumption in indoor spaces from 

air conditioning by 25.056 

Egyptian Pounds (1.252 Euro/day). 

vegetation 

coverage 

Columbus, 

Ohio, 

USA 

Remotely sensed imagery Yearly Meso-scale 
 
46.5 km2 area 

The average 

temperature was 

reduced by 0.55°C 

in August and 

increases by 0.01 

to 0.02 °C in 

winter. 

Increased greenery reduced 

temperatures in summer and 

increased temperatures in winter. 

[265] 

roof 

vegetation, 

Houston, 

USA 

Urban Weather Generator Daily Micro- scale 

1360 m × 1948 m 

UHII is from 

1.25°C to 4.35°C. 

Sensitivity analyses for different 

mitigation. 

[266] 
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trees, and 

grass 

coverage  

The estimations of UHI effects and 

the performance of UHI mitigation 

strategies should consider climate 

conditions. 

Green roof  Adelaide, 

South 

Australia 

Experiment and ENVI-met hourly Micro- scale UHI reduced by 

0.06 °C to 0.25 °C  

30% green roof would reduce the 

electricity consumption by 2.57 

(W/m2/day)  

[267] 
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Hence, there are some limitations to the implementation of green infrastructure. 

For instance, green roofs, while capable of reducing surface temperature, have 

high initial and maintenance costs [268] and must be properly placed to avoid 

the chances of leakage and structural failure of the buildings [269]. Additionally, 

while trees can mitigate UHI and positive impact on the microclimate in the city 

centre, they also act as barriers and decrease wind speed in the street canyon 

[270]. As the wind speed is decreasing, the elevated air temperature will 

increase, especially at a pedestrian level [271] [272]. Wind speeds of 1m/s to 1.5 

m/s can reduce air temperature by around 2℃ [273]. 

2.13.2.2 Increased albedo in roof  

The cool roofs (Fig.2-13) utilise white or high-reflective materials to maximise 

the reflection of incoming solar radiation and decrease the net radiation entering 

the buildings [274] [275]. By reflecting more solar irradiation during the day and 

emitting stored heat in the opaque material to the outdoors on clear nights [276]. 

Cool roofs with white coating, high solar reflectance (ρ > 0.65) and high thermal 

emittance (ε > 0.75) can provide passive cooling [277]. 

Besides, some research [278] [279] [280] has improved the thermal performance 

of roofs by incorporating phase change materials (PCM) to increase the thermal 

storage capacity, serving as a passive cooling control strategy for UHI.  

https://www.sciencedirect.com/topics/engineering/solar-reflectance
https://www.sciencedirect.com/topics/engineering/thermal-emittance
https://www.sciencedirect.com/topics/engineering/thermal-emittance
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Figure 2-13 A comparison of cool roof and conventional roof [274] 

Table 2-16 shows a summary of some previous research for analysing the 

relationship between UHI and cool roofs. The table provides a detailed overview 

of the methodology, study area and scale, and key findings of each study, 

allowing for a thorough understanding of the various approaches employed to 

explore the relationship between UHI and cool roofs. 

By analysing the information presented in Table 2-16, the findings provide 

valuable insights into the role of cool roofs in reducing urban temperatures and 

curbing the adverse effects of UHI, which include increased energy consumption 

and decreased air quality.
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Table 2-16 Previous research for analysing the relationship between UHI and cooling roof 

 Methods Research 

period 

Scale UHI change Remark Ref. 

Cool roof WRF 

simulation 

Hourly Five domains are 24.3 

(76×76), 8.1 (79×91), 2.7 

(112×112), 0.9 

(112×112), and 0.3 km 

(211×130). 

A cool roof can 

reduce surface 

temperature by 5℃. 

Cool roofs can reduce the near-surface air 

temperature and surface temperature 

during the daytime but have little effect 

during nighttime. 

[128] 

Cooling 

roof  

(0.9, 0.8, 

0.7 and 

Energy Plus 

v8.5 and 

Open Studio 

2.3 

Hourly A 3-storey research office 

building 

N/a Cool roof reduces heat gain by about 

0.14 KWh/m2 (8%), and cool roof reduces 

heat gain by 15.53 (37%) in the whole 

summer. 

[281] 
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0.6) 

PCM 

tiles roof 

(melting 

temperat

ure was 

28 °C) 

Experiment Hourly 600 mm × 600 mm × 600

 mm 

PCM decreased 

surface temperature 

by 10-20℃ 

PCM roof can keep the indoor temperature 

higher than a cool paint roof in winter. 

[282] 

PCM 

slab roof 

EnergyPlus Hourly A reference building PCM decreased 

surface temperature 

by 20℃ 

Insulation layer variation and PCM slab 

location inside the roof have a small UHI 

effect. 

[283] 

PCM 

roof 

CFD Hourly 24.5 km2 The air temperature 

was decreased by 

6.8℃ 

The urban canopy layer air  temperature in 

the commercial zone was reduced by 

7.8 °C in summer and 11.3 °C in winter, 

[284] 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/urban-canopy
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and that in the residential zone was 

decreased by 6.4 °C in summer and 

10.5 °C in winter,  

High 

reflective

-PCM 

roof 

Experiment Daily 2 m×1.5 m×2.7 m High reflectivity-

PCM roof can 

reduce the inner 

surface temperature 

average reduce by  

2.2 °C (the 

maximum is 

5.6 °C). 

The high reflectivity-PCM roof had better 

thermal protection performance than the 

individual cool roof and individual PCM 

cool roof 

[285] 
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In summary, conventional cool roofs utilise white paint to reduce surface 

temperature and mitigate urban heat island effects. Innovative cool roofs 

incorporate phase change materials to absorb and store heat for significant UHI 

mitigation. However, conventional cool roofs are plagued by issues such as dust 

accumulation and fading of high-reflective paint, while PCM cool roofs face 

challenges such as high initial and maintenance costs and potential leakage 

problems. It is noteworthy that, in the context of PCM cool roofs, the issue of 

dust accumulation, while a concern for aesthetics, does not significantly 

compromise the heat transfer capabilities of the PCM material. This resilience to 

dust accumulation underscores one of the advantages of PCM-based cooling 

systems. Despite surface contamination, the underlying PCM material continues 

to effectively manage heat, making PCM cool roofs a robust choice in 

environments prone to dust and particulate matter.  

2.13.2.3 Increased albedo in pavement  

In a conventional grid design city, pavement covers approximately 29–45% of 

the urban ground surface [286]. Typically, pavements have dark surfaces and 

large thermal inertia, which tend to absorb and store solar radiation, negating 

evaporative cooling and contributing to the development of urban heat islands. 

The energy balance of a pavement surface can aid in identifying the outbound 

flows that cool pavements attempt to promote, as well as the fundamental 

physical principles that govern them. Therefore, cool pavements can be 

classified into several types, including reflective pavements, green and 

evaporative pavements, high-inertia pavements, and heat-conductive pavements 
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[286]. Additionally, when designing pavements, three major factors should be 

considered: (a) the horizontal surface exposed to solar radiation; (b) the 

absorption coefficient; and (c) the thermal capacity of the pavement materials. 

Materials with rough and dark-coloured surfaces tend to absorb more solar 

radiation than those with flat and light-coloured surfaces [287]. 

Cool pavements can be classified into three typical categories (Fig.2-14): 

reflective pavements (Reflective asphalt pavements and Reflective concrete 

pavements), evaporative pavements (Porous pavers, Permeable pavers and 

Pervious paver) and storage pavements (heat-harvesting pavement, phase 

change material-impregnated pavement and high-conductive pavement) [288].  

 

 (a) Reflective pavement          (b) permeable pavement.  

Figure 2-14 Structures of reflective and permeable pavement [289] 

Arrows with letters in each subplot show the simplified energy balance for 

each pavement type: SW↓ –SW↑ + LW = G + H + LE, where SW↓, SW↑, LW, 

G, H, and LE denote downward shortwave radiation (solar radiation), upward 

shortwave radiation (reflected), net longwave radiation, heat conduction, 

sensible heat flux, and latent heat flux [289]. 

Reflective pavements are typically made with a high-reflective surface material 

and a light colour. The high-reflective surface material can help to reduce the 

https://www.sciencedirect.com/topics/engineering/heat-conduction
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absorption of solar radiation and thus lower the surface temperature. Reflective 

asphalt pavements and reflective concrete pavements are two types of reflective 

pavements. Reflective asphalt pavements are made by adding a reflective 

pigment to the asphalt mix. Reflective concrete pavements are made with white 

cement, which has high reflectivity, and a light-coloured aggregate. Both types 

of reflective pavements can significantly reduce the surface temperature 

compared to traditional dark-coloured pavements.[290]. 

Evaporative pavements, such as porous pavers, permeable pavers, and pervious 

pavers, use small voids or pores in the pavement surface to allow water to 

penetrate the pavement and evaporate. This can help to reduce the surface 

temperature through evaporative cooling. The water can also recharge the 

groundwater, reducing the need for irrigation and providing other environmental 

benefits [291]. 

Storage pavements, such as heat-harvesting pavements, phase change material-

impregnated pavements, and high-conductive pavements, are designed to store 

heat during the day and release it at night. This can help to reduce the temperature 

swings in the urban environment and mitigate the UHI effect. Heat-harvesting 

pavements use thermoelectric generators to convert the heat stored in the 

pavement into electricity. Phase change material-impregnated pavements are 

made by adding phase change materials, such as paraffin wax, to the pavement 

mix. These materials absorb and store heat during the day and release it at night. 

High-conductive pavements are made with materials that have high thermal 

conductivity, allowing them to absorb and store heat efficiently [291]. 

In conclusion, cool pavements can play an important role in mitigating the UHI 

effect in cities. The design and selection of cool pavements should consider the 
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surface exposed to solar radiation, the absorption coefficient, and the thermal 

capacity of the pavement materials. Reflective pavements, evaporative 

pavements, and storage pavements are three typical categories of cooling 

pavements, each with its unique benefits and drawbacks. Table 2-17 summarised 

some previous research on cool pavement affected by UHI. The table provides a 

comprehensive overview of the study area and scale, methodology, and key 

findings of each research study, enabling a deeper understanding of the different 

approaches employed to analyse the relationship between cool pavement and 

UHI. The findings of these studies underscore the importance of using 

sustainable urban infrastructure and design to address the challenges posed by 

UHI, including increased energy consumption, reduced air quality, and negative 

impacts on human health.
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Table 2-17 Summary of different cool pavement effects by UHI 

 Methods Research 

period 

Scale UHII Remark Ref. 

Reflective 

pavement 

CFD and 

monitoring 

Hourly 4500 m2 the peak daily ambient temperature 

was reduced by 1.9 K during a 

typical summer day, and the surface 

temperatures of research areas were 

reduced by 12 k. 

The thermal comfort conditions in the 

research area were improved at the same 

time. 

[292] 

Reflective 

pavement 

CFD and  

monitoring 

Hourly 1km2 Air temperature reduced by 0.2–

0.4 ℃.  

Replacing all pavements with surfaces of 

progressively higher albedo: New asphalt 

concrete, typical concrete, reflective 

concrete, making only roofs and walls 

reflective, and finally replacing all 

[293] 
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artificial surfaces with a reflective 

coating.  

Reflective 

pavement 

ENVI-met 

(albedo 0.1 

to 0.5) 

Hourly N/A Air temperature reduced by 0.66℃. Tmrt and PET were increased to 10.53 and 

4.7 °C, by increasing the albedo. 

[294] 

Permeable 

pavement 

 

Experiment 

 

Daily Six  

4 m × 4 m 

Cooling effects of 15–35 °C over 

permeable surfaces with watering in 

the early afternoon in summer 

The technical feasibility of combined 

reflective and permeable pavements for 

addressing the built environment issues 

related to both heat island mitigation and 

storm water runoff management. 

[295] 

High-

conductivi

ty 

Experiment 

 

Hourly 100 × 100 

× 100 mm 

The peak surface temperature of 

high-conductivity permeable 

concrete was 1–3 °C lower than that 

The increase in thermal conductivity of 

permeable pavement can further reduce 

the heat output by 2.5–5.2%. 

[296] 
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permeable 

pavement 

of conventional permeable concrete  

Evaporatio

n-

enhancing 

permeable 

pavement 

Experiment 

 

Hourly 200 × 100 

× 50 mm 

The new pavement is a maximum 

cooler 9.4 °C than conventional 

pavement. 

The new pavement provides a longer 

cooling duration. 

[297] 

PCM-

asphalt 

concrete  

pavement 

Numerical 

model 

Hourly N/a The maximum surface 

temperature was higher than 

pavement without PCM. 

A critical PCM volume fraction (60%) 

occurred, and PCM pavement has higher 

surface temperature values than pavement 

without PCM.  

[298] 

PCM-

asphalt 

Numerical 

model 

minutely N/a Reduce the air temperature by 2.5℃. PCM-pavement slows down the heating 

(cooling) rate, delays the emergence of 

[299] 

https://www.sciencedirect.com/topics/engineering/maximum-surface-temperature
https://www.sciencedirect.com/topics/engineering/maximum-surface-temperature
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concrete  

pavement 

extreme high (low) temperatures, short 

the duration of the extreme high (low) 

temperature. 



110 

 

 

2.13.2.4 Integrated strategy 

In an urban area, the layout of buildings and structures affects the urban heat 

island by determining the absorption of solar radiation and the formation of wind 

streams [300]. Therefore, the integrated strategies have been assessed combined 

the green and cool strategies for assessing the cooling effects. Previous research 

has employed integrated mitigation strategies to address UHI (Table 2-18)., such 

as the combination of Green Infrastructure (GI) and increased albedo strategies. 

These strategies aim to leverage the advantages of both methods to mitigate UHI 

by enhancing the reflective properties of urban surfaces and increasing 

vegetation cover in cities. 
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Table 2-18 Summary of the integrated strategies 

 Method

s 

Research 

period 

Scale Mitigation 

strategies 

UHI change Remark Ref. 

Tehran, 

Iran 

ENVI-

met 

(versio

n 4.3.0) 

Hourly 350 m × 

350 m 

Increased green 

space. 

Increased Albedo in 

roof and pavement. 

Change rotation.  

Changing the orientation of 

buildings achieved the most 

significant reduction in air 

temperature by 1.69 °C. 

Proper design of urban forms 

would largely mitigate UHII. 

[301] 

Toronto, 

Canada 

ENVI-

met 

Hourly 300 m × 

300 m 

Increased green 

space. 

Increased Albedo in 

roof and pavement.  

Combination model 

The cool roof with increasing 

the roof albedo from 0.3 to 

0.7, roof surface temperature 

could be reduced by up to 

11.3 °C. 

The duration of direct sun and the 

mean radiant temperature, which 

are strongly influenced by the 

urban form, it is a significant role 

in thermal comfort. 

[7] 
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While these integrated strategies have shown promising results in reducing UHI, 

recent studies suggest that they may not be the most effective means of 

mitigating UHI. For instance, a study found that while the combination of GI 

and increased albedo reduced surface temperature by 1.2 °C, the individual 

application of either strategy alone resulted in a more significant reduction of 2.2 

°C for increased albedo and 1.8 °C for GI [189]. Therefore, it is important to 

consider alternative strategies to mitigate UHI that are more effective and 

tailored to the specific characteristics of a particular city. 

2.13.2.5 Summary of the main mitigation strategies in subtropical cities 

Existing studies have concluded that many variables can affect the performance 

of mitigation strategies in subtropical UHI, such as the height and species of 

vegetation; leaf canopy cover of vegetation; green coverage ratio of vegetation; 

the colour and density of surface; and the permeability materials.  

It is important to consider the climate and weather conditions in a specific area 

when implementing mitigation strategies. For example, in subtropical regions, 

there is a high frequency of rainfall and high relative humidity, which can affect 

the cooling efficiency of some mitigation strategies, such as green roofs and cool 

pavements. Hence, proper maintenance and selection of materials that can 

withstand weather conditions are crucial to ensure the sustainability and 

effectiveness of the mitigation strategies. 

Moreover, the scale and design of the mitigation strategies also play a crucial 

role in their effectiveness. For example, a green roof on a small building may 

not have a significant impact on mitigating UHI compared to a large green roof 

covering a large commercial complex. Additionally, the arrangement and 
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distribution of green spaces, such as parks and gardens, can affect the overall 

cooling effect on a neighbourhood. 

It is also important to consider the social and cultural aspects when implementing 

mitigation strategies. For instance, the willingness of the community to adopt 

and maintain green spaces can affect the long-term success of the strategy. 

Furthermore, the accessibility and equity of green spaces should also be taken 

into account, as they should be available and accessible for all members of the 

community, regardless of their socio-economic status. 

In conclusion, the effectiveness of mitigation strategies in subtropical UHI 

requires careful consideration of multiple variables, including climate and 

weather conditions, scale and design, and social and cultural aspects. A 

comprehensive and integrated approach that takes these factors into account is 

essential to ensure the success of the mitigation strategies. 

2.14 Thermal energy storage technologies 

The challenge of mitigating the impacts of climate change is, in essence, an 

energy challenge, an energy challenge. Recently, the focus has shifted towards 

reducing carbon emissions from the energy sector by promoting the use of 

decarbonized and renewable sources of energy [302]. In line with the goal, IEA 

released the Net Zero by 2050 for limiting the global temperature increase to 

1.5℃. To achieve this, the power sector will need to undergo two parallel 

transformations for decarbonising: an increasing reliance on variable renewable 

energy sources for low-carbon power generation, and the electrification of 

various sectors to drive decarbonisation.  

However, the recent COVID-19 pandemic has had a significant impact on 

energy demand, [303], and carbon emissions in 2021 increased by 14.3–14.9%, 
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compared with pre-pandemic (2019) [304]. The continued reliance on fossil 

fuels has resulted in increased prices and environmental concerns. Increasing the 

use of variable renewable energy sources will help to make power systems more 

flexible and reduce dependence on fossil fuels. 

One of the main challenges associated with the use of renewable energy sources 

is their fluctuating production patterns (supply and demand). Thermal energy 

storage (TES) technologies have been proposed as a solution to address this issue 

by improving the efficiency, possibility and applicability of renewable energy 

production [305]. Theoretically, TES have the potential to store heat over long 

time and distances [306] and can replace the fossil fuel-based heat supply with 

alternative renewable heat sources, such as solar thermal energy, geothermal 

energy, and waste heat generated from industries. Meanwhile, TES will reduce 

carbon emissions, primary energy saving and cost saving through the reduction 

of peak demand [302]. 

UHI phenomenon occurs when urban areas experience higher temperatures than 

the rural area surrounding them [181]. This phenomenon contributed to the 

storage of massive thermal energy in urban objects and materials that have an 

impervious surface with a higher capacity of heat absorption [307] [308], which 

is a significant factor in the urban surface energy balance and contributes to the 

intensity of UHI [181, 309].  Specifically, higher outdoor temperatures lead to 

increased heat storage on the urban surface via convective and conductive heat 

transfer [310]. Therefore, there is an interaction and connection between UHI 

and thermal energy storage. 

The conventional UHI mitigation strategies are cool or reflective technologies, 

which aim to increase the surface albedo and green space. Typically, reflective 

https://www.sciencedirect.com/topics/engineering/solar-thermal-energy
https://www.sciencedirect.com/topics/engineering/geothermal-energy
https://www.sciencedirect.com/topics/engineering/geothermal-energy
https://www.sciencedirect.com/topics/engineering/albedo


115 

 

technologies have done by [311] applying a liquid material (white paint [164], 

elastomeric [312], acrylic coatings [313] [314]), or by adopting a single-ply 

product (Ethylene-Propylene diene-Tetrolymer Membrane (EPDM) [315], 

Polyvinyl Chloride (PVC) [316], Chlorinated Polyethylene (CPE) [317], 

Chlorosulfonated Polyethylene (CSPE) [318], Thermoplastic Polyolefin 

(TPO) [319]. However, the reflective technology has evolved over the years as 

more and more highly reflective materials are discovered. For example, 

advances in nanotechnology has led to the conception of highly reflective 

thermos-chromic paint, which is designed to be thermally reversible. During the 

hot summer seasons, the cool roof will have a high reflectivity and a high 

absorption rate during the winter seasons. Although currently more expensive, 

this technology does present a significant advantage [137].  

However, the high and ongoing maintenance costs can be substantial in cool UHI 

mitigation strategies, and the weight of vegetables for green roofs can be a 

limiting factor, especially in older buildings with weaker structures. Furthermore, 

dust and other particulate matter can settle on reflective surfaces, reducing their 

reflectivity and effectiveness in reducing heat. In addition, the accumulation of 

dust can also be aesthetically unpleasing and lead to a need for frequent cleaning 

and maintenance. This can increase the cost and effort required to maintain the 

effectiveness of these UHI mitigation strategies [98]. 

Another mitigation technique (i.e. PCM roof, PCM pavement), while not nearly 

as long-standing as the “cool or reflective” technology, provides an alternative 

solution. For instance, PCM possesses high latent heat capacity that makes it 

feasible to use as an energy storage medium in building envelopes. If PCM is 

widely used in city centre, the extra heat in city centre can be stored and applied, 
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and the UHII can be affected. Besides, the utilization of TES systems results in 

two significant environmental benefits: the conservation of fossil fuels through 

efficiency increases and/or fuel substitution, and reductions in emissions of 

pollutants such as CO2, SO2, and NOx. For example, TES systems have been 

shown to reduce CO2 emissions in the United Kingdom by 14 to 46% by shifting 

electric load to off-peak periods, whereas an Electric Power Research Institute 

(EPRI)-cosponsored analysis found that TES could reduce CO2 emissions by 7% 

compared to conventional electric cooling technologies [347].  

Despite the growing interest in TES technology, there has been a shortage of 

studies that focus specifically on its potential to mitigate UHI effects. This 

chapter bridges this gap by conducting a comprehensive review of the principles, 

materials, applications, and optimisations of TES technology.  

2.14.1 Classification of thermal energy storage  

Numerous studies have reviewed the TES technologies based on their 

characteristic, including sensible TES (SHTES) [320] [321], latent heat TES 

(LHTES) [322] [323] [324] [325] and thermochemical TES (TCTES) [326] [327] 

[328] [329] [330] [331]. These studies have emphasized the distinctive features 

and benefits of each technology, such as their energy storage density, 

configuration, and ease of implementation. 

SHTES, for example, allows storing energy via changing the temperature of the 

storage materials (e.g. water, rock bed and ground), which has been implemented 

and analysed by many studies and also has been applied in a large number of 

buildings [320]. It has a simple and cheap configuration [306], however, it has 

low energy storage density (ESD) and is prone to heat loss [332]. For building 

applications, the ESD of SHTES is around 100MJ/m3. Water is a common 
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storage material, the ESD is 290MJ/m3 [333], which usually occurred a large 

heat loss. 

LHTES adopts the phase-changing process (solid-solid, solid-liquid, liquid-gas, 

solid-gas and vice versa) of the storage materials (e.g. PCM, hydrate salts and 

organics) [324] by liquefaction, vaporization and solidification without a 

significant temperature change. The technology has medium ESD[334], which 

is around 300-500 MJ/m3 [333], and also faces challenges such as low thermal 

stability, corrosion and flammability [335]. 

TCTES used a heat source based on two reversible reactions (sorption and 

chemical reaction processes), which include two steps: energy storage and 

energy release [326, 330]. This technology is applicable in a wide range of 

temperatures (50℃ to over 1000℃), decreasing the heat loss that would be 

wasted in the SHTES and LHTES in the form of radiation [336]. 

Although a larger number of studies have classified the TES simply as SHTES, 

LHTES and TCTES, a comprehensive classification framework that takes into 

account the energy reservoirs and building retrofit requirements of TES systems 

is still lacking. Such a classification framework could provide a better 

understanding of the suitability and effectiveness of different TES systems in 

meeting the diverse thermal energy storage needs of different buildings (Fig.2-

15). One important aspect that could be considered in such a classification 

framework is the type of energy reservoir used in TES systems. Energy 

reservoirs can be categorized as electricity, heat and chemistry. Another aspect 

that could be considered is the retrofit requirements of TES systems. Retrofitting 

existing buildings with TES systems can be challenging, as it often requires 

significant modifications to the building's infrastructure. Therefore, the 
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classification of TES systems could take into account the retrofit requirements 

of different TES systems, such as whether they can be integrated into existing 

building structures without significant modifications or if they require extensive 

retrofitting. 

 

Figure 2-15 The novel classification of thermal energy storage 
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2.14.2 Sensible-heat storage 

The sensible-heat thermal energy storage (SHTES) system utilizes sensible heat 

to store thermal energy, which is based on the temperature change of the storage 

materials  [320]. This system is characterised by its simple configuration, low 

cost energy storage materials [306] and low energy storage density (ESD) [332]. 

Common storage media used in SHTES include water, air, oil, rock bed, brick, 

and concrete, among others [382]. Sensible-heat thermal energy storage systems 

are generally simpler and less expensive than latent-heat thermal energy storage 

systems. 

The amount of energy stored is calculated following Eq. (5). 

𝑄 = m · 𝐶𝑃 · ∆𝑇                                                                                           Eq. (5) 

where Q is the heat capacity in the material (J), m is the mass of storage material 

(kg), 𝐶𝑝  is the specific heat of the storage material (J/kg · K), and ΔT is the 

temperature change (K). 

SHTES can be further classified into three subcategories based on the drive 

mode: Directive thermal driving storage system, Indirective thermal driving 

storage system and indicative electricity driving system. 

2.14.2.1 Photovoltaic- thermal system  

 

Photovoltaic- thermal (PVT) system is a combination system that produces both 

electricity and low-grade thermal energy simultaneously [383]. This technology 

enables the recovery of part of the waste heat produced by photovoltaic (PV) 

cells and its utilization for practical applications, while also keeping the 

temperature of the PV module at a satisfactory level through simultaneous 
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cooling. Thus, the PVT system is an efficient way to harness solar energy with 

higher solar conversion and efficiency rates [384]. Additionally, the PVT system 

typically requires less space than standalone PV and solar thermal systems [385].  

Fig.2-21 shows a diagram of the PVT system. 

 

Figure 2-16 Diagram of PVT system [386] 

The PVT system can be classified based on the various system parameters (e.g. 

absorber plate design) and fluid flow systems (natural and forced circulation, 

single or double pass, channels, etc.). Usually, conventional PVT system has two 

types based on concentration and non-concentration arrangements of solar 

radiations [383]. Fg.2-22. shows the classification of PVT systems. 
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Figure 2-17 The classification of PVT systems 

 

The non-concentrated PVT system represents the simplest form of PVT 

technology, which does not concentrate solar radiation. Non-concentrated PVTs 

can be classified into two subcategories based on the storage medium used for 

heat extraction: air-based and liquid-based PVTs. In air-based PVT systems, air 

can pass through the PV surface in active or passive mode, using the single or 

double pass and through different absorbers [385]. However, due to the low 

density and heat capacity of air, air-based PVT systems are only efficient at low 

temperatures [387]. Additionally, air-based PVT systems can integrate with 

space heating in building applications (BIPVT) [388], such as facades [389] [390] 

[391] [392], roofs [393] [394] [395], windows [396] [397] [398] [399] and 

shading devices [400] [401] [402] which can help reduce building energy use 

[403] and carbon emissions [404]. However, Nevertheless, BIPVT systems have 

technological limitations (e.g. power losses [405], power quality [406] [407], 

cabling and connection issues [408], etc.), institutional barriers [409] [410], 



122 

 

public acceptance problems [411] [412] [413], financial issues [414] [415] [416] 

and islanding hazard [408] [417] [418]. 

Liquid-based PVT systems use a liquid as a medium to extract heat from PV 

modules, which have a higher heat capacity compared to air [384]. Water, with 

good heat capacity, is usually used as the prevailing liquid in PVT systems. 

Water-based PVT systems can generate electricity while heating water [419], 

which can be used for domestic needs [420] [421] feeding the solar still of the 

PVT system [422].  

For PVT analysis, a 1D steady-state model is suggested [423]. The annual yield 

of nine different PVT systems has been calculated using this 1-D model, with 

the results showing that the sheet and tube with zero cover PVT system had the 

highest electrical efficiency of 9.8%, while the channel above PV design 

typically had a thermal efficiency of 65% [424]. Additionally, an active solar 

still integrated PVT system was designed, which had a maximum thermal 

efficiency of 75%, thermal exergy efficiency of 20.74%, electrical exergy 

efficiency of 28.53%, overall exergy efficiency of 25%, and overall thermal 

efficiency of 69.06% [425]. Recently, a glass-covered PVT-integrated solar 

thermal collector was proposed. The authors also developed a 2D transient 

mathematical model to analyse the performance of energy and exergy. The 

results showed that the overall energy efficiency of the PVT system with the 

solar thermal collector was 41.51%, and the exergy efficiency was 17.63% [426].   

Researchers pay special attention to nanofluids, which are advanced coolants 

made by adding high thermal conductivity nanoparticles to base fluids 

(conventional coolants) [427]. Due to their excellent thermal properties, 

nanofluids have been applied to PVT systems [428]. Nanofluids have two main 
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uses in PVT systems: as a coolant [429] [430] and as a spectral splitter [431] 

[432] [433]. Besides, many nanoparticles have been adopted into PVT systems, 

such as CuO [434], SiO2 [435] [436], Al2O3 [437] [438], Fe3O4 [439] [440], Ag 

[441] [442], TiO2 [443], etc. The present study evaluates the performance of a 

semi-transparent PVT system utilizing CuO nanofluid as a coolant. The obtained 

results reveal that the utilization of CuO nanofluid increases the electrical 

efficiency of the PVT system to 12.55%, as compared to 11.95% when water is 

used as a coolant. Furthermore, the thermal efficiency of the PVT system is also 

enhanced from 50.5% to 72% with CuO nanofluid, indicating that the use of 

nanofluids in PVT systems can improve both exergy and energy efficiency [434]. 

Recent studies have explored the synthesis, thermo-physical properties, and 

cooling performance of binary (e.g. Al2O3-ZnO [444])and ternary nanofluid (e.g. 

Al2O3-ZnO-Fe3O4 [445]) highlighting their potential for enhancing the 

performance of PVT systems. An analysis of PVT systems utilizing Al2O3-ZnO 

nanofluid reveals that the maximum exergy efficiency of 15.13% can be 

achieved at a mixture ratio of 0.47 [444]. In addition, the performance of the 

PVT system employing Al2O3-ZnO-Fe3O4 nanofluid indicates that the PV cell 

temperature is reduced by 8.81℃, and the optimum electrical and thermal 

efficiencies are 13.75% and 59.38%, respectively, when the mixture ratio is 0.33. 

The overall maximum exergy efficiency of the PVT system is found to be 14.77% 

[445].   

In liquid-based PVT systems, increasing the mass flow rate [446] [447], inlet 

velocity, and inlet temperature [448] can increase the exergy and energy 

efficiency. However, challenges exist, such as the high cost of nanofluids [449] 

[450], and potential issues with nanoparticle aggregation, viscosity, and 
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sedimentation, which affect the performance of PVT systems [451]. Moreover, 

the use of liquid coolant may cause erosion and corrosion of thermal devices 

over time [452] [450].  

Furthermore, in concentrated PVT (CPVT) systems, solar concentrators ( such 

as  Compound Parabolic collectors (CPC) [453] [454] [455], plan reflecting 

mirrors [456] [457], Fresnel lenses [458] [459] [460] [461] [462], parabolic dish 

[463] [464] [465], parabolic troughs [466] [458] [467] [464], etc.) are used to 

harness the same amount of solar radiation with fewer PV panels [468]. Studies 

have shown that low-concentrated PVT systems (1< Concentration ratio (CR) 

<10) and medium-concentrated PVT systems (10< CR <100) exhibit improved 

performance. The total efficiencies of a PVT system using a linear Fresnel lens 

are reported to be 53%, where the electrical efficiency decreased from 10.9% to 

7.63% due to solar concentration. However, the output power of the PV modules 

increased by 28%  [462]. Another study utilized an integrated PVT-CPC system 

with double slope solar coupled with a helically coiled heat exchanger. Two 

nanofluids, namely single-wall carbon nanotubes and multi-wall carbon 

nanotubes, were utilized as coolants. The results show that the heat transfer 

coefficients of PV/T-CPC, helically coiled heat exchanger, and double slope 

solar still increase around 46.4%, 46.7%, and 76.7%, respectively, when single-

wall carbon nanotubes nanofluid is utilized [469]. A parabolic trough CPVT was 

manufactured and analysed. Three variations of PV-module and heat-sink 

designs were evaluated, demonstrating that the prototype CPVT system attains 

an overall efficiency of approximately 50%, with thermal and electrical 

efficiencies of 44% and 6%, respectively [467]. Additionally, a theoretical 

model of a parabolic dish CPVT system with a hot mirror was developed. The 
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hot mirror reflects the infrared (IR) and ultraviolet (UV) components of the 

concentrated solar energy spectrum to the vacuum tube. The modelling results 

showed that the energy efficiencies of the concentrator, vacuum tube, and overall 

CPVT system are 15.35%, 49.86%, and 7.3%, respectively. The corresponding 

exergy efficiencies are 12.06%, 2.0%, and 1.16%, respectively [463]. 

Despite their potential, CPVT systems have some limitations. The parabolic 

trough CPVT system requires a larger field of view and incurs higher costs due 

to its low optical efficiency [470]. The Fresnel lens-based PVT system may 

suffer from transmittance losses owing to the incidence on the draft face [471]. 

Furthermore, further research and development are required to address 

challenges related to high-precision tracking, illumination uniformity, and heat 

transfer fluid optimization in high-concentration CPVT systems [472]. 

2.14.2.2  Photovoltaic- thermal system with phase change material 

 

PCM as auxiliary cooling media and heat storage media integrated with PVT can 

reduce the PV panel temperature [473], and improve the overall energy 

conversion performances [474]. Various PCMs have high latent heat absorption 

capacity with slight temperature variation during the phase transition process 

[475]. Usually, there are three types of PCMs, organic PCM (e.g. paraffin, acids 

and eutectic mixtures), inorganic PCM (e.g. CaCl2H12O6, NaOH-KOH and 

metals) and eutectic PCM (Organic-Organic, organic-inorganic and inorganic 

and inorganic). Figure 2-23 shows the typical configuration for PVT-PCM. 

https://www.sciencedirect.com/topics/engineering/absorption-capacity
https://www.sciencedirect.com/topics/engineering/absorption-capacity
https://www.sciencedirect.com/topics/engineering/eutectics
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Figure 2-18 Schematic diagram of direct contact PVT-PCM and indirect PCM-

water-based PVT system [476] 

The thermophysical properties of PCMs used in PVT systems from the literature 

are summarised in Table 2-19. This table contains critical information on the 

melting temperature, thermal conductivity and latent heat capacity of the PCM. 

The inclusion of these properties is essential for the optimal design and 

performance of PVT systems, as they directly impact the overall energy 

efficiency and effectiveness of the system.

https://www.sciencedirect.com/science/article/pii/S1364032121006006#tbl3
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Table 2-19 Summary of thermophysical properties of PCMs used in PVT systems 

PCM (Ref.) PCM Type Melting 

temperature 

(℃) 

Latent 

heat 

capacity 

(KJ/Kg) 

Thermal 

conductivity 

(W/m·K) 

PV/T type Special technology  Findings 

Paraffin 

[477] 

Macro-

encapsulation 

15 182 0.2 Conventional 

solar PV/T 

Micro-channel heat 

pipes 

The daily average 

electrical efficiency 

reaches 36.71%, 35.53% 

and 31.78% for the PCM, 

MCHP and regular PV/T 

systems. 

C18,  

 

C22, 

 

 Palmitic 

/Capric 

acid,  

Paraffin, 

 

Paraffin, 

 

Acid, 

 

 

28.85, 

 

43.85, 

 

17.55-

22.65, 

 

244, 

 

226, 

 

190, 

 

 

 FPPV/T Metal foam (copper 

foam) 

Electrical efficiency of 

the PV/T with metal 

foam increases by 2.3%. 
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Sodium 

phosphate 

salt, 

 

C15  

[478] 

Salt, 

 

 

paraffin 

 

36.85, 

 

 

13.85 

280, 

 

 

205 

 

CaCl2·6H2

O 

 

 

 

Eutectic of 

capric-

palmitic 

acid  

 

RT20 

Inorganic 

Calcium 

chloride 

hexahydrate  

 

acid 

 

 

 

Paraffin wax  

 

22.5 

 

 

 

29.8 

 

 

 

25.73 

 

26.6 

173 

 

 

 

191 

 

 

 

140.3 

 

232 

Solid 0.14 

Liquid 0.14 

 

 

Solid 1.08 

Liquid 0.56 

 

 

Solid 0.2 

Liquid 0.2 

 

FPPV/T Nano PCM The PV/T/nano PCM 

(10 wt %) has higher 

electrical efficiency 

than PV by 22% in mid-

July. 

https://www.sciencedirect.com/topics/engineering/photovoltaics
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RT25 

 

RT35 

 

+Graphene 

Nanoplatele

ts [479] 

Paraffin wax 

 

Paraffin wax 

 

29-36 

 

130 

Solid 0.19 

Liquid 0.18 

Solid 0.2 

Liquid 0.2 

 

 

RT 28 

RT 35 

RT 44 

RT 50  

[480] 

 

Paraffin 

Paraffin 

Paraffin 

Paraffin 

28 

35 

41-44 

50 

245 

157 

255 

168 

0.2 

0.2 

0.2 

0.2 

Mono-

crystalline semi-

transparent 

FPPV/T 

 The maximum diurnal 

energy efficiency is 

35.04% for PV/T and 

RT35 PCM during the 

summer. The maximum 

daily exergy efficiency is 

15.17% for PV and RT28 

PCM type in the winter. 
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RT-52 

1-

tetradecanol

, 

Lauric acid, 

Decanoic 

acid 

synthesis, 

Decanoic 

acid natural 

[481] 

 

 

Paraffin 

tetradecanol 

Acid 

Acid 

 

Acid 

52-54 

36-40 

44-46 

27-32 

 

29-33 

167.27 

259.44 

228.90 

179.13 

 

178.98 

N/A Two side 

serpentine flow 

based PV/T 

 Maximum energy and 

exergy efficiency is 

87.72% and 12.19% 

respectively. 

PT-30 [482] Paraffin-wax 

 

57 200-220 0.24 Water-based 

PV/T 

 The overall efficiency of 

PVT-PCM/water system 

is 26.87% and 40.59% 

respectively. Electrical 

efficiency is increased by 
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17.33% compared with 

conventional PV panel.  

N/A  

[483] 

Paraffin wax  49 196 0.21 FPPV/T SiC Nanofluid and 

nano-PCM 

Electrical efficiency 

increased from 7.1% to 

13.7% and thermal 

efficiency is high to 72%. 

N/A 

 

 

 

NaOH 

(24%)-

KOH (76%) 

[367] 

Paraffin 

 

 

 

Inorganic 

47 

62 

72 

102 

147 

152 

157 

168 

152 

182 

200 

205 

205 

205 

0.2 

0.2 

0.2 

0.2 

0.6 

0.6 

0.6 

Concentrated 

PV/T 

Fresnel lens, 

Thermoelectric 

system 

The daily overall 

efficiency of the PV–

PCM–TE system is 

26.57%.  
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CaCl2H12O6 

[484] 

Inorganic, 

Calcium 

chloride 

hexahydrate 

31 191 Solid: 1.08 

Liquid:0.56 

FPPV/T Al2O3 nanoparticles 

loading in the PCM 

on PV cell 

Al2O3 (φ  = 1%)/PCM 

mixture 

(λPCM = 25%) + 75% 

water (5.31 kg/s.m2) 

achieved the highest PV 

performance. 

Na2HPO4·1

2H2O  

[485] 

Inorganic 37 265 0.514 FPPV/T Parallel air source 

heat pump module 

The overall efficiency of 

this solar PV/T heat 

pump system can reach 

above 75%. 

NaSO410H2

O 

N2O6Zn·6H

2O 

Inorganic 32.4 

36 

251 

146.9 

Solid:0.54 

Liquid:1.011 

BISTPV  The BISTPV module 

increased power 

generation from 34,287 

to 37,024 W h/year by 

using PCM. 

  

https://www.sciencedirect.com/topics/engineering/heat-pump-system
https://www.sciencedirect.com/topics/engineering/heat-pump-system
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Inorganic PCMs generally possess higher latent heat than organic PCMs, making 

them an attractive option for thermal energy storage applications. PCMs can be 

integrated with photovoltaic thermal (PVT) systems, building integrated PVT 

(BIPVT) systems, and PVT systems coupled with other energy conversion 

technologies. BIPVT-PCM systems can be applied on the roofs [486] [487] or 

façades [488] [489] [490] have demonstrated the ability to manage building 

energy demand [486], peak load [491] [492] and indoor thermal comfort [493]. 

However, there is still a lack of comprehensive guidelines for the optimal design 

and configuration of PVT-PCM systems, and further research is required to 

assess and compare the performance of different PV-PCM systems. Additionally, 

more effective phase change processes for PCMs are needed to develop BIPVT-

PCM systems. 

2.14.3 Latent-heat storage 

Latent heat thermal energy storage (LHTES) is a type of thermal energy storage 

that utilizes the latent heat of a material to store thermal energy. During charging, 

thermal energy is added to the storage material, causing it to change phase from 

a solid to a liquid or from a liquid to a gas, and storing the energy as latent heat. 

During discharge, the material is allowed to solidify or condense, releasing the 

stored heat energy [552]. 

The amount of thermal energy stored in an LHTES system is proportional to the 

mass and latent heat of the storage material. Therefore, materials with the high 

latent heat of fusion or vaporization are typically used as storage media, such as 

phase change materials (PCMs) and heat of vaporization materials (HOVMs). 

PCMs are materials that change the phase between solid and liquid, while 

HOVMs change the phase between liquid and gas. These materials have the 
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advantage of storing a large amount of energy in a small volume, compared to 

sensible heat storage materials [553] 

2.14.3.1 Phase change material  

As mentioned above, phase change materials (PCM) have high energy storage 

density and can store thermal energy in a constant temperature phase transition 

process [554]. The phase change process could be changing the state between 

liquid and gas by condensation and vaporisation, a change of state between solid 

and liquid by liquefaction or solidification, or changing the phase between two 

solid states. Owing to certain technical limitations of the solid-solid and liquid-

gas processes, only solid-liquid PCMs are suitable for building heating and 

cooling applications [555]. The melting point of PCMs is researched by the 

increase in ambient air temperature, which causes the breaking of chemical 

bonds, allowing the material to absorb energy as it transitions from solid to liquid. 

When the ambient air temperature decreases and reaches the freezing point of 

the PCM, chemical bonds reform and the material releases heat as it reverts to 

its solid state. An illustration of the change processes is shown in Fig. 2-33. 

https://www.sciencedirect.com/science/article/pii/S1364032119307877#fig1
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Figure 2-19 Illustration of PCM change processed [556] 

PCMs are classified into three types, organic (e.g. Paraffin [557] [558], 

Polyethylene glycol [559] [560], Fatty acid [561] [562], etc.), inorganic (e.g. 

salt-hydrates [563] [564], molten salts [565] [566], metals [567] [568], etc.) and 

eutectic (organic-organic [561], organic-inorganic [569] and inorganic-

inorganic [570]).  

Besides, the melting temperature of different PCMs varies, and each PCM has 

its own specific latent heat capacity [556]. In building applications, PCM can be 

used in roofs [278] [283], façades [571] [572], floors [573] [574] and windows 

[575] [576] for cooling or heating purposes in both new buildings or retrofitting 

of existed buildings [577].  

Numerous studies have investigated the performance of PCMs in building 

applications. A numerical analysis of the performance of the PCM roof was 

conducted. The influence factors of the thermal behaviour of PCM roofs have 

been investigated, such as solar radiation intensity, transition temperature and 

latent heat of PCM, roof slope, PCM layer thickness, and absorption coefficients 

of external roof surface. The results revealed that the PCM roofs significantly 
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affect the temperature delay in the indoor space, which can delay three hours for 

peak temperature in the base layer of PCM roofs when compared with the 

common roof [278]. The relationship between PCM roof and UHI in temperate 

climatic conditions was experimentally analysed. A mixed hydrophilic paint 

with microencapsulated PCM was used as a roof-finishing material to create 

PCM-doped tiles. The results presented that the system can significantly reduce 

building surface temperatures and chamber temperatures in summer weather 

conditions, and demonstrated the lowest diurnal variation by 7.2℃. Furthermore, 

in winter conditions, the PCM-doped tiles keep the surface temperature low 

while keeping the chamber air temperature high. Therefore, PCM-doped tiles 

have the potential to mitigate UHI intensity [282]. 

Besides, a macro-encapsulated PCM (SP22) was used to fill into the air cavity 

of a ventilated façade to analyse the potential in decreasing the cooling demand 

in the summer season. This façade can be used as a cold storage unit, which can 

avoid overheating in the daytime and release cool in the nighttime. The thermal 

performance of this façade has been experimentally tested. The results showed 

that the PCM integrated with ventilated façade can reduce the cooling loads of a 

building through nighttime cooling [578]. Moreover, a PCM (55% decanoic acid 

and 45% lauric acid) integrated Trombe wall was tested in laboratory conditions. 

The test results presented that the air temperature inside the laboratory can be 

increased by 1.88 °C for low heat input mode and 3.27 °C for high heat input 

mode, respectively. However, the irregular-shape liquid/solid interface, caused 

by the 2D heat transfer along the height and thickness of the PCM walls, led to 

large temperature differences in both directions and highlights the need for 

https://www.sciencedirect.com/topics/engineering/hydrophilic
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PCMs with suitable melting temperatures, longer phase change periods, and 

higher latent heat capacities [579].  

In addition, the thermal performance of a triple-pane window filled with PCM 

(Paraffin MG29) in the outer cavity was analysed, and have been measured on 

sunny and rainy summer days. The results showed that the system the peak 

temperature on the interior surface by 5.5℃, while also reducing the heat that 

entered the building through the window by 28% on a sunny summer day. 

Besides, the performance of a window shutter incorporated with a PCM (paraffin 

RT28HC) was analysed. The numerical models based on 2D analysis are created 

to model the indoor temperature comparison between the experimental and the 

simulated model. The results showed that this system decreased the maximum 

indoor temperature by up to 8.7% in the warming period, also increased 16.7% 

the minimum indoor temperature at night time and delayed the maximum 

temperature peak for one hour and 30 minutes for the minimum temperature 

peak [580]. 

Overall, PCMs are substances that have the ability to store and release large 

amounts of thermal energy during phase change processes. In building 

applications, PCMs are increasingly being used as thermal energy storage 

materials to regulate indoor temperatures and improve energy efficiency. PCMs 

offer several advantages, including improved indoor thermal comfort, reduced 

energy consumption, and lower heating and cooling costs. This is due to the 

ability of PCMs to store and release heat in response to temperature fluctuations, 

thereby reducing the load on heating and cooling systems. 

However, despite these benefits, the use of PCMs in building construction also 

presents certain limitations and challenges. The major disadvantage is the high 
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cost of materials and equipment required for the implementation, which can be 

prohibitive for some construction projects. Additionally, the integration of 

PCMs into building components can be a complex and specialized process, 

requiring technical expertise and specialized knowledge. Besides, some 

limitations need to be optimised, such as poor thermal conductivity [581], liquid 

leakage [582], overcooling problems [583] and corrosion issues [584].  Besides, 

despite those disadvantages of using PCMs, the environmental friend is the key 

factor restricting their popularisation and use. Therefore, researching the green 

preparation and cost-effective technology of PCMs is required for developing 

the energy-saving application. 

2.15 Summary 

A comprehensive review of the literature on the subtropical UHI and its main 

mitigation strategies has been undertaken in this chapter to gain a better 

understanding of this phenomenon.  

Urban heat island is a well-known and researched phenomenon that refers to the 

higher temperatures observed in urban areas compared to surrounding rural areas. 

The causes of UHI are complex and interrelated and include anthropogenic heat, 

urban form, surface materials, and land use changes. These factors influence the 

energy balance and microclimate of urban areas, leading to increased 

temperatures. 

Evaluation approaches for UHI include remote sensing, simulation modelling, 

and field measurements. Several metrological parameters are used to evaluate 

UHI, including air temperature, sky view factor, net radiation, thermal radiative 

power, and mean radiant temperature. However, still lacking a compressive 
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metrological assessment to analyse the effectiveness of UHI mitigation 

strategies including radiation variation. 

Additionally, UHI has numerous effects, including increased energy 

consumption and carbon emissions, decreased human thermal comfort, and 

negative impacts on urban ecosystems. Higher temperatures in urban areas 

increase the demand for air conditioning and transportation, leading to increased 

energy consumption and carbon emissions. The negative impacts on human 

health and well-being due to heat stress and related health effects are also a 

concern. 

Besides, conventional mitigation strategies for UHI include green infrastructure, 

cool materials, and urban planning measures. These strategies can reduce the 

urban heat island intensity, improve urban ecosystems, reduce energy 

consumption and carbon emissions, and enhance human thermal comfort. A 

comprehensive understanding of those conventional mitigation strategies of UHI 

and its impacts is essential for effective mitigation and adaptation strategies in 

urban areas, particularly in light of climate change and urbanization. However, 

there is still a lake of a comprehensive analysis between UHI mitigation 

strategies and energy use, carbon emissions and human thermal.  

Furthermore, Thermal energy storage is an essential technology for the 

development of sustainable energy systems, as it enables the storage of heat or 

cold energy generated from renewable sources for use during periods when 

energy is not being produced. This technology helps to reduce the reliance on 

fossil fuels and supports the transition to a low-carbon energy mix. To better 

understand the relationship between TES and UHI and to analyse the potential 

ability of UHI mitigation, the main TES systems have been reviewed and 
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classified into three types, based on user choices: TES stored as electricity, TES 

stored as heat, and TES stored as chemistry.  

TES systems offer several advantages. Firstly, they can improve the energy 

efficiency of buildings and industrial processes by allowing for the storage of 

excess energy during periods of low demand and releasing it during periods of 

high demand. This can help reduce overall energy consumption and costs. 

Secondly, TES systems can enhance the reliability of energy supply by providing 

a backup energy source during power outages or periods of high demand. This 

can help reduce the risk of blackouts and ensure a steady supply of energy. 

Thirdly, TES systems can help integrate renewable energy sources, such as solar 

and wind power, into the energy grid by storing excess energy and releasing it 

when needed. This can increase the reliability and sustainability of the energy 

system. Fourthly, TES systems can manage peak energy loads by storing energy 

during periods of low demand and releasing it during periods of high demand, 

thus reducing the need for additional power generation capacity and improving 

grid stability. However, some limitations impact the efficiency and effectiveness 

of TES systems. Firstly, TES systems can be expensive to install and require 

specialized materials and equipment, making them cost-prohibitive for some 

applications. Nonetheless, the cost of TES systems is decreasing as the 

technology becomes more widespread. Secondly, some TES systems have 

limited operating temperatures, which can limit their usefulness in certain 

applications. For instance, latent heat storage systems may have limited 

operating temperatures due to the melting or solidification point of the storage 

material. Thirdly, TES systems may experience energy loss due to heat leakage, 

which can reduce their efficiency and effectiveness. This can be mitigated by 
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using high-quality insulation materials and designing the system to minimize 

heat loss. Fourthly, certain TES systems, such as chemical TES systems, may 

require careful handling of materials and pose potential safety risks.  

Additionally, TES systems have shown the ability to effectively mitigate the 

UHI effect. These systems have the capacity to store thermal energy during the 

day and release it during cooler nighttime temperatures. This results in a 

reduction of peak temperatures during the day and a more comfortable living 

environment at night. Specifically, when phase change materials are integrated 

into a building's roof, they absorb heat during the day and release it at night, 

ultimately lowering the temperature of the roof and the surrounding area. 

In summary, the implementation of TES systems, such as PCM roofs, can 

significantly alleviate the effects of UHI in urban areas and improve the quality 

of life for urban residents. However, further research is required to investigate 

the long-term performance and economic feasibility of TES systems. 

3 CHAPTER III: RESEARCH METHODOLOGY  

3.1 Introduction  

To explore the characteristics and mitigation strategies of the UHI phenomenon 

in subtropical cities, a simulation method has been selected as the primary means 

of investigating the most effective mitigation strategies. In addition, an attempt 

was made to integrate two or more methods to explore the most effective 

mitigation strategies for the correlation between surface and ambient 

temperatures and to investigate the formation of UHIs in complex cities. The 

main mechanism of this simulation method involves the following steps: 

Collect data: Collect detailed data on the physical characteristics of the urban 
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area, such as land use patterns, building morphology, surface materials, and 

vegetation coverage. This data can be collected through remote sensing, 

government documents, field surveys, or other sources. 

Define scenarios: Define different UHI mitigation scenarios that are appropriate 

for the local context and that can be realistically implemented. These scenarios 

can include conventional mitigation strategies, increasing green spaces, 

installing green roofs, ore using cool pavements, and implementing thermal 

energy storage as UHI mitigation strategies such as PCM and PV technologies. 

Select modelling tools: Select appropriate modelling tools that can simulate the 

interactions between the urban environment and the atmosphere, such as energy 

balance models, urban canopy models, and computational fluid dynamics 

models.  

Input data: Input the collected data and the defined scenarios into the selected 

models, taking into account factors such as diurnal, seasonal and annual weather 

conditions. 

Run simulations: Run the simulations to generate predictions of the effects of 

each UHI mitigation scenario on meteorological parameters, micro-

environment, energy consumption and human comfort. 

Collaborate and validation simulations: Implement the most effective and 

feasible UHI mitigation strategies, and monitor the performance over time to 

evaluate their long-term impacts on urban temperatures and environmental 

conditions. This involves collaborating and validating with simulations. 

Analyse results: Analyse the simulation results to determine which UHI 

mitigation scenarios are most effective at reducing energy consumption and 

improving urban environmental conditions. 
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To achieve the aim of the research, ENVI-met software was selected as the 

simulation tool for meteorological parameters to examine the effects of urban 

UHI mitigation strategies. Moreover, a novel model, UHIMS-ECHE, was 

developed by integrating Rhinoceros, a 3D computer-aided design and 

modelling tool, and Grasshopper, a computer visual programming language, 

with its two plugins, Ladybug and Dragonfly.  

The UHIMS-ECHE model was developed and utilised to simulate urban 

building energy use, carbon emissions, and human thermal comfort, providing a 

comprehensive analysis of UHI mitigation strategies. 

3.2 Meteorological assessment 

3.2.1 ENVI-met model set-up and testing 

ENVI-met (version 5.0.1) is a software tool used to simulate and analyse 

microclimates in urban environments. It utilises advanced computational fluid 

dynamics and radiation transfer algorithms to simulate the interactions between 

the built environment and the surrounding atmosphere, taking into account 

physical parameters such as surface geometry, material properties, solar 

radiation, atmospheric conditions, and vegetation cover. Envi-met is particularly 

useful for designing and optimizing urban spaces for maximum comfort, energy 

efficiency, and sustainability, and has been extensively validated against 

experimental data. Its ability to simulate a wide range of environmental variables 

at high spatial and temporal resolutions, along with its user-friendly interface, 

make it an essential tool for sustainable urban development. Fig.3-1 illustrates 

the flow diagram of ENVI-met.  
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Figure 3-1. The flow diagram of ENVI-met 

 

This study employs a simulation approach utilizing the ENVI-met tool to analyse 

the efficacy of various UHI mitigation strategies in subtropical cities. The 

methodology consists of three main steps: inputting the digital geographic maps 

of the research area, inputting and configuring the required databases for soil 

types, humidity, air temperature, and other relevant variables, and conducting 

the simulation of the area. 

The ENVI-met tool employs an orthogonal Arakawa C-grid to represent the 

environment and adopts the finite difference method to solve partial differential 

equations, making it suitable for the simulation of thermal interactions between 

building areas, soil, vegetation, and atmospheric conditions. However, the tool 

only permits linear and rectangular structures, hence, the building structures in 

the study have been simplified to straight and rectangular shapes for easy 

simulation. This research uses the simulation approach to analyse the UHI 
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mitigation strategies in subtropical climate zones by ENVI-met to simulate 

thermal interactions between building areas, soil, vegetation and atmosphere 

condition [18,19].  

In particular, ENVI-met simulation is suitable for subtropical city centres. A 

study is conducted in Hong Kong China [20] that demonstrated that proper tree 

planning is able to mitigate UHI effectively during daytime by using ENVI-met 

simulation. Besides, ENVI-met can calibrate the subtropical city, São Paulo, 

Brazil [6] by combining land use data and field campaigns and microclimate 

measurements. Moreover, Shanghai China as a case study is validated ENVI- 

met software is still a helpful tool for modelling microclimate in the subtropical 

city centre [21].  

3.2.2 Set up meteorological data in ENVI-met 

ENVI-met requires meteorological data to run simulations, which can be 

obtained from the weather station, climate databases or movement documents. 

This includes specifying the air temperature, humidity, wind speed, and 

direction, precipitation, solar radiation, cloud cover, and, etc. Besides, ENVI-

met requires boundary conditions to be defined for the meteorological data. This 

includes setting the boundary height, roughness length, and drag coefficient for 

each boundary type, such as urban, rural, or water. 

3.2.3 Set up simulation parameters in ENVI-met 

ENVI-met requires defining the simulation parameters. This includes specifying 

the start and end times of the simulation, the time step size, and the output 

settings. Besides, land cover and land use should be set in ENVI-met, the 

boundary of buildings, pavement, and green spaces, as well as the type and 

density of vegetation. This step is crucial in ensuring that the simulation is 

https://www.sciencedirect.com/science/article/pii/S0360544222006247#bib18
https://www.sciencedirect.com/science/article/pii/S0360544222006247#bib19
https://www.sciencedirect.com/science/article/pii/S0360544222006247#bib20
https://www.sciencedirect.com/topics/engineering/sao-paulo
https://www.sciencedirect.com/science/article/pii/S0360544222006247#bib6
https://www.sciencedirect.com/science/article/pii/S0360544222006247#bib21
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accurate and appropriate for answering the research question. 

3.2.4 Set up output parameter in ENVI-met 

The output parameters in ENVI-met are generally divided into two categories: 

physical parameters (temperature, wind speed, humidity, and radiation) and 

calculated parameters (comfort, air quality, and energy consumption). 

Hourly annual UHII is a crucial parameter that provides insight into the UHI 

effect's intensity throughout the year. The parameter measures the temperature 

difference between urban and rural areas, with higher values indicating more 

substantial UHI effects. The sky view factor represents the fraction of the visible 

sky from the ground level and is a critical factor in influencing solar radiation 

and thermal energy exchanges. Higher values of SVF correspond to less 

obstruction of the sky and can lead to lower temperatures. Net radiation (Rn) is 

a significant component of the urban energy balance and measures the difference 

between the incoming and outgoing radiation energy. On the other hand, thermal 

radiative power (TRP) is a measure of the thermal energy emitted by urban 

surfaces, which is influenced by surface temperature and emissivity. Mean 

radiation temperature (MRT) represents the average temperature of all surfaces 

emitting thermal radiation in an area, including the sky. The combination of 

these parameters enables the evaluation of the different heat transfer processes 

in the urban environment, such as the contribution of the urban surface 

emissivity and absorption to the energy balance. 

3.3  Urban heat island mitigation strategies – energy, carbon 

emission, human thermal comfort economic analysis model 

ENVI-met is not specifically tailored for predicting annual energy use and is not 

typically within its scope. To analyse annual energy consumption, carbon 
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emissions and human thermal comfort, this paper proposed a comprehensive 

hourly parametric model (UHIMS-ECHE), which can comprehensively 

investigate the effectiveness of UHI mitigation strategies by coupling with urban 

building energy use, carbon emission, human comfort and economic analysis.  

The UHIMS-ECHE model considered the primary heat sources generated from 

buildings, pavement (asphalt and dark concrete), original surface (sand and bare 

soil) and green infrastructures (parks, trees and grass). Based on the systematic 

literature review above, the UHIMS-ECHE model adopts Resistance–

Capacitance inverse approach of the grey-box model for urban building energy 

modelling as the main theory and processes, comprised of five steps: Urban 

weather generation, urban archetype, input data training, urban building energy 

simulation and calibration and validation, the process steps are shown in Fig.3-

2.  

 

Figure 3-2 Diagram of the UHIMS-ECHE model 
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3.3.1 Step 1: Urban weather generation engine 

The use of Rhinoceros, a powerful 3D computer-aided design and modelling tool, 

in conjunction with the computer visual programming language Grasshopper 

and its two plugins, Ladybug and Dragonfly, has resulted in the development of 

a novel urban weather generation engine (UWGE).  

Ladybug is a suite of environmental analysis tools to visualise and analyse 

climate data, solar radiation, daylighting, and more. Ladybug can be used to 

perform simulations to evaluate the impact of climate on the performance of a 

building or urban area. Additionally, Dragonfly is a plugin based on ENVI-met 

that expands upon the functionality of Ladybug by adding tools for energy and 

daylight analysis. Dragonfly can be used to perform energy simulations to assess 

urban building energy consumption. 

The UWGE can calculate UHI intensity and produce the urban microclimate 

condition (e.g. dry bulb temperature, dew point temperature, relative humidity, 

wind speed and direction, etc.) on the city scale by converting the meteorological 

information from available weather data.  

The UWGE combines the meteorological data from a rural weather station with 

city-specific characteristics, which are obtained from various sources such as 

city planning law, building construction law and some relevant construction 

documents (Fig.3-3.). These data include building typologies (e.g. building ages, 

building program, floor-to-floor height, etc.) and building envelopes (e.g. 

glazing ratio, roof albedo, wall albedo, etc.). Related to UHI mitigation strategies 

in building typologies and envelopes, the UWGE provides a comprehensive and 

customizable solution for predicting urban weather conditions. 
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Figure 3-3 UWGE processes in Grasshopper 

This innovative tool combines the latest advances in computer-aided design, 

programming, and meteorology to provide an accurate and reliable solution for 

predicting and mitigating the effects of the UHI phenomenon. The combination 

of meteorological data and city-specific characteristics enables the UWGE to 

generate highly realistic and informative microclimate conditions on a city scale. 

However, the UWGE requires importing urban geometry. Thus, the data for 

urban archetypes should be collected in step 2. 

3.3.2 Step 2: Urban archetype   

The development of a 3D urban model for the research city centre requires 

comprehensive data pertaining to the various components of the city and 

individual buildings. The data of city objects (e.g. climate zone, traffic 

parameters, vegetation space and pavement area, etc.) are collected from ArcGIS 

and building footprints, which are simplified and standardised by Rhinoceros 

and converted to the 3D model with the simplified building envelope, urban 

green space and pavement area.  

Each building has a unique building I.D., along with ground surface coordinates, 

and height coordinates. The simplification standards for the urban archetype are 
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based on the research conducted by Abolhassani [636]. The ground surface is 

dissolved to create an outer boundary with the Boolean-union method in 

Rhinoceros. Afterwards, the ground surface of each building is extruded to the 

average building height. Each extruded building is considered a large thermal 

zone for calculating energy demand and consumption. Although this type of 

geometry and thermal zone may cause calculation inaccuracy, it is time and 

computer efficient making it suitable for the city scale.  

Thus, the 3D urban model is merged with the UWGE, resulting in a dataset that 

can be converted into EnergyPlus weather files that accurately reflect the urban 

microclimate conditions. 

3.3.3 Step 3: Input data training 

The input parameters which can impact the building energy demand are collected 

from the local building and city plan law or related construction documents and 

corresponding specifications with detailed specifications parameters for the 

research area. To identify patterns in these criteria, the input data must undergo 

training. The target variables include construction materials data, HVAC system 

and occupancy schedule, lighting, etc.  

The occupancy schedule archetypes are categorised based on the type and age of 

the building. As it is challenging to measure the HVAC system and occupancy 

schedule with precision, the only choice is to use the occupancy behaviour 

archetype. However, since different building usages host various occupants with 

diverse behaviours, the occupancy behaviours are merely an average of several 

samples. To address this issue, a powerful statistical software Statistical Package 

for the Social Sciences (SPSS), is introduced to train independent variables to 

generate the fixed occupancy behaviour.  
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The results of this training process can then be used as inputs in subsequent 

simulation and calculation steps. The prediction of the target variable value, 

based on independent data variables, is carried out using simple linear regression. 

The R 2 value ranging from 0.95 to 0.98 indicates the reliability of dependent 

variables, resulting from the independent variable training process. Those 

trained data are severed as inputs for the next simulation and calculation step. 

3.3.4 Step 4: Simulation and calculation 

The simulation and calculation step constitutes a pivotal component of the 

UHIMS-ECHE. The comprehensive thermo-economic simulation and 

calculation model has been proposed, which includes energy saving, thermal 

comfort, carbon emissions and economic analysis.  

3.3.4.1 Urban heat island intensity 

Urban heat island intensity (UHII) is a crucial indicator of the size of UHIs in 

urbanized areas and explains the intensity of UHI. UHII is determined by 

comparing the air temperature between an urban (Tu) and a rural area (Tr). In this 

study, the air temperature in the city centre is generated air temperature (T g), the 

rural air temperature is collected by the weather station (Tw), and the UHII can 

be calculated by Eq. (6). 

𝑈𝐻𝐼𝐼 = ∆𝑇𝑔−𝑤 = 𝑇𝑔 − 𝑇𝑤                                                                                                           (6) 

3.3.4.2  Urban building energy use 

An integrated urban energy modelling platform Urban Modelling Interface 

(UMI), is selected as the energy consumption modelling tool. The UMI is A 

plugin based on the Rhinoceros tool and is developed by the Massachusetts 
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Institute of Technology for capturing operational energy, transportation energy, 

embodied energy, and on-site renewable energy [637].  

UMI requires a variety of input data to simulate urban building energy 

consumption. These input data include: 

Building information: UMI requires detailed information about the building 

envelope, HVAC systems, lighting, and other energy-related equipment. 

District energy system information: UMI requires detailed information about the 

energy production, storage, and distribution systems in a district. 

Weather Data: UMI requires historical weather data to model the impact of 

environmental factors on energy consumption, this is usually an EPW file. 

3.3.4.3 Human thermal comfort  

UMI also employs Radiance/Daysim simulation engines, which can combine 

with Grasshopper and Python programming languages. These features allow 

UMI to analyse the mutual interactions among buildings, including shadowing 

and reflections, providing a more accurate analysis of urban energy use. To 

select representative conditioned zones from buildings, UMI uses a sampling 

technique called Shoeboxer [638], which is a simplified approach used in urban 

building energy modelling to estimate the energy consumption of buildings 

within a city or urban area. Some of the key features of the shoebox model 

include: geometrical representation, homogeneous zones, single building types, 

energy consumption parameters (e.g. heating, cooling lighting, etc.) and input 

data (weather condition, building footprint, building height, occupancy, etc.) 

[639]. This technique allows for a more detailed and accurate analysis of energy 

consumption in buildings [224]. A thermal comfort generation engine (TCGE) 
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has been developed by Grasshopper (Fig.3-4.). The TCGE is capable of 

identifying various weather conditions, zone masses, and HVAC systems in 

great detail. Given the variation in individual thermal sensation [234], and the 

closely related perceived values of the comfort zone for Physiological 

Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI), 

the Predicted Mean Vote (PMV) has been introduced as an empirical index to 

indicate thermal comfort. This index is physiologically based on a steady-state 

model of heat exchanges between the human body and the ambient air [235]. 

The TCGE is capable of generating PMV, which can be utilised to analyse 

indoor thermal comfort [640]. Additionally, the Standard Effective Temperature 

(SET) is an outdoor comfort index that is based on a dynamic two-node model 

of human temperature regulation [235]. The TCGE can generate SET as well, 

which can be employed to assess outdoor thermal comfort [641]. 

 

Figure 3-4 The PMV and SET calculation model in grasshopper 

3.3.4.4 Carbon emissions   

To quantify carbon emissions associated with energy use, trend analysis is an 

aspect of technical analysis, which is adopted to determine the carbon emissions 
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of urban buildings. One of the advantages of trend analysis is its simplicity and 

can predict future carbon emissions based on past data [243]. The value of 

carbon emissions can be determined by the following Eq. (7): 

𝑦 = ∑ 𝑎𝑛
𝑛
𝑖=0 Eng𝑛                                                                                                                             (7) 

where y is the carbon emission in year n, an is the carbon emission coefficient.  

Engn is total energy use in year n. 

The future 𝑎𝑛 is calculated by Eq. (8):  

𝑎𝑛 = 𝑎𝑛−1 −
1

𝑛−1
(𝑎1 − 𝑎𝑛−1)                                                                                                    (8) 

Where an is the start year the an-1 is the carbon emission coefficient in year n-1.  

In the realm of environmental analysis, the selection of an appropriate baseline 

year holds paramount significance. This doctoral thesis adopted the advantages 

associated with initiating environmental assessments from the year 2022 (an). In 

the context of carbon emissions, the rationale for this choice is rooted in the 

accessibility of contemporary and accurate data, the faithful representation of 

present environmental and economic conditions, the potential influence of recent 

policy and technological developments, the increased comparability with 

existing research, and the improved precision in forecasting future 

environmental trends.  

3.3.4.5 Economic analysis   

Moreover, the potential carbon emissions as the criterion are used in making 

investment decisions. Another criterion in making investment decisions is 

discounted payback period (DPP), which is used to determine the length of time 

it takes to reach a breakeven point [246]. 
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The initial investment for a UHI mitigation strategy is calculated by the sum of 

capital cost and labour cost, which is shown in Eq. (9): 

𝐼𝑁𝑉𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 = 𝐶𝑜𝑠𝑡𝑐𝑎𝑝𝑖𝑡𝑎𝑙 + 𝐶𝑜𝑠𝑡𝑙𝑎𝑏𝑜𝑢𝑟                                                                         (9) 

The DPP is used to determine the investment benefits, and the cumulative net 

present value (CNPV) is introduced to identify the DPP, which is calculated by 

Eq. (10) [642].  

CNPV = ∑
𝑅𝑖

(1+𝑟)𝑖
𝑛
𝑖=1 − 𝐼𝑁𝑉𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛                                                                                (10) 

Where INVmitigation is a capital cost of new investments for the UHI mitigation 

strategies, Ri is the estimated net cash flow in the year i, r is the real discount 

rate. 

The DPP is determined by Eq. (11) 

DPP (i) =n, when CNPV=0                                                                                                       (11) 

In this step, a comprehensive simulation and calculation have been provided to 

analyse the relationship between UHI mitigation strategies with urban building 

energy use, carbon emissions and citizen thermal comfort. The method of 

economic analysis also has been presented for making investment decisions on 

UHI mitigation strategies.  

3.3.5 Step 5: Calibration and validation 

This step aims to calibrate and validate the energy performance using statistical 

indexes and disaggregated data of urban buildings for improving modelling 

accuracy and energy demand quantification. In this step, a proposed data-derived 

validation method involves comparing a dependent energy metric between 

reference buildings and the UBEM data for the cluster. The reference building 

energy use is valid if the performance is close to the median of the cluster. The 

energy metrics used are the metered data of energy use intensity (EUI).  
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According to the ASHRAE Guidelines, a correspondence between simulations 

and measurements has been proposed in this study. The Mean Bias Error (MBE) 

can indicate the prediction accuracy, which captures the average bias in the 

prediction and is calculated as Eq. (12). 

MBE =
∑ 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑈𝐼𝑖−𝑀𝑒𝑡𝑒𝑟𝑒𝑑 𝐸𝑈𝐼𝑖
𝑛
𝑖=1

∑ 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑈𝐼𝑖
𝑛
𝑖=1

                                                                           (12) 

In addition, the root mean square error (RMSE) is a good indicator to represent 

the ability of the model that describes the actual performance of the system. The 

CV (RMSE) values adopt Eq. (13). 

CV(RMSE) =
√∑ (𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑈𝐼𝑖−𝑀𝑒𝑡𝑒𝑟𝑒𝑑 𝐸𝑈𝐼𝑖)

2𝑛
𝑖=1

1

𝑛
∑ 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑈𝐼𝑖
𝑛
𝑖=1

                                                            (13) 

According to ASHARE Guide 14-2002, for a building model calibration, the 

hourly MBE values should be consistent within ±10%, and hourly CV (RMSE) 

values should be below 30% [643].  CV (RMSE) index is a measure of 

accumulated error normalised to the mean of the metered values. Thus, the 

CV(RMSE) more significantly reflects the accumulated magnitude of the error, 

and it is a better indicator of the overall prediction accuracy of the model [644]. 

3.4 Advanced Urban  heat island mitigation strategies – energy, 

carbon emission, human thermal comfort economic analysis 

model 

The UHIMS-ECHE model, which is discussed in chapter 3.3, is a tool that can 

be utilised to compute UHII and to simulate the urban microclimate conditions 

on a city scale. This can be achieved by integrating meteorological data with 

information about the characteristics of the urban area. 

The city characteristics also have to be coupled with TES technologies to assess 

the potential of UHI mitigation. In particular, the UHIMS-ECHE model can be 

https://www.sciencedirect.com/topics/engineering/root-mean-square-error
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advanced by modifying step 1 (chapter 3.31) of the original model, using TES 

as a UHI mitigation strategy (Fig.3-5). This modification is made possible by 

integrating TES technology into the model. The incorporation of TES 

technology into the model can analyse the feasibility, building energy 

performance and city micro environmental prediction by the advanced UHIMS-

ECHE model.  

 

Figure 3-5 Step 1 in advanced UHIMS-ECHE model 

Simulating TES technologies entails the computation of the free cooling 

mechanism, which operates akin to an air conditioner, albeit dispensing cool air 

to the ambient surroundings. This approach's theoretical foundation is the 

principle of energy storage, which involves capturing and absorbing solar energy 

by the TES layer and storing it in a latent heat state. This process reduces 

environmental heat gains resulting from the emission of minimal heat from the 

building envelope. In contrast, the TES layer functions as a passive cooling 

source that provides free air conditioning without any moving components [645]. 
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The thermal energy storage capacity of TES materials/systems is equivalent to 

the free cooling capacity accessible to the environment [646].  

For example, in the case of a building roof with PCM, the system absorbs energy 

from solar radiation and stores it in the PCM layer as latent heat. The PCM 

system emits only a minor amount of thermal energy as the heat is transferred to 

the indoor environment and ambient air. The heat capacity of PCM is simulated 

as the free cooling capacity. The heat transfer model encompasses all the energy 

transfer mechanisms involved in the system and ensures that the energy balance 

is maintained continually Fig 3-6 shows the advanced UHIMS-ECHE model for 

selected TES technologies in Grasshopper based on the numerical equations.  

 

Figure 3-6 Advanced UHIMS-ECHE model for selected TES technologies in 

Grasshopper based on the numerical equations 

In the context of this thesis, it is essential to acknowledge and address several 

inherent limitations and simplifications of thermal energy storage technology. 

These considerations are paramount for ensuring the accuracy and applicability 

of the Advanced UHIMS-ECHE model. Firstly, the PCM serves as a heat 

absorber during the daytime, transitioning from a solid to a liquid state (melting) 
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in the process. This phase change effectively prevents the outdoor temperature 

from escalating too rapidly, thus offering a passive cooling effect. However, 

during the night, as the PCM solidifies, it releases the heat it absorbed, this 

research consider that it necessitating the use of certain active systems to 

facilitate heat transfer through the solidification of the PCM to prevent the stored 

heat released into ambient environment. Therefore, this modelling schedules 

(Fig.3-6) only consider the daytime in this research. Besides, the neglect of 

thermal resistance between the PCM and its surrounding container or heat 

exchanger, although simplifying calculations, may not fully reflect the real-

world scenarios where such resistance can significantly affect heat transfer rates 

and temperature distribution. 

Secondly, to streamline computations and reduce complexity, one-dimensional 

heat transfer assumptions have been employed, which may not fully capture the 

multidimensional nature of heat transfer in real-world PCM systems. This 

limitation can be particularly relevant when dealing with systems that exhibit 

radial or spatial temperature variations.  

Additionally, while assuming constant material properties, such as thermal 

conductivity, specific heat, and latent heat, simplifies the modelling process, it 

may not fully account for the dynamic nature of these properties with respect to 

temperature, pressure, and phase changes. Hence, a more comprehensive 

approach involving temperature-dependent material properties is essential for 

improved accuracy, especially during phase change transitions. 

Moreover, the isothermal assumption during PCM phase change, where it is 

assumed to occur at a constant temperature, simplifies calculations but may 

overlook the intricate temperature gradients that can manifest within the PCM 
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material during these transitions. To address this limitation, future research 

should aim to incorporate phase-change-related temperature gradients into the 

modelling framework. 

The omission of natural convection effects, a common simplification in PCM 

models, can lead to discrepancies in predicting temperature profiles, particularly 

when dealing with situations involving substantial temperature differentials or 

larger PCM volumes. Future research should consider more advanced modeling 

techniques that incorporate natural convection, as it is a significant factor in 

practical applications. 

Lastly, the consideration of the impact of thermal cycling, a common 

phenomenon in practical applications, has been simplified in the PCM models. 

Accounting for thermal cycling effects, including potential material degradation 

and its influence on long-term PCM system performance, is vital for a more 

comprehensive understanding of PCM behaviour in real-world scenarios. 

4 CHAPTER IV: CONVENTIONAL URBAN HEAT 

ISLAND MITIGATION STRATEGIES 

A case study is conducted in the ENVI software and UHIMS-ECHE model. 

According to the Köppen-Geiger climate classification [647], Osaka, Japan is in 

the subtropical climate (See Fig.4-1). The latitude is 34.6937° N, and the 

longitude is 135.5023° E. Besides, in Osaka, the annual mean maximum air 

temperature is 20.08℃, the annual mean air temperature is 15.9℃, and the 

annual mean minimum is 11.75℃. The annual relative humidity of Osaka is 

65.3%. The annual average wind speed in Osaka is 4.5m/s. Wind velocity in the 

winter and spring is high, and the wind direction is often from the north 
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[648].  The fraction of urban green coverage (UGC) in Osaka is under 9%, about 

2% in the city centre [181].   

According to the 2019 annual report from Osaka Gas Company [649], the 

consumption of non-renewable energy is 92,492,775GJ, which increased by 3.40% 

in 2018, 20.14% in 2017, and 26.86% in 2016. Besides, the electricity and fuel 

consumption was 456,424(1000kWh) in 2019, which increased by 9.34% for 

2018, 8.20% for 2017, and 2.21%for 2016. Furthermore, the greenhouse gas (t-

CO2e) emissions were 5,349,768 in 2019, which increased by 3.71% in 2018, 

22.62% in 2017, and 28.47% in 2016. To promote activities of reducing climate 

impact and carbon emissions, Due to the low UGC, increased energy 

consumption and higher carbon emissions, Osaka is a typical city to analyse the 

relationship between UHI mitigation and energy consumption, GHG emissions 

and human comfort. The findings can identify a tremendously efficient approach 

for local authorities and policymakers in Osaka to manage the environment and 

energy demand. 

 

Figure 4-1 Location of research city (Osaka, Japan) 
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4.1 Introduction 

This study comprehensively evaluates the effects of urban heat island mitigation 

strategies in meteorological variations. The simulation results of each mitigation 

scenario have been compared with the base model (Scenario A) to determine the 

discrepancy, as shown in Eq. (31) 

Discrepancy =
𝑈𝐻𝐼 𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠−𝐵𝑎𝑠𝑒 𝑚𝑜𝑑𝑒𝑙 (𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴)

𝐵𝑎𝑠𝑒 𝑚𝑜𝑑𝑒𝑙 (𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴)
                       (31) 

In this study, an assessment was conducted on the diurnal and annual variations 

of the urban heat island intensity (UHII), respectively. Furthermore, it was 

demonstrated that UHI leads to an increase in the consumption of cooling energy 

and carbon emissions.  

Additionally, UHI was found to extend the duration of warm outdoor hours, 

resulting in prolonged exposure to high temperatures for residents, regardless of 

whether they are indoors or outdoors.  

Furthermore, an analysis has been conducted to evaluate the efficacy of 

conventional UHI mitigation strategies. The base model, referred to as scenario 

A, represents the existing conditions and serves as the benchmark for 

comparison. The disparity between scenario A and the other scenarios has been 

thoroughly scrutinised. Notably, all conventional and novel UHI mitigation 

measures have resulted in a reduction of UHI intensity, cooling energy 

consumption, and carbon emissions, while also enhancing both indoor and 

outdoor thermal comfort. Moreover, the costs and payback periods (DPP) 

associated with each UHI mitigation strategy have been computed. The payback 

periods range from one to six years. 

Moreover, this study includes a simulation of the effectiveness of thermal energy 

storage technologies as mitigation strategies for UHI. The analysis focused on 
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the discrepancy between scenario A and the remaining TES mitigation scenarios. 

It was found that all selected TES technologies led to a reduction in UHII, 

cooling energy consumption, and carbon emissions, while simultaneously 

improving indoor and outdoor thermal comfort. 

4.2 Validation, uncertainty and sensitive analysis 

Nowadays, numerical modelling is a capable way to help researchers advance 

UHI mitigation strategies. ENVI-met has been widely used to support 

microclimate-sensitive planning. Besides, this research should describe the 

meaningful characteristics of natural objects. In the Osaka city scale, the 

modelling process aims to simplify representing the city by computational 

methods. To ensure the certainty of simulation results, the simulation results of 

outdoor temperature (Ta) have been chosen to compare with the actual outdoor 

temperature organised by the local weather station and Japan Meteorological 

Agency (JMA). The average Ta of the local weather station is 30.19 °C and the 

average simulation Ta is 30.91°Cduring the research period. The percentage 

difference is 2.35%, which is at a deficient level. Therefore, the simulation 

results can be considered relatively close and comparable to the real values. 

Besides, according to the tutorials of ENVI-met (ENVI-met.com), the typical 

spatial resolution range is from 0.5 to 10 m. Sdeghat and Sharif (2022) studied 

that the modelled area is 280 × 510m, and the resolution is 5 m for simulating 

the urban heat island in Tehran, Iran. [650] However, the research area in this 

study is 500 × 500, which is bigger and more complex. Therefore, this study has 

considered saving the computing cost and time and combining the previous 

studies, limiting the resolution and grid cells to 10 m.  

https://www.sciencedirect.com/topics/engineering/numerical-modelling
http://envi-met.com/
https://www.sciencedirect.com/topics/engineering/grid-cell
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Additionally, it is essential for the UHIMS-ECHE model to accurately describe 

the significant attributes of authentic urban entities in subtropical city centres. 

At the urban scale, the modelling process strives to simplify the representation 

of the city through computational methods. Thus, to corroborate the efficacy of 

the UHIMS-ECHE model in this research, comparative fieldwork was conducted 

between January and December 2021. Four i-Button DS1925 data loggers, 

equipped with radiation shields, were strategically placed on each side of a 

prototypical residential building (No. 19) to measure the localised microclimate 

patterns (refer to Figure 4-2). It is noteworthy that the operating temperature 

range of the DS1925 data logger is -40°C to +85°C, and it has a temperature 

measurement accuracy of ±0.5°C [651]. Besides, the maximum amplitude of 

iButton data loggers is 46.5 dB SPL at 1.0 cm-a level, which is generally 

consider to be relatively quiet. In addition, those four sensors synchronised by 

master clock by radio transmissions. 

 

Figure 4-2 Location of data loggers for UHIMS-ECHE validation 

The average monitoring air temperature has been compared with Scenario A to 

determine the accuracy of data loggers, which is shown in Fig.4-3.  
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Figure 4-3 Accuracy of data loggers 

To obtain the cooling energy use for each building, the microclimate data from 

monitoring was converted into a monitoring EnergyPlus Weather (EPW) file, 

which was then input into UHIMS-ECHE for simulation. Building No.19 was 

selected for analysing the accuracy of UHIMS-ECHE. The cooling energy use 

and bills were simulated and calculated based on the monitoring EPW file and 

are presented in Table 4-1. Actual cooling energy use and bills were also 

collected and are shown in the same table. 

Table 4-1 Discrepancies between actual and monitoring 

 

 

Actual value for No.19 

building 

Monitoring value for 

No.19 building 

Discrepancies 

Cooling energy use 

(kWh) 

159202.54 153767.82 3.53% 

Cooling energy bill 

($) 

36811.63 35674.12 3.19% 
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The UHIMS-ECHE model demonstrates a high level of accuracy and reliability 

in representing actual urban energy use, as evidenced by the observed 

discrepancies in cooling energy use and billing in a subtropical reference 

building, which was 3.53% and 3.19%, respectively. These findings support the 

validity of the outputs of the model and highlight its potential as a valuable tool 

for assessing and optimising urban energy performance in subtropical areas. 

4.3 Urban weather generation parameters in Osaka 

To calculate the UHII for the research city centre, UWGE based on Grasshopper 

is used to generate urban microclimate files using meteorological data measured 

at the rural weather station.  

This study chooses a typical meteorological year (TMY 2007-2021) to analyse 

the energy impact of the subtropical UHI. The original hourly meteorological 

data were collected from NOAA's National Centres for Environmental 

Information (NCEI) and Japan Meteorological Agency (JMA). 

The research period is from 00:00 January to 23:00 31 December (8760 hours). 

A typical hottest summer day (02. August) was selected in ENVI-met for 

analysing the diurnal variation. The detailed input parameters are shown in Table 

4-2. 

 Table 4-2  The initialization detailed input parameters of Osaka, adopted by the 

Japan Meteorological Agency. 

category  User input 

Modelling area (L, W, H) (m)                            500×500×600 

Configuration file  

Simulation start date 00:00/01. January 
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Simulation end date                                   23:00/31. December 

Simulation period 8760 hours 

Typical hot summer day  02. August 

Typical cold winter day 11. December 

Simulation output interval for receptors (min) 30 

Meteorological inputs    

Wind direction (0=N; 90=E; 180=S; 270=W) 50° Northeast (summer); 10°North (winter) 

Wind speed measured in 10m height                     6.7 m/s (summer); 8.5m/s (winter) 

Mean roughness length (m) 0.5 

Initial atmospheric temperature (℃)               21.85 

Specific humidity in 2500m (water/kg dry 

air) 

9.0 

Relative humidity in 2m (%)  55-85 % (summer); 48–65% (winter) 

Global horizontal radiation 171.77 W/m2 

Diffuse horizontal radiation 63.63 W/m2 (winter) 

Direct normal radiation 16854.58 W/m2 

Soil inputs   

In initial soil temperature at upper layer (1-

20cm) (k) 

313 

In initial soil temperature at middle layer (20-

50cm) (k) 

315 

In initial soil temperature at lower layer 

(below 50cm) (k) 

317 

Moisture content upper layer (%) 40 

Moisture content middle layer (%) 45 

Moisture content lower layer (%) 50 

Building inputs  

Building interior temperature (℃) 26.0 

Mean heat transmission of walls (W/𝑚2𝐾) 2.0 
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Mean heat transmission of roofs (W/𝑚2𝐾) 5.0 

Mean wall albedo 0.1 

Mean roof albedo 0.2 

 

4.3.1 Conventional urban heat island mitigation scenarios 

For dissipating the excess heat, the mitigation strategies of UHI are usually 

divided into two categories, increasing urban surface albedo and 

evapotranspiration [181]. Increasing albedo is generally accomplished by 

increasing the albedo of the roof and pavement. An increase in 

evapotranspiration is completed by a combination of decreasing the distribution 

of impervious surfaces and expanding the space of vegetation in urban areas 

(shade trees, vegetated walls, and rooftop gardens) [181]. In this research, a base 

model (Scenario A) and four different UHI mitigation strategies (Scenario B to 

E) are designed to evaluate the impact of urban building energy use. The UHI 

mitigation strategies are designed [181]. All the parameters and variables of the 

buildings and city objects in scenarios A to E were simulated by UWGE to 

ultimately obtain the different urban weather data, which can reflect the urban 

microclimate changing for each scenario by adopting input variables. The results 

of UWGE calculation in the adjustment of the reference weather file used in 

subsequent simulations (in umi).  

This study possesses the capability to provide valuable support to local 

authorities, policy makers, and urban designers in their efforts to combat the 

urban heat island (UHI) phenomenon. To comprehensively understand various 

conventional UHI mitigation strategies, the study has also proposed combination 

scenarios (Scenario BC, BD, and CD). These combination scenarios aim to 

explore and analyse the implications of integrated mitigation approaches, 
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considering diverse contextual factors and complexities associated with UHI 

mitigation. Table 4-3 shows the detailed variables for each UHI mitigation 

strategies scenario. To increasing the albedo of pavements and roofs, the high 

reflective materials can be used, such as titanium dioxide paint (albedo is 

approximately 0.7-0.9 [652] [653]) and high gloss white paint (albedo is 0.5-0.9 

[654] [655]). In this study, the albedo for the cool scenarios have been set as 0.8 

[656]  [657]. 

Table 4-3 UHI mitigation strategies scenarios [181] 

    

 

Scenario A: Base model: representing the current condition with the albedo of 

asphalt roads and concrete roofs are 0.1 and 0.2, respectively. Besides, the green 

coverage ratio is 2%  

Scenario B: Cool pavement model: asphalt roads (albedo=0.1) are replaced with 

concrete pavement (white cement concrete) with higher surface albedo 

(albedo=0.8) and lower heat capacity.  

Strategies Pavement 

Albedo 

Roof 

Albedo 

Vegetation 

coverage ratio 

Scenario A [658]: Base model 0.1 0.2 2% 

Scenario B [181]: Cool pavement model 0.8 0.2 2% 

Scenario C [181]: Cool roof model 0.1 0.8 2% 

Scenario D [181]: Green space model 0.1 0.2 20% 

Scenario E [181]: Integrated model 0.8 0.8 20% 

Scenario BC: Cool urban surface model 0.8 0.8 2% 

Scenario BD: Cool pavement-Green space 

model 

0.8 0.2 20% 

Scenario CD: Cool roof-Green space model 0.1 0.8 20% 
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Scenario C: Cool roof model: concrete roof (albedo=0.2) are changed to high 

reflective roof (albedo=0.8).   

Scenario D: Green space model: increasing a green coverage ratio to 20%. The 

parameters of trees are reported in Table 4-4. The incremental increase of 

greening is not considered in this study. 

Scenario E: Integrated model: a combination of the three previous UHI 

mitigation strategies (Scenarios B, C and D).  

Scenario BC: Cool urban surface model, asphalt roads and roofs are replaced by 

white cement concrete, the albedo is 0.8. 

Scenario BD: Cool pavement-Green space model: increasing pavement albedo 

to 0.8, and green coverage to 20%. 

Scenario CD: Cool roof-Green space model: increasing roof albedo to 0.8, and 

green coverage to 20%. 

Table 4-4 Parameters of trees employed in the scenarios of Osaka 

Tress 

categories 

Tree height 

(m) 

Crown 

width (m) 
Trunk 

Leaf area 

density 

(LAD) 

Applications 

Privet 5 5 Medium High 

Roadside, 

nature 

space, etc. 

Cypress 15 3 Medium High 

Roadside, 

nature 

space, etc. 

Fescue 0.5 0.3 / / Roof 

 

4.3.2 3D urban model for Osaka 

To simulate energy consumption for a group of buildings on the city scale, it is 

essential to achieve an appropriate compromise for modelling accuracy, data 

availability, and computational costs. Due to computing cost and time saving 

and combing with the previous studies [181] [650] [671] [672], the research 

domain for urban microclimate modelling covers an area of 2.5𝑘𝑚2. This spatial 
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scale can present the atmospheric circulation for analysing the UHI phenomenon, 

which consists the typical urban land-use types: residential areas, commercial 

areas, industrial areas, roads, parks and open spaces. 

The data from ArcGIS or building footprints imported into Rhinoceros can 

represent actual urban objects, such as building space, green space, pavement 

area, etc. A plugin of Rhinoceros, Lands Design can scan and import 3D 

buildings from any spot worldwide, with the data of terrain and building height. 

To be avoided oversimplified the buildings, the detailed building information 

will be obtained, and machine-learning techniques will use to estimate uncertain 

building information. Finally, the sensitivity analysis will be performed to 

understand the impact of uncertainty in building energy modelling. Fig.4-4. 

shows the research location and area and the 3D model of the research area in 

Rhinoceros. These steps are typically generalizable to most city centres, with 

minor differences based on data structures, contexts, and preferences. 

 

(a) Building polygons simplification                               (b) Building extrusion 
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(c) GIS photo for urban research archetype (d) Simplified 3D model in 

Rhinoceros 

Figure 4-4 Polygon dissolution (a) and extrusion (b) for simplified geometry 

modelling [636].  The archetype of the research area is shown in (c), and its 3D 

model presents in (d) 

 

4.3.3 Independent and target variables 

In this study, 42 building archetypes located in Central Osaka were covered to 

evaluate the thermal properties of buildings in Osaka. The building blocks have 

been numbered from No.1 to No.42 in umi (see Fig.4-5. (d)). Each zone in the 

model represents an individual building determined by the building archetypes. 

Three types of building archetypes were classified as office buildings, residential 

buildings and retail buildings. 

Every type of building archetype includes the specific independent variables of 

the building construction, equipment, occupancy schedule and HVAC system. 

The occupancy schedule has been surveyed by the Statistics Bureau, Ministry of 

Internal Affairs and Communications [673]. The independent variables are 

collected based on the law and regulations in Japan, such as Country Report on 

Building Energy Codes in Japan [674], building standard law [675], Japan 

Sustainable Building Consortium (JSBC) and Comprehensive Assessment 

System for Built Environment Efficiency (CASBEE) [676], Japan district design 
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guide [677], etc. Those independent variables are trained by regression analysis 

from SPSS to determine the required target data. The range of R2 from 0.95 to 

0.98 indicates the required target variables of building modelling are at an 

acceptable and reliable level. The post-trained target variables are shown in 

Table 4-5. 

Table 4-5 The initialisation of detailed parameters of buildings and city input 

Building  

Category 

Building and city inputs 

Office building Residential building Retail building 

Building 

I.D.s 

1,6,7,11,14,15,16,17,20,25,26,2

7,28,29,30,33,35. 

2,3,4,5,10,13,19,22,23,24,31,3

4,36,37,38,39,40,42. 

8,9,12,18,21,32,41. 

Lifespan 

[677] 

60 years 60 years 60 years 

Window

- to-

wall- 

ratio 

(WWR) 

[675] 

[677] 

North: 40% 

South: 40% 

East: 40% 

west: 40% 

North: 40% 

South: 40% 

East: 20% 

west: 20% 

North: 40% 

South: 40% 

East: 40% 

west: 40% 

Façade 

[675] 

[677] 

U-value: 1.51 W/m2 K 

Clay brick: 60mm,  

XPS board: 20mm,  

Concrete block: 150mm,  

Fiberglass batts: 50mm,  

Gypsum Plasterboard: 20mm 

U-value: 1.51 W/m2 K 

Clay brick: 60mm,  

XPS board: 20mm,  

Concrete block: 150mm,  

Fiberglass batts: 50mm, 

Gypsum Plasterboard: 20mm 

U-value:1.51 W/m2 K 

Clay brick: 60mm,  

XPS board: 20mm,  

Concrete block: 150m,  

Fiberglass batts: 50mm,  

Gypsum Plasterboard: 20mm 

Roof 

[675] 

[677] 

U-value:2.80 W/m2 K 

XPS board: 100mm, 

Concrete MC (Lightweight): 

150mm, Concrete R.C. (Dense 

weight): 200 mm, 

 Air floor: 150mm, 

Gypsum board: 200mm. 

U-value: 2.71 W/m2 K 

Concrete MC (Lightweight): 

100m, Plywood board: 20mm,  

Fiberglass batts: 120mm, 

Air floor: 100mm, 

Gypsum Plasterboard: 200mm. 

U-value: 2.8 W/m2 K 

XPS board: 100mm,  

Concrete MC (Lightweight): 150 mm,  

Concrete R.C. (Dense weight): 200 mm,  

Air floor: 150mm,  

Gypsum board: 200mm. 
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External 

floor 

[675] 

[677] 

U-value:3.52 W/m2 K 

Concrete R.C. (Dense weight): 

150mm, XPS board: 40mm, 

Cement mortar: 20mm,  

Urethane carpet: 20mm. 

U-value: 3.39 W/m2 K 

Hardwood general: 20mm,  

XPS board: 400mm,  

Plywood board: 20mm,  

XPS board: 20mm,  

Wood floor: 2mm. 

U-value: 3.52 W/m2 K 

Concrete R.C. (Dense weight): 150 mm, 

XPS board: 400mm,  

Cement mortar: 20m,  

Urethane carpet: 20m. 

Internal 

floor 

[675] 

[677] 

U-value: 4.52 W/m2 K 

Urethane carpet: 20mm,  

Cement mortar: 20mm,   

Concrete R.C. (Dense weight): 

150mm, Air floor: 150mm,  

Gypsum Plasterboard: 20mm. 

U-value: 4.41W/m2 K 

Wood floor: 20mm,  

XPS board:10mm,  

Plywood board: 2mm,  

Air floor: 150mm,  

Gypsum board: 20mm. 

U-value: 4.52 W/m2 K 

Urethane carpet: 20mm,  

Cement mortar: 20mm,  

Concrete R.C. (Dense weight): 150mm, Air 

floor: 150mm, 

Gypsum board: 20mm. 

Partition 

[675] 

[677] 

U-value: 2.44 W/m2 K 

Gypsum plaster: 20mm,  

Softwood general: 20mm,  

Gypsum plaster: 20mm. 

U-value: 2.44 W/m2 K 

Gypsum plaster: 20mm,  

Softwood general: 20mm,  

Gypsum plaster: 20mm. 

U-value: 2.44 W/m2 K 

Gypsum plaster: 20mm,  

Softwood general: 20m,  

Gypsum plaster: 20m. 

Window 

[675] 

[677] 

U-value: 3.3 W/m2 K 

Glass clear 3: 3mm,  

Air: 6mm.  

U-value: 3.3 W/m2 K 

Glass clear 3: 3mm,  

Air: 6mm.  

 

U-value: 3.3 W/m2 K 

Glass clear 3: 3mm,  

Air: 6mm.  

 

Ventilati

on 

[674] 

[676] 

Infiltration rate: 0.35ac/h,  

Yearly schedule: Off 01.01.2021 

to 31.03.2021; 01.11.2021 to 

12.31.2021, On 01.04. 2021 to 

31.10.2021. 

Infiltration rate: 0.35ac/h,  

Yearly schedule: Off 

01.01.2021 to 30.04.2021; 

01.11.2021 to 12.31.2021, On 

01.05. 2021 to 31.10.2021. 

Infiltration rate: 0.35ac/h,  

Yearly schedule: Off 01.01.2021 to 

30.06.2021; 01.10.2021 to 12.31.2021, On 

01.07. 2021 to 30.09.2021. 

Cooling 

[674] 

[676] 

Max cooling capacity: 250W/m²,  

Max cool flow: 100m³/s/m²,  

Setpoint temperature: 24°C,  

COP: 3 

Yearly schedule: Off 01.01.2021 

to 31.03.2021; 01.10.2021 to 

12.31.2021, On 01.04. 2021 to 

30.9.2021. 

Max cooling capacity 

250W/m²,  

Max cool flow: 100m³/s/m²,  

Setpoint temperature: 24°C, 

COP:3 

Yearly schedule: Off 

01.01.2021 to 30.06.2021; Off 

01.10.2021 to 12.31.2021,  

On 01.07. 2021 to 30.9.2021. 

Max cooling capacity: 250W/m²,  

Max cool flow: 100m³/s/m², 

Setpoint temperature: 24°C,  

COP:3 

Yearly schedule: Off 01.01.2021 to 

30.04.2021; 01.10.2021 to 12.31.2021, On 

01.05. 2021 to 30.9.2021. 
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Heating 

[674] 

[676] 

Max heating capacity: 

200W/M²,  

Max heating flow 100m³/s/m²,  

Setpoint temperature: 20 °C, 

COP: 2.1 

Yearly schedule: On 01.01.2021 

to 30.04.2021; 01.10.2021 to 

12.31.2021, Off 01.05. 2021 to 

30.9.2021. 

 

Max heating capacity: 

200W/M²,  

Max heating flow 100m³/s/m²,  

Setpoint temperature: 20 °C,  

COP: 2.1 

Yearly schedule: On 

01.01.2021 to 30.04.2021; 

01.10.2021 to 12.31.2021, Off 

01.05. 2021 to 30.9.2021. 

Max heating capacity: 200W/M²,  

Max heating flow 100m³/s/m²,  

Setpoint temperature: 20 °C, 

COP:2.1 

Yearly schedule: On 01.01.2021 to 

30.04.2021; 01.10.2021 to 12.31.2021, Off 

01.05. 2021 to 30.9.2021. 

Domesti

c Hot 

water 

[674] 

[676] 

Supply temperature: 55℃ 

Inlet temperature: 16℃ 

Supply temperature: 55℃ 

Inlet temperature: 16℃ 

Supply temperature: 55℃ 

Inlet temperature: 16℃ 

Occupan

cy 

[673]  

Occupancy density: 0.55 (P/m²) 

Occupancy yearly 

Schedule:01.01.2021 to 

31.12.2021 

Occupancy density: 0.025 

(P/m²) 

Occupancy yearly 

Schedule:01.01.2021 to 

31.12.2021 

Occupancy density: 0.1 (P/m²) 

Occupancy yearly Schedule:01.01.2021 to 

31.12.2021 

 

4.4 Comprehensive meteorological assessment of conventional 

urban heat island mitigation strategies 

The evaluation of UHI mitigation strategies is of great significance, and the 

assessment of the micro-environmental performance of such strategies is crucial 

for identifying effective measures. Chapter 2.8 highlights that a combination of 

hourly annual UHII, sky view factor, net radiation, thermal radiative power, and 

mean radiation temperature are commonly used indicators for assessing the 

micro-environment variation of UHI mitigation strategies in the city centre 

micro-environment. These indicators capture different aspects of the urban 

energy balance and provide a holistic approach to understanding the urban 

microclimate. 
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Hourly annual UHII is a crucial parameter that provides insight into the UHI 

effect's intensity throughout the year. The parameter measures the temperature 

difference between urban and rural areas, with higher values indicating more 

substantial UHI effects. The sky view factor (SVF) represents the fraction of the 

visible sky from the ground level and is a critical factor in influencing solar 

radiation and thermal energy exchanges. Higher values of SVF correspond to 

less obstruction of the sky and can lead to lower temperatures. Net radiation (Rn) 

is a significant component of the urban energy balance and measures the 

difference between the incoming and outgoing radiation energy. On the other 

hand, thermal radiative power (TRP) is a measure of the thermal energy emitted 

by urban surfaces, which is influenced by surface temperature and emissivity. 

Mean radiation temperature (MRT) represents the average temperature of all 

surfaces emitting thermal radiation in an area, including the sky. The 

combination of these parameters enables the evaluation of the different heat 

transfer processes in the urban environment, such as the contribution of the urban 

surfaces' emissivity and absorption to the energy balance. 

4.4.1 Sky view factor 

The SVF is the fraction at a point in space between the visible sky and a 

hemisphere centred over the research location. The SVF serves as an index of 

urban morphology widely used for comparing thermal conditions in different 

building environments [153]. The average SVF for each simulated scenario is 

also shown in Fig. 4-6. 

 

https://www.sciencedirect.com/science/article/pii/S0360544222006247#fig6
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Figure 4-5 Four selected points to assess the SVF and the value of SVF in each 

scenario 

In certain scenarios, the SVF values have demonstrated a lack of change. This 

phenomenon can be attributed to alterations in the albedo of surfaces not directly 

impacting the visible sky area. However, an intriguing departure from this trend 

is evident in scenarios D, BD, and CD. In these cases, the SVF values have 

notably declined to as low as 0.13. This phenomenon can be attributed to the 

increased presence of green spaces, which in turn has led to the obstruction and 

coverage of the available view area towards the sky. This intriguing observation 

aligns with the broader discourse on the role of green spaces in shaping urban 

microclimates. The introduction of vegetation introduces an additional 

dimension to the urban form's intricate relationship with climatic variables. 

While urban albedo modifications may have minimal influence on SVF, the 
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incorporation of green spaces emerges as a more dominant factor in reshaping 

SVF values and, consequently, the thermal and radiative conditions within the 

urban setting. 

4.4.2 Hourly outdoor air temperature and distributions 

Fig. 4-6 shows the change in outdoor air temperature (Ta) during the research 

period for each scenario. The maximum, average, and minimum outdoor air 

temperatures are Ta−max, Ta−avg, and Ta−min for the scenarios, respectively. 

 

Figure 4-6 The change of Ta−max, Ta−avg, and Ta−min during the research period 

for each simulated scenario 

In the summertime, the maximum Ta−max of Scenario A is 35.46 °C, which is 

close to the record temperature from the meteorological station. The 

maximum Ta−max (45.64 °C) from all scenarios is observed at 12:00 in Scenario 

E during the research period. Scenario B has the lowest Ta−max (33.24 °C), which 

is the most decreased model. In the wintertime, the maximum Ta is found in 

Scenario A at 14:00, and the value is 15.21 °C. The minimum Ta−max (13.09 °C) 

have been found in Scenario B at 18:00. Besides, the distribution of Ta is 

https://www.sciencedirect.com/science/article/pii/S0360544222006247#fig2
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analysed in this research. Fig. 4-7 and Fig. 4-8 show the distribution 

of Ta−max, for each scenario in summertime and wintertime. 

https://www.sciencedirect.com/science/article/pii/S0360544222006247#fig3
https://www.sciencedirect.com/science/article/pii/S0360544222006247#fig4
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Figure 4-7 The distribution of Ta−max for each scenario in the summertime 
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Figure 4-8 The distribution of Ta−max for each scenario in the wintertime 

Scenario B has a lower temperature distribution outside the building and around 
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the street. However, scenario E has the highest temperature distribution inside 

the buildings but higher temperatures around the road and outside the buildings. 

Fig. 4-9 shows the relative percentage difference in outdoor air temperature 

compared with Scenario A (base model). In the summertime, the percentages 

of Ta−max significantly increased in Scenario B during the daytime, and it slightly 

increased during nighttime. Furthermore, the percentages 

of Ta−avg and Ta−min have been identified as the highest trend In Scenario C. This 

implies that Scenario B and Scenario C both are the great efficient model to 

decrease Ta in the summertime. However, in the wintertime, the most 

remarkable percentages tendency of the Ta−max, Ta−avg and Ta−min have been found 

in Scenario B. It indicates that Scenario B has the more efficient ability to 

decrease Ta in the wintertime. Therefore, Scenario B can be considered the most 

efficient model to reduce Ta in summer and wintertime. 

The results indicate that the performance of Scenario BC is inferior to that of 

Scenario B. This disparity may be attributed to the higher number of reflective 

surfaces in Scenario BC, which have the potential to redirect sunlight and heat 

towards nearby areas, potentially leading to discomfort or increased heat in 

neighbouring buildings or outdoor spaces. Such a situation can give rise to 

unintended consequences within the immediate environment. Moreover, an 

excess of high-albedo surfaces, which emit less thermal radiation compared to 

darker surfaces, can affect the cooling of outdoor spaces during nighttime hours.  

https://www.sciencedirect.com/science/article/pii/S0360544222006247#fig5
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Figure 4-9 The percentages of outdoor air temperature in summer and 

wintertime 

4.4.3 Net radiation 

The value of net radiation (Rn) is the difference between incoming and outgoing 

radiation of both short and long wavelengths. It depends on the temperature and 

reflectivity of the ground surface exposed to radiative exchange [163]. Fig. 4-

10 shows the change in Rn during the research period. The maximum Rn in 

summertime was found in Scenario A at 11:00, the value is 1936.01 W/ m2, and 

that happened at 12:00 in the wintertime; the value is 1257.71 W/ m2. Besides, 

the value of Rn in all scenarios significantly decreased from 15:00 p.m. to 06:00 

a.m. during sunset and nighttime. 

https://www.sciencedirect.com/science/article/pii/S0360544222006247#fig7
https://www.sciencedirect.com/science/article/pii/S0360544222006247#fig7
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Figure 4-10 The value of Rn for each scenario in summer and wintertime 

Fig. 4-11 shows the relative percentage difference of Rn, which is compared with 

Scenario A. In the summer daytime, Scenario E is the most efficient model to 

decline Rn−max, and Scenario B is the most powerful model to reduce Rn−min. 

However, in the summer nighttime, Scenario B is more efficient than others to 

decrease Rn−max, and Scenario E is the most efficient model to 

decrease Rn−min. Furthermore, in the wintertime, Scenario B generally has the 

most significant trend to decrease the Rn−max and Rn−min during the research 

period. To sum up, Scenario B is considered the most powerful model to reduce 

net radiation both in summer and wintertime. 

https://www.sciencedirect.com/science/article/pii/S0360544222006247#fig8
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Figure 4-11 The percentages tendency of net radiation 

4.4.4 Thermal radiative power 

Thermal radiative power (TRP) is used to assess the impact of the solar 

reflectance of a surface on the UHI effect [167]. According to Stefan-Boltzmann 

law, the average TRP per m2 of each element of urban surfaces in each scenario 

was calculated and shown in Fig. 4-12. 

 

Figure 4-12 The calculated average TRP per m2 of each element of urban 

https://www.sciencedirect.com/topics/engineering/solar-reflectance
https://www.sciencedirect.com/topics/engineering/solar-reflectance
https://www.sciencedirect.com/science/article/pii/S0360544222006247#fig9
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surfaces in each scenario 

In the summertime, the values of TRP in Scenario A and C were close during the 

research period. In Scenario D and Scenario E increased rapidly from 07:00 to 

14:00, then decreased until 20:00. The values of TRP in all scenarios are stable 

during the nighttime. In the wintertime, Scenario B showed the lowest trend of 

the TRP values. The values of TRP in Scenario C, D and E were close during the 

research period. 

Fig. 4-13 shows the relative percentage difference of TRP, which is compared 

with the Scenario A base model. The highest percentage trend of TRP is 

determined in Scenario B in summer and wintertime. It means that Scenario B 

is the most efficient model to decrease thermal radiative power during the 

research period. 

 

Figure 4-13 The percentages tendency of TRP 

4.4.5 Mean radiant temperature 

Mean radiant temperature (Tmrt)  is a crucial parameter for understanding the 

UHI effect, MRT is defined as the average temperature of all surfaces in a 

particular environment that is radiating energy. It is an important factor in 

determining thermal comfort and energy consumption in buildings and urban 

environments [658]. High MRT values can have negative impacts on human 

health and energy consumption. Fig. 4-14 shows the change 

https://www.sciencedirect.com/science/article/pii/S0360544222006247#fig10
https://www.sciencedirect.com/science/article/pii/S0360544222006247#fig11
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of Tmrt−max, Tmrt−min and Tmrt−avg for the scenarios. 

 

Figure 4-14 The value of Tmrt−max, Tmrt−min and Tmrt−avg in the mitigation scenario 

The maximum Tmrt−max in the summertime of all scenarios was observed in 

Scenario B at 15:00; the value is 69.29 °C. The minimum value (23.69 °C) 

of Tmrt−max was found at 05:00 in Scenario E. In the wintertime, the 

maximum Tmrt−max has also been found in Scenario B, the value is 54.98 °C. 

Fig. 4-15 shows the relative percentage difference of Tmrt, which is compared 

with Scenario A (base model). In the summertime, the stable percentages 

tendency indicated that Tmrt has decreased insignificantly in Scenario C. 

Bedside, Scenario B has reduced percentages of Tmrt in summer daytime, 

however, it has a significate increased Tmrt in the summer nighttime. The results 

of Tmrt reveal that Scenario B has the most efficient ability to decrease Tmrt in 

the summer nighttime, however, it is unsuitable to decline Tmrt in summer 

daytime. In the wintertime, the percentages of Tmrt−max altered to peak during the 

afternoon winter time in each scenario. However, the percentages of Tmrt−max are 

https://www.sciencedirect.com/science/article/pii/S0360544222006247#fig12
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all negative during the morning and night time. The results imply that all 

scenarios can decrease Tmrt in winter morning and night time. Scenario B has the 

highest negative percentages for reducing Tmrt in the wintertime. It shows that 

Tmrt is lowest in Scenario B during the wintertime. In summary, Scenario B is 

the best model to alter Tmrt during the summer daytime and nighttime. 

 

Figure 4-15 The percentage difference of mean radiant temperature in summer 

and wintertime 

4.4.6 Summary 

The different mitigation strategies were evaluated using the ENVI-met 

simulation. Several urban heat island (UHI) mitigation criteria, including 

outdoor air temperature, sky view factor, net Radiation, thermal radiative power, 

and mean radiant temperature were employed as standards to assess the 

efficiency of the UHI mitigation strategies. The simulation results of Scenario A, 

representing the Base model, were used as the reference value. The relative 

percentage differences between the UHI mitigation scenarios and Scenario A 
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were calculated to determine the effectiveness of each strategy. 

Based on the simulation results and subsequent discussions, Scenario B, 

involving the implementation of cool pavement, demonstrated promising results. 

It was found to effectively decrease outdoor air temperature by approximately 

10% in summer and 20% in winter, reduce net radiation by 40% in summer and 

20% in winter, lower thermal radiative power by 50% in summer and 40% in 

winter, and reduce thermal radiant temperature by 10% in summer and 80% in 

winter. 

Furthermore, the study revealed that increasing the albedo of urban fabric 

material and expanding vegetation coverage ratio were both efficient methods 

for UHI mitigation. However, it was observed that increasing the albedo of urban 

fabric material proved to be a more effective mitigation strategy compared to 

raising the vegetation coverage ratio (Scenario D, green space model), also the 

integrated and combination scenarios in the urban area. This is because the 

presence of trees or vegetation that obstruct ventilation in street-level can have 

several effects that may reduce the cooling potential of the integrated strategy: 

(1) Air circulation restriction: Trees and vegetation can act as physical barriers 

to the movement of air. In urban environments, air circulation is essential for 

dissipating heat and reducing the urban heat island effect. When trees obstruct 

airflow, it can lead to stagnant pockets of hot air, impeding the cooling benefits 

of the increased albedo surfaces. 

(2) Shading effect: The excessive shading can hinder the cooling effect of 

increased albedo surface, resulting in compromising the cooling capacity of the 

increased albedo surface. 

(3)Microclimate alteration: The tree and vegetation can create microclimates in 



190 

 

their immediate surroundings, which can trap heat or enhance cooling through 

transpiration and shading. If the microclimate generated by the trees counteracts 

the cooling effect of the albedo surfaces, it may lead the observed 

underperformance. 

To address the issues with tree placement obstructing city ventilation and 

compromising the performance of integrated and combined UHI mitigation 

strategies, revaluating the distributing and arrangement of trees and green spaces 

in the urban area is necessary, aim to maximise airflow and avoid blocking 

important ventilation pathways. In addition, reconsider the design of streets and 

roads to promote the better airflow, which could be implemented wider streets 

or incorporated natural ventilation channels, can improve air movement. Besides, 

strategically selecting tree species and locations to provide shade without 

negatively affecting street airflow or obstructing the cooling effects of the 

increased albedo surfaces.  

4.5  Effects of conventional urban heat island mitigation strategies 

in urban building energy use, carbon emissions, and human 

thermal comfort 

Conventional UHI mitigation strategies in this study include green roofs, cool 

roofs, cool pavement and green space. 

One of the most significant effects of UHI mitigation strategies is their impact 

on building energy use. For example, cool roofs can reduce total cooling energy 

consumption by 9.28% due to reducing the amount of cooling energy heat that 

is transferred through the roof by reflecting sunlight. 
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UHI mitigation strategies can also have a significant impact on carbon emissions. 

By reducing the amount of energy needed to cool buildings, these strategies can 

reduce the amount of carbon emissions associated with energy production.  

Finally, UHI mitigation strategies can also have a positive impact on human 

thermal comfort. By reducing the temperature of urban areas, these strategies 

can reduce the risk of heat-related illnesses and improve the overall comfort of 

people living and working in urban environments.  

4.5.1 Annual variation of urban heat island intensity 

According to chapter 3.3.1, Tg have been generated by UWGE, and the annual 

UHII for each mitigation strategy has been calculated by Eq. (1). Five difference 

scales are used to assess the discrepancies of UHII: no UHI (<0℃), minor (0-

2℃), moderate (2-4℃), medium (4-6℃), extreme (>6℃) [151]. Fig.4-16. 

presents the hourly UHII scales occupancy the annual hours (8760 hours) for 

each scenario. 
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Figure 4-16 Hourly UHII scales occupancy of the annual hours (8760 hours) 

for each scenario 

The percentage difference that the UHII of mitigation strategies have been 

compared with the benchmark (Scenario A) to determine the ability of UHII 

reduction for the mitigation strategies. All the scenarios have the ability to reduce 

the length of the hour for the light and medium UHII. However, Scenario E, BC, 

and BD increased the hour of strong UHII. Table 4-6 presents the detailed 

mitigation ability of the mitigation strategies.  

Table 4-6 Detailed mitigation ability of the mitigation strategies 

Scenario No UHI 

(<0℃) 

Minor  

(0-2℃) 

Light 

(2-4℃) 

Medium 

(4-6℃) 

Strong 

(>6℃) 

B 150.36% 2.18% -21.27% -8.82% -8.22% 

C 57.18% 14.63% -25.61% -16.82% -12.33% 

D 42.58% 10.12% -19.33% -7.33% -2.74% 
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E 122.14% 2.33% -18.70% -6.65% 1.37% 

BC -6.88% 13.38% -18.06% -6.65% 13.70% 

BD 112.17% 3.98% -19.67% -7.87% 6.85% 

CD 123.84% 2.46% -18.93% -7.06% -2.74% 

 

4.5.2 Building cooling energy use 

The cooling energy use is the total energy used for cooling space in the research 

building. In this study, the maximum cooling capacity for an HVAC system is 

100W/m², the maximum cool flow is 100m³/s/m², the setpoint temperature is 

24°C and the cooling equipment turns off from 1st January to 3rd March and 1st 

October to 31st December, turn on from 1st April to 30th September. Fig.4-17. 

show the range of urban building cooling energy use for the scenarios. All the 

monthly maximum cooling energy use happened in August, and the minimum 

cooling energy use is found in September. Besides, Scenario A (with UHI, 

without mitigation strategy) shows a significant increase in the monthly 

maximum (209410.80 kWh) and minimum (8457.17kWh) cooling energy use 

under the UHI phenomenon compared to the cooling energy use under the no 

UHI phenomenon (top left). On the contrary, all the mitigation strategies have 

abilities to decrease the maximum and minimum cooling energy use. Scenario 

C (Cool roof model) shows the lowest monthly maximum (189363.80 kWh) and 

minimum (7789.40 kWh) cooling energy use. However, Scenario E showed the 

highest maximum and minimum cooling energy use among the mitigation 

strategies, which means Scenario E has the highest peak load and cooling energy 

demand. 
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Figure 4-17 The maximum and minimum value of urban building cooling 

energy use (kWh) in each scenario 

The annual cooling energy use value in every mitigation strategy has been 

compared with the benchmark (Scenario A) to analyse their mitigation ability. 

Fig.4-18. shows the relative percentage difference in the cooling energy use 

between the benchmark and the mitigation strategies. All the UHI mitigation 

strategies have significantly reduced the annual cooling energy use in every type 

of building and total cooling energy use. The total annual cooling energy use is 

reduced from 5.65% (Scenario CD) to 9.28% (Scenario C). Moreover, the 

residential buildings show the greatest reduction in each scenario and the 

maximum reduction is appeared in Scenario C (11.41%). Office and retail 

buildings also have big potential for cooling energy saving. The highest 

reduction in office and retail buildings is Scenario C by 8.66% and 9.18%, 

respectively. This presents that increasing the roof albedo (Scenario C) is the 
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prime UHI mitigation strategy for reducing the cooling energy use and also can 

decrease the peak load of cooling energy demand during the cooling period.   

 

Figure 4-18 The relative percentage difference of the cooling energy use for 

each mitigation strategy 

4.5.3 Indoor thermal comfort 

PMV is used to indicate indoor thermal comfort in this study. The annual 

dissatisfied hour (ADH) is used to indicate the thermal sensation scale. Table 4-

7 shows the criteria for scaling indoor thermal comfort [678]. 

Table 4-7 Annual dissatisfied hour indication 

PMV value Indoor thermal comfort 

<-3 Cold 

-3 to -2 Cool 

-2 to -1 Slightly cool 

-1 to 1 Neutral 

1 to 2 Slightly warm 
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2 to3 Warm 

>3 Hot 

 

In this study, the range of Slightly warm (1<PMV<2), Warm (2<PMV<3) and 

Hot (PMV>3) have been chosen to analyse the annual warm hour and avoid heat 

stress for citizens. The clothing level of human have been set as 1clo and the 

human is set inside which the metabolic rate is 1met. 

The Hot (PMV>3) hour has not been found during the research period. Fig.4-19. 

presents that the UHI affected the PMV-ADH. When the urban microclimate 

under the UHI (in scenario A), the annual slightly warm hour in research 

buildings increased on average by 1.00% and the annual warm hour increased 

by 2.03%. UHI significantly increases the ADH and that means humans will 

suffer longer warm hours during the research period.  

The annual slightly warm hour is a total of 4181h when in retail buildings 

without UHI, and 4266h with UHI, which is increased by 0.96%. The warm hour 

is 1353h (without UHI) and 1538h (with UHI), which is an increase of 2.11%. 

Besides, in residential buildings, the slightly warm hour is 4112h (without UHI) 

and 4199h (with UHI), and the warm hour is 1501h (without UHI) and 1679h 

(with UHI). Moreover, the slightly warm hour in office buildings is 4214h and 

4306h, the warm hour is 1131h (without UHI) and 1481h (with UHI).  
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Figure 4-19 The PMV-ADH change in the research area with UHI and without 

UHI 

Fig.4-20 shows the PMV-ADH change in the mitigation strategies, compared 

with the benchmark (Scenario A). The annual warm hour has been decreased in 

every mitigation strategy (Scenario B to Scenario CD). The reduction is mostly 

evident in retail buildings that have the most potential to improve human thermal 

comfort. Besides, the maximum reduction is found in Scenario C retail buildings 

model by 0.83%. On the contrary, the slightly warm is increased in every 

scenario, which means the PMV value in the warm range is down to slightly 

warm and the urban microclimate is more suitable for citizens. 
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Figure 4-20 PMV-ADH changes in the mitigation strategies, which compared 

with Scenario A 

4.5.4 Outdoor thermal comfort 

SET is used to assess outdoor thermal comfort. The scale and temperature 

threshold have been set in Table 4-8 [679]. 

Table 4-8 SET indicator scale 

SET value (℃) Indoor thermal comfort 

<17 Slightly cool 

17-30 Neutral 

30-34 Slightly warm 

34-37 Warm 

>37 Hot 
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In this study, the range of Slightly warm (30<SET<34), Warm (34<SET<37) 

and Hot (SET>37) have been chosen to analyse the annual outdoor warm hour 

and avoid heat stress for citizens. The wind speed 2m above the ground has been 

simulated, which is the real human wind speed perception. The clothing level 

has been set as 1clo and the metabolic rate of a person walking outside at 4mph 

is 3.8met. Fig.4-21. shows that the UHI affected the SET. When the urban 

microclimate under the UHI (in scenario A), the annual slightly warm hour is 

decreased by 1.02%, the annual warm hour in research buildings is increased by 

0.97% (from 4449h to 4534h) and the annual hot hour is increased by 0.11% 

(from1902h to1912h). This presents that the SET values for the slightly warm 

hour are increased to warm and hot ranges. UHI significantly increases the warm 

and hot hours and humans will suffer longer warm hours during the research 

period.  

 

Figure 4-21 SET-ADH change in the research area with UHI and without UHI 
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Fig.14-22 shows the SET level changes in the mitigation strategies, compared 

with the benchmark (Scenario A). The hot hours have been decreased in 

mitigation strategies (Scenario B to Scenario CD), and the annual slightly warm 

hour has been increased in every mitigation strategy. This presents the SET value 

in the hot range is down to the warm range and the higher out temperature hour 

is shorter. Scenario C shows the most significant decline among all the 

mitigation strategies. 

 

Figure 4-22 SET –ADH changes in the mitigation strategies, which are 

compared with Scenario A 

4.5.5 Urban building carbon emissions 

The urban building cumulative carbon emissions in the research area have been 

calculated by Eq. (7) and Eq. (8) (see CHAPTER.3.3.4.4).  The previous an is 
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provided by TEPCO and TEPCO Energy Partner[680], the start year an is  year 

2022.  

Besides, due to the UHI significantly increased peak load, cooling demand and 

use, the carbon emissions for cooling energy use have been used to assess the 

mitigation ability. The carbon emissions a2022 to a2060 have been calculated by 

Eq. (8), which shows in Fig.4-23. Carbon neutrality have been found in 2058. 

The maximum total carbon emissions are 97.86 Kton in Scenario A is 42.79kton 

in office buildings, 13.76kton in residential buildings and 25.14kton in retail 

buildings.  For mitigation strategies, Scenario C showed the minimum total 

carbon emission of 88.78kton, 39.20kton in office buildings, 12.19kton in 

residential buildings and 22.84kton in retail buildings.  

 

Figure 4-23 The carbon emissions change in conventional UHI mitigation 

Scenario 
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4.5.6 Economic analysis 

The economic analysis is expected as a function of value in making investment 

decisions. The market values of interest rate, energy price and the increasing rate 

for Osaka, Japan are shown in Table 4-9.  

Table 4-9 The market values of interest rate, energy price and the increasing 

rate for Osaka, Japan 

 

 

Real discount 

rate r (%) 

Electricity price 

increase rate (%) 

Electricity price 

($/kWh) 

Osaka, 

Japan 

0.99 [681] 0.01 [682] 0.23 [683] 

 

The high reflective print is used to increase the roof and pavement albedo, the 

cost for high reflective print is $1.76 per m2[684]. A common street tree in 

Japan(Japanese maple tree) is used to increase the green space coverage, the cost 

is $ 15 per m2[685]. Besides, the installation cost in Japan is $12.64 per hour 

[686]. According to Eq. (9) (See chapter 3.3.4.5), the initial costs for the 

conventional mitigation scenarios are shown in Table 4-10. 

Table 4-10 Initial costs for the conventional mitigation scenarios 

Mitigation 

strategies 

Costcapital 

($) 

Costlabour 

($) 

Initial investment 

($) 

Scenario B 43652.66 343505.50 357158.17 

Scenario C 345252.89 2479543.51 2824796.40 

Scenario D 676435.92 570001.00 1246445.92 

Scenario E 1065341.48 3363059.01 4428400.49 
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Scenario BC 388905.56 2793049.01 3181954.57 

Scenario BD 720088.52 883515.50 1603604.09 

Scenario CD 1021688.81 3049553.51 4071242.32 

 

A quick return on investment with the DPP indicator is a significant motivation 

for UHI mitigation. According to Eq. (10) and Eq. (11) (See chapter 3.3.4.5.), 

the DPP of all the UHI mitigation strategies have strategies have been calculated 

and shown in Table 4-11.  

Table 4-11 Discounted payback period for each scenario 

 

Scenario 

B 

Scenario 

C 

Scenario 

D 

Scenario 

E 

Scenario 

BC 

Scenario 

BD 

Scenario 

CD 

DPP 

(Years) 

1 3 2 6 4 2 6 
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5 CHAPTER V: THERMAL ENERGY STORAGE 

TECHNOLOGIES IN URBAN HEAT ISLAND 

MITIGATION STRATEGIES  

5.1.1 Thermal energy storage technologies as urban heat island mitigation 

scenarios 

The successful implementation of TES as a UHI mitigation strategy requires 

careful consideration of various factors to ensure that the system is efficient, 

cost-effective, safe, and environmentally friendly. There are several factors have 

been considered that thermal energy storage technologies as urban heat island 

mitigation scenarios. 

Capacity: TES system should have sufficient capacity to meet thermal energy 

demands during peak hours, also to achieve maximum heat absorption. 

Technology: Different types of TES systems should be evaluated for their 

suitability based on thermal energy demand, operating conditions, and cost-

effectiveness. 

Cost: TES system cost, including initial investment, installation, and 

maintenance, should be assessed for economic feasibility. 

Environmental Impact: The environmental impact of the TES system, such as 

materials used, energy consumption, and carbon footprint, should be evaluated. 

Safety: Safety measures should be implemented to prevent accidents and ensure 

the safety of people and the environment. 
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5.1.1.1 PCM thermal performance algorithm and selection 

The properties of the PCMs have been thoroughly studied over the years. Several 

kinds of paraffin and non-paraffin organic materials have been found to be 

suitable for cooling storage [659].  

The selection of PCMs for building applications is a complex process that 

requires careful evaluation of the desired thermal performance, environmental 

factors, and materials properties. One of the key factors to consider is the melting 

point of the PCM, which should match the average daily temperature range of 

the target location to ensure proper performance. low-melting point PCMs, such 

as paraffin wax, are suitable for warm climates [660], while higher-melting point 

PCMs, such as salt hydrates, may be necessary for cooler climates [661]. 

Another important factor to consider is the thermal conductivity of the PCM. 

This property affects the rate at which heat is transferred through the material 

and can impact the melt and freeze cycles of the PCM. A lower thermal 

conductivity can reduce heat transfer, but may also lead to longer melt and freeze 

cycles. It is also important to consider the thermal stability and durability of the 

PCM over time, especially in outdoor applications where weathering and UV 

exposure can degrade some materials and reduce their thermal performance. 

During the 1980s, several forms of PCM were marketed for active and passive 

solar applications, including direct gain. Although EnergyPlus is a vastly popular 

and powerful software, which solves the heat transfer coefficient at a particular 

point on a surface only considering natural convection, without accounting for 

no turbulence [662] and less common turbulence [663]. Sensible heat flux refers 

to the convective heat flux from the building surface to the ambient air can be 

calculated by Eq. (14). 

https://www.sciencedirect.com/topics/engineering/heat-transfer-coefficient
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q𝑠 = ℎ𝑠(𝑇𝑠 − 𝑇𝑎) = ℎ𝑠∆𝑇                                                                                           (14) 

Where, hs is the transfer coefficient based on standard convection heat flow 

relationships (Table 5-1) Ta is the ambient air temperature, Ts is the surface 

temperature. 

Table 5-1 Convective heat flow correlations [662] 

Convection type Range Nusselt number (Nu) 

Natural ∆T>0, Ra<107 (laminar) 0.54Ra1/4 

Natural ∆T>0, 107<Ra<1010 (turbulent) 0.15Ra1/3 

Natural ∆T<0, 105<Ra<1010 0.27Ra1/4 

Forced Re<105 (laminar) 0.332Rex
1/2Pr1/3 

Forced 105<Re<108 (turbulent) 0.0296Rex
4/5Pr1/3 

Where, Ra is Rayleigh number, and Rex is Reynolds number. Combining the 

natural and forced Nusselt numbers into Eq. (15) to accurate the hs. 

ℎ𝑠 =

{
 
 

 
 𝛽

𝑘

𝐿𝑛
0.15𝑅𝑎𝐿𝑛

1/3
+
𝑘

𝑥
𝑅𝑓0.037𝑅𝑒𝑥

4/5
𝑃𝑟1/3,                                       𝑤ℎ𝑒𝑛 𝑇𝑠 − 𝑇𝑎 ≥ 0

𝛽
𝑘

𝐿𝑛
0.27𝑅𝑎𝐿𝑛

1/4
+
𝑘

𝑥
𝑅𝑓0.66𝑅𝑒𝑥

1/2
𝑃𝑟1/3,                      𝑤ℎ𝑒𝑛 𝑇𝑠 − 𝑇𝑎 < 0 𝑎𝑛𝑑 𝑥 < 𝑥𝑐

𝛽
𝑘

𝐿𝑛
0.27𝑅𝑎𝐿𝑛

1/4
+
𝑘

𝑥
𝑅𝑓(0.0037𝑅𝑒𝑥

4/5
− 871)𝑃𝑟1/3, 𝑤ℎ𝑒𝑛 𝑇𝑠 − 𝑇𝑎 < 0 𝑎𝑛𝑑 𝑥 > 𝑥𝑐 

           (15) 

Where β is a function which explains the relationship between the Grashof and 

Reynolds numbers, can be calculated by Eq. (16).  

β =
1𝑛(1+𝐺𝑟𝐿𝑛/𝑅𝑒𝑥

2)

1+1𝑛(1+𝐺𝑟𝑙𝑛/𝑅𝑒𝑥
2)

                                                                                      (16) 

where  𝑅𝑒𝑥 =
𝑢𝑝𝑥

𝜇
, Ra = 𝐺𝑟𝐿𝑛𝑃𝑟 and 𝐺𝑟𝐿𝑛 =

𝑔𝜌2𝐿𝑛
2∆𝑇

𝑇𝑓𝜇
2 . 

Therefore, the thicknesses or the surface temperature of PCM roof and façade 

can be calculated by Eq. (117) 

Thic =
𝑡𝑛ℎ𝑟

𝜌𝐿
(𝑇𝑝𝑐𝑚 − 𝑇𝑛)                                                                                 (17) 

Where Thic is the thickness of the PCM roof or PCM façade, Tn is air 

temperature, tn is PCM discharging time, ρ is PCM density, L is the PCM latent 

heat capacity, and hr is heat transfer coefficient. 

https://www.sciencedirect.com/topics/engineering/latent-heat-capacity
https://www.sciencedirect.com/topics/engineering/latent-heat-capacity
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Moreover, Fire resistance is another critical factor to consider for building 

applications, as the PCM must meet building codes and safety requirements. 

Some PCMs, such as paraffin wax and salt hydrates, have good fire resistance 

properties. The cost of the PCM material, as well as the cost of manufacturing 

and installing the PCM-based systems, must also be considered. 

To evaluate the performance of PCMs for building applications, several 

standardized testing procedures have been developed. For example, the ASTM 

C1728 standard [664] provides guidelines for testing and evaluating the thermal 

performance of PCMs used in construction. This standard includes tests for 

measuring the melting point, thermal conductivity, and thermal stability of 

PCMs, as well as methods for evaluating their fire resistance. 

In conclusion, the selection of PCMs for building applications is a complex 

process that requires careful consideration of multiple factors, including the 

desired thermal performance, environmental conditions, materials properties, 

and cost. Standards such as ASTM C1728 [664]can provide guidance and ensure 

that the performance of PCMs is properly evaluated, but the specific 

requirements and constraints of each project must be taken into account to 

determine the most suitable PCM for a particular application. 

Considering the accessibility and the standards mentioned above,  and the main 

disadvantages of inorganic PCMs, such as thermal conductivity mismatch, 

limited cycle life, environmental concerns, cost, seven organic commercial 

PCMs have been chosen to use in the PCM roof and PCM façade (Table 5-2)., 

In pursuit of maximising the potential of phase change material for UHI 

mitigation, various thicknesses of PCM have been utilised to explore the full 

range of possibilities. The different thicknesses of each PCM (2cm, 4cm, 6cm, 
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8cm and 10cm) is used without considering the roof structure safety and PCM 

leaking risk. By providing insights into the diverse applications of PCM at 

varying thickness levels, this study contributes valuable knowledge to support 

evidence-based policies and urban planning initiatives aimed at creating cooler 

and more resilient urban environments. Besides, by exploring the different PCM 

thicknesses serves to offer tailored and effective UHI mitigation approaches to 

policy makers, local authorities, and urban designers. 

Table 5-2 Selected PCM as UHI mitigation scenarios 

PCM Type Phase change 

temperature 

(℃) 

Density 

(kg/m3) 

Latent 

heat 

capacity 

(kJ/kg) 

Specific 

heat 

capacity 

(kJ/kg K) 

Thermal 

conductivity 

(W/m K) 

A58H Organic 58 820 240 2.85 0.18 

A52 Organic 52 810 220 2.15 0.18 

A48 Organic 48 810 230 2.85 0.18 

A43 Organic 43 780 280 2.37 0.18 

A36H Organic 36 776 300 2.3 0.22 

A32H Organic 32 820 240 2.2 0.22 

A28 Organic 28 789 265 2.22 0.21 

 

5.1.1.2 PVT systems thermal performance algorithm and selection 

In this study, the relationship between the UHI phenomenon and PVT systems 

is analysed by using a flat plate PVT collector, which are sufficient to meet the 

daily energy storage needs. For building applications, PVT systems can be 

integrated with roofs, façade, and window structures. Notably the PVT system 

incorporates solar thermal elements designed to capture and store thermal energy 
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from solar irradiance. This secondary function distinguishes the PVT system 

from traditional photovoltaic systems by enabling the utilization of solar heat. 

This stored thermal energy can be employed across various domains, including 

space heating, domestic hot water production, and industrial processes, tailoring 

its use to diverse applications and energy demands. 

As an embodiment of thermal energy storage, the PVT system plays a crucial 

role in accumulating and preserving the captured solar thermal energy. The 

stored energy is retained within a thermal storage medium, often in the form of 

a heat storage tank. This feature equips the PVT system with the ability to release 

stored thermal energy on demand, particularly during periods of limited solar 

irradiance, ensuring a continuous and reliable supply of thermal energy. 

In essence, The performance of the PVT roof can be expressed by a combination 

of efficiency expressions  [420] consisting of thermal efficiency (ηth) and 

electrical efficiency (ηPV), which are calculated as the ratio of the useful thermal 

and electrical gain of the system to the incident solar irradiation on the collector 

gap within a specific time or period. The analytical parameters of the PVT 

collector system are presented in Table 5-3. The total PVT efficiency (ηPVT) is 

used to evaluate the overall performance of the system and is calculated in Eq. 

(18), [665]: 

𝜂𝑃𝑉𝑇 = 𝜂𝑡ℎ + 𝜂𝑝𝑣                                                                                           (18) 

Table 5-3 analytical parameters of the PVT collector system 

Geometric dimensions and optical 

properties 

Abbreviation Value Units 

Number of the glass cover N 1 – 

Emittance of glass ɛg 0.88 – 

Emittance of plate ɛp 0.95 – 
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Collector tilt θ 14 ℃ 

Fluid thermal conductivity kf 0.613 W/m ℃ 

Specific heat of the working fluid Cp 4180 J/kg °C 

Back insulation conductivity kb 0.045 W/m °C 

Back insulation thickness lb 0.05 m 

Insulation conductivity ke 0.045 W/m °C 

Edge insulation thickness le 0.025 m 

Absorber conductivity kabs 51 W/m °C 

Absorber thickness labs 0.002 m 

Heat transfer coefficient from cell to 

absorber 

hca 45 W/m °C 

Heat transfer inside the tube hfi 333 W/m °C 

Transmittance τ 0.88 – 

Absorptance α 0.95 – 

 

In this study, the PVT roof system is assumed to be represented as a flat-plate 

collector with a single glazing sheet. Based on this assumption, the thermal and 

PV performance of the PVT unit was evaluated by deriving the efficiency 

parameters based on the Hottel–Whillier equations [666]. The thermal efficiency 

of a conventional flat-plate solar collector is the ratio of the useful thermal 

energy (Qu) to the overall incident solar radiation (S) and can be explained by 

Eq. (19): 

𝜂𝑡ℎ =
𝑄𝑢

𝑆
                                                                                                                                (19) 

The useful collected heat absorbed by the flat-plate solar collector can be given 

as the combined results of the average mass flow rate (ṁ), the heat capacity of 

the flowing medium (Cp) and the temperature difference at the collector inlet (Ti) 

and outlet (To) and can be calculated by Eq. (20) as: 
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𝑄𝑢 = ṁ𝐶𝑝(𝑇0 − 𝑇𝑖)                                                                                                                (20) 

Hottel–Whillier [666] equation can be used to describe the difference between 

the absorber solar radiation and thermal heat losses and can be expressed as Eq. 

(21) as follows: 

𝑄𝑢 = 𝐴𝑐𝐹𝑅[𝐺𝑇(𝜏𝛼)𝑃𝑉 − 𝑈𝐿(𝑇𝑖 − 𝑇𝑎)]                                                                                (21) 

Where,  Ac is the collector area, Ta is the ambient temperature, Ti is the inlet 

temperature, UL is the overall collector heat loss, (τα)PV is the thermal efficiency 

of  PV, GT is the solar radiation at NOCT, and FR is the heat removal efficiency 

factor, which can be calculated by Eq. (22) as follows: 

𝐹𝑅 =
ṁ𝐶𝑝

𝐴𝑐𝑈𝐿
[1 − exp (−

𝐴𝐶𝑈𝐿𝐹
′

ṁ𝐶𝑝
)]                                                                                              (22) 

Where 𝐹′ is the collector efficiency factor, which is calculated by Eq. (23) as 

follows: 

𝐹′ = [

1

𝑈𝐿

𝑈𝐿(𝐷ℎ+(𝑊−𝐷ℎ)𝐹)
] +

1

𝐶𝑏
+

1

2(𝑎+𝑏)ℎ𝑓𝑖
                                                                            (23) 

where a is the duct width, b is the duct height, Cb is the conductance of the bond 

between the fin and square tube, hfi is the heat-transfer coefficient of the fluid, 

Dh is the hydraulic diameter, and F is the fin efficiency factor expressed by Eq. 

(24) as follows: 

F =
tanh (M

𝑤−𝐷ℎ
2

)

√𝑀
𝑊−𝐷ℎ

2

                                                                                                                       (24) 

Where 

𝐷ℎ =
2𝑎𝑏

(𝑎+𝑏)
 ,  

And M = √
𝑈𝐿

𝑘𝑎𝑏𝑠𝑙𝑎𝑏𝑠+𝑘𝑝𝑣𝑙𝑝𝑣
                                                                                                      (25) 



212 

 

where kabs is the absorber thermal conductivity, labs is the absorber 

thickness, kPV is the PVT conductivity, and lPV is the PV collector thickness. The 

UL is the overall loss coefficient of the collector is the sum of the edge (Ue) and 

top (Ut) loss coefficients and can be explained by Eq. (26) as follow: 

𝑈𝐿 = 𝑈𝑒 + 𝑈𝑡                                                                                                                          (26) 

𝑈𝑒 =
𝑘𝑒𝑝𝑙

𝐿𝑐𝐴𝑐
 

𝑈𝑡 = {
𝑁

𝐶

𝑇𝑝𝑚
[
𝑇𝑝𝑚−𝑇𝑎

(𝑁+𝑓)
]
𝑒
1

ℎ𝑤
}

−1

+
𝜎(𝑇𝑝𝑚+𝑇𝑎)(𝑇𝑝𝑚

2 +𝑇𝑎
2)

(𝜀𝑝+0.00591𝑁ℎ𝑊)−1+
2𝑁+𝑓−1+0.133𝜀𝑝

𝜀𝑔
−𝑁

                        (27) 

Where  

𝐶 = 520(1 − 0.000015𝛽2)                                                                                                   (28)                                                             

𝑓 = (1 + 0.089ℎ𝑤 − 0.1166ℎ𝑤𝜀𝑝)(1 + 0.07866N)                                               (29) 

𝑒 = 0.43(1 −
100

𝑇𝑝𝑚
)                                                                                                                    (30) 

𝑇𝑚 = 𝑇𝑖 +

𝑄

𝐴𝑐

𝐹𝑅𝑈𝐿
(1 − 𝐹𝑅)                                                                                                          (31) 

where p is the collector perimeter, N is the number of glass covers, σ is the 

Stefan–Boltzmann constant, ɛp is the plate emittance, ɛg is the glass 

emittance, β is the collector tilt, Tpm is the mean plate temperature, and hw is the 

wind heat-transfer coefficient. 

5.1.1.3 Thermal energy storage technologies in urban heat island mitigation 

Scenario 

TES greatly absorb the incident solar radiation and emits and absorbs thermal 

radiation. Transferring heat via charge and discharge processes with the 

atmospheric air, and their immediate opaque environment, respectively. The 

https://www.sciencedirect.com/topics/engineering/loss-coefficient
https://www.sciencedirect.com/topics/engineering/incident-solar-radiation
https://www.sciencedirect.com/topics/engineering/thermal-radiation
https://www.sciencedirect.com/topics/engineering/thermal-radiation
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absorbed sensible and latent heat is a function of the heat transfer coefficient and 

of the temperature difference between the ambient air and the TES system 

surface [667]. To determine the suitable TES technologies, several factors 

should be considered to ensure the technology is suitable for the specific 

application.  

To absorb maximum radiation heat and reduce UHII, the energy density of the 

storage material is a crucial factor, as it determines the amount of energy that 

can be stored in a given volume. High energy density is desirable for compact 

storage systems, and materials with high energy densities, such as phase change 

materials, are often favoured for this reason. The specific heat capacity of the 

storage material is another important factor, as it determines the amount of heat 

that can be stored per unit of mass. High specific heat capacities are desirable 

for storage systems that require a large amount of energy to be stored in a small 

volume, and materials with high specific heat capacities. 

The thermal conductivity of the storage material is an important factor, as it 

determines the rate at which heat can be transferred into and out of the storage 

material. High thermal conductivity is desirable for storage systems that require 

fast charging and discharging times, and materials with high thermal 

conductivities. 

The temperature range of the storage material is a critical factor to select TES, 

as it determines the maximum and minimum temperatures at which energy can 

be stored and retrieved. The temperature range of the storage material must be 

suitable for the intended application, and materials with high temperature ranges. 

Therefore, seven TES technologies (See Table 5-4) have been selected as UHI 

mitigation scenarios to analyse the association with UHI: 

https://www.sciencedirect.com/topics/engineering/heat-transfer-coefficient
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Table 5-4 TES as UHI mitigation scenarios 

Selected TES mitigation 

scenarios 

Description 

PCM-Roof model [278] PCM panels as the uppermost layer are put in the roof, which 

directly absorb radiation 

PCM-Façade model [578] PCM panels as the outermost layer are put on the south side 

of the building wall, which absorbs radiation 

PCM-Pavement model [253] Mixing the PCM into asphalt mixture to absorb more 

radiation heat. 

 

PVT-Roof model [668] PV layers as the uppermost layer are put in the roof to absorb 

radiation, and the back side is a solar thermal collector to 

absorb the heat from PV layers. 

PVGT-Window model [669] 

[687] 

PVTG glazing replaced conventional window glazing to 

absorb radiation.  

BIPVT-Façade model [670] 

[688] 

BIPVT panels as the outermost layer are put on the south side 

of the building external wall.  

 

5.1.2 Outdoor air temperature  

The impact of TES technologies on outdoor air temperature has become an 

important issue in urban planning and design, as excessive heat accumulation in 

urban areas can have adverse effects on the health and well-being of city dwellers. 

To evaluate the effects of TES technologies on outdoor air temperature, the 

advanced UHIMS-ECHE model was used to simulate the complex processes of 

heat exchange between buildings and the urban environment. All selected TES 

technologies have analysed the effects on outdoor air temperature by the 

advanced UHIMS-ECHE model. Hourly outdoor air temperatures for each TES 

model were generated for all 8760 hours of the research period. By applying Eq. 
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(6) in Chapter 3.3.4.1, the results show that all selected TES technologies have 

the ability to reduce outdoor air temperature. Especially in summer seasons, the 

UHIIs are reduced more obviously. The results showed that all selected TES 

technologies were effective in reducing outdoor air temperature. In particular, 

the UHII reduction was more significant during the summer seasons, which are 

characterised by high temperatures and high humidity. 

The reduction in outdoor air temperature observed in this study can be attributed 

to the ability of TES technologies to store thermal energy during off-peak hours 

and release it during peak demand periods. By doing so, TES technologies can 

reduce the need for energy-intensive air conditioning systems during peak 

periods, thus reducing the amount of heat released into the outdoor environment. 

5.1.2.1 PCM-Façade model affects outdoor air temperature 

The PCM-façade model has been simulated based on the different thicknesses 

of selected PCMs. The results show PCM A36H PCM-Façade model (ranging 

from 2cm to 10cm) has the optimal performance to reduce the UHII, as 

evidenced by an average annual UHII reduction of 0.65℃ (with PCM A36H-

10cm) and a maximum hourly UHII reduction of 4.52 ℃ (with PCM-A36H, 

10cm).  Further details on the UHII reduction for each PCM façade model are 

presented in Fig.5-1. 
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Figure 5-1 UHII decrease for each PCM-façade model 
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5.1.2.2 PCM–Roof model affects outdoor air temperature 

The PCM-roof model was subjected to simulations using the advanced UHIMS-

ECHE model, with varying thicknesses of the PCM panel. The simulation results 

indicate that the use of PCM A28 (ranging from 6cm to 10cm) results in the most 

effective UHII reduction in the PCM roof model, with an average annual UHII 

reduction of 0.75℃ (with PCM-A28, 10cm) and a maximum hourly UHII 

reduction of 7.09℃ (with PCM-A28, 10cm). Additionally, when the thickness 

of PCM is 2cm and 4cm, the PCM-A36H can reduce the maximum UHII by 

2.08℃ and 5.31℃, respectively. Detailed results of UHII mitigation in the PCM 

roof model are presented in Figure 5-2. 
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Figure 5-2 UHII decrease for each PCM-Roof model 

5.1.2.3 PCM-Pavement model affects outdoor air temperature 

The PCM-pavement model was analysed using the advanced UHIMS-ECHE 

model, considering the varying thicknesses of PCMs. The simulation results 

indicate that the use of the PCM A36H- pavement model (ranging from 2cm to 

10cm) produces the most effective UHII reduction in the PCM pavement model, 

with an average annual UHII reduction of 0.42℃ (with PCM-A36H, 10cm) and 

a maximum hourly UHII reduction of 1.73℃ (with PCM-A28, 10cm). A detailed 

depiction of the UHII mitigation in the PCM-pavement model is shown in 

Figu.5-3. 
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Figure 5-3 UHII decrease for each PCM-Pavement model 
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5.1.2.4 Effects of PVT models on outdoor air temperature 

The PV/T-roof model was analysed using the advanced UHIMS-ECHE model, 

revealing that the incorporation of PV/T-roof leads to an average annual UHII 

reduction of 1.23℃ and a maximum hourly UHII reduction of 3.68℃. Figure 5-

4 provides a visualization of the UHII decrease in the PV/T-roof model." 

 

Figure 5-4 UHII decrease in PVT-Roof model 

The results of the simulation indicate that the implementation of the PVTG-

window model yields a reduction of 0.02℃ in average annual UHII and 0.19℃ 

in maximum hourly UHII. These findings are visually represented in Fig. 5-5, 

which depicts the decrease in UHII resulting from the PVG-Window model. 
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Figure 5-5 UHII decrease in PVG-Window model 

The BIPVT-façade model was simulated using the advanced UHIMS-ECHE 

model. The simulation results demonstrate that the implementation of BIPV-

façade technology can reduce the average annual UHII by 0.09℃ and the 

maximum hourly UHII by 0.76℃. These results are visually presented in Fig. 5-

6, which depicts the decrease in UHII resulting from the BIPV-façade model. 
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Figure 5-6 UHII decrease in BIPV- Façade model 

  

5.1.2.5 Summary of outdoor air temperature 

All selected TES technologies were analysed for the effect of outdoor air 

temperature to assure the ability of UHII mitigation by simulating with the 

advanced UHIMS-ECHE model. The simulation results showed that all the TES 

technologies were capable of effectively reducing the indoor air temperature in 

the building during hot weather conditions. The efficiency of each technology 

was found to be dependent on various factors such as the type of material used 

for thermal storage, the size of the storage unit, and the cooling system design. 

One of the most promising technologies found was the use of the PCMs-roof 

model for thermal storage. The simulation results present that PCM A28 (From 
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6cm to 10cm) has the best performance to reduce the UHII in the PCM roof 

model, that the average annual UHII reduction is 0.75℃ (PCM-A28, 10cm) and 

maximum hourly UHII reduction is 7.09℃ (PCM A28-10cm). 

This is due to PCMs having a high energy storage capacity and can effectively 

mitigate the temperature of the outdoor air, providing a comfortable and stable 

outdoor environment.  

It was also observed that the effectiveness of TES technologies increased with 

the increase in the size of the storage unit. This suggests that larger storage units 

could potentially provide more stable outdoor air temperatures to citizens. 

In conclusion, the use of TES technologies has the potential to mitigate the 

negative effects of urban heat islands, providing more comfortable and stable 

outdoor environments. The results of the simulation study highlight the 

importance of considering various factors such as the type of thermal storage 

material and the size of the storage unit when designing TES systems for 

buildings. 

5.1.3 Urban building cooling energy use  

To evaluate the effectiveness of thermal energy storage (TES) models as UHI 

mitigation strategies, the advanced UHIMS-ECHE model was employed to 

analyse their impact on the cooling energy consumption of urban buildings. In 

this study, the cooling energy use was defined as the total energy required to cool 

the space in the research buildings. According to Table 3-7, the coefficient of 

performance (COP) of the HVAC system was determined to be 3. The maximum 

cooling capacity was 100W/m², the maximum cooling flow was 100m³/s/m², and 

the setpoint temperature was set at 24°C. The cooling equipment was 
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programmed to turn off from 1st January to 3rd March and from 1st October to 

31st December and to turn on from 1st April to 30th September. 

 

The results of the study indicate that all TES models can improve the energy 

efficiency of buildings, thereby reducing the amount of heat generated by 

building operations. By reducing energy consumption, TES systems can help 

mitigate the UHI effect by decreasing the amount of heat generated by building 

operations. 

5.1.3.1 PCM- Façade model affects building cooling energy use 

The PCM-Façade model has been simulated by advanced UHIMS-ECHE.  

Fig.5-7. show the range of reduction for urban building cooling energy use in 

the PCM-Façade model. All the monthly maximum cooling energy use 

happened in August, and the minimum cooling energy use is found in September. 

In the PCM-Façade model, the A36H-10cm model demonstrated the highest 

efficacy in reducing annual cooling energy consumption in urban residential 

buildings, with a reduction of 22.85%. Notably, the A36H-10cm model also 

exhibited a significant reduction in total cooling energy usage (12.09%). 
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Figure 5-7 Urban building cooling energy use reduction in the PCM-Façade 

model 
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5.1.3.2 PCM- Roof model affects building cooling energy use 

The PCM-roof model was simulated using the advanced UHIMS-ECHE model, 

and Fig.5-8 displays the range of reduction in urban building cooling energy use 

resulting from the PCM-roof model. It was found that the maximum monthly 

cooling energy use occurred in August, while the minimum cooling energy use 

was recorded in September. Among the PCM-roof models, the A36H-10cm 

model demonstrated the most effective performance in reducing annual cooling 

energy use for urban buildings, with a reduction of 23.68%. Furthermore, the 

A36H-10cm model exhibited a significant reduction in total cooling energy 

usage (12.36%). 
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Figure 5-8 Urban building cooling energy use reduction in the PCM-Roof 

model  
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5.1.3.3 PCM- Pavement model affects building cooling energy use 

The PCM-pavement model was simulated using the advanced UHIMS-ECHE 

model, and Figure 5-9 presents the range of reduction in urban building cooling 

energy use resulting from the PCM-pavement model. It was observed that the 

maximum monthly cooling energy use occurred in August, while the minimum 

cooling energy use was recorded in September. Among the PCM-pavement 

models, the A36H-10cm model exhibited the most efficient performance, 

reducing annual cooling energy consumption for urban buildings by 15.53%. 

Additionally, the A36H-10cm model exhibited a significant reduction in total 

cooling energy usage (10.10%). 
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Figure 5-9 Urban building cooling energy use reduction in the PCM-Pavement 

model 
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5.1.3.1 Effects of PVT models on building cooling energy use 

The PVT-roof model was simulated using the advanced UHIMS-ECHE model, 

and Figure 5-10 displays the range of reduction for urban building cooling 

energy use in the PVT-roof model. It was found that the maximum monthly 

cooling energy use occurred in August, while the minimum cooling energy use 

was recorded in September. The most efficient performance was observed for 

the PVT-roof model used in residential buildings, resulting in a reduction 

percentage of 18.43%. Moreover, the total building cooling was reduced by 

13.46%. 

 

 
Figure 5-10 The discrepancies of urban building cooling energy use in the 

PVT-Roof model 

The PVTG-Window model was simulated using the advanced UHIMS-ECHE 

model. The simulation results are presented in Figure 5-11, which illustrates the 

range of reduction in urban building cooling energy use for the PVG-Window 
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model. It is worth noting that the monthly maximum cooling energy use occurred 

in August, while the minimum cooling energy use was recorded in September. 

The PVG-Window model was found to be most efficient in reducing cooling 

energy use in residential buildings, with a reduction percentage of 14.82%. 

Moreover, the total cooling energy use of the building decreased by 4.97%. 

 

Figure 5-11 The discrepancies of Urban building cooling energy use in the 

PVTG-Window model 

 

The BIPVT-Façade model has been simulated advanced UHIMS-ECHE. Fig.5-

12. show the range of reduction for urban building cooling energy use in the 

BIPV-Façade model. All the monthly maximum cooling energy use happened in 

August, and the minimum cooling energy use is found in September. The PVG-

Window model was found to be most efficient in reducing cooling energy use in 

residential buildings, with a reduction percentage of 8.07%. Moreover, the total 

cooling energy use of the building decreased by 5.79%. 
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Figure 5-12 The discrepancies of urban building cooling energy use in the 

BIPVT-Facade model 

5.1.3.2 Summary of thermal energy storage in building cooling energy use 

This finding has important implications for sustainable building design and 

energy management, particularly in urban areas where cooling energy 

consumption is a significant contributor to overall energy usage. The PCM-Roof 

model, which incorporates phase change materials (PCMs) into building facades, 

has emerged as a promising approach for reducing energy consumption and 

improving building performance. The A36H-10cm model has superior 

performance and it may be a particularly effective design option for residential 

buildings or total buildings in urban areas. 

Furthermore, the use of PCMs in building design has the potential to reduce 

reliance on traditional cooling systems, which often rely on energy-intensive 

technologies such as air conditioning units. This shift towards more sustainable 

building design approaches has become increasingly important as the world 
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grapples with the challenges of energy saving. The ability of the PCM-Roof 

model to reduce cooling energy consumption represents a significant step 

towards achieving these sustainability goals. 

5.1.4 Carbon emission 

The effectiveness of TES models as UHI mitigation strategies has been analysed 

using the advanced UHIMS-ECHE model to evaluate their impact on carbon 

emissions during building cooling applications. The carbon emission levels of 

each TES model have been compared with an urban base model with UHI effects 

and no mitigation strategies, as well as a rural area without UHI effects. The 

results indicate that all TES models can significantly reduce carbon emissions 

by curbing the amount of cooling energy required. Achieving carbon neutrality 

is projected to occur in 2057 in each TES mitigation scenario. 

5.1.4.1 PCM- Façade model affects carbon emissions  

To simulate the performance of PCM-Façade models, the advanced UHIMS-

ECHE model has been carried out. Fig.5-13 presents the range of carbon 

emissions resulting from the cooling energy use of urban buildings. It is observed 

that PCM integrated with façade structure has the potential to significantly 

reduce carbon emissions, depending on the specific PCM-Façade model 

implemented. 

Among the various PCM-Façade models that were simulated, the A36H-10cm 

model demonstrated the highest efficacy in reducing operational carbon 

emissions. By 2057, this model is projected to result in carbon neutrality of 

87.01Kton, highlighting the promising potential of PCM integration for 

sustainable building design. 
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Figure 5-13 The range of carbon emissions reduction resulting from the 

cooling energy use of urban buildings in the PCM-Façade model 

5.1.4.2 PCM- Roof model affects carbon emissions 

To simulate the performance of PCM-Roof models, advanced UHIMS-ECHE 

model have been carried out. Figure 5-14 depicts the range of carbon emissions 

arising from the cooling energy consumption of urban buildings. The findings 

indicate that integrating PCM into roof structures has the potential to 

considerably decrease carbon emissions, contingent on the specific PCM-Roof 

model utilized. 

Of the various PCM-Roof models examined, the A36H-10cm model 

demonstrated the highest effectiveness in mitigating operational carbon 

emissions. By 2057, this model is predicted to achieve carbon neutrality of 
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85.77Kton, underscoring the promising potential of PCM integration for 

sustainable building design. 

 

 

 
Figure 5-14 The range of carbon emissions reduction resulting from the 

cooling energy use of urban buildings in the PCM-Roof model 

5.1.4.3 PCM- Pavement model affects carbon emissions 

To simulate the performance of PCM-Pavement models, advanced UHIMS-

ECHE model have been carried out. Figure 5-15 illustrates the range of carbon 

emissions arising from the cooling energy consumption of urban buildings. The 

results indicate that incorporating PCM into pavement structures has the 

potential to considerably decrease carbon emissions, contingent on the specific 

PCM-Pavement model utilized. 
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Of the various PCM-Pavement models investigated, the A36H-10cm model 

exhibited the highest effectiveness in mitigating operational carbon emissions. 

By 2057, this model is anticipated to achieve carbon neutrality of 89.21Kton. 

 

 
Figure 5-15 The range of carbon emissions reduction resulting from the 

cooling energy use of urban buildings in the PCM-Pavement model 

  

5.1.4.4 Effects of PVT models on carbon emissions 

To simulate the performance of the PV-Roof model, the advanced UHIMS-

ECHE model has been used. Fig. 5-16 presents the range of carbon emissions 

resulting from the cooling energy use of urban buildings. It is observed that a 

PVT system integrated with a roof structure has the potential to significantly 

reduce carbon emissions. By 2057, this model is projected to result in a carbon 

neutrality of 88.06Kton. 
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Figure 5-16 The range of carbon emissions reduction resulting from the 

cooling energy use of urban buildings in the PVT-Roof model 

To simulate the performance of the PVTG-Window model, the advanced 

UHIMS-ECHE model has been used. Fig.5-17 presents the range of carbon 

emissions resulting from the cooling energy use of urban buildings. It is observed 

that PVT glazing integrated with window structure has the potential to 

significantly reduce carbon emissions. By 2057, this model is projected to result 

in carbon neutrality of 93.00ton,  
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Figure 5-17 The range of carbon emissions reduction resulting from the 

cooling energy use of urban buildings in PVTG- Window model 

The advanced UHIMS-ECHE model has been used to simulate the performance 

of the BIPVT-Facade model. Fig. 5-18 illustrates the range of carbon emissions 

arising from the cooling energy consumption of urban buildings. The findings 

indicate that integrating BIPV systems into facade structures has the potential to 

significantly decrease carbon emissions. By 2057, this model is predicted to 

achieve carbon neutrality of 92.20ton. 
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Figure 5-18 The range of carbon emissions reduction resulting from the 

cooling energy use of urban buildings in the BIPVT-Façade model 

5.1.4.5 Summary of thermal energy storage in carbon emissions 

The application of TES models has great promise for mitigating carbon 

emissions and then reducing dependence on fossil fuel-based power generation. 

Specifically, the implementation of a PCM-Roof model, designated as A36H-

10cm, has been shown to offer significant benefits in terms of reducing carbon 

emissions. This model has the potential to reduce carbon emissions to as low as 

85.77Kton by the year 2057, thereby achieving carbon neutrality. 

The use of TES models represents a promising approach for addressing the 

critical challenge of reducing carbon emissions associated with space cooling. 

These models leverage the ability to store and release energy, which enables 
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them to reduce the demand for energy during peak periods when electricity is 

typically generated through the burning of fossil fuels. By using PCM roof 

models, in particular, it is possible to harness the thermal properties of the roof 

itself to reduce the overall energy demand, thereby reducing carbon emissions. 

The implementation of the PCM roof model A36H-10cm has been shown to be 

particularly effective in this regard. This model has been found to be capable of 

reducing carbon emissions by a considerable amount and is therefore a 

promising option for achieving carbon neutrality. By harnessing the thermal 

properties of the roof in this way, it is possible to achieve significant reductions 

in carbon emissions over the long term, thereby contributing to the global effort 

to combat climate change.  

5.1.5 Human thermal comfort 

By adopting the advanced UHIMS-ECHE model, TES models have been 

analysed to determine the effects on human thermal comfort. The results present 

that TES technologies as UHI mitigation strategies can reduce indoor and 

outdoor air temperature, thus affecting human thermal comfort by regulating 

temperature and humidity levels. TES systems can help to maintain a more 

consistent air temperature, reducing temperature fluctuations that can be 

uncomfortable for humans. By storing thermal energy during off-peak periods 

and releasing it during peak periods, TES systems can reduce temperature 

fluctuations and maintain a more consistent air temperature, which can help to 

improve human thermal comfort. TES systems can also be designed to control 

humidity levels, which can help to improve indoor air quality and human health. 
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5.1.5.1 Indoor thermal comfort 

The PMV-ADS for each TES model were calculated and evaluated using Table 

4-11. Using this data, the PMV-ADS for each model was calculated and 

compared to the benchmark scenario (Scenario A). The results are shown in Fig. 

5-19. 

It is evident from Fig. 45-19 that all TES models led to a reduction in the annual 

warm hour. This is a significant finding since prolonged exposure to high 

temperatures can have negative effects on human health, particularly in 

vulnerable populations such as the elderly and children. Among the various TES 

models, the PCM-Roof model-A36H-10cm demonstrated the highest reduction 

in the annual warm hour of 0.90%. This indicates that this model is the most 

effective in reducing the impact of urban heat islands and improving thermal 

comfort for residents. 

In contrast, the slightly warm values increased in all TES models. This suggests 

that the PMV value in the warm range has shifted towards the slightly warm 

category, resulting in a more comfortable urban microclimate for citizens. This 

is a positive outcome, as it indicates that TES models can help mitigate the 

effects of urban heat islands and improve thermal comfort for residents. 

Overall, the findings suggest that TES models have the potential to significantly 

improve indoor thermal comfort. The PCM-Roof model-A36H-10cm 

demonstrated the highest reduction in the annual warm hour and achieved the 
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most significant reduction in carbon emissions. Therefore, this model is a 

promising approach to sustainable building design in urban areas. 

  

(a) PCM Façade models

 

(b) PCM Roof mdoels 
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(c) PCM Pavement models 

 

(d) PVT models 

Figure 5-19 PMV-ADH change in the TES mitigation scenarios 
 

5.1.5.2 Outdoor thermal comfort 

By applying the data in Table 4-12, the SET values for each TES mitigation 

scenario have been calculated and evaluated. The changes in SET values for the 

TES models, as compared to the benchmark (Scenario A).  
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Notably, all TES models resulted in a decrease in the annual outdoor warm level. 

Figs. 5-20 to 5-23 illustrate the changes in SET levels for the TES models when 

compared to the benchmark (Scenario A). The number of hot hours was reduced, 

while the annual slightly warm hour increased for each TES model. This 

suggests that the SET value for the hot range was shifted towards the warm range, 

and the higher outdoor air temperature hour became shorter. The findings 

suggest that the PCM-Roof model-A36H-10cm (with a reduction of 0.20%) may 
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be the most effective TES model in this context, as it exhibited the most 

significant enhancement in outdoor thermal comfort. 

 

Figure 5-20 SET change in PCM-Facade model 
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Figure 5-21 SET change in PCM-Roof model 
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Figure 5-22 SET change in PCM-Pavement model 
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Figure 5-23 SET change in PV models 

5.1.5.3 Summary of thermal comfort 

This section explores the impact of TES technologies as UHI mitigation 

strategies on human thermal comfort. Simulation results demonstrate that TES 

models have the potential to decrease indoor and outdoor air temperatures and 

enhance human thermal comfort. Various TES models were assessed using 

PMV-ADS and SET values, revealing that all models resulted in a reduction in 

the annual warm hour. The PCM-Roof model-A36H-10cm emerged as the most 

effective in enhancing thermal comfort for occupants, achieving the highest 

reduction in the annual warm hour and SET value. In summary, TES systems 

offer a promising approach to alleviate the consequences of UHIs and promote 

human thermal comfort. 
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6 CHAPTER VI: CONCLUSIONS, 

RECOMMENDATIONS AND FUTURE WORKS 

6.1 Conclusions 

In this research study, an evaluation was conducted on urban heat island 

mitigation strategies within a subtropical urban region. The aim and objectives 

of this study were to provide valuable insights that could inform the development 

of effective UHI mitigation strategies to ensure that the living conditions of 

subtropical residents are conducive to their well-being. Furthermore, the 

findings of this study could inform the development of sustainable subtropical 

cities in the future. 

The significance of this research lies in the fact that subtropical regions are often 

characterised by high temperatures, which can have negative impacts on the 

health and well-being of residents. The urban heat island effect exacerbates this 

issue, resulting in higher temperatures within urban areas than in their rural 

surroundings. Therefore, the development of effective UHI mitigation strategies 

is crucial for ensuring the comfort and well-being of residents in subtropical 

cities. 

The methodology employed in this study involved a comprehensive assessment 

of UHI mitigation strategies within a subtropical urban region. Data was 

collected through various means, including surveys, and on-site measurements. 

The data collected was then analysed using the software ENVI-met and an 

innovation model UHIMS-ECHE. 

The findings of this study revealed that various UHI mitigation strategies were 

effective in reducing temperatures, energy use, carbon emission and improving 
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human thermal comfort in subtropical areas. These included conventional 

strategies (green roofs, cool roofs, green space, etc.) and novel strategies (TES 

technologies), among others. The study also identified some challenges and 

limitations associated with the implementation of these strategies for future work. 

Overall, the results of this study provide valuable guidance for the development 

of effective UHI mitigation strategies within subtropical urban areas. The 

findings also highlight the importance of considering the unique characteristics 

of subtropical regions when designing such strategies. This study contributes to 

the growing body of knowledge on UHI mitigation strategies and can inform the 

development of sustainable subtropical cities for the future.  

6.1.1 Meteorological assessment 

The different mitigation strategies were analysed by a simulation ENVI-met. In 

this study, outdoor air temperature , sky view factor, Net Radiation , thermal 

radiative power and mean radiant temperature  as urban heat island mitigation 

criteria are standards for evaluating the efficiency of UHI mitigation strategies. 

The simulation results of Scenario A (Base model) are considered as the 

reference value. The relative percentage differences between UHI mitigation 

scenarios with Scenario A are determined. According to the simulation results 

and discussion, Scenario B cool pavement can approximately decrease the 

outdoor air temperature (10% in summer, 20% in winter); net radiation (40% in 

summer, 20% in winter; thermal radiative power (50% in summer, 40% in winter) 

and thermal radiant temperature (10% in summer, 80% in winter).  

The findings of this part underscore the efficacy of certain strategies in 

mitigating the UHI effect. Notably, both augmenting the albedo of urban fabric 

materials and expanding the ratio of vegetation coverage have demonstrated 

https://www.sciencedirect.com/topics/engineering/radiant-temperature
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their potential in effectively addressing UHI concerns. 

Specifically, the augmentation of urban albedo emerges as a robust mitigation 

strategy. Elevating the albedo of urban fabric materials proves to be a particularly 

effective measure in curbing UHI. This strategy, encompassing the modification 

of surface reflectivity, directly influences the absorption and reflection of solar 

radiation. Consequently, it contributes significantly to ameliorating the heat 

accumulation within urban environments and subsequently attenuating the UHI 

effect. Furthermore, the study reveals that an expanded vegetation coverage ratio 

can also contribute to UHI mitigation. However, an intriguing insight arises from 

the comparison with Scenario D, the green space model. The results suggest that 

while this approach introduces positive effects by enhancing greenery, it can 

concurrently impose challenges related to city ventilation. This paradoxical 

relationship highlights the intricate balance that needs to be struck between green 

space expansion and ensuring optimal airflow dynamics within urban areas. 

In light of these observations, it becomes evident that indiscriminate escalation 

of vegetation coverage might not yield the desired outcomes in mitigating UHI 

in subtropical city centres. The potential drawbacks associated with decreased 

city ventilation, arising from excessive vegetation, warrant a nuanced approach 

in the deployment of this strategy. 

Conversely, the outcomes firmly advocate for prioritizing the augmentation of 

urban albedo as a more effective and manageable UHI mitigation strategy. The 

balance between reflective surfaces and vegetated areas can be manipulated to 

ensure both efficient heat reflection and adequate ventilation. This approach 

underscores the importance of comprehensively evaluating not only the specific 

mitigation techniques but also their interplay with broader urban climatic 
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dynamics. 

6.1.2 Conventional UHI mitigation scenario in energy use, carbon emissions 

and human thermal comfort 

Several studies have attempted to address the challenge of accurately predicting 

urban building energy consumption, thermal comfort, and carbon emissions 

through the incorporation of urban heat island mitigation strategies. However, 

there remains a dearth of research that investigates the relationship between these 

variables comprehensively. Therefore, this research proposes an innovative 

model, namely the UHIMS-ECHE, which analyses the interplay between UHI 

mitigation strategies, urban building energy computation, thermal comfort, and 

carbon emissions. The notable merits of the model include the ability to calculate 

UHI intensity, accurately model building energy use by accounting for UHI 

effects, easily simulate carbon emissions and human comfort, provide direct 

visualization of simulation results, and save on computational time. 

A case study in subtropical was conducted, analysing the performance of urban 

building energy use, carbon emissions, and thermal comfort regarding UHI 

mitigation strategies. The accuracy of the UHIMS-ECHE model was verified 

through cross-validation, affirming the reliability.  

The results of the case study show that the Scenario C cool roof model ( increase 

the albedo to 0.8 in roof areas) is the most effective way to reduce annual outdoor 

air temperature, urban building cooling energy use, and carbon emission and 

improve human thermal comfort in subtropical area.  

 The effect of increased pavement albedo (Scenario B) on reducing outdoor 

temperature is due to the increased reflection of solar radiation during the 

daytime hours, which results in a reduction in the amount of energy absorbed by 
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the pavement. However, in the annual variation,  increasing roof albedo has a 

more significant effect on reducing outdoor temperature compared to increasing 

pavement albedo, as roofs are exposed to solar radiation throughout the year. 

This effect is especially pronounced during summer months and at night when 

stored heat is slowly released. Roofs have a higher potential to radiate heat back 

into the atmosphere than pavements, resulting in a more substantial reduction in 

energy absorbed by the urban environment and lower air temperatures. 

Therefore, in the diurnal variation, increasing pavement albedo has a more 

pronounced effect during the day, while increasing roof albedo has a more 

significant effect in an annual simulation model due to its cumulative effect on 

the surface energy balance. 

Furthermore, it is possible that increasing both pavement and roof albedo 

(Scenario BC) may not show the greatest reduction in outdoor temperature, even 

if all other conditions are kept the same. This is because the relationship between 

surface albedo and outdoor temperature is not linear, and there may be a point 

of diminishing returns where further increases in albedo do not result in 

significant temperature reductions. Another factor to consider is that while 

increasing albedo can reduce the amount of solar radiation absorbed by the 

surface, it can also increase the amount of solar radiation reflected back into the 

atmosphere. This can potentially lead to higher atmospheric temperatures and 

can offset some of the cooling effects of increased albedo. 

6.1.3 Thermal energy storage as urban heat island mitigation strategies  

By applying advanced models like the UHIMS-ECHE mode, thermal energy 

storage models have emerged as a promising solution to reduce the intensity of 

urban heat islands, the cooling energy use of buildings and carbon emissions. In 
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particular, TES models have shown great potential to improve human thermal 

comfort. The simulation results suggest that the PCM-Roof model-A36H-10cm 

is the most effective model to achieve these goals. 

One of the most significant advantages of thermal energy storage models is their 

ability to store energy when it is abundant and release it when it is needed. This 

process helps to reduce peak energy demand, which is one of the main 

contributors to high energy consumption and carbon emissions in urban areas. 

By reducing peak demand, thermal energy storage models can lower the strain 

on the power grid and prevent blackouts, which can be critical in extreme 

weather conditions. Moreover, the use of thermal energy storage models can 

improve the thermal comfort of building occupants both indoors and outdoors.  

The PCM-Roof model is an ideal thermal energy storage model that combines a 

phase change material (PCM) with a heat exchanger. The PCM absorbs heat 

during the day and releases it at night, while the heat exchanger improves the 

efficiency of heat transfer. This model has been shown to be effective in reducing 

the cooling energy use of buildings and decreasing carbon emissions.  

Among the various PCM-Roof models studied, simulation results have 

demonstrated that the PCM-Roof model-A36H-10cm is the most effective model 

for reducing urban building cooling energy use, and carbon emissions and 

improve human thermal comfort. This model uses a PCM layer with a thickness 

of 10cm and is installed on the roof of the building. The PCM layer absorbs heat 

during the day and releases it at night, reducing the need for air conditioning and 

decreasing energy consumption. Additionally, the PCM layer helps to regulate 

the temperature inside the building, improving thermal comfort for occupants. 

In conclusion, thermal energy storage models have significant potential to reduce 
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the energy consumption of buildings and decrease carbon emissions. By 

adopting advanced TES models like the PCM-Roof model-A36H-10cm, urban 

building cooling energy usage can be reduced while improving human thermal 

comfort. The adoption of thermal energy storage models can help mitigate the 

effects of climate change and contribute to a sustainable future. It is worth to 

notice that adding 10cm thick layer of PCM is not practical in the real situation. 

There are some way to can achieve this aim in practical. This includes exploring 

new lighter phase-change materials and heat transfer fluids to optimise the 

energy storage and release process and developing new designs for the PCM 

panel systems to achieve the 10cm thick layer can be installed in building 

application. 

 

6.2  Limitation, recommendations and future work 

The excessive heat generated by the UHI effect can lead to numerous negative 

consequences such as increased energy consumption, decreased air quality, and 

adverse health effects. To mitigate the UHI effect in urban areas, various strategies 

have been proposed, including the use of conventional mitigation strategies and 

thermal energy storage (TES) systems. To evaluate the effectiveness of TES 

systems in mitigating the UHI effect, an analysis was conducted using the advanced 

Urban Heat Island Mitigation Energy use, Carbon emissions, and Human thermal 

comfort and economic (UHIMS-ECHE) model.  

6.2.1 UHIMS-ECHE model 

To further upgrade the research on the UHIMS-ECHE model, it is important to 

address several limitations that were identified in the study. The four limitations 

that should be addressed in further research are discussed below: 
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Firstly, the UHIMS-ECHE model primarily focuses on urban building energy 

consumption, but it does not take into account the influence of urban transportation 

and infrastructure energy use. Therefore, future work should aim to consider these 

factors to develop a more comprehensive understanding of urban energy 

consumption. 

Secondly, the study presented limited and simplified UHI (Urban Heat Island) 

mitigation strategies. To achieve more precise predictions, it is recommended that 

an in-depth variation investigation of UHI mitigation strategies is conducted. This 

will enable researchers to understand the varying effects of different mitigation 

strategies on urban energy consumption and temperature. 

Thirdly, the calculation of urban building carbon emissions and economic analysis 

is currently conducted using equations. In the next step, the researcher should 

consider adding an automatic calculation to the model. This will improve the 

accuracy and efficiency of the calculations, as well as reduce the potential for errors 

that may occur when using manual calculations. 

Finally, it is important to note that the UHIMS-ECHE model was developed and 

tested in a specific geographical region. Future research should consider testing the 

model in different regions to evaluate its applicability and effectiveness in diverse 

urban environments. 

In conclusion, addressing these limitations will enhance the accuracy and scope of 

the UHIMS-ECHE model, and further advance our understanding of urban energy 

consumption and UHI mitigation strategies. 

6.2.2 Modelling limitation  

In the scope of this thesis, which conducted PCM modelling for UHI mitigation, it 

is important to recognise and address certain inherent limitations and 
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simplifications. The PCM acts as a daytime heat absorber and prevents rapid 

outdoor temperature increases by melting during the day. However, at night, it 

releases absorbed heat, necessitating active systems to transfer heat during PCM 

solidification. The research focuses only on daytime effects and simplifies 

calculations by neglecting thermal resistance between the PCM and its 

surroundings, which may not fully represent real-world scenarios. In the future 

work, the day and night cycle should be considered in research modelling. 

Besides, the one-dimensional heat transfer assumptions have been employed for 

computational efficiency, yet this may not fully capture multidimensional heat 

transfer in real-world PCM systems. Constant material property assumptions 

simplify calculations but may not account for dynamic property changes with 

temperature and phase transitions. The isothermal assumption during PCM phase 

change simplifies modelling but overlooks temperature gradients within the PCM. 

Neglecting natural convection can lead to discrepancies in temperature profiles, 

especially with substantial temperature differences or larger PCM volumes. 

Idealised geometries for PCM containers may not represent real-world scenarios 

accurately, and ignoring thermal resistance between PCM and containers can affect 

heat transfer rates. Addressing these limitations will enhance the accuracy and 

practicality of PCM models. 

6.2.3 Materials and design optimisation 

Developing new materials and designing TES systems with optimal configurations 

can improve their efficiency and effectiveness. This includes exploring new phase-

change materials and heat transfer fluids to optimise the energy storage and release 

process and developing new designs for the TES systems to maximise heat transfer 

efficiency and storage capacity. Besides, TES systems can be expensive to internal, 
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install and maintain cost. High costs can also limit the adoption of TES systems, 

which can slow down the development of the technology. Future research can focus 

on developing cost-benefit analysis models for TES systems. 
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