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The limited quantity of training data can hamper supervised machine learning

methods that generally need large amounts of data to avoid overfitting. Data aug-

mentation has a long history of using machine learning algorithms and is a straight-

forward method to overcome overfitting and improve model generalisation. How-

ever, data augmentation schemes are typically designed by hand and demand sub-

stantial domain knowledge to create suitable data transformations. This dissertation

introduces a new deep learning Generative Adversarial Network (GAN) method for

image synthesis that automatically learns an augmentation strategy appropriate for

sparse datasets and can be used to improve pixel-level semantic segmentation ac-

curacy by filling the gaps in the training set. The contributions of this thesis are

summarised as follows. (1) Initially, in the image synthesis domain, we propose two

new generative methods based on GAN that can synthesise arbitrary-sized, high-

resolution images based on a single source image. (2) Next, for the first time, by

using a loss function constrained by semantic segmentation, we introduce a new

GAN-based model that does label-to-image translation and delivers state-of-the-art

results as an augmentation strategy. (3) Additionally, this thesis presents the first

strong evidence that data density correlates with the improvement brought about

by an augmentation algorithm based on GAN.
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Chapter 1

Introduction

Computer vision is a field of study within artificial intelligence and computer sci-

ence that focuses on enabling computers to interpret and research visual information

from the world around them. For example, computer vision aims to teach computers

to recognise, interpret, and understand images and videos as humans do. This in-

volves developing algorithms and techniques that enable computers to process and

analyse images and videos to extract relevant information, such as objects, shapes,

colours, patterns, and movements. Computer vision has numerous applications, in-

cluding object recognition, facial recognition, image and video search, self-driving

cars, medical imaging, and surveillance.

Deep learning is an important and powerful tool in the field of computer vision.

Deep learning refers to a set of machine learning techniques based on artificial neu-

ral networks designed to mimic the structure and function of the human brain. In

computer vision, deep learning algorithms can automatically learn and extract fea-

tures from images and videos without manual feature engineering. This is achieved

by training the neural network on a large dataset of labelled images, where the net-

work learns to identify patterns and features that are relevant to the task at hand.

Deep learning has enabled significant advances in computer vision, particularly in

areas such as object recognition [78, 80, 105, 106], image classification [66, 100, 104,

115, 142], and image segmentation [18, 30, 36, 45, 48, 73, 132]. For example, deep

learning models such as convolutional neural networks (CNNs) have become the

state-of-the-art method for image recognition, achieving accuracy rates that rival or

exceed human performance on some tasks.

However, these deep learning techniques need massive amounts of data to fulfil
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their potential as powerful machine learning methods. Furthermore, to fulfil this

potential, standard deep neural networks need to learn hundreds of millions of pa-

rameters, requiring many training data passes. On tiny datasets, running many it-

erations can result in overfitting, which is typically solved by one or more of the

following: applying regularisation, acquiring more data and performing data aug-

mentation. The latter strategy is often restricted to randomised manipulation of an

existing dataset [26, 44, 66, 77, 113, 115]; in the image domain, for example, standard

augmentation includes horizontally flipping the source image or translating it.

Data augmentation is an efficient way to increase the quantity and diversity of

available data. Additionally it helps to teach the model about invariance in the data

domain [28]. Although there is a massive effort in developing better network ar-

chitectures [44, 47, 52, 104, 116, 120, 142], it has been shown [66, 93] that data aug-

mentation can also efficiently be used to incorporate data invariance and can sig-

nificantly boost the generalisation of existing deep learning models. Unfortunately,

an augmentation method providing an improvement for a given dataset in a given

application cannot always be successfully extended to other datasets and applica-

tions [28]. Therefore, automatically finding augmentation strategies from data is be-

coming a trend and is emerging as a promising strategy for planning augmentation

approaches [28, 29, 74, 71, 75, 125].

In this vein, this thesis presents a GAN-based system that can be viewed as an

automatically finding augmentation method for applying to the semantic segmen-

tation problem. We show that our strategy learns an augmentation policy where the

synthetic images generated by our method can be regarded as missing data points

in the training set, as shown in Figure 1.1. Based on the evidence brought by our ex-

periments, this thesis also demonstrates that data density is a factor that can hinder

the improvement provided by a GAN-based augmentation algorithm.

With our automatic learning augmentation strategy, we improve the generalisa-

tion of three state-of-the-art semantic segmentation networks, i.e. Criss-Cross Net-

work (CCNet) [53], DeeplabV3 [19] and Fully-Convolutional Network (FCN) [110].

This is a remarkable achievement if we consider that no new data or preliminary in-

formation has been provided to the model, especially considering that CCNet, FCN,

and DeeplabV3 are already among the best architectures in extracting generalisable

R.B.Arantes, PhD Thesis, Aston University 2022. 20



Chapter 1. Introduction

FIGURE 1.1: Our method in action. A t-SNE [83] plot of the extracted
VGG16’s features [116] on the Facades dataset [103] and the augmen-
tation data generated by our method. Our method provides augmen-
tation data that boost pixel-level semantic segmentation accuracy by

filling the original dataset gaps.

knowledge from any data set.

1.1 Overall Aim and Research Questions

This thesis aims to contribute to the field of computer vision, in particular to the

problem of data augmentation. Data augmentation is a crucial technique in deep

learning. It is about increasing a training dataset’s size and diversity to enhance a

machine-learning model’s performance. This is why we decided to focus on this

problem. Data augmentation involves creating new training data examples by ap-

plying various transformations to existing data. In computer vision, it can include

things like flipping, rotating, zooming, cropping, and changing the brightness and

contrast of images.

One of the main advantages of data augmentation is that it can help reduce over-

fitting, which occurs when a deep learning model becomes too specialized for the

training data and does not generalize well to new, unseen data. By increasing the

diversity of the training data through data augmentation, a model can learn to rec-

ognize underlying patterns and features in the data more robustly and therefore

perform better on new, unseen data.
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Data augmentation is not the only solution for improving the performance of

a deep learning model. Other techniques include transfer learning, where a pre-

trained model is fitted to a new dataset, and regularization, which involves adding

constraints to the model to prevent overfitting. However, data augmentation is often

a simple and effective way to improve model performance, mainly when working

with limited amounts of training data.

Data augmentation is particularly useful in image recognition tasks where there

may be limited examples of certain classes of objects or variations in how images

are captured or presented. It could also be helpful in other domains, such as natural

language processing and audio processing, where similar techniques can be used to

generate new examples from training data.

Therefore data augmentation is an important technique in deep learning that can

help improve model performance by increasing the size and diversity of the training

dataset. While it’s not the only solution, it’s often a simple and effective way to

address problems like overfitting and limited training data.

Especially, this thesis addresses the following research questions:

Q1. Synthesising an arbitrary-sized, high-resolution image from a single con-

straint source image is important in computer vision because it can be used for var-

ious applications such as image editing, image restoration, and image generation.

Hence data augmentation. Therefore, how can we synthesise an arbitrary-sized,

high-resolution image from a single constraint source image?

Q2. To what extent can deep generative modelling methods such as GAN be ap-

plied to data augmentation to improve the results of semantic segmentation models?

Q3. Does the addition of semantic loss and self-attention mechanism improve

the quality of our GAN-generated images, and if so, to what extent?

Q4. How does the density of the dataset impact the enhancement brought about

by the GAN-generated images as an augmentation method for the per-pixel classifi-

cation problem?
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Research questions Q2, Q3, and Q4 are mainly related to the data augmentation

problem, and research question Q1 is related to the image synthesis problem. As

explained in the previous paragraph, image synthesis is associated with the data

augmentation problem; therefore, we decided to investigate it.

1.2 Contributions

This section describes the contributions developed to address the research questions

presented in the previous section. The work detailed in this thesis investigates each

of these research questions and contributes to advancing the state of the art in com-

puter vision as follows:

C1. We cover Q1 in two steps. Initially, we investigate the texture synthesis

process by proposing a method called QuiltGAN that generates high-resolution im-

ages based on a single constraint source image. Next, we propose a new method

called randomly conditioned GAN or abbreviated as rcGAN. It also synthesises high-

resolution images based on a single constraint image similar to the proposed Quilt-

GAN system. However, it is much more efficient. Our rcGAN algorithm can produce

an almost infinite collection of variations from a single input image with sufficient

variability while preserving essential large-scale constraints;

C2. To answer question Q2, we present two new generative models, one based

on the CycleGAN [140] model and the other based on the SPADE [92] model. We

demonstrate that these two models alone can deliver what can be considered a suit-

able machine learning augmentation strategy for semantic segmentation. However,

further improvements can be added with our new semantic reinforcement loss or a

self-attention [136] mechanism;

C3. To answer Q3, we applied several variants of the CycleGAN and SPADE

models to four different datasets, three among them are public datasets and stan-

dards in the computer vision literature, and studied the influence of the synthetic
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images generated by these models on the performance of three different semantic

segmentation models. Using the FID [49] metric, we demonstrate that image quality

improves when our models are enhanced with our semantic loss or self-attention

mechanism;

To address Q4, we propose a density assessment metric that we use to access

dataset density and relate it to semantic segmentation performance. Later, we demon-

strated that data density is a factor that can affect the performance brought about

when using GAN’s generated images as a data augmentation method for semantic

segmentation models. This is because data augmentation allows variations of the ex-

isting samples, effectively increasing the amount of data the model can learn from.

When the dataset is sparse, data augmentation methods can generate new samples

and improve model performance. On the other hand, if the dataset is already dense,

then the effectiveness of data augmentation methods may be limited. In this case,

adding more examples through data augmentation may provide little benefit.

1.3 Thesis Outline

This thesis is structured in four parts. The first part is the introduction, in which

the motivations, contributions and basic techniques are detailed. The second part

describes the proposed algorithm synthesising high-resolution images based on a

single restriction image source. The third part contains our machine learning aug-

mentation strategy method. Finally, in the last part, the conclusions and final con-

siderations are presented.

Part I. Introduction and Background

CHAPTER 2 presents the technical basis and fundamental computer vision tech-

niques applied in the following parts of the thesis, such as Adversarial Generative

Network (GAN), semantic segmentation and evaluation metrics.
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Part II. Image Synthesis Algorithm

In this part, we propose two deep generative models based on conditional GAN

(cGAN) that synthesise images based on a single source image.

CHAPTER 3 presents the first method, named QuiltGAN, that is aimed to gen-

erate texture and is inspired by the Image Quilting algorithm proposed by Efros et

al. [34].

CHAPTER 4 presents the second method, named rcGAN, which can be regarded

as an evolution of the QuiltGAN algorithm, which is aimed to synthesise arbitrary

sized images based on a single constraint source image.

Part III. Machine Learning Augmentation

In this part, we present two improvements in deep generative models based on

GANs that aim to use them as a data augmentation method.

CHAPTER 5 presents our first augmentation method that is based on Cycle-GAN

[140]. This method can improve the overall performance of a semantic segmenta-

tion model and is named CSC-GAN. It aims to synthesise images based on a new

cycle-consistent, adversarially trained image-to-image translation with a loss func-

tion constrained by semantic segmentation.

CHAPTER 6 presents our second augmentation approach based on the SPADE

model [92], connected with the self-attention adversarial network (SAGAN) [136],

which enables attention-driven, long-range dependency modelling for image syn-

thesis tasks. Moreover, it can provide further improvements compared to our previ-

ous CSC-GAN method.

Part IV. Conclusions and Final Remarks
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Chapter 7 summarises the work presented in this thesis, presents the conclusions

and highlights future lines of research.
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Background

This chapter provides an introduction to the fundamental computer vision concepts

that serve as a starting point for this work.

2.1 Parametric and Non-Parametric Methods

Synthesising realistic and high-resolution images is one of the most challenging

tasks in computer vision and machine learning investigation areas. It is impor-

tant in computer vision because it can be used for various applications such as im-

age editing, restoration, image generation, and, consequently, data augmentation.

The methods developed so far can be grouped into parametric and non-parametric.

Non-parametric methods have a long history and are typically based on examples

or data-driven. This means that they exploit image pixels borrowed from existing

images used as examples [11, 21, 35, 46]. Consequently, non-parametric methods of-

ten generate realistic images. Still, they need more generalisation capability as they

are restricted by borrowing existing pixels and textures from the source dataset and

are incapable of generating new patterns. Conversely, parametric approaches are

trained to reproduce the realism of real image datasets while maintaining a level of

randomness and variety that non-parametric models do not achieve. Deep learning

models have shown a superior ability to generate realistic images that are different

from the training dataset [16, 60].
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2.2 Generative Adversarial Network (GAN)

The introduction of generative adversarial networks (GAN) by Goodfellow et al.

[43], provides a new approach for image synthesis in computer vision. Compared

with traditional supervised machine learning algorithms, generative adversarial net-

works employs the concept of adversarial training, in which two models are simul-

taneously trained: a generative model G that captures the data distribution, and a

discriminator model D that estimates the probability that a sample came from the

training data rather than G. To learn a generator distribution pg, over the data x, the

generator builds a mapping function from a prior noise distribution pz(z) to data

space as G(z; θg). Moreover, the discriminator, D(x; θd), outputs a single scalar rep-

resenting the probability that x came from the training data instead of pg.

G and D are both trained simultaneously. The parameters θg for G are adjusted

to minimise log(1− D(G(z))), and the parameters θd for D are adjusted to max-

imise log(D(X)), as if they are following the two-player min-max game with value

function V(G, D):

min
G

max
D

V(D, G) = Ep∼pdata [log(D(x))] + Ez∼pz(z)[log(1− D(G(z)))]. (2.1)

GANs are a type of parametric method widely applied for image synthesis and

once trained, the generator can be used to synthesise images based on a noise vector

seed. When compared to blurry and low-resolution results from other deep learn-

ing methods [65, 1], GAN-based methods [101, 139, 84, 55] generate more realistic

results on higher resolution and richer details.

2.3 Conditional GAN

A conditional GAN (cGAN) was first introduced by Mirza and Osindero in [87],

where the authors proposed that a GAN can be extended to a conditional model

if both the generator and discriminator are conditioned on some extra information

y. This could be any auxiliary information, such as class labels or data from other

R.B.Arantes, PhD Thesis, Aston University 2022. 28



Chapter 2. Background

modalities. The conditioning can be performed by feeding y into both the discrim-

inator D and generator G as an additional input layer. In the generator, the prior

input noise z, randomly sampled from a uniform Gaussian, pz(z), and y are com-

bined in a joint hidden representation. The proposed objective function is

min
G

max
D

V(D, G) = Ep∼pdata [log(D(x|y))] + Ez∼pz(z)[log(1− D(G(z|y)))]. (2.2)

In the generator the prior input noise pz(z), and y, the condition or constraint,

are combined. In the discriminator x and y are presented as inputs to the discrimi-

nator. We also propose the use of conditional GAN in our rcGAN algorithm, but the

objective function we are proposing is simpler, as we condition only the generator,

and is expressed as

min
G

max
D

V(D, G) = Ep∼pdata [log(D(x))] + Ez∼pz(z)[log(1− D(G(z|y)))]. (2.3)

The noise vector z is needed because otherwise the generator G would produce

deterministic outputs, and therefore fail to meet any distribution of the input data.

2.4 Semantic Segmentation

Currently, some of the most critical computer vision problems are image classifica-

tion [123], object detection [124], and segmentation [53, 19, 110] in ascending order

of difficulty. The image classification problem consists in associating a label to each

object present in an image. In object detection, one more step is to try to identify the

place where objects are present with the help of a bounding box. Finally, image seg-

mentation brings the classification problem to a new level by accurately detecting

the exact boundary of objects in the image. Also known as per-pixel classification,

image segmentation or semantic segmentation performs its task by assigning a label

to each pixel in a source image. See Figure 2.1 for an example where each object type

has its own label or colour. Cars are represented in blue, roads in magenta, and so

R.B.Arantes, PhD Thesis, Aston University 2022. 29



Chapter 2. Background

FIGURE 2.1: Semantic Segmentation. Image segmentation performs
its task by assigning a label to each pixel in a source image. This
example is taken from the Cityscapes dataset [27], one of the datasets

we use in our work.

on. We apply our automatic learning augmentation strategy to improve the general-

isation performance of current state-of-the-art semantic segmentation networks, as

described in Part 6.4.

2.5 Mean Intersection-Over-Union (mIoU)

The Jaccard Index, also acknowledged as the Intersection over Union (IoU), is the

most common evaluation metric for segmentation, object detection, and tracking

tasks. It is a statistic used to assess the similarities between two sets of samples. The

measurement highlights the similarity between finite sample sets and is defined as

the size of the intersection divided by the size of the union of two sample sets. The

mathematical formula of the index is

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B|− |A ∩ B| (2.4)

where 0 ≤ J(A, B) ≤ 1, and if A and B are both empty, define J(A, B) = 1.

To calculate the mean intersection-over-union, first calculate the IoU for each

semantic class and then calculate the average over the classes. The mIoU metric is

used in all our experiments in part 6.4 to compare the performance of our semantic

segmentation models under the influence of different augmentation methods.
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2.6 Fréchet Inception Distance (FID)

Introduced by Heusel et al. in [49], Fréchet inception distance, or FID for short, cap-

tures the similarity of synthetic images to real images. Given the distribution p(.) of

the model samples and the distribution pw(.) of the samples from the real images,

the FID is calculated as the difference between two Gaussians distributions, which is

measured by the Fréchet distance [37], also known as Wasserstein-2 [126] distance.

The Fréchet distance d(., .) between the Gaussian with mean and covariance (m, C)

obtained from p(.) and the Gaussian (mw, Cw) obtained from pw(.) is the FID metric,

which is given by [33]

d2((m, C), (mw, Cw)) =‖m−mw‖2
2 + Tr(C + Cw − 2(CCw)

1/2) (2.5)

where‖.‖2 is the Euclidean norm and Tr denotes the trace of a matrix.

FID is the most popular metric for measuring the feature distance between real

and generated images. Therefore, we use the FID in part 6.4 in our experiments to

compare the GAN-generated images with the ones from the real world.

2.7 Summary

In this chapter, we briefly present the difference between parametric and non-parametric

generative models and Adversarial Generative Networks (GAN). We also present

the necessary background that contributes to the implementation of our generative

models based on deep learning, like conditional GAN and the FID metric used to

compare our synthetic images with the ones from the real world. Then, in the fol-

lowing chapters, we will discuss in depth the relevant literature related to our con-

tributions listed in Section 1.2.
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Chapter 3

Texture Synthesis

In this chapter, we address research question 1 (outline in section 1.2). We study

the image synthesis process, which artificially generates images that contain some

particular requested content. A long-standing goal in computer vision is to syn-

thesise images with desired characteristics, such as the presence of specific objects,

textures and other relevant semantic information. Instead of recreating an image

from scratch, in recent decades, computer vision scientists have explored the idea

of taking real-world samples as images and using them to synthesise new visualisa-

tions. With the advent of generative models of deep learning, the image synthesis

process was taken to a new level, as it is now possible to synthesise an image based

on text [102, 133, 137], label [92, 12] and other images [140, 55, 79, 24, 90]. More than

that, instead of extracting patterns from the source images, deep learning methods

can synthesise new patterns that are not present in the source images, but that also

belong to the same data distribution. Therefore, a synthetic image generated by a

deep generative model is a strong candidate for data augmentation, as it can in-

crease the diversity of images that are seen by a model and consequently contribute

to the improvement of its performance [41]. This assumption is key to our research,

and we aim to find ways to generate samples that can improve the performance of

Semantic Segmentation models.

This chapter proposes a deep generative model based on conditional GAN (cGAN)

[87] that synthesises images based on a single source image. This method, named

QuiltGAN, is aimed to generate texture and is inspired by the Image Quilting algo-

rithm proposed by Efros et al. [34].

The remainder of this chapter is organised as follows: Related work on image
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synthesis and texture generation is reviewed in Section 3.1, the proposed model is

detailed in Section 3.2 and the experimental results are presented in Section 3.3. Fi-

nally, conclusions are summarised in Section 3.5.

3.1 Related Work

Generative Adversarial Networks (GAN) [43] described in 2 provide a new ap-

proach to image synthesis in computer vision. Compared to traditional supervised

machine learning algorithms, GAN employs the concept of adversary training, in

which two models are trained simultaneously: a generative model, G, which gener-

ates images from a data distribution, and a discriminative model D, which tries to

determine if a sample came from the training data, rather than G.

Deep Convolutional Generative Adversarial Network (DCGAN) [101], have a

specific style of architecture, bridging the gap between the achievement of CNNs

for supervised learning and unsupervised learning. The DCGAN architecture was

widely adopted [42], including our method described in this chapter, where we join

the DCGAN architecture and the conditional GAN (cGAN) [87] approach. A con-

ditional GAN (cGAN) was first introduced by Mirza et al. [87], where the authors

proposed that a GAN can be extended to a conditional model if both the genera-

tor and discriminator are conditioned on some extra information y. This could be

any auxiliary information, such as class labels or data from other modalities. The

conditioning can be performed by feeding y into both the discriminator and gener-

ator as an additional input layer. In the generator, the prior input noise z, randomly

sampled from a uniform Gaussian, pz(z), and y are combined in a joint hidden rep-

resentation.

Early work on texture and image synthesis related to the method presented here

is proposed by Iizuka et al. [54]. The authors present a triple network architecture for

inpainting: a completion network, a global context discriminator and a local context

discriminator. The completion network is fully convolutional and used to complete

the image, while both the global and the local context discriminators are auxiliary

networks used exclusively for training. These discriminators are used to determine

whether or not an image is consistent. The global discriminator takes the full image
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as input to recognise global consistency of the scene, while the local discriminator

looks only at a small region around the completed area in order to judge the qual-

ity of more detailed appearance. The method proposed by Iizuka et al. [54] can be

used to complete an extensive variety of scenes and also can generate fragments

that do not appear elsewhere in the image. Our method can also be regarded as an

inpainting method because it uses conditional GANs to generate blocks of images

complementary to a given model. However, differently from most of the proposed

methods listed here, we aim to create an entirely new image from scratch based on a

given model. This is the novelty of our proposed approach: instead of generating a

patch that fills a hole in an image, the proposed method uses that image as a model

to synthesise an entirely new one that is highly related to the model.

An extension of the work proposed by Pathak et al. [94] appeared in Iizuka [54],

where the authors proposed a Context Encoder as a convolutional neural network

trained to generate the contents of an arbitrary image region conditioned on its sur-

roundings. They found that a context learns a representation that captures not just

appearance but also the semantics of visual structures. Their approach is to use

an alternate formulation, by conditioning only the generator (not the discriminator)

on context. They also found results improved when the generator was not condi-

tioned on a noise vector. Our method also uses that alternate formulation as it only

contextualises the generator. Together with this study, our method emphasises the

importance of contextualisation to capture the semantics of the visual structures in

the constraint image.

PatchGAN was introduced by Isola et al. [55] where a simple framework can be

adapted to various image generation problems. Instead of grading the whole image,

a PatchGAN slides a window over the input and produces a score that indicates

whether the patch is real or fake. We also use this sliding window approach to

generate the dataset, which is composed exclusively of patches extracted from the

constraint image. Therefore we can create a dataset based on a single image which

is critical for training robust machine learning models.

Similar to the work proposed by Iizuka et al. [54], where a triple network ar-

chitecture is used, Demir et al. [31] introduce a generative CNN model and a train-

ing procedure for the arbitrary hole-filling problem. The generator network takes
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the corrupted image and tries to reconstruct the repaired image. They utilised the

ResNet [47] architecture as the generator model with a few alterations. The critical

point of their work is that they propose to design a novel discriminator network

that combines a global GAN (G-GAN) structure with PatchGAN approach which

they call PGGAN. The authors report considerable achievements in both visual and

quantitative evaluations.

Regular GANs usually map a noise input vector to an image. Instead, Spatial

GANs (SGAN) [58] extend the input noise distribution space from a single vector

to a whole spatial tensor. Jetchev et al. lately extended SGAN to Periodic Spatial

GAN (PSGAN) [13], which extend the structure of the input noise distribution by

constructing tensors with different types of dimensions. In PSGAN, the input spatial

tensor is composed of three parts: a local independent, a spatially global, and a

periodic part. Each piece has the same spatial dimensions but can vary in their

channel dimensions. PSGAN can synthesise periodic and high-resolution textures

and both SGAN and PSGAN architecture, as the proposed method in this Chapter,

are based on DCGAN [101]. Our method will, similarly to PSGAN, can also be

trained using just a single image.

The GAN architecture has brought extra strength to the subject of synthesis and

texture transfer [31, 39, 54, 55, 131, 38]. However, Gatys et al. introduced a new

parametric texture model based only on a convolutional neural network where tex-

tures are represented by the correlations between feature maps in several layers of

the network [39]. Portilla and Simoncelli describe an algorithm for synthesising ran-

dom images, subject to a statistical model for texture images [98]. These are parame-

terised by a set of statistics constraints regarding spatial locations, orientations, and

scales. Our method will, similarly to both [39] and [98] generate new textures based

on a given image using a neural network. The difference in our work is that we use a

patch based approach that allows our model to encode both high-frequency textures

as well as large scale interactions. We can therefore synthesise larger images with

coherent features e.g. the aligned windows in the architectural facades.

More recently, in TextureGAN [131], the authors developed a local texture loss

to train a generative network that learns to synthesise objects consistent with tex-

ture suggestions and allow non-experts to create realistic visual content through a
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drag and drop texture interface where users set specific textures onto sketched object

boundaries. Next, using a Progressive Growing of GANs (ProGAN) [62] to synthe-

sise images, the authors in [38] introduce TileGAN to synthesise a large-scale output,

and as in our method, they present an algorithm for combining the outputs of GANs

to produce a large-scale texture map without boundary artefacts. Finally, the subject

of texture generation is far from exhausted, and the advent of GANs is a tool that re-

searchers are exploring to take this subject even further, as recent papers can testify

[97, 88, 138].

3.2 Methodology

(A) Source image. (B) Synthesised images.

FIGURE 3.1: Our algorithm in action. Source image used to train our GAN and four differ-
ent synthesised outputs.

This chapter investigates a generative method that synthesises high-resolution

images based on a single constraint source image. Our approach consists of three

types of conditioned Deep Convolutional Generative Adversarial Networks (cDC-

GAN) trained to generate samples of an image patch conditional on the surrounding

image regions. The cDCGAN discriminator evaluates the realism of the generated

sample concatenated with the surrounding pixels that were conditioned on. This

encourages the cDCGAN generator to create image patches that seamlessly blend

with their surroundings while maintaining the randomisation of the standard GAN

process. After training, the cDCGANs recursively generate a sequence of samples
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which are then stitched together to synthesise a larger image. As a result, our al-

gorithm is able to produce a collection of variations of a single input image that

have enough variability while preserving the essential large-scale constraints. The

proposed QuiltGAN method is compared with the results obtained from the image

quilting (IQ) algorithm [34] in several different variants, refer to Section 3.3 for the

results. We demonstrate that our QuiltGAN method can be superior to the simple

image quilting algorithm because a GAN can generate new patches that do not exist

in the constraint, while the IQ algorithm can only repeat patches from the source

image.

3.2.1 Problem Formulation

Using just one image, we would like to train a GAN and obtain as a result a synthe-

sised image that is different from the source image used to train the GAN, but at the

same time shares its main characteristics. For example, we used the facade [103] in

Figure 3.1a to train our GANs and we would like, at the end of the process pipeline,

to obtain an image like the one in the Figure 3.1b. The Figure 3.1b was created using

our proposed method, as described in 3.2.2.

The problem we are considering can be stated as a constrained image generation.

Given a N×N source image S we would like to generate three blocks of size N×N,

named S(1), S(2) and S(3), in a way that they are compatible with each other. Figure

3.2 show how these blocks are conditioned on their generation.

(A) S→ S(1)

(B) S→ S(2)
(C) S(1), S(2) → S(3)

FIGURE 3.2: Conditional patches. The three types of conditional GAN generation are shown
here. The image regions that are used to condition the image are shown in gray shade. S(1),
S(2) and S(3) are the generated patches that should be compatible with the condition images.

By compatible, we mean an image that can be placed alongside another image and
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the edges will match and blend perfectly. We need to guarantee semantic compat-

ibility between both images and a continuous transition between them to achieve

this. Figure 3.3 is an example of a compatible synthetic image generation.

(A) The condition (B) The synthetic image

(C) The final result

FIGURE 3.3: Continuous transition. The condition patch (a) is used to generate a compatible
patch (b), which is stitched together with it (c).

3.2.2 Proposed Method

We propose a new framework to generate constrained images based on deep con-

volutional generative adversarial networks (DCGAN) [101] and conditional GAN

(cGAN) [87], which we named QuiltGAN 1. Our approach is designed to work in

situations where computational resources are limited, as we have access to only one

GPU with 8 gigabytes of RAM. Therefore we propose three cDCGANs, that, when

working together, can generate arbitrary size, high-resolution images, despite the

limited computational resources. These three cDCGANs, share the same structure

and are based on the same principles, which consist of a conditioned generator G

and a non-conditioned discriminator D. The generator receives a random vector z

concatenated with an N × N input image S as input. Its output is another N × N

image S∗. Three cDCGANs were trained, as follows:
1https://github.com/renaaran/fourc
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1. A pairwise cDCGAN, that given the conditioning image S generates S(1), that

is compatible to S on the right.

2. A pairwise cDCGAN, that given the conditioning image S generates S(2), that

is compatible to S on the bottom.

3. A cDCGAN that receives S(1) and S(2), extracts S(12) as a condition and gen-

erates S(3), that is compatible to S(1) above and is compatible to S(2) on the

left.

In the process of training that output image S∗ will be concatenated with S, as

in Figure 3.4, to create a resulting image. The discriminator network D takes both

generated images and the real image, see Figure 3.5, and strives to distinguish them

while the generator network G makes an effort to fool it. Note that our method dif-

fers from [87] as we are conditioning only the generator G, letting the discriminator

D as proposed by [101], without any constraint. The reason is that conditioning only

the generator can increase performance because it allows the generator to learn a

more direct mapping between the additional information and the generated sam-

ples while still allowing the discriminator to learn to distinguish between real and

fake images based on their visual appearance. This can result in higher-quality gen-

erated samples that are better aligned with the conditioning information.

FIGURE 3.4: Generator pipeline. An input N × 2N image patch is split into two N × N
patches, one of which (S) is used to condition the generator. The N× N output of the gener-
ator S∗ is concatenated with S before it’s fed to the discriminator.

FIGURE 3.5: Discriminator pipeline. The discriminator is fed a series of N × 2N patches
and tries to distinguishes between those extracted from actual images and those where the
right N × N sub-patch is synthesised by the generator.
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We condition the generator by concatenating the constraint image S with the in-

put for the layer Li, where i is the number of the current layer L of the generator

G. For the first layer of the generator G, i = 1, this means concatenate the constraint

image with the input noise vector sampled from a uniform Gaussian. For the sub-

sequent layers, i = {2, .., n}, we concatenate the output of the layer Li−1 with the

constraint image S and gives this concatenation as the input for the layer Li.

In a traditional GAN architecture, the generator takes a noise vector as input and

produces an image as output. However, the generator has no control over what type

of image it generates. By conditioning each generator layer, we aim to guide the

generator to produce images that perfectly match the condition and input image S.

See Figure 3.6 for the overall generator network structure.

FIGURE 3.6: Conditional GAN architecture. First, the 64× 64× 3 input image is reshaped
into an array and then concatenated with input noise vector z. Subsequently, the output of
one layer is concatenated with the condition vector S before it is fed to the next layer. Our
experiments demonstrated that conditioning each layer of a Deep Convolutional Generative
Adversarial Network (DCGAN) generator is a good architecture choice because it allows for
greater control over the generated images.

3.2.3 Adversarial Loss

Our proposal is to extend the generative adversarial network model to a conditional

model, where only the generator G is conditioned on an constraint image S. Our

work differs from [87] where they condition both the generator G and the discrimi-

nator D. In that work the proposed objective function is

min
G

max
D

V(D, G) = Ep∼pdata [log(D(x|y))] + Ez∼pz(z)[log(1− D(G(z|y)))]. (3.1)
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In the generator, the prior input noise pz(z), and y, the condition or constraint,

are combined. In the discriminator, x and y are presented as inputs to the discrimi-

nator. The objective of our cDCGAN is less complicated and is expressed as

min
G

max
D

V(D, G) = Ep∼pdata [log(D(x))] + Ez∼pz(z)[log(1− D(G(z|S)))]. (3.2)

where x is the ground truth, S is the constraint image and z is the noise vector. G

tries to minimise this loss function against an adversarial D that seeks to maximise

it. The noise vector z is needed because otherwise the generator G would produce

deterministic outputs.

3.2.4 Image Quilting

Our method is inspired by and compared to the Image Quilting algorithm, also known

as texture synthesis, created by Alexei Efros and William Freeman in 2001 [34]. The

algorithm generates large textures or images by stitching together small overlapping

patches from a sample texture. The algorithm divides the sample texture into small

overlapping square patches. It then randomly selects one of these patches as the

starting point for the output image. The algorithm then looks for the best match

for the next patch by comparing the similarity of the overlapping regions between

the current patch and the available patches. Finally, the best match is selected and

placed in the output image, overlapping with the previous patch.

Here is a brief description of the Image Quilting algorithm:

Given a set B of N × N pixels, extracted from a source image, the algorithm

below will be executed to generate as output an array of blocks, whose size can vary

depending on the experiment, selected from B:

1. Select at random one block from B and copy it into the top left block of the new

synthesised image.

2. Go through the image to be synthesised, from left to right and from top to

bottom, in steps of one block.
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3. For every new location, search the set B for a block that minimises the overlap

constraints, above and left. The overlap constraint is the L2 error norm com-

puted on pixel values of the overlap edge. The overlap edge is 1/6 of the size

of the block. The block size is the only parameter controlled by the user and

depends on the properties of a given texture: The block must be large enough

to capture the relevant structures in the texture, but small enough that the in-

teraction between these structures is left to the algorithm. Also the choice of

the width of the overlap region is essential, as a narrow overlap region can re-

sult in visible seams between patches. In contrast, a wide overlap region can

lead to slow and inefficient synthesis. Efros and Freeman found that a width

of 1/6 of the patch size provided a good balance between seamlessness and

efficiency.

4. Compute the error surface between the newly chosen and old blocks at the

overlap edge. Find the minimum cost path along this surface and make that

the boundary of the new block. Paste the block.

5. Repeat until the new image is completely synthesised.

The minimal cost path through the overlaping area is computed as follow: If B1

and B2 are two blocks that overlap along their vertical edge, see Figure 3.7, with

the regions of overlap Bov
1 and Bov

2 , respectively, then the error surface is defined as

e = (Bov
1 − Bov

2 )2. To find the minimal vertical cut through this surface we traverse e

(i = 2..N) and compute the cumulative minimum error E for all paths:

Ei,j = ei,j + min(Ei−1,j−1, Ei−1,j, Ei,−1,j+1). (3.3)

The minimum value of the last row in E shows the end of the minimal vertical

path through the overlapping area, and one can trace back and find the path of the

best cut.

3.3 Experimental Results

This section describes the experiments performed with our QuiltGAN method as

proposed in 3.2.2. Here, we compare our QuiltGAN algorithm with two methods:
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B1 B2

(A) Neighbour blocks are constrained by overlap.

B1 B2

(B) Minimum error boundary cut.

FIGURE 3.7: Minimum cost path. We want to cut two overlapping blocks on the pixels
where the two overlapping areas match best, where the overlap error is low.

1. The Image Quilting (IQ) algorithm, as described in 3.2.4;

2. In addition, the experiment setup section below describes an approach that

mixes the IQ algorithm, and GAN generated patches.

With these experiments, we intend to compare the performance and the flexibil-

ity of QuiltGAN and IQ algorithms.

3.3.1 Experimental Setup

We propose three experiments. A baseline experiment consisting of the Image Quilt-

ing (IQ) algorithm that takes patches extracted from an image as input. A second IQ

experiment, but now as input, the IQ algorithm has patches generated by the Quilt-

GAN method. And a third experiment that has images generated exclusively by our

QuiltGAN framework.

In all experiments performed with the IQ algorithm, the block size was 64× 64

pixels, the size of the DCGAN input and the generated image. The overlapping

border width was +1/6, the block size, in our case +64/6, = 10. The error was

calculated using the standard L2 in pixel values, and the generated images are of

5× 5 blocks.

The second experiment approach that mixes the IQ algorithm and the GAN-

generated patches works as follows: Initially, a B set with five thousand patches

of 64× 64 pixels each was generated using an unconditional GAN, trained in the

source image. Finally, this set B is then used to synthesise an image using the Image

Quilting algorithm, as described in 3.2.4. The number five thousand was selected

experimentally, striving to give the IQ many options for finding a good match for a

particular block.
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3.3.2 Evaluation

Our method was tested qualitatively and quantitatively on three images: urban ex-

tract from the facade [103] dataset, texture and artistic from the Web. Qualitative

examples of our generated samples are shown in Figure 3.8. First, column two in

Figure 3.8 was created using the simple version of the IQ algorithm as described in

3.2.4. Next, column three was created with the mixed approach, i.e. the IQ algorithm

and GAN generated patches. Finally, column four was created using our proposed

QuiltGAN method as described in 3.2.2.

We observe that the IQ-generated images are coherent but lack variability be-

cause they locally repeat patches from the source image. The variant of IQ that uses

the GAN for generating a pool of candidate patches does better in terms of variabil-

ity but lacks coherence. This is because there is nothing to force the IQ algorithm to

respect longer-range pixel interactions, such as, for example, the architectural con-

straint of placing the building windows at regular intervals. Our QuiltGAN gener-

ated images exhibit the best of both worlds. They do provide randomisation and

variability (e.g. none of the building windows is an exact copy of the source image

(see Fig. 3.1b) while also respecting the global image constraints. The algorithm

proves capable of also handling non-repeating images such as the Picasso painting

(Fig. 3.8, third row). The synthesised painting respects the overall structure of the

source image while providing a degree of random variation.

One failure case of our method results in a type of fading condition. If one cDC-

GAN generated patch has some errors, i.e. some non-realistic appearance, then the

next patch generated, conditioned on it, will further deteriorate. This will result in

a chain of progressively worse image patches leading to an unrealistic image. See

Figure 4.11 for example. This is an artefact due to the recursive application of the

cDCGAN that follows a linear path through the image.

3.4 Quantitative Evaluation

In order to assess the realism of our synthetic images and their ability to accurately

represent the internal statistics of the training image, we utilised the Single-Image
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Input IQ IQ+GAN QuiltGAN

FIGURE 3.8: Qualitative results. Column one is the source image. Column two is generated
with the Image Quilting (IQ) algorithm. Column three is IQ over GAN generated patches,
and column four is our QuiltGAN system. Our method generates images that provide ran-
domisation and variability. For example, none of the building windows in the first row is
an exact copy of the source image, although it also respects global image constraints. All
synthetic images are 280× 280

FIGURE 3.9: A typical failure mode. The QuiltGAN algorithm is applied recursively and
linearly through the image, occasionally causing errors to accumulate.

Version of the Fréchet Inception Distance metric, which was originally developed by

the authors of SinGAN [107].
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Fréchet Inception Distance (FID) [49] serves as a commonly used metric for eval-

uating GANs. It quantifies the disparity between the distribution of deep features in

generated images and that of real images. As in our scenario, SinGAN operates with

only one training image. Hence their proposal of a single image metric based on FID.

Named Single Image FID (SIFID), this metric focuses on the internal training image

patch statistics, rather than extracting information from a whole dataset. Instead of

utilising the activation vector following the final pooling layer in the Inception Net-

work [121], SIFID employs the internal distribution of deep features at the output of

the convolutional layer just before the second pooling layer. Thus, SIFID calculates

the FID between the statistics of these features in the real image and the generated

sample.

The results of our QuiltGAN approach are displayed in Table 3.1. We noticed that

all the images closely resembled the original patch distribution, except for the apple

image. We believe this is due to an artifact that causes a lack of smooth transition

between patches. You can see the artifact in Figure 3.10, especially when the image

is zoomed in.

Input IQ IQ+GAN QuiltGAN
Facade 0.967 0.406 0.379
Apple 0.196 0.362 0.213
Picasso 0.359 0.379 0.139

TABLE 3.1: Experimental results. The Single Image FID (SIFID) score evaluates each
method’s performance. A lower score indicates better performance.

FIGURE 3.10: Image Artifact. The patches’ transition is not smooth, resulting in a synthetic
image that is out-of-the-distribution and negatively affects the SIFID score.
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3.5 Summary

In this chapter, we presented our QuiltGAN method to synthesise images based on

conditioned DCGANs. Our approach uses just a single image to train three GANs

for generating image patches that can be stitched together to manufacture a larger

image. The GANs are conditioned on an adjacent part of the image and learn how to

complete it by synthesising a matching image region. We compare the results with the

image quilting (IQ) algorithm [34] and conclude that the proposed method, although

more complex than the IQ algorithm, can produce better results and, above all, can

produce patterns that are not in the source image but are constrained by it.

Although the QuiltGAN method succeeds in generating realistic images and tex-

tures, it is expensive and challenging to train as three DCGANs need to be trained,

one for each conditional patch, as explained in section 3.2.1. This can be error-prone

as the training process and the results of three DCGANs must be coordinated to gen-

erate a synthetic image. Moreover, training each GAN takes over 9 hours on a single

GPU NVIDIA GeForce GTX 1070 with 8 gigabytes of RAM. Consequently, each ex-

periment run takes at least 27 hours to complete since the GANs cant be trained in

parallel due to resource constraints.

Aiming to keep the process simple, less expensive for training and less suitable

for error, in Chapter 4, we propose an improvement to the QuiltGAN method that

merges all three GANs in a single one, offering a neat methodology also capable

of synthesising an arbitrary-sized, high-resolution image from a single constraint

source image.
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Arbitrary Size Image Generation

When rendering photo-realistic images using computer graphics, real objects and

their properties such as geometry, materials or light must be explicitly modelled,

normally a time consuming and expensive process. In recent years, data-driven

photo-realistic image synthesis has emerged as a viable alternative for certain scene

classes. Available methods can be grouped into parametric and non-parametric.

Non-parametric methods have a long history and are typically based on composit-

ing from pre-existing exemplar images [11, 21, 35, 46]. While they often succeed in

generating very realistic images, they suffer from a lack of variability in the gener-

ated content. On the other hand, parametric methods based on deep neural architec-

tures have delivered promising results in the last years. Parametric approaches are

trained to reproduce the realism of real image datasets while maintaining a level of

randomness and variety that non-parametric models do not achieve [16, 60]. How-

ever, with a few exceptions (e.g [107, 63]), parametric models are rarely able to scale

up to full-resolution images.

In this chapter, we continue addressing research question 1 (outline in section 1.2)

and investigate whether GANs [43], one of the most successful parametric models,

might be employed to generate new, high-resolution images based on an individual

reference image. Here we introduce rcGAN 1, our generative method that is capable

of synthesising arbitrary sized, high-resolution images derived from a single refer-

ence image used to train our model. Our two-steps method uses a randomly condi-

tioned Generative Adversarial Network (rcGAN) trained on patches obtained from

a reference image. It can capture the reference image internal patches distribution

1https://github.com/renaaran/rcGAN
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and then produce high-quality samples that share the same visual attributes with

this image. After training, the rcGAN generates recursively an arbitrary number of

samples that are then stitched together to produce an image whose size is deter-

mined by the number of samples used to synthesise it. Thus, our proposed method

can provide a practically infinite number of variations of a single input image that

offers enough variability while preserving the essential large scale constraints.

To further establish the resilience of our two-steps method, we experiment on

many types of models, including textures, building facades, natural landscapes and

compare with other strategies.

The remainder of this chapter is organised as follows: The current literature re-

view on adversarial methods for image synthesis is presented in Section 4.1, the

proposed methodology is detailed in Section 4.2, and the experimental results are

presented in Section 4.3. Finally, conclusions are summarised in Section 4.5.

4.1 Related Work

In [101] Radford et al. introduced the deep convolutional generative adversarial net-

works (DCGANs) that creates a link among the achievements of CNNs for super-

vised learning and unsupervised learning. This model was highly influential [42],

and the majority of GANs today are generally based on the DCGAN architecture,

including the two-steps approach that is presented in this paper, where we combine

the DCGAN architecture and the conditional GAN (cGAN) approach. Introduced by

Mirza and Osindero in [87], a conditional GAN (cGAN) is a model where both the

generator and the discriminator are conditioned on any information y. This infor-

mation could be an image, like our two-step method, or any additional information,

such as a class label. In [87] the conditioning is done by supplying the condition y

into both the generator and discriminator. In our method, on the other hand, we are

using an alternate approach where we are conditioning only the generator as in [94].

In [54] Iizuka et al. introduce a triple network architecture for inpainting. A fully

convolutional completion network is used to complete the image, a global context

discriminator and a local context discriminator. Both are secondary networks used

only during the training process. These discriminators are used to discover if an
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image is coherent or not. The global discriminator gets the whole picture as input

and evaluates the global coherence of the scene. In opposition, the local discrimina-

tor tries to estimate the quality of a more specific region by looking only at a small

part around a painted area. The authors declare that their method can be used for

inpainting a broad range of scenes and creating pieces that cannot be seen in other

parts of the image. Our procedure can also be considered as an inpainting method

as we use a conditional GAN to generate image blocks that match a given patch ex-

tracted from the source image, used to train our model. In the opposite direction of

most works presented here, we propose to create a new image entirely from scratch,

which is based on the given reference image. This approach is the originality of our

proposed method: instead of generating a patch that fills a hole in an image, our

prosed two-step method uses that image as a model to synthesise randomly condi-

tioned patches that later on are stitched together to create an arbitrary sized image.

The number of stitched patches determines the size of the synthetic image, each

measuring 64× 64 pixels.

Further development of the work introduced by Pathak et al. in [94] appeared in

[54]. In [54], the authors introduced a Context Encoder as a CNN trained to create the

contents of an arbitrary image area conditioned on its neighbourhood pixels. Their

strategy is to use an alternative formulation by conditioning only the generator on

the context. Our method, as said before, also uses this alternative formulation as we

are conditioning only the generator. The authors also mentioned improved results

when the generator was not conditioned on a noise vector.

PatchGAN was proposed by Isola et al. in [55] where the same method is ad-

justed to many image generation problems, like Pix2Pix [56] and CycleGAN [140].

Instead of evaluating the whole image, they developed a discriminator architecture

that penalises structures at the scale of patches. We use the PatchGAN approach

in our model as empirical experiments showed that it could slightly improve the

overall quality of the generated patch.

In [31] Demir et al. also proposed a triple network architecture, as in [54], called

PGGAN. A damaged image is the generator input which tries to restore it. The

generator is based on the ResNet [47] architecture with some few modifications. For

the discriminators, they join a global GAN (G-GAN), that measures the quality of the
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image as a whole, and a PatchGAN that evaluates the consistency in local details.

Single image GANs. In Spatial-GAN (SGAN), Jetchev et al. [58] extended the

input noise distribution space from a single vector to a spatial tensor and in [13]

Bergmann et al. further developed this approach by proposing the Periodic Spatial-

GAN (PSGAN), which extends the structure of the input noise distribution by con-

structing tensors with different configurations and dimensions.

SinGAN [107] introduced by Shaham et al. is also a single image model for tex-

ture generation, as PSGAN and our proposed models. SinGAN is designed to deal

with natural images, and it is built as a pyramid of fully convolutional GANs, each

in charge of learning the patch distribution at a different scale of the image. Sin-

GAN can produce realistic image samples that consist of complex textures and non-

repetitive global structures.

Achieving impressive results, InGAN was developed by Shocker et al. [112] and

intended to capture the unique image-specific patch-distribution and map them to

new images with different size and shapes that share with the source one the same

patch distribution, which they loosely call "same DNA". They also proposed a new

Encoder-Encoder architecture, called "Internal GAN", that encodes an image-specific

internal statistics, which they claim provides a single unified framework for a variety

of tasks.

These were works that influenced our proposed method. However, more re-

cently, in One-Shot GAN [119], Tobias Hinz et al. proposed a two-branch discrim-

inator, with content and layout branches designed to evaluate internal content re-

gardless of scene realism. With this approach, One-Shot GAN avoids overfitting,

which often happens when training a GAN in a low data scenario, like single image

GANs. In ConSinGAN [50], the authors employed several stages of training, with

different learning rates, aiming to control the balance between variance and confor-

mity to the original training image. More straightforward, in [127] Yael Vinker et al.,

introduce a conditional GAN for learning to map from a primitive image represen-

tation (e.g. edges or segmentation) to an image. Its main contribution is introducing

a new augmentation method that allows standard cGAN, trained on a single im-

age, to train without overfitting. Finally, also an image-to-image translation method

that can be trained on a single image, Taesung Park et al. present the Contrastive
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Unpaired Translation (CUT) in [91], a framework based on contrastive learning [89]

that endeavours to encourage two elements (corresponding patches) to map to a

similar point in a learned feature space, relative to other elements (other patches) in

the dataset. This approach targets a way of keeping correspondence in content by

maximising the mutual information between the corresponding input and output

patches.

4.2 Methodology

As a continuation of the work presented in chapter 3, here we investigate a gener-

ative method that synthesises high-resolution images based on a single constraint

source image. However, contrary to the QuiltGAN method presented in the previ-

ous chapter that depends on three GANs to synthesise samples, our current strategy

consists of a single conditioned Deep Convolutional Generative Adversarial Networks (cD-

CGAN) trained to generate samples of an image patch conditioned on the surround-

ing image regions. In order to achieve this, we design a novel GAN architecture that

is randomly conditioned by a subset of pixels in the input image and show how such

an architecture can be used to progressively grow a realistic high-resolution image.

Finally, we demonstrate how the synthesising process can be guided by carefully

selecting the input seed, as outlined in Subsection 4.3.2.

4.2.1 Problem Formulation

Using just one image for training, we would like to get as a result a synthesised

image that is different from the reference image used for training, but at the same

time shares its main features. As an example, we used the facade [103] in Figure 4.1a

to train our rcGAN and we would like, at the end of our two-steps pipeline, to get an

image like the one in the Figure 4.1b. Figure 4.1b was synthesised by our two-steps

process, as outlined in Subsection 4.2.3.
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(A) Source image (272× 512 pixels). (B) Synthesised image (1280× 1280 pixels).

FIGURE 4.1: Large-scale image generation. Reference image utilised to train our rcGAN
method and a 1.6Mpx synthetic output.

4.2.2 Proposed Method

To synthesise arbitrary sized, high-resolution images, we developed a method built

on deep convolutional generative adversarial networks (DCGAN) [101] and condi-

tional GAN (cGAN) [87]. To train our rcGAN model, we extract patches from the

source image I and use these patches for training and for conditioning our genera-

tor G. To condition our generator G we developed a new algorithm that Conditions

by Randomly Selecting (CRS) pieces of a given image patch. These are presented as

a condition to the generator G, which then generates a plausible completion of these

patches.

The Condition by Randomly Selecting (CRS) algorithm extracts a condition sub-

patch from an image patch. The algorithm takes as input an image patch, denoted by

S, of size N × N and a randomly generated number r within the range [w . . . N − w],

where w = +N/6,. It also requires an integer number p, which is uniformly sampled

from the set P containing different ways of selecting parts of S as a condition sub-

patch.

The set P consists of the following possible ways of sampling from S:

1. Full patch. The entire image patch S is selected as the condition sub-patch

without any extraction.
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2. Horizontal up. All pixels in S with coordinates (x, y) where y > r are selected

as the condition sub-patch.

3. Horizontal down. All pixels in S with coordinates (x, y) where y < r are se-

lected as the condition sub-patch.

4. Vertical left. All pixels in S with coordinates (x, y) where x < r are selected as

the condition sub-patch.

5. Vertical right. All pixels in S with coordinates (x, y) where x > r are selected

as the condition sub-patch.

6. Vertical and horizontal. This method combines horizontal and vertical eras-

ing, resulting in a corner condition. The selection includes pixels in S based on

the conditions mentioned in both the horizontal and vertical directions.

The algorithm then outputs the condition sub-patch Cp extracted from the origi-

nal image patch S, according to the selected method specified by the integer p.

Our model requires a generator G that can complete a given patch in three ways:

to the right, below, and in the corner, as explained in Section 4.2.4. To achieve this,

we sample from the source patch using these 6 methods. We believe this approach

enhances the generator’s G completion ability by offering multiple options for sam-

pling from the same patch. In addition, this can improve the generalisation capa-

bility of the generator G and prevent overfitting, which is essential for generating a

high-quality synthetic image. The pseudo-code for the (CRS) algorithm is presented

in Algorithm 1.

On every iteration of the training process a batch is processed by the (CRS) algo-

rithm to generate condition sub-patches that will be presented to the rcGAN gener-

ator. Figure 4.2 is an example of our (CRS) algorithm in action.

4.2.3 Training a rcGAN

Our proposed rcGAN architecture consists of a non-conditioned discriminator D

and a conditioned generator G. The generator takes as input a noise vector z sam-

pled from a normal distribution concatenated with a N × N image patch S, previ-

ously processed by Algorithm 1, and then outputs another N × N image patch S∗.
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Algorithm 1 : In the below pseudo-code, "pixels with x > r" means all pixels in S that
have x-coordinate greater than r, and "pixels with (x < r) and (y > r)" means all pixels
in S that have x-coordinate less than r and y-coordinate greater than r.

function CRS(image patch S)
p← random(6)
w← floor(N/6)
r ← random(w, N − w)
condition Cp
if p == 1 then

Cp← S// Full patch
end if
if p == 2 then

Cp← pixels with y > r in S// Horizontal up
end if
if p == 3 then

Cp← pixels with y < r in S// Horizontal down
end if
if p == 4 then

Cp← pixels with x < r in S// Vertical left
end if
if p == 5 then

Cp← pixels with x > r in S// Vertical right
end if
if p == 6 then

Cp← pixels with (x < r) and (y > r) in S// Vertical and horizontal
end if
return Cp

end function
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(A) Before (B) After

FIGURE 4.2: Conditioning by Randomly Selecting (CRS). Examples of the six ways of gen-
erating conditions to our rcGAN, before and after merging the condition S with S∗. The
green line on the right is there only to make it easier to visualise the inpainted area.

FIGURE 4.3: Generator architecture. Initially, the 64× 64 input patch is reshaped and then
concatenated with the input noise vector z. Finally, before being processed by the last layer,
the output of the penultimate layer is concatenated with the condition vector S.

Instead of conditioning all layers, as in the previous chapter with the QuiltGAN

method, we are just conditioning the first and last layers of the generator G. Empiri-

cal tests demonstrated that this approach speeds up the training process and doesn’t

compromise the quality of the generated patch S∗. For the first layer of the generator

G, we concatenate the reshaped input image patch S with the provided noise vector

before we feed it to this layer. For the last layer, we also concatenate the output of

the penultimate layer with the reshaped input image patch S, and supplies this con-

catenation as input for this layer. See Figure 4.3 for the proposed generator network

architecture.

In Figure 4.4, an input N × N image, processed by the Algorithm 1, is used to

condition the generator. The N × N output of the generator S∗ is merged with S
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FIGURE 4.4: Generator flow. An input N × N image, processed by the Algorithm 1, is used
to condition the generator. The N × N output of the generator S∗ is merged with S before
it’s given as input for the discriminator.

FIGURE 4.5: Discriminator flow. The discriminator receives as input a set of N × N patches
and seeks to distinguish among those obtained from actual images and those resulted from
merging S and S∗.

before it is given as input for the discriminator. The discriminator network D, see

Figure 4.5, seeks to distinguish between the real and the generated image patches,

while the generator network G strives to mislead it into misclassifying. Observe that

our approach diverges from [87] as we are conditioning only the generator G, letting

the discriminator D as proposed by [101], without any constraint. We took this de-

cision because if the discriminator were also conditioned on the same information,

it would have access to the same additional information as the generator, making it

easier for the discriminator to identify generated samples as fake.

Following Shrivastava et al. in [114], instead of only outputting a probability of

a patch S∗ being real or fake, our discriminator D outputs a grid where each grid

position corresponds to a local part of S∗, and represents the estimated probability

that a local part of S∗ is real or is being generated by G. This approach helps to

improve the synthetic image quality and preserve the level of detail.

4.2.4 Patch Compositing

The second step of our rcGAN method is the generation of arbitrarily sized syn-

thetic images. After training, our rcGAN recursively generates a sequence of sam-

ples which are then stitched together to synthesise a larger image. To stitch the GAN
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generated patches, we propose a compositing algorithm, inspired by the image quilt-

ing algorithm proposed by Efros et al. [34], that works as follows:

To generate a synthetic image, with M×M blocks, each of them of size N × N,

we start by randomly selecting a patch S, or a "seed", from the source image I, with

size N × N/2. This patch S is then passed to the generator G as a condition C1. The

right half of the generator output S∗, which produces a N × N output, is extracted

and then stitched with S, forming the first block B1 of size N × N. To generate the

left half part of block B2, we take B1 right half part as a condition C2 and again give

this patch to the generator G. The right half of the generator output S∗ is extracted

and then stitched with B1. We repeat this process until the first row, with M blocks

of size N × N each. To better understand how this process works, please refer to

Figure 4.6.

FIGURE 4.6: Column conditioning. The previously generated patch Ci−1 is used as a condi-
tion to generate the current patch Ci, in grey, and so on.

To generate the subsequent rows the process is the same, but how the generator

G is conditioned is different. For the first block (i, 1) of a row i > 1, the half bottom

part of the block (i− 1, 1) is selected as a condition, Figure 4.7 shows an example.

FIGURE 4.7: Inner row conditioning. How the condition of the first block of an inner row
i > 1 is selected. The condition C6 is used to generate the top half part, in grey, of block B4
in this example.
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For the subsequent blocks (i, j) in this row i, a corner condition is selected from

the blocks (i, j− 1), (i− 1, j− 1) and (i− 1, j). See Figure 4.8 for an example. With

this strategy it is possible to synthesise images of any size.

FIGURE 4.8: Inner block in an inner row conditioning. How the condition of the inner
blocks in a inner row i > 1 is selected. To generate the top left part of block B5, in grey, a
corner condition is selected from the blocks B1, B2 and B4.

4.3 Experimental Results

This section describes the experiments performed with our randomly conditioned

GAN (rcGAN) method as proposed in 4.2.2. To evaluate the effectiveness of our

method, here we compare our rcGAN framework with three selected methods that,

like ours, are also generative models that can learn from a single image:

1. SinGAN [107], which is built as a pyramid of fully convolutional GANs, each

in charge of learning the patch distribution at a different image scale.

2. InGAN [112], which intends to capture the unique image-specific patch distri-

bution and map them to new images with different sizes and shapes that share

the same patch distribution as the source one;

3. Spatial-GAN [58], which proposed extending the input noise distribution space

from a single vector to a spatial tensor.

With these experiments, we intend to evaluate our algorithm against other meth-

ods and demonstrate our rcGAN framework’s strength.
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4.3.1 Experimental Setup

For all experiments executed with our rcGAN model, the block size N was 64 pixels,

the size of the rcGAN input and synthesised patches. As in Chapter 3, all experi-

ments were conducted on a single GPU NVIDIA GeForce GTX 1070 with 8 gigabytes

of RAM, but now, one of our method’s advantages is that we do not need to train

three GANs to get the results. Instead, we use a single GAN that takes around 12

hours to be trained on a single image, which is less than half of the time taken in

the previous Chapter if we consider that in Chapter 3, we have to train the GANs

sequentially due to lack of resources.

In order to provide a comprehensive evaluation of our method, we compared it

against three alternative approaches: SinGAN, InGAN, and Spatial-GAN. To ensure

a fair comparison, we utilised the default parameters as suggested by the respective

authors for each of these methods. This approach ensures consistency and allows for

a direct comparison of the performance and effectiveness of our proposed method

against these established techniques.

Furthermore, we strengthened the demonstration of our approach by integrating

supplementary facade images, leveraging the superior efficiency of our rc-GAN over

the Quilt-GAN method discussed in Chapter 3. This improved efficiency arises from

not having to train three distinct GANs for generating synthetic images. Moreover,

our method reduces the potential for errors by eliminating the need to synchronise

the outcomes of three separate GANs.

The results of our proposed two-steps method for a wide variety of input images

are presented in Figure 4.10. Column two was created using SinGAN; column three

is InGAN generated, column four was generated with Spatial-GAN and column five

was created using our two-steps method as outlined in 4.2.3.

4.3.2 Evaluation

We notice that SinGAN can only properly handle natural images like the one in

Figure 4.10 row two. For the other types of images, SinGAN generated samples that

lost the overall structure presented in the source image, e.g. the apple in row one. The

facades also lost the alignment of the windows and balcony railings. Spatial-GAN
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unsuccessfully handles most images presented to it and cannot preserve the existing

spatial information in the facades; except for the input in row ten, where it was

capable of generating aligned windows. Regarding texture generation, Spatial-GAN

was effective in creating high-quality textures like the ones in rows two and four.

InGAN delivered impressive results and can handle all types of pictures shown, and

as our method can synthesise images of any size but suffer from lack of flexibility.

Examples can be seen in row seven, where we could get rid of the tree in the middle

and also the light pole at the top. At row ten, we could also generate an image that

does not have the tree and the light pole presented in the input image on its right.

In row eleven, our model could produce a new shadow pattern. Finally, in rows

twelve and thirteen, we could avoid the grey areas by manually selecting the seed

during the generation process. To visualise how this can be done, see Figure 4.9 for

an example of how seed selection can be used to avoid undesired features in the

synthesised image.

FIGURE 4.9: rcGAN seed selection. Above, the seed was selected randomly, and the syn-
thetic image has the non desired grey area on top. Bellow, the seed was chosen manually
intending to avoid the grey area to be synthesised in the output image.

One case of failure of our method results in a sort of degenerated condition. If

our rcGAN generated patch S∗ has some errors, i.e. some non-realistic appearance,

then the next patch generated which is conditioned on it, is extra deteriorated. This

results in a succession of progressively worse image patches driving to a resulting

unrealistic image. See Figure 4.11 for examples. This is resultant from the recursive

application of the rcGAN patches that follows a linear path through the image.
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Input SinGAN InGAN Spatial-GAN rcGAN
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2

3

4

5

6

7

FIGURE 4.10: Image Synthesis: The images size varies according to model output.
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Input SinGAN InGAN Spatial-GAN rcGAN

8

9

10

11

12

13

FIGURE 4.10: Image Synthesis (cont.) : The images size varies according to model output.
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We hypothesise that to prevent image degradation caused by the recursive ap-

plication of the rcGAN, a few methods can be considered:

1. Selective patch generation: Implementing a mechanism to selectively generate

patches based on their quality can prevent the propagation of unrealistic ap-

pearances. By evaluating the realism of each patch generated by the rcGAN

and discarding those with significant errors, the subsequent patches will not

be conditioned on degraded inputs, reducing the overall image degradation.

2. Feedback mechanism: Introducing a feedback mechanism that allows the rcGAN

to learn from its own mistakes can be beneficial. By providing the generator

with information about the quality and realism of its output patches, it can

adjust its generation process accordingly. This feedback mechanism can incor-

porate a separate discriminator network that evaluates the generated patches

and provides feedback to the generator, encouraging it to produce more real-

istic and accurate patches.

By implementing these or similar strategies, we believe it is possible to mitigate

the image degeneration issue caused by our method’s recursive application, result-

ing in improved image generation quality and preventing the successive deteriora-

tion of patches.

FIGURE 4.11: A mode collapse case. To create the image, the rcGAN is used in a recur-
sive and linear manner, which can sometimes lead to errors accumulating. These particular
examples are based on images from rows 9, 7, and 2.

4.4 Quantitative Evaluation

We used a metric called the Single-Image Version of the Fréchet Inception Distance to

confirm how realistic our synthetic images were and if they accurately represented
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the training image’s internal statistics. This metric was developed by the authors of

SinGAN [107].

Fréchet Inception Distance (FID) [49] serves as a commonly used metric for eval-

uating GANs. It quantifies the disparity between the distribution of deep features in

generated images and that of real images. As in our scenario, SinGAN operates with

only one training image. Hence their proposal of a single image metric based on FID.

Named Single Image FID (SIFID), this metric focuses on the internal training image

patch statistics, rather than extracting information from a whole dataset. Instead of

utilising the activation vector following the final pooling layer in the Inception Net-

work [121], SIFID employs the internal distribution of deep features at the output of

the convolutional layer just before the second pooling layer. Thus, SIFID calculates

the FID between the statistics of these features in the real image and the generated

sample.

The results of our rcGAN approach are displayed in Table 4.1. Table 4.1 shows

that the InGAN method had the highest SIFID score, with eight out of thirteen being

the best scores. It’s worth noting that lower scores are better. We hypothesise that

InGAN’s ability to generate images that accurately maintain semantic information,

such as window alignment, contributed to its success.

As anticipated, Spatial-GAN produces images that are outside the range of the

training image distribution, resulting in the worse scores in all instances.

Although our approach may not produce always optimal quantitative results, we

believe that our method remains stronger compared to the other methods discussed

in this context. This is attributed to our ability to deliver increased variability while

preserving the original distribution, along with providing a level of control over the

generated synthetic image by allowing manual selection of the seed.

4.5 Summary

In this chapter, we proposed a two-steps process to generate images, which is built

on a randomly conditioned DCGAN (rcGAN). Our process uses only a single refer-

ence image to train our rcGAN to create image patches that will be later on stitched

together to synthesise an arbitrary sized image. The size of the resultant image is
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Input SinGAN InGAN Spatial-GAN rc-GAN
1 0.070 0.596 0.798 0.061
2 0.668 0.363 0.526 0.382
3 0.305 0.115 0.914 0.242
4 0.429 0.184 0.800 0.376
5 0.260 0.174 0.911 0.269
6 0.140 0.161 0.943 0.254
7 0.240 0.336 0.908 0.073
8 0.464 0.383 0.510 0.615
9 0.301 0.167 0.911 0.226
10 0.572 0.310 0.745 0.143
11 0.315 0.224 0.917 0.095
12 0.669 0.299 0.481 0.481
13 0.551 0.109 0.730 0.388

TABLE 4.1: Experimental results. The Single Image FID (SIFID) score evaluates each
method’s performance. A lower score indicates better performance. Each Input number
corresponds to an image with the same Input number in Table Figure 4.10.

constrained by the number of generated image patches that are stitched together to

create it. Our rcGAN is conditioned on randomly selected adjacent parts of the im-

age and learn how to complete it by producing a matching image area. We compare

the results of our two-steps methods with SinGAN [107], InGAN [112] and Spatial-

GAN [58]. We conclude that despite the simplicity of our framework, as we use just a

single DCGAN, our proposed technique can handle any input image: textures, nat-

ural landscapes and facades. Our framework also compares very favourably against

the state of art techniques. Additionally, it provides more control over the synthe-

sised image features, as we can influence the process by manually selecting the seed,

which is a capability that the other methods we compared against do not offer.
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Chapter 5

Cycle And Semantic Consistency

For Data Augmentation

The sparsity of training data can hinder the performance of supervised machine

learning algorithms, which often require large amounts of data to train and avoid

overfitting. Typical deep neural networks have hundreds of millions of parameters

to learn, which requires many passes over the training data. Running a large num-

ber of iterations on small datasets can result in overfitting, which is usually remedied

by one or more of the following: acquiring more data, applying regularisation and

performing data augmentation. The latter approach is limited chiefly to simple ran-

domised manipulation of an existing dataset (e.g. affine warping, rotation or other

perturbations) [113].

Founded on our previous experience of using GANs for image synthesis, in this

chapter, we extend the work presented in Part II by addressing the research ques-

tions 2 and 3 (outline in section 1.2) and investigate to what extent an image-to-image

translation model like CycleGAN [140] can be used as a data augmentation method.

The image-to-image translation is a computer vision problem that involves learn-

ing how to map an image from one domain A to another domain B using a training

dataset. However, this translation is not always accurate, and relevant semantic in-

formation can deteriorate during the translation process. To handle this problem,

we propose a new Cycle and Semantic Consistency (CSC-GAN) model, an adver-

sarially trained image-to-image translation method that strengthens local and global
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structural consistency through cycle consistency and a new loss function that is con-

strained by semantic segmentation. Our formulation encourages the model to pre-

serve semantic information during the translation process. For this purpose, our loss

function evaluates the synthetically generated image’s accuracy against a previously

trained semantic segmentation model.

We build on the success of image-to-image translation to propose an approach to

data augmentation that applies to semantic segmentation tasks. Under our scheme,

an arbitrary number of new images are generated by ‘translating’ each ground truth

label image in our training dataset. By augmenting that dataset with the resulting

image/labelling pairs, it is common to observe an enhancement in the accuracy of

the semantic segmentation model.

The results reported in this chapter show that our proposed method can sig-

nificantly increase the level of details in synthetic images. Furthermore, we apply

our CSC-GAN to a highly sparse building facade dataset [103] that consists of only

606 images and labels. Our experiments verify that the image-to-image translation

approach strengthened by our new semantic loss can be successfully used as an aug-

mentation method to improve pixel-level semantic segmentation models’ accuracy.

The remainder of this chapter is organised as follows: The current literature re-

view on adversarial methods for image synthesis is presented in Section 5.1, the

proposed methodology is detailed in Section 5.2, and the experimental results are

presented in Section 5.3. Finally, conclusions are summarised in Section 5.4.

5.1 Related work

The GAN framework was first introduced to generate visually realistic images and,

since then, many applications have been proposed, including data augmentation

[113], a technique widely used to increase the volume of data available for training.

One of the areas where GANs have been employed for data augmentation is

Medical Imaging. Yi et al. in [134], surveyed 150 published articles in the medical

image synthesis area and found that GANs are employed for image reconstruction,

segmentation, detection, classification and cross-modality synthesis. The main rea-

son for this widespread use seems to be the relative sparsity of labelled datasets in
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the highly specialised medical image domains.

The same conclusion is reached by Bowles et al. [15], who investigate the use

of GANs for augmenting CT scan data. They use a Progressive Growing of GANs

(PGGAN) network [63] to generate the synthetic data in the joint image-label space.

Their results show that GAN augmentation works better, when the dataset is more

sparse. Unfortunately the PGGAN framework is more suitable for spatially regis-

tered datasets (e.g. faces, or medical imaging). Using an extensive image dataset,

Sandfort et al. [108] trained a CycleGAN model [140] to transform contrast Com-

puted Tomography (CT) images into non-contrast images, for data augmentation in

CT segmentation tasks. According to the authors, the publicly available datasets

consist universally of contrast-enhanced CT images, while real-world data contains

a certain percentage of non-contrast CT images. This domain shift affects the perfor-

mance of real-world applications negatively. Using CycleGAN to alleviate this issue,

the authors report significant improvement in CT segmentation tasks performance.

When the available data is not uniformly distributed between the distinct classes,

the accuracy of an image classification model can degenerate. Mariani et al. propose

a balancing generative adversarial network (BAGAN), an augmentation method

that can generate new minority-class images and then restore the dataset balance

in [85], . Likewise, Antoniou et al. proposed a Data Augmentation Generative Ad-

versarial Network (DAGAN) architecture based on a conditional GAN, conditioned

on images from a given class c, where the generator network also uses an encoder

to project the condition down to a lower-dimensional manifold [3]. Their adversar-

ial training leads their system to generate new images from a given sample, one that

appears to be within the same class but look different enough to be a diverse sample.

An impressive dataset augmentation method using GAN for semantic segmen-

tation is introduced by Richter et al. [2]. They present an approach for creating a

semantic label for images extracted from modern computer games. Using game

engines to generate endless quantities of labelled data is a longstanding theme in

Computer Vision research. Their experiments show that using the acquired data to

supplement real-world images significantly increases accuracy, therefore a network

trained on unrealistic data can generalise very well to existing datasets.

CyCADA, proposed by Hoffman et al. in [51], also explores ways of enforcing
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(a) Real label (b) Real Image (c) CycleGAN (d) CSC-GAN (ours)

FIGURE 5.1: Translation of facade label to a facade image. The task is to translate from
label to image. (a) and (b) are the real label and the real image, (c) is CycleGAN generated,
that incorrectly translates the facade behind the tree and the balcony railings. (d) Using our
CSC-GAN, that implements semantic consistency in the translation process, the result is a
more realistic image.

semantic consistency on image synthesis. This adversarial unsupervised adaptation

algorithm aims to learn a model that correctly predicts a label for a target data. Their

input is the source data XS, the source label YS and the target data XT. Their aim is

to learn a model that can correctly predict the label YT for the target data XT. In con-

trast, our work presented in this chapter doesn’t seek to predict but to increase the

translated image quality with the help of a pre-defined classifier. We are provided

with the source data XS and the source label YS. Our purpose is to learn a model

that does the translation YS −→ XS more accurately.

5.2 Methodology

In this section, we present our Cycle and Semantic Consistent GAN (CSC-GAN) frame-

work. We consider the problem of image-to-image translation with cycle and seman-

tic consistency, where we are provided with the source data X and source labels Y.

The aim is to learn a stochastic model f that translates a labelling into the corre-

sponding image (i.e. Y −→ X) in such a way that the resultant images are so real-

istic they can improve the results of a deep semantic segmentation model [20, 81],

when used as a dataset augmentation technique. To do so, we extend the CycleGAN

framework by adding a new loss function Lsem that evaluates how accurate the syn-

thetic generated image is against a previously trained semantic segmentation model

g. See figure 5.1 for an example of our method.

To establish the background, we first review in the following sections, the Cycle-

GAN models on which our method is based.
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5.2.1 CycleGAN Loss Functions

The CycleGAN full objective is composed of an adversarial loss and a cycle consis-

tency loss, as follows.

Adversarial Loss

The adversarial loss is given by

LGAN(G, DY) = Ey∼pdata(y)[log DY(y)]

+ Ex∼pdata(x)[log(1− DY(G(x)))].
(5.1)

where G tries to generate images that look similar to images from domain Y and DY

aims to distinguish between the translated samples G(x) and real samples y. G aims

to minimise this objective against an adversary D that tries to maximise it.

Cycle Consistency Loss

Adversarial losses individually cannot guarantee that the learned function can map

a single input x to a desired output y. To additionally decrease the space of pos-

sible mapping functions, CycleGAN authors argue that the learned mapping func-

tions should be cycle-consistent, intending to encourage the source content to be

preserved during the conversion process. For each image x from domain X, there

exists a different map F that is able to bring x back to the original image, i.e., x −→

G(x) −→ F(G(x)) ≈ x. This is called the forward cycle consistency. Similarly, for

each image y from domain Y , G and F should also satisfy backward cycle consistency:

y −→ F(y) −→ G(F(y)) ≈ y. This behaviour is encouraged using a cycle consistency

loss:

Lcyc(G, F) = Ex∼pdata(x) ‖ F(G(x))− x ‖1

+ Ey∼pdata(y) ‖ G(F(y))− y ‖1 .
(5.2)

R.B.Arantes, PhD Thesis, Aston University 2022. 73



Chapter 5. Cycle And Semantic Consistency For Data Augmentation

Full Objective

The CycleGAN full objective is

L(G, F, DX, DY) = LGAN(G, DY)

+ LGAN(F, DX)

+ λLcyc(G, F).

(5.3)

where λ controls the relative importance of the two objectives.

5.2.2 Semantic Consistency Objective

As we have access to the source labelled data, we aim to encourage high semantic

consistency after image translation explicitly. For this purpose, we pre-train a se-

mantic segmentation model g, on the same training set used to train our CSC-GAN

model, and use this model g to evaluate the synthetic images during the CSC-GAN

training. By fixing the model g weights during the CSC-GAN training, we guarantee

that a good segmentation result, obtained from a synthetic image, is due to an im-

provement in the synthetic image quality, as the model g was trained on real images.

Using the segmenter model g we propose our semantic consistency objective as

Lsem(g, F) = Ey∼pdata(y)Lcs[g(F(y)), y]. (5.4)

where Lcs[., .] is the cross-entropy loss [51] comparing two segmentation masks g(F(y))

and y. This equation means that given a label y ∈ Y, the model g predicts the labels

for F(y), i.e., the synthetic image generated using the real label y. The loss Lsem eval-

uates this prediction, and its result is added to the CycleGAN objective function,

intending to help improve the overall synthetic image quality. It is interesting to

note the superficial similarity between the semantic consistency loss Lsem and the

second term of the cycle consistency loss (Eq. 5.2). Both G and g map from images

to labels but (a) g is producing 1-hot encoding per label while G produces an RGB

image as in [140], hence the different choice of image distance metric and (b) g is a

pre-trained network (we use the DeepLabV3 [20] architecture) while G is a network
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FIGURE 5.2: Semantic Loss Effect. Impact of the proposed semantic consistency loss over
the synthetic images during model training.

we train adversarially. We experimented with removing the trainable G network

but were unable to achieve a converged solution, possibly because G introduces a

convex relaxation to the optimisation problem. The full objective is then

L(G, F, DX, DY) = LGAN(G, DY)

+ LGAN(F, DX)

+ λLcyc(G, F)

+ µLsem(g, F).

(5.5)

where λ and µ are relative important weights. To show the impact of the new seman-

tic consistency loss, Figure 5.2 presents the evaluation comparison of the synthetic

images, during model training, with and without our proposed loss. It shows a dra-

matic improvement in the mIoU score and the cross-entropy loss when the objective

described in equation 5.5 is used, instead of the regular CycleGAN loss defined in

equation 5.3.

5.3 Experimental Results

This section presents the attained results of our CSC-GAN approach compared against

the Facade dataset [103] augmented with the regular CycleGAN model [140], SPADE

model [92], which is a state-of-art label to image translation and two style transfer

models [40, 57], the latter being designed explicitly for dataset augmentation. The

datasets used in the experiments are listed in Table 6.1.
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FIGURE 5.3: CSC-GAN two steps. First we train a semantic segmentation model g on the
training set, then we use it to evaluate the synthetic images quality during our model train-
ing.

5.3.1 Experimental Setup

In order to compare these augmented datasets, for each one we trained two seman-

tic segmentation models, DeeplabV3 [20] and Fully-Convolutional Network (FCN)

[81], both with a ResNet101 [47] backbone. Each model is trained for 50 epochs with

a learning rate set to 0.0002 and the Adam optimiser [64]. The performance of each

model is reported using the mean intersection-over-union (mIoU) score [111] eval-

uated over the test set. The Mean Intersection over Union (mIoU) is a commonly

used evaluation metric in the field of computer vision, specifically for tasks related

to semantic segmentation. It is used to assess the accuracy and quality of predicted

segmentation masks or regions compared to ground truth annotations.

The facade dataset [103] has been randomly split into a training XS, with 80%

or 484 images and a test XT set, with 20% or 122 images. As shown in Table 5.1,

there are six variations of the training set, but the test set remains the same across all

experiments.

The augmentation is done as follows: For each label y ∈ XS a synthetic image

x = F(y) is generated and the pair (y, x) is added to the dataset. By the end a new

training set X′S is created of twice the size of XS. This is done because one synthetic

image per each label y ∈ XS is added to the new training set X′S.

The CSC-GAN model is trained in two steps: First, we train the semantic seg-

mentation model g on the regular facade dataset, which is used as a labeller during

the CSC-GAN training, then we train the CSC-GAN model, as described above. Fig-

ure 5.3 illustrates these two stages.
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Dataset Name Size Description
facade 484 regular training set without any augmentation. [103]
facade+CycleGAN 968 regular plus images from regular CycleGAN model [140].
facade+SPADE 968 regular plus images from SPADE model [92].
facade+Styleaug 968 regular plus images from style augmentation model [57].
facade+Arbitrary 968 regular plus images from arbitrary artistic stylization model [40].
facade+CSC-GAN 968 regular plus images from our CSC-GAN model.

TABLE 5.1: Datasets. Lists of all datasets used in the semantic consistency experiment.

DeeplabV3 [19] FCN [81]
Dataset Name FID mIoU Accu. mIoU Accu.
facades [103] 0.552 (0.016) 0.706 (0.013) 0.558 (0.003) 0.711 (0.002)
facade+CycleGAN [140] 22.742 0.557 (0.008) 0.710 (0.007) 0.562 (0.002) 0.714 (0.002)
facade+SPADE [92] 24.107 0.565 (0.009) 0.716 (0.008) 0.572 (0.004) 0.723 (0.003)
facade+Styleaug [57] 75.307 0.543 (0.005) 0.698 (0.005) 0.561 (0.005) 0.714 (0.004)
facade+Arbitrary [40] 37.804 0.550 (0.005) 0.703 (0.004) 0.562 (0.003) 0.714 (0.002)
facade+CSC-GAN (ours) 29.268 0.573 (0.005) 0.723 (0.004) 0.574 (0.003) 0.724 (0.002)

TABLE 5.2: Experimental results. Accu. is the pixel accuracy; the FID [49] metric is calcu-
lated against the dataset without augmentation. Each experiment was executed 5 times, the
mIoU and the pixel accuracy results reported are the mean and the standard deviation for
these 5 executions.

Table 5.2 presents the results. Each experiment was executed 5 times and the re-

sults reported are the mean and the standard deviation for these 5 executions. We

decided to execute 5 times because we verified that the standard deviation among

the experiments was very low. When the standard deviation is very low, it implies

that the variability in the results is minimal, and the measurements are highly con-

sistent. In such cases, executing the experiment 5 times can be considered sufficient,

given that the low standard deviation indicates a high level of precision.

In our experimental setup, we trained both semantic segmentation models, i.e.

DeepLabV3 and FCN, and the generative models, i.e. CycleGAN, SPADE and our

CSC-GAN, on a single GPU NVIDIA GeForce GTX 1070 with 8 gigabytes of RAM.

Training each semantic segmentation model requires approximately 5 hours, and

the generative models demanded roughly 8 hours each. Consequently, training all

three generative models consumed close to 24 hours in total. Training both semantic

segmentation models takes a total of 10 hours. Hence, the training process for the

semantic segmentation models alone took roughly 50 hours to complete. By adding

the 24 hours required for the generative models, the entire experiment encompassed

approximately 74 hours to finish, all while utilising a single GPU with only 8 giga-

bytes of RAM.
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5.3.2 Evaluation

The presented results show that the dataset augmented with images from our CSC-

GAN model can outperform the regular facade dataset by approximately 4% when

the DeeplabV3 [19] model is trained on it and by roughly 3% with the FCN [81]

model, as shown in the last row on Table 5.2. SPADE also provided promising re-

sults, but it was also outperformed by our method. The datasets augmented by

[57] and [92] got a decrease in performance concerning the regular Facade dataset,

showing that style transfer is not a good technique for dataset augmentation on a

per-pixel classification scenario as semantic segmentation.

Analysing the FID [49] score in the first column suggests that a lower FID value

does not necessarily imply that the synthetic image is superior in terms of data aug-

mentation, and it is not necessarily correlated with the mIoU, as shown in Figure

5.4.

The FID is a metric commonly used to assess the quality of generated or synthetic

images. It measures the similarity between the statistical properties of the gener-

ated images and real images by comparing feature representations extracted from

a pre-trained Inception model [49]. Generally, a lower FID value indicates a higher

similarity between the generated and real images, implying better image quality.

On the other hand, mIoU is a metric used to evaluate the performance of im-

age segmentation algorithms. It quantifies the overlap between the predicted and

ground truth segmentation masks for various object classes. A higher mIoU value

indicates better accuracy in capturing the object boundaries and overall segmenta-

tion quality.

The graph in Figure 5.4 suggests that despite a lower FID value, which indicates

a higher similarity to real images, it does not necessarily translate into better perfor-

mance in terms of mIoU. In other words, the visual quality of synthetic images, as

measured by FID, does not guarantee their effectiveness in improving segmentation

performance, as measured by mIoU. This indicates a lack of correlation between the

FID and mIoU metrics, in this scenario.
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FIGURE 5.4: FID x MioU. The Frechet Inception Distance (FID) is a metric that compares statis-
tics of real and generated images and summarises how similar the two groups of images are.
A lower FID score indicates that the two groups of images are more similar. Based on the
graph, it appears that having a lower FID score does not necessarily indicate that the syn-
thetic image is more effective for data augmentation.

This information implies that while FID can provide insights into the visual fi-

delity of synthetic images, it may not be the exclusive factor to consider when eval-

uating their suitability for data augmentation in tasks like image segmentation.

Why does this happen? This finding is an idea we will delve further into in the

next chapter, and the answer is related to our research question 4.

To better understand the improvement brought by our CSC-GAN, in Figure 5.5

we compare the correctly predicted pixels of the models trained with CycleGAN

and CSC-GAN augmented datasets with the model trained with the regular facade

dataset. The comparisons are made over the test set segmentation results.

Figure 5.5 presents the comparison of the regular facade with CycleGAN; the

graph shows that for six out of twelve labels, there is a drop in the correctly predicted

pixels, cornice and decoration showing the most substantial difference. Conversely,

except for background, window and shop the model trained with our CSC-GAN aug-

mented dataset attained a substantial improvement in the correctly predicted pixels.

In particular, the decoration and balcony labels, are two very challenging categories

where our augmented datasets substantially improved over the facade dataset. The

reason is the increase in level-of-detail obtained by the CSC-GAN model to the gen-

erated images, as shown in Figure 5.6.
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FIGURE 5.5: Relative delta. This chart shows the number of accurately predicted segmented
pixels for both the standard facade dataset and the augmented dataset. It shows that for
the majority of classes, our CSC-GAN model can produce more accurate images for data
augmentation.

In Figure 5.6, column (c), note that our model is capable of learning the appear-

ance of balcony railings and in the second row the extended model begins to show

the pillar as a 3D structure, instead of just a flat shape as shown in column (b). The

third row, column (c), shows that the extended model can also learn the decoration,

which the regular CycleGAN model represents as a flat shape.

5.4 Summary

Founded on our previous experience of using GANs for image synthesis, in Chap-

ter 5, we extended the work presented in Part II by addressing research questions

2 and 3 (outline in section 1.1) and presented a cycle-consistent image generation

framework that combines semantic constraints to deliver an increased level of de-

tail in the generated images. Our formulation encourages the model to preserve

semantic information during the translation process. This refinement enables using

the proposed method for data augmentation in the semantic segmentation domain.

By introducing a new loss function that is constrained by semantic segmentation,

we were able to improve the performance of the Cycle-GAN model in such a way

that the synthetic images generated by this new, improved model, called CSC-GAN,

successfully augmented a tiny facade dataset and improved the performance of two
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(a) (b) (c)

FIGURE 5.6: Comparing images. Real image (a), regular CycleGAN model (b) and CSC-
GAN model (c). The labels were omitted.

semantic segmentation methods, i.e. DeeplabV3 [19] by approximately 4%, and the

FCN [81] model by roughly 3%.
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Learning an Augmentation

Strategy for Sparse Datasets

Data augmentation is a practical approach to increasing the amount and diversity

of available data. Moreover, it aids in imparting the model with knowledge about

the consistency in the data domain [28]. While extensive efforts have been made to

develop improved network architectures [142, 44, 47, 52, 104, 116, 120], it has been

demonstrated [66, 93] that data augmentation can also be efficiently utilised to in-

corporate data invariance and substantially enhance the generalisation capabilities

of existing deep learning models. Unfortunately, the effectiveness of an augmenta-

tion technique on a specific dataset and application does not guarantee its success

when applied to other datasets and applications [28]. Therefore, automated discov-

ery of augmentation strategies from data is gaining traction as a promising approach

to automate the augmentation process [29, 74, 28, 75, 71, 125].

In this chapter, we intend to answer research question 4 and reinforce the find-

ings of the previous chapters regarding questions 2 and 3 (as outlined in section 1.2).

In order to do this, we combine three methods to build a robust augmentation policy

suitable for sparse datasets and applied to semantic segmentation tasks. Our strat-

egy is based on SPADE [92], a spatially-adaptive normalisation model that synthe-

sises photorealistic images given a semantic input layout, initially introduced in the

previous chapter. As far as we know, we are the first to provide an augmentation

technique based on SPADE, the current state-of-the-art label-to-image translation

method, which can successfully increase the performance of a semantic segmenta-

tion model.
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To assist the model in preserving semantic information while translating from

label to image, we added our semantic loss introduced in the previous chapter, as

shown in equation 5.4. Further improvement can be achieved when this robust

method is connected with the self-attention adversarial network (SAGAN) [136],

which enables attention-driven, long-range dependency modelling for image syn-

thesis tasks. We show that our strategy learns an augmentation policy that regards

the synthetic images as missing data points in the training set, as shown in Figure

6.1, where, in the first row, we show a t-SNE [83] plot on four datasets (in blue) and

the augmentation data generated by our method (in red). In addition, in the second

row, the relative improvement brought by our method, per class, when compared to

the baseline, that is, the data set without augmentation.

With this strategy, we improve the generalisation performance of three state-of-

the-art semantic segmentation networks: Criss-Cross Network (CCNet) [53], Fully-

Convolutional Network (FCN) [110] and DeeplabV3 [19]. Our method leads to an

improvement in the mean intersection over union (mIoU) score of between 0.5 and

14 percentage points, under different circumstances. This is a remarkable achieve-

ment if we consider that no new data or preliminary information has been provided

to the model. In addition, CCNet, FCN and DeeplabV3 are already extremely good

at extracting generalisable knowledge from any data set.

We prove our method’s strength on four datasets: (1) The cityscape dataset [27],

a street scenes dataset from 50 different cities, with 5k high-quality pixel-level anno-

tations. (2) The SUN RGB-D dataset [118], a dataset with about 10k images that focus

on scene understanding, with dense annotations in both 2D and 3D, for both objects

and rooms. (3) A sparse building facade dataset [103] that consists of about 600 im-

ages. (4) A tiny grayscale dataset (Box) made only of boxes of packages arranged

on pallets that consist of only about 400 images, relatively dense compared with the

other datasets. In order to complete this task, we select images at random from the

original datasets. We simulate sparsity from the Cityscape and SUN RGB-D datasets

by artificially creating four datasets with different sizes: 0.5k, 1k, 2k and 4k. By sim-

ulating different sizes in the Cityscape and the SUN RGB-D datasets, we intend to

demonstrate that sparsity is a factor that affects the performance of GAN-based data

augmentation strategies and answer research question 4.
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Cityscape.500 SUN.500 Facades Box

Relative delta: (augmented− original)/original

FIGURE 6.1: Our method in action. In the first row, A t-SNE [83] plot of the extracted
VGG16’s features [116] on four datasets and the augmentation data generated by our
method. In the second row, the relative improvement brought by our method when com-
pared with the baseline, i.e. the dataset without augmentation; the blue bars represent im-
proved labels, while the red bars indicate that the augmented dataset performed worse than
the baseline. Our method provides augmentation data that boost pixel-level semantic seg-
mentation accuracy by filling the original dataset gaps.

Through our experiments, we verify that our proposed augmentation strategy

provides an affordable and consistent pipeline suitable for sparse datasets and can

be applied to increase pixel-level semantic segmentation models’ precision by gen-

erating images that fill in the gaps in the training set.

6.1 Related Work

Human-designed data augmentation. One of the first applications of data augmen-

tation for deep learning is present in LeNet-5 [69], where the authors apply CNNs

on handwritten digits classification, employing the MNIST dataset. By artificially

augmenting the training set with distorting samples, the error rate on the test set

dropped from 0.95% to 0.7%. Now, the best-ranked models on the MNIST dataset

extensively apply data augmentations like scale and rotation to improve model per-

formance [128, 25].
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The AlexNet [67] architecture developed for image classification broadly applied

label-preserving transformations to increase the size of the training set. Data aug-

mentation was used in their experiments to improve the training set by a factor of

2048. This increase in size was achieved by randomly cropping patches, flipping

them horizontally and varying the intensity of the RGB channels using PCA colour

augmentation. By this augmentation, the model error was reduced by over 1%.

Why a small error reduction can be relevant? In some cases, when dealing with mas-

sive amounts of data, even small accuracy gains can be significant. A 1% or less

improvement could mean correctly classifying thousands or even millions of addi-

tional data points, leading to more reliable insights or predictions. Again, accuracy

is usually associated with the confidence and trust users place in a system. Even

a slight improvement in accuracy can enhance the perception of a model’s reliabil-

ity and effectiveness. Users may be more willing to adopt or rely on a system that

demonstrates consistent incremental improvements, even if those improvements are

relatively small. Furthermore, advances in machine learning and artificial intelli-

gence are typically achieved through incremental progress. Many breakthroughs

are the result of numerous small improvements rather than a single revolutionary

change. A 1% gain in accuracy can be seen as a step forward in this iterative process,

bringing us closer to better models and solutions.

Although artificially applying label-preserving transformations [115, 25, 26] is

the most popular and straightforward method to overcome overfitting and improve

model generalisation, they are manually designed and demand substantial domain

knowledge to create suitable data transformations. In a study by Kexin et al., it was

shown that CNNs can be misled using basic geometric transformations like rotation

and translation [96]. Additionally, the same group demonstrated in another study

that a self-driving car can be made to turn right and collide with a guardrail simply

by slightly darkening the input image [95].

Typically carried out when a model is being trained, data augmentation can also

be used at test time to improve accuracy [66, 86, 59]. Test-time augmentation (TTA)

involves grouping predictions from multiple transformed versions of a given test

input aiming to obtain a softened prediction. Its popularity is increasing because

it is easy to practice as it does not require new data or changes in the underlying
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model. Nevertheless, despite its popularity, there is relatively limited research on

when and why TTA works, it has been shown recently [109] that even when TTA

produces a net improvement in accuracy, it can turn many correct predictions into

incorrect ones.

Machine-designed data augmentation. Deviating from human-designed aug-

mentation strategies, applying machine-designed augmentation policies has arisen

as a promising methodology to overcome the limitations of manually designing

augmentation approaches. For instance, with Smart Augmentation, Lemley et al., in-

stead of relying on hard-coded transformations, introduces a neural network that is

trained to combine existing samples in order to generate additional data to augment

the training set [71]. Lin et al. proposed a hyper-parameter learning method for auto-

augmentation strategy, named OHL-Auto-Aug, which formulates the augmentation

policy as a parameterised probability distribution, reporting a search cost for aug-

mentation strategies that is up to 60x faster than Smart Augmentation, for achieving

the same level of accuracy [76].

A new augmentation method based on style transfer that randomises textures,

contrasts and colours during training is presented by Jackson et al. [57]. This ran-

domisation level is accomplished by adopting an arbitrary-style transfer network to

perform style randomisation by sampling target-style embeddings from a multivari-

ate normal distribution instead of computing them from a style image. In addition,

the authors found that their style augmentation method can enhance network per-

formance by 8.5% when combined with a mix of seven traditional augmentation

techniques. In the experimental results section, we compared our method to two

state-of-the-art augmentation techniques and arrived at the same conclusion.

Cubuk et al. describe a procedure called AutoAugment that uses reinforcement

learning to automatically find a data augmentation strategy when a target dataset

and a model are provided [28]. Subsequently, the authors introduce what they claim

to be an evolution of AutoAugment method, named Fast AutoAugment, that finds

augmentation policies via a more efficient search strategy based on density match-

ing [74]. Finally, the same authors propose the RandAugment algorithm that uses

a grid search to optimise a hyperparameter that controls the magnitude applied to

transformations, like translation and colour inversion, that are randomly sampled
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[29]. The authors have reported an increase in accuracy of 0.6% over the previous

state-of-the-art and a 1.0% improvement over the baseline augmentation for the Im-

ageNet dataset.

GAN-based augmentation. Generative adversarial networks (GANs) [43], in-

troduced by Goodfellow et al., have shown extraordinary results in many computer

vision tasks such as style transfer [61, 130], image generation [16, 32, 6, 7], image

translation [55, 140, 23], multi-domain image translation [23] and super-resolution

[70]. This extraordinary performance has resulted in more attention on how they

can be applied to the data augmentation task [117, 63, 4, 15, 108, 140, 141]. One

of the domains where GANs have been applied successfully is for data augmenta-

tion in Medical Imaging. For instance, MedGAN [8] proposes a new architecture by

joining the adversarial framework with a new combination of non-adversarial losses

that successfully outperforms the current state-of-the-art in image translation in the

medical area. The medical field has several GAN-based methods [68, 99] success-

fully applied to the segmentation task, and an in-depth review of these methods can

be seen in [122], where Tajbakhsh et al. describe a multitude of methods based on

CycleGAN [140] or conditional GAN [87] to synthesise from x-rays to user-defined

images of injured skin.

Based on the SPADE model [92], Bargsten et al. intend to simulate realistic ul-

trasound speckles, introducing a speckles layer in the SPADE model generator, and

also targeting dataset augmentation. They report that their SpeckleGAN model has

little impact on performance when it comes to the segmentation task [10].

Our method also relies on GANs for data augmentation. We combine two recent

GAN methods, SPADE [92] and Self-attention [136], aiming to build an automati-

cally finding augmentation policy that is suitable for sparse datasets. Our method

can enhance any dataset by creating an augmentation policy that considers synthetic

images as absent data points in the training set. Unlike the other methods mentioned

in this section, our approach is specifically designed for semantic segmentation and

can generate images based on spatial labels. Spatial labels in semantic segmentation

typically involve assigning labels to pixels or regions based on their visual appear-

ance, context, and spatial relationships with neighbouring pixels.

R.B.Arantes, PhD Thesis, Aston University 2022. 87



Chapter 6. Learning an Augmentation Strategy for Sparse Datasets

6.2 Methodology

This section presents our framework that combines three methods in order to build

a robust automatic finding augmentation policy, i.e. an augmentation strategy that is

not manually designed, and that considers synthetic images as missing data points

in the training set. Our approach enhances pixel-level semantic segmentation accu-

racy by generating additional data that fills in the gaps of the original dataset. Figure

6.1 is an example of our method in action. In the first row, we present a t-SNE [83]

plot that displays four datasets (in blue) and the augmentation data produced by

our approach (in red). Furthermore, in the second row, we showcase the improve-

ment achieved by our method for each class, compared to the baseline, which is the

dataset without augmentation. Refer to section 6.3 for the experimental results.

Figure 6.2 highlights our additions to the SPADE model described int section

6.2.1, which are summarised below:

1. An attention mechanism that complements the convolution process and sup-

ports modelling long-range, multi-level dependencies across image areas.

2. A semantic loss that helps to strengthen local and global structural consistency

by evaluating how accurate the synthetically generated image is compared to

a previously trained semantic segmentation model g.

By enhancing SPADE with these two aspects, we aim to improve the synthetic

image quality, generate samples that belong to the same data distribution as the

source data, and that also will be considered as a new sample by the semantic seg-

mentation models, which is a fundamental condition for a successful augmentation

method.

6.2.1 SPADE

To generate images for semantic segmentation, a specific geometry must be respected

as the objects in the synthetic images must be generated following the objects’ po-

sition in the labels. For example, in an image of a street scene, labels may include

assigning road to pixels representing the road surface, building to pixels representing

buildings, car to pixels representing cars, and so on. Each pixel or region is labelled
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FIGURE 6.2: The training process. This image highlights the two contributions we made to
the SPADE model targeting the synthetic image quality enhancement. (A) The self-attention
mechanism and in (B) the semantic loss. Both can be turned on/off, and therefore we have
four training possibilities: both off, which is the original SPADE model. Alternate on, and
both on. That brings four different models. See Table 6.2 for the possibilities.

according to its semantic content, enabling the segmentation model to understand

and differentiate different objects or regions within the image. A natural way of

following this restriction is by using SPatially-Adaptive (DE)normalisation (SPADE)

[92], a new conditional normalisation method for semantic image synthesis. SPADE

layers transform segmentation masks into feature maps γ and β by feeding them

through two convolutional layers. The generated parameters γ and β, which are

tensors with spatial dimensions, are multiplied and added to the normalised input

image x activation map, element-wise. Pixel values xn,c,h,w of input feature maps to

be normalised are transformed as follows:

x′n,c,h,w = γc,h,w
xn,c,h,w − µc

σc
+ βc,h,w, (6.1)

where the indexes (n, c, h, w) refer to the batch size, the number of channels, the

height and the input width. The parameters µc and σc denote the channel-wise mean

and standard deviation of the input feature map x.

The generator employs many ResNet blocks [47] with upsampling layers, and

since each residual block runs at a different scale, the semantic map is downsam-

pled to match the resolution needed for learning the modularisation parameters γ

and β. The discriminator does not apply SPADE and follows the pix2pixHD [129]

discriminator, based on PatchGAN [56], that takes as input the concatenation of the

segmentation map and the input image.
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6.2.2 Semantic consistency loss

We strive to encourage high semantic consistency after image translation by the

SPADE model. To enable this, we pre-train a semantic segmentation model g in

the same training set used to train SPADE. As a second step, we use this pre-trained

model g to assess the synthetic images’ quality during SPADE training, as described

in [4].

By fixing the model g weights during SPADE training, we ensure that an im-

provement in the segmentation results, obtained when the augmented data is present,

is due to an increase in the synthetic image quality. Using this segmenter model g,

we introduce the semantic consistency objective as

Lsem(g, F) = Ey∼pdata(y)Lcs[g(F(y)), y], (6.2)

where Lcs[., .] is the cross-entropy loss [51] matching two segmentation masks g(F(y))

and y. This equation implies that given a label y ∈ Y, the model g predicts the la-

bels for F(y), i.e., the synthetic image produced using the real label y. The loss Lsem

evaluates this prediction, and its result is added to the SPADE objective function,

expecting to assist in improving the overall synthetic image quality.

6.2.3 Self-attention

The attention mechanism was first introduced as a tool for Neural Machine Trans-

lation (NMT) [9] in an encoder-decoder architecture intending to allow the decoder

to automatically search for parts of the input sentence that are more relevant for

the translation. Self-attention is an attention mechanism that relates different parts

of a given input, aiming to model long-range dependencies on it. Cheng et al. [22]

presents a recurrent network for machine reading that uses the self-attention mecha-

nism to enhance the ability to discover relations among tokens. In the case of images,

the self-attention tool is applied to better model the relationship among spatial re-

gions in the input image. In SAGAN [136], the self-attention module complements

the convolution process and supports modelling long-range, multi-level dependen-

cies across image areas. The generator is then expected to synthesise images with
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better details at each location, coordinating with details in distant parts of the gener-

ated image. This is accomplished by forking the convolutional image feature maps

x out into three copies:

f (x) = W f x,

g(x) = Wgx,

h(x) = Whx.

(6.3)

Then we apply the so f tmax function to output the self-attention feature maps:

βij = so f tmax( f (xi)
ᵀg(xj)),

oj = Wv(
N

∑
i=1

βijh(xi)),
(6.4)

where βi,j indicates the degree to which the model attends to the ith position when

synthesising the jth region. W f , Wg, Wh and Wv are all 1× 1 convolution filters. The

output oj of the attention layer is the column vector o = (o1, o2, · · · , oj, · · · , oN).

Finally, the attention layer output is multiplied by a scale parameter and added

back to the original input feature map:

y = xi + γoi, (6.5)

where γ is a learnable scalar. We conducted experiments to address our problem

and found that changing the γ value during training, as outlined in [92], did not

significantly improve our method’s overall performance. As a result, we kept the γ

value constant at 1 for the entire training process.

6.3 Experimental Results

In this section, we will showcase the results of our approach on four different datasets:

our Box dataset, Facade [103], Cityscape [27] and the SUN RGB-D [118] dataset.

R.B.Arantes, PhD Thesis, Aston University 2022. 91



Chapter 6. Learning an Augmentation Strategy for Sparse Datasets

3x3-Conv-3

SPADE ResBlk(1024), Upsample(2)

SPADE ResBlk(1024), Upsample(2)

SPADE ResBlk(1024), Upsample(2)

SPADE ResBlk(512), Upsample(2)

SPADE ResBlk(256), Upsample(2)

SPADE ResBlk(128), Upsample(2)

Self-Attention(128)

SPADE ResBlk(64), Upsample(2)

Self-Attention(64)

3x3-Conv-3, Tanh

Generator

FIGURE 6.3: The new generator. Sketch of SPADE generator architecture after adding the
self-attention module. It contains a sequence of SPADE residual blocks with upsampling
layers. The last SPADE layer is between two Self-attention layers. The term 3x3-Conv-3
means a 3-by-3 convolutional layer with three convolutional filters, and SPADE ResBlk is the
SPADE residual block. We made the network deterministic by starting with a downsampled
segmentation map instead of random z.

6.3.1 Experimental Setup

To simulate sparseness on the Cityscape and SUN RGB-D datasets, we artificially

derived four datasets by randomly removing images from them. All datasets we

used on the experiments are listed in Table 6.1. To augment the datasets listed in

Table 6.1, we used the SPADE [92] model, the state-of-the-art label-to-image transla-

tion model. To obtain further improvement, we enhance the SPADE model with the

semantic reinforcement loss [4] and self-attention [136].

Our model generator, as shown in Figure 6.3, now includes a self-attention mod-

ule in addition to the original SPADE model generator. It consists of a series of

SPADE residual blocks with upsampling layers. Our contribution involves placing

a SPADE layer between two self-attention layers, which are the last layers of the se-

quence. The term 3x3-Conv-3 refers to a convolutional layer with three filters that

are each 3-by-3 in size, and SPADE ResBlk stands for SPADE residual block.

To prove the strength of our proposed framework, we apply it to the semantic
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FIGURE 6.4: Semantic loss two steps training. First, we train a semantic segmentation
model on the training set images x and labels y. Then we use it to assess the quality of
the synthetic images through our model training. (A) We provide the source images x and
labels y for the model and let it calculate the normal SPADE loss function. The image encoder
makes the network deterministic by starting with a reduced resolution segmentation map of
x instead of random z. (B) Using the synthetic image x′ and the original label y as input to
the semantic segmentation model, we generate the label y′ and calculate the semantic loss.
(C) Finally, we calculate the overall model loss.

Dataset Name Size Description
Box 438 Grayscale dataset gathered by the authors, made of boxes of packages arranged on pallets.
Facade 606 Base plus extended version of Facade dataset. [103]
City.500 500 500 randomly extracted images from Cityscape dataset. [27]
City.1000 1000 1000 randomly extracted images from Cityscape dataset.
City.2000 2000 2000 randomly extracted images from Cityscape dataset.
City.4000 4000 4000 randomly extracted images from Cityscape dataset.
SUN.500 500 500 randomly extracted images from SUN RGB-D dataset. [118]
SUN.1000 1000 1000 randomly extracted images from SUN RGB-D dataset.
SUN.2000 2000 2000 randomly extracted images from SUN RGB-D dataset.
SUN.4000 4000 4000 randomly extracted images from SUN RGB-D dataset.

TABLE 6.1: Datasets. Lists of all datasets used in our experiments. The split was 80% for
training and 20% for the test. The test set is the same across all experiments.

segmentation problem, and to access its performance, for each dataset, we trained

two semantic segmentation models: Fully-Convolutional Network (FCN) [110], and

DeeplabV3 [20], both models relying on a ResNet101 [47] backbone. Each model

is trained for 50 epochs with a learning rate set to 0.0002, and the Adam optimiser

[64]. For the Cityscape dataset, we also trained the Criss-Cross Network (CCNet)

[53] model. CCNet is a new state-of-the-art semantic segmentation model that uses

an attention mechanism to map long-range dependencies and capture useful contex-

tual information by collecting the surrounding pixels on a criss-cross path through

a novel criss-cross attention module. We trained the CCNet model using an initial

learning rate set to 0.01, weight-decay set to 0.0005 and the model was trained for

60000 steps. To enable training on a relatively low-end, single-GPU architecture, we

resized the images in the Cityscape dataset to 512× 256, and all experiments in this
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Augmentation Type Description
SPADE Augmentation based only on SPADE synthetic images.
SPADE+self-att SPADE model enhanced with the self-attention mechanism. See section 6.2.3.
SPADE+seg-loss SPADE model enhanced with the segmentation loss. See section 6.2.2.
SPADE+seg-loss+self-att SPADE model enhanced with both self-attention mechanism and the segmentation loss.

TABLE 6.2: Augmentations. We experiment with four types of augmentation in order to
evaluate the benefit of each of the components of our proposed method.

dataset were performed with these resized images. All our models were trained us-

ing a single GPU GeForce RTX 2080 Ti with 11GB of memory. The amount of time

needed for training varies depending on the dataset. The Box dataset takes approx-

imately 2 hours to train, while the Cityscape.4000 dataset takes around 48 hours.

Each dataset has been split into a training XS set, with 80% and a test XT set, with

20%. As shown in Table 6.2, there are 4 augmentation variations of the training set

per dataset in order to evaluate the various components of our proposed method.

The augmentation is done by the following procedure: For each label y ∈ XS, a

synthetic image x = F(y) is generated and the pair (y, x) is added to the dataset.

By the end, a new training set X′S is created with a size twice as XS. This is the

consequence of adding one synthetic image per each label y ∈ XS to the new training

set X′S.

All models’ performances are reported using the mean intersection-over-union

(mIoU) score [111] and pixel accuracy, evaluated over the test set, which is constant

across all experiments.

When the semantic reinforcement loss is used, two steps are needed: First, we

train the semantic segmentation model g on the regular dataset, without any aug-

mentation, which is used later as a labeller during the SPADE training. Then we

train SPADE with the semantic reinforcement loss, as described in 6.2.2.

In Figure 6.4, we outline the two-step training process. The initial step involves

training a semantic segmentation model on the training set images x and labels y.

Then we use it to assess the quality of the synthetic images through our model train-

ing. (A) We provide the source images x and labels y for the model and let it calculate

the normal SPADE loss function. The image encoder makes the network determin-

istic by starting with a reduced resolution segmentation map of x instead of random

z. (B) Using the synthetic image x′ and the original label y as input to the semantic

segmentation model, we generate the label y′ and calculate the semantic loss. (C)
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Finally, we calculate the overall model loss.

To confirm the benefits of our method, we also compared its effects on two aug-

mentation strategies, a mix of three traditional augmentation techniques and the

RandAugmentation [29] algorithm, which applies transformations that are randomly

sampled. The traditional (Trad) augmentation methods are: ShiftScaleRotate,

RGBShift and RandomBrightnessContrast [17]. For the RandAugmentation algo-

rithm (Rand), we use the parameters M = 5 and N = 3 as suggested in the paper

and sample the transformations between all spatial level transformations in the Al-

bumentation library [17] that simultaneously alter the input image and the label.

We run these experiments on the DeepLabV3 model using the same setup as the

previous experiments.

6.3.2 Evaluation

Tables 6.3, 6.4 and 6.5 shows the results. Table 6.3 contrasts the Facade and the Box

dataset; Table 6.4 shows the results for the SUN RGB-D datasets, and Table 6.5 shows

the results for the Cityscape datasets. For Tables 6.3 and 6.4, each experiment was

performed five times and the results listed are the mean and the standard deviation

for these five executions.

In Table 6.5, for the CCNet model, we report only the mIoU, which is the metric

reported by the model source code provided by the authors 1. In addition, the mean

and standard deviation reported are for the five runs of the model. The mean and

standard deviation reported for DeeplabV3 and FCN models are calculated for the

five runs of the model, as in Table 6.3 and Table 6.4. Examples of synthetic images

generated by our method are displayed in Figure 6.9.

The given results show that the dataset augmented with images from the SPADE

model, enhanced with the semantic reinforcement loss and the self-attention mech-

anism, delivers the best results. These results are statistically distinct from the base-

line (2-tailed t-test, 5% significance level), and are shown in bold in the results tables.

As stated before, our method performs better on a more sparse dataset, as Figure

6.6a demonstrates. This figure compares the gain in the mIoU [111] score, for the

SUN RGB-D and Cityscape datasets, against dataset size. It shows the percentage

1https://github.com/speedinghzl/CCNet
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DeeplabV3 [19] FCN [110]
Dataset name FID mIoU Accu. mIou Accu.
Box 0.875 (0.002) 0.929 (0.001) 0.875 (0.003) 0.929 (0.002)
Box+SPADE 160.451 0.875 (0.002) 0.929 (0.002) 0.874 (0.003) 0.928 (0.002)
Box+SPADE+self-att 151.186 0.875 (0.003) 0.929 (0.002) 0.878 (0.003) 0.931 (0.002)
Box+SPADE+seg-loss 150.800 0.877 (0.001) 0.931 (0.001) 0.876 (0.003) 0.930 (0.002)
Box+SPADE+self-att+seg-loss 151.697 0.879 (0.005) 0.931 (0.003) 0.880 (0.003) 0.931 (0.002)
Facades 0.552 (0.016) 0.706 (0.013) 0.558 (0.003) 0.711 (0.002)
Facades+SPADE 85.512 0.565 (0.009) 0.716 (0.008) 0.572 (0.004) 0.723 (0.003)
Facades+SPADE+self-att 91.302 0.583 (0.002) 0.731 (0.002) 0.580 (0.003) 0.729 (0.003)
Facades+SPADE+seg-loss 91.455 0.571 (0.004) 0.722 (0.003) 0.576 (0.003) 0.725 (0.002)
Facades+SPADE+self-att+seg-loss 85.371 0.586 (0.002) 0.734 (0.002) 0.589 (0.002) 0.736 (0.001)

TABLE 6.3: Experimental results. Accu. is the pixel accuracy; the FID [49] metric is calcu-
lated against the dataset without augmentation. The mIoU and the pixel accuracy results
reported are the mean and the standard deviation after 5 executions of the experiment. The
test set used in all experiments is the same used when no augmentation is present.

improvement between the best mIoU average, in bold at Table 6.4 and Table 6.5, and

the baseline average, the first row on each table section. It ranges from an improve-

ment of 6.2% to 14.2% for the SUN RGB-D dataset and from 1.2% to 4.1% for the

Cityscape dataset.

To support the density hypothesis, we chose to calculate our datasets density

using the K-nearest neighbour algorithm 2. To that end, for each image I ∈ S , we

selected the median distance Med(X ), among the ordered list X of all K = 5 nearest

neighbours of I , and calculated the mean µ over all dataset images median distance

Med(X ).

Med(X ) = X [3] , (6.6)

µ =
1
N

N

∑
n=1

Med(Xi), (6.7)

where N is the dataset S size. We take µ as our dataset density metric. We calculated

the density of the dataset using the directly extracted VGG16 features and the 2D

t-SNE points calculated on these features. Although the scale of values between

the two calculations is different, their results agree with each other, as shown in

Table 6.6. Figure 6.6b shows the relationship between the dataset density and the

performance gain for the SUN RGB-D and Cityscape datasets, respectively. This

2https://scikit-learn.org/stable/modules/neighbors.html#unsupervised-neighbors
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DeeplabV3 [19] FCN [110]
Dataset name FID mIoU Accu. mIou Accu.
SUN.500 0.360 (0.021) 0.515 (0.022) 0.379 (0.009) 0.538 (0.008)
SUN.500+SPADE 119.767 0.403 (0.012) 0.560 (0.012) 0.404 (0.022) 0.561 (0.022)
SUN.500+SPADE+self-att 132.359 0.407 (0.006) 0.565 (0.006) 0.423 (0.008) 0.580 (0.008)
SUN.500+SPADE+seg-loss 123.174 0.410 (0.004) 0.568 (0.004) 0.425 (0.011) 0.583 (0.011)
SUN.500+SPADE+self-att+seg-loss 135.961 0.411 (0.006) 0.569 (0.006) 0.431 (0.008) 0.588 (0.008)
SUN.1000 0.357 (0.006) 0.508 (0.006) 0.383 (0.005) 0.537 (0.006)
SUN.1000+SPADE 110.611 0.378 (0.014) 0.529 (0.014) 0.393 (0.016) 0.529 (0.014)
SUN.1000+SPADE+self-att 111.069 0.392 (0.003) 0.544 (0.003) 0.394 (0.008) 0.547 (0.008)
SUN.1000+SPADE+seg-loss 101.117 0.389 (0.006) 0.541 (0.006) 0.396 (0.012) 0.549 (0.012)
SUN.1000+SPADE+self-att+seg-loss 98.200 0.393 (0.003) 0.545 (0.003) 0.405 (0.008) 0.558 (0.008)
SUN.2000 0.396 (0.006) 0.552 (0.005) 0.405 (0.019) 0.561 (0.019)
SUN.2000+SPADE 79.101 0.425 (0.009) 0.580 (0.009) 0.432 (0.009) 0.588 (0.009)
SUN.2000+SPADE+self-att 75.115 0.418 (0.006) 0.574 (0.006) 0.437 (0.003) 0.593 (0.003)
SUN.2000+SPADE+seg-loss 69.400 0.422 (0.008) 0.578 (0.007) 0.434 (0.008) 0.589 (0.008)
SUN.2000+SPADE+self-att+seg-loss 81.646 0.427 (0.007) 0.582 (0.007) 0.441 (0.010) 0.596 (0.010)
SUN.4000 0.420 (0.005) 0.575 (0.005) 0.434 (0.009) 0.588 (0.009)
SUN.4000+SPADE 62.062 0.441 (0.009) 0.595 (0.008) 0.450 (0.009) 0.604 (0.009)
SUN.4000+SPADE+self-att 56.956 0.437 (0.011) 0.591 (0.010) 0.448 (0.010) 0.602 (0.009)
SUN.4000+SPADE+seg-loss 68.293 0.446 (0.006) 0.599 (0.005) 0.442 (0.006) 0.596 (0.006)
SUN.4000+SPADE+seg-loss+self-att 52.882 0.436 (0.011) 0.591 (0.010) 0.456 (0.003) 0.610 (0.002)

TABLE 6.4: Experimental results. Accu. is the pixel accuracy; the FID [49] metric is calcu-
lated against the dataset without augmentation. The mIoU and the pixel accuracy results
reported are the mean and the standard deviation after 5 executions of the experiment. Four
datasets were randomly extracted from the original SUN RGB-D dataset: one with 500, 1000,
2000 and 4000 images. The test set used in all experiments is the same used when no aug-
mentation is present.

CCNet [53] DeeplabV3 [19] FCN [110]
Dataset name FID mIoU mIoU Accu. mIoU Accu.
City.500 0.436 (0.004) 0.772 (0.001) 0.861 (0.001) 0.774 (0.006) 0.871 (0.004)
City.500+SPADE 78.464 0.452 (0.003) 0.782 (0.002) 0.876 (0.001) 0.778 (0.006) 0.872 (0.003)
City.500+SPADE+self-att 74.401 0.453 (0.002) 0.781 (0.002) 0.876 (0.001) 0.773 (0.007) 0.871 (0.005)
City.500+SPADE+seg-loss 75.485 0.453 (0.003) 0.780 (0.003) 0.875 (0.002) 0.776 (0.004) 0.872 (0.003)
City.500+SPADE+self-att+seg-loss 74.897 0.455 (0.003) 0.785 (0.001) 0.879 (0.001) 0.782 (0.002) 0.876 (0.001)
City.1000 0.495 (0.004) 0.779 (0.001) 0.875 (0.001) 0.773 (0.004) 0.871 (0.002)
City.1000+SPADE 55.981 0.495 (0.002) 0.784 (0.000) 0.878 (0.000) 0.776 (0.001) 0.872 (0.000)
City.1000+SPADE+self-att 50.039 0.510 (0.003) 0.784 (0.001) 0.878 (0.002) 0.778 (0.004) 0.874 (0.002)
City.1000+SPADE+seg-loss 52.227 0.501 (0.000) 0.784 (0.002) 0.878 (0.002) 0.783 (0.002) 0.877 (0.001)
City.1000+SPADE+self-att+seg-loss 51.183 0.520 (0.001) 0.786 (0.001) 0.879 (0.001) 0.781 (0.001) 0.876 (0.001)
City.2000 0.583 (0.001) 0.790 (0.001) 0.877 (0.001) 0.790 (0.000) 0.882 (0.001)
City.2000+SPADE 47.221 0.583 (0.001) 0.792 (0.000) 0.883 (0.000) 0.789 (0.001) 0.878 (0.001)
City.2000+SPADE+self-att 46.656 0.595 (0.000) 0.793 (0.001) 0.885 (0.001) 0.793 (0.001) 0.883 (0.000)
City.2000+SPADE+seg-loss 46.605 0.588 (0.002) 0.792 (0.001) 0.883 (0.001) 0.791 (0.000) 0.883 (0.000)
City.2000+SPADE+self-att+seg-loss 45.892 0.581 (0.003) 0.792 (0.000) 0.883 (0.000) 0.792 (0.001) 0.883 (0.000)
City.4000 0.589 (0.004) 0.761 (0.005) 0.856 (0.004) 0.745 (0.001) 0.844 (0.000)
City.4000+SPADE 52.442 0.592 (0.003) 0.760 (0.002) 0.854 (0.002) 0.742 (0.003) 0.841 (0.003)
City.4000+SPADE+self-att 41.658 0.586 (0.003) 0.765 (0.002) 0.868 (0.001) 0.738 (0.002) 0.840 (0.001)
City.4000+SPADE+seg-loss 53.585 0.596 (0.003) 0.764 (0.004) 0.858 (0.002) 0.743 (0.006) 0.846 (0.004)
City.4000+SPADE+seg-loss+self-att 48.459 0.591 (0.002) 0.762 (0.004) 0.857 (0.004) 0.743 (0.004) 0.844 (0.003)

TABLE 6.5: Experimental results. Accu. is the pixel accuracy; the FID [49] metric is calcu-
lated against the dataset without augmentation. The mIoU and the pixel accuracy results
reported are the mean and the standard deviation after 5 executions of the experiment. Four
datasets were randomly extracted from the original Cityscape dataset: one with 500, 1000,
2000 and 4000 images. The test set used in all experiments is the same used when no aug-
mentation is present.
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FIGURE 6.5: Dataset Density. Although the Box dataset is the smallest, it is also the densest
dataset among the smallest. Therefore, its main gain was also the poorest.

shows that the lower the density, the greater the improvement brought to our GAN-

based data augmentation method.

Not shown in Figure 6.6, but also relevant is the gain of 6.2% and 5.5% for the

Facade dataset with the DeeplabV3 [19] and FCN [110] models, respectively. In

[4], where the authors also experiment with the Facade dataset, the gain reported

is of 4% with DeeplabV3 and 3% with the FCN model. As previously mentioned,

machine learning and artificial intelligence make progress through incremental ad-

vancements rather than sudden breakthroughs. Even a minor improvement in accu-

racy is a step forward in this iterative process, leading us closer to improved models

and solutions.

The worst result was achieved on the Box dataset, which improved only about

0.5% and 0.6% with DeeplabV3 and FCN, respectively. This result aligns with our ex-

pectation, as the Box dataset is the densest dataset among all datasets experimented

with, even though it also is the smaller dataset. A comparison among the Box, Fa-

cade, City.500 and SUN.500 is shown in Figure 6.5.

Furthermore, in the first column at Tables 6.3, 6.4 and 6.5, the FID [49] metric

reinforces our method’s strength since for 4 out of 10 datasets present in the ta-

bles, our approach provided a better score when compared with the baseline, i.e.

the dataset with no augmentation. For the SUN.2000 and the Box datasets, the better
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(A)

(B)

FIGURE 6.6: Performance comparison. The relative improvement ( bestmIoU
baselinemIoU

− 1) is shown
for each SUN RGB-D and Cityscape dataset size (a) and density (b) tested and for CCNet,
DeeplabV3 and FCN. The bestmIoU is computed as the average of the all bestmIoU throughout
all algorithm runs. Moreover, for all dataset sizes, a statistical pair-wise t-test indicates the
performance of the CCNet, DeeplabV3 and FCN outperforms the baseline performance, at a
5% significance level.
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t-SNE 2D VGG features
Dataset Size Mean Distance Std Mean Distance Std

Facades 606 2.387 0.063 36.762 1.269
Box 438 2.019 0.057 32.593 0.877
SUN 500 2.386 0.128 50.714 2.298
SUN 1000 2.241 0.082 49.121 1.714
SUN 2000 2.145 0.044 48.583 1.214
SUN 4000 1.915 0.062 46.990 0.633
Cityscape 500 2.410 0.047 46.929 0.057
Cityscape 1000 2.403 0.072 46.443 0.090
Cityscape 2000 2.325 0.127 45.632 0.039
Cityscape 4000 2.274 0.144 44.735 0.026

TABLE 6.6: Dataset density. The K-nearest neighbour’s average distance to the dataset
using the directly extracted VGG16 features and the 2D t-SNE points calculated on these
features. As the data set gets smaller, the sparse it tends to be. We report the mean distance
and the standard deviation calculated over 5 executions of the algorithm.

FID is also given by the SPADE model plus the semantic reinforcement loss. More-

over, for the Cityscape datasets, City.500 and City.4000, the better FID is given by the

SPADE model augmented by the self-attention module. Only for City.1000 in Table

6.5, SPADE alone provided the better FID. The FID [49] score represents how close

synthetic data are to the original, where the lower the value of FID, the closer these

are.

It’s important to note, as discussed in Chapter 5, that a lower FID value, which

indicates a higher similarity to real images, doesn’t necessarily result in better mIoU

performance. Figure 6.7 demonstrates that, except for the SUN.400 dataset at the

bottom, there isn’t a significant correlation between FID and mIoU metrics. In sim-

pler terms, just because the synthetic images have good visual quality, as measured

by FID, doesn’t mean they’ll be effective in enhancing segmentation performance,

as measured by mIoU.

Based on this information, it seems that while FID can offer useful information

on the quality of synthetic images, it shouldn’t be the only factor taken into consid-

eration when determining whether they are appropriate for use in tasks such as data

augmentation.
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FIGURE 6.7: FID x MioU. Our experiments show that a lower FID score may not necessarily
mean that the artificial image is better for data expansion purposes. Just because the syn-
thetic images have good visual quality, as measured by FID, doesn’t mean they’ll be effective
in enhancing segmentation performance, as measured by mIoU.

6.3.3 Regular Data Augmentation

Table 6.7 and Figure 6.8 summarises the results. The last two columns in Table 6.7

present the results when our method is associated with the traditional (Trad) aug-

mentation strategy and the RandAugmentation (Rand) algorithm. As shown in the

table, only for the SUN dataset did the traditional and RandAugmentation algorithm

performed better than our (Ours) method. Furthermore, our strategy was superior

for the Box, Facade, and Cityscape datasets. This points to the strength of our aug-

mentation technique and the invariance it introduces into the model. However, our

strategy also provided additional improvements when combined with the two reg-

ular methods across all datasets, as the last two columns in the table emphasise.

The key point to extract from the results obtained from these comparisons and

the association of augmentation methods is to emphasise how difficult it is to de-

velop an augmentation strategy manually. Although training a GAN method to

generate synthetic images for data augmentation purposes can be expensive, as the

cost of training a GAN can vary depending on the size and complexity of the dataset,
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Augmentation Approach
Dataset None Ours Trad Rand Trad+Ours Rand+Ours
Box 0.875 0.879 0.847 0.860 0.826 0.868
Facades 0.552 0.586 0.531 0.570 0.536 0.577
SUN.500 0.360 0.411 0.409 0.418 0.441 0.440
SUN.1000 0.357 0.393 0.399 0.399 0.413 0.414
SUN.2000 0.396 0.427 0.433 0.428 0.442 0.438
SUN.4000 0.420 0.436 0.446 0.447 0.462 0.464
City.500 0.772 0.785 0.766 0.780 0.769 0.778
City.1000 0.779 0.786 0.769 0.777 0.776 0.782
City.2000 0.790 0.792 0.775 0.786 0.785 0.787
City.4000 0.761 0.762 0.634 0.700 0.635 0.697

TABLE 6.7: Augmentation methods comparison.. The reported mIoU is the mean after five
runs of the experiment, and the standard deviation, not shown in this table, is always less
than 0.01.

we believe we have demonstrated that it pays off.

6.3.4 Discussion

It is not immediately apparent why a low data density must correlate with the im-

provement brought about by an augmentation algorithm based on GAN, as pro-

posed in this chapter. We hypothesise that when the dataset is small, such as Facade,

Box, City.500 and SUN.500, it has gaps that the model can learn to fill. Consequently,

the increased data is more effective in bringing about performance improvements.

Therefore, the results presented here are in line with our assumption that considers

synthetic images as missing data points in the training set: smaller datasets, in gen-

eral, are better suited to augment with synthetic data than larger datasets because

larger datasets also are denser and have fewer gaps to fill. Figure 6.10 illustrates this

assumption, it is shown that as the dataset increases in size from top to bottom, it

becomes denser, making it increasingly difficult to find a gap that can be filled with

synthetic data.

6.4 Summary

This chapter proposes a fully automated data augmentation strategy that is suit-

able for sparse datasets. Using GAN-derived synthetic images, we demonstrated

that our framework could improve results across three semantic segmentation tasks.
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FIGURE 6.8: Augmentation methods comparison. We are comparing the mIoU improve-
ment in the SUN-RGB-D and Cityscape datasets. For the SUN dataset, our method brought
additional improvements when paired with traditional augmentation methods (Trad) and
the RandAugmentation (Rand) algorithm. On the other hand, for the Cityscape dataset, our
method is superior as a standalone technique. These charts emphasise how difficult it is to
design a working augmentation strategy manually.

The framework has been shown to work best in limited data case scenarios and re-

quires little overhead. All experiments were carried out on just a single GeForce RTX

2080 Ti with 11GB memory. The time required for training varies depending on the

dataset used. For instance, it takes about 2 hours to train on the Box dataset, which

is the smallest, and approximately 48 hours to train on the Cityscape.4000 dataset,

which is the largest.

We also strive to demonstrate how a low data density situation can be correlated

with the improvement brought by GAN-based augmentation algorithms: When the

dataset is sparse, it has gaps that the model can learn to fill. Consequently, aug-

mented data is more effective in bringing performance improvements. Our pro-

posed method can provide an effective way to fill in these training data gaps and

provide synthetic data that effectively bring performance improvement, leading to

an improved mean intersection-over-union (mIoU) score of between 0.5 and 14 per-

centage points.
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Label Original SPADE Ours

Box

Facade

SUN RGB-D

Cityscape

FIGURE 6.9: Examples. Samples synthesised by our SPADE-based method, with semantic
loss and self-attention, are in the last column. Samples synthesised by SPADE are in column
three. Across all datasets, the SPADE model enhanced with our semantic reinforcement loss
function and self-attention method scored a better FID than SPADE alone.

R.B.Arantes, PhD Thesis, Aston University 2022. 104



Chapter 6. Learning an Augmentation Strategy for Sparse Datasets

FIGURE 6.10: Dataset density vs augmentation. As the dataset grows in size, it becomes
denser and, therefore, more complicated is finding a gap to fill with synthetic data. Images
generated with t-SNE [83] on VGG16 [116] features. The first column is for the Cityscape
dataset, and the second one is for the SUN RGB-D dataset. Each row is for a dataset arti-
ficially generated by randomly extracting images from the original dataset. We create four
datasets by randomly extracting images from the original dataset: 500, 1000, 2000, 4000.
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Chapter 7

Conclusions

In this dissertation, we studied deep generative models as an augmentation pro-

cess for tiny datasets. In pursuit of this knowledge, we developed various methods

along the way: (1) an image synthesis process, which artificially generates images

containing some particular requested content, was created in Chapter 3. (2) another

generative method that is capable of synthesising arbitrary-sized, high-resolution

images derived from a single reference image was introduced in Chapter 4. Unlike

the previous method in Chapter 3, which required three GANs, this new method

only requires one GAN to synthesise images. (3) Building on the knowledge in the

first part of this dissertation, we introduced in Chapter 5 a new loss function that

allowed further improvements in the quality of the synthetic images so that they

could be used successfully to augment a small facade dataset. (4) We demonstrate in

Chapter 6, using various datasets, that additional improvement can be added when

a self-attention mechanism is used in conjunction with a semantic loss function. (5)

Finally, in Chapter 6, we also studied the influence of the density of a dataset on the

augmentation process. This chapter concludes this dissertation by presenting our

main contributions and directions for future research.

7.1 Contributions

We summarise the main contributions of this dissertation as follows;
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7.1.1 Image Synthesis For Texture Generation

In Chapter 3, we address research question 1 (outline in section 1.1). We investigate

the image synthesis process, which artificially generates images containing some

particular requested content. As a result, we presented a deep generative model

based on conditional GAN (cGAN) [87] that synthesises images based on a single

source image. This method, named QuiltGAN, is aimed to generate texture and is

inspired by the Image Quilting algorithm proposed by Efros et al. [34].

We have compared our method with IQ and IQ+GAN using the SIFID [107] met-

ric in a few images. In two out of three comparisons, our method performed better.

However, our method is expensive because it requires training three GANs to pro-

duce a synthetic image. As a result, we have decided to switch to a simpler method,

which we introduced in Chapter 4.

7.1.2 Arbitrary Size Image Generation

In Chapter 4, we continue addressing research question 1 (outline in section 1.1) and

investigate whether GANs [43], one of the most successful parametric models, might

be employed to generate new, high-resolution images based on an individual refer-

ence image. We introduced rcGAN, a generative method capable of synthesising

arbitrary-sized, high-resolution images derived from a single reference image used

to train our model. The rcGAN framework is a two-step method that uses a ran-

domly conditioned Generative Adversarial Network (rcGAN) trained on patches

obtained from the reference image.

We compare the results of our two-steps methods with SinGAN [107], InGAN

[112] and Spatial-GAN [58]. We acknowledge that our approach may not always

produce the best quantitative results. However, we are convinced that our method

is still superior to the other methods discussed in this context. This is because we

maintain the original distribution while increasing variability, and also provide man-

ual control over the generated synthetic image by allowing the selection of the seed.
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7.1.3 Semantic Loss Constrained By Semantic Segmentation

Founded on our previous experience of using GANs for image synthesis, in Chapter

5, we extended the work presented in Part II by addressing research questions 2 and

3 (outline in section 1.1) and investigated to what extent an image-to-image transla-

tion model like CycleGAN [140] can be used as a data augmentation method. As a

result, we proposed a new Cycle and Semantic Consistency (CSC-GAN) model, an

adversarially trained image-to-image translation method that strengthens local and

global structural consistency through cycle consistency and a new loss function that

is constrained by semantic segmentation. In addition, our formulation encourages

the model to preserve semantic information during the translation process.

This refinement enables using the proposed method for data augmentation in the

semantic segmentation domain. The enhanced model successfully augmented a tiny

facade dataset and improved the performance of two semantic segmentation meth-

ods, i.e. DeeplabV3 [19] by approximately 4%, and the FCN [81] model by roughly

3%.

7.1.4 Augmentation Strategy For Sparse Datasets

In Chapter 6, we planned to answer research question 4 and reinforce the findings

of the previous chapters regarding questions 2 and 3 (as outlined in section 1.1). To

do this, we combined three methods to build a robust augmentation policy suitable

for sparse datasets and applied them to semantic segmentation tasks. Our strategy

is based on SPADE [92], a spatially-adaptive normalisation model that synthesises

photorealistic images given a semantic input layout.

We demonstrated that our framework could improve results across three seman-

tic segmentation tasks using GAN-derived synthetic images. We also seek to show

how a low data density situation can be correlated with the improvement brought

by GAN-based augmentation algorithms: When the dataset is sparse, it has gaps

that the model can learn to fill. Consequently, augmented data is more effective

in bringing performance improvements. Our method can effectively fill in these

training data gaps by providing synthetic data that leads to improved performance,
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resulting in a mean intersection-over-union (mIoU) score improvement of 0.5 to 14

percentage points.

7.2 Future Work

GANs have proven to be a powerful machine learning method for data augmenta-

tion and have achieved significant success in this task [14, 82, 72, 135]. In the quest to

develop a strategy for obtaining a suitable augmentation method, this thesis covered

some research activities like texture synthesis and arbitrary size image generation,

all based on the GAN framework. This research can be further explored in future

work to improve current performance. To do so, we believe we must answer the

following questions.

To what extent does enhancing the quality of synthetic images hinder the aug-

mentation capability of the model? To augment a dataset successfully, we know that

the synthetic image must come from the same distribution as the dataset. However,

can improving the image quality too much degrade the model augmentation capa-

bility?

We demonstrated that the data density could harm the model augmentation abil-

ity because, in a dense dataset, there are fewer gaps to fill. How far can we teach a

model to overcome this restriction and learn to extend the dataset boundaries in-

stead of just filling gaps in the existing data? As we know, a GAN model learns to

imitate the dataset data distribution. Therefore is such a task possible?

In conclusion, future research works could focus on exploring novel techniques

to optimise the performance and efficiency of GAN-based data augmentation meth-

ods, thereby advancing their applicability and impact across diverse domains.
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