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THESIS SUMMARY 

The last few decades have seen an accelerating pace of fundamental transformations in the business 

environment driven by digital technologies and the emergence of the green agenda. These are known 

as the digital and green transitions, largely pushed by technological advancements and innovation. 

Given the profound impact of such two transitions on the business operations and environment, it is 

crucial for both researchers and policy makers to improve their understanding of what these big trends 

mean for businesses and how market players should strategise for responding to these technological 

transformations to maximise the benefits and mitigate the risks. We attempt to tackle these big problems 

by probing into the fundamental technological trends underlying these two transitions. 

This thesis is developed to investigate how companies react to the ongoing economic and societal 

challenges during the digital and green transitions by searching for answers to three related research 

questions. In particular, we intend to understand how businesses develop their technological 

competence or capacity for creating ground-breaking innovation within Industry 4.0 as well as 

environmental innovation under the current global endeavour to achieve SDGs. We also propose to 

analyse how the wave of green technology influences economic performance of businesses in the wider 

economy through the diffusion of green innovation. 

The work is composed of three empirical chapters, mainly drawing upon patent information from 

the Bureau van Dijk’s Orbis Intellectual Property (Orbis IP) database, Environmental, Social and 

Governance (ESG) practices from the Thomson Reuters ASSET4 database, and firm-level information 

from the Orbis database. 

The first empirical study focuses on the innovation of Internet of Things (IoT) technologies and 

advances our understanding of the route towards pathbreaking innovation activities undertaken by the 

UK firms. Firms often face a tension between innovation persistence in their technological core 

competence and technological diversification that typically expands the boundary of knowledge. This 

tension is especially acute in the case of pathbreaking technologies such as the IoT, a core infrastructure 

element of Industry 4.0. Centring on the factors that drive firms’ creation of ground-breaking IoT 

technologies, we investigate how companies’ technology trajectory in terms of their core-technology 

competence, technology diversification, and innovation persistence affects pathbreaking innovation, as 

measured by IoT patenting. We develop theory suggesting that technological core competence is 

inimical to engagement in IoT patenting, whereas possessing a technological related and unrelated 

knowledge base is positively linked to IoT innovation. 

Multinational enterprises (MNEs), especially those from the developed economies, present an 

important context for studying sustainability related issues (e.g., environmental innovation) for they 

possess resources and abilities to promote social and environmental values, potentially leading on 

global economic and environmental development. Drawing on the global connectedness of MNEs and 

knowledge-based perspective, the second empirical chapter conceptually develops the theory of the 

diverse antecedents of environmental innovation from the perspective of MNE connectivity through 

networked relationships for production and innovation. Employing Environmental, Social and 

Governance (ESG) data from Thomson Reuters ASSET4 database of developed country MNEs whose 

headquarters are in France, Germany, the United Kingdom, and the Netherlands, our empirical tests 

support our conjectures. Wider global linkages built on production networks, and intra- and inter-MNE 

innovation co-production linkages contribute to a MNE’s capability to produce environmental 

innovation. However, intra-organisational linkages motivated by traditional control and coordination 

mechanisms do not play an important role in environmental innovation capacity. Our findings 
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emphasise that specific types of ties related to knowledge connectivity and innovation collaboration 

matter more for environmental innovation than general control and coordination linkages. As such, this 

chapter enriches the international business (IB) literature by understanding MNEs’ internationalisation 

strategies and cross-border innovation management in the light of the contemporary challenges and 

opportunities presented by the need to respond to the climate emergency. To put it another way, we 

contribute to an important intersection between IB literature and the environmental innovation field by 

explaining its determinants from a novel IB and management perspective. Policy implications are drawn 

for practitioners and policymakers to effectively foster and stimulate organisations’ environmental 

innovation capacity. 

The third empirical study focusses on the wider impacts of green innovation and the dynamics 

pertaining to its diffusion within a UK context. Research on environmental innovation has largely 

focused on the determinants of such innovation development, its internal impacts on the focal firm, and 

external impacts on the sectoral environmental performance. Despite this, we still lack understanding 

of how green technology interacts with the local economy and thus affects other firms’ economic 

performance. By connecting the environmental innovation literature with economic geography 

arguments on agglomeration externalities, we fill the knowledge gap by investigating the economic 

relevance of green innovation spillovers on the performance of other related businesses within the same 

locality and revealing the conditions under which the spillovers can happen. Moreover, we consider 

how different dimensions of absorptive capacity affect firms’ ability to leverage green innovation 

externalities and absorb such spillovers. To the best of our knowledge, this is the first study to 

investigate the spillover effects of green innovation via both horizontal and vertical linkages in driving 

firm-level productivity and employment growth, which tends to offer important implications for both 

practitioners and policy makers. 

 

Key words: Industry 4.0, Pathbreaking IoT technologies, Innovation persistence, Environmental 

innovation, Developed country MNEs, Global connectedness, Intra- and inter-organisational linkages, 

Agglomeration externalities, Green innovation diffusion, Core-technology competence, Technological 

diversification 
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CHAPTER 1: INTRODUCTION 

 

1.1 Research context 

The overarching aim of the thesis is to study how businesses are responding to the contemporary 

economic and societal challenges that have led to fundamental transformations in the business 

environment during the digital 1  and green transition 2 . Specifically, it investigates pathbreaking 

innovation and environmental innovation3. It looks at how companies can develop the capacity or 

technological competence for generating (i) pathbreaking innovation within the fourth industrial 

revolution, and (ii) environmental innovation that addresses the global sustainability challenge. It also 

explores how the wave of green technology affects businesses in the wider economy through different 

channels of diffusion. 

In the early 21st century, businesses are pressed for transformations driven by digital technologies 

and the emergence of the green agenda. These are known as the digital and green transitions. 

Accordingly, Zhan (2021) identifies five forces4 driving the transformation of global value chains 

(GVCs) in the coming decade. Of these, technology/Industry 4.0 and the sustainability imperative 

appear to be the two most important, with their key elements creating long-term social and economic 

challenges and opportunities, effecting a GVC transformation that will reshape global trade trends and 

the investment landscape. A common feature of Industry 4.0 and the sustainability imperative is that 

they are largely driven by technological advancements and innovation.  

The current wave of technological advancement amounts to a digital technological revolution 

(Ghobakhloo, Iranmanesh, Grybauskas, Vilkas and Petraitė, 2021; Li, Fast-Berglund and Paulin, 2019), 

which is commonly known as the fourth generation of industrial revolution (Industry 4.0)5. We have 

witnessed radical changes to real world operations, with production systems becoming incorporated 

with business intelligence (Choi, Kumar, Yue, and Chan, 2021). In the Industry 4.0 era, technological 

advances in a variety of ground-breaking disruptive technologies are revolutionising business 

operations by using machines for knowledge work (e.g., smart manufacturing and intelligent 

                                                      
1 This concept denotes the transition from analog to digital processes which enables digital tools to model 

processes and activities, thus improving performance and productivity (Rosário and Dias, 2022). 
2 It represents a process towards a new development model that ensures environmentally sustainable and fairer 

societies. It is a necessity to address the human-induced climate change emergency, environmental degradation 

(water, land, forests, atmosphere) as well as the loss of biodiversity (European Training Foundation, 2022). 
3 Environmental innovation refers to products, processes, or management practices designed to reduce and prevent 

harm to the environment, in which we follow Beise and Rennings (2005) and Rennings and Zwick (2002). 
4 The five driving forces suggested are economic governance realignment, technology and the new industrial 

revolution, the sustainability imperative, corporate accountability, and resilience-oriented restricting. 
5 It is a term created to represent the digitalisation of industries. A number of related terms are used in different 

countries, such as ‘smart manufacturing’, ‘industrial internet’, ‘intelligent manufacturing’, ‘advanced 

manufacturing’, and ‘smart factory’. Typical Industry 4.0 technologies include redistributed manufacturing, 

additive manufacturing, digital twins, autonomous robots, Big Data, and IoT. 



X. Yuan, PhD Thesis, Aston University 2022 11 

production), and transforming traditional mass production into flexible production wrought by digital 

means (Choi et al, 2021). By means of these technological-push transformations, businesses can enjoy 

a range of economic benefits in terms of improved manufacturing agility, operational efficiency, 

product quality, and overall profitability (Dalenogare, Benitez, Ayala and Frank, 2018). To successfully 

realise the enormous potential of Industry 4.0 and respond to the paradigm shift, it is crucial to 

understand the characteristics of the underlying technologies and to be conscious of the potential issues 

and risks presented by the revolution (Choi et al., 2021). 

The sustainability imperative is a by-product of the green transition triggered by numerous 

ecological crises and stricter environmental regulations (Lampikoski, Westerlund, Rajala and Möller, 

2014). Indeed, related environment issues are pressurising management teams to rethink their business 

models, driving enterprises to view corporate sustainability as a matter of strategy (Lampikoski et al., 

2014). Given the increasingly crucial role of sustainable thinking in business management, scholars and 

practitioners are attempting to figure out how sustainability can be introduced into business practices 

and products, with a view to prioritising environmental concerns and securing social wellbeing (Awan, 

Arnold and Gölgeci, 2020). To reach the mounting sustainability expectations of various stakeholders, 

businesses are turning to environmental innovation to promote energy-conscious production, create 

cleaner technologies, produce eco-friendly and customized products, and build their industries that are, 

overall, sustainable (Chiarini, 2021). That being said, the process of exploration is challenging because 

green innovation is risky and can result in failure, and more importantly, corporate sustainability does 

not provide managers with clear guidelines for effective management (Lampikoski et al., 2014). Thus, 

the transition towards corporate sustainability warrants investigation, particularly with regard to the 

factors that will drive and facilitate businesses to successfully act on the mission. Firms can thereby 

gain valuable insights on how to capitalise on the opportunities provided by environmental innovations, 

grow their businesses in line with the principles of sustainability, and mitigate the destructive impacts 

of market turbulence.  

The role of businesses in mitigating environmental harm and effecting a green transformation has 

been widely recognised both in academic and practitioners’ discussions (Przychodzen, Leyva‐de la Hiz, 

and Przychodzen, 2019). Businesses make strategic choices and act to become the first movers in green-

oriented innovative activities, with a view to improving their existing capabilities and competitive 

positions (Berrone, Fosfuri, Gelabert and Gomez-Mejia, 2013). Companies at the forefront of green 

innovation may create technological advances, influence consumers’ cognitive positions, and trigger 

creative destructions derived from new solutions. In turn, they can exert enormous impacts on the rest 

of the related firms within their geographic locality. As such, there is a need to get a sense of how the 

strategic choices made by the first movers affect the remaining companies. Businesses in the wider 

economy may encounter a situation where they can either act on and benefit from the wave of green 

technology, or take a hit from having a less competitive market position. Understanding the wider 
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impacts of the green technology enabled transformation provides information about not only how other 

firms should react more constructively to its related opportunities and challenges, but also how the 

efforts of policy makers can be devoted to supporting this transformation. 

Given the profound impacts of the above digital and green transitions on the business operations 

and business environment, Zhan (2021) advises both researchers and policy makers to improve their 

understanding of what these big trends mean for businesses; such understanding will shed light on the 

policy implications of the two driving forces. In other words, in order to fully appreciate the influences 

of the digital and green transitions, we must probe into the fundamental technological trends underlying 

them. We can thus reveal what kind of impacts the big trends will have on the economy, and how market 

players should respond to these technological transformations to maximise the benefits and mitigate the 

risks. 

Building on the two pillars of Industry 4.0 technological revolution and environmental innovation 

in the context of green transition, the three empirical chapters in the thesis attempt to address these two 

related topics by searching for answers to three specific sets of research questions.  

The first question focuses on businesses that engage in innovating Internet of Things (IoT)6 

technologies within Industry 4.0. Specifically, what are the characteristics of the firms that innovate 

IoT technologies, and what factors related to their innovation trajectory contribute to their innovation 

in IoT technological domains? 

Moving on to the green transition, we switch our focus to a specific type of corporation, 

multinational enterprises (MNEs)7, and ask why some MNEs in the developed countries have a higher 

capacity than others to undertake environmental innovation, and how their global linkages built on 

production networks, and intra- and inter-MNE innovation co-production linkages contribute to their 

capability to produce environmental innovation. 

Finally, focusing on green innovation and the dynamics pertaining to green technology diffusion 

within the wider local economy, we then ask how the externalities generated by green-tech companies 

affect other firms’ economic performance via both horizontal and inter-sectoral linkages? How does a 

firm’s heterogeneous absorptive capacity, measured by intangible assets and technological competences, 

affect its ability to absorb such spillovers? 

 

                                                      
6 IoT describes the network of physical objects that are embedded with sensors, software, and other technologies 

for the purpose of connecting and exchanging data with other devices and systems over the internet. For more 

details, see https://www.oracle.com/uk/internet-of-things/what-is-iot/  
7 An MNE is defined as a shareholder with at least one foreign subsidiary during the observation period. 



X. Yuan, PhD Thesis, Aston University 2022 13 

1.2 Brief overview of Chapter 2 – Innovation of IoT technologies 

1.2.1 Research question 

As a core infrastructure component of Industry 4.0, IoT technologies represent a new paradigm for 

the information networks. Such technologies possess ground-breaking and boundary-spanning 

properties because they represent a complex set of infrastructural enabling technologies. They are 

disruptive in terms of challenging both the conventional business model (Osterwalder and Pigneur, 

2011) and how people conceptualise the nature of data, products, and services (Schwab, 2018). Indeed, 

the complex and disruptive characteristics of IoT make it an exemplar for studying the pathbreaking 

technologies within Industry 4.0. 

The process of innovation tends to be path-dependent with persistence8 (Cefis and Orsenigo, 2001). 

The cumulative nature of internal and external knowledge affects the dynamics of the processes through 

which a firm’s knowledge base shapes its new knowledge creation (Antonelli, Crespi and Scellato, 

2015). Innovative firms with strong specialised technological competence can be subject to knowledge 

inertia. This creates knowledge lock-in situations, such that these firms become less likely to produce 

ground-breaking innovation (Molina-Morales, García-Villaverde and Parra-Requena, 2014). This 

implies that firms frequently face a tension between innovation persistence in their core-technology 

competence 9  and technological diversification 10  that usually requires expanding the boundary of 

knowledge to less competent domains. 

However, the existing literature offers limited understanding of the above tension. This is 

particularly unfortunate in the case of pathbreaking technologies such as the IoT, where the tension may 

become especially acute. In spite of the significant impacts of IoT technology within this round of 

technological revolution, we have limited knowledge about the characteristics of the underlying 

technologies or about which factors will facilitate businesses’ participation in attempts to create such 

technologies and exploit their enormous potential. 

As a result, the first chapter of the thesis aims to advance our understanding of the routes for 

innovating in specific pathbreaking fields within Industry 4.0. Specifically, we investigate how the 

determinants of IoT innovation differ from those of the more established technologies. 

 

1.2.2 Contribution  

The first empirical chapter advances our understanding of the actors who are defining the IoT 

technology landscape within Industry 4.0 and the route they follow to create pathbreaking IoT 

                                                      
8 Further discussion can be seen in paragraph 1-2 of Section 2.3 Theory and hypotheses. 
9 Detailed definition and description can be seen in Section 2.4.2.2 Independent variables. 
10 Detailed definition and description can be found in Section 2.4.2.2 Independent variables. 
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innovation. By integrating the notion of core-technology competence with that of technological 

diversification in hypothesis testing, we challenge the innovation management literature’s concepts of 

innovation persistence and path dependence within the context of ground-breaking innovation. Based 

on the negative impacts of core-technology competence on the possibility of innovating IoT 

technologies, consequently, we develop a theoretical framework suggesting that firms may experience 

knowledge inertia and knowledge lock-in during knowledge accumulation; these render ground-

breaking IoT innovation less likely. By contrast, a diversified technology portfolio enhances the 

likelihood of engaging in ground-breaking innovative activities. 

Empirically, even though three predictors of firm’s technological trajectory – innovation 

persistence, innovation intensity and experience in patenting – all fail to predict innovation propensities 

in the IoT field, innovation persistence does play a role in enhancing the positive effect of unrelated 

technological diversification on IoT innovation. Such result offers empirical support to the positive 

association between persistence and innovation activities.  

The fact that previous innovation patterns and experience are not prerequisites for cultivating 

ground-breaking technologies in Industry 4.0 throws light on the strategic management of innovation. 

Management teams and policy makers who wish to be ready for this round of technological revolution, 

whether by planning or stimulating related innovative activities, can gain valuable insights from our 

findings.  

 

1.2.3 Conceptual framework 

In the innovation management literature, the concepts of path dependence and innovation 

persistence have contributed to a conceptual framework that is commonly employed to explain why 

some firms can maintain consistently high rates of knowledge creation and innovation. The 

cumulability, indivisibility, and non-exhaustibility of the knowledge generation process (Antonelli and 

Colombelli, 2013) and the fact that knowledge stock is a crucial input for knowledge creation play 

central roles in interpreting the path-dependent character of knowledge generation and the effect of 

persistence in innovation activities (Crespi and Scellato, 2014). 

However, counterarguments may also be found in the extant literature. While knowledge 

accumulation is important, innovative firms with strong technological competence in specific domains 

may also experience knowledge inertia and knowledge lock-in, rendering ground-breaking innovation 

less likely (Boschma, 2005). In such cases, companies face a tension between the innovation persistence 

in their core competences, and the technological diversification that usually requires expanding the 

boundary of knowledge to less competent domains (Molina-Morales et al., 2014). 
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Unfortunately, the existing literature offers limited understanding of this tension and its 

complexities. We therefore investigate it in order to understand better what drives innovation, especially 

breakthrough innovation in completely new technologies such as the IoT. 

 

1.2.4 Data sources and empirical setting 

This empirical work draws on patent information from the Bureau van Dijk’s Orbis Intellectual 

Property (Orbis IP) database to identify Industry 4.0 technologies. Note that in all our empirical chapters, 

we draw on patent records owned by all UK firms11, i.e., not only those registered through the UK IPO 

but also those registered via other patent authorities. This data is then linked with information about 

UK owners taken from Orbis, a firm-level database provided by Bureau van Dijk. This gives us a final 

sample of 235,796 patents published by 5,455 UK firms over the period 2008-2017. Following the 

search strategy suggested by the existing informatics literature (e.g., Martinelli, Mina and Moggi, 2021), 

patent records can be identified as IoT-related by a set of designated International Patent Classification 

(IPC) codes belonging to the technological domains of the IoT. 

Our dependent variable is a multinomial categorical indicator of firm’s different innovation 

activities. Given that firms may patent in any type or types at one point in time, we design three mutually 

exclusive and exhaustive set of patenting options: firms with IoT patents (choice 1), firms with 

information and communications technology (ICT) patents other than IoT ones (choice 2), and firms 

with non-ICT patents only (choice 3, base group).  

In terms of independent variables, we measure firm’s core-technology competence following Kim, 

Lee and Cho (2016), based on its revealed technology advantage (RTA) (Patel and Pavitt, 1997). Next, 

technological related and unrelated diversification are employed to measure the firm’s technological 

diversity. Following the strategic management literature which has established to use entropy index for 

quantifying technological relatedness and unrelatedness (e.g., Chen and Chang, 2012; Kim et al., 2016; 

Zander, 1997), our work adopts the method introduced by Kim et al. (2016). According to Demirel and 

Mazzucato (2012) which uses a minimum of five consecutive years of patenting as the criterion to 

define a persistent patentee, in the present case, we select the idea of an innovation spell implying a 

firm’s innovation state for the last consecutive five years. 

Our choice of control variables is guided by the existing literature on innovation outputs and 

limited by the availability of the data. Essentially, we include two indicators of firm’s overall 

innovativeness: accumulated innovation intensity and patenting experience. We also consider a set of 

firm characteristics including firm age, firm size, productivity, cash holding, intangible assets ratio, 

                                                      
11 UK firms are defined as those which are registered and located within the geographical scope of the United 

Kingdom. 
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average wage, and foreign ownership, to control for their potential influences on firm’s patenting 

choices.  

To identify the key determinants of firms’ IoT patenting activities, we adopt a multiple choice 

modelling approach to model the likelihood of firm’s engagement in patenting in three types of 

technological fields: IoT technologies, ICT technologies more broadly, and other non-ICT technologies. 

Accordingly, a multinomial logit model is specified given that our dependent variable is a multinomial 

categorical indicator of firm’s different innovation activities and that the three technological pathways 

are mutually exclusive and exhaustive among all the patenting firms. 

We find consistent support for the hypotheses, and they are robust to a number of sensitivity tests. 

We first consider the measurement issues of the time dimensions of core-technology competence and 

technological diversification and alternative definition of innovation persistence. More importantly, we 

adopt an instrument variable strategy for the variation in technological varieties to tackle potential 

endogeneity by constructing more aggregate variables which are exogenous to firm’s strategic 

innovation choices by construction. The instruments include three region-specific and industry-specific 

variables12. Last but not least, we extend the analysis by considering the extent of patenting in IoT 

technologies, with the number of IoT patents owned by each firm used as the dependent variable for 

robustness testing.  

 

1.2.5 Summary of empirical findings 

The primary aim of Chapter 2 is to examine the effects of firms’ core-technology competence, 

technological diversification, and innovation persistence on ground-breaking innovation, as measured 

by IoT technology patenting. It shows that core-technology competence is actually inimical to firms’ 

involvement in IoT patenting. However, having a diversified technological portfolio—both 

technologically related and technologically unrelated—is strongly positively linked to IoT innovation. 

Furthermore, we find that innovation persistence, based on the path-dependent nature of the knowledge 

creation process, fails to directly predict firms’ propensity to innovate in IoT. However, it does exert a 

positive moderating effect, boosting the positive impact of unrelated technological diversification on 

IoT innovation. 

 

                                                      
12 The first variable is the current level of total public R&D related to the IoT and Big data technology in a region, 

defined by log-transformed R&D grant value (£). The second variable is total number of patentees of the patents 

registered within a sector, while the last variable is total number of patentees of the patents registered within in a 

region. Section 2.6.2 provides detailed descriptions and explanations of these three variables.  
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1.3 Brief overview of Chapter 3 – Connectivity and environmental innovation of developed 

country MNEs 

1.3.1 Research question 

The global economy is in the nascent stage of green transformation. In order to meet the 

sustainability requirements of various stakeholders, companies have undertaken a variety of sustainable 

innovative initiatives and green innovations; these are crucial to firms’ competitiveness while also 

contributing to an overall environmentally sustainable society (Chiarini, 2021). Clearly, such innovative 

initiatives and activities also challenge the way companies have always strategised and operated. 

MNEs, especially those from the developed economies, present an important context for studying 

sustainability related issues (e.g., environmental innovation) because MNEs possess the resources and 

abilities to promote social and environmental values, making them major players in global economic 

and environmental development (Marin and Zanfei, 2019). They have a crucial role in developing and 

disseminating environmental innovations through their global research and development (R&D) 

facilities (Noailly and Ryfisch, 2015), and MNEs that develop a socially responsible attitude and 

innovative green practices can also influence and put pressure on other organizations through their 

GVCs and production networks (Aguilera‐Caracuel, Aragón‐Correa and Hurtado‐Torres, 2011; Chang 

and Gotcher, 2020). 

Compared with domestic players, MNEs engage in international business activities by organising 

and arranging their productions globally. They can arrange and organise internationally integrated 

production networks and value chains as well as participate in international networks for technological 

accumulation (Cantwell and Marra, 2022). The related literature on MNEs’ global connectedness is 

rich, but it has not been fully developed and tested in the context of environmental innovation. 

Considering that MNEs have advantages in undertaking innovation and R&D based on their firm-

specific advantages, we still know little about if this is also the case with the creation of environmental 

innovation under the emerging sustainability context. In the intersection of the knowledge-based view 

of MNEs and the environmental innovation literature, prior literature neglected to consider whether the 

MNEs’ knowledge advantages (derived from global connectedness) could provide them with 

competitive advantage in terms of environmental innovation, particularly from the perspective of the 

parent company. 

Hence, Chapter 3 aims to address such gaps by exploring the determinants of environmental 

innovation through an international business (IB) and management research lens. Specifically, we seek 

to analyse how an MNE’s different types of international and inter-organisational networks contribute 

to its capacity to generate environmental innovation. We investigate the multifacets of MNEs’ global 

linkages, including organisational linkages, production linkages, and, most importantly, cross-border 

innovation networks. In addition, we extend the existing theoretical framework of determinants of 



X. Yuan, PhD Thesis, Aston University 2022 18 

environmental innovation at the level of the parent firm by our incorporation of intra- and inter-MNE 

linkages of different kinds, and geographically diversified organisational spaces. Lastly, based on a 

large-scale secondary dataset, our work provides concrete empirical evidence and practical implications 

for the specificities of environmental innovation and how it is conceived and realised. 

Answers to the aforementioned questions are of vital importance not only in terms of advancing 

the existing conceptual framework of environmental innovation’s determinants by analysing such 

innovation from the global connectedness lens, but also guiding actions of practitioners and 

policymakers who strive to engage in and drive the green transformation. 

 

1.3.2 Contribution 

Chapter 3 aims to provide insights into the interplay between the global connectedness of MNEs 

and their capacity for environmental innovation capacity. Our investigation enriches the IB literature 

by understanding MNEs’ internationalisation strategies and cross-border innovation management in the 

light of the contemporary challenges and opportunities presented by the need to respond to the climate 

emergency.  

As such, we contribute to an important intersection between IB literature and the environmental 

innovation field in the following ways. First and foremost, we bring the topic of environmental 

innovation into the IB and management research arena and explain its determinants from a novel IB 

and management perspective. Second, we contribute to the literature on the drivers of environmental 

innovation by focusing on how the cooperative arrangements of MNEs contribute to their eco-

innovation R&D. We explore multiple facets of MNEs’ global linkages: organisational, production, and 

more importantly, cross-border innovation networks. To the best of our knowledge, this is the first study 

to reveal diverse antecedents of environmental innovation from the perspective of MNE connectivity. 

Third, our incorporation of cross-border intra- and inter-organisational networks into environmental 

innovation research extends the existing theoretical framework for analysing the determinants of 

environmental innovation at the level of the MNE parent firm. This idea aligns with Kolk and van 

Tulder’s (2010) proposal that a consideration of the drivers related to institutional, industry and 

organisational aspects is appropriate for understanding the MNE’s approach to gaining sustainable 

competitive advantage and its role in advancing sustainable development. Finally, we provide concrete 

evidence and practical implications based on a large-scale secondary dataset, which supplements the 

limited empirical evidence about the specificities of environmental innovation and how it is conceived 

and realised. 

Practically speaking, this chapter also offers valuable managerial and policy implications. The 

insights obtained can inform practitioners to foster environmental innovation capacity by promoting 

and facilitating diversity in their firms’ internationally-integrated production networks and their internal 
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and external innovation networks. Additionally, we offer valuable insights for policymakers on how to 

plan initiatives in response to the ‘sustainability imperative’ (Zhan, 2021). 

 

1.3.3 Conceptual and theory framework 

In the current competitive business environment, the innovation activities of companies tend to be 

organisationally and geographically dispersed (Castellani, Perri, Scalera, and Zanfei, 2022), resulting 

in interconnected networks of organisations and individuals (Castellani and Zanfei, 2006; Scalera, Perri, 

and Hannigan, 2018). Such collectives involve a wide range of actors, including partner companies, 

suppliers, and the MNE’s foreign subsidiaries (Choudhury and Kim, 2019; Marino, Mudambi, Perri, 

and Scalera, 2020; Papanastassiou, Pearce, and Zanfei, 2020). This increased connectivity has important 

implications for knowledge combination in terms of more dispersed innovation activities and higher 

knowledge complexity across both technological scope and geographical space (Cantwell and Marra, 

2022). 

MNEs govern and nurture the flow of knowledge within their dispersed and interconnected internal 

and external networks that traverse both organisational and geographical spaces (Castellani et al., 2022). 

The organisational space is populated by intra- and inter-organisational networks composed of MNEs’ 

foreign subsidiaries, partner companies, suppliers, and customers. The geographical dimension denotes 

the various locations across the globe where knowledge and competences are generated as inputs for 

cross-border innovation (Castellani et al., 2022). Based on the perspective of place and organisational 

space, our key theoretical argument centres on the idea that MNEs are able to enhance their ability to 

innovate by leveraging heterogenous external environments (Almeida and Phene, 2004) and by utilising 

and recombining knowledge obtained from within and without the organisation’s boundaries. 

Compared with domestic players, MNEs engage in international business activities by organising 

and arranging their productions globally. Their global production networks allow them to organise and 

orchestrate operation activities to optimise the different location-specific advantages as a means of 

acquiring competitive advantage. This type of enterprise opts for various governance modes to obtain 

technological knowledge and inputs from overseas (Contractor, Kumar, Kundu, and Pedersen, 2010). 

MNEs can arrange and organise internationally integrated production networks and value chains as well 

as participate in international networks for technological accumulation (Cantwell and Marra, 2022). 

Specifically, their knowledge search can take the shape of global production networks (GPNs), GVCs 

(Gereffi, Humphrey, and Sturgeon, 2005; Pietrobelli and Rabellotti, 2011), and R&D collaborations 

that feature a high degree of connectivity (Cantwell and Marra, 2022).  

In this chapter, we focus on two broad types of networks identified by Cantwell (2017) and 

Cantwell and Marra (2022). The first type is the intra-MNE network. These are networks of 

international production, including international research and R&D facilities, that are owned by the 
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MNEs themselves. The second is the inter-organisational network. These result from MNEs joining 

strategic alliances with external partners (Cantwell and Marra, 2022). Intra- and inter-organisational 

networks lay the foundation for the internal and external networks for innovation, through which MNEs 

can access diverse knowledge bases that are distinct from those in their home countries. They thus 

enrich their own knowledge bases and foster knowledge diffusion across actors and countries, which 

ultimately leads to the increased potential for knowledge recombination (Cantwell and Marra, 2022). 

The key to this strand of research is that MNEs strive to connect and orchestrate international networks, 

thereby increasing their potential for knowledge recombination and development, from which they can 

create solutions for complex problems (Cantwell and Marra, 2022). The emphasis that Cantwell and 

Marra (2022) place on resource accumulation and technological capability in MNEs builds upon the 

literature of dynamic capabilities (Athreye, 2022). Focusing on environmental innovation, Orsato (2006) 

proposes that firms’ capabilities can be deployed and arranged so as to create competitive advantages 

in environmental innovation. 

Building on the above discussion, we employ a theoretical framework that integrates both strands 

of thinking. That is, we explore MNEs’ sustainable competitive advantages by focusing on the global 

connectedness of multinationals and their cross-border innovation networks. The following section 

discusses the hypothesis development, which draws on arguments related to global connectivity and the 

internationalisation of innovative activities. 

 

1.3.4 Data sources and empirical setting 

To formulate the empirical study, we extract data on Environmental, Social, and Governance (ESG) 

practices over the period 2009 to 2020 from the Thomson Reuters ASSET4 database. This database 

compiles annual and sustainability reports, as well as proxy filings for companies subject to integrated 

ESG monitoring (Thomson Reuters, 2011). To link the firms in ASSET4 database located in five 

developed countries with those in Bureau van Dijk’s Orbis main database, we employ a string-matching 

approach, in which the strings of company names and the country code of the company’s location are 

taken into account. We obtain information on MNEs’ patents records from the Orbis IP database from 

1808 to 2019. A unique advantage of this data is that patent records can be matched to their current 

direct owners’ detailed corporate and financial information using the unique firm identifier. This means 

that patents owned by the parent company or its foreign subsidiaries can be identified from the unique 

identifier of direct owner(s), from which one can tell whether the patent is co-produced by the parent 

and any of its affiliates, or by the parent and its foreign partners. Another source of information comes 

from the Executive Opinion Survey managed by the World Economic Forum on the stringency and 

enforcement levels of environmental regulation. The final sample is an unbalanced panel of 4,510 firm-
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year observations from 622 unique developed country MNEs (DMNEs, hereafter) across France, 

Germany, the United Kingdom, Netherlands, and Sweden over the period 2009-2017. 

Our dependent variable, the environmental innovation score, is directly extracted from Thomson 

Reuters ASSET4 database. In line with the definition provided by Thomson Reuters, this score reflects 

a firm’s capacity to reduce the environmental costs and burdens for its customers and thereby create 

new market opportunities through new environmental technologies and processes, or eco-designed 

products. 

Turning to the independent variables, we adopt a similar method to that suggested by Maksimov, 

Wang and Yan (2019) to measure international diversification of MNEs’ global production networks, 

which derives from the diversity of total assets’ distribution across different foreign countries. To 

measure the strength of an MNE’s intra-organisational linkages, we depict its ownership structure 

through its control and coordination over both physical and knowledge capital, which is believed to be 

a channel through which MNEs maintain intra-relationships with their foreign affiliates and exert 

influence on them. Hence, we first collect the share of an MNE’s total participation in each of its foreign 

subsidiaries. Each share is weighted by the proportion of that subsidiary’s total assets to the total amount 

of all the foreign subsidiaries in a given year, from which the mean value is then calculated. The 

resulting average weighted ownership stake of foreign subsidiaries captures how strongly an MNE and 

its affiliates are, on average, linked and associated with each other. Due to information constraints on 

patent inventors in our data, we capture organisational innovation networks by exploiting information 

on the direct owner(s). We contend that a patent is co-produced by different partners if multiple owners 

are listed as its direct owners, based on which the intra- and inter-organisational innovation co-

production networks are established. Indeed, to capture the strength of intra-organisational innovation 

co-production between the parent firm and its foreign subsidiaries, we compute the extent to which an 

MNE’s patents are co-produced with its foreign subsidiaries. This is the ratio of co-owned patent 

publications between headquarter and the affiliates to the total number of the parent company’s patents. 

In similar vein, we gauge an MNE’s inter-organisational innovation co-production network from its 

patent co-ownership with foreign collaborators. Following the method of constructing international 

diversification, we again employ 1 minus the Herfindahl index to measure the geographical 

diversification of a MNE’s inter-organisational innovation co-production network. This is derived from 

the geographical distribution of its patents co-owned with other foreign companies across different 

foreign countries. 

Our choice of control variables is guided by theoretical considerations and existing empirical 

evidence on the determinants of environmental innovation, and limited by data availability. Prior 

research emphasises the particularity of environmental innovation in terms of its externalities and the 

drivers of its introduction (De Marchi, 2012), highlighting the crucial contributory role of regulation 

(e.g., Jaffe, Newell and Stavins, 2002; Marin and Zanfei, 2019). Here, we consider environmental 
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policy in the context of both host and home countries. Firm age and size by employees (both in 

logarithm form) are included as controls to account for the resources and capacity of the enterprise. 

Labour productivity (revenue per employee) is taken into account to reflect the efficiency of the 

workforce, given the literature’s acknowledgement that productivity plays a positive role in the 

innovativeness of organisations (Chiarvesio, De Marchi and Di Maria, 2015). In the innovation 

literature, R&D activities are expected to be crucial inputs for a firm’s knowledge production and 

innovation process. Patents are generally regarded as an alternative measure of innovation capacity (e.g., 

Costantini, Crespi, Martini and Pennacchio, 2015), but they play a different role in the knowledge 

creation process because not all R&D commitments or research successes will lead to patents (Popp, 

Hafner and Johnstone, 2011). Here, we use the natural logarithm value of the number of green patent 

publications to account for existing knowledge stocks and the outputs related to environmental 

innovation. Our green patents are identified by a set of designated IPC codes related to environmentally 

sound technologies (ESTs) in numerous technical fields listed in the IPC Green Inventory13. Finally, 

heterogeneity at the levels of sector (one-digit section level) and country are controlled for by their 

respective dummies. 

To identify the antecedents of MNEs’ environmental innovation capacity in terms of role played 

by the different types of international intra- and inter-organisational linkages and networks, we 

formulate a pooled Tobit model of environmental innovation capacity as the empirical approach 

estimated by maximum likelihood, considering that the dependent variable, environmental innovation 

score, ranges from 0 to 1. As a robustness check, we employ panel Tobit random effects estimation to 

re-estimate the model. These results lend further support to our main hypotheses. 

 

1.3.5 Summary of empirical findings 

The primary aim of Chapter 3 is to examine the factors that facilitate the firm’s environmental 

innovation capacity. Specifically, we draw on the knowledge-based view (Grant, 1996; 1997) to explain 

why some MNEs can be more environmentally innovative than others. We therefore analyse 

antecedents related to their internationally networked relationships for production and innovation, as 

well as their firm characteristics. We draw on theoretical arguments about the global connectedness of 

MNEs and their cross-border innovation connectivity to develop and test hypotheses concerning the 

antecedents of environmental innovation. The lessons drawn can help guide the actions of practitioners 

and policymakers in home and host countries. 

It indicates that developed country MNEs are in an advantageous position to develop such 

innovation capability and sheds light on their potential contribution to achieving the Sustainable 

                                                      
13 IPC Green Inventory can be accessed at https://www.wipo.int/classifications/ipc/green-inventory/home 
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Development Goals (SDGs). Specifically, we focus on the effects of different types of intra- and inter-

organisational production and innovation networks, and show that wider global linkages built on 

production networks, and intra- and inter-MNE innovation co-production linkages contribute to MNE’s 

capability to produce environmental innovation. However, intra-organisational linkages motivated by 

traditional control and coordination mechanisms do not play an important role in environmental 

innovation capacity. This emphasises that specific types of ties related to knowledge connectivity and 

innovation collaboration matter important for environmental innovation than general control and 

coordination linkages. MNEs’ arrangements for international production and innovation activities are 

grounded in their cross-border organisational linkages. These appear to be important channels for 

facilitating knowledge transfer and recombination, cultivating high levels of knowledge development 

and environmental innovation capacity. 

 

1.4 Brief overview of Chapter 4 – Agglomeration externalities of green innovation  

1.4.1 Research question 

Given the increasingly critical role of sustainable thinking in business management, scholars and 

practitioners seek out ways in which sustainability can be introduced into business practices and 

products in an effort to prioritise environmental concerns and secure social wellbeing (Awan et al., 

2020). Companies that need to meet the escalating sustainability expectations of various stakeholders 

are turning to environmental innovation to promote energy-conscious production, create cleaner 

technologies, produce eco-friendly and customized products, and build sustainable industries (Chiarini, 

2021). This explains why the analysis of eco-innovations or green innovations and their impacts have 

gained momentum in the last few years.  

The existing literature concerning green innovation has focused on the relationship between having 

a green business strategy and firm performance (e.g., Lin, Chen, Yu, Li, Lampel and Jiang, 2021), the 

determinants of green innovation development (e.g., Perruchas, Consoli and Barbieri, 2020), its internal 

impacts on the focal firm’s performance (e.g., Horbach, 2010; Marin, 2014), and its external impacts 

on sectoral environmental performance (e.g., Costantini, Crespi, Marin and Paglialunga, 2017).  

What is missing is how green innovation interacts with the local economy to affect other firms’ 

economic performance, given the ability of such innovation to create both positive knowledge 

externality effects and environmental spillover effects (Ben Arfi, Hikkerova and Sahut, 2018). So far, 

there has been just one study that touches on the idea that green innovation spills over onto economic 

growth in terms of company market values, but we still have no clear answer about the economic 

relevance of green innovation spillovers to the performance of other firms in terms of productivity and 

growth. More importantly, we lack understanding about the channels through which the impacts of 

green innovation externalities may take place. 
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Therefore, in this chapter, we intend to bridge the literatures on environmental innovation and 

agglomeration externalities, filling a knowledge gap by examining the external impacts of green 

innovation on the wider local economy. Specifically, we study how variations in such agglomeration 

externalities affect the productivity and employment growth of other industrially related and 

geographically adjacent non-green-tech companies via horizontal and inter-sectoral linkages, and we 

reveal the conditions under which this can happen. Moreover, we consider how a firm’s absorptive 

capacity affects its ability to leverage green innovation externalities and absorb such spillovers, by 

considering the aspects of firms’ intangible assets and technological competence, namely core-

technology competence and technological diversification. 

 

1.4.2 Contribution 

In Chapter 4, we step beyond the state of the art by bridging the environmental innovation literature 

with economic geography theories. This allows us to analyse the agglomeration externalities of green 

innovation and its wider economic values. To the best of our knowledge, this is the first study to 

investigate the spillover effects of green innovation via both horizontal and vertical linkages, and how 

these drive firm-level economic performance.  

Specifically, we contribute to the existing literature in the following ways. First, our firm-level 

analysis of green innovation diffusion is much finer grained than the usual national, regional, or sectoral 

level analysis. Second, this chapter augments the currently limited empirical evidence of green 

innovation’s effects on economic performance through inter-sectoral linkages by studying its influences 

on firm productivity and employment growth. Third, instead of focusing on the internal impacts of 

green innovation on the focal firm, we propose to extend the state of the art by analysing green 

innovation’s externalities and its wider economic values. Investigating this issue is critical in terms of 

empirically validating the increasing focus of policy on environmental innovation, and the considerable 

resources and efforts devoted to stimulating sustainable endeavour. 

 

1.4.3 Conceptual and theory framework 

To investigate the spillovers arising from the co-location of green-tech firms and other companies 

in agglomerated regions and industries, this chapter connects the green innovation literature to 

economic geography theory on agglomeration externalities, which introduce different mechanisms for 

the spillovers to take place (Iammarino and McCann, 2013). We mainly focus on the Marshall-Arrow-

Romer (MAR) externalities in this chapter. This stream of theory sets out three mechanisms through 

which location-specific economies of scale may come into being: access to skilled labour, input-output 

linkages, and intra-industry knowledge spillovers (Marshall, 1920; Arrow,1962; Romer, 1986). By 
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applying these mechanisms to the green innovation context, we suggest that the agglomeration of green-

tech firms within a given region and industry may create both positive and negative externalities for 

other spatially proximate and industrially related non-green-tech companies. 

How much an organisation can benefit from externalities depends on its absorptive capacity, which 

is defined as a firm’s ability to learn and improve performance by internalizing and assimilating 

knowledge generated outside itself (Cohen and Levinthal, 1989). This notion is incorporated in our 

theorising as it connects the pieces of knowledge generated outside of the organisation to those created 

inside it (Gluch, Gustafsson and Thuvander, 2009). This implies that external, complex, and cross-

disciplinary environmental knowledge can be transformed and integrated into organisational 

capabilities (Dzhengiz and Niesten, 2020) that further enable the development of competences and 

capabilities. In short, heterogenous absorptive capacity allows us to explain the learning of individuals 

and organisations through both intra- and inter- organisational processes, given the agglomeration 

externalities. 

 

1.4.4 Data sources and empirical setting 

This chapter is the last empirical one. It extracts from the Orbis IP database the patent records of 

UK manufacturing firms. We employ the IPC of the patent records to identify green patents, which 

reflect green innovation. Our strategy for assigning green patents to their relevant sectors relies on 

matching green patents to their owners, from which we can extract information about the firms’ sectors. 

The individual records are then structured in a panel setting to match with the UK firms from Orbis, 

giving us in total 18,106 green patents published by 5,964 firms over the period 2008-2017. By 

exploiting and aggregating firm-level linked green patents to the division level (2-digit) of the UK 

Standard Industrial Classification (SIC 2007) and the NUTS-2 region, we construct sectoral and 

regional green innovation indicators as exogenous explanatory variables. The Office for National 

Statistics (ONS) input-output table is used to estimate vertical backward and forward linkages across 

all the sectors (at the 2-digit level of SIC 2007) in the UK. 

As far as the dependent variables are concerned, we employ the Wooldridge estimator 

implemented in Stata’s prodest command (Rovigatti and Mollisi, 2018) to estimate total factor 

productivity within each industrial sector. This measure is based on a revenue-based Cobb-Douglas 

production function with production factors of labour, capital, and materials. The second dependent 

variable, employment growth, is defined as the annual rate of growth of employee numbers (e.g., Jung 

and Lim, 2020) and is generated by taking the difference of the natural logarithm value of number of 

employees between t and t-1. 

Following the established empirical literature developed since Javorcik (2004) on identifying 

agglomeration externalities, we generate three proxies for spillovers from green-tech companies, which 
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are green innovation industrial externalities at the horizontal level and two measures of the vertical 

externalities at the upstream supply and downstream customer sectors14.  

As we assume that firms’ ability to exploit and internalise external technological opportunities 

rests on the knowledge and capabilities held within the organisations, we employ intangible assets 

intensity and two important characteristics of firms’ technological knowledge, core-technology 

competence and technological diversification, as proxies for absorptive capacity. In view of Marrocu, 

Paci and Pontis (2011), we compute the ratio of intangible to tangible fixed assets to account for the 

effects of knowledge capital on the spillovers to firms’ economic performance. Our index of core-

technology competence is measured following Kim et al. (2016), based on the revealed technology 

advantage (RTA) (Patel and Pavitt, 1997). Then, core-technology competence is the maximum value 

of the product of RTA index and the number of patent publications in the corresponding technological 

domain. Following the strategic management literature on using the entropy index to quantify 

technological relatedness or unrelatedness (e.g., Chen and Chang, 2012; Zander, 1997), our index of 

technological diversification is constructed based on the method introduced by Kim et al. (2016). 

The selection of control variables is directed by the extant literature on the determinants of firm 

performance, albeit somewhat limited by data availability. We take account of the factors including 

patent stock in line with the method in Guellec and van Pottelsberghe de la Potterie (2004), average 

wage considered as a proxy for overall labour quality, as well as firm age and size to account for the 

experience and resources owned by the company. 

We specify a set of models to test impacts of green innovation externalities on the productivity 

and employment growth of other non-green-tech firms separately, controlling for both firm and industry 

heterogeneity. To examine the related spillovers of green-tech companies, we estimate those equations 

using panel fixed-effects with standard errors clustered at the firm level. Adopting a fixed-effects model 

here allows us to remove unobserved heterogeneity between the different firms in the data. Moreover, 

clustered standard errors are considered when there is some unexplained variation in the dependent 

variable that is correlated across time. Besides firm-level control variables, we also introduce 

aggregated industry dummies and year dummies, to control for industry and year specific effects. 

The empirical results show interesting heterogenous effects of green externalities across firm 

characteristics and different sectors. Our baseline results tend to be robust after relaxing the restriction 

of regional boundary from the NUTS-2 to NUTS-1 region within the UK. 

 

                                                      
14 For the detailed methods on how to produce these three measures, see Section 4.3.3.2.1 Green innovation 

externalities. 
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1.4.5 Summary of empirical findings 

Our results show that, overall, non-green-tech manufacturers in downstream sectors can benefit 

from their green-tech suppliers in terms of both productivity and employment growth. Small and 

medium-sized enterprises (SMEs)15 show potential for benefiting from the externalities of upstream 

green innovators in both productivity and employment growth. For large enterprises, only those with 

core-technology competence and diversified technological competence can gain positive upstream 

productivity spillovers. In addition, technological diversification allows SMEs and low-tech businesses 

to exploit the upstream productivity gains. 

The positive impacts of the horizontal productivity spillovers are mainly captured by businesses 

with technological core competence. In particular, core-technology competence and technological 

diversification within both SMEs and low-tech firms allow them to gain efficiency improvements 

sparked by fierce intra-industry competition. On the other hand, large firms that are intangible-intensive 

tend to experience negative horizontal productivity spillovers, which can be regarded as a sign of 

competition led crowding-out effects. 

Turning to forward linkages, we observe market disruption effects on the productivity of large-

sized and high-tech upstream suppliers, while for employment growth, there is an overall negative 

forward spillover effect from green-tech consumers. However, other firms with core-technology 

competence and technological diversification can more easily manage innovation investments and react 

to the related technological risks and challenges, mitigating the induced demand shocks.  

 

1.5 Structure of the thesis 

The thesis is organised into five chapters. Chapter 1 provides an overview of the research context 

and our empirical chapters. This is followed by three individual empirical chapters. By examining the 

characteristics of IoT innovators and their innovation pathways, Chapter 2 investigates the factors 

related to firms’ innovation trajectory which contribute to the creation of IoT technology. In Chapter 3, 

we examine green innovation capacity from the perspective of MNEs in developed countries, and 

investigate how factors related to their global linkages built on production networks, and intra- and 

inter-MNE innovation co-production linkages contribute to their capability to produce environmental 

innovation. Chapter 4 focuses on the dynamics pertaining to the diffusion of green innovation within 

the local economy. Specifically, we explore how agglomerated externalities of green innovation affect 

other firms’ economic performance via both horizontal and vertical linkages, and how heterogeneous 

absorptive capacity within companies affects their ability to absorb such spillovers. The final chapter 

                                                      
15 We employ the OECD definition of business size: SMEs have fewer than 250 employees, while large enterprises 

employ 250 or more. 
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concludes with a summary of the key points made and implications expressed in each of the empirical 

chapter. Tables and Appendices are provided at the end of each chapter.
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CHAPTER 2: PATHBREAKING TO INNOVATE: PATENTING IN INTERNET OF THINGS 

(IOT) TECHNOLOGIES 

 

2.1 Introduction 

The innovation literature frequently suggests that innovation tends to be path-dependent, with both 

non-innovative and highly innovative firms exhibiting a propensity to remain in their respective states 

(Cefis and Orsenigo, 2001). In the case of highly innovative firms, this can lead them to being 

persistently innovative. The persistent innovation pattern is built on the idea that firms explore a process 

of learning and discover new ideas by recombining (re-arranging) old ones (Weitzman, 1996). The 

cumulative and non-exhaustible characteristics of knowledge as an economic good have clear 

implications for the path-dependent nature of the knowledge generation process (Le Bas and Scellato, 

2014), allowing scholars to identify and interpret persistence phenomena in innovation activities (Crespi 

and Scellato, 2014). Thus, firms that have innovated in the past are likely to be in a better position to 

innovate again, since their accumulated knowledge and competence amount to advantages over their 

competitors (Antonelli, Crespi and Scellato, 2012). More importantly, a firm’s current level of research 

effort tends to decide the rate and direction of innovations within a context (Antonelli, 2011). 

However, there is a counterargument that innovative firms with strong technological competence 

can fall victim to knowledge inertia, which creates knowledge lock-in situations, and that as a result 

those firms become less likely to generate ground-breaking innovation (Boschma, 2005; Molina-

Morales et al., 2014). In addition, apparently strong incumbent firms can experience difficulties when 

a radical or disruptive product ‘architecture’ or technology emerges (Henderson and Clarke, 1990), 

such as digital tools for design and collaboration (Marion and Fixson, 2021). Firms thus face a tension 

between clinging to their technological core competence and venturing into technological 

diversification that usually expands the boundary of knowledge to domains where they are less 

competent. This tension could be mitigated if firms knew the optimal level of core-technology 

competence, and how far they should diversify to maximise their opportunities for innovation, issues 

upon which the existing literature offers limited understanding.  

This question has become even more relevant in the era of Industry 4.0. Widely considered as 

something quite unprecedented in terms of its scale, speed, scope, and complexity (Schwab, 2016), 

Industry 4.0 technologies are expected to be the most powerful driver of the next wave of innovation 

(Kaggermann, 2015). In particular, the Internet of Things (IoT) technologies are a novel paradigm of 

information networks, bringing physical objects into internet networks and facilitating information 

collection and transmission among actors. As such they are a core infrastructure element of Industry 

4.0 (Trappey, Trappey, Govindarajan, Chuang and Sun, 2017).  
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Originating from the broad field of ICT, IoT technologies possess ground-breaking and boundary-

spanning properties that go beyond the conventional ICT technologies. They present an opportunity to 

study the driving forces of IoT technological inventions in a relatively homogeneous context. We 

postulate that firms’ core-technology competence may not be a helpful driving force towards innovation 

in Industry 4.0 technologies. By contrast, technological diversification and openness to new 

technologies and competence domains may prove to be beneficial. Drawing from appropriate theory, 

this chapter hypothesises, and confirms empirically, that the determinants of innovation in IoT differ 

substantially from those of the more established technologies. We find that firm-specific core-

technology competence is negatively related to innovation in the technological fields of IoT relative to 

other traditional ICT areas. Contrary to the view that innovation is a process of persistence that relies 

on firms’ learning experience over time, we find that three common predictors of firms’ technological 

trajectory, namely, innovation persistence, innovation intensity, and experience in patenting, all fail to 

predict innovation propensities in the IoT field. These findings do not offer support for the premise that 

continuity of innovation, scope of accumulated experience, and previous performance in the forms of 

innovative intensity help to generate creative accumulation and creative destruction (Malerba, Orsenigo 

and Peretto, 1997). However, innovation persistence does play a role in enhancing the positive effect 

of unrelated technological diversification on IoT innovation. 

These apparently counterintuitive results may be due to the distinctive natures of Industry 4.0 

technologies. As a new revolution of the Internet, the IoT is built on novel combinations of various 

enabling technologies, providing technological solutions that overturn the conventional understanding 

of information networking and communication. This gives rise to opportunities for new entrants and 

the smaller, less experienced innovators who are able to keep pace with the technological revolution. 

Rather than being a game open only to the technological giants or advanced innovative incumbents, 

IoT innovation opens up opportunities for newcomers to get in on the act and equip themselves with 

the necessary knowledge to transform from Industry 3.0 to Industry 4.0.   

The empirical work draws upon the Bureau van Dijk’s Orbis Intellectual Property (Orbis IP) 

database, which gives the most comprehensive coverage of patent records. We use informatics 

methodologies and text analytics to identify Industry 4.0 technologies from two data sources16. This 

data is then linked with the owners of patents collected by Orbis firm-level database, giving us a final 

sample of 235,796 patents published by 5,455 UK firms over the period 2008-2017. In measuring the 

innovation activities through patenting, we specify a discrete choice model to unpick characteristics 

that explain firm’s innovation in IoT (as opposed to standard ICT and non-ICT field) field. The three 

pathways are mutually exclusive and exhaustive among all the patenting firms. We find consistent 

support for the hypotheses, and they are robust to a number of sensitivity tests.  

                                                      
16 A detailed discussion can be found in Section 2.4.1 Data sources. 
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The contribution of this chapter is to advance understanding of the route to innovate in specific 

pathbreaking fields within Industry 4.0. Specifically, it develops theory suggesting how core-

technology competence is actually inimical to involvement in IoT patenting, whereas having a 

diversified technological portfolio—both technologically related and technologically unrelated—is 

strongly positively linked to innovation in IoT. We then demonstrate empirically that this is the case. 

We find that persistence in innovation, often considered to be a major advantage in innovation, does 

not assist IoT innovation, but it does have a positive moderating effect on enhancing the positive effect 

of unrelated technological diversification on IoT innovation. These findings offer valuable insights for 

management and policy makers who wish to plan and stimulate related innovative activities in a rapidly 

emerging field. The fact that previous innovation patterns and experience are not prerequisites for 

cultivating the ground-breaking technologies in Industry 4.0 sheds light on the strategic management 

of innovation.  

The current chapter is organised as follows. The next section introduces the context of this research, 

outlining the special features of Industry 4.0 and IoT technologies. In section 3, we establish the 

conceptual foundations of innovation persistence, outline the arguments related to knowledge inertia, 

and propose hypotheses on technological competence and diversification. Section 4 describes the data 

sources and research method. Section 5 reports the baseline model results. These are followed in section 

6 by a discussion of potential empirical issues and further analysis related to the robustness of our results. 

Section 7 discusses and concludes.  

 

2.2 Context 

‘Industry 4.0’ is a term created in 2011 at German’s Hannover Fair to represent the digitalisation 

of industries. It has been widely adopted and expanded to capture how the fourth generation of the 

industrial revolution can transform the structure of global value chains through digitalisation: this has 

involved the use of a number of related terms in different countries, such as ‘smart manufacturing’ 

(Thoben, Wiesner and Wuest, 2017), ‘industrial internet’, ‘intelligent manufacturing’, ‘advanced 

manufacturing’, and ‘smart factory’ (Hermann, Pentek and Otto, 2016).  

Industry 4.0 technologies, including redistributed manufacturing, additive manufacturing, digital 

twins, autonomous robots, Big Data, and IoT, have profoundly transformed marketing, product 

development and planning, procurement, production processes, operations (Lopes de Sousa Jabbour, 

Jabbour, Godinho Filho and Roubaud, 2018; Mangla et al., 2018; Ménière, Rudyk and Valdes, 2017), 

and distribution, and have led to more advanced manufacturing systems (Li, 2018; Sung, 2018). These 

technologies allow business organisations to use ICT systems to build real-time capability and 

interoperability, and to integrate production systems horizontally and vertically. This is all crucial to 

staying competitive in an increasingly globalised and competitive world, which is characterised by 
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volatile market demands, shortened innovation and product life cycles, and increasingly complex 

products and processes (Arnold, Kiel and Voigt, 2016).  

Vermesan and Friess (2014) summarise a couple of fundamental characteristics of the IoT, among 

which interconnectivity, heterogeneity, dynamic changes, enormous scale, and connectivity are 

prominent ones. As a core infrastructure component of Industry 4.0, IoT technology is not only rapidly 

changing the inherent nature of products, but also redesigning firms’ internal processes and value chains, 

transforming business models, and in turn, changing the nature of market competition and industrial 

structures (Iansiti and Lakhani, 2014). These emerging solutions are featured by high technological 

complexity in respect to different technologies and protocols, variety of devices (Ma, 2011), and the 

participation of various actors connected in value creation activities who need to be coordinated in 

ecosystems (Rong, Hu, Lin, Shi and Guo, 2015). As pointed out by Ehret and Wirtz (2017), IoT 

solutions open up new systematic paths to the exploration and exploitation of business opportunities, 

including higher efficiency or reliability of existing businesses as well as advantages of differentiated 

product and service offerings. For instance, Roe, Spanaki, Ioannou, Zamani and Giannakis (2022) 

summarise a couple of IoT applications in smart stores, with such technologies being able to offer 

customers personalised promotions to manipulate their path through the store (Hui, Inman, Huang and 

Suher, 2013) and to induce an increase in the value of their baskets. Another vivid example of a 

provincial ambulance management system is described by Schwab (2016) in one of his recent books. 

The equipment usage pattern of each ambulance driver is collected and analysed to optimise routes and 

minimise the time needed to access services and return to hospital. The real-time location data of the 

ambulance is further linked with emergency call data and geographic information of coffee shops in 

order to save time for lives and make drivers free to take time off between emergency calls. That is why 

IoT is regarded as a fast-evolving, potentially disruptive technological innovation, which expands the 

scope of conventional internet networks, for many industries (Li, Xu and Zhao, 2015). 

Following this line of reasoning, IoT solutions differ from other Industry 4.0 technologies for three 

important reasons. First, IoT becomes a ground-breaking artefact being invented by combining or 

reorganising existing or new technologies in novel and different ways (Schwab, 2018). According to 

Richard Soley, the chairman and chief executive officer of Object Management Group in the USA, IoT 

is deemed to bring about a revolution even though the components of this transition are not specifically 

new. Essentially, they are not the usual standalone technologies, but rather a complex set of enabling 

infrastructural technologies. More specifically, they can be understood as three groups of technologies: 

(i) technologies enabling things to obtain contextual information, (ii) technologies allowing things to 

process contextual data, and (iii) technologies that can improve privacy and security (Vermesan and 

Friess, 2013). Patel and Patel (2016) also regard IoT as a new revolution of the Internet, building on a 

range of enabling technologies and components, including machine to machine communication, sensor 

networks, 2G/3G/4G, general packet radio service (GPRS), global system for mobile communications 
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(GSM), wireless fidelity (WI-FI), radio frequency identification devices (RFID), microcontroller and 

microprocessor, etc. In light of the argument put forward by Richard Soley, Schwab (2018) summarises 

that when entirely uncorrelated pieces of information stay connected, completely novel and unexpected 

business opportunities can be discovered in the strangest places for making the utmost of this revolution.  

Second, IoT can be operated on an unprecedented enormous scale. This revolution brings about a 

larger opportunity of the “internetisation” of industry, which reveals that application of IoT to industry 

is not limited to manufacturing and production but to those relying on ICT, which are essentially every 

major industry. 

Last but not the least, IoT technology is considered a radical technological paradigm among these 

technologies (Kim, Lee and Kwak, 2017), as they have the potential to radically transform business 

models (Ceipek, Hautz, Petruzzelli, De Massis and Matzler, 2021b). Typically, IoT solutions are 

disruptive and require changes in the business model (Osterwalder and Pigneur, 2011). The smart 

devices of IoT technologies can deliver value by changing the way objects are produced, anticipating 

consumer needs, and providing new perspectives on business models through their three core 

capabilities (Schwab, 2018). Their first core capability is to allow rich data to be combined with smart 

analytics, offering contextual information reflecting real-time events or states. Their second derives 

from IoT devices’ capacity for communication and coordination, which can improve life efficiency and 

productivity. Their third capability is to generate intelligent-interactive objects and synergistic 

opportunities from linking with other distributed emerging technologies, such as artificial intelligence 

(AI) and blockchain. These abilities stimulate radical changes in business models and trigger structural 

shifts across various industries, such as manufacturing, agriculture, transportation, and healthcare. 

Ultimately, they challenge current institutions and how people conceptualise and think about the nature 

of data, products, and services (Schwab, 2018). Indeed, the complexity and disruptive characteristics of 

IoT technologies are borne out by the rapid digitalisation in the business world, which has broken down 

traditional industry barriers. Therefore, it requires firms to rethink their existing business models 

(Gerlitz, 2016).  

 By reasons of the foregoing, one can expect that IoT can be viewed as a pathbreaking technology. 

This argument is also connected to the reasons behind the focus of this Chapter. Firms usually face a 

tension between clinging to their technological core competence and venturing into technological 

diversification that usually expands the boundary of knowledge to domains where they are less 

competent. However, the extant literature offers limited understanding on the relationship between the 

two ends and on how to mitigate such tension in terms of knowing the optimal level of core-technology 

competence and degree of technological diversification. These questions have become even more 

relevant in the era of Industry 4.0, within which Industry 4.0 technologies are widely considered as 

something quite unprecedented in terms of their scale, speed, scope, and complexity (Schwab, 2016). 

In particular, IoT technologies represent a radical paradigm of information networks, and possess 
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ground-breaking and boundary-spanning properties that go beyond the conventional ICT technologies. 

Hence, this chapter aims to examine the abovementioned tension in the context of pathbreaking 

technological field, such as the IoT technology, to fill the above knowledge gaps. 

 

2.3 Theory and hypotheses 

Over the last two decades, the concepts of innovation persistence and path dependence have 

contributed to the development of a comprehensive conceptual framework that can explain why some 

firms have maintained consistently high rates of innovation. This topic is of importance in the research 

fields of economics of knowledge, economics of organisation, and economics of innovation, and 

innovation management (Antonelli et al., 2012; Cefis and Orsenigo, 2001; Clausen and Pohjola, 2013; 

Malerba et al., 1997; Peters, 2009).  

To explain the phenomenon of persistent knowledge production, the earlier economics literature 

highlights the role of sunk costs in non-redeployable R&D investment and entry barriers (Manez, 

Rochina‐Barrachina, Sanchis and Sanchis, 2009). Theories and evidence depict successful innovation 

feeding into high profitability and reduced financial constraints; these then allow firms to fuel R&D 

investment, creating a virtuous circle of ‘success breeds success’ (Le Bas and Scellato, 2014). Running 

parallel to this, the innovation management literature recognises the existence of innovation persistence. 

This places an emphasis on the role of knowledge cumulativeness and the relevance of strategic 

decisions to leveraging internal and external knowledge, leading to path dependence in innovation 

(Antonelli and Colombelli, 2013). In turn, the cumulative nature of internal and external knowledge 

affects the dynamics of the processes through which a firm’s knowledge base shapes its new knowledge 

generation (Antonelli et al., 2015). This perspective implies that persistent innovation is a result of 

knowledge accumulation and the development of dynamic capabilities.  

However, recent literature has presented counterarguments to both these factors. While knowledge 

accumulation is important, innovative firms with strong technological competence may also experience 

knowledge inertia and knowledge lock-in, which render ground-breaking innovation less likely 

(Boschma, 2005). In such a case, firms face a tension between innovation persistence in their 

technological core competences, and the technological diversification that usually requires an expanded 

boundary of knowledge (Molina-Morales et al., 2014). 

Further, it is less clear what dynamic capabilities matter most for innovation. Conceptually, the 

resource-based view contends the importance of collective learning in the organisation; this occurs 

through coordinating various production skills and integrating multiple sources of technologies (Hamel 

and Prahalad, 1994). These integrated and harmonised capabilities strategically differentiate a company 

in the marketplace and constitute the enterprise’s competitive advantages (Wind and Mahajan, 1988). 

In practice though, dynamic capability could mean a wide range of firm characteristics and activities. 
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To innovate technologies that are of a different nature, the knowledge and dynamic capabilities required 

must diverge from previous patterns.  

Unfortunately, the existing literature offers limited understanding of these tensions and 

complexities. This chapter therefore seeks to develop them in order to understand better what drives 

innovation, especially breakthrough innovation in completely new technologies such as the IoT. 

 

2.3.1 Core-technology competence and innovation 

Effective knowledge accumulation is the underlying basis of a firm’s core competence. The 

resource-based view uses the concept ‘core competence’ to capture a firm’s integrated and harmonised 

capabilities that first strategically differentiate it in the marketplace and then constitute its competitive 

advantages (Wind and Mahajan, 1988). Gökkaya and Özbağ (2015) conceptualise a framework that 

links together technological core competence, firm innovativeness, and firm performance, 

demonstrating that a firm’s core competence enhances its capability to innovate. In addition, a firm’s 

core competence and innovation may be dynamically reinforcing, as innovation may enhance core 

competence, which then further drives innovation (Han and Huang, 2012). 

However, the notion of core technology has a drawback. Successful firms tend to do the ‘right 

thing’; they focus on better products, the best procedures, and the most profitable clients. Nevertheless, 

it is a ‘wrong thing’ that blinds them to future competitive threats, and it can eventually cause even 

great firms to fail to foresee disruptive invention. This happens not because of their stupidity but 

because of their supreme rationality (Christensen, 2013). In fact, management scholars have long 

recognised the tensions between core competence and knowledge inertia. Knowledge inertia refers to 

the common tendency of individuals and organisations to resort to prior knowledge and past experience 

when they encounter problems, through which they formulate a routine strategy (Sharifirad, 2010; 

Sternberg, 1985). This tendency may maintain the organisation’s status quo, while a reliance on 

personal commitment, financial investment, and institutional mechanisms will keep the firm moving in 

a predictable trajectory (Huff, Huff and Thomas, 1992). This is also in line with the evolutionary 

perspectives which argue that owing to the cumulative, localised, and tacit nature of technological 

knowledge, proximity in the cognition dimension can impose negative effects on innovation due to the 

lock-in mechanisms (Boschma, 2005). 

Similarly, ‘core rigidities’ can lead to the institutionalisation of knowledge and thus inhibit new 

information creation and innovative progress (Leonard-Barton, 1992). The essence of core rigidity lies 

in its feature of path dependence, a characteristic stemming from the cognitive inertia of corporate 

members and the general risk aversiveness of human nature (Liu, Chen and Chen, 2003).  
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Further, competence in the core technological field can affect innovation differently, depending 

on the nature of innovation. Some innovations are incremental (i.e., continuity), while others can be 

breakthrough (i.e., discontinuity) innovations (Johannessen, Olsen and Lumpkin, 2001; Song and Di 

Benedetto, 2008). Different organisational environments and capabilities, along with different elements 

within the organisation’s core competence, may be required to foster different types of innovations (Xu, 

Zhao, Wanyan and Chin, 2000). 

The IoT is considered to be revolutionary and ground-breaking, thanks to its high degree of 

newness and considerable impacts on the existing usage patterns. Its network goes way beyond 

computers, evolving to include devices of all types and sizes, making objects recognisable by equipping 

them with intelligence to communicate information about themselves (Patel and Patel, 2016). Owning 

to its fundamental characteristics (e.g., interconnectivity and heterogeneity), it is plausible to infer that 

this ground-breaking technology is built on diverse knowledge disciplines and novel combinations of 

technological components.  

Patel and Pavitt (1997) suggest viewing technology competences in terms of a firm’s commitment 

and position across a range of technological areas. The core-technology competences show cognitive 

proximity within knowledge bases and present high technological interdependence. Benner and 

Tushman (2003) indicate that when firms become efficient at utilizing existing core knowledge and 

capabilities, the self-reinforcing nature of learning is prone to creating innovations that are incremental 

rather than breakthrough. This argument is supported by the findings of Song and Di Benedetto (2008) 

that, generally speaking, substantial novel knowledge bases and innovation capabilities are needed for 

breakthrough innovation.  

Moreover, technology lock-in theory (Arthur, 1989) indicates that technological interdependence 

is one of the drivers of inertia in technological systems (Arthur, 1994). As this sort of structural inertia 

intensifies, change and innovation—especially breakthrough innovation— are likely to be hindered. 

The IoT is representative of the kind of breakthrough innovation that requires novel knowledge bases 

and diverse innovation capabilities. Considering that cognitive proximity and technological 

interdependence of core-technology competence impede ground-breaking innovation, we expect the 

following:  

 

H1. The higher the core-technology competence of a firm, the less likely it will be to innovate in 

IoT technologies relative to more traditional technological domains. 
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2.3.2 Technological diversification and innovation 

Technology diversification refers to a corporation’s extension of its technological capability into 

a wider variety of technical fields (Granstrand and Oskarsson, 1994). Technological diversification 

might bring about diversification risks that hinder exploratory innovation activities. Specifically, 

technological diversification usually requires changes in company routines and also incurs increased 

R&D costs (Leten, Belderbos and Van Looy, 2007) which firms find difficult to cover with financial 

capital. It can also create over-diversification issues that can prevent firms from recognising the most 

valuable idea and can thus cause resource allocation problems (Ceipek, Hautz, De Massis, Matzler and 

Ardito, 2021a). For example, Ceipek et al. (2021a) indicate in a recent work on IoT innovations that a 

high degree of technological diversification might hinder exploratory innovation activities in firms with 

high family involvement in the top management team. 

That being said, here are three ways in which firms can also benefit from technological 

diversification. First, technological diversification has direct implications for a firm’s technological 

evolution in respect of economies of scale, scope, speed, and space (Granstrand, 1998). In particular, 

by diversifying technological bases, an enterprise’s R&D and technological knowhow can reap 

economies of scope by making the most of the available resources (Miller, 2006; Teece, 1982). Second, 

diversification reduces the risks involved in innovation by strengthening a firm’s adaptability (Garcia-

Vega, 2006) and helping it to extract larger rents in the product market by creating complex product 

lines (Kim et al., 2016). This has received empirical support, suggesting that technological 

diversification has positive effects on innovative performance (e.g., Garcia-Vega, 2006) and firm 

growth (e.g., Kim et al., 2016). The third benefit lies in the opportunity for firms to improve their 

absorptive capacity and firm-specific technological competences through the assimilation of external 

knowledge. This can take place when firms widely search for and connect to new knowhow (Katila and 

Ahuja, 2002), which can mitigate the core rigidities and path dependency nature of knowledge 

(Quintana-Garcia and Benavides-Velasco, 2008), thus providing novel solutions that depart from the 

firm’s past activities and accelerate the possibility of innovation.  

In addition to these positive impacts of diversified technologies on a firm’s innovative competence, 

diversification tends to exert stronger effects on exploratory (as opposed to exploitative) innovative 

capability (Quintana-Garcia and Benavides-Velasco, 2008). Using a cross-sectional sample of 

pharmaceutical firms, Cardinal (2001) demonstrates that scientific diversity has a stronger positive 

association with the creation of radical innovation than with the creation of incremental innovation. 

Abernathy and Clark (1985) also demonstrate that because such technological diversification facilitates 

novel combinations and knowledge transformation, the possibility of fostering radical innovative 

capabilities is increased. As firms’ existing knowledge provides a critical ingredient of their competitive 

advantage and corporate success, they utilise technological diversification as a strategy to enter into 

new technological areas (Breschi, Lissoni and Malerba, 2003; Garcia-Vega, 2006; Granstrand, 1999). 
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In this respect, Sadowski, Whalley and Nomaler (2019) hypothesise and prove that broader 

technological diversification strategies are expected in those technological areas where firms expect 

more rapid technological change. Overall, technological diversification tends to be even more necessary 

for revolutionary technological change than it is for ordinary technological change (Patel and Pavitt, 

1997).  

To further understand the nuances of technological diversification, we adapt the concepts of related 

and unrelated technological diversification (Chen and Chang, 2012; Kim et al., 2016). These two 

components of total technological diversification are introduced to account for the relatedness of 

different technological fields. Related technological diversification addresses distinctions within the 

same technological field, while unrelated technological diversification focuses on variety across 

different technological fields. Here, we speculate that both related and unrelated diversification are 

useful for innovation in IoT technologies.  

From an evolutionary perspective, companies are considered as behaviourally constrained seekers 

of competitive advantages (Estolatan and Geuna, 2019). Firms generally rely on established principles 

or routines embedded in their existing technical knowledge bases for directing their actions when they 

are accessing unknown risky marketplaces (Nelson and Winter, 1982). Similarly, drawing from the 

arguments of Dosi, Nelson and Winter (2000) and Estolatan and Geuna (2019), firms are likely to select 

knowledge combinations that are close to their existing bases, a phenomenon that leads to the 

accumulation of a particular group of related capabilities within organisations. Because related 

technologies are rooted in the same fundamental knowledge and tend to share common science 

principles, related technological diversification is characterised by the high extent of technological 

relatedness in knowledge base (Breschi et al., 2003; Chen, Shih and Chang, 2012). For this reason, 

related technological diversification can not only enable organisations to learn knowledge from related 

technological areas to enhance their R&D competences, but also lower R&D costs owning to economies 

of scope (Cantwell and Piscitello, 2000). One might expect such diversification to create opportunities 

in a wider scope of technological innovation. The possible advantage of technological diversification 

mainly lies in its acceleration of spillovers across related technological domains. This argument is akin 

to the claim of Frenken, Van Oort and Verburg (2007) about knowledge spillovers within a region, 

which mainly occur among related sectors based on firm-level economies of scope.   

From another perspective, a firm that extends its technological boundaries into adjacent fields, as 

in the case of related technological diversification, enables it to build stronger core capabilities, from 

which it can benefit by making full use of them (Zook and Allen, 2003). Recently, Suzuki and Kodama 

(2004), investigating the patent data of Canon, reveal several successful cases in which core 

technologies are diversified into adjacent fields; for instance, Canon’s semiconductor manufacturing 

machinery (specifically, its mask aligner) has a close relationship with cameras, one of its core 

technologies. Generating such technological trajectories allows organisations to offer a wider spectrum 
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of products, which directly links to new product development and market penetration. Hence, a 

plausible deduction can be made that related technological diversification exerts a positive influence on 

corporate innovations where adjacent technologies are relevant. 

From an alternative perspective, portfolio theory (Montgomery, 1994) considers unrelated 

technological diversification to be a strategy designed to protect enterprises from external technological 

shocks by using uncorrelated chances and spreading risk over unrelated fields. This is consistent with 

the argument in Garcia-Vega (2006) that firms apply unrelated technological diversification to seize 

R&D opportunities cross different technological areas and to share R&D risks. For instance, in the case 

of Takeda, exotic technologies are imported and combined with the company’s existing knowledge 

base, allowing it to consistently supply a broader spectrum of products that are in the same vein but are 

nevertheless new (Suzuki and Kodama, 2004). Directing resources to a wide variety of technological 

fields, in other words unrelated technological diversification, alleviates the scarcity of innovation 

opportunities from a narrowly defined domain and thus equips firms with the capability to explore new 

technological opportunities by using the knowhow generated by diversification (Katila and Ahuja, 

2002). Following this reasoning, unrelated technological diversification is also expected to enhance 

technological innovation. 

Within the network of the IoT, those emerging solutions are featured by high technological 

complexity in respect to different technologies and protocols, variety of devices (Ma, 2011), and the 

participation of various actors connected in value creation activities who need to be coordinated in 

ecosystems (Rong et al., 2015). Earlier presented arguments indicate that diverse fields of technological 

knowledge in terms of hardware and software infrastructural platforms are, together with electronic 

systems for communication, crucial to the smooth running of interconnected networks. IoT, being 

characterised by diversified knowledge bases, a high degree of newness, and considerable impacts on 

the existing pattern of information networks, can be viewed as an ideal embodiment of discontinuity 

innovation. As a result, it is plausible to infer that companies involved in such a paradigm shift ought 

to expand their knowledge bases with novel technological solutions and adopt broader technological 

diversification strategies. This argument is corroborated by the existing empirical studies. For instance, 

Sadowski, Nomaler and Whalley (2016) provide evidence that technological diversification into IoT 

technology has been a common strategy for ICT companies over the past twenty years. They also argue 

that a higher degree of technological diversification can lead to technological specialisation in the new 

emerging technological field of IoT (Sadowski et al., 2016; Sadowski et al., 2019). In line with above 

theoretical arguments and evidence, we hypothesise that both related and unrelated technological 

diversification are beneficial to innovation in this ground-breaking technology. 
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H2a. The higher the related technological diversification, the more likely it is that a firm will 

participate in innovating in IoT technologies. 

H2b. The higher the unrelated technological diversification, the more likely it is that a firm will 

participate in innovating in IoT technologies. 

 

2.3.3 The role of innovation persistence  

The tension between core-technology competence and diversification suggests that the persistent 

accumulation of knowledge and learning may not drive innovation in all types of technologies. In the 

cases of incremental and developmental innovation, persistent technological learning and accumulation 

of knowledge over time should support firms to sustain innovation (Leten et al., 2007), since innovation 

is itself a cumulative process of incremental problem-finding and problem-solving activities (Rosenberg, 

1982). Hence, its path-dependent nature is driven by three elements: knowledge cumulability, external 

knowledge, and the firm’s dynamic capabilities (Crespi and Scellato, 2014).  

However, innovation persistence may become a barrier for breakthrough innovation such as IoT 

technologies. First, if a firm largely relies on its existing knowledge stock to generate new ideas 

(Weitzman, 1996), it may be limited by path dependence and therefore miss important new 

opportunities. Further, firms’ existing internal knowledge shapes how they seek out external knowledge, 

given the importance of knowledge generation from internal knowledge stock to external knowledge 

sourcing (Antonelli, 2011). External conditions in terms of knowledge externalities and rivalries act on 

internal knowledge bases, imposing localised impacts on innovation persistence (Crespi and Scellato, 

2014).  

However, while the direct effect of persistence may be ambiguous, there is also evidence that 

innovation persistence and technological diversification can be mutually reinforcing (Pavitt, Robson 

and Townsend, 1989). Suzuki and Kodama (2004) use the cases of two large Japanese corporations to 

show how they were able to experience sales growth for a prolonged period through persistence and 

technological diversity. Similarly, Crespi and Scellato (2014) also suggest a positive loop between 

knowledge accumulation, dynamic capabilities development, and continuous innovation activities. 

Firms that command larger internal knowledge stocks and have more capabilities to exploit the 

knowledge bases from other external agents will find it easier to introduce further innovations 

(Antonelli, 2011). Shim, Kwon, Moon and Kim (2016) conceptualise two dimensions to investigate the 

mechanism of technology convergence, explaining it as a continuous process in which diversity and 

persistence are constantly interacting with each other. In their framework, diversity captures the 

capabilities for assimilating diverse technologies, while persistence refers to continuity in using 

accumulated technologies.  
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Thus, persistent innovation, as a network of firms’ technological competences, can modify 

companies’ knowledge bases (Colombelli and Quatraro, 2014). This modification occurs along three 

dimensions: coherence, similarity, and variety. Coherence refers to the extent to which knowledge 

elements within the sector, which are used for new knowledge creation, are complementary to each 

other. Similarity is defined as the degree of closeness among knowledge pieces within the knowledge 

space (Colombelli and Quatraro, 2014). The nature of variety is connected with technological 

differentiations within knowledge bases, specifically concerning the diverse feasible combinations of 

knowledge pieces within the sector (Colombelli and Quatraro, 2014). Organisations improve their 

knowledge bases by increasing the degrees of knowledge complementarity, similarity, and variety in 

their technological portfolios. Such dynamics also prove the cumulative character of knowledge 

creation process. These properties of knowledge bases are closely related to firms’ ability to pursue a 

given innovation strategy of ‘exploration’ or ‘exploitation’ (March, 1991). 

Firms appear to be more technologically diversified as time goes by (Granstrand, Patel and Pavitt, 

1997; Patel and Pavitt, 1997). The relatedness or unrelatedness of technical knowhow at a specific point 

of time is a cross-section of dynamic relatedness or unrelatedness in the technology across time (Kim 

and Kogut, 1996). Further, the path dependence dynamics of innovation persistence can benefit firms 

that consistently engage in knowledge creation based on internal and external knowledge stocks because 

related and unrelated technological diversification tend to be continuously accumulated. Here, a self-

reinforcing mechanism along the path of capability formation can be inferred, with a high accumulation 

of diversified knowledge bases giving rise to the development of an organisation’s dynamic capabilities, 

a virtuous outcome that subsequently drives innovation activities (Crespi and Scellato, 2014). When 

firms consistently exploit knowhow bases and create new pieces of knowledge, a high level of 

accumulation of diversified knowhow and development of dynamic capabilities can be expected. In this 

respect, one could expect that the positive effects on innovation, stemming from technological varieties 

of knowhow, will be strengthened. Taken together, persistent innovators should be in a better position 

than their non-persistent counterparts to obtain benefits from both related and unrelated technological 

diversification. Thus: 

 

H3. Innovation persistence strengthens the positive role of related and unrelated technological 

diversification in driving innovation in IoT technologies. 
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2.4. Data, variables and empirical specifications 

2.4.1 Data sources 

This research employs patents data to capture firm innovation in the IoT-related technological 

domains. The limitations of using patent statistics as a proxy for innovation have been recognised in 

academic and practitioner-oriented literature. Not all inventions can meet the patentability criteria (Choi, 

Kim and Park, 2007) and the preference for patents as a means of protecting technologies may vary 

across firms, industries (Hasan and Tucci, 2010), and countries (Gold and Baker, 2012). In particular, 

the IoT may encounter a subject-matter eligibility issue, considering that this technology usually 

includes computer-implemented functionality and that abstract ideas implemented on a computer are 

not patent eligible.17  Yet patents are still one of the most standardised and reliable indicators of 

innovation and the dynamic technological trend, given their consistent statistical features, comparability, 

and the strong correlation between technology development and patents (Sheikh and Sheikh, 2016). 

Applying for a patent in a certain technological field implies an advancement in the corresponding 

knowledge space and an accumulation of relevant knowhow (Suzuki and Kodama, 2004). More 

importantly, patents are specifically regarded as the most widely accepted gauge for measuring the 

innovative activities of IoT-related technologies (Kshetri, 2016a) in both academic and practitioner-

oriented literature. 

To measure firm’s innovation performance in the IoT domains, relevant literature has suggested 

several approaches for capturing the development progress from different dimensions, including IoT-

related products or services, adoption and diffusion of IoT-related products or services, standards setting, 

and creation of IoT-related patents (Kshetri, 2016b). We adopt the method that draws on patent data. 

The IPC system administered by the World Intellectual Property Organization (WIPO) offers a 

systematic hierarchy for classifying patents’ technological domains and for subdividing technologies 

into different levels of sections, classes, subclasses, main groups, and sub-groups (WIPO, 2015). This 

enables each firm’s technological trajectory to be traced. Following the search strategy suggested by 

the existing informatics literature (e.g., Martinelli et al., 2021), patent records can be identified as IoT-

related by a set of designated IPC codes belonging to the technological domains of the IoT. Drawing 

on the classification symbols documented in Trappey et al. (2017) and publications by the UK IP Office 

(2014b), we classify a patent as IoT-related if its IPC symbol is identified as such, with the full list of 

relevant IPCs being provided in Appendix Table 2.A1. Of the existing academic literature and official 

reports that have been examined, these two works, to the best of our knowledge, present the most 

comprehensive lists of IPCs for defining the scope of IoT-related technologies. Similarly, to identify 

innovation activities in the wider ICT technology sector, a list of IPC codes belonging to the ICT 

technological fields published by OECD in 2011 (see Appendix Table 2.A2) is used in the search for 

                                                      
17 For more details, see https://henry.law/blog/internet-of-things-patent-challenges/ 
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related patent records. It is worth mentioning that under the current research setting, the IoT-related 

technology is a subset of the entire ICT field based on the collected IPC symbols. 

Following this search strategy, a IoT technology landscape of UK firms is built by extracting 

information from the Bureau van Dijk’s Orbis IP database, which covers historical patent records (1808-

2019). Orbis IP covers all filings made through the Patent Cooperation Treaty (PCT) from the WIPO, 

PATSTAT data from the European Patent Office (EPO) as collected by Lexis Nexis, and additional 

national filings not covered by PATSTAT. This database provides detailed patent records with their 

publication date, current direct owner(s), and complete symbol of the primary IPC. Compared to other 

sources of patent data, the advantage of Orbis IP is that patent records can be matched to their current 

direct owner’s corporate and financial information using a unique firm identifier. Note that in this 

empirical work, we draw on records of patents owned by UK firms, including not only those registered 

through the UK IPO but also those registered via other patent authorities. This can raise concerns about 

double counting inventions that are registered in more than one patent office, when individual records 

are used instead of the patent family. The aim of this research is not to count IoT patents but rather to 

model the probability of a firm patenting in the IoT fields. Therefore, this issue is therefore less of a 

concern. 

For the sake of data aggregation, the publication date of each patent record is chosen to capture 

the time when the technological knowledge was created; this creates far fewer missing values than if 

the application date had been used (only 714 out of 2,984,750 patent records have been dropped for 

lacking the publication date). The individual record is organised in a panel setting using its current 

direct owner’s firm identifier and patent publication year. We then match the patent records with Bureau 

van Dijk’s Orbis database using the identifiers of UK firms and publication years for the period from 

2008 to 2017. Here, the UK firms are defined as those which are registered and located within the 

geographical scope of the United Kingdom. The linked data generate a total of 95,666 patents of any 

classification symbol owned by 2,707 firms. Over the examined period, 1,417 IoT-related patents are 

owned by 150 firms, 21,231 non-IoT ICT patents are owned by 905 firms, and 73,018 non-ICT patents 

are owned by 2,707 firms. As expected, patents are concentrated among a small number of firms, with 

half of the firms in the sample having four (or more) patents. A range of company characteristics 

including age, size, type of corporation, sector, location, and various financial indicators are taken into 

consideration, totalling 9,175 firm-year observations.  

 

2.4.2 Measurement of variables 

2.4.2.1 Dependent variable 

The dependent variable is a multinomial categorical indicator of a firm’s different innovation 

activities. Given that firms may publish patents of any type or types at some point in time, we design 
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three mutually exclusive and exhaustive set of options: firms with IoT patents (choice 1), firms with 

ICT patents other than IoT ones (choice 2), and firms with non-ICT patents only (choice 3, base group).  

If a firm has at least one patent in the IoT field in a given year regardless of any other type of 

patent, we classify this firm-year observation as the first category (choice 1, IoT patenting), which takes 

value of 1. If a firm has at least one patent in the ICT domains but without any IoT, it will be assigned 

to the second group (choice 2, ICT patenting), taking value of 2. The last category covers companies 

that patent in other non-ICT technological domains only (choice 3), taking value of 3.  In this multi-

choice modelling setup, the last category is defined as the reference group. Using this way of modelling, 

the assumption we make (and test through the hypotheses) is that firms that possess IoT patents are 

somehow different from those that have ICT but no IoT patents, while firms with ICT or IoT patents 

differ from those who have only non-ICT patents. Empirically, the exhaustiveness of above 3 options 

and the independence of irrelevant alternatives (IIA) can be tested. What one needs to ensure is that the 

relative probability of IoT patenting over ICT patenting is not affected when an additional alternative 

of non-ICT patenting is considered simultaneously. A statistical test is adopted to test this assumption 

and the Hausman-McFadden test reports no violation. 

 

2.4.2.2 Independent variables 

We measure a firm’s core-technology competence by following Kim et al. (2016) in drawing on 

the RTA (Patel and Pavitt, 1997). Technology competence captures a firm’s commitments and positions 

across a range of technological areas. The main intention is to derive the relative importance to each 

technological field of the firm’s different kinds of patenting, after taking account of the share of the 

firm’s total patenting in the entire patent sample across all the fields. The RTA method creates an index 

for firm i within the field q: 

𝑅𝑇𝐴𝑖𝑗𝑡 =
𝑃𝑖𝑞𝑡/𝑃𝑞𝑡

𝑃𝑖𝑡/𝑃𝑡
=

𝑃𝑖𝑞𝑡/𝑃𝑖𝑡

𝑃𝑞𝑡/𝑃𝑡
 

Where 𝑃𝑖𝑞𝑡 is firm i’s number of publications in technological field q at time t, and 𝑃𝑞𝑡 refers to 

the number of publications within field q owned by the sampled organisations at time t. The number of 

publications owned by firm i at time t is marked as 𝑃𝑖𝑡, and 𝑃𝑡 sums up the total number of publications 

for the entire sample across all fields at time t. By comparing the patent share of field q in firm i’s patent 

portfolio (i.e., 𝑃𝑖𝑞𝑡 /𝑃𝑖𝑡) to the patent share of field q in the entire sampled patents (i.e., 𝑃𝑞𝑡/𝑃𝑡), the RTA 

index in effect sheds light on the extent of firm i’s specialisation in field q. We then compute the product 

of the RTA index and number of publications for the corresponding field across 1,085 technological 

domains. The maximum value is the measure of the firm’s core-technology competence: 

𝑐𝑜𝑟𝑒𝑡𝑒𝑐𝑖𝑡 = 𝑙𝑛 [𝑚𝑎𝑥(𝑅𝑇𝐴𝑖𝑞𝑡 × 𝑃𝑖𝑞𝑡)] 
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This metric depends on two dimensions, which are the dominance in a given technological field 

defined by the RTA and the quantity of patents in that field. On one hand, the RTA index captures the 

extent of a firm’s specification or dominance in a given technological field. On the other hand, the 

number of patents in such field represents a firm’s strength in the corresponding technological 

knowledge field. Only when both the RTA and quantity of patents in a given field are high can we have 

the largest value of core-technology competence. Since the index is calculated by taking the maximum 

value of the product of the RTA and number of publications for the corresponding field across a firm’s 

all the technological fields, this measure captures the degree to which the firm has the highest level of 

such competence. Grounding on the concept and measurement, it is worth noting that the technological 

field in which a company has the core-technology competence will not make a difference to the index 

value itself. 

Given the assumption that the accumulated knowledge base affects a firm’s capability of 

performing certain types of innovation in subsequent time periods, core-technology competence is 

lagged two years behind the dependent variable following Kim et al. (2016). 

Next, Technological related and unrelated diversification are created to capture firm’s 

technological diversity. Following the strategic management literature, which has established the use 

of the entropy index for quantifying technological relatedness and unrelatedness (e.g., Chen and Chang, 

2012; Kim et al., 2016; Zander, 1997), we adopt the method introduced by Kim et al. (2016). One of 

the advantages of the entropy index is that it can be easily decomposed at different levels as required, 

such that it will not cause collinearity in the regression analysis (Sadowski et al., 2016). 

The entropy measure evaluates firm’s patent shares across technological fields. The four-digit 

Subclass of the IPC symbol is used for classifying technological fields, and each field can be subdivided 

into the Main group or Subgroup levels (most detailed). Such classification method yields 1,085 

different technological fields and 68,537 different Main groups or Subgroups in the sample. Then two 

entropy indices for related and unrelated technological diversification are constructed. The equations 

show as follows: 

𝑟𝑣𝑖𝑡  = ∑ 𝑃𝑆𝑖𝑞𝑡

𝑛

𝑞=1

(∑ 𝑃𝑆𝑖𝑟𝑡𝑙𝑛(1/𝑃𝑆𝑖𝑟𝑡)

𝑟∈𝑞

) 

𝑢𝑣𝑖𝑡 = ∑ 𝑃𝑆𝑖𝑞𝑡

𝑛

𝑞=1

𝑙𝑛(1/𝑃𝑆𝑖𝑞𝑡) 

where 𝑃𝑆𝑖𝑞𝑡 denotes firm i’s patent share of technological field q at time t and is derived from 𝑃𝑖𝑞𝑡 

and 𝑃𝑖𝑡 (𝑃𝑆𝑖𝑞𝑡=𝑃𝑖𝑞𝑡/𝑃𝑖𝑡). 𝑃𝑖𝑞𝑡 is the number of patent publications of firm i in field q at time t, and r 
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stands for the main groups or subgroups within the field q. Similarly, 𝑃𝑖𝑟𝑡 is derived from number of 

patents of firm i within r at time t, whereas 𝑃𝑖𝑡 counts the total number of patents published by firm i at 

time t (i.e., 𝑃𝑖𝑡 = ∑ 𝑃𝑖𝑟𝑡
68537
𝑟=1 ). The first equation evaluates the weighted average of related 

diversification across 68,537 main groups or subgroups within 1,085 fields (n=1085) while the second 

measures unrelated diversification across 1,085 technological fields (n=1085). Again, related and 

unrelated technological diversification are lagged two years behind the dependent variable. 

Turning to innovation persistence, despite abundant discussion of this concept, verifying and 

quantifying the existence of innovation persistence still proves elusive (Bianchini and Pellegrino, 2019). 

Intuitively, the term ‘persistent innovator’ refers to an organisation that has consistently applied patents 

in a certain domain of technology (Malerba and Orsenigo, 1999) or has introduced new products or 

processes consecutively over a certain period of time (Bianchini and Pellegrino, 2019). Previous 

literature has employed the transition probability matrix (e.g., Cefis, 2003; Cefis and Orsenigo, 2001) 

and other econometric analysis methods to quantify the persistence in innovation. These include random 

effect probit models (Antonelli et al., 2012; Ganter and Hecker, 2013; Huang, 2008), and hazard models 

for innovation spells (Fontana and Vezzulli, 2016; Geroski, Van Reenen and Walters, 1997). Another 

method for measuring the degree of innovation persistence is to construct an indicator by counting the 

frequency with which an organisation innovates in a given time window. However, this measure turns 

out to be sensitive to the number of years observed for each firm, especially when the panel data set is 

unbalanced. Most importantly, a simple count of the frequency of innovation activities is unable to 

capture interruptions over a number of time-steps, which represents a feature of discontinuous 

innovators (Bianchini and Pellegrino, 2019). The concept of ‘innovation spell’ refers to the number of 

successive years during which a firm introduces at least one patent per year without interruption or gaps 

(Geroski et al., 1997), and it is considered able to overcome the drawbacks described above (Bianchini 

and Pellegrino, 2019). In line with the notion of consecutive innovation spell, Guarascio and Tamagni 

(2019) regard persistent innovators as those who have participated in a certain type of innovation for at 

least 7 consecutive years within a 10-year-period. Similarly, Demirel and Mazzucato (2012) use a 

minimum of five consecutive years of patenting as the criterion to define a persistent patentee. In the 

present case, we use the idea of innovation spell, which implies a firm’s innovation state for the last 

consecutive five years. For a certain firm, the variable takes value of 1 in a given year if at least one 

patent has been published in the last five years consecutively. 

 

2.4.2.3 Control variables 

Our choice of control variables is guided by the existing literature on innovation outputs and 

limited by the data availability. Essentially, two indicators of a firm’s overall innovativeness are 

included: accumulated innovation intensity and patenting experience. A firm’s past innovation output 
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and its accumulation of innovation experience have been found to have a positive impact on its current 

intensity of innovation output (Córcoles, Triguero and Cuerva, 2016; Kim and Kogut, 1996), especially 

in the high-tech category (Raymond, Mohnen, Palm and Schim Van Der Loeff, 2010). Penrose (2009) 

also notes that firms learn to take advantage of their resources, such as technical knowhow and R&D 

capabilities, to create favourable conditions for engaging in other promising technological fields (Leten 

et al., 2007). Innovation intensity is captured by the ratio of accumulative number of patents for the last 

five years to the number of employees at time t. Patenting experience is measured by the log-

transformed value of number of years since a firm gained its first patent. 

Firm age and size (natural log value of number of employees) are included as controls to account 

for a firm’s resources and capacity. A recent study of 128 IoT adoption cases across 500 production 

sites in Germany shows that the deeper users and more advanced buyers of IoT tend to be large 

businesses, while small and medium-sized enterprises lag behind (Martinelli et al. 2021). Total factor 

productivity (TFP) is also included, estimated by a revenue-based Cobb-Douglas production function 

using production factors of labour, capital, and materials.  

Investment in innovation requires sustainable long-term financing (Teece, 1986), and one can 

expect it to play an important role in driving IoT technologies. Thus, we include firm’s cash flow (the 

log-transformed value of cash and cash equivalents). Intangible assets, including goodwill, brand 

recognition and various forms of intellectual property, can be viewed as a proxy for organisational 

creativity and innovation strength. Therefore, a ratio of intangible fixed assets to the firm’s total assets 

is computed to account for invisible assets’ influence on the possibility to innovate. Further, average 

wage (the ratio of cost of employees to number of employees) is added as a proxy for labour quality, 

with higher labour quality being generally associated with stronger capabilities to absorb external 

knowhow and create new knowledge.  

Prior research suggests that multinationals exploit technological capabilities and knowledge 

globally by means of exporting, establishing subsidiaries, and licensing (Iammarino and Michie, 1998). 

According to Kshetri (2016b), the Chinese IoT sector has benefited substantially through various 

mechanisms associated with multinationals’ technological globalisation strategy. It is therefore 

important to allow for the possibility that foreign-owned firms are more capable than purely domestic 

ones of accessing broader knowledge bases and more diverse sources of information through building 

inter- and intra-company linkages. Finally, sectoral and regional heterogeneity are controlled for by 

their dummies. Appendix Table 2.B1 summarises the variable definitions.   

 

2.4.3 Empirical specification 

To identify the key determinants of firms’ IoT patenting activities, we adopt a multiple choice 

modelling approach to estimate the likelihood of a firm’s engagement in patenting in three types of 
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domains, j, described above: IoT technologies (j=1), ICT technologies more broadly (j=2), and other 

non-ICT technologies (j=3). It is worth noting that our dependent variable has three distinct and 

separable choice alternatives, these choice alternatives in question are not nested, and there are no 

alternative-specific independent variables. In the present context, our choice narrows down to a 

multinomial logit or multinomial probit model. The former model’s validity is contingent on the IIA 

assumption not being violated, while the latter model relaxes this assumption (Long, 1997; Long and 

Freese, 2014). Our results of Hausman-McFadden test show that the IIA assumption is not violated. 

Since the multinomial probit model is much more computationally demanding and produces 

qualitatively similar results as the multinomial logit model (Thrane, 2015), a multinomial logit model 

is specified with an underlying assumption of firms’ maximising utility by making such a choice: 

 

𝑃𝑟 (𝑦𝑖𝑡 = 𝑗 | 𝑋1𝑖𝑡) =  
𝑒𝑥𝑝(𝑋1𝑖𝑡−2 ∗  𝛼𝑗) 𝑒𝑥𝑝(𝑍1𝑖𝑡−1 ∗  𝛽𝑗)

[1 +  ∑ 𝑒𝑥𝑝(𝑋1𝑖𝑡−2 ∗  𝛼ℎ) 𝑒𝑥𝑝(𝑍1𝑖𝑡−1 ∗ 𝛽ℎ)𝐽
ℎ=1 ]

    (𝑗 = 1, 2, 3)    (1)  

 

where y indicates the choice of patenting strategy of firm i at time t. X is a vector of explanatory 

variables that are hypothesised to determine patenting choices, including the firm’s core-technology 

competence (𝑐𝑜𝑟𝑒𝑡𝑒𝑐𝑖𝑡−2), related technological diversification (𝑟𝑣𝑖𝑡−2), and unrelated technological 

diversification (𝑢𝑣𝑖𝑡−2), all lagged by two years to mitigate potential endogeneity problems. The 

estimates of X will test the hypotheses H1, H2a, and H2b. Z is a vector of control variables hypothesised 

to influence firm’s patenting choices. These variables include innovation persistence: 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑖𝑡, 

innovation intensity: 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡 , and firm’s experience in innovation since its first patent: 

𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖𝑡 , which capture the patterns of a firm’s innovation pathway. Firm characteristics are 

captured by age, size, productivity, cash holding, intangible assets ratio, average wage, and foreign 

ownership. 𝑅𝑒𝑔𝑖𝑜𝑛𝑖𝑡  controls for regional fixed effects, 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑖𝑡  controls for the effects at the 

NACE section level, and 𝑌𝑒𝑎𝑟𝑡 stands for year dummies. 

As noted earlier, the key assumption of a multinomial logit model is the IIA, which requires that 

the relative probability of any given choice over another is independent of considering an alternative 

option. The Hausman-McFadden test is used for testing, and the results suggest no violation of the IIA 

assumption. 

To test H3, we add two interaction terms to account for the moderating effects of innovation 

persistence on the effect of technological related and unrelated technological diversification on different 

types of innovation activities.  
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2.5 Empirical results 

2.5.1 Summary Statistics 

Table 2.1 reports summary statistics of the variables in our final sample. The statistics are available 

for the overall sample and for each group of firms according to their patenting type. Overall, firms turn 

out to be highly heterogeneous. With an average age of 33 years and 152 employees in company size 

(e5.03), sampled firms have a wide range of productivity. Half of the firms are owned by foreign owners. 

They show a strong tendency to innovate persistently (persistence) and have a relatively high level of 

innovation intensity (intensity).  

Interesting findings emerge for firms in the different groups. Firms with IoT patents have the 

lowest core-technology competence and the largest related and unrelated technological diversification 

across all the groups. In contrast, firms without any ICT patents enjoy the highest core-technology 

competence and the lowest related and unrelated technological diversification, while firms with other 

ICT patents fall somewhere in the middle. 

In respect of innovation trajectory, firms innovating in the IoT domain seem to have the highest 

innovation persistence, but they do not necessarily have higher innovation intensity than the group that 

innovates in other ICT domains.  

Interestingly, firms patenting in IoT are younger (although not actually young), bigger, and more 

productive. More such firms are foreign owned. However, firms in this group are possess fewer 

intangible assets than those patenting in other ICT. 

<Table 2.1 inserts here> 

  

Table 2.2 summarises the correlation coefficients for the key variables in the sample. Core-

technology competence is weakly positively correlated with related technological diversification. As 

well as being positively correlated with each other to some extent, both related and unrelated 

technological diversification are moderately positively correlated with innovation persistence. As 

expected, innovation persistence and experience since the first patent are moderately positively 

correlated, but not excessively so. 

<Table 2.2 inserts here> 

 

2.5.2 Regression results 

To estimate the determinants of firm’s patenting choice, a multinomial logit model is specified, 

shown in Equation (1), with standard errors clustered at the industry level. Three types of patenting 

choice are categorised: (I) patenting in IoT field, (II) patenting in non-IoT ICT field, and (III) patenting 
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in non-ICT field, with the last being the reference group. In order to compare the likelihood of IoT 

patenting relative to two other choices, we compute the relative-risk ratios of (I) and (II) relative to (III), 

and the relative-risk ratio of (I) relative to (II) (see Table 2.3). A relative-risk ratio of less than one 

indicates less likelihood, while a value higher than one shows more likelihood, with the value 

suggesting how many times more likely. Estimates of marginal effects are reported in Appendix Table 

2.C1. Here, two specifications of the baseline regression are reported. Model (1) focuses on the direct 

effects of the explanatory variables, and model (2) incorporates additional interactions to examine the 

moderating effects of innovation persistence.  

<Table 2.3 inserts here> 

 

Across all model specifications, core-technology competence is statistically significant in 

explaining patenting choices. A higher level of core-technology competence reduces the likelihood of 

patenting in both the IoT and non-IoT ICT domains (with respective estimated relative-risk ratios of 

0.728 and 0.861 in Model 1), relative to the non-ICT domains. This suggests that core-technology 

competence is something of a catalyst for non-ICT patenting, but plays a less important role in ICT 

patenting. When comparing IoT and other ICT patenting (I versus II), we discover that firms with a 

higher level of core-technology competence are less likely to have IoT patents, further suggesting that 

core-competence may hamper success in innovating IoT technologies. Results in Model 2 are similar. 

This supports our hypothesis H1.  

The variables of technological diversification are statistically significant and highly positively 

related to IoT patenting. Related technological diversification seems to be a typical feature of IoT 

patentees, in that firms with a one unit increase in their related diversification index are three times 

more likely to have IoT patents than any other types of patents (Model 1). It is interesting that scoring 

higher in related technological diversification does not seem to differentiate patenting choices between 

the ICT and non-ICT domains (II versus III). Thus, while expanding firm’s knowledge base within 

related subdomains is instrumental to innovating in IoT, it has no effect on firms’ patenting in traditional 

ICT or non-ICT fields. This then suggests that for such firms it is more beneficial to specialise within 

a knowledge domain that is relatively narrowly defined. In Model 2 with additional interaction terms, 

we find the estimate of related technological diversification to be qualitatively the same and 

quantitatively magnified. Firms with a one unit increase in related technological diversification index 

are now at least 4.8 times more likely to have IoT patents compared to any other types of patents, and 

6 times more likely to have IoT patents than traditional ICT ones. 

Unrelated technological diversification also predicts IoT patenting. A one unit increase in 

unrelated technological diversification makes a firm 13 times more likely to produce IoT patents than 

non-ICT patents and nearly 5 times more likely to produce IoT patents than ICT ones. This suggests 
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that compared with innovation in other traditional ICT subdomains, ground-breaking innovation in IoT 

tends to rely on larger varieties of prior capabilities within the same technological field as well as across 

a wider range of technological domains. This is consistent with the preceding postulation that the 

boundary-spanning nature of IoT technologies goes beyond the relatively narrow fields of information 

and communication, and is able to extend to other fields such as logistics, architecture, healthcare, and 

human behaviour. Thus, hypotheses H2a and H2b are confirmed.  

The contrasts in how core-technology competence and diversity drive IoT and more traditional 

ICT technologies may rest on the differences in the nature of such technologies. IoT technologies are 

generally composed of a complex architecture building on different layers of specific technologies, with 

each layer consisting of various components, and dealing with distinctive functions to support the whole 

information network. These components may be objects, platforms, gateways, processes, and 

algorithms of different sizes and capacities, some of which expand beyond the traditional ICT domains. 

To incorporate these components into IoT technologies requires knowledge and capacities from a set 

of fields that are much wider than the traditional or more homogenous technological domains. Issues 

such as device accessibility and compatibility mean that IoT innovation requires innovators to possess 

an open mind if they are to adapt such technologies to the changing demands posed by real life scenarios. 

Next, we turn to innovation persistence. Model 1 suggests that innovation persistence is important 

for ICT patenting but has no effect on IoT patenting (an insignificant relative-risk ratio of 0.87). It is 

expected that the path dependence of innovation is particularly observable in the ICT fields, given the 

well-documented evidence not only in terms of firms’ patenting activities (Alfranca, Rama and von 

Tunzelmann, 2002; Cefis, 2003; Cefis and Orsenigo, 2001; Geroski et al., 1997; Malerba et al., 1997) 

but also generally in product and process innovation (Peters, 2009; Raymond et al., 2010). Considering 

that the traditional ICT innovation often features incremental and developmental innovative activities 

by, say, widening the applications within relatively established technologies, firms are expected to 

exhibit persistent innovation by building on continuous learning and knowledge accumulation (Leten 

et al., 2007). In contrast, what is interesting is the lack of predictability of IoT patenting based on firms’ 

innovation persistence. This shows that IoT technological innovation is typically pathbreaking, which 

suggests that the prior persistence of knowledge creation may be insufficient for, or even irrelevant to, 

creating new technologies in the IoT domains. 

Does this mean that innovation persistence is of no use to IoT innovation? We investigate this 

further through Model 2 which incorporates interactions of innovation persistence and related and 

unrelated technological diversification. The first thing to note is that interacting innovation persistence 

with related diversification does not make IoT innovation more likely, but it does enhance ICT 

innovation by a factor of 1.7. This suggests that persistent ICT innovators can benefit further by 

diversifying into fields within the technological domain of their knowledge bases.  
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However, interacting innovation persistence with unrelated diversification does make IoT and ICT 

innovation much more likely. The relative-risk ratio estimates suggest that persistent innovators who 

technologically diversify more widely across different technological domains are 4 times more likely 

to produce IoT patents than non-ICT patents, and 3 times more likely to produce IoT patents than 

traditional ICT patents. These findings show that while innovation persistence does not directly drive 

ground-breaking IoT innovation itself—i.e., adding interactions seems to make IoT innovation less 

likely—it can strengthen the benefits of unrelated technological diversification on IoT innovation. This 

offers clear support for hypothesis H3 with respect to unrelated technological diversification.  

The results regarding control variables are consistent with our expectations. Higher innovation 

intensity and longer experience in innovation are accompanied by a higher likelihood of traditional ICT 

innovation across the two models, but these results do not hold in the case of IoT innovation. When 

considered with discoveries on innovation persistence, these findings indicate that a firm’s intensive 

and long history of innovation activities is not sufficient to spur discoveries in ground-breaking and 

boundary-spanning technologies such as IoT. They further show that the estimates of innovation 

persistence remain robust even after controlling for the intensity of existing innovation and length of 

innovation history.  

It is worth noting that firm characteristics that historically relate to firm innovation have limited 

explanatory power in IoT patenting. Firm size, age, and foreign ownership are the only characteristics 

that matter to this patenting choice. Younger firms are more likely to innovate in IoT compared to other 

ICT fields, although the two relative-risk ratios are statistically insignificant in baseline models. There 

is evidence that larger firms seem to be more likely to produce IoT, but firm size loses its statistical 

significance when interaction terms are added. Unsurprisingly, among the UK businesses, foreign-

owned firms are more likely to engage in IoT than other ICT and non-ICT innovation. This may be 

explained by multinationals’ strong dynamic capabilities to access a wide range of knowledge bases 

through internationalisation and intra-company linkages, favouring extensive knowledge searching and 

novel knowledge recombinations. 

Firms innovating in the IoT areas are not necessarily more productive or more cash rich, as 

estimates of those two variables are not statistically significant. Similarly, intangible assets and wage 

level, a proxy for labour quality, do not increase the likelihood of IoT innovation.  

 

2.6 Robustness tests and additional analysis 

Although the baseline models offer clear support to the hypotheses, several measurement issues 

and an identification question may exist and affect the robustness of the findings. In this section, we 

report and discuss the robustness test procedures and findings. 
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2.6.1 Measurement issues 

Time dimensions of core-technology competence and technological diversification 

In the baseline models, core-technology competence and related and unrelated technological 

diversification are lagged two years behind the dependent variable in order to control for the potential 

endogeneity. To test the sensitivity of results to the chosen time dimension, lagged values by one and 

three years of the three main predictors are employed for additional analysis, and the main results 

remain valid18. 

 

Alternative definition of innovation persistence 

As an important variable, persistence in innovation needs to be carefully defined. Besides adopting 

the concept of ‘innovation spell’ and relying on firms’ patenting states for the last consecutive five 

years, a more restricted criterion of the last seven consecutive years is used for testing, with the 

alternative variable taking the value of 1 for a firm in a given year if at least one patent has been 

published in the last seven consecutive years. Again, key results remain unchanged in this analysis19. 

 

2.6.2 Potential endogeneity  

In the baseline model, related and unrelated technological diversification are lagged two periods 

to counteract potential endogeneity with the dependent variable. However, one cannot dismiss the 

possibility that endogeneity may still occur. For example, omitted variables such as firm leadership and 

strategic vision may drive firms’ innovation outcomes as well as potentially correlating with their 

technological strength or knowledge stock. This would result in biased estimates. In this case, adopting 

an instrumental variable strategy for the variation in technological diversification becomes necessary. 

To this end, we instrument related and unrelated technological diversification with more aggregate 

variables that are, by construction, exogenous to firms’ strategic innovation choices, such as an impulse 

in the firm’s industry or economic environment (e.g., Lachenmaier and Wößmann, 2006). In 

influencing all the firms within the same region or sector in similar ways, such variables are unlikely to 

determine individual firms’ innovation choices. In the meantime, variations in the innovation eco-

system between regions and industries can be expected to have explanatory power in the variations of 

firms’ innovation choices.  

                                                      
18 Results are available on request. 
19 Results are available on request. 
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As the first step, a region-specific variable is constructed, which is the current level of total public 

R&D related to the IoT and Big Data technology in a region, defined by log-transformed R&D grant 

value (£) (𝑓𝑢𝑛𝑑_𝑖𝑏𝑡). Conceptually, offering public support for private R&D stimulates firms to 

increase private sector R&D activities, generating enhanced innovation capabilities and better 

organisation performance in the long run (Vanino, Roper and Becker, 2019). Extant literature has 

identified several mechanisms through which public R&D support induces innovation activities. Such 

mechanisms include raising financial slack (Zona, 2012) and creating new knowledge and capabilities 

by enabling access to new or pre-existing knowledge stocks (Vanino et al., 2019). The rationale behind 

the impacts of public R&D grants on innovation output is the assumption that public funds can 

potentially enlarge firms’ resources and knowledge bases, which further build up companies’ 

capabilities. For instance, Marlin and Geiger (2015), focusing on US manufacturing firms, show that 

companies are able to improve innovation outcomes through internal slack (where they integrate sets 

of their own resources) or external slack (i.e., resources potentially available to them, such as public 

R&D support). This suggests that the two potential endogenous variables seem to offer channels for 

public R&D grants to exert effects on a given firm’s innovation outcome. 

The generated variable at regional (NUTS-1) level captures the related R&D grants funded by UK 

research councils (UKRCs)20 and the other three funding organisations21 from the Gateway to Research 

(GtR) portal over the funding period of 1973 to 205022. This measure of public R&D funding and 

support to some extent captures companies’ local innovation context, which offers a potential 

exogenous source of variation to the varieties of company’s innovation activities. To identify the 

relevant funded research projects, we conduct text searching on the key words within the title of each 

project. After eliminating unrelated projects and those without an end date or region information (and 

those outside the UK), 1,415 projects remain from a total of 88,144. The subsample contains projects 

related to the IoT and Big Data technologies (by reference to the list of key words summarised in 

Appendix Table 2.A3), which are worth nearly £620 million. The regional breakdown (by number and 

value) of those research projects at the NUTS-1 level is shown in Table 2.4. By allocating the awarded 

value of each project to its corresponding region across the duration of the support period, we transform 

the project-level public R&D data into a region-level panel data set. The right-hand panel of Table 2.4 

presents value statistics of projects within the sampled period from 2008 to 2017. 

<Table 2.4 inserts here> 

                                                      
20 The seven are the Arts and Humanities Research Council (AHRC), the Biotechnology and Biological Sciences 

Research Council (BBSRC), the Economic and Social Research Council (ESRC), the Engineering and Physical 

Sciences Research Council (EPSRC), the Medical Research Council (MRC), the Natural Environment Research 

Council (NERC), and the Science and Technology Facilities Council (STFC). 
21 They are Innovate UK, the National Centre for the Replacement, Refinement and Reduction of Animals in 

Research (NC3Rs), and UK Research and Innovation (UKRI). 
22 The data for this study was extracted in January 2020 from the Gateway to Research (GtR) website available 

at: https://gtr.ukri.org/search/project?term=*. It covers the time period from the start to end date of all projects. 

https://gtr.ukri.org/search/project?term=*
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Further, another two industry/region-specific variables are constructed as additional instruments. 

The first variable is total number of patentees for the patents registered within a sector (𝑝𝑎𝑡𝑒𝑛𝑡𝑒𝑒_𝑠𝑡), 

while the second is total number of patentees for the patents registered within in a region (𝑝𝑎𝑡𝑒𝑛𝑡𝑒𝑒_𝑟𝑡). 

Both are rescaled by taking their natural logarithm. According to Roper and Love (2018), there are three 

elements of a firm’s knowledge environment that play important roles in driving its innovation activities: 

spatial, sectoral, and network. The local context in terms of cooperative networks and the innovative 

atmosphere in the ‘air’ or in the ‘buzz’ exerts impacts on innovation output through facilitating 

resources and knowledge accumulation. The 𝑓𝑢𝑛𝑑_𝑖𝑏𝑡 variable may capture some of the ‘air’ from the 

supply side in the form of innovation inputs, but we are also interested in capturing some of the ‘buzz’ 

through innovation outputs. To do so, we further exploit information from the linked firm-level data, 

and calculate the total number of co-patentees of companies within a given NACE 4-digit level industry 

or in a NUTS-3 level region. These two variables are designed to proxy an industry or a region’s 

participation in innovation networks that encompass knowledge subsets stemming from different 

collaborative partners. A higher number of patentees within a sector or region for the same number of 

patents is expected to imply a higher level of collaboration for knowledge creation, and the broader 

local innovation networks that incorporate diverse intellectual domains. This characteristic of regional 

and sectoral knowledge creation and exploitation, without necessarily determining an individual firm’s 

innovation output directly, is expected to shape how firms explore and exploit external knowledge in 

order to branch out their own networks of knowledge generation. This would help forge companies’ 

patterns in related and unrelated technological diversification.  

In a nonlinear panel-data model, an appropriate strategy to deal with endogeneity is to use an 

instrumental variable approach in the control function, specifying equations for all the endogenous 

variables within the system (Wooldridge, 2010). Here, we adopt a generalised structural equation model 

(GSEM) to construct a generalised regression-adjustment estimator for nonlinear panel data (e.g., Rabe-

Hesketh and Skerondal, 2008). This offers a solution that handles endogeneity by incorporating 

common, unobserved components into system equations with different endogenous variables (e.g., 

Bartus, 2017; Drukker, 2016). In this case, residuals from the first-stage equations on related and 

unrelated technological diversification are allowed to be correlated with the residuals derived from the 

second-stage multinomial logit regression, following the procedure of Bartus (2017). The GSEM model 

specifies simultaneous estimations of the baseline multinomial logit model and two linear regressions 

of related and unrelated technological diversification on chosen instruments and controls. They are 

jointly estimated using the full information maximum likelihood method (Loaba, 2022). Table 2.5 

presents the estimates. 

<Table 2.5 inserts here> 
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The results first show that the instruments included are individually and jointly statistically 

significant in the technological diversification equations, indicating the presence of likely endogeneity 

in the baseline model (Wooldridge, 2010). Interestingly, controlling for heterogeneity between different 

regions and sectors, regional R&D grants on the IoT and Big Data technology fields lead to decreased 

related diversification or, to put it differently enhance specialisation. A greater number of collaborative 

innovators in a sector and region (captured by numbers of patentees) are significantly and positively 

associated with both related and unrelated technological diversification, consistent with our expectation. 

The relative-risk ratios of key variables are similar to those displayed in the baseline Table 2.3. 

For the focused group, IoT patenting, core-technology competence, related and unrelated technological 

diversification, and the interaction between persistence and unrelated technological diversification all 

show the same signs at a 1% significance level. To sum up, the results produced after dealing with 

potential endogeneity lend further support for our hypotheses, and GSEM performs better in correctly 

estimating standard errors. 

 

2.6.3 Quantity of IoT patents  

We extend the analysis by considering not simply whether a firm patents IoT technologies, but 

also the extent of that innovative activities. Here, the number of IoT patents owned by each firm is used 

as the dependent variable for testing whether the above hypotheses are still valid. The average marginal 

effects of two negative binomial estimators are presented in Table 2.6. In line with the main results, the 

effect of core-technology competence is still significantly negative, and both related and unrelated 

technological diversification are positively related to creating more IoT-related innovations. The 

positive sign and significance of the interaction between persistence and unrelated technological 

diversification still exist, suggesting that innovation persistence can strengthen the positive influence 

of unrelated diversification in increasing the extent of firms’ involvement in IoT innovation. 

< Table 2.6 inserts here > 

 

2.7 Discussion and implications 

2.7.1 Discussion 

The primary aim of this chapter is to examine the factors that facilitate the generation of ground-

breaking technologies in Industry 4.0. Specifically, it focuses on the effects of firms’ competence in 

their core area of technology, technological diversification, and innovation persistence on ground-

breaking innovation, as measured by IoT technology patenting. Until now, little attention has been paid 
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to the nature of the players in the IoT domain and there is scant empirical evidence of their technology 

trajectory. It is also rare to find research that identifies the factors contributing to firms’ involvement in 

IoT innovation. Thus, this work shows an advance in understanding the route towards innovation in 

specific pathbreaking fields within Industry 4.0. By exploring innovation patterns and firm 

characteristics, one can get a sense of what kind of prerequisites enable a business to create related 

knowledge within these emerging technological fields and which types of firms tend to be more ready 

for this iteration of technology revolution. Answers to the above questions are of critical importance in 

that they offer valuable insights for management and decision makers tasked with planning and 

stimulating related innovative activities in such a rapidly emerging field.  

One crucial finding is that firm-specific core-technology competence is statistically significant and 

negatively related to innovation in IoT. Core-technology competence not only represents a firm’s 

competitive advantage in a specific technological field, but also identifies the firm’s level of 

specialisation in that area. Its characteristics in terms of cognitive proximity and technological 

interdependence tend to give rise to knowledge inertia, making firms persist in their existing 

technological trajectory, which attenuates their potential to connect with external technological bases 

and explore novel knowledge combinations. A possible reason for this might lie in the typical 

characteristics of IoT. Its sheer scale and high levels of heterogeneity and interconnectivity, braced by 

a highly complex architecture, require organisations to think beyond the scope of their proximate 

technological competences and to build diversified capabilities by exploring broader knowledge 

domains. Stated otherwise, technological specialisation in the forms of firm-specific competence in the 

core technological fields tends to attenuate firms’ propensity to generate pathbreaking innovation.  

With respect to technological diversification, a diversified technology portfolio significantly and 

positively enhances the likelihood of engaging in ground-breaking innovative activities. Having a 

diversified knowledge base facilitates searching for novel solutions and technological 

complementarities, which increases the propensity to create innovation breakthroughs and reduces the 

effects of knowledge inertia. The positive associations between different forms of technological 

diversification and IoT innovation accord with previous work on diversification’s positive effects on 

innovation exploration (Quintana-Garcia and Benavides-Velasco, 2008). The positive effects of both 

related and unrelated technological diversification can also be explained by the features of IoT 

technologies. The underlying idea here is that cultivating this sort of knowledge demands exposure to 

new technical disciplines and the incorporation of various capabilities in order to connect new streams 

of knowhow and create new combinations. This conclusion aligns with the claim that the winners in 

this new and revolutionary world will be those who are able to link seemingly unrelated streams of 

information to discover unexpected connections, and those who realise that disruptions lie ahead for 

their industries and that they would do well to join the flow rather than cling doggedly to the old ways 

(Schwab, 2018). 
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As mentioned in the hypotheses development, innovation is considered as a process of persistence, 

where organisations rely on their previous innovation pathway. What is notable here is that innovation 

persistence fails to predict firms’ innovation propensity in IoT technologies. This result does not offer 

support for the premise that continuity of innovation and previous innovation performance in terms of 

innovation intensity and experience will help to generate creative accumulation and creative destruction 

(Malerba et al., 1997). The fact that previous innovation patterns and experience are not prerequisites 

for cultivating the ground-breaking technologies in Industry 4.0 sheds light on the strategic management 

of innovation. This appears to be good news for new entrants who intend to keep pace with the 

technological revolution despite lacking outstanding innovation performance and experience. Rather 

than being a game only for the technological giants or advanced innovative incumbents, innovation in 

these emerging fields opens up opportunities for newcomers to get in on the act and equip themselves 

with the technological preparations for a new industrial revolution. However, while persistence in 

innovation seems to have no direct positive impacts on the innovation related to Industry 4.0, it has 

significant positive indirect impacts on emerging innovation, especially through unrelated technological 

diversification. If a firm continuously and persistently innovates by exploiting existing knowhow and 

absorbing external resources, the level of unrelated diversification within its knowledge base tends to 

accumulate over time, strengthening its dynamic capabilities. This process of knowledge accumulation 

and capabilities development in turn supports enterprises in taking advantage of cross-fertilisation or 

synergy effects (Suzuki and Kodama, 2004). 

 

2.7.2 Managerial and policy implications 

The above results provide insights not only for new entrants who desire to take part in this new 

area but also for pioneering innovators who wish to strengthen their technological positions within 

Industry 4.0. First, persistence in innovation does not enable pathbreaking innovation within the IoT 

technologies, and the firms involved in IoT patenting tend to be somewhat younger than those in non-

ICT technology areas. This implies that new, agile, and young entrants, who might appear to be lagging 

behind, have a role to play in this wave of technological revolution. Second, managers would do well 

to be cautious about relying on firms’ core-technology competence, which is likely to impede the 

emergence of IoT innovation. This is consistent with the argument that careful consideration should be 

paid to ‘focus and back to basics’ strategies in R&D activities (Granstrand et al., 1997). In order to be 

ready for the next generation of advanced manufacturing, companies should keep an eye on reducing 

the likelihood of experiencing core rigidities and the knowledge inertia induced by excessive core-

technology focus. The management of firms seeking a way into IoT must distribute organisational 

capabilities and sustain a broader set of technological competences rather than largely focusing on firms’ 

core-technology competence. Third, organisations should recognise the importance of establishing 

broad technological disciplines to assimilate or incorporate streams of varieties and to yield novel 
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combinations. Given the velocity at which innovations and disruptions are taking place in this 

technological wave, new forms of comprehensive collaborations and partnerships connecting offline 

and online worlds, both for established incumbents and young firms, are becoming essential. Last 

though not least, since innovation persistence does play an indirect role in promoting innovation in this 

emerging field through strengthening unrelated knowledge diversification, companies need to recognise 

the importance of persistent knowledge accumulation so as to further benefit from cross-fertilisation. 

The findings also have potentially important policy implications. In the new wave of Industry 4.0 

technological innovation, the likelihood of predicting innovators becomes even weaker. For instance, 

the usual champions of innovation with persistent records may not be the pioneering innovators of IoT 

technologies. In fact, results suggest that public R&D funding seems to do little to encourage firms’ 

technological diversification, which is instrumental for stimulating IoT technologies. Thus, the policy 

approach of cherry-picking potentially innovative firms to support is unlikely to bear much fruit. What 

is likely to be more effective is to build a breeding ground for creating new technologies with the right 

nutrients. In order to achieve this, our results suggest that policy makers should understand the benefits 

of firms’ technological diversification and further facilitate its formation. Place-based industrial 

strategies (e.g., McCann, 2019) should encourage firms to diversify their own technological 

competences with the aim of accelerating unrelated diversity among firms within the regions. 

Second, as has already been the case in several major economies, governments must take a more 

hands-on and top-down approach to promote businesses’ readiness for Industry 4.0 (Yang and Gu, 

2021). Given that knowledge depth and scope economies are prerequisites for ground-breaking 

innovations, fostering technological coordination and helping firms expose themselves to diverse 

knowledge connections might be a cheaper and more effective way of building on the existing large 

scale of direct investments in these technological fields.  

Finally, policy makers expecting to advance technologies in Industry 4.0 should realise the effect 

of efficient and long-lasting policies to stimulate innovation (with the ultimate goal of catalysing 

growth), as innovation persistence exerts indirect effects on technological advancement through 

unrelated technological diversification. 

 

2.7.3 Limitations and future research 

The generalisability of the above results is subject to certain limitations. For instance, only IoT 

technologies are taken into consideration, and therefore caution must be applied as the conclusions 

might not be transferable to other technologies within Industry 4.0. Second, as the current analysis is 

restricted to firms operating within the UK, findings regarding the roles played by core-technology 

competence and related and unrelated technological diversification may not be applicable to countries 

with different institutional and regulatory regimes. Third, while defining different types of technologies 
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with a search strategy based on classified IPC symbols is an efficient way of capturing innovation in 

the respective domains, it is at risk of missing technological classes that are not mentioned in previous 

publications but are nevertheless part of the target fields.  

This chapter has also thrown up questions in need of further investigation. It would be interesting 

to extend this work to other technologies within Industry 4.0 and to verify the contributing factors of 

firm-level innovation in wider domains. These findings would be of greater importance to firms’ 

strategy formulation and policy makers’ decision-making. Previous studies (Daim, Rueda, Martin and 

Gerdsri, 2006; Dernis et al., 2019; Trappey et al., 2017) imply that emerging technologies can be 

properly described and captured through different types of approaches and data sources. More precisely, 

textual and content analysis using keywords from the ontology that corresponds to certain technology 

are driving the methodological trend for defining emerging technologies. Thus, it is rewarding to 

leverage bibliographic information of patent records for searching key words which correspond to 

certain technologies. Scientific documents and other forms of intellectual property rights, namely, 

trademarks and design rights, can be used as various sources of data that embody technological 

development from different dimensions. Lastly, more research is therefore needed to fully understand 

what kind of factors actually drive this type of pathbreaking innovation. 
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Table 2.1. Descriptive statistics by patenting groups 

  All firms IoT patenting firms Non-IoT ICT patenting firms Non-ICT Patenting firms 

Variables Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max 

Core-technology competence coretec 6.5 1.5 2.25 11.2 6.06 1.61 2.92 9.8 6.21 1.5 2.92 10.53 6.62 1.48 2.25 11.2 

Related technological 

diversification 
rv 0.39 0.41 0 2.67 0.57 0.4 0 2.04 0.46 0.4 0 2.28 0.36 0.41 0 2.67 

Unrelated technological 

diversification 
uv 0.51 0.64 0 3.48 1.39 0.93 0 3.48 0.79 0.73 0 3.42 0.36 0.5 0 2.99 

Innovation Persistence persistence 0.45 0.5 0 1 0.67 0.47 0 1 0.56 0.5 0 1 0.4 0.49 0 1 

Innovation intensity intensity 0.46 2.48 0 92 0.65 1.8 0 28.36 0.81 4.24 0 92 0.33 1.45 0 47.33 

Experience since first patent experience 2.78 0.97 0.69 5 2.87 0.91 0.69 4.65 2.87 0.9 0.69 4.97 2.75 0.99 0.69 5 

Firm age age 33.43 24.4 2 147 27.46 18.12 3 92 30.35 22 2 125 34.83 25.33 2 147 

Firm size size 5.03 1.34 0.69 8.89 5.76 1.67 1.39 8.89 5.19 1.45 0.69 8.89 4.94 1.26 0.69 8.89 

Total Factor Productivity productivity 1.08 1.04 0.31 11.69 1.33 1.7 0.31 11.69 1.23 1.25 0.31 11.69 1.01 0.89 0.31 11.69 

Cash cash 3.26 2.05 0 9.87 4.1 2.33 0.01 9.87 3.51 2.03 0 9.87 3.13 2.02 0 9.87 

Intangible asset ratio intangible 0.05 0.51 0.00 47.67 0.05 0.10 0.00 0.74 0.06 0.13 0.00 0.88 0.05 0.60 0.00 47.67 

Average wage ave_wage 4.46 22.67 0 1418 6.22 21.44 0.25 138.86 4.47 34.07 0.09 1418 4.36 16.98 0 214.49 

Foreign ownership foreign 0.5 0.5 0 1 0.68 0.47 0 1 0.59 0.49 0 1 0.46 0.5 0 1 

Observations 9175 344 2304 6527 

   

Note: The detailed variable definitions are provided in Appendix Table 2.B1. 
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Table 2.2. Correlation coefficient for the key variables 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 

1. Core-technology competence 1.00 
            

2. Related Technological diversification 0.29 1.00 
           

3. Unrelated technological diversification 0.19 0.32 1.00 
          

4. Innovation Persistence 0.18 0.40 0.45 1.00 
         

5. Innovation intensity 0.04 0.12 0.16 0.14 1.00 
        

6. Experience since first patent 0.15 0.21 0.26 0.35 0.03 1.00 
       

7. Firm age 0.11 0.02 0.04 0.07 -0.05 0.43 1.00 
      

8. Firm size 0.09 0.15 0.27 0.17 -0.21 0.26 0.25 1.00 
     

9. Total Factor Productivity -0.10 0.03 0.00 0.01 0.09 -0.07 -0.10 -0.14 1.00 
    

10. Cash 0.00 0.07 0.14 0.06 -0.05 0.09 0.07 0.38 0.07 1.00 
   

11. Intangible asset ratio -0.01 0.00 0.01 0.02 0.00 0.00 -0.01 0.02 0.02 0.00 1.00 
  

12. Average wage -0.05 -0.03 -0.04 -0.04 0.00 -0.07 -0.06 -0.02 0.15 0.33 0.00 1.00 
 

13. Foreign ownership -0.02 0.08 0.12 0.10 0.01 0.13 -0.03 0.14 -0.02 0.08 0.02 0.01 1.00 
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Table 2.3. IoT patents, core-technology competence and diversification: relative-risk ratios 

 Model 1 Model 2 

 I vs III II vs III I vs II I vs III II vs III I vs II 

 IoT vs non-

ICT 

Non-IoT ICT 

vs non-ICT 

IoT vs non-IoT 

ICT 

IoT vs non-

ICT 

Non-IoT ICT 

vs non-ICT 

IoT vs non-IoT 

ICT 

𝑐𝑜𝑟𝑒𝑡𝑒𝑐𝑖𝑡−2 0.728*** 0.861*** 0.846*** 0.747*** 0.873*** 0.855*** 

 (0.048) (0.025) (0.051) (0.043) (0.025) (0.046) 

𝑟𝑣𝑖𝑡−2 3.589*** 1.076 3.336*** 4.790*** 0.791* 6.056*** 

 (1.176) (0.112) (0.985) (1.908) (0.111) (2.475) 

𝑢𝑣𝑖𝑡−2 12.979*** 2.716*** 4.778*** 5.177*** 2.304*** 2.247*** 

 (3.240) (0.263) (1.104) (0.858) (0.240) (0.286) 

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑖𝑡 ∗ 𝑟𝑣𝑖𝑡−2    1.128 1.771*** 0.637 

    (0.494) (0.338) (0.259) 

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑖𝑡 ∗ 𝑢𝑣𝑖𝑡−2    4.171*** 1.395** 2.989*** 

    (1.280) (0.222) (0.656) 

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑖𝑡 0.866 1.167** 0.742 0.215** 0.718*** 0.300* 

 (0.234) (0.091) (0.203) (0.156) (0.091) (0.199) 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡  0.986 1.045** 0.944** 0.961 1.037* 0.926** 

 (0.030) (0.019) (0.025) (0.037) (0.020) (0.030) 

𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖𝑡 1.036 1.190*** 0.871 1.091 1.200*** 0.909 

 (0.157) (0.076) (0.123) (0.168) (0.076) (0.133) 

𝑎𝑔𝑒𝑖𝑡 0.985** 0.992*** 0.992 0.983** 0.992*** 0.991 

 (0.006) (0.002) (0.006) (0.007) (0.002) (0.007) 

𝑠𝑖𝑧𝑒𝑖𝑡−1 1.183** 1.107 1.069 1.110 1.093 1.015 

 (0.081) (0.077) (0.078) (0.073) (0.077) (0.061) 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡−1 1.080 1.028 1.051 1.079 1.027 1.050 

 (0.080) (0.044) (0.037) (0.079) (0.044) (0.035) 

𝑐𝑎𝑠ℎ𝑖𝑡−1 1.041 1.036 1.005 1.036 1.037 0.999 

 (0.078) (0.030) (0.060) (0.083) (0.029) (0.065) 

𝑖𝑛𝑡𝑎𝑛𝑔𝑖𝑏𝑙𝑒𝑖𝑡−1 0.290 1.030 0.281 0.310 1.032 0.301 

 (0.242) (0.026) (0.234) (0.280) (0.027) (0.270) 

𝑎𝑣𝑒_𝑤𝑎𝑔𝑒𝑖𝑡−1 1.002 1.000 1.002 1.002 1.000 1.002 

 (0.004) (0.003) (0.002) (0.004) (0.003) (0.002) 

𝑓𝑜𝑟𝑒𝑖𝑔𝑛𝑖𝑡  1.744** 1.360** 1.282* 1.675** 1.367** 1.225 

 (0.392) (0.196) (0.174) (0.383) (0.197) (0.169) 

Constant 0.000*** 0.017*** 0.000*** 0.000*** 0.020*** 0.000*** 

 (0.000) (0.006) (0.000) (0.000) (0.008) (0.000) 

Hausman-McFadden test 

of IIA assumption: Chi2; 

df; P>Chi2 

-6.657; 46;  0.000; 2; 1.000  -1.410; 48;  3.097; 12; 0.995  

Industry (NACE 

section) 

Y Y Y Y Y Y 

Region (NUTS 1) Y Y Y Y Y Y 

Year Y Y Y Y Y Y 

Observations 9,175 9,175 9,175 9,175 9,175 9,175 

 

Notes: Relative-risk ratios from multinomial logit model estimation of Equation (1) are reported. The reference group of the 1st 

column of each model is the firms with a patent only in other non-ICT technological domains. The reference group of the 3rd column 

in each model is the firms with a patent only in non-IoT ICT domains. Robust standard errors in exponentiated form reported in 

parentheses, *** p<0.01, ** p<0.05, * p<0.1.  
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Table 2.4. Regional breakdown of number and value of research projects related to IoT and Big Data technologies 

  Research projects related to IoT and Big Data  
Project value statistics of the 

sampled firms 

Region Number Share 
Total value 

(Thousand £) 
Share 

Mean 

(Thousand £) 

Mean (log-

transformed) 

East Midlands 58 4.1% 27,226.3 4.4%  2,307.6   14.31  

East of England 106 7.5% 38,236.5 6.2%  1,811.7   14.31  

London 207 14.6% 133,265.1 21.5%  6,530.8   15.44  

North East 43 3.0% 10,172.4 1.6%  656.1   13.10  

North West 98 6.9% 30,171.3 4.9%  1,456.5   14.14  

Northern Ireland 15 1.1% 2,394.4 0.4%  90.8   11.27  

Scotland 464 32.8% 247,116.7 39.9%  15,600.0   16.48  

South East 186 13.1% 67,911.4 11.0%  5,260.6   15.37  

South West 61 4.3% 15,334.1 2.5%  609.5   13.27  

Wales 37 2.6% 10,643.2 1.7%  321.9   12.09  

West Midlands 59 4.2% 13,191.4 2.1%  846.2   13.55  

Yorkshire and The Humber 81 5.7% 24,028.2 3.9% 1,293.7 13.94 

Total 1415 100.0% 619,690.9 100.0% 3,066.3  

 
Notes: Data extracted from Gateway to Research (GtR) portal which include all the projects funded by UK research councils 

(UKRCs) and the other three funding organisations over the funding period of 1987-2027. Project number is calculated based on 

the number of projects in progress in each year. In order to build the panel data structure, project value is evenly distributed across 

the whole funding period based on project start and end date. Number and value of individual projects are aggregated based on 

project’s region information at the NUTS1 level. Value statistics are calculated based on those projects within the sampled period 

from 2008 to 2017. 
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Table 2.5. IoT patents, core-technology competence, and instruments for related and unrelated technological 

diversification: relative-risk ratios of Model 2 and regression coefficients of related and unrelated technological 

diversification 

 Model 2   

 I vs III II vs III (1) (2) 

 IoT vs non-

ICT 

Non-IoT ICT 

vs non-ICT 

Related 

diversification 

Unrelated 

diversification 

𝑐𝑜𝑟𝑒𝑡𝑒𝑐𝑖𝑡−2 0.747*** 0.873***   

 (0.035) (0.014)   

𝑟𝑣𝑖𝑡−2 4.790*** 0.791*   

 (1.565) (0.107)   

𝑢𝑣𝑖𝑡−2 5.177*** 2.304***   

 (1.115) (0.209)   

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑖𝑡 ∗ 𝑟𝑣𝑖𝑡−2 1.128 1.771***   

 (0.456) (0.299)   

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑖𝑡 ∗ 𝑢𝑣𝑖𝑡−2 4.171*** 1.395***   

 (1.084) (0.156)   

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑖𝑡 0.215*** 0.718*** 0.278*** 0.439*** 

 (0.091) (0.090) (0.008) (0.012) 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡 0.961 1.037*** 0.010*** 0.032*** 

 (0.034) (0.014) (0.002) (0.002) 

𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖𝑡 1.091 1.200*** 0.066*** 0.088*** 

 (0.120) (0.050) (0.005) (0.007) 

𝑎𝑔𝑒𝑖𝑡 0.983*** 0.992*** -0.001*** -0.002*** 

 (0.004) (0.001) (0.000) (0.000) 

𝑠𝑖𝑧𝑒𝑖𝑡−1 1.110* 1.093*** 0.016*** 0.093*** 

 (0.070) (0.028) (0.003) (0.005) 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡−1 1.079* 1.027 0.005 -0.001 

 (0.043) (0.024) (0.003) (0.005) 

𝑐𝑎𝑠ℎ𝑖𝑡−1 1.036 1.037** 0.002 0.010*** 

 (0.039) (0.017) (0.002) (0.003) 

𝑖𝑛𝑡𝑎𝑛𝑔𝑖𝑏𝑙𝑒𝑖𝑡−1 0.310** 1.032 -0.001 0.000 

 (0.172) (0.047) (0.007) (0.011) 

𝑎𝑣𝑒_𝑤𝑎𝑔𝑒𝑖𝑡−1 1.002 1.000 -0.001** -0.000 

 (0.004) (0.002) (0.000) (0.000) 

𝑓𝑜𝑟𝑒𝑖𝑔𝑛𝑖𝑡  1.675*** 1.367*** 0.023*** 0.035*** 

 (0.246) (0.079) (0.008) (0.012) 

𝒇𝒖𝒏𝒅_𝒊𝒃𝒕   -0.018* -0.001 

   (0.010) (0.015) 

𝒑𝒂𝒕𝒆𝒏𝒕𝒆𝒆_𝒔𝒕   0.011*** 0.026*** 

   (0.002) (0.004) 

𝒑𝒂𝒕𝒆𝒏𝒕𝒆𝒆_𝒓𝒕   0.011*** 0.011** 

   (0.003) (0.005) 

var(e.related diversification)   0.130***  

   (0.002)  

var(e.unrelated diversification)    0.281*** 

    (0.004) 

Constant 0.000 0.020*** 0.127 -0.723*** 

 (0.000) (0.009) (0.138) (0.203) 

IVs’ joint significance   Chi2=36.86, p-

value=0.000 

Chi2=60.97, p-

value=0.000 

Industry (NACE section) Y Y Y Y 

Region (NUTS 1) Y Y Y Y 

Year Y Y Y Y 

Observations 9,175 9,175 9,175 9,175 

 

Notes: Relative-risk ratios of Generalised Structural Equations Model (GSEM) estimation are reported in the left panel. Coefficients 

of two linear regressions (OLS) of related and unrelated technological diversification are presented in the right panel. Model 2 has 

the same specification as the right-side panel of Table 3, in which two interaction terms are added. The reference group is firms that 

only have a patent in other non-ICT technological domains. fund_ib, patentee_s, and patentee_r are instruments included to account 

for potential endogeneity stemming from technological diversification. Region, industry, and year dummies are included in both 

steps of GSEM. Explanatory variables are lagged. In the left panel, standard errors in exponentiated form reported in parentheses, 

*** p<0.01, ** p<0.05, * p<0.1.  
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Table 2.6. Count of IoT patents, core-technology competence, and diversification: average marginal 

effects 

 Model 1 Model 2 

𝑐𝑜𝑟𝑒𝑡𝑒𝑐𝑖𝑡−2 -0.035** -0.030** 

 (0.016) (0.014) 

𝑟𝑣𝑖𝑡−2 0.317** 0.301** 

 (0.124) (0.127) 

𝑢𝑣𝑖𝑡−2 0.352** 0.205** 

 (0.143) (0.096) 

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑖𝑡 ∗ 𝑟𝑣𝑖𝑡−2  0.082 

  (0.054) 

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑖𝑡 ∗ 𝑢𝑣𝑖𝑡−2  0.212** 

  (0.086) 

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑖𝑡 -0.071 -0.309** 

 (0.067) (0.152) 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡 -0.005 -0.010 

 (0.006) (0.007) 

𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖𝑡 -0.060 -0.040 

 (0.039) (0.027) 

𝑎𝑔𝑒𝑖𝑡 -0.002* -0.002** 

 (0.001) (0.001) 

𝑠𝑖𝑧𝑒𝑖𝑡−1 0.047 0.034* 

 (0.029) (0.019) 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡−1 0.010 0.009 

 (0.011) (0.010) 

𝑐𝑎𝑠ℎ𝑖𝑡−1 0.006 0.004 

 (0.014) (0.014) 

𝑖𝑛𝑡𝑎𝑛𝑔𝑖𝑏𝑙𝑒𝑖𝑡−1 -0.171 -0.156 

 (0.161) (0.167) 

𝑎𝑣𝑒_𝑤𝑎𝑔𝑒𝑖𝑡−1 -0.001 -0.001 

 (0.001) (0.001) 

𝑓𝑜𝑟𝑒𝑖𝑔𝑛𝑖𝑡 0.065 0.049 

 (0.042) (0.035) 

Industry (NACE section) Y Y 

Region (NUTS 1) Y Y 

Year Y Y 

Observations 9,175 9,175 

 
Notes: Average marginal effects from negative binomial estimation are reported. Here, the dependent variable of 

Equation (1) has been replaced with the number of IoT patents, with the explanatory variables being the same. 

Region, industry and year dummies are included. Explanatory variables are lagged. Robust standard errors in 

parentheses: *** p<0.01, ** p<0.05, * p<0.1
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Appendix Table 2.A1. List of IPC symbols of the IoT and Big Data  

Technology 

type 

IPC code   Descriptions from IPC system Source 

IoT H04L12/24 Data switching networks -> Details -> Arrangements for maintenance or 

administration 

  

Trappey et al. 

(2017) 

  H04L29/10 Arrangements, apparatus, circuits or systems, not covered by a single one of 

groups H04L 1/00-H04L 27/00 -> Communication control; Communication 

processing -> Characterised by an interface, e.g. the interface between the data 

link level and the physical level 

  

Trappey et al. 

(2017) 

  H04L29/06 Arrangements, apparatus, circuits or systems, not covered by a single one of 

groups H04L 1/00-H04L 27/00 -> Communication control; Communication 

processing -> Characterised by a protocol 

  

Trappey et al. 

(2017) 

  H04L29/08 Arrangements, apparatus, circuits or systems, not covered by a single one of 

groups H04L 1/00-H04L 27/00 -> Communication control; Communication 

processing -> Characterised by a protocol -> Transmission control procedure, 

e.g. data link level control procedure 

  

Trappey et al. 

(2017) 

  H04L12/28 Data switching networks -> Characterised by path configuration, e.g. LAN 

[Local Area Networks] or WAN [Wide Area Networks]  

Trappey et al. 

(2017) 

  H04L29/12 Arrangements, apparatus, circuits or systems, not covered by a single one of 

groups H04L 1/00-H04L 27/00 - > Characterised by the data terminal 

  

Trappey et al. 

(2017) 

  H04L12/56 Data switching networks -> Store-and-forward switching systems -> Packet 

switching systems  

Trappey et al. 

(2017) 

  H04L29/02 Arrangements, apparatus, circuits or systems, not covered by a single one of 

groups -> Communication control; Communication processing 

  

Trappey et al. 

(2017) 

  H04L12/66 Data switching networks (interconnection of, or transfer of information or other 

signals between, memories, input/output devices or central processing units 

G06F 13/00) -> Arrangements for connecting between networks having differing 

types of switching systems, e.g. gateways 

  

Trappey et al. 

(2017) 

  G06F15/173 Digital computers in general; Data processing equipment in general -> 

Combinations of two or more digital computers each having at least an arithmetic 

unit, a program unit and a register, e.g. for a simultaneous processing of several 

programs -> Interprocessor communication -> Using an interconnection network, 

e.g. matrix, shuffle, pyramid, star or snowflake 

  

Trappey et al. 

(2017) 

  H04L12/70 Data switching networks (interconnection of, or transfer of information or other 

signals between, memories, input/output devices or central processing units 

G06F 13/00) -> Packet switching systems 

  

Trappey et al. 

(2017) 

  H04L12/46 Data switching networks (interconnection of, or transfer of information or other 

signals between, memories, input/output devices or central processing units 

G06F 13/00) -> characterised by path configuration, e.g. LAN [Local Area 

Networks] or WAN [Wide Area Networks] (wireless communication networks 

H04W) -> Interconnection of networks 

  

Trappey et al. 

(2017) 

  H04W84/18 Network topologies -> Self-organising networks, e.g. ad hoc networks or sensor 

networks 

UK IP Office 

(2014b) 

  H04W4/00 Services specially adapted for wireless communication networks; Facilities 

therefor 

  

UK IP Office 

(2014b) 

  G08C17/02 Arrangements for transmitting signals characterised by the use of a wireless 

electrical link -> using a radio link 

UK IP Office 

(2014b) 

  H04B7/26 Radio transmission systems, i.e. using radiation field -> for communication 

between two or more posts -> at least one of which is mobile 

  

UK IP Office 

(2014b) 

  G06F15/16 Digital computers in general; Data processing equipment in general -> 

Combinations of two or more digital computers each having at least an arithmetic 

unit, a program unit and a register, e.g. for a simultaneous processing of several 

programs 

  

Trappey et al. 

(2017) 
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  G06F13/00 Interconnection of, or transfer of information or other signals between, memories, 

input/output devices or central processing units 

Trappey et al. 

(2017) 

  H04L12/26 Data switching networks (interconnection of, or transfer of information or other 

signals between, memories, input/output devices or central processing units 

G06F 13/00) -> Details -> Monitoring arrangements; Testing arrangements 

  

Trappey et al. 

(2017) 

  H04L9/32 Arrangements for secret or secure communication -> including means for 

verifying the identity or authority of a user of the system 

  

Trappey et al. 

(2017) 

  H04L29/14 Arrangements, apparatus, circuits or systems, not covered by a single one of 

groups H04L 1/00-H04L 27/00 -> counter-measures to a fault 

  

Trappey et al. 

(2017) 

  G06F17/30 Digital computing or data processing equipment or methods, specially adapted 

for specific functions-> Information retrieval; Database structures therefor 

  

Trappey et al. 

(2017) 

  H04L1/00 Arrangements for detecting or preventing errors in the information received 

  

Trappey et al. 

(2017) 

  G05B19/418 Programme-control systems -> Electric -> Total factory control, i.e. centrally 

controlling a plurality of machines, e.g. direct or distributed numerical control 

(DNC), flexible manufacturing systems (FMS), integrated manufacturing 

systems (IMS), computer integrated manufacturing (CIM) 

  

Trappey et al. 

(2017) 

  H04W72/04 Local resource management, e.g. selection or allocation of wireless resources or 

wireless traffic scheduling -> Wireless resource allocation 

UK IP Office 

(2014b) 

The Big 

Data 

G06F17/30 Digital computing or data processing equipment or methods, specially adapted 

for specific functions -> Information retrieval; Database structures therefor 

  

UK IP Office 

(2014a) 

  G06F7/00 Methods or arrangements for processing data by operating upon the order or 

content of the data handled 

  

UK IP Office 

(2014a) 

  G06F15/16 Digital computers in general; Data processing equipment in general -> 

Combinations of two or more digital computers each having at least an arithmetic 

unit, a programme unit and a register, e.g. for a simultaneous processing of 

several programmes  

UK IP Office 

(2014a) 

  G06F17/00 Digital computing or data processing equipment or methods, specially adapted 

for specific functions  

UK IP Office 

(2014a) 

  H04L29/08 Arrangements, apparatus, circuits or systems, not covered by a single one of 

groups H04L01/00-H04L27/00 -> Communication control; Communication 

processing -> characterised by a protocol -> Transmission control procedure, e.g. 

data link level control procedure 

UK IP Office 

(2014a) 

  G06Q10/00 Administration, e.g. office automation or reservations; Management, e.g. 

resource or project management  

UK IP Office 

(2014a) 

  G06F17/50 Digital computing or data processing equipment or methods, specially adapted 

for specific functions -> Computer-aided design  

UK IP Office 

(2014a) 

  G06F12/00 Accessing, addressing or allocating within memory systems or architectures  UK IP Office 

(2014a) 

  G06F19/00 Digital computing or data processing equipment or methods, specially adapted 

for specific applications 

UK IP Office 

(2014a) 

  G06F15/173 Digital computers in general; Data processing equipment in general -> 

Combinations of two or more digital computers each having at least an arithmetic 

unit, a programme unit and a register, e.g. for a simultaneous processing of 

several programmes -> Interprocessor communication -> using an 

interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake  

UK IP Office 

(2014a) 

  G06F19/10 Digital computing or data processing equipment or methods, specially adapted 

for specific applications -> Bioinformatics, i.e. methods or systems for genetic or 

protein-related data processing in computational molecular biology 

Martinelli et 

al. (2021) 
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  G06F19/12 Digital computing or data processing equipment or methods, specially adapted 

for specific applications -> Bioinformatics, i.e. methods or systems for genetic or 

protein-related data processing in computational molecular biology -> For 

modelling or simulation in systems biology, e.g. probabilistic or dynamic models, 

gene-regulatory networks, protein interaction networks or metabolic networks 

  

Martinelli et 

al. (2021) 

  G06F19/14 Digital computing or data processing equipment or methods, specially adapted 

for specific applications -> Bioinformatics, i.e. methods or systems for genetic or 

protein-related data processing in computational molecular biology -> For 

phylogeny or evolution, e.g. evolutionarily conserved regions determination or 

phylogenetic tree construction 

  

Martinelli et 

al. (2021) 

  G06F19/16 Digital computing or data processing equipment or methods, specially adapted 

for specific applications -> Bioinformatics, i.e. methods or systems for genetic or 

protein-related data processing in computational molecular biology -> For 

molecular structure, e.g. structure alignment, structural or functional relations, 

protein folding, domain topologies, drug targeting using structure data, involving 

two-dimensional or three-dimensional structures 

  

Martinelli et 

al. (2021) 

  G06F19/18 Digital computing or data processing equipment or methods, specially adapted 

for specific applications -> Bioinformatics, i.e. methods or systems for genetic or 

protein-related data processing in computational molecular biology -> For 

functional genomics or proteomics, e.g. genotype-phenotype associations, 

linkage disequilibrium, population genetics, binding site identification, 

mutagenesis, genotyping or genome annotation, protein-protein interactions or 

protein-nucleic acid interactions 

  

Martinelli et 

al. (2021) 

  G06F19/20 Digital computing or data processing equipment or methods, specially adapted 

for specific applications -> Bioinformatics, i.e. methods or systems for genetic or 

protein-related data processing in computational molecular biology -> For 

hybridisation or gene expression, e.g. microarrays, sequencing by hybridisation, 

normalisation, profiling, noise correction models, expression ratio estimation, 

probe design or probe optimisation 

  

Martinelli et 

al. (2021) 

  G06F19/22 Digital computing or data processing equipment or methods, specially adapted 

for specific applications -> Bioinformatics, i.e. methods or systems for genetic or 

protein-related data processing in computational molecular biology -> For 

sequence comparison involving nucleotides or amino acids, e.g. homology 

search, motif or Single-Nucleotide Polymorphism [SNP] discovery or sequence 

alignment 

  

Martinelli et 

al. (2021) 

  G06F19/24  Digital computing or data processing equipment or methods, specially adapted 

for specific applications -> Bioinformatics, i.e. methods or systems for genetic or 

protein-related data processing in computational molecular biology -> For 

machine learning, data mining or biostatistics, e.g. pattern finding, knowledge 

discovery, rule extraction, correlation, clustering or classification 

  

Martinelli et 

al. (2021) 

  G06F19/26 Digital computing or data processing equipment or methods, specially adapted 

for specific applications -> Bioinformatics, i.e. methods or systems for genetic or 

protein-related data processing in computational molecular biology -> For data 

visualisation, e.g. graphics generation, display of maps or networks or other 

visual representations 

  

Martinelli et 

al. (2021) 

  G06F19/28 Digital computing or data processing equipment or methods, specially adapted 

for specific applications -> Bioinformatics, i.e. methods or systems for genetic or 

protein-related data processing in computational molecular biology -> For 

programming tools or database systems, e.g. ontologies, heterogeneous data 

integration, data warehousing or computing architectures 

  

Martinelli et 

al. (2021) 

  G06Q30/02 Commerce, e.g. shopping or e-commerce -> Marketing, e.g. market research and 

analysis, surveying, promotions, advertising, buyer profiling, customer 

management or rewards; Price estimation or determination 

  

Martinelli et 

al. (2021) 

  G06N Computer systems based on specific computational models Martinelli et 

al. (2021) 
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Appendix Table 2.A2. List of IPC symbols of the ICT technology  

Source: OECD (2011). OECD Guide to Measuring the Information Society 2011. 

IPC symbols Details 

Telecommunications    

G01S  Radio navigation  

G08C  Transmission systems for measured values  

G09C Ciphering apparatus  

H01P, H01Q Waveguides, resonators, aerials  

H01S003-025, H01S003-043, H01S003-06, H01S003-085, H01S003-0915, 

H01S003-0941, H01S003-103, H01S003-133, H01S003-18, H01S003-19, 

H01S003-25, H01S005  

Semiconductor lasers 

H03B-D  Generation of oscillations, modulation, demodulation  

H03H Impedance networks, resonators  

H03M Coding, decoding  

H04B Transmission 

H04J Multiplex communication  

H04K Secret communication  

H04L Transmission of digital information  

H04M Telephonic communication  

H04Q Selecting, public switching  

    

Consumer electronics    

G11B Information storage with relative movement between record 

carrier and transducer  

H03F, H03G Amplifiers, control of amplification  

H03J Tuning resonant circuits  

H04H Broadcast communication  

H04N Pictorial communication, television  

H04R Electromechanical transducers  

H04S Stereophonic systems  

    

Computers, office machinery    

B07C Postal sorting  

B41J Typewriters  

B41K Stamping apparatus  

G02F  Control of light parameters  

G03G  Electrography  

G05F  Electric regulation  

G06  Computing  

G07  Checking devices  

G09G  Control of variable information devices  

G10L  Speech analysis and synthesis  

G11C  Static stores  

H03K, H03L  Pulse technique, control of electronic oscillations or pulses  

    

Other ICT    

G01B, G01C, G01D, G01F, G01G, G01H, G01J, G01K, G01L, G01M, 

G01N, G01P, G01R, G01V, G01W 

Measuring, testing 

G02B006  Light guides  

G05B  Control and regulating systems  

G08G  Traffic control systems  

G09B  Educational or demonstration appliances  

H01B011  Communication cables  

H01J011, H01J013, H01J015, H01J017, H01J019, H01J021, H01J023, 

H01J025, H01J027, H01J029, H01J031, H01J033, H01J040, H01J041, 

H01J043, H01J045  

Electric discharge tubes 

H01L  Semiconductor devices  
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Appendix Table 2.A3. List of key words for defining research projects related to the IoT and Big Data 

technologies 

Data source: Gateway to Research (GtR) portal which includes all the projects funded by UK research councils (UKRCs) 

and the other three funding organisations 

 

Technology type Key words Source 

Internet of Things 

(IoT) 

Internet of things, Ubicomp, Industrial Internet, Pervasive Computing, 

Ambient Intelligence, Smarter Planet, Smart Dust, Smart Device, 

Digital Life, Web of Things, M2M, Machine to Machine, Smart Home, 

Smart Meter, Smart Grid, Cloud of Things (CoT), Internet of 

Everything, data transmission and data storage, home automation, 

vehicle remote control, IoT security (e.g. authentication devices) and 

wireless network arrangements 

UK IP Office (2014b). Eight Great 

Technologies: The Internet of Things 

Industrial Internet of Things, life augmented, CPS, IoT 

Web Semantics:  some synonyms for 

the Internet of Things (available at: 

https://www.wired.com/2014/02/web-

semantics-synonyms-internet-things/) 

Actuators, Controllers, RFID technology, Printed Circuit Board (PCB), 

Camera, Computational Component, Session/Communication 

Protocols, Data Aggregation/Processing Protocols, Data 

Storage/Retrieval Protocols, Business Model Protocols, Business 

application Protocols, Circuits, Sensors, Link Layer Protocols, 

Transport Protocols, Multiplexing Methods, Topology Management, 

Baseband Processing, Radio Frequency Protocols, Internet Protocol 

(IP), Network Protocol, Medium Access Control Protocol, Wireless 

Sensor, Network, Connectivity Protocols, Cyber-Physical System, 

Embedded System, Automated IoT Based Access Control System, 

Software, Algorithms, Cloud  Platform, Encryption, IoT Control 

System 

Trappey et al. (2017). A review of 

essential standards and patent 

landscapes for the Internet of Things: 

A key enabler for Industry 4.0. 

Big Data 

Big Data, Hadoop®, Yarn, Aster®, Datameer®, FICO® Blaze, 

Vertica®, Platfora®, Splunk®, MapReduce, open data, data warehous*, 

informatic*, data mine, data mining, simulate*, model*, analy*, 

artificial intelligence, neural network*, distributed *, croudsourc*, 

crowd sourc*, massively parallel process*, massively parallel software, 

massively parallel database, distributed process*, distributed server, 

distributed quer*, distributed database, massive data 

UK IP Office (2014a). Eight Great 

Technologies: Big Data 
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Appendix Table 2.B1. Variable definitions 

 
Variable name 

Name in the 

model 
Definition 

Core-technology 

competence 

Core-technology 

competence 
coretec 

Calculated based on revealed technology advantage 

(RTA) index (Kim et al., 2016); 

𝑐𝑜𝑟𝑒𝑡𝑒𝑐𝑖𝑡 = 𝑙𝑛 [𝑚𝑎𝑥(𝑅𝑇𝐴𝑖𝑞𝑡 × 𝑃𝑖𝑞𝑡)] 

Where RTA is to derive the relative importance of firm’s 

different kinds of patenting to each field of technology 

after taking account of firm’s share of total patenting in all 

the fields and 𝑃𝑖𝑞𝑡  is firm i’s number of publications in 

technological field q at time t. 
 

Technological 

diversification 
Related 

technological 

diversification  

rv 

Technology diversification based on IPC codes at the 

Subgroup level within the Subclass level using entropy 

method (Kim et al., 2016) 

 Unrelated 

technological 

diversification 

uv 
Technology diversification based on IPC codes at the 

Subclass level using entropy method (Kim et al., 2016) 

Interaction 

terms 

Interaction of 

persistence and 

related 

diversification 

persistence*rv 
The interaction term of innovation persistence and related 

technological diversification 

 Interaction of 

persistence and 

unrelated 

diversification 

persistence*uv 
The interaction term of innovation persistence and 

unrelated technological diversification 

Control 

variables 

Innovation 

Persistence 
persistence 

A dummy equal to 1 in a given year if a firm published at 

least one patent during each of the last five years 

consecutively, otherwise 0. 

(The criterion of last seven consecutive years is tested in 

robustness analysis.) 

 Innovation 

intensity 
intensity 

The ratio of accumulative number of patent publications 

for the last five years to number of employees at time t 

 Experience since 

the first patent 
experience 

Natural log of years since patenting for the first time 

(report here the number) 

 Firm age age Firm age since establishment 

 
Firm size size 

Natural log of number of employees (report here the 

number) 

 Total factor 

productivity 
productivity 

Total factor productivity estimated based on OLS method 

using sales revenue 

 
Cash cash 

Natural log of cash and cash equivalent (report here the 

number) 

 Intangible asset 

ratio 
intangible The ratio of intangible fixed assets over total assets 

 Average wage ave_wage The ratio of cost of employees over firm size 

 
Foreign ownership foreign 

A dummy taking value of 1 for a firm owned by a parent 

located in other foreign countries, otherwise 0 
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Appendix Table 2.C1. IoT patents, core-technology competence, and diversification: average marginal 

effects 

 Model 1 Model 2 

 IoT 

patenting 

Non-IoT ICT 

patenting 

Non-ICT 

Patenting 

IoT 

patenting 

Non-IoT ICT 

patenting 

Non-ICT 

Patenting 

       

𝑐𝑜𝑟𝑒𝑡𝑒𝑐𝑖𝑡−2 -0.006*** -0.017*** 0.023*** -0.005*** -0.016*** 0.021*** 

 (0.002) (0.004) (0.004) (0.001) (0.004) (0.004) 

𝑟𝑣𝑖𝑡−2 0.033*** -0.011 -0.023 0.045*** -0.062*** 0.016 

 (0.008) (0.014) (0.015) (0.010) (0.022) (0.019) 

𝑢𝑣𝑖𝑡−2 0.052*** 0.108*** -0.160*** 0.030*** 0.098*** -0.128*** 

 (0.005) (0.011) (0.010) (0.003) (0.014) (0.015) 

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑖𝑡 ∗ 𝑟𝑣𝑖𝑡−2    -0.006 0.084*** -0.078*** 

    (0.011) (0.028) (0.028) 

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑖𝑡 ∗ 𝑢𝑣𝑖𝑡−2    0.032*** 0.026 -0.058*** 

    (0.006) (0.020) (0.022) 

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑖𝑡 -0.007 0.026** -0.019* -0.035** -0.024 0.059*** 

 (0.007) (0.012) (0.011) (0.017) (0.016) (0.021) 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡 -0.001 0.007*** -0.006** -0.002* 0.006** -0.005 

 (0.001) (0.002) (0.003) (0.001) (0.003) (0.003) 

𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖𝑡 -0.002 0.026*** -0.024** -0.001 0.026*** -0.025*** 

 (0.004) (0.009) (0.009) (0.004) (0.009) (0.009) 

𝑎𝑔𝑒𝑖𝑡 -0.000* -0.001*** 0.001*** -0.000* -0.001** 0.001*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

𝑠𝑖𝑧𝑒𝑖𝑡−1 0.003* 0.013 -0.015 0.001 0.012 -0.013 

 (0.002) (0.010) (0.009) (0.001) (0.010) (0.010) 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡−1 0.002 0.003 -0.004 0.002 0.003 -0.004 

 (0.001) (0.005) (0.006) (0.001) (0.005) (0.006) 

𝑐𝑎𝑠ℎ𝑖𝑡−1 0.000 0.005 -0.005 0.000 0.005 -0.005 

 (0.002) (0.004) (0.004) (0.002) (0.004) (0.004) 

𝑖𝑛𝑡𝑎𝑛𝑔𝑖𝑏𝑙𝑒𝑖𝑡−1 -0.034 0.026* 0.008 -0.032 0.024* 0.007 

 (0.022) (0.014) (0.010) (0.024) (0.015) (0.010) 

𝑎𝑣𝑒_𝑤𝑎𝑔𝑒𝑖𝑡−1 0.000 -0.000 0.000 0.000 -0.000 0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

𝑓𝑜𝑟𝑒𝑖𝑔𝑛𝑖𝑡 0.010** 0.037** -0.047** 0.008** 0.039** -0.047** 

 (0.004) (0.018) (0.020) (0.004) (0.018) (0.020) 

Industry (NACE section) Y Y Y Y Y Y 

Region (NUTS 1) Y Y Y Y Y Y 

Year Y Y Y Y Y Y 

Observations 9,175 9,175 9,175 9,175 9,175 9,175 

 

Notes: Average marginal effects from multinomial logit model estimation of Equation (1) are reported. The 

reference group is firms with only a patent in other non-ICT technological domains. Marginal effects of a predictor 

for all choices add up to zero. Explanatory variables are lagged. Robust standard errors in parentheses: *** p<0.01, 

** p<0.05, * p<0.1 
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CHAPTER 3: CONNECTIVITY AND ENVIRONMENTAL INNOVATION: A DEVELOPED 

COUNTRY MNE PERSPECTIVE 

 

3.1 Introduction 

The existential threat faced by businesses and the responses of societies and governments in recent 

decade have led to the net zero emission goal by mid-century (IPCC, 2021). Revolutionary changes in 

technology are needed to achieve such objectives (Hoffert et al., 2002). The recent fast-growing 

literature on eco-innovation and environmental innovation 23  has painted an emerging picture that 

environmental innovation is an important way of pursuing competitiveness while helping to create 

environmentally sustainable societies (Carrillo-Hermosilla, del Río and Könnölä, 2010; De Marchi, 

2012; del Río, Peñasco and Romero-Jordán, 2015). Clearly, this challenges the way MNEs have always 

strategized and operated.  

MNEs, especially those from the developed economies, present an important context for studying 

sustainability related issues (e.g., environmental innovation) because they possess the resources and 

abilities to promote social and environmental values, making them major players in global economic 

and environmental development (Marin and Zanfei, 2019). The sustainability imperative is prompting 

MNEs to cultivate their capabilities for making environmental and sustainable innovations 

(Amendolagine, Lema and Rabellotti, 2021). They have a crucial role in developing and disseminating 

environmental innovations through their global R&D facilities (Noailly and Ryfisch, 2015), and MNEs 

that develop a socially responsible attitude and innovative green practices can also influence and put 

pressure on other organizations through their GVCs and production networks (Aguilera‐Caracuel, 

Aragón‐Correa and Hurtado‐Torres, 2011; Chang and Gotcher, 2020).  

Conceptually, the existing research attempts to link sustainability with firm-specific advantages by 

connecting the characteristics and drivers of MNEs to environmental innovation (Rugman and Verbeke, 

1998; 2003). Prior research is relatively silent about what production networks and innovation networks 

mean for MNEs in terms of their strategy and capacity for achieving environmental innovation, except 

for one study of Dugoua and Dumas (2021) focusing on industrial networks. The factors that affect how 

eco-innovations are developed are also under-researched, especially those related to cooperative 

arrangements (De Marchi, 2012). To the best of our knowledge, no existing study has examined how an 

MNE’s different types of international and inter-organisational networks contribute to its capacity to 

                                                      
23 The key contributions of this literature include analyses of eco-innovation (e.g., Colombelli, Krafft and Quatraro, 

2021; Costantini et al., 2017) and environmental innovation (e.g., Cainelli and Mazzanti, 2013; Cainelli, Mazzanti 

and Montresor, 2012; Chiarvesio, De Marchi and Di Maria, 2015; Ghisetti and Rennings, 2014; Horbach, 2008; 

Horbach and Rennings, 2013; Konadu, Owusu-Agyei, Lartey, Danso, Adomako and Amankwah-Amoah, 2020; 

Konara, Lopez and Shirodkar, 2021; Liao and Liu, 2021; Marin and Zanfei, 2019; Rennings and Rammer, 2011; 

Rexhäuser and Rammer, 2014), among many others. 



X. Yuan, PhD Thesis, Aston University 2022 75 

generate environmental innovation. This knowledge gap is echoed by Gomez-Trujillo and Gonzalez-

Perez (2020), who contend that internationalisation is an important factor in firms’ pursuit of 

sustainability initiatives (Perez-batres, Miller and Pisani, 2010). Furthermore, there is limited empirical 

evidence concerning the specificities of environmental innovation and how it is conceived and realised. 

Most existing studies are heavily qualitative, building on case studies or restricted geographic areas; this 

results in a lack of empirical setting (De Marchi, 2012). 

Hence, this chapter aims to provide insights into the interplay between the global connectedness of 

MNEs and their capacity for environmental innovation capacity. Our investigation enriches the IB 

literature by understanding MNEs’ internationalisation strategies and cross-border innovation 

management in the light of the contemporary challenges and opportunities presented by the need to 

respond to the climate emergency. Specifically, we draw on the knowledge-based view (Grant, 1996; 

1997) to explain why some MNEs can be more environmentally innovative than others. We therefore 

analyse antecedents related to their internationally networked relationships for production and 

innovation, as well as their firm characteristics. We draw on theoretical arguments about the global 

connectedness of MNEs and their cross-border innovation connectivity to develop and test hypotheses 

around the antecedents of environmental innovation. The lessons drawn can help guide the actions of 

practitioners and policymakers in home and host countries. 

As such, we contribute to an important intersection between IB literature and the environmental 

innovation field in the following ways. First and foremost, we bring the topic of environmental 

innovation into the IB and management research arena and explain its determinants from a novel IB and 

management perspective. Second, we contribute to the literature on the drivers of environmental 

innovation by focusing on how the cooperative arrangements of MNEs contribute to their eco-

innovation R&D. We explore multiple facets of MNEs’ global linkages: organisational, production, and 

more importantly, cross-border innovation networks. To the best of our knowledge, this is the first study 

to reveal diverse antecedents of environmental innovation from the perspective of MNE connectivity. 

Third, our incorporation of cross-border intra- and inter-organisational networks into environmental 

innovation research extends the existing theoretical framework for analysing the determinants of 

environmental innovation at the level of the MNE parent firm. This idea aligns with Kolk and van 

Tulder’s (2010) proposal that a consideration of the drivers related to institutional, industry and 

organisational aspects is appropriate for understanding the MNE’s approach to gaining sustainable 

competitive advantage and its role in advancing sustainable development. Finally, we provide concrete 

evidence and practical implications based on a large-scale secondary dataset, which supplements the 

limited empirical evidence about the specificities of environmental innovation and how it is conceived 

and realised. 

Our work also offers valuable managerial and policy implications. We advance understanding of 

what kind of prerequisites will allow firms to effectively cultivate their environmental innovation 
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capacity and put them in a better position to create new green knowledge. We identify the types of MNE 

that tend to be more ready for this green transformation. These insights can inform practitioners on how 

to foster environmental innovation capacity by promoting and facilitating diversity in their firms’ 

internationally-integrated production networks and their internal and external innovation networks. 

Such capacity is conducive to firms’ financial performance and long-term competitiveness. Additionally, 

we offer valuable insights for policymakers on how to plan initiatives in response to the ‘sustainability 

imperative’ (Zhan, 2021). 

Our empirical work utilises the Thomson Reuters ASSET4 database and Bureau van Dijk’s Orbis 

main database. We link firms in the two databases by employing a string-matching approach that takes 

company names and the country code of the company’s location into consideration. The final sample is 

an unbalanced panel of 4,510 firm-year observations from 622 unique DMNEs across France, Germany, 

the United Kingdom, Netherlands, and Sweden over the period 2009-2017. By employing a pooled 

Tobit model of firms’ environmental innovation capacity as the empirical approach, we find consistent 

support for the majority of our hypotheses and the results are robust to sensitivity testing. 

We find that wider global linkages built on production networks, and intra- and inter-MNE 

innovation co-production linkages contribute to a MNE’s capability to produce environmental 

innovation. However, intra-organisational linkages motivated by traditional control and coordination 

mechanisms do not play an important role in environmental innovation capacity. This emphasises that 

specific types of ties related to knowledge connectivity and innovation collaboration matter more for 

environmental innovation than general control and coordination linkages. 

The current chapter is organised as follows. The next section introduces the literature review, 

followed by a description of the theoretical foundations and our hypotheses. The fourth section describes 

the data sources and research method. The next section reports our baseline model results, followed by 

a further discussion of the robustness test. The last section discusses and concludes. 

 

3.2 Literature review 

Several terms can be found in the literature to refer to environmental innovation, including ‘green 

innovation’, ‘environmental innovation’, ‘ecological innovation’ and ‘sustainable innovation’ (e.g., Ben 

Arfi et al., 2018; Boons and Lüdeke-Freund, 2013; Carrillo-Hermosilla et al., 2010; Konara et al., 2021). 

Researchers seem to use these terms interchangeably and, to a certain degree, they share the same 

content (Schiederig, Tietze and Herstatt, 2012). However, the first three emphasise ecological and 

environmental dimensions while the last is a broader concept that encompasses an extra social 

dimension (Schiederig et al., 2012). As a subset of eco-innovation (Konara et al., 2021), environmental 

innovation underlines the environmentally-motivated intentions of innovators (Carrillo-Hermosilla et 

al., 2010). The term environmental innovation, like green innovation, expresses an innovation that is 
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designed to improve environmental and economic performance (Ekins, 2010). In this chapter, we use 

environmental innovation to refer to products, processes, or management practices designed to reduce 

and prevent harm to the environment, in which we follow Beise and Rennings (2005), Dias Angelo, 

Chiappetta Jabbour and Galina (2012), Rennings and Zwick (2002), and Triguero, Moreno-Mondéjar 

and Davia (2013). 

Environmental innovation is a subset of general innovation (Wagner, 2008) and thus shares 

commonalities with other innovations. However, it has the peculiarity that policy intervention is one of 

its key drivers (De Marchi, 2012). It is also characterised by ‘double externality’ (Rennings and Zwick, 

2002), producing both a positive externality of knowledge and external environmental spillover effects 

(Ben Arfi et al., 2018; De Marchi, 2012). The environmental dimension causes environmental 

innovation to be deemed more complex than other types of innovations (Ben Arfi et al., 2018; De Marchi, 

2012). Typically, environmental innovation is at a technological frontier, with a range of market and 

technological uncertainties and without widely accepted standards of technological solutions and 

measures for performance evaluation (Ben Arfi et al., 2018; Pinkse and Kolk, 2010). Organisations are 

still somewhat inexperienced in creating products or processes that lower environmental impacts, 

because it involves rather complex tasks that often require knowledge and skills that are outside of 

industry’s conventional knowledge base (Ben Arfi et al., 2018). This explains why empirical studies 

find that environmental innovations are systemic and require R&D cooperation (De Marchi, 2012). Such 

collaborations call for higher cooperative efforts and greater complementarities in the activities carried 

out by network partners (Andersen, 2002; Nygren and Andersen, 2002), particularly in relation to the 

external knowledge sourced from business suppliers and customers (Seuring and Müller, 2008). 

Existing empirical studies have attempted to examine the antecedents of the firm’s environmental 

sustainability strategies and environmental innovation. According to del Río (2009), environmental 

innovation is driven by internal firm-level resources (e.g., Horbach, 2008; Ramus, 2002), such as 

technological and financial strengths. A set of external institutional factors has also been identified, 

which includes institutional pressures, environmental regulation stringency (e.g., Chen, Yi, Zhang and 

Li, 2018; Horbach, 2008; Kesidou and Wu, 2020), and consumer demand (e.g., Horbach, Rammer and 

Rennings, 2012). In addition, researchers have noted the importance of the growing environmental 

pressure from various stakeholders (Ben Arfi et al., 2018), to which firms must react by coming up with 

new ways of implementing sustainable development (Mariadoss, Tansuhaj and Mouri, 2011). 

Nevertheless, the existing literature concerning the drivers of environmental innovation is 

incomplete in the following respects. First, in spite of MNEs’ competitive advantages and their crucial 

role in advancing sustainable development, few studies explore the intersection between a firm’s 

internationalisation strategy and its environmental innovation (examples include Duque-Grisales, 

Aguilera-Caracuel, Guerrero-Villegas, and García-Sánchez, 2020; Kawai, Strange, and Zucchella, 2018; 

Kim, Pantzalis, and Zhang; 2021; Konara et al., 2021). This indicates that we still know little about what 
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the resources and capabilities, and global production and innovation networks of MNEs mean in terms 

of their strategy and capability for environmental innovation. To date, there is only one paper (De 

Marchi, Cainelli and Grandinetti, 2022) that touches on how intra-MNE and inter-MNE cooperation 

contribute to the introduction of green innovation among multinational subsidiaries. How those 

organisational linkages and networks affect the environmental innovation capacity of the parent 

company remains largely unexplored. A second issue is the lack of empirical evidence concerning the 

specificities of environmental innovation and how it is conceived and realised. Most of the existing 

works are mainly qualitative, relying on case studies or restricted geographic areas (De Marchi, 2012). 

The present chapter aims to fill these gaps by investigating how the different types and characteristics 

of international intra- and inter-organisational networks affect MNEs’ environmental innovation. 

 

3.3 Conceptual framework and hypotheses 

In the current competitive business environment, the innovation activities of companies tend to be 

organisationally and geographically dispersed (Castellani et al., 2022), resulting in interconnected 

networks of organisations and individuals (Castellani and Zanfei, 2006; Scalera et al., 2018). The 

traditional model where a single inventor or R&D lab makes isolated efforts to innovate has been 

transformed into a collective team-based activity that, by incorporating and recombining knowledge, 

better meets the increasing need for accelerated innovation outcomes. Such collectives involve a wide 

range of actors, including partner companies, suppliers, and the MNE’s foreign subsidiaries (Choudhury 

and Kim, 2019; Marino et al., 2020; Papanastassiou et al., 2020). Moreover, a recent review of cross-

border innovation by Castellani and colleagues (2022) reveals that innovation activities are increasingly 

distributed across a variety of new geographical locations with R&D centres of excellence. This 

increased connectivity has important implications for knowledge combination in terms of more 

dispersed innovation activities and higher knowledge complexity across both technological scope and 

geographical space (Cantwell and Marra, 2022). 

MNEs govern and nurture the flow of knowledge within their dispersed and interconnected internal 

and external networks that traverse both organisational and geographical spaces (Castellani et al., 2022). 

The organisational space is populated by intra- and inter-organisational networks composed of MNEs’ 

foreign subsidiaries, partner companies, suppliers, and customers. The geographical dimension denotes 

the various locations across the globe where knowledge and competences are generated as inputs for 

cross-border innovation (Castellani et al., 2022). Based on the perspective of place and organisational 

space, our key theoretical argument centres on the idea that MNEs are able to enhance their ability to 

innovate by leveraging heterogenous external environments (Almeida and Phene, 2004) and by utilising 

and recombining knowledge obtained from within and without the organisation’s boundaries. 
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Compared with domestic players, MNEs engage in international business activities by organising 

and arranging their productions globally. Their global production networks allow them to organise and 

orchestrate operation activities to optimise the different location-specific advantages as a means of 

acquiring competitive advantage. This type of enterprise opts for various governance modes to obtain 

technological knowledge and inputs from overseas (Contractor et al., 2010). MNEs can arrange and 

organise internationally integrated production networks and value chains as well as participate in 

international networks for technological accumulation (Cantwell and Marra, 2022). Specifically, their 

knowledge search can take the shape of GPNs, GVCs (Gereffi et al., 2005; Pietrobelli and Rabellotti, 

2011), and R&D collaborations that feature a high degree of connectivity (Cantwell and Marra, 2022).  

In our analysis, we focus on two broad types of network identified by Cantwell (2017) and Cantwell 

and Marra (2022). The first type is the intra-MNE network. These are networks of international 

production, including international research and R&D facilities, that are owned by the MNEs themselves. 

The second is the inter-organisational network. These result from MNEs joining strategic alliances with 

external partners (Cantwell and Marra, 2022). Intra- and inter-organisational networks lay the 

foundation for the internal and external networks for innovation, through which MNEs can access 

diverse knowledge bases that are distinct from those in their home countries. They thus enrich their own 

knowledge bases and foster knowledge diffusion across actors and countries, which ultimately leads to 

the increased potential for knowledge recombination (Cantwell and Marra, 2022). The key to this strand 

of research is that MNEs strive to connect and orchestrate international networks, thereby increasing 

their potential for knowledge recombination and development, from which they can create solutions for 

complex problems (Cantwell and Marra, 2022). The emphasis that Cantwell and Marra (2022) place on 

resource accumulation and technological capability in MNEs builds upon the literature of dynamic 

capabilities (Athreye, 2022). Focusing on environmental innovation, Orsato (2006) proposes that firms’ 

capabilities can be deployed and arranged so as to create competitive advantages in environmental 

innovation. 

Building on the above discussion, we employ a theoretical framework that integrates both strands 

of thinking. That is, we explore MNEs’ sustainable competitive advantages by focusing on the global 

connectedness of multinationals and their cross-border innovation networks. The following section 

discusses the hypothesis development, which draws on arguments related to global connectivity and the 

internationalisation of innovative activities. 

 

3.3.1 Intra-organisational production network - International diversification 

MNEs engage in international business activities by organising and arranging their production 

activities globally. They can thus arrange and orchestrate their operations to derive different location-

specific advantages. The international diversification of production networks is considered to be an 
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important aspect of global connectedness (Maksimov, Wang and Yan, 2019). The literature on 

international diversification defines it as the degree to which a firm diversifies across geographic 

locations globally (Kim, Hwang and Burgers, 1989). By interacting with both local firms (Turkina and 

Van Assche, 2018) and various individual stakeholders in the host markets (Kolk and Fortanier, 2013), 

MNEs’ foreign subsidiaries are able to form locally embedded networks. As MNEs expand their 

internationalisation breadth, multiple embeddedness can be formed (Meyer, Mudambi and Narula, 

2011), facilitating the acquisition of various tangible or intangible resources (Riviere, Bass and 

Andersson, 2021) and diverse knowledge content (Phene, Fladmoe-Lindquist and Marsh, 2006). This 

has been regarded as a mechanism for expanding multinationals’ existing technological competences 

(Scalera et al., 2018). 

More precisely, internationalisation breadth allows MNEs not only to mitigate risks through 

diversifying their activities across different geographic locations but also to access and incorporate 

complementary knowledge from those places through resource and capability coordination (Kafouros, 

Buckley and Clegg, 2012; Lessard, Teece and Leih, 2016). Subsidiaries can therefore be thought of as 

instruments for strategically tapping into local pockets of knowledge within host markets (Cantwell and 

Santangelo, 1999; Christmann, 2000; Turkina and Van Assche, 2018). By building networks and 

relationships with various stakeholders globally through foreign subsidiaries, MNEs can obtain relevant 

knowledge about a wide range of environmental sustainability issues and absorb the complementary 

knowledge that is necessary for improving their practices for better sustainable solutions (Van Zanten 

and Van Tulder, 2018). 

In our context, MNEs are exposed to diverse knowhow and best management practices that might 

not exist in their home countries (Kostova, Roth and Dacin, 2008) via their global networks of 

environmentally-certified participants and the various stakeholders in the host markets (Van Zanten and 

Van Tulder, 2018). The complementary resources and knowledge inputs from foreign stakeholders 

enable MNEs to improve their existing environmental knowledge stocks, and the resulting local 

embeddedness facilitates the acquisition and integration of complementary and distinctive knowhow. 

More specifically, these knowledge inputs not only promote the internalisation of complementary 

resources, but also facilitate the firm’s learning routines in terms of knowledge dissemination, sharing, 

and integrating, which are necessary for fostering green competences and effectively sensing green 

opportunities and threats (Maksimov et al., 2019). In such a context, these knowledge advantages equip 

firms with competences to deal effectively with environmental issues, such as reduction in 

environmental costs, the alleviation of burdens for customers, and advancements in environmentally-

related products and practices. These strengths may also help firms identify opportunities that offer them 

global competitiveness, and consequently fostering their potential to improve their future business 

prospects by via offering a global vision (Riviere et al., 2021). 
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Existing research has recognised the importance to environmental innovation creation of accessing 

and using both internal (Ben Arfi et al., 2018) and external knowledge sources (Ghisetti, Marzucchi and 

Montresor, 2013). In a recent study on the antecedents of eco-innovation, Chiarvesio et al. (2015) 

indicate that a firm’s geographic scale of economic operations is positively related to the flows of 

knowledge required for eco-innovation activities. This is because sharing knowledge rooted in diverse 

locations and pooling resources heightens firms’ awareness of green opportunities or threats, making 

them willing to invest in green practices and competent to surmount environmental obstacles. Relatedly, 

Aguilera-Caracuel, Hurtado-Torres and Aragón-Correa (2012) find that export diversification helps 

firms replicate and exploit knowledge and experience regarding environmental practices across markets, 

thus affecting their adoption of environmental strategies. Furthermore, using an enterprise-level sensing-

seizing-reconfiguring framework (Teece, 2007), Maksimov et al. (2019) elaborate two channels through 

which an MNE’s international spread of sales facilitates the cultivation of their dynamic green 

capabilities; such capabilities are regarded as a prerequisite for pursuing environmental innovation. 

More recently, when exploring the determining factors of environmental innovation, Biscione, Caruso 

and de Felice (2021) emphasise the critical role played by the geographic dimension of markets. 

Following this line of reasoning, we can expect that the MNE’s wider global production networks or 

global connections derived from larger geographical coverage across different countries (i.e., 

international diversification) will generate greater knowledge advantages and more dynamic green 

capabilities for making green improvements (Chen and Chang, 2013) in products, technologies, and 

production processes. 

When firms establish connections with locations, they can obtain locally generated specialised 

knowledge (Cano-Kollmann, Cantwell, Hannigan, Mudambi, and Song, 2016). Furthermore, creating 

internal and external linkages for accessing and sharing knowledge inputs across locations increases the 

firm’s embeddedness within the host markets. In the case of MNEs, increased local embeddedness 

improves knowledge flows between the host economy and the companies (Yang, Martins and Driffield, 

2013) and contributes to MNEs’ learning routines for new knowledge integration (Cantwell and 

Santangelo, 1999; Scalera et al., 2018). In practical terms, MNE connectivity results in the development 

of production networks across both space and the organisational subunits, which facilitates resource 

coordination and tacit knowledge integration across geographical and technological space (Cano-

Kollmann et al., 2016). This organisational learning (Barkema and Vermeulen, 1998) tends to foster 

firms’ knowledge base, skills, competencies, and thus competitiveness (Zahra, Ireland and Hitt, 2000). 

In line with this reasoning, it appears that MNEs are in a better position to invent new 

environmental products, processes, and novel technologies, given their higher availability of green 

knowledge stocks and stronger knowledge learning and integration routines by way of their internal 

intra-organisational linkages. Such knowledge advantages are prone to substituting the sensing of global 

trends and complementing the seizing of green opportunities, consequently fostering MNE’s dynamic 
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green capability (Maksimov et al., 2019). This specific type of dynamic capability equips them with 

competences to deal with environmentally-related issues effectively and to pursue environmental 

innovation. Environmental innovations are characterised by high levels of complexity, novelty, 

uncertainty, and variety compared with traditional technological or market domains (Cainelli, De 

Marchi and Grandinetti, 2015); hence, connectivity via geographically diversified production networks 

is required if firms are to obtain the necessary atypical knowledge and skills for producing 

environmental innovation. Taken together, we propose that MNEs with greater international 

diversification of production networks possess a higher capability of creating environmental innovation 

to react to the sustainability imperative. 

 

H1. International diversification of production networks increases MNEs’ capacity to undertake 

environmental innovation. 

 

3.3.2 Intra-organisational networks - Ownership of foreign subsidiaries 

Host countries may suffer from ‘institutional voids’ where the ecosystem of the market is not fully 

functioning (Khanna, Koss, Jones and Ervin, 2007). Accordingly, MNEs must fill such institutional 

voids in other ways (e.g., Tatoglu, Bayraktar, Sahadev, Demirbag and Glaister, 2014). The extent of 

their ownership of subsidiaries can be an effective mechanism for mitigating institutional deficiency. 

Empirical evidence shows that parent firms typically retain controlling equity stakes in foreign affiliates 

when they face weak institutional environments (Mani, Antia and Rindfleisch 2007), which suggests 

that uncertain environments amplify the need for protection. 

The need to retain ownership and control of firm-specific assets is at the core of internationalisation 

theory and is a backbone of the dominant paradigms in IB literature (Driffield, Mickiewicz and Temouri, 

2016). Given that FDI is characterised by a high extent of commitment and by the exercise of control 

via equity (Aguilera and Jackson, 2003), it is crucial that parent firms establish an ownership structure 

that allows them optimal control over the organisation’s physical and knowledge capital (Carr, 

Markusen and Maskus, 2001; Driffield, Mickiewicz and Temouri, 2014). Hence, the ownership 

structure of foreign affiliates is considered to be a vital channel for retaining control of strategic assets 

and alleviating the risks presented by the different and uneven institutional environments of host nations 

(e.g., Brouthers, 2002; Meyer, Estrin, Bhaumik and Peng, 2009). 

An MNE’s organisational structure offers it opportunities to direct resources and activities to its 

foreign affiliates (Uhlenbruck, 2004) and move productions globally. Prior research has assumed that 

the parent company is the decision maker, and generally takes the initiative on ownership structure (e.g., 

Dikova and van Witteloostuijn, 2007; Driffield et al., 2014). Research on the parent-subsidiary 

relationship has therefore primarily concentrated on the parent’s control and coordination mechanisms 
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(Paterson and Brock, 2002). Control is the use of power or authority by headquarters (HQ) to ensure 

that the subsidiary’s behaviours comply with corporate goals (Child, 1973), while coordination refers 

to the enabling process that offers a suitable link between the organisation’s separate tasks (Tuggle, 

1978). These two mechanisms, as the embodiments of HQ management, allow HQ to monitor 

subsidiaries’ activities and curtail their opportunistic actions (Liou and Rao-Nicholson, 2021; O’Donnell, 

2000). We can thus infer that HQ functions to direct the efforts of subsidiaries to jointly work towards 

the MNE’s common good (Liou and Rao-Nicholson, 2021). 

An investor who holds a large ownership stake in an investment enterprise in a host nation is 

signalling that they consider the investment relationship to be relatively long-term. Such an investor has 

both a long-lasting interest in the investment and a substantial level of governance influence (Wacker, 

2016). Indeed, the controlling shareholder’s large ownership share triggers stronger monitoring 

incentives (Goergen, 2018) and creates two types of control benefits (Grossman and Hart, 1988): 

security benefits and private benefits of control. It is plausible that a higher equity holding allows MNEs 

to efficiently and completely reconfigure subsidiaries that are under their effective control, transferring 

processes and tacit knowhow to them to meet the organisation’s needs and emerging global trends. 

As already noted, MNEs build organisationally motivated linkages to acquire and develop 

knowledge related to their existing knowledge base (Cano-Kollmann, Hannigan and Mudambi, 2018). 

These linkages are a key component of the global innovation networks, being the principal form of 

cross-border knowledge connectivity (Perri, Scalera, and Mudambi, 2017), As such, we contend that the 

intra-MNE networks that are built on organisational ownership linkages between the parent company 

and its foreign subsidiaries encourage coordination of capital and resources, as well as knowledge 

exchange across organisational spaces. Relatedly, it has been observed that that stronger ties between 

actors make it easier to exchange information and thus learn from each other (Hansen, 1999). By 

applying the same reasoning to the strength of a parent firm’s intra-MNE linkages, we suggest that the 

mechanism of the MNE’s ownership stake improves knowledge flows and enhances firm’s learning 

routines for knowledge integration and creation. Indeed, equity control not only creates the conditions 

for knowledge connectivity and offers motivations for capital coordination and knowledge exchange 

between HQ and its subunits, but also tends to make those processes more efficient and effective. This 

theoretical approach suggests that the higher the MNE’s ownership stake in its subsidiaries, the greater 

chance it has to reconfigure its capital and resources and acquire knowledge and skills in accordance 

with its needs. As a result, knowledge advantages and capabilities can be expected. These put the parent 

company in a better position to create competitive advantages and foster the capacity to respond to 

changing global demands, such as the sustainability imperative. The ownership intra-MNE network 

therefore enables MNEs to deal with the environmental innovation characteristics of novelty, 

uncertainty, and variety. 
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To sum up, we infer that the intra-organisational linkage in the form of ownership stake promotes 

knowledge flows and learning routines, which in turn foster improvements in MNEs’ knowledge bases, 

skills, and competences. These create favourable conditions for MNEs to cultivate the capacity and 

capability to undertake environmental innovation. In light of the above arguments and H1, we postulate 

that: 

 

H2. Intra-organisational network in terms of ownership stake of foreign subsidiaries enhances 

MNEs’ capacity to undertake environmental innovation. 

 

3.3.3 Intra-organisational innovation co-production networks - Parent firm and foreign 

subsidiaries 

A large body of the extant research on global innovation networks focuses on HQ-subsidiary 

relationships and tackles issues such as dual embeddedness and multiple embeddedness (e.g., Andersson, 

Forsgren, and Holm, 2002; Cano-Kollmann et al., 2018). Drawing on the seminal work of Kogut and 

Zander (1993), existing studies adopt the knowledge-based view of organisations (Grant, 1996; 1997) 

and hold that the subsidiary is embedded in diverse knowledge flows, including knowledge inflows from 

the parent (Gupta and Govindarajan, 2000) and other MNE subsidiaries (Tsai, 2001), and knowledge 

outflow from its domestic environment (De Marchi et al., 2022).  

Another type of international R&D network possessed by MNEs is the internal innovation network 

within organisational boundaries. This is associated with intra-MNE technological collaboration and 

exchanges. The literature on internal MNE networks focuses on the role of foreign subsidiaries in the 

cross-border organisation of MNE innovation and technological advancement. A recent study by 

Athreye (2022) suggests that MNEs, especially mature ones, have become a unique network within 

which subsidiaries serve as nodes that facilitate knowledge flows from local locations to HQ and the 

MNE’s other units. Foreign subsidiaries thus play a vital role in enabling external knowledge sourcing 

and knowledge exploitation within the boundaries of the organisation (Gupta and Govindarajan, 2000; 

Phene and Almeida, 2008). Subsidiaries tend to have more expertise in marketing, which can be 

combined with the technological knowhow of the parent company (Santos, Doz, and Williamson, 2004). 

This explains the continued focus of the current research on subsidiaries’ capabilities and their role in 

MNE innovation (e.g., Kostova, Marano, and Tallman, 2016; Meyer, Li, and Schotter, 2020; 

Papanastassiou et al., 2020). 

The ability to cooperate with an international network of firms within the same ownership 

boundaries is exclusive to MNEs (De Marchi et al., 2022). Relying on its organisational networks 

(Cantwell, 2019), the parent company is able to internally coordinate learning processes by collaborating 

with its foreign subsidiaries for knowledge production. As such, intra-MNE networks hold significant 
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potential for collaboration aimed at innovation (De Marchi et al., 2022), through which parent 

companies are able to complement their own R&D efforts. Co-production of innovation between HQ 

and its subsidiaries is a way of collaborating in which subsidiaries are empowered to make contributions 

to the innovation capability of the organisation as a whole (Phene and Almeida, 2008). Indeed, HQ 

allocates ownership rights over technological assets to foreign subsidiaries through this co-production 

mechanism, while at the same time keeping hold of the monitoring, direction, and control of the 

cooperative innovation. From the perspective of the parent firm, this internal innovation network 

(Cantwell and Marra, 2022) enables it to coordinate the learning process to meet its requirements and 

needs. These can include sourcing local information via its global subsidiaries (Kuemmerle, 1999), 

adapting existing knowledge to the needs of the local market, and recombining its own knowledge with 

localised knowhow (Cantwell and Marra, 2022). MNEs can thereby adopt a transnational approach to 

knowledge learning and innovation generation (Phene and Santangelo, 2022). 

Although related evidence on intra-MNE international connectivity has been empirically tested in 

the context of general innovations (e.g., Lo, 2016; Yamin and Otto, 2004), only one work (as far as we 

know) has investigated how subsidiaries’ external partnerships and intra-MNE collaboration affect their 

introduction of environmental innovation. De Marchi et al., (2022) find that intra-MNE resources 

contribute to the introduction of environmental innovation by subsidiaries, and that intra-MNE and 

extra-MNE cooperation for innovation enhances the likelihood of subsidiaries’ introducing 

environmental innovation. As yet, no extant work has thoroughly investigated these factors for 

environmental innovation at the MNE level, and this is what we seek to explore in this work.  

MNEs can create a comparative advantage related to the scope of integration by utilising and 

exploiting different pieces of subsidiaries’ knowledge (Grant, 1996). We therefore build on Cantwell 

and Piscitello (2014) to posit that linkages associated with innovation activities between HQ and the 

foreign sub-units further enhance this advantage by facilitating interactions and promoting international 

knowledge flows. The increased connectivity generated by this form of innovation collaboration 

encourages the creation of a more innovative technological portfolio. 

As far as the subsidiary is concerned, explicit cooperation on innovation with external players 

highlights the diversity and complementarity of knowledge that can be accessed by the subsidiary from 

both sides (Albis, Álvarez and García, 2021; Ciabuschi, Holm, and Martin, 2014; Figueiredo and Brito, 

2011). In this way, the knowledge that is created locally and accumulated by different subsidiaries can 

be fed into the MNE’s knowledge flows and processes so that the different knowledge pieces are 

integrated and combined with those of HQ. This tends to be conducive to producing new knowhow that 

is useful for environmental innovation creation. Indeed, this has been found to be a typical way of 

dealing with environmental innovation’s complexity and novelty (De Marchi, 2012; De Marchi et al., 

2022). We therefore suggest that the same reasoning can be applied to the context of the parent company, 

so that cooperating with an intra-MNE network to co-produce innovation enables HQ to deal with the 



X. Yuan, PhD Thesis, Aston University 2022 86 

complexity of environmental innovation. Furthermore, a greater extent of intra-MNE co-production of 

innovation contributes to larger advantages in terms of the organisational capacity for environmental 

innovation. Our argument is in line with De Marchi et al. (2022), who advise that the intrinsically 

complex nature of environmental innovation implies that companies that wish to produce environmental 

innovation should utilise their network of external and internal inter-organisational relationships to a 

larger extent than is required for undertaking other types of innovations. 

Hence, we hypothesise that: 

H3. Intra-organisational innovation co-production networks between the parent firm and its 

foreign subsidiaries enhances MNEs’ capacity to undertake environmental innovation. 

 

3.3.4 Inter-organisational innovation co-production networks - Geographical diversification 

Now we turn to another external mode of inter-organisational network: international R&D 

collaboration. This refers to developing R&D activities cooperatively and fostering inter-firm networks 

of relations with foreign partners. This is an attractive strategy for obtaining international external 

knowledge (Nieto and Rodríguez, 2022) because it allows companies to cooperatively ‘learn from 

partners’ and ‘learn from country’ and thus to exploit the heterogeneity of existing knowledge between 

firms (Kogut, 1991) and even across countries (Furman, Porter, and Stern, 2002).  

Extant literature has summarised and categorised the potential benefits of an international R&D 

sourcing strategy into two groups: access to superior resources and capabilities, and the potential for 

efficiency and competitiveness gains (Nieto and Rodríguez, 2022). R&D collaboration allows 

companies to access not only country-specific knowledge but also the specialised expertise and 

technology of their partners (Kafouros and Forsans, 2012). It supplies a variety of knowhow and thus 

enhances knowledge diversity within the organisations (van Beers and Zand, 2014), and mitigates the 

liabilities of foreignness to some extent (Lu and Beamish, 2006). It can equip companies with the two-

fold experience of working abroad and managing an international collaboration (Kafouros, Love, 

Ganotakis, and Konara, 2020). Moreover, it can generate efficiency and competitiveness gains in terms 

of spreading risks and costs through R&D collaborative agreements (Sampson, 2005). 

However, these many advantages come with some risks. For example, the high degree of 

organisational complexity that results from cross-border R&D alliances may impose governance and 

managerial costs, and also require an investment of resources to maintain communication and control 

(Narula and Martínez-Noya, 2015). It can also be difficult to achieve knowledge transfer and integration 

across long distances (Driffield, Love, and Yang, 2016).  

Most firm-level empirical studies of international R&D collaboration have discovered its positive 

effects on innovation capacity and various innovation results. According to Kafouros et al. (2020), 
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technological alliances with foreign partners tend to be more beneficial for firm innovation performance 

than national alliances. International collaboration on R&D initiatives can also exert positive effects that 

can go beyond firms’ enhanced innovation capacity (Nieto and Rodríguez, 2022). Indeed, as suggested 

by Elango and Pattanik (2007), collaboration with foreign partners facilitates companies’ connection 

with new sources of information abroad, their networking with international contacts, and their 

subsequent international expansion. 

The diversity of technological knowledge sources is critical in this context (Almeida and Phene 

2004) and is indeed seen a key factor in technological collaboration (Nieto and Santamaría, 2007). 

Diversity offers firms the opportunity to access different, and possibly complementary, knowledge 

(Rodríguez, Nieto and Santamaría, 2018). This external knowhow can be combined with the firm’s own 

knowledge to create a heterogeneity of knowledge that improves the possibility of generating novel 

ideas and innovations (Rodríguez et al., 2018). Based on Lavie and Miller (2008), van Beers and Zand 

(2014) argue that geographical diversity in their overseas R&D collaborative partners is of particular 

benefit to firms’ incremental innovation performance because it allows organisations to adapt their 

products to local requirements. This implies that increased diversity in partners’ national backgrounds 

(i.e., their geographical diversification) leads to greater benefits regarding resources and learning 

(Rodríguez et al., 2018). More recently, Rodríguez et al. (2018) focus on firms in technological 

knowledge-intensive business services and reveal that sharing knowledge diversity by collaborating 

with diverse partners tends to be highly beneficial to innovation performance because firms can benefit 

from the remarkable variety of innovativeness across different countries (Furman et al., 2002).  

Thus, we suggest that MNEs that collaborate for innovation with international partners from a 

range of different countries can gain access to heterogenous multidisciplinary and complementary 

technological capabilities, and possibly also designated skills, knowhow, or knowledge. Drawing on 

their geographically dispersed networks of connected knowledge units and specialised innovators, 

MNEs are better able to search for knowledge in different technological domains (Castellani and Zanfei, 

2006; Frenz and Ietto-Gillies, 2009). They can thus develop new knowledge, which is accelerated by 

cross-fertilisation across different knowledge domains. These lead to high synergies and encourage the 

creation of innovative products.  

As advised by Chesbrough (2003) and Laursen and Salter (2006), a wide array of knowledge intake 

is derived from diverse knowledge sources. This allows individuals within the organisation to come up 

with novel linkages and associations (Cohen and Levinthal, 1990), which in turn promote the 

organisation’s innovativeness. It can particularly promote radical innovation (such as is required for 

environmental innovation) because this is usually associated with greater technological complexity and 

uncertainty, and more financial risk (Belderbos, Carree and Lokshin, 2006). 
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Empirical evidence regarding the driving of environmental innovation by networking activities 

(e.g., Andersen, 2002; Mazzanti and Zoboli, 2006) is scant. According to Andersen (1999), the greening 

of industry is an innovation process with four distinct characteristics: radical, highly systemic, politically 

influenced, and associated with substantial information problems. Industry greening therefore needs a 

high degree of inter-firm coordination (Andersen, 2002), including cooperation with supply chain 

partners because developing environmental innovations, even more so than other innovations, requires 

knowledge and skills that fall outside the firm’s usual domain (De Marchi, 2012).  

In short, collaboration on innovations must be highly active, committed, and explicit. Building on 

the argument of Un and Rodríguez (2018), we expect that inter-firm innovation co-production networks 

create incentives, abilities, and the mindset to support knowledge transfer and combination, and thus 

help firms absorb complementary tacit information and knowledge. As a result, higher innovation 

propensity can be expected. Given the benefits of knowledge diversity, which is supplied by innovation 

networks with geographically diversified international collaborators, and the prerequisites of 

environmental innovation, we hypothesise that: 

 

H4. Geographical diversification of inter-organisational innovation co-production networks 

increases MNEs’ capacity to undertake environmental innovation. 

 

3.4 Methods 

3.4.1 Data sources and sample 

The empirical analysis partially draws on data of ESG practices for the period 2009 to 2020 from 

Thomson Reuters ASSET4 database. This database compiles publicly available information, including 

annual and sustainability reports as well as proxy filings, for firms subjected to integrated ESG 

monitoring (Thomson Reuters, 2011). With a database of more than 7,000 firms, ASSET4 is mainly 

employed for studying corporate social responsibility (e.g., Stellner, Klein and Zwergel, 2015) and 

operational performance (e.g., Chopra and Wu, 2016). 

We also draw on Bureau van Dijk’s Orbis main database of MNE information, in which 

subsidiaries from over the world (collected by the database) are linked with their parent firms. Here, an 

MNE is defined as a shareholder with at least one foreign subsidiary during the observation period. This 

implies that corporate and financial information at the parent and subsidiary level can be extracted. Our 

analysis scope includes MNEs whose headquarters are located in five developed countries: France, 

Germany, the United Kingdom, Netherlands, and Sweden over the period 2009 to 2019. 

We obtain information on MNEs’ patents from the Bureau van Dijk’s Orbis IP database of patent 

records from 1808 to 2019. Orbis IP provides detailed patent records by publication date, current direct 
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owner(s), country of current direct owner(s), and a complete symbol of IPC administered by the WIPO. 

A unique advantage of this data is that patent records can be matched to their current direct owners’ 

detailed corporate and financial information using the unique firm identifier. This means that patents 

owned by the parent company or its foreign subsidiaries can be identified from the unique identifier of 

direct owner(s), from which one can tell whether the patent is co-produced by the parent and any of its 

affiliates, or by the parent and its foreign partners. 

Finally, we obtain information on the stringency and enforcement level of environmental regulation 

from the Executive Opinion Survey managed by World Economic Forum. This survey has indices scaled 

from 1 (very lax) to 7 (most stringent/most rigorous) and they are provided for every two years from 

2007 until 2018. The values originate from answers about a country’s environmental policy given by its 

businesses, business associations, and universities. The survey covers over 100 countries (Noailly and 

Ryfisch, 2015). Its wide coverage and time-variant data makes it ideal for analysis of the impacts of 

environmental regulations (e.g., Noailly and Ryfisch, 2015; Peñasco, del Río and Romero-Jordán, 2017). 

To link firms in the ASSET4 database with those in the Orbis main database, we employ a string-

matching approach, in which the strings of company names and the country code for the company’s 

location are taken into account. Authorial judgement is required when no or multiple object(s) is(are) 

deemed to be matched between one data source and the other. In order to aggregate patent information 

to the firm level, the publication date of each record is employed to capture the time when the 

technological knowledge was created because this variable has fewer missing values compared with the 

application date. Individual patent data is then organised in a panel setting using its current direct 

owner(s)’ identifier and publication year, which can be matched with Bureau van Dijk’s Orbis firm 

database. A range of company characteristics, including firm age, size, type of corporation, 

environmental sustainability practices, sector, location, and various financial indicators are obtained and 

taken into account. After a standard data cleaning procedure to deal with infeasible values and missing 

observations, we construct a sample of an unbalanced panel of 4,510 firm-year observations from 622 

unique firms across 5 developed countries from 2009-2017. 

 

3.4.2 Variables and Measures 

3.4.2.1 Dependent variable 

Our dependent variable, the environmental innovation score, is directly extracted from Thomson 

Reuters ASSET4 database, stored as an index ranging from 0 to 100. We rescale the score by dividing 

it by 100. In line with the definition provided by Thomson Reuters, this score reflects an organisation’s 

capacity to introduce new environmental technologies and processes, or eco-designed products with the 

aim of reducing environmental costs and burdens for its customers and thereby creating new market 

opportunities. Recent studies on environmental innovation employ similar measurement include Albitar, 
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Borgi, Khan and Zahra (2023) and Phung, Trinh, Nguyen and Trinh (2023). The larger the score, the 

higher the firm’s capability for reducing environmental burdens and creating environmental innovations. 

 

3.4.2.2 Independent variables 

We adopt a similar method to that suggested by Maksimov et al. (2019) to measure international 

diversification of MNEs’ global production networks, which derives from the diversity of total assets’ 

distribution across different foreign countries. A Herfindahl index of subsidiaries’ total assets, ranging 

from 0 to 1, measures the concentration of MNEs’ production assets overseas. Following the 

diversification literature (Berry, 1971; Garcia-Vega, 2006), we reverse the way of coding by computing 

1 minus the Herfindahl index of total assets across different foreign markets. The variable is thus 

constructed as follows: 

𝑑𝑖𝑣𝑒𝑟_𝑖𝑛𝑡𝑟𝑎_𝐺𝑃𝑁𝑖𝑡 = 1 − ∑(
𝑇𝐴𝑖𝑗𝑡

𝑇𝐴𝑖𝑡
)

𝑛

𝑗=1

 

Where TAijt is the total assets of MNE i in the jth market at time t, and TAit stands for the total assets 

of MNE i across n foreign markets at time t.  

We next consider how to account for an MNE’s intra-organisational linkages as a result of 

internationalisation. The concept of inter-organisational relationships proposed by Grant and Tan (2013) 

refers to a situation where various types of organisations, including at least one business organisation, 

are linked by formal relations for socio-economic objectives (Siemieniako, Kubacki and Mitręga, 2021). 

Applying this to the intra-organisational relationship, we consider ownership stake to be a type of formal 

relationship between HQ and its affiliates. Additionally, governance is connected with structure, power, 

and the authority to make decisions on collective activities (Abdul-Rasheed, Li, Abdul-Fatawu, Boamah 

and Bediako, 2017); as such, it largely determines how different actors are connected and linked with 

each other. Thus, to measure the strength of an MNE’s intra-organisational linkages, we depict its 

ownership structure through its control and coordination over both physical and knowledge capital, 

which is believed to be a channel through which MNEs maintain intra-relationships with their foreign 

affiliates and exert influence on them. Hence, we first collect the share of an MNE’s total participation 

in each of its foreign subsidiaries. Each share is then weighted by the proportion of that subsidiary’s 

total assets to the total amount of all the foreign subsidiaries in a given year, from which the mean value 

is calculated. The resulting average weighted ownership stake of foreign subsidiaries captures how 

strongly an MNE and its affiliates are, on average, linked and associated with each other.   

In the previous studies on MNE innovation, co-invented patents are regarded as a measure of 

internal and external collaboration (Athreye, 2022). The main idea here is that cooperation within the 

intra-MNE and across the inter-MNE networks boosts knowledge flows among the partners and thus 
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increases the diversity and complementarity of knowledge that can be accessed by both parties to the 

partnership. Due to information constraints on patent inventors in our data, we capture organisational 

innovation networks by exploiting information on the direct owner(s). We contend that a patent is co-

produced by different partners if multiple owners are listed as its direct owners, based on which the 

intra- and inter-organisational innovation co-production networks are established. Indeed, to capture the 

strength of intra-organisational innovation co-production between the parent firm and its foreign 

subsidiaries, we compute the extent to which an MNE’s patents are co-produced with its foreign 

subsidiaries. This is the ratio of co-owned patent publications between HQ and the affiliates to the total 

number of the parent company’s patents. 

In similar vein, we gauge an MNE’s inter-organisational innovation co-production network from 

its patent co-ownership with foreign collaborators. Following the method of constructing international 

diversification, we again employ 1 minus the Herfindahl index to measure the geographical 

diversification of an MNE’s inter-organisational innovation co-production network. This is derived from 

the geographical distribution of its patents co-owned with other foreign companies across different 

foreign countries. The Herfindahl index, ranging from 0 to 1, captures the concentration of the patents 

co-produced with cross-border foreign partners across different foreign markets. The variable is 

computed as follows: 

𝑑𝑖𝑣𝑒𝑟_𝑖𝑛𝑡𝑒𝑟_𝑐𝑜 − 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑡 = 1 − ∑(
𝑃𝐴𝑖𝑗𝑡

𝑃𝐴𝑖𝑡
)

𝑚

𝑘=1

 

where PAijt is the number of patents of MNE i in the kth country at time t, and PAit represents the 

total number of patents of MNE i across m foreign countries at time t. 

 

3.4.2.3 Control variables 

Our choice of control variables is guided by theoretical considerations and existing empirical 

evidence on the determinants of environmental innovation and limited by data availability. 

Prior research emphasises the particularity of environmental innovation in terms of its externalities 

and the drivers of its introduction (De Marchi, 2012), highlighting the crucial contributory role of 

regulation (e.g., Jaffe et al., 2002; Marin and Zanfei, 2019). Empirically, Kawai et al. (2018) present 

explanations of how stakeholder pressures in host countries stimulate subsidiaries to engage in green 

product and process innovations. Noailly and Ryfisch (2015) further claim that the probability of 

undertaking green R&D abroad is enhanced by the stringency level of environmental regulation in the 

host country. Here, we consider environmental policy in the context of both host and home countries. 

Taking the stringency and enforcement aspects of policy into account, we compute the average value of 

the indices of stringency and enforcement level of environmental regulation for each home and host 
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country. The value of the MNE’s host country is then weighted by the proportion of total assets within 

that country to the total amount of all the foreign subsidiaries in a given year; the average value is then 

taken across the host markets. The resulting value becomes the weighted average of overall 

environmental policy stringency that an MNE experiences within its host countries.  

Firm age and size by employees (both in logarithm form) are included as controls to account for 

the resources and capacity of the enterprise. As summarised by Liao and Liu (2021), organisational 

factors, mainly organisational size, have been used as controlling variables in many environmental 

innovation studies (e.g., Jové‐Llopis and Segarra‐Blasco, 2018; Martinez-Ros and Kunapatarawong, 

2019). 

Labour productivity (revenue per employee) is taken into account to reflect the efficiency of the 

workforce, given the literature’s acknowledgement that productivity plays a positive role in the 

innovativeness of organisations (Chiarvesio et al., 2015). 

In the innovation literature, R&D activities are expected to be crucial inputs for a firm’s knowledge 

production and innovation process. Patents are generally regarded as an alternative measure of 

innovation capacity (e.g., Costantini et al., 2015), but they play a different role in the knowledge creation 

process because not all R&D commitments or research successes will lead to patents (Popp et al., 2011). 

Here, we use the natural logarithm value of the number of green patent publications to account for 

existing knowledge stocks and the outputs related to environmental innovation. Our green patents are 

identified by a set of designated IPC codes related to environmentally sound technologies (ESTs) in 

numerous technical fields listed in the IPC Green Inventory. For the sake of data aggregation, the 

individual patent record is organised in a panel setting using its current direct owner’s firm identifier 

and patent publication year, enabling it to be linked with the MNE’s other dynamic information. 

Finally, heterogeneity at the levels of sector (one-digit section level) and country are controlled for 

by their respective dummies. Table 3.1 summarises the variable definitions. 

 

3.4.3 Empirical specification 

This section describes the empirical approach employed to identify the antecedents of MNEs’ 

environmental innovation capacity in terms of role played by the different types of international intra- 

and inter-organisational linkages and networks. Accordingly, we formulate a pooled Tobit model of 

environmental innovation capacity estimated by maximum likelihood: 

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛𝑖𝑗𝑡 = 𝑚𝑎𝑥(0, 𝛾0 + 𝛾1𝑑𝑖𝑣𝑒𝑟_𝑖𝑛𝑡𝑟𝑎_𝐺𝑃𝑁𝑖𝑗𝑡 + 𝛾2𝑖𝑛𝑡𝑟𝑎_𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝𝑖𝑗𝑡 +

𝛾3𝑖𝑛𝑡𝑟𝑎_𝑐𝑜 − 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑗𝑡 + 𝛾4𝑑𝑖𝑣𝑒𝑟_𝑖𝑛𝑡𝑒𝑟_𝑐𝑜 − 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑗𝑡 + 𝛾5ℎ𝑜𝑚𝑒 𝑝𝑜𝑙𝑖𝑐𝑦𝑖𝑗𝑡 + 𝛾6ℎ𝑜𝑠𝑡 𝑝𝑜𝑙𝑖𝑐𝑦𝑖𝑗𝑡 +

𝛾7𝑋𝑖𝑗𝑡 + 𝛾8𝐷𝑖𝑗𝑡 + 휀𝑖𝑗𝑡) , 휀 ~ 𝑁(0, 𝜎2)    (1) 



X. Yuan, PhD Thesis, Aston University 2022 93 

where 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛𝑖𝑗𝑡 indicates the environmental innovation score of firm i in 

industry j at time t. The vector of explanatory variables hypothesised to affect green innovation capacity 

are as follows: geographical diversification of global production networks (𝑑𝑖𝑣𝑒𝑟_𝑖𝑛𝑡𝑟𝑎_𝐺𝑃𝑁𝑖𝑗𝑡) tests 

hypothesis H1, intra-organisational linkages in terms of ownership stake (𝑖𝑛𝑡𝑟𝑎_𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝𝑖𝑗𝑡) tests 

H2, the extent of the intra-organisational innovation co-production network (𝑖𝑛𝑡𝑟𝑎_𝑐𝑜 − 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑗𝑡) 

tests H3, and the geographical diversification of inter-organisational innovation co-production linkages 

( 𝑑𝑖𝑣𝑒𝑟_𝑖𝑛𝑡𝑒𝑟_𝑐𝑜 − 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑗𝑡 ) tests H4. The vector of control variables comprises the indices 

environmental policy stringency within the home country (ℎ𝑜𝑚𝑒 𝑝𝑜𝑙𝑖𝑐𝑦𝑖𝑗𝑡 ) and the host markets 

(ℎ𝑜𝑠𝑡 𝑝𝑜𝑙𝑖𝑐𝑦𝑖𝑗𝑡 ), and X, which is a vector of firm characteristics including firm age, size, labour 

productivity, and natural logarithm form of green patents number. Finally, D is a full set of industry 

(NACE section one-digit), time, and country dummies and 휀 is a random error term. 

 

3.5 Results 

3.5.1 Summary statistics 

Table 3.2 reports the descriptive statistics of variables in our analysed sample. The statistics are 

available for the overall sample and for each country. Overall, firms appear to be highly heterogeneous. 

With an average age of 39 (e3.69) years and 6,310 (e8.75) employees in company size, sampled firms have 

a wide range of labour productivity and profitability. On average, sampled firms have published 1.57 

(e0.45) green patents. 

<Table 3.2 inserts here> 

 

The level of environmental innovation score varies across the five countries, with firms in the 

United Kingdom being at the top and those in Sweden at the bottom. Companies in France occupy first 

place in terms of international diversification of GPNs. On average, German and Swedish companies 

have relatively stronger intra-organisational ownership linkages with their foreign subsidiaries than 

MNEs from the other countries. The strength of intra-organisational co-patenting network tends to be 

strongest in Sweden, with German and France at the bottom of the list. Regarding the degree of 

geographical diversification of cross-border innovation co-production network, German companies take 

the lead, surpassing by far those in France (2nd place) and Netherlands (3rd place). 

In terms of environmental regulations, Germany and Sweden exert more stringent environmental 

requirements on firms operating within their jurisdictions. As for the environmental policy in host 

countries, firms in Sweden have, on average, the most stringent environmental policies in their overseas 

markets, while those in Germany have the lowest. 
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Table 3.3 summarises the correlation coefficients for the key variables in the sample. Firm 

environmental innovation capacity shows a moderate positive correlation with the international 

diversification of the intra-organisational production network and a weak positive correlation with both 

intra- and inter-organisational innovation co-patenting networks. Environmental innovation appears to 

be weakly negatively related to intra-organisational ownership linkage. International diversification of 

GPNs is weakly positively correlated with the other three variables in respect of organisational linkages, 

including intra-organisational ownership linkage, intra-organisational co-patenting network, and 

geographical diversification of inter-organisational co-patenting network. Additionally, intra-

organisational co-patenting network and geographical diversity of cross-border innovation co-

production are weakly positively correlated with each other. 

<Table 3.3 inserts here> 

 

3.5.2 Regression results 

To estimate the determinants of MNE environmental innovation capacity, we employ the Pooled 

Tobit modelling specified in Equation (1). The dependent variable is environmental innovation score 

ranging from 0 to 1. The estimates of coefficients and average marginal effects are reported in Table 3.4 

and Table 3.5, respectively. 

<Table 3.5 inserts here> 

 

As shown in Table 3.5, across all the model specifications, we find international diversification of 

production networks in terms of geographical diversity to be statistically significant in explaining MNE 

environmental innovation capacity. A one unit increase in the international diversification index lifts the 

expected value of the environmental innovation score by 0.14. This supports our H1 that through their 

wider global linkages built on GPNs across diverse countries, MNEs are expected to possess more 

resources and knowledge advantages as well as stronger knowledge learning and integration routines. 

Theoretical arguments of global connectedness and firm-specific advantages suggest that these give rise 

to higher green capabilities to innovate environmentally. 

However, we are unable to find support for the effect of intra-organisational ownership linkage on 

environmental innovation capacity across Models B, C, and D. Intra-organisational linkages, motivated 

by traditional control and coordination mechanisms, turn out not to play an important part in 

environmental innovation capacity. MNEs can exploit their ownership advantages through retaining 

ownership and control of physical and knowledge capital (Carr et al., 2001). Their ownership structure 

of foreign affiliates (their production assets overseas) offers them motivations and opportunities to 

optimise resources and productions globally. Such control and coordination over physical and intangible 
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capital can be beneficial for knowledge exchanges and the learning routines for knowledge integration, 

but they may not have significant direct impacts on the MNE’s capacity to innovate green technologies, 

processes, and eco-designed products. 

Two other measures of the innovation co-production network are added to Models C and D in turn. 

As expected, the extent of the intra-MNE co-patenting network is statistically significant and highly 

positively related to MNE’s capacity to engage in environmental innovation in Models C and D, with 

the environmental innovation score going up by nearly 0.3 when the intra-organisational co-patenting 

network variable experiences a one percentage point increase. This suggests that firms that explicitly 

cooperate on innovation with foreign affiliates are able to integrate and combine locally accumulated 

knowledge with their own internal knowledge, thus giving rise to advantages in producing new 

knowledge conducive to environmental innovation creation. This lends support to our H3. Turning to 

Model D, we find that the international diversification of the inter-MNE innovation co-production 

network is also statistically significant and directly advantageous to the capacity to innovate 

environmentally, with the coefficients of the other three key variables remaining fairly consistent. This 

suggests that knowledge diversity attained through innovation connections with geographically 

diversified collaborators puts MNEs in a better position to come up with novel knowledge 

recombination, consequently fostering their innovation capacity in response to changing global demands, 

most notably environmental innovation. Thus, H4 is confirmed. Turning to the magnitude of average 

marginal effects, it is worth mentioning that intra-organisational linkages for innovation co-production 

have higher predictability than the inter-organisational innovation co-production network. This 

underlines the significant role that intra-MNE cooperation on innovation plays in feeding locally created 

knowledge into the flows and processes of the parent firm for environmental innovation creation. 

In the light of the above results, it is also plausible to infer that specific types of ties related to 

knowledge connectivity and innovation collaboration are more significant to environmental innovation. 

A plausible reason for this finding is that active and explicit collaboration on innovation is likely to 

entail high-level involvement and commitment, which creates the necessary incentive and mindset for 

transferring, combining, and absorbing complementary knowledge. The resulting knowledge 

advantages lead to higher innovation propensity. Another possible reason may be that environmental 

innovation’s intrinsically complex, novel, and uncertain nature renders R&D cooperation and 

innovation collaboration essential. 

Turning to environmental policy stringency, we can only detect the expected positive relationship 

(which is only marginally significant) between environmental policy stringency in the home country 

and our dependent variable in Model D. This adds to existing evidence on the contributory role that 

policy stringency plays in stimulating the ability to innovate environmentally. Results for other control 

variables are broadly consistent with expectations. There is evidence to suggest that older, larger, and 

more productive MNEs are likely to have higher capacity to create such innovations. Unsurprisingly, 
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we show that organisations with larger green knowledge stocks and outputs in the form of patents show 

higher capacity for environmental innovation. 

 

3.6 Robustness test 

In our baseline model, we report the results of the pooled Tobit estimation of Equation (1). As a 

robustness check, we employ panel Tobit random effects estimation to re-estimate the model, with 

results presented in Table 3.6. The coefficients of our key variables are similar to those displayed in the 

baseline Table 3.4, with all of them showing the same sign at a 5% significance level. These results lend 

further support to our main hypotheses. 

<Table 3.6 inserts here> 

 

3.7 Discussion and implications 

3.7.1 Discussion 

The primary aim of this work is to examine the factors that facilitate the firm’s environmental 

innovation capacity. It indicates that developed country MNEs are in an advantageous position to 

develop such innovation capability and sheds light on their potential contribution to achieving the SDGs. 

Specifically, we focus on the effects of different types of intra- and inter-organisational production and 

innovation networks, and show that wider global linkages built on production networks, and intra- and 

inter-MNE innovation co-production linkages contribute to a MNE’s capability to produce 

environmental innovation. However, intra-organisational linkages motivated by traditional control and 

coordination mechanisms do not play an important role in environmental innovation capacity. This 

emphasises that specific types of ties related to knowledge connectivity and innovation collaboration 

matter important for environmental innovation than general control and coordination linkages. MNEs’ 

arrangements for international production and innovation activities are grounded in their cross-border 

organisational linkages. These appear to be important channels for facilitating knowledge transfer and 

recombination, which cultivates high levels of knowledge development and environmental innovation 

capacity.  

Thus, this work is grounded in the knowledge-based view and MNEs’ global connectedness in 

terms of both their production and innovation activities. The knowledge-based view has a long tradition, 

which considers knowledge as a strategic resource of the firm. In our study, we combine it with the more 

recent literature on MNEs’ global connectedness, which allows us to develop and test the global 

connectedness arguments in the context of environmental innovation. Our results demonstrate that the 

existing theories within the IB field are well placed to explain the strength of MNEs (particularly 

DMNEs) for pursuing environmental innovation endeavours. At a higher level, we bring the topic of 
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environmental innovation into the IB and management research arena, laying the foundation for further 

exploration of interdisciplinary research on IB and sustainability. 

The related literature on MNEs’ global connectedness is rich, but it has not been fully developed 

and tested in the context of environmental innovation. Considering that MNEs have advantages in 

undertaking innovation and R&D based on their firm-specific advantages, we still know little about if 

this is also the case with the creation of environmental innovation under the emerging sustainability 

context. In the intersection of the knowledge-based view of MNEs and the environmental innovation 

literature, prior literature neglected to consider whether the MNEs’ knowledge advantages (derived from 

global connectedness) could provide them with competitive advantage in terms of environmental 

innovation, particularly from the perspective of the parent company. Indeed, the existing conceptual 

framework of environmental innovation’s determinants did not incorporate the global connectedness 

derived from production networks and innovation networks. Answers to the aforementioned questions 

are of vital importance not only in terms of advancing the existing conceptual framework of 

environmental innovation’s determinants by analysing such innovation from the global connectedness 

lens, but also guiding actions of practitioners and policymakers who strive to engage in and drive the 

green transformation. 

The current chapter addresses such gaps by explaining the determinants of environmental 

innovation through an IB and management research lens. We explore the multifacets of MNEs’ global 

linkages, including organisational linkages, production linkages, and, most importantly, cross-border 

innovation networks. In addition, we extend the existing theoretical framework of determinants of 

environmental innovation at the level of the parent firm by our incorporation of intra- and inter-MNE 

linkages of different kinds, and geographically diversified organisational spaces. Lastly, based on a 

large-scale secondary dataset, our work provides concrete empirical evidence and practical implications 

for the specificities of environmental innovation and how it is conceived and realised. 

 

3.7.2 Managerial and policy implications 

In practical terms, our results provide valuable insights for management and policymakers on how 

to plan and stimulate related innovative activities within the sustainable development domain. In order 

to be ready for the future trend of environmental innovation, MNEs, as large leading firms in the global 

value chains, are able to take advantage of their cross-border organisational linkages of production and 

innovation activities, putting them in a good position to invest in and invent new environmental products, 

processes, and novel technologies. Policymakers need to take a differentiated approach when interacting 

with MNEs, and developed country MNEs in particular, because their vital role in contributing to 

sustainable development makes them good targets for policymakers. Attention should be directed to 

creating and fostering mechanisms that can stimulate the formation and diversity of internationally 
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integrated production networks, and internal and external innovation networks, in order to cultivate 

organisational capacity to innovate environmentally. 

 

3.7.3 Limitations and future research 

However, we need to admit that this research is not without its limitations, and it points out the 

directions for future research. 

The study touches the concept of dynamic green capability, but it fails to explicitly measure this 

construct. The concept of dynamic green capability seems to provide a promising approach in explaining 

businesses’ involvement in environmental sustainability. Therefore, it is worthwhile delving into 

different aspects of dynamic green capabilities, in terms of sensing, seizing, and reconfiguring functions, 

and exploring how these different dimensions affect firms’ green innovation capacity. 

With the GVCs going through green transformations, we are not yet sure how MNEs will change 

their strategies to adapt to the associated challenges and how they strike a balance between maintaining 

the economic goals and pursuing the SDGs. 

Corporate governance research provides a vital approach for understanding the link between the 

corporate governance practices and the performance outcomes of MNEs. It would be of great value to 

probe into specific mechanisms and processes of MNEs’ corporate governance, and to investigate how 

companies are directed and controlled facilitate organisations’ green transformation.
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Table 3.1. Variable definitions 

 Variable name Name in the model Definition 

Dependent 

variable 

Environmental 

innovation score 

Environmental 

innovation 

Firm’s capacity to reduce environmental 

costs for its customers and thereby create 

new market opportunities via new 

environmental technologies as well as 

processes or eco-designed products, 

ranging from 0 to 1 

Independent 

variables 
International 

diversification of 

intra-organisational 

production network 

diver_intra_GPN 

1 minus the Herfindahl index of total assets 

across different foreign markets, ranging 

from 0 to 1 (Berry, 1971; Garcia-Vega, 

2006) 

 

Intra-organisational 

ownership linkage 
intra_ownership 

Weighted share of an MNE’s total 

participation in each of its foreign 

subsidiary by the proportion of that 

subsidiary’s total assets to the total amount 

of all the foreign subsidiaries, after which 

the mean value is calculated 

 
Intra-organisational 

innovation co-

production network 

intra_co-patent 

The ratio of co-owned patent publications 

between headquarter and its affiliates to 

the total patent number of the parent 

company 

 Diversification of 

inter-organisational 

innovation co-

production network 

diver_inter_co-patent 

1 minus the Herfindahl index of patent 

publications which are co-owned with 

other foreign companies across different 

foreign markets, ranging from 0 to 1 

Control 

variables 
Environmental policy 

stringency in home 

country 

home policy 

Average value of environmental policy 

stringency and enforcement indices for a 

country 

 

Environmental policy 

stringency in host 

countries 

host policy 

Average index of environmental policy 

stringency and enforcement indices for a 

host country, weighted by the proportion of 

total assets within that country to the total 

amount of all foreign subsidiaries, after 

which the mean value is calculated 

 
Firm age age 

Natural logarithm value since 

establishment (report here the number) 

 
Firm size size 

Natural logarithm of number of employees 

(report here the number) 

 
Labour productivity productivity 

Turnover per employee (USD in 

thousands) 

 

Green patent green patent 

Natural logarithm value of number of 

green patent publications (report here the 

number) 
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Table 3.2. Descriptive statistics by countries 

Variables 
Total DE FR GB NL SE 

Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max 

Environmental 

innovation 
0.40 0.36 0 1.00 0.35 0.37 0 1.00 0.44 0.40 0 1.00 0.45 0.31 0 0.99 0.38 0.35 0 1.00 0.32 0.37 0 0.99 

diver_intra_GPN 0.48 0.31 0 1 0.53 0.30 0 0.93 0.59 0.27 0 0.92 0.39 0.32 0 1 0.51 0.27 0 0.90 0.47 0.29 0 0.92 

intra_ownership 84.00 26.58 0 100 87.56 21.86 0.37 100 81.89 24.63 0.01 100 83.01 30.06 0 100 76.84 29.32 0.47 100 87.16 24.90 0.31 100 

intra_co-patent 0.005 0.05 0 1 0.003 0.02 0 0.36 0.003 0.03 0 0.5 0.005 0.04 0 0.52 0.007 0.03 0 0.33 0.011 0.10 0 1 

diver_inter_co-patent 0.05 0.17 0 0.88 0.11 0.22 0 0.85 0.07 0.18 0 0.81 0.02 0.11 0 0.88 0.06 0.18 0 0.85 0.02 0.11 0 0.83 

home policy 5.59 0.47 4.95 6.5 6.09 0.29 5.59 6.5 5.06 0.10 4.95 5.26 5.32 0.12 5.04 5.45 5.79 0.17 5.45 6 6.08 0.20 5.82 6.45 

host policy 5.17 0.61 0 6.5 5.04 0.53 3.50 6.35 5.07 0.51 3.23 6.38 5.17 0.72 0 6.5 5.28 0.49 3.05 6.5 5.42 0.58 3.01 6.40 

age 3.69 0.91 0.69 6.02 3.89 0.90 0.69 5.31 3.83 0.74 1.79 5.87 3.42 0.93 0.69 5.80 3.75 0.96 0.69 5.21 3.79 0.90 1.79 6.02 

size 8.75 2.01 1.39 12.97 8.80 2.06 1.61 12.97 9.48 1.81 4.37 12.97 8.55 2.01 1.39 12.97 8.71 2.29 1.79 12.82 8.12 1.79 1.79 12.55 

productivity 5.79 0.97 0.12 13.67 5.93 0.91 2.66 12.08 5.69 0.94 0.12 9.58 5.72 0.98 0.47 11.82 6.17 1.39 3.29 13.67 5.72 0.77 1.38 8.30 

green patent 0.45 1.16 0 7.69 0.97 1.68 0 7.69 0.58 1.18 0 5.95 0.15 0.64 0 5.59 0.47 1.36 0 7.21 0.15 0.50 0 3.14 

Observations 4510 1031 957 1527 320 675 
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Table 3.3 Correlation coefficient for the key variables 

Variables 1 2 3 4 5 6 7 8 9 10 11 

1. Environmental 

innovation 
1.00           

2. diver_intra_GPN 0.25 1.00          

3. intra_ownership -0.18 0.05 1.00         

4. intra_co-patent 0.08 0.01 -0.01 1.00        

5. diver_inter_co-patent 0.19 0.19 0.02 0.12 1.00       

6. home policy -0.14 -0.02 0.07 0.02 0.05 1.00      

7. host policy -0.02 -0.13 0.12 0.00 -0.02 0.06 1.00     

8. age 0.16 0.26 -0.10 0.02 0.10 0.10 -0.03 1.00    

9. size 0.46 0.37 -0.05 0.05 0.20 -0.11 -0.05 0.23 1.00   

10. productivity 0.05 -0.09 -0.15 0.03 0.05 0.08 -0.01 0.00 -0.38 1.00  

11. green patent 0.21 0.24 0.00 0.10 0.66 0.09 -0.05 0.13 0.26 0.05 1.00 
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Table 3.4. MNEs’ intra- and inter-organisational networks and environmental innovation capacity: 

coefficients 

 (1) 

 Model A Model B Model C Model D 

     

𝑑𝑖𝑣𝑒𝑟_𝑖𝑛𝑡𝑟𝑎_𝐺𝑃𝑁𝑖𝑗𝑡 0.215*** 0.220*** 0.223*** 0.222*** 

 (0.056) (0.055) (0.055) (0.055) 

𝑖𝑛𝑡𝑟𝑎_𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝𝑖𝑗𝑡  -0.001 -0.001 -0.001 

  (0.001) (0.001) (0.001) 

𝑖𝑛𝑡𝑟𝑎_𝑐𝑜 − 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑗𝑡   0.456** 0.414** 

   (0.187) (0.193) 

𝑑𝑖𝑣𝑒𝑟_𝑖𝑛𝑡𝑒𝑟_𝑐𝑜 − 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑗𝑡    0.221* 

    (0.113) 

ℎ𝑜𝑚𝑒 𝑝𝑜𝑙𝑖𝑐𝑦𝑖𝑗𝑡 0.060 0.057 0.059 0.067* 

 (0.040) (0.040) (0.040) (0.039) 

ℎ𝑜𝑠𝑡 𝑝𝑜𝑙𝑖𝑐𝑦𝑖𝑗𝑡 0.014 0.019 0.019 0.018 

 (0.023) (0.023) (0.023) (0.023) 

𝑎𝑔𝑒𝑖𝑗𝑡 0.030* 0.028 0.028 0.029 

 (0.018) (0.018) (0.018) (0.018) 

𝑠𝑖𝑧𝑒𝑖𝑗𝑡 0.141*** 0.139*** 0.138*** 0.137*** 

 (0.012) (0.012) (0.012) (0.012) 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗𝑡 0.128*** 0.125*** 0.124*** 0.122*** 

 (0.020) (0.020) (0.020) (0.020) 

𝑔𝑟𝑒𝑒𝑛 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑗𝑡 0.030** 0.030** 0.028* 0.008 

 (0.015) (0.015) (0.015) (0.017) 

var(e.Environmental 

innovation) 

0.150*** 0.150*** 0.149*** 0.149*** 

 (0.009) (0.009) (0.009) (0.009) 

Constant -4.855*** -4.745*** -4.751*** -4.792*** 

 (0.339) (0.352) (0.352) (0.345) 

Industry (NACE 1 digit) Y Y Y Y 

Country Y Y Y Y 

Year Y Y Y Y 

Observations 4,510 4,510 4,510 4,510 

 

Notes: (1). Coefficients of Pooled Tobit estimation of Equation (1) are reported. (2). Region, industry, and year 

dummies are included. (3). Robust standard errors (clustered at the firm level) in parentheses, *** p<0.01, ** 

p<0.05, * p<0.1 
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Table 3.5. MNEs’ intra- and inter-organisational networks and environmental innovation capacity: 

average marginal effects 

 (1) 

 Model A Model B Model C Model D 

     

𝑑𝑖𝑣𝑒𝑟_𝑖𝑛𝑡𝑟𝑎_𝐺𝑃𝑁𝑖𝑗𝑡 0.136*** 0.140*** 0.142*** 0.141*** 

 (0.035) (0.035) (0.035) (0.035) 

𝑖𝑛𝑡𝑟𝑎_𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝𝑖𝑗𝑡  -0.000 -0.000 -0.000 

  (0.000) (0.000) (0.000) 

𝑖𝑛𝑡𝑟𝑎_𝑐𝑜 − 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑗𝑡   0.289** 0.262** 

   (0.118) (0.122) 

𝑑𝑖𝑣𝑒𝑟_𝑖𝑛𝑡𝑒𝑟_𝑐𝑜 − 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑗𝑡    0.140** 

    (0.071) 

ℎ𝑜𝑚𝑒 𝑝𝑜𝑙𝑖𝑐𝑦𝑖𝑗𝑡 0.038 0.036 0.038 0.042* 

 (0.025) (0.025) (0.025) (0.025) 

ℎ𝑜𝑠𝑡 𝑝𝑜𝑙𝑖𝑐𝑦𝑖𝑗𝑡 0.009 0.012 0.012 0.012 

 (0.015) (0.015) (0.015) (0.014) 

𝑎𝑔𝑒𝑖𝑗𝑡 0.019* 0.018 0.017 0.018 

 (0.011) (0.011) (0.011) (0.011) 

𝑠𝑖𝑧𝑒𝑖𝑗𝑡 0.089*** 0.088*** 0.088*** 0.087*** 

 (0.007) (0.007) (0.007) (0.007) 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗𝑡 0.081*** 0.079*** 0.079*** 0.077*** 

 (0.012) (0.012) (0.012) (0.012) 

𝑔𝑟𝑒𝑒𝑛 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑗𝑡 0.019** 0.019** 0.017* 0.005 

 (0.009) (0.009) (0.009) (0.011) 

Industry (NACE 1 digit) Y Y Y Y 

Country Y Y Y Y 

Year Y Y Y Y 

Observations 4,510 4,510 4,510 4,510 

 

Notes: (1). Average marginal effects of Pooled Tobit estimation of Equation (1) are reported. (2). Region, industry, 

and year dummies are included. (3). Robust standard errors in exponentiated form reported in parentheses, *** 

p<0.01, ** p<0.05, * p<0.1. 
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Table 3.6. MNEs’ intra- and inter-organisational networks and environmental innovation capacity: 

coefficients of Panel Tobit random effects estimation 

 (1) 

 Model A Model B Model C Model D 

     

𝑑𝑖𝑣𝑒𝑟_𝑖𝑛𝑡𝑟𝑎_𝐺𝑃𝑁𝑖𝑗𝑡 0.161*** 0.161*** 0.164*** 0.162*** 

 (0.025) (0.025) (0.025) (0.025) 

𝑖𝑛𝑡𝑟𝑎_𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝𝑖𝑗𝑡  -0.000 -0.000 -0.000 

  (0.000) (0.000) (0.000) 

𝑖𝑛𝑡𝑟𝑎_𝑐𝑜 − 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑗𝑡   0.262** 0.227** 

   (0.106) (0.107) 

𝑑𝑖𝑣𝑒𝑟_𝑖𝑛𝑡𝑒𝑟_𝑐𝑜 − 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑗𝑡    0.100*** 

    (0.035) 

ℎ𝑜𝑚𝑒 𝑝𝑜𝑙𝑖𝑐𝑦𝑖𝑗𝑡 0.037 0.036 0.038* 0.041* 

 (0.022) (0.022) (0.022) (0.022) 

ℎ𝑜𝑠𝑡 𝑝𝑜𝑙𝑖𝑐𝑦𝑖𝑗𝑡 0.001 0.001 0.002 0.001 

 (0.011) (0.011) (0.011) (0.011) 

𝑎𝑔𝑒𝑖𝑗𝑡 0.072*** 0.071*** 0.070*** 0.070*** 

 (0.018) (0.018) (0.018) (0.018) 

𝑠𝑖𝑧𝑒𝑖𝑗𝑡 0.115*** 0.115*** 0.114*** 0.113*** 

 (0.007) (0.007) (0.007) (0.007) 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑗𝑡 0.058*** 0.058*** 0.058*** 0.058*** 

 (0.009) (0.009) (0.009) (0.009) 

𝑔𝑟𝑒𝑒𝑛 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑗𝑡 0.007 0.007 0.007 0.005 

 (0.008) (0.008) (0.008) (0.008) 

sigma_u 0.401*** 0.401*** 0.400*** 0.397*** 

 (0.015) (0.015) (0.015) (0.015) 

sigma_e 0.175*** 0.175*** 0.175*** 0.175*** 

 (0.002) (0.002) (0.002) (0.002) 

Constant -4.883 -4.938 -4.807 -4.832 

 (1,562.209) (3,003.245) (974.524) (1,006.270) 

Industry (NACE 1 digit) Y Y Y Y 

Country Y Y Y Y 

Year Y Y Y Y 

Number of firms 622 622 622 622 

Observations 4,510 4,510 4,510 4,510 

 

Notes: (1). Coefficients of Panel Tobit random effects estimation of Equation (1) are reported. (2). Region, 

industry and year dummies are included. (3). Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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CHAPTER 4: AGGLOMERATION EXTERNALITIES OF GREEN INNOVATION 

 

4.1 Introduction 

The analysis of eco-innovation (e.g., Colombelli, Krafft and Quatraro, 2021; Costantini et al., 

2017), green innovation (e.g., Karimi Takalo, Sayyadi Tooranloo and Shahabaldini parizi, 2021), and 

their impacts has gained momentum in the last few years, primarily because governments are striving 

to meet net zero targets while still maintaining economic growth. For example, by the end of 2021, the 

UK Government had promised over £116 million in new funding for green innovation and related 

technologies that can lead to a reduction in carbon emissions, with another £22.8 million promised to 

SMEs involved in the creation and commercialisation of green innovation (GOV UK, 2021). 

The environmental innovation is expected to drive positive employment outcomes (e.g., Horbach, 

2010; Rennings, Ziegler and Zwick, 2004) as well as economic performance in terms of productivity 

over the medium to long term (e.g., Marin, 2014). Studies have identified some of the reasons behind 

the more prominent effects of green innovation on firms and the economy. Those include its being in 

the early phase of its technology life cycle (Colombelli et al., 2021), its potential to create opportunities 

in new and growing markets (Gagliardi, Marin and Miriello, 2016), and its ability to generate 

considerable knowledge spillovers (Dechezleprêtre, Martin and Mohnen, 2017). Likewise, according 

to Rennings and Zwick (2002), green innovation is characterised by a ‘double externality’, which is the 

supposition that it can generate both positive knowledge externality effects and environmental spillover 

effects (Ben Arfi et al., 2018). Continuing this line of reasoning, unpacking the dynamics of the external 

impacts of green innovation appears to be a crucial research question given that green innovation has 

the potential to generate a variety of considerable knowledge spillovers compared with other emerging 

technological fields such as robotics and 3D printing (Dechezleprêtre et al., 2017). 

The recent environmental economics literature has shed light on the importance of the diffusion of 

green technologies through vertical linkages, leading to improved environmental performance in related 

sectors (e.g., Costantini et al., 2017; Ghisetti and Quatraro, 2017). However, that literature has 

overlooked the economic geography arguments about agglomeration externalities, and it may be the 

case that technological dissemination is being diluted over wide geographical ranges.  

The extant literature concerning green innovation has focused almost exclusively on the 

relationship between having a green business strategy and firm performance (e.g., Lin et al., 2021), the 

determinants of green innovation development (e.g., Perruchas, Consoli and Barbieri, 2020; Ren, Sun 

and Zhang, 2021), its internal impacts on the focal firm performance (e.g., Horbach, 2010; Marin, 2014; 

Rennings et al., 2004), and its external impacts on sectoral environmental performance (e.g., Costantini, 

et al., 2017). What is missing is how green innovation interacts with the local economy to affect other 
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firms’ economic performance via both horizontal and inter-sectoral linkages. This is something that 

cannot be well explained by small-scale surveys. Although there is one study that touches on the idea 

that green innovation spills over to economic growth in terms of company market values, we still have 

no clear answer about the economic relevance of green innovation spillovers on firm performance in 

terms of productivity and growth. Still more importantly, we lack understanding about the channels 

through which such impacts of green innovation externalities may take place. Consequently, in this 

study, we explore how variations in such agglomeration externalities affect other firms’ economic 

performance via horizontal and vertical linkages, and we reveal the conditions under which this can 

happen. 

This study is intended to bridge the literatures on environmental innovation and agglomeration 

externalities, filling a knowledge gap by examining the external impacts of green innovation on the 

wider local economy; specifically, on the economic performance of other industrially related and 

geographically adjacent non-green-tech companies. Moreover, we explore how a firm’s absorptive 

capacity affects its ability to absorb such spillovers. We propose that a firm’s intangible assets intensity 

and technological competence (in other words, its core-technology competence and technological 

diversification) tend to determine the extent to which it can leverage green innovation externalities. 

These indicators do so by helping firms develop an awareness of the value of external green technology, 

and by enabling them to connect to, assimilate, and exploit related knowledge. This may eventually 

lead to better firm performance. To the best of our knowledge, this is the first study to investigate the 

spillover effects of green innovation via both horizontal and vertical linkages, and to show how they 

drive economic performance at the firm level. 

Accordingly, we contribute to the existing literature in the following ways. First, our firm-level 

analysis of green innovation diffusion is much finer grained than the usual national, regional, or sectoral 

level analysis. This idea responds to the call of Dechezleprêtre and his co-authors (2017) for the use of 

micro data to evaluate the impacts of knowledge spillovers from clean technologies on firms’ 

productivity and growth. Second, this chapter augments the currently limited empirical evidence of 

green innovation’s effects on economic performance through inter-sectoral linkages by studying its 

influences on firm productivity and employment growth. Third, instead of focusing on the internal 

impacts of green innovation on the focal firm, we propose to extend the state of the art by analysing 

green innovation’s externalities and its wider economic values. In particular, we assert that an empirical 

investigation of this issue is crucial, given the current policy focus on environmental innovation, and 

the considerable resources and efforts that are being devoted to stimulating environmental sustainability 

endeavours. 

We draw on Bureau van Dijk’s Orbis IP database for UK manufacturers over the period 2008 to 

2017. We identify the channels through which externalities of green innovation occur and show how 

they can influence the productivity and employment growth of other firms within a given locality. We 
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find that the sign and strength of such impacts vary across the value chains and depend on firm 

characteristics and sectors.  

In short, our results show that overall, non-green-tech manufacturers in downstream sectors can 

benefit from their green-tech suppliers in terms of both productivity and employment growth. SMEs 

present the potential for benefiting from the externalities of upstream green innovators in both 

productivity and employment growth. For large enterprises, only those with core-technology and 

diversified technological competence can obtain positive productivity spillovers from upstream 

suppliers. Meanwhile, technological diversification allows SMEs and low-tech businesses to exploit the 

upstream productivity gains. We also observe positive backward spillovers on the employment growth 

of high-tech firms, while those positive signs become negative when it comes to large firms.  

The positive impacts of overall horizontal productivity spillovers are mainly captured by the 

businesses with technological core competence. Typically, core-technology and diversified 

technological competence within both SMEs and low-tech firms allow them to gain efficiency 

improvements led by the fierce intra-industry competition, which is potentially triggered by the 

agglomeration of green innovators. However, large firms that are intangible-intensive tend to 

experience negative horizontal productivity spillovers, which can be regarded as a sign of competition 

led crowding-out effects. 

Referring to forward linkages, we observe market disruption effects on the productivity and 

operational efficiency of large-sized and high-tech upstream suppliers. These adverse effects potentially 

derive from green innovators’ creative destruction in terms of their changing demands and requirements. 

Turning to employment growth, although there is an overall negative forward spillover effect from 

green-tech consumers, non-green-tech firms with core-technology and diversified technological 

competence can more easily manage innovation investments and react to related technological risks and 

challenges, mitigating the induced demand shocks. We also find interesting heterogenous effects of 

green externalities across firm characteristics and different sectors, which we detail in the regression 

results and findings section of this chapter. 

The rest of the chapter is structured as follows. The next section reviews three streams of literature: 

impacts of green innovation, agglomeration externalities, and absorptive capacity. Section 3 describes 

the data, the construction of the variables, and the empirical specifications. The results and findings are 

presented in Section 4, followed by a discussion and conclusion. 
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4.2 Theory and literature review 

4.2.1 Green innovation as a shaper of performance and its diffusion 

The study mainly draws on three broad literatures, the first of which regards green innovation as a 

shaper of firm performance. We also take green innovation’s external impacts into account here, which 

are mainly environmental, through inter-sectoral knowledge diffusion. 

Researchers studying sustainability development seem to use several terms interchangeably; for 

example, ‘green innovation’, ‘environmental innovation’, ‘ecological innovation’, and ‘sustainable 

innovation’ (e.g., Ben Arfi et al., 2018; Boons and Lüdeke-Freund, 2013; Carrillo-Hermosilla et al., 

2010; Konara et al., 2021), with the last term being a broader concept encompassing an extra social 

dimension (Schiederig et al., 2012). As a subset of eco-innovation (Konara et al., 2021), environmental 

innovation underlines the environmentally motivated intentions of innovators (Carrillo-Hermosilla et 

al., 2010). This chapter focuses on green innovation which, like environmental innovation, refers to 

products, processes, or management practices designed to reduce and prevent harm to the environment. 

As such, we follow Beise and Rennings (2005), Dias Angelo et al. (2012), Rennings and Zwick (2002), 

and Triguero et al. (2013). 

Green innovation shares commonalities with general innovations, yet its distinctive characteristic 

lies in its ‘double externality’ (Rennings and Zwick, 2002), a term that recognises that green innovation 

can produce not only a positive externality of knowledge and but also external environmental spillover 

effects (Ben Arfi et al., 2018). Its environmental dimension means that green innovation is regarded as 

more complex than other types of innovations (Ben Arfi et al., 2018; De Marchi, 2012). Typically, it 

stands for a technological frontier, characterised by a range of market and technological uncertainties 

and where there are no widely accepted standards of technological solutions (Ben Arfi et al., 2018). In 

other words, companies are still inexperienced in producing green products or processes, which tend to 

be complex and generally require knowledge and skills that differ from those of the industries’ 

conventional knowledge base (Ben Arfi et al., 2018).  

There is a growing body of literature exploring the relationship between eco-innovation and the 

economic performance of the firm.  When the advantages gleaned from eco-innovation efforts surpass 

their costs, they are considered to contribute to both the environmental and economic performance of 

organisations (Jaffe and Palmer, 1997).  

Within this literature, one strand of research mainly relies on indicators related to productivity 

(e.g., Marin, 2014) or profitability (e.g., Ghisetti and Rennings, 2014; Rennings and Rammer, 2011; 

Rexhäuser and Rammer, 2014). However, the firm-level productivity effects of environmental 

innovations are not straightforward (Marin, 2014). For example, Marin (2014) finds that in the short 

run, green innovations generate a return that is lower than that of the non-green innovations, implying 

that green innovations have crowding-out effects on non-green innovations due to financial resource 
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constraints on R&D investments. He also claims that green innovations’ potential positive effects on 

competitiveness and, ultimately, on measured productivity, are prone to come to light only over the 

medium to long term.  

The relationship between environmental innovation and employment represents another recent 

strand of literature, with the relationship varying with the type of innovation activity (e.g., Horbach and 

Rennings, 2013; Licht and Peters, 2013; Pfeiffer and Rennings, 2001). Rennings et al. (2004) posit that 

environmentally related innovation in products and services drive positive employment outcomes, an 

argument that has been confirmed by Horbach (2010). Licht and Peters (2013) further demonstrate that 

product innovations, when compared with process innovations, have a positive and significant effect 

on employment growth. More recently, Gagliardi et al. (2016) find that green innovation, measured by 

environmentally related patents, creates a positive effect on firm-level job creation in the long run, with 

such impact being considerably larger than that of other non-green innovation. Leoncini, Marzucchi, 

Montresor, Rentocchini, and Rizzo (2019) reach a similar conclusion for Italian manufacturing firms 

that green technologies exercise greater positive effects than non-green ones on employment growth. 

They further examine such relationship across the distribution of growth rates and explore how age 

moderates the benefits of green technologies on growth. However, Cainelli, Mazzanti and Zoboli (2011) 

draw on the Italian Community Innovation Survey (CIS) and find a negative association between 

environmental innovation and both employment and turnover growth. That being said, in studies based 

on innovation surveys, discretional definitions of environmental innovation and response bias may 

cause them to suffer from measurement problems (Gagliardi et al., 2016). Another issue for these 

surveys is that researchers may find it struggling to capture green innovation’s influences in the medium 

to long run (Gagliardi et al., 2016). 

The literature has posited several mechanisms for explaining the benefits of eco-innovation. First, 

this type of innovation is within the early phase of the technology life cycle (Colombelli et al., 2021). 

As such, there are expected to be more technological opportunities to invest in (Gagliardi et al., 2016) 

and a larger impact on the firms and the economy. Second, eco-innovation has the potential to create 

opportunities in a new and growing market (Gagliardi et al., 2016). For example, a more focused 

consumer attention on the environmental sustainability aspect of products and services has opened up 

a new path to commerce, and it is a path that has significant market prospects. Third, eco-innovations 

are able to generate ‘extra returns’ and thus offer additional chances and returns for reinvestment, 

leading to better growth performance despite the heavier innovation costs (Colombelli et al., 2021). 

Specifically, this type of innovation can improve firms’ competitiveness and create competitive 

advantages by utilising resources more efficiently and responsibly (Gagliardi et al., 2016). Most 

importantly, in contrast with non-green technologies and other emerging technological fields such as 

robotics and 3D printing, green technologies are characterised by considerable knowledge spillovers 

(Dechezleprêtre et al., 2017), suggesting that a variety of potential positive spillovers may be associated 
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with investing in green innovations. For instance, Dechezleprêtre et al. (2017), using patent citation 

data in the automobile and electricity production sectors, show that, overall, clean patented inventions 

receive over 40% more citations than their dirty counterparts, probably because these green inventions 

are relatively new and radical, and thus have wider range of general applications.  

More recently, Colombelli and Quatraro (2019) offer evidence that spillovers from local 

knowledge stocks, especially those resulting from clean technologies, can be expected to exert larger 

impacts on the formation of green innovative start-ups compared with dirty ones. The above evidence 

suggests that green technologies tend to generate larger knowledge spillovers, which aligns with the 

argument of Gagliardi et al. (2016) that green technologies make it feasible to create complementary 

innovations of many sorts, given that they appear to be more general than other technologies. 

Particularly, the environmental economics literature has emphasised the importance of the 

diffusion of green technologies along the supply value chain (Costantini et al., 2017). The interplay 

between suppliers and consumers is believed to influence environmental, social, and economic 

performance, given their close links from sharing environment responsibility and adopting social 

behaviours (Sarkis, 2006). Costantini et al. (2017) also claim that it is not just the technological sphere 

that benefits from inter-sectoral linkages; the environmental performance also benefits, as identified by 

the literature on sustainable supply chains. This explains firms’ increasing attention to their governance 

choices with respect to sustainable supply chains in order to reach environmental objectives. For 

instance, findings have been made on the importance of the connections between sustainability issues 

and supply chains, which introduces a new set of concepts to the literature, such as the green supply 

chain (e.g., Khan, Idrees, Rauf, Sami and Ansari, 2022; Lee, Ooi, Chong and Seow, 2014) and green 

innovation value chains (e.g., Lee and Kim, 2011; Olson, 2013). 

Empirically, Corradini, Costantini, Mancinelli, and Mazzanti (2014) show that innovation efforts 

positively correlate with various spillover effects, in which R&D innovation expenses help to abate 

other sectors’ emissions. Focusing on interregional technological spillovers across 20 Italian regions, 

Costantini, Mazzanti, and Montini (2013) find that such spillover effects play a larger role than sectoral 

internal innovation in improving environmental performance, and that the environmental performance 

of neighbouring regions affects regional internal environmental performance through agglomerative 

effects. Likewise, using NAMEA data for the Italian regions, Ghisetti and Quatraro (2017) reach a 

similar conclusion that environmental innovations, proxied by patents in green technologies, directly 

contribute to sectoral environmental productivity within the same sector, and that those generated by 

vertically integrated sectors make an indirect contribution, usually through a demand-pull mechanism. 

In addition, Costantini et al. (2017) emphasise the importance of inter-sectoral linkages in facilitating 

the impact of eco-innovations on sectoral environmental performance among EU countries. In short, 

these empirical results highlight the roles played by inter-sectoral transactions in enabling the diffusion 
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of green products and process in the markets and the transmission of green innovation and its 

environmental impacts along the value chains (Costantini et al., 2017). 

Given the nature of vertical interactions between organisations, there are two channels through 

which spillovers may take place: improvements related to the machinery and inputs purchased from 

suppliers (Los and Verspagen, 2002), and those contained in the user-producer relationships (Isaksson, 

Simeth and Seifert, 2016). This is because such inter-sectoral linkages across companies and sectors 

favour technology diffusion and knowledge spillovers in terms of product-embodied knowledge via 

customer-supplier relationships (Geffen and Rothenberg, 2000; Hauknes and Knell, 2009). Building 

collaborations with suppliers can help prompt the development of new products and technological 

integration (Lee and Kim, 2011); when suppliers sell intermediate inputs with product-embodied 

knowledge, this is known as the push effect (Cainelli and Mazzanti, 2013). A closeness to the 

downstream sectors enables suppliers to sharply perceive the opportunities for new inventions and meet 

the demand for new intermediate goods; this is called the pull effect (Antonelli, 1998). 

To put the above demand-pull dynamics (Schmookler, 1957) in our context, upstream firms 

produce green innovation, possibly because companies in the downstream count on these firms for 

introducing new and more eco-friendly technologies into the production process (Ghisetti and Quatraro, 

2013; 2017). The upstream sectors, being specialised suppliers of technologies and knowledge, help 

downstream industries achieve higher environmental performance and environmental productivity 

(Franco and Marin, 2017). In such a case, the relationship is assumed to foster the adoption and diffusion 

of environmental innovation (Costantini et al., 2017) in the supplying and purchasing sectors via 

spillover effects, thus promoting positive effects on environmental and economic performance (Luzzini, 

Brandon-Jones, Brandon-Jones and Spina, 2015; Vachon and Klassen, 2006) along the value chain. 

More explicitly, Ghisetti and Quatraro (2017) argue that this interplay between users and producers is 

likely to shape the ultimate effects of green technologies. Their perspective, with which we concur, 

implies the need to go beyond corporate boundaries and account for inter-sectoral linkages when 

examining the impact of green innovation on companies’ economic performance. 

To sum up, it is plausible to expect that green innovations are conducive to firm performance with 

respect to productivity and employment growth. More importantly, this type of innovation is recognised 

as creating more prominent knowledge spillover effects. Our hypotheses are mainly grounded in this 

recognition. 

Nevertheless, the existing literature is incomplete in the following respects. First, the majority of 

the existing empirical studies on green innovation diffusion are carried out at an insufficiently granular 

level (i.e., national, regional, or sectoral). This is mainly due to the difficulty of gaining emissions 

information at the firm level (Ghisetti and Quatraro, 2017). This means that the external impacts of 

green-tech companies through their interplay with the local economy have been rarely touched on at 
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the micro level. So far, only one article (Dechezleprêtre et al., 2017) has examined the economic value 

of the knowledge externalities of relevant clean technologies using firm-level financial data. However, 

their study primarily focuses on the effect of knowledge spillovers on company market value rather 

than on the more usual economic performance indicators, such as productivity and employment growth. 

Second, most research attention has been devoted to how the positive externalities derived from inter-

sectoral linkages affect sectoral environmental performance in terms of, say, production sustainability 

(e.g., Corradini et al., 2014; Tarancón and del Río, 2007) or environmental productivity (e.g., Ghisetti 

and Quatraro, 2017). Evidence of their impacts on economic performance is rather limited. In particular, 

the majority of the empirical works investigating how green innovation shapes firms’ environmental or 

economic performance ignore the external impact of the green-tech firm’s activities and its interactions 

with the local economy. Specifically, it is not clear how green innovators interact with other firms that 

do not have green technology through both horizontal and inter-sectoral linkages and thus how the 

economic performance of the latter can be potentially shaped by the former. As policy making and 

resources become ever more focused on green innovation, it becomes crucial to evaluate the wider 

economic impact of green-tech companies within the local economy. The present chapter aims at filling 

these gaps in the literature on green innovation as a shaper of performance. 

 

4.2.2 Agglomeration externalities of green innovation 

The second stream of literature is based on the main economic geography theory about 

agglomeration externalities, which introduce different mechanisms for the spillovers (Iammarino and 

McCann, 2013). To investigate the spillovers arising from the co-location of green-tech firms and other 

companies in agglomerated regions and industries, we connect the green innovation literature to 

arguments concerning agglomeration externalities. This is where we propose that regional 

agglomeration externalities arising from the co-location of green-tech firms and other firms can shape 

the economic performance of the latter. 

The concept of agglomeration economies denotes location-specific economies of scale, essentially 

experienced by a group of spatially clustered organisations and people (Iammarino and McCan, 2013). 

Typically, three different types of externalities are mentioned in the literature, namely, Marshall-Arrow-

Romer (MAR), Jacobs’ externalities (local diversity), and urbanisation externalities (Neffke, Henning, 

Boschma, Lundquist and Olander, 2011). 

The Marshallian tradition (1920) advances analysis of the nature and advantages of agglomeration 

economies for localities and explains three mechanisms through which economies of scale may come 

into being: access to skilled labour, input-output linkages, and intra-industry knowledge spillovers 

(Marshall, 1920; Arrow,1962; Romer, 1986). Duranton and Puga (2004) note that the three underlying 

mechanisms of the Marshallian tradition reflect the processes of matching, sharing, and learning. By 
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applying these mechanisms to our green innovation context, we suggest that the agglomeration of green-

tech firms within a given region and industry may create both positive and negative externalities for 

other spatially proximate and industrially related non-green-tech companies.  

 

4.2.2.1 Labour pooling and matching 

The first Marshallian mechanism is known as labour pooling and matching. The established 

traditions in certain sectors can, over time, lead to the development of a local labour force with the 

appropriate technical and organisational skills within a clustered location (Iammarino and McCan, 

2013). By locating themselves close to other firms within the sector, firms can benefit from the 

availability of a specialised local pool of workers, which allows for efficient job searches and hiring-

matching processes within the labour market (Iammarino and McCan, 2013). This will lead to a 

reduction in the search costs of employment and the matching costs between employers and employees 

(Duranton and Puga, 2004). 

When applying this mechanism to our analysis context, we can infer that both green and non-

green-tech firms, which are geographically adjacent within the same industry, can benefit from a large 

pool of skilled labour in that they have access to suitable and highly productive employees (Combes 

and Duranton, 2006). In addition, the clustering of green innovators facilitates the flow of skilled labour 

between green innovators and other firms within the same industry, leading to a better match between 

employees and employers (Helsley and Strange, 1990). The reduced search costs of employment and 

matching costs between employers and employees, derived from efficient job searches and hiring-

matching processes, can help firms achieve higher productivity. However, the rising agglomeration of 

green innovators might also lead to negative externalities from labour poaching (Boschma, Eriksson 

and Lindgren, 2014). This happens when the disadvantages of competing for skilled and specialised 

labour outweigh the benefits of labour pooling (Grillitsch and Nilsson, 2017) in that the pool of workers 

is no longer large enough to meet the demand, meaning that workers become concentrated in the most 

successful companies within the locality (Combes and Duranton, 2006). Job hopping may cause non-

green-tech companies to lose key personnel to their green competitors, which is distinctly the case when 

workers are offered green jobs with higher wages (Christie-Miller and Luke, 2021). 

 

4.2.2.2 Input-output linkages 

The second Marshallian mechanism is input-output linkages (Neffke et al., 2011), otherwise 

known as the presence of specialist local inputs (Iammarino and McCan, 2013). The key idea here is 

that the local market’s provision of inputs or services give rise to economies of scale on the grounds of 

the size of local market (Iammarino and McCan, 2013). Typically, a large local market, featuring a high 
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number of consumers, allows suppliers to lower the unit production costs of transportation and 

inventory (Neffke et al., 2011), reducing the risks of making large capital investments. Meanwhile, a 

pool of locally available specialised services, infrastructure, and intermediate inputs, provide benefits 

to consumer firms by reducing the purchasing and sourcing costs. 

Sharing specialised input providers allows both green innovators and other firms to reduce the 

production costs of acquiring inputs and shipping goods (Neffke et al., 2011). More importantly, as 

suggested above, green innovative firms also generate knowledge spillovers to others in the vertically 

integrated supply chains by exposing others to their green-tech knowhow through interactions. 

Suppliers and consumers without green technologies can internalise the positive externalities in terms 

of increased demand, efficiency gains, and introducing new improved inputs, which are induced by 

green innovators in vertically related sectors (Ghisetti and Quatraro, 2013; 2017). These can be 

perceived as the channels through which productivity and growth may benefit from the aforementioned 

positive externalities. However, firms may also experience negative externalities arising from 

exceedingly high agglomeration. These negative spillovers include increased production costs, such as 

rental and transportation, as well as crowding-out effects from the fierce competition (Du and Vanino, 

2021) presented by upstream and downstream green innovators. Moreover, as already discussed, 

downstream firms may require more eco-friendly intermediate inputs from suppliers. Hence, negative 

externalities may occur when the inputs providers cannot meet the demand from, say, green-tech 

consumers. This can happen when suppliers try to produce inputs for which they are not yet equipped, 

or when they are locked into producing specialised inputs for which the production lines are not easily 

changed due to their high sunk costs. This is distinctly the case when the downstream green innovators 

have stronger bargaining power than their suppliers in the negotiation of input contracts (e.g., Newman, 

Rand, Talbot and Tarp, 2015). In a similar vein, such negative externalities can also exert influence 

over firm productivity and employment growth. 

 

4.2.2.3 Localised knowledge spillovers 

The third Marshallian mechanism, as advised by Iammarino and McCan (2013), concerns localised 

knowledge spillovers (e.g., Neffke et al., 2011; Du and Vanino, 2021). This generally happens when 

firms’ access to knowledge, intentionally or unintentionally, freely spills over from other co-located 

players (Iammarino and McCan, 2013). Existing research has proved that firms located in regions and 

sectors with higher levels of agglomeration tend to enjoy higher growth rates, thanks to the indirect 

effect of tacit externalities established by the better performing players (Raspe and Van Oort, 2007). 

Thus, we posit that the increasing clustering of green innovators can, through their dynamism, 

innovation, and productivity growth, create relevant knowledge externalities for other spatially 

proximate non-green-tech firms within the same industry. The performance of the nearby companies 
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tends to be affected by idea sharing, movement of workers, and other types of informal interactions 

facilitated by face-to-face contacts (Storper and Venables, 2004). In addition, cooperation, competition, 

and imitation among the green-tech and other companies bring about horizontal externalities. These, 

however, may be positive or negative, as we will now discuss. 

Positive horizontal externalities on productivity may be seen when agglomerative green-tech firms 

within an industry demonstrate the utilisation of green technologies (Han, Xie and Fang, 2018). This 

allows other actors, typically competitors, to observe, imitate, and adopt such technologies in their own 

production processes; these effects are known as the demonstration effects (Iammarino and McCan, 

2013). Non-green-tech firms can also experience competition led efficiency improvement, a 

consequence suggested by Porter (1990). Another related mechanism acting on productivity worth 

mentioning here is labour mobility, which can also induce a localised learning process (Malmberg, 

2003). This is because the mobility of skilled workers (human capital) acts as a crucial mechanism 

through which knowledge and skills can be transferred between firms and regions (Boschma et al., 

2014). Empirically, Breschi and Lissoni (2009) demonstrate that labour mobility generates social 

connections between firms. These support post-mobility knowledge flows between local companies via 

organisations’ connections with former employees (Dahl and Pedersen, 2004). Thus, we can deduce 

that labour flows from green-tech firms to other firms within the same industry may allow the 

knowledge related to green technologies to be spread and diffused to other geographically adjacent non-

green-tech companies. However, negative externalities may arise due to crowding-out effects, which 

appear as the result of fierce intra-industry competition between green-tech firms and other firms for 

production factors and common resources (Glaeser, Kallal, Scheinkman and Schleifer, 1992). 

The processes through which green-tech firms create agglomeration externalities appear to be 

complex, and the benefits and disadvantages of different types of mechanism are influenced by a 

number of factors. Those include the level of agglomeration, concentration of local industry, and 

intensity of vertical linkages (Du and Vanino, 2021). Therefore, it is reasonable to infer that the overall 

effects of green-tech agglomeration externalities are context-based (e.g., Neffke et al., 2011), affecting 

co-located firms within the same industry or across related industries very differently. In the meantime, 

it is worth noting that the foregoing three mechanisms through which agglomeration externalities of 

green innovation act on other non-green-tech enterprises are prone to be different for productivity and 

employment growth.  

 

4.2.3 Heterogeneity in absorptive capacity 

This last extensive stream of literature is concerned with firms’ absorptive capacity which, we 

conjecture, determines the extent to which companies are able to gain from the externalities of green 

innovation. 
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The fact that not every company is capable of first learning and then gathering and fully utilising 

information coming from the external environment contributes to the heterogeneity among firms. How 

much an organisation can benefit from externalities depends on its absorptive capacity, defined as the 

firm’s ability to learn and improve performance by internalising and assimilating knowledge generated 

outside itself (Cohen and Levinthal, 1989). According to Todorova and Durisin (2007), the concept has 

different dimensions. At the individual level, this includes recognition of the value of external 

knowledge and knowledge acquisition. At the organisational level, it includes the assimilation, 

transformation, and exploitation of knowledge. We incorporate this notion in our theorising as it 

connects the knowledge sets generated outside of the organisation to those created inside it (Gluch et 

al., 2009), showing that external, complex, and cross-disciplinary environmental knowledge can be 

transformed and integrated into organisational capabilities (Dzhengiz and Niesten, 2020) that further 

enable the development of competences and capabilities. In sum, it allows us to explain the learning of 

individuals and organisations through both intra- and inter-organisational processes, given the 

agglomeration externalities. 

It has been long recognised that firms’ absorptive capacity determines the extent to which they can 

benefit from external knowledge (e.g., Falvey, Foster and Greenaway, 2007; Nieto and Quevedo, 2005). 

As suggested by Cohen and Levinthal (1990), the capacity to evaluate and utilise external knowhow 

mainly depends on prior related knowledge. Nieto and Quevedo (2005) point out that such prior 

knowledge includes shared languages and the awareness of emerging technological advances within a 

certain domain, and such knowledge tends to arise when a company conducts internal R&D activities 

(Cohen and Levinthal, 1989). Hence, one might expect that the extent to which a company can take 

advantage of technological opportunities largely relies on the available knowledge and capabilities 

generated within the organisation (Nieto and Quevedo, 2005). This means that only those who have 

accumulated a large amount of knowledge and possess a certain capacity for assimilation are able to 

utilise the emerging technological opportunities (Klevorick, Levin, Nelson and Winter, 1995) by 

understanding, assessing, and integrating what is on offer externally. 

Absorptive capacity is formulated cumulatively via a long process of research and knowledge 

accumulation (Jiménez-Barrionuevo, García-Morales, and Molina, 2011). According to Cohen and 

Levinthal (1990), two primary sources of absorptive capacity come from the way in which companies 

organise communications with the outside environment and, more importantly, the nature of the 

knowhow and experience within the organisation. Harris and Yan (2019) claim that only firms with 

certain types of business characteristics possess that higher level of absorptive capacity. Organisations 

that have a good knowledge base in specific fields tend to possess higher absorptive capacity, which 

enables them to act on new ideas developed in these knowledge fields (Zahra and George, 2002) and 

adapt to the changes in their environment (Escribano, Fosfuri and Tribó, 2009). As such, in this work, 

we take into account intangible assets intensity (a proxy for knowledge capital) and two important 
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dimensions of firm’s existing technological knowledge, namely, the degree of its core-technology 

competence and technological diversification. 

According to Jiménez-Barrionuevo et al. (2011), absorptive capacity is deemed as one of the 

intangible assets, and the intangible nature of this construct makes it difficult to conceptualise and 

evaluate. Intangibles provide a compelling proxy for the knowhow and knowledge assets possessed by 

the organisation (Denicolai, Ramirez and Tidd, 2016). Based on the resource-based view (e.g., Barney, 

1991), intangible assets possess a great potential to contribute to organisations’ competitive success and 

sustainable competitive advantages over time (Jiménez-Barrionuevo et al., 2011). Relying on the 

internal knowledge capital reflected by intangible assets, firms will be capable of acquiring, assimilating, 

and transforming new ideas and exploiting opportunities outside the organisations’ limits (Sun and 

Anderson, 2010). This makes intangibles an important instrument in leveraging firm performance. 

Core-technology competence reflects a firm’s accumulated R&D resources, consisting of tacit 

knowledge and knowhow as well as R&D architectural competence in the core technology (Henderson 

and Clark, 1990; Henderson and Cockburn, 1994). Similarly, Kim et al. (2016) describe core-

technology competence as the level of competence in the field of core technology and in architectural 

knowledge related to R&D and innovation management, implying that this concept has dual roles or 

characteristics. Kim et al. (2016) further argue that this competence acts as a centripetal force when 

firms attempt to manage R&D resources across various technological fields, reducing coordination and 

integration costs and enabling organisations to effectively exploit opportunities created through, say, 

technological diversification. Strong core-technology competence, in the form of architectural 

knowledge of R&D and innovation management, allows firms to better identify technological 

opportunities and efficiently distribute R&D resources across diverse technological fields (Choi and 

Lee, 2021). It is reasonable to infer that companies with a high level of core-technology competence 

can formulate a competitive advantage through knowledge assimilation, exerting positive effects on 

organisational performance (Xie, Zhan, and Wang, 2014).  

Technological diversification refers to a firm’s extension of its technological capability into a 

wider variety of technical fields (Granstrand and Oskarsson, 1994). It is plausible to infer that 

companies with more diverse technological competences are more likely to be capable of evaluating, 

connecting to, and integrating exterior knowhow based on what they possess. This is because 

knowledge spills over effectively only if complementarities in terms of shared competences or 

capabilities exist. Further, some degree of cognitive proximity is needed to permit effective information 

and knowledge communication as well as interactive learning (Iammarino and McCann, 2013; 

Nooteboom, 2000). Accordingly, we can speculate that higher technological diversification offers a 

greater likelihood of complementing and sharing knowledge with external knowhow, which tends to 

enhance firm-specific technological competences and thus further foster absorptive capacity.  

The underlying assumption here is that intangible intensity and the above two characteristics of 

technological knowledge within the organisation reflect the knowledge resources and capabilities 
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available to the firm. Therefore, they can be viewed as the proxies for organisational absorptive capacity, 

which are projected to exercise moderating effects when knowledge spillovers are present. 

In the context of sustainability, Dzhengiz and Niesten (2020) integrate studies on absorptive 

capacity with those on organisational learning to argue that the first two dimensions of absorptive 

capacity—the recognition and acquisition of external knowledge—are beneficial for developing 

managers’ and employees’ environmental competences, which include an eco-centric mindset and 

collaboration competences. Environmental awareness, concern for environmental issues, and openness 

to new perspectives enable firms to sense the technological opportunities related to ecological 

sustainability and, by collaborating with external partners, to identify complementary knowhow through 

a ‘green lens’ (Borland, Ambrosini, Lindgreen and Vanhamme, 2016). As such, we have reason to 

believe that these environmental competences, essentially derived from absorptive capacity, will 

enhance companies’ ability to leverage and benefit from the externalities of green innovation. Dzhengiz 

and Niesten (2020) further point out that the three organisational level dimensions—knowledge 

assimilation, transformation, and exploitation—contribute to the development of environmental 

capabilities. This notion refers to an organisation’s ability to manage the tension between the bottom 

line of environmental performance and economic performance (Dzhengiz and Niesten, 2020). Specific 

examples include environmental manufacturing, environmental supply chain, and collaboration 

capabilities. Through building those environmental capabilities, companies are able to redesign 

products to meet ecological requirements, reconfigure their supply chains to be eco-friendly, and find 

new channels from which they can reap financial gains by leveraging environmental knowledge and 

practices (Borland et al., 2016). Similar reasoning may be applied here, in that firms with absorptive 

capacity, operating as a source of organisational environmental capabilities (Delmas, Hoffmann and 

Kuss, 2011; Pinkse, Kuss and Hoffmann, 2010), tend to gain more returns from environmental 

externalities compared with other companies. 

We thus propose that absorptive capacity will determine the extent to which the agglomeration 

externalities of environmental innovation can be leveraged. Absorptive capacity, which in our case 

takes the form of intangible intensity, core-technology competence, and technological diversification, 

contributes to individuals’ environmental competences and organisations’ environmental capabilities, 

and thus increases the likelihood that firms can benefit from relevant knowledge and complementary 

resources when they are exposed to externalities of green innovation. We further contend that this will 

give rise to improvements in both innovation and economic performances. 

 

4.3 Data, variables, and empirical specifications 

4.3.1 Green innovation  

We use patent data to capture green technologies, which we refer to as green innovation. The 

limitations inherent in using patent information as a proxy for innovation have been discussed in both 
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academic and practitioner-oriented literature. To summarise, not all of firms’ innovations can meet the 

patentability criteria (Choi et al., 2007) and the propensity to use patents as the means of protecting 

technologies varies across different organisations or industries (Hasan and Tucci, 2010). In particular, 

there are types of green innovation that might not be effectively measured by patents, such as process 

innovations (e.g., energy efficient machinery) or organisational innovations (Franco and Marin, 2017). 

That being said, patent data is still regarded as the most diffused source of information for constructing 

continuous firm-level innovation variables (e.g., Gagliardi et al., 2016). Patents are regarded as one of 

the most standardised and reliable indicators of trends of technological innovation, given their statistical 

consistency, high comparability, and strong association with technology development (Sheikh and 

Sheikh, 2016). Generally, patent application in a specific technology field implies an advancement in 

the corresponding knowledge space and an accumulation of relevant knowhow (Suzuki and Kodama, 

2004). 

Following Gagliardi et al. (2016), Leoncini et al. (2019) and Marin and Lotti (2017), we draw on 

two sources for identifying green technologies using patent information. The first is the IPC Green 

Inventory provided by WIPO, which covers nearly 200 topics directly relevant to environmentally 

sound technologies within the IPC system (Marin and Lotti, 2017). The other source is the OECD’s 

schedule of search strategies for selected environmental-related technologies (ENV-TECH) (OECD, 

2016)24. Both sources provide a list of technological classes that correspond to environmental or green 

technologies. Green patents, reflecting green innovation, are described as the records with their 

technological class covered by either the WIPO or OECD list. In our setting, a green-tech company or 

green innovator is defined as a firm that has at least one green patent across our observation period. 

Figure 4.1 presents the geographical distribution of the average share of green innovators among 

all the firms in our sample, and the average share of green-tech firms’ employment over total 

employment for each NUTS-2 UK region from 2008 to 2017. Overall, the two maps depict some 

differences in the geographical distribution of different green innovation indicators. Regions with an 

especially high incidence rate of green innovators are mainly in England, particularly Tees Valley and 

Durham, Cheshire, West Midlands (England), East Anglia, South East (England), Gloucestershire, 

Wiltshire and Bristol/Bath area, and East Wales. Yet, the employment share of green innovators follows 

a slightly different pattern, being considerably high in Northumberland and Tyne and Wear, South 

Yorkshire, Shropshire and Staffordshire, West Midlands, East of England, South East (England)25, 

Gloucestershire, Wiltshire and Bristol/Bath area, and Scotland’s Highlands and Islands. It is worth 

noting that green innovators tend to be distributed in both urban (more agglomerated) and rural areas 

rather than concentrated in large cities, suggesting that green innovation can take place everywhere. 

                                                      
24 Available at: https://www.oecd.org/environment/consumption-innovation/ENV-

tech%20search%20strategies,%20version%20for%20OECDstat%20(2016).pdf [Accessed 30 September 2022] 
25 South East (England) except for Kent. 
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Figure 4.1. Share of green-tech firms over total firms and their employment over total employment 

per region (NUTS-2 level) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: (1). Statistics are based on Orbis IP and Orbis databases between 2008 – 2017. (2). A green-tech company 

or green innovator is defined as a firm that has at least one green patent across the observation period. 

 

4.3.2 Data sources 

Our empirical analysis draws on different data sources at the firm and industry level. We extract 

the green patents of UK firms from the Bureau van Dijk’s Orbis IP database. It offers detailed records 

of patents including their publication date, current direct owner(s), and complete symbol of the primary 

IPC. A distinctive advantage of Orbis IP is that patent records can be linked to their current direct 

owner’s financial information using a unique identifier. It is worth noting that the empirical work draws 

on the patent records owned by the UK firms; these include not only the UK IPO records but also those 

registered under other patent authorities. 
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For purposes of data aggregation, the publication date of each patent record is employed to capture 

the time when the technological knowledge was created. Individual record is structured in a panel 

setting to match with the UK firms from Orbis database, using its current direct owner’s company 

identifier and publication year. The linked data gives us in total 18,106 green patents published by 5,964 

firms over the period of 2008-2017. 

Our strategy for assigning green patents to their relevant sectors relies on matching green patents 

to their owners, based upon which we can extract information about firms’ sectors. By exploiting and 

aggregating firm-level linked green patents to the division level (2-digit) of UK Standard Industrial 

Classification (SIC 2007) and the NUTS-2 region level, we can construct sectoral and regional green 

innovation indicators as exogenous explanatory variables, which will be further discussed in the next 

section. The vertical backward and forward linkages are computed using the ONS input-output tables, 

estimating the supply and demand relationships across all the sectors (at the 2-digit level of SIC) in the 

UK. 

A set of firm characteristics, including firm age, size, sector, location, and various financial 

indicators, are also collected and taken into account, totalling 58,102 firm-year observations for 10,733 

UK manufacturing firms between 2008 and 2017. 

 

4.3.3 Variable definitions 

4.3.3.1 Dependent variables 

Various indicators of firm performance can be found in the literature. These attempt to describe it 

from different perspectives such as return on assets, productivity, employment, sales, innovation or 

R&D, as well as wage level (Beņkovskis, Tkačevs and Yashiro, 2019; Borin and Mancini, 2016; Oh, 

Lee, Heshmati and Choi, 2009; Sharma, 2018; Sharma, Cheng, and Leung, 2020). We examine 

company performance from two of the most commonly used aspects: total factor productivity (TFP) 

and employment growth. 

In the literature concerning production function estimation, the control function approach tends to 

have wider use than the approaches that adopt instrumental variables and fixed-effects (Rovigatti and 

Mollisi, 2018). For example, Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg, 

Caves, and Frazer (2015) have contributed to literature related to the control function approach by 

developing two-step estimation procedures that are widely used. Wooldridge (2009), however, 

demonstrates a way of implementing the control function within a single step generalised method of 

moments framework. This approach can overcome the potential identification issue (see Ackerberg et 

al., 2015) in the first stage of the two-step estimation routine. The Wooldridge approach also makes it 

relatively easy to obtain robust standard errors (Rovigatti and Mollisi, 2018). Thus, we employ the 
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Wooldridge estimator implemented in Stata’s prodest command (Rovigatti and Mollisi, 2018) to 

estimate TFP within each industrial sector. This measure is based on a revenue-based Cobb-Douglas 

production function with production factors of labour, capital, and materials. As such, it refers to the 

efficiency of all the inputs to production (Sharma et al., 2020). The second dependent variable, 

employment growth, is defined as the annual rate of growth of employee numbers (e.g., Jung and Lim, 

2020) and is generated by taking the difference of the natural logarithm value of number of employees 

between t and t-1.  

 

4.3.3.2 Independent variables 

4.3.3.2.1 Green innovation externalities 

Following the above theoretical predictions and the established empirical literature developed 

since Javorcik (2004) on identifying agglomeration externalities, we generate three proxies for 

spillovers from green-tech companies. 

First, green innovation industrial externalities at the horizontal level (Horizontaljrt) captures the 

spillovers arising from the green-tech companies operating in the same SIC 2-digit industry j and 

NUTS-2 region r at time t, following the MAR theory. This is measured by the summation of each 

green-tech firm i’s share of green patents (i.e., number of green patents over total number of patents) 

weighted by its share of employment over total employment of each industry j and region r at year t. 

This value increases with green-tech firms’ share of green patents and their employment shares. Our 

measure of green innovation agglomeration based on the weighted green patent intensity is backed up 

the most recent related literature. For instance, Pan, Wei, Han, and Shahbaz (2021) empirically 

investigate the effects of interregional green technology spillover on energy intensity using a panel data 

of 30 provinces in China from 2000 to 2016. Their work measures interregional green technology 

spillover using economic distance-weighted sum of green technology stock in all other regions, with 

the green technology stock captured by effective green technology amount based on patent data 

calculated by perpetual inventory method. 

 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑗𝑟𝑡 = ∑ [
𝐺𝑟𝑒𝑒𝑛 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑟𝑡

𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑡𝑒𝑛𝑡𝑖𝑟𝑡
 ∗  (𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑖𝑟𝑡 ∕ ∑ 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑖𝑟𝑡

𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈𝑗

)]

𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑗

 

 

Second, we measure inter-sectoral agglomeration externalities along the same value chain of 

production, on the basis that green innovation spillovers occur via vertically integrated industries. For 

each sector j, we construct two measures of the vertical externalities of green innovation: one capturing 
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backward linkages with the upstream supply sectors (s) and the other capturing forward linkages with 

the downstream customer sectors (k). To put it simply, the first measure estimates backward linkages 

with green-tech suppliers, while the latter captures forward linkages with green-tech customers. 

Following Du and Vanino (2021), we adopt the average intermediate supply linkages between 

each pair of SIC 2-digit industries to compute industrial integration for all the sector pairs in the UK 

(αjs), using time-variant UK input-output analytical tables released by ONS. We weight the extent of 

green-tech companies’ green innovation presence (Horizontaljrt) in each upstream and downstream 

sector of industry j within the same NUTS-2 region r, by the relative importance of vertical linkages 

between each pair of sectors (js) and (jk). We then take the average of the values of all the backward (s) 

and forward (k) sectors26. Backwardjrt captures the presence of green technology within j’s upstream 

sectors, while αjs denotes the share of sector j’s inputs purchased from sector s over the total inputs 

sourced by sector j. Forwardjrt is a proxy for the green innovation presence in the sectors that are being 

supplied by sector j, where αjk is the share of sector j’s output supplied to sector s as taken from the 

input-output matrix. 

In this way, we consider the externalities of green innovation not only from the green innovators 

operating in the same sector and region, but also from vertically integrated sectors within the same 

region. 

𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑗𝑟𝑡 =
1

𝑛1
∑ (𝛼𝑗𝑠 ∗ 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑠𝑟𝑡

𝑛1

𝑠 𝑖𝑓 𝑠 ≠𝑗,   𝑠=1

) 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑗𝑟𝑡 =
1

𝑛2
∑ (𝛼𝑗𝑘 ∗ 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑘𝑟𝑡

𝑛2

𝑘 𝑖𝑓 𝑘 ≠𝑗,   𝑘=1

) 

 

4.3.3.2.2 Absorptive capacity measurements 

In the literature, there is no standard measurement for absorptive capacity. Nieto and Quevedo 

(2005) review related studies and note that the majority have adopted proxies that are relevant to the 

outcomes of innovation efforts. Specific measures include the number of patents or a company’s 

scientific publications (Cockburn and Henderson, 1998), the ratio of R&D expenditures to sales (Stock, 

Greis and Fischer, 2001), and an indication that a firm has a formally established R&D department 

(Cassiman and Veugelers, 2002; Veugelers, 1997). As we assume that firms’ ability to exploit and 

internalise external technological opportunities rests on the knowledge and capabilities held within the 

organisations, we employ intangible assets intensity and two important characteristics of firms’ 

                                                      
26 n1 and n2 denote the number of backward supplying sectors and forward buying sectors for the focal sector s, 

respectively. 
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technological knowledge, core-technology competence and technological diversification, as proxies for 

absorptive capacity. 

Intangible fixed assets cover goodwill, brand recognition, and possibly various forms of 

intellectual property. Thus, they become a proxy for organisational creativity and innovation strength. 

The increasingly important role of intangible assets in driving firm competitiveness and productivity 

has been proved in the extant literature (e.g., Bobillo, Rodriguez Sanz and Tejerina Gaite, 2006; Du and 

Temouri, 2015; Marrocu et al., 2011). Intangibles offer a compelling proxy for internal knowhow and 

knowledge assets, based on which organisations will be able to assimilate, transform, and exploit new 

information and ideas outside their limits. Tangible fixed assets commonly include land, buildings, 

plant, machinery, and equipment (Aboody, Barth and Kasznik, 1999). Investments in tangible capital 

tend to have positive effects on firm profitability and productivity (e.g., Bobillo et al., 2006). In view 

of these two factors and following Marrocu et al. (2011), we compute the ratio of intangible to tangible 

fixed assets (Intangible_intensityit) to account for the effects of knowledge capital on the spillovers to 

firms’ economic performance. 

Our index of core-technology competence, Coretecit, is measured following Kim et al. (2016), 

based on the RTA (Patel and Pavitt, 1997). This reflects a firm’s patent share in technological field q 

when taking into account the share of its patent publications over the entire patent sample across all the 

fields. In effect, it is intended to assess the extent of firm i’s specialisation in a specific domain q, giving 

us an index: 

𝑅𝑇𝐴𝑖𝑞𝑡 =
𝑃𝑖𝑞𝑡 ∕ ∑ 𝑃𝑖𝑞𝑡𝑖

∑ 𝑃𝑖𝑞𝑡𝑞 ∕ ∑ ∑ 𝑃𝑖𝑞𝑡𝑞𝑖
 

where Piqt stands for the number of patent publications of firm i in technological field q defined at 

the four-digit Subclass of the IPC symbol at year t. Then, core-technology competence is the maximum 

value of the product of RTA index and the number of patent publications in the corresponding 

technological domain: 

𝐶𝑜𝑟𝑒𝑡𝑒𝑐𝑖𝑡 = 𝑙𝑛 [𝑚𝑎𝑥 (𝑅𝑇𝐴𝑖𝑞𝑡 ∗ 𝑃𝑖𝑞𝑡)] 

Following the strategic management literature on using the entropy index to quantify technological 

relatedness or unrelatedness (e.g., Chen and Chang, 2012; Zander, 1997), our index of technological 

diversification TDit is constructed based on the method introduced by Kim et al. (2016), as follows:  

𝑇𝐷𝑖𝑡 = ∑ [𝑃𝑆𝑖𝑝𝑡 ∗  𝑙𝑛 (
1

𝑃𝑆𝑖𝑝𝑡
)] 
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where PSipt is firm i’s patent share of IPC p at year t (i.e., PSipt = Pipt/Pit)27. This measure evaluates the 

firm’s patent shares across the full IPC symbol.  

 

4.3.3.3 Control variables 

Our selection of control variables is directed by the extant literature on the determinants of firm 

performance, albeit somewhat limited by data availability. 

Patents have economically and statistically significant influences on firm-level productivity and 

market value (Bloom and Van Reenen, 2002). Patent stock captures firms’ knowledge accumulation 

over time, which is expected to drive growth based on innovation (Leoncini et al., 2019). Hence, we 

take account of this factor and introduce a patent stock variable, which is constructed using the perpetual 

inventory method (e.g., Berlemann and Wesselhöft, 2014) following Guellec and van Pottelsberghe de 

la Potterie (2004): 

 

𝑃𝑆𝑇𝑂𝐶𝐾𝑖𝑡 = 𝑃𝐹𝐿𝑂𝑊𝑖𝑡 + (1 − 𝛿) ∗ 𝑃𝑆𝑇𝑂𝐶𝐾𝑖𝑡−1 

 

where PSTOCKit stands for the patent stock of firm i at time t, and PFLOWit is the number of new 

patents published by firm i at time t. The rate of obsolescence is presumed to be annually constant at 

15% following the recent literature (Colombelli and Quatraro, 2019). We then rescale this variable by 

taking its natural logarithm.  

Average wage (Average_wageit) is calculated as the natural logarithm value of cost of employees 

per employee. This variable is considered as a proxy for overall labour quality, with higher labour 

quality generally associated with a stronger capability to absorb external knowhow, create new 

knowledge, and thus drive companies’ growth. 

As shown in Coad, Segarra, and Teruel (2013), firms improve with age. Aging firms are expected 

to have steadily increasingly levels of productivity, size, and profits. Hence, firm age (Ageit), computed 

as the number of years since establishment, and size (Sizeit), which is the natural logarithm value of 

number of employees, are included to account for the experience and resources owned by the company. 

                                                      

27 Pipt is the number of patent publications of firm i in IPC p at time t, whereas Pit counts the total number of 

patents published by firm i at time t. 
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Finally, heterogeneity at the aggregated sector level28 is controlled by their respective dummies 

following Jones and Temouri (2016). The definitions of the variables are summarised in Table 4.1. 

<Table 4.1 inserts here> 

 

4.3.4 Empirical specification 

Given that the mechanisms through which agglomeration externalities of green innovation act on 

other non-green-tech enterprises are prone to be different for productivity and employment growth, we 

specify different models to test the impacts of green innovation externalities on these two performance 

indicators of other non-green-tech firms separately, controlling for both firm and industry heterogeneity, 

as follows: 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖𝑗𝑟𝑡

= 𝛽0 + 𝛽1𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑗𝑟𝑡 + 𝛽2𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑗𝑟𝑡 + 𝛽3𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑗𝑟𝑡 + 𝛽4𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡

+ 𝑆𝑒𝑐𝑡𝑜𝑟𝑗 + 𝑌𝑒𝑎𝑟𝑡 + 𝑐𝑖 + 휀𝑖𝑡 

(1)                                                                                                                                 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖𝑗𝑟𝑡

= 𝛽0 + 𝛽1𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑗𝑟𝑡 + 𝛽2𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑗𝑟𝑡 + 𝛽3𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑗𝑟𝑡 + (𝛽4𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑗𝑟𝑡

+ 𝛽5𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑗𝑟𝑡 + 𝛽6𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑗𝑟𝑡) ∗ 𝐼𝑛𝑡𝑎𝑛𝑔𝑖𝑏𝑙𝑒_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡 + 𝛽7𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡

+ 𝑆𝑒𝑐𝑡𝑜𝑟𝑗 + 𝑌𝑒𝑎𝑟𝑡 + 𝑐𝑖 + 휀𝑖𝑡 

(2)                                                                                                                                 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖𝑗𝑟𝑡

= 𝛽0 + 𝛽1𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑗𝑟𝑡 + 𝛽2𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑗𝑟𝑡 + 𝛽3𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑗𝑟𝑡 + (𝛽4𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑗𝑟𝑡

+ 𝛽5𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑗𝑟𝑡 + 𝛽6𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑗𝑟𝑡) ∗ 𝐶𝑜𝑟𝑒𝑡𝑒𝑐𝑖𝑡 + 𝛽7𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡 + 𝑆𝑒𝑐𝑡𝑜𝑟𝑗

+ 𝑌𝑒𝑎𝑟𝑡 + 𝑐𝑖 + 휀𝑖𝑡 

(3) 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖𝑗𝑟𝑡

= 𝛽0 + 𝛽1𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑗𝑟𝑡 + 𝛽2𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑗𝑟𝑡 + 𝛽3𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑗𝑟𝑡 + (𝛽4𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑗𝑟𝑡

+ 𝛽5𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑗𝑟𝑡 + 𝛽6𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑗𝑟𝑡) ∗ 𝑇𝐷𝑖𝑡 + 𝛽7𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡 + 𝑆𝑒𝑐𝑡𝑜𝑟𝑗 + 𝑌𝑒𝑎𝑟𝑡

+ 𝑐𝑖 + 휀𝑖𝑡 

                                                      
28 We employ broad categories of different sectors defined by Eurostat, which are high technology manufacturing, 

medium-high technology manufacturing, medium-low technology manufacturing and low technology 

manufacturing. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:High-

tech_classification_of_manufacturing_industries 
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(4) 

where the dependent variable Performanceijrt is measured by the TFP and employment growth of 

firm i (with no green technologies) in sector j and region r at time t. In the equations, the key explanatory 

variable Horizontaljrt represents horizontal green innovation externalities derived from green-tech 

companies that have the same SIC 2-digit industry j and NUTS-2 region r as firm i. The regional vertical 

externalities linked to the backward industries Backwardjrt and forward industries Forwardjrt 

respectively account for the spillovers of green-tech companies in the upstream s and downstream k 

sectors in region r. 

Our baseline model is specified in equation (1) to test the direct effects of green externalities on 

dependent variables of firm performance. Firm i’s intangible intensity Intangible_intensityit, core-

technology competence index Coretecit, and technological diversification index TDit are added 

respectively and interacted with each metric of green innovation externalities in equation (2), (3), and 

(4). The idea here is that intangible intensity and characteristics of technological knowledge within the 

organisations, which capture internally available knowledge capital and capabilities, are considered as 

the proxies for organisational absorptive capacity. As already noted, heterogeneity in organisational 

knowledge assets and technological capabilities affects firms’ capacity to internalise external knowhow 

and benefit from green innovation externalities. In view of the resource-based theory, absorptive 

capacity can be recognised as one type of the intangible assets (Jiménez-Barrionuevo et al., 2011), 

which contribute to companies’ capacity to acquire, assimilate, and exploit external information and 

knowledge. When new technological opportunities arise, strong core-technology competence will allow 

firms to better identify such opportunities and efficiently manage R&D investments across different 

technological domains (Choi and Lee, 2021) to serve the financial objectives of businesses. Firms with 

diversified technological knowledge are better placed to exploit the economies of scope in knowledge, 

and to adapt to a fast-changing technological environment. This factor also makes it more achievable 

for firms to connect to and leverage external knowledge through internal diverse knowledge nodes or 

domains. Considering that different dimensions of absorptive capacity are beneficial for developing 

both individual environmental competences and organisational environmental capabilities (Dzhengiz 

and Niesten, 2020), we presume that intangible knowledge resources, core-technology competence and 

diversified technological competence, as proxies for absorptive capacity, will give rise to environmental 

competences and capabilities, and thus assist firms to benefit more from green technology externalities. 

The equations include a set of control variables. The vector Controlsit stands for several firm-level 

characteristics: the level of patent stock, average wage, firm age, and size. 

To examine the related spillovers of green-tech companies, we estimate the above equations using 

panel fixed-effects with standard errors clustered at the firm level. The explanatory variable may be 

affected by unobservable components that systematically vary across firms, resulting in biased 
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coefficients for any variable that is correlated with the variation (Wooldridge, 2003). Adopting a fixed-

effects model here allows us to remove unobserved heterogeneity between the different firms in the 

data. Moreover, clustered standard errors are considered when there is some unexplained variation in 

the dependent variable that is correlated across time. Thus, our estimation method assumes temporal 

serial correlation in the error terms within the firm. Besides firm-level control variables, we also 

introduce aggregated industry dummies Sectorj and year dummies Yeart, to control for industry and 

year specific effects. 

 

4.4 Empirical results and findings 

4.4.1 Summary statistics  

Table 4.2 summarises the statistics of variables employed in our sample. To explore the 

heterogenous distribution of green innovation externalities across firm and industries characteristics, 

we provide descriptive statistics for the overall manufacturing sample and for each group of firms 

according to the size and characteristics of their sectors. Overall, heterogeneity in firm characteristics 

is present across different groups. With an average age of 29 years and size of 69 employees (e4.23), the 

sampled manufacturing firms have a wide-ranging level of TFP and on average enjoy 1% employment 

growth across the observation period. 

Interesting findings emerge between firms in the different groups. Compared with small and SMEs, 

large firms appear to have larger intangible intensity ratio, higher levels of core-technology competence, 

technological diversification, and patent stock, and slightly higher employment growth rate, but they 

are not necessarily more productive and paying higher wages. Both groups of firms enjoy similar levels 

of externalities of green innovation, including horizontal, backward, and forward green externalities. 

Drawing upon the above classification of manufacturing industries based on their technological 

intensity, we classify companies’ economic activities as medium-high and high-tech (hereafter, high-

tech) or medium-low and low-tech (hereafter, low-tech). As expected, companies in high-tech industries 

are likely to be more productive, more knowledge-intensive in terms of patent stock, and they have 

higher intangible intensity, core-technology competence, and technological diversification than low-

tech firms. Rather more surprisingly, we discover that while high-tech businesses experience much 

higher horizontal green externalities than their low-tech counterparts, their employment growth rate and 

average wage are lower.  

<Table 4.2 inserts here> 

 

Table 4.3 reports the correlation coefficients for the key variables in the final sample. Three 

variables measuring green innovation externalities are weakly positively correlated with each other. In 
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line with expectation, the indicators that are constructed based on patents information (i.e., core-

technology competence, technological diversification, and patent stock) are highly positively correlated 

with each other. However, they are not excessively so. 

<Table 4.3 inserts here> 

 

4.4.2 Regression results and findings 

To estimate the economic relevance of green innovation spillovers on other firms’ TFP and 

employment growth, we employ the panel fixed-effects modelling specified in equation (1) to (4). To 

unpack the heterogenous effects of green externalities across firm characteristics and sectors, we split 

the whole manufacturing sample into large firms or SMEs; this categorisation supplements the high-

tech/low-tech industry subsamples. Recent literature has found that small firms are more prone to 

depend on spillover effects, given their limited capacity and resources for investing in internal 

capabilities (Abubakar and Mitra, 2017). Moreover, we examine whether the strength of these spillovers 

varies for different levels of industrial technological intensity. Green externalities might be stronger in 

high-tech industries, which appear to be ideal candidates for benefiting from spillovers (De Silva and 

McComb, 2012), or in low-tech industries that are far from the technology frontier and thus have greater 

scope for catching up (Du and Vanino, 2021). 

 

4.4.2.1 Productivity 

Table 4.4 reports the estimates of the direct impacts of green innovation externalities on the level 

of TFP and the moderating effects of absorptive capacity on the spillovers to TFP for the whole 

manufacturing sample.  

<Table 4.4 inserts here> 

 

The first column in Table 4.4 tests the direct effects of horizontal and vertical externalities on the 

TFP of non-green-tech companies, and three moderators in terms of intangible intensity, core-

technology competence, and technological diversification are added respectively and interacted with 

each metric of green externalities in column (2), (3), and (4).  

In column (1), we cannot find an overall statistically significant impact from horizontal green 

technology externalities. Turning to vertical linkages, upstream green innovators generate an overall 

positive spillover effect on the TFP of non-green-tech downstream firms operating within the same 

region. There is, overall, no statistically significant result linked to forward green innovation 

externalities for all manufacturers. Unsurprisingly, intangible intensity is statistically significantly and 
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positively associated with the level of productivity. Yet, it seems that there is no direct impact of core-

technology competence and technological diversification on firms’ productivity.  

In column (2), even though intangible intensity remains positive and statistically significant, we 

cannot detect any of its statistically significant moderating effects on the relationship between green 

innovation externalities and firm productivity. We will explain the possible reasons when reaching the 

results of employment growth in the next section. 

Turning to column (3), businesses that possess core-technology competence are likely to enjoy the 

productivity gains from the horizontal spillovers of agglomerated green-tech companies. Such positive 

productivity externalities from the same industry may be motivated by competition led improvements 

in efficiency (Du and Vanino, 2021; Schmitz, 2005). Selection processes and heightened competition 

due to agglomerated green innovators give rise to aggregate productivity gains (Syverson, 2011), which 

can happen through various efficiency improvements within organisations (Schmitz, 2005). This result 

suggests that technological core competence equips businesses with architectural knowledge related to 

innovation management, which allows firms to gain efficiency improvements through localised 

knowledge spillovers in terms of cooperation and demonstration effects, or via fierce intra-industry 

competition within the same region. 

Results in column (4) show that only those with diversified technological competence are 

benefiting from the positive impacts of backward green externalities. Meanwhile, technologically 

diversified companies may suffer from a market destruction effect resulting from forward spillovers of 

green-tech consumers, where a single unit increase in downstream green externalities prompts a 0.018 

decrease in the average productivity of other technologically diversified manufacturers in the same area. 

This result may be explained by the attempts made by technologically diversified suppliers to supply 

intermediate inputs for green-tech consumers which turn out to be not yet ready to be manufactured, 

causing the negative impacts on firm productivity. We will come across the negative productivity 

spillovers linked to forward green externalities for high-tech firms in Table 4.7, which are potentially 

attributable to similar reasons. 

We then unpack the heterogenous effects of green externalities by splitting our sample into large 

firms and SMEs, with the results presented in Table 4.6. 

<Table 4.6 inserts here> 

 

The first two columns in Table 4.6 show that the direct gains in productivity from green-tech 

suppliers are typically pushed by SMEs, presumably due to their greater need for knowledge spillovers 

(Abubakar and Mitra, 2017) resulting from their limited internal resources (Du and Vanino, 2021) and 

their scope for productivity catch up. This positive spillover effect on SMEs also echoes recent evidence 
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in Du and Vanino (2021) that the marginal effects of fast-growth spillovers from backward suppliers 

appear to be larger for the productivity growth of SMEs than that of large firms. We observe strong 

negative spillover effects linked to forward green externalities on the TFP of large companies, though 

we cannot find similar effects for all manufacturers in Table 4.4. This result may be explained by market 

disruption and destructive efforts, primarily exerted by the demands and requirements of green 

innovators, on the overall operational efficiency and profitability of upstream suppliers. In particular, 

this might occur when upstream suppliers who are inexperienced at creating green products or processes 

fail to meet the demand by downstream green innovators for more eco-friendly intermediate inputs (Ben 

Arfi et al., 2018). The emphasis of green innovation on reducing the environmental impacts of business 

activities can disrupt the market for others by, for example, affecting industries in the upstream supply 

chain. This argument is related to Schumpeter’s idea of creative destruction (Schumpeter, 1943): the 

initiation by creative individuals of new solutions, usually enabled by new technologies, often disrupts 

the existing market (Li-Ying and Nell, 2020). In this regard, the more established firms, for example, 

large-sized, may find themselves locked into producing established and specialised inputs, such that 

they find it difficult to promptly change their production lines and routines, especially given the 

relatively high sunk costs of these. 

From columns (3) to (8), we take into account the moderating effects of the variables related to 

absorptive capacity. As already stated, intangible intensity predicts firm productivity. Surprisingly, 

large firms that are intangible-intensive tend to experience a negative horizontal productivity spillovers. 

This can be regarded as a sign of competition led crowding-out effects on intangible-intensive large 

enterprises. When clustering with green innovators in thick local markets, other companies may face 

intense intra-industry competition for production factors and common resources (Glaeser et al., 1992). 

This implies that large companies with intensive knowhow and knowledge resources are more likely to 

share the common production factors, say, skilled and specialised labour, with green-tech firms, which 

explains the fact that they are the ones subjected to the cost of competition.  

In column (6), we find that the productivity gains from horizontal green-tech spillovers, which are 

likely to be obtained by firms with core-technology competence, mainly go to SMEs. Noteworthily, 

core-technology competence appears to reinforce the above noted negative direct impacts of forward 

green externalities for large firms. Companies with established competence in the core technological 

field tend to be specialised in specific technological domains, which keeps firms moving path-

dependently based on related knowledge and past experience (Liu, Chen and Chen, 2003) and gives 

rise to knowledge inertia and lock-in mechanisms (Boschma, 2005). This effect reflects our conjecture 

that technological core competence may further lock large firms into manufacturing established and 

specialised inputs and thus make it more difficult to rapidly adapt to the emerging demands of 

downstream green-tech customers. 
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Column (8) shows that those technologically diversified SMEs can take the advantage of 

productivity spillovers at the horizontal level. These two characteristics of technological knowledge 

within the organisations equip SMEs with the competences to experience localised knowledge 

spillovers and competition led improvements in efficiency, potentially through efficiently and 

effectively assimilating and exploiting external knowledge and information. Along the vertical supply 

chain, both large firms and SMEs are capable of obtaining positive productivity gains from backward 

green externalities, with technological diversification further strengthening the positive direct impacts 

of backward spillovers for SMEs. 

 

Table 4.7 displays the results of the subsamples with respect to high-tech and low-tech industry. 

<Table 4.7 inserts here> 

 

By comparing the results of firms from different sectors, we discover strong direct negative 

spillover effects associated with forward green externalities on the TFP of high-tech businesses. This 

result reflects that high-tech sector is likely to be influenced by the market disruptions driven by the 

demand of green-tech consumers. The reasons behind this can be that technology-intensive input 

providers may attempt to adapt to such requirements and restructure production processes in order to 

supply products for which they are not yet equipped, resulting in their lower productivity. 

Remarkably, the overall positive results of intangible intensity on firm productivity are primarily 

driven by companies in the high-tech sector, while intangible capital allows low-tech businesses to 

acquire efficiency gains from the horizontal spillovers, as shown in column (4). Among the 

organisations with core-technology or diversified technological competence, those in the low-tech 

sector are prone to benefit from the horizontal productivity spillovers. Different from the findings of 

large firms and SMEs in column (7) and (8) of Table 4.6, only low-tech companies that possess 

diversified technological competence turn out to be the beneficiaries of backward green externalities. 

The statistically insignificant coefficients for the high-tech sector in column (3), (5) and (7) further 

indicate that there seems to be less scope for productivity improvement for the high-tech sector, given 

their relatively high level of TFP. Notably, the overall market destruction effect on technologically 

diversified businesses, resulting from forward spillovers of green-tech consumers (column (4) of Table 

4.4), mainly affects low-tech firms. One plausible interpretation is that for low-tech firms, their existing 

diversified technological competence may have already taken up the limited technological resources 

and organisational capacity within the organisations, limiting their ability to change established 

productions and operational routines in response to consumers’ sustainability requirements. This may 

explain why the technologically diversified low-tech companies in our sample seem to experience the 

market disruptions, leading to negative impacts on productivity. 
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Turning to the control variables, firm size and age can also predict firm productivity throughout 

all the models considered, in that age is statistically significantly and positively associated with the 

level of productivity. 

By comparing the marginal effects of interaction terms, we observe that the moderating effects of 

core-technology competence and technological diversification are strongest through the channel of 

backward green externalities, highlighting the crucial role played by backward linkages in creating 

green-tech knowledge externalities that spill over to the productivity of downstream companies. 

 

4.4.2.2 Employment growth 

Table 4.5 summarises the regression results of green innovation spillovers on employment growth 

for the total manufacturing sample, taking into account the moderators of absorptive capacity in column 

(2), (3) and (4).  

<Table 4.5 inserts here> 

 

As was the case for productivity, in column (1), we cannot identify a statistically significant direct 

impact of horizontal green externalities on the employment growth of other non-green-tech firms. On 

the whole, green innovators in the upstream (supplying sectors) spill employment growth to other non-

green-tech firms in the downstream. Meanwhile, we find an overall strong negative spillover effect 

linked to forward green innovation externalities. We can deduce that the market demand by green-tech 

consumers for green products or processes may lead to market disruptions to and destructive efforts on 

upstream suppliers’ operational efficiency and outputs, curbing their capacity to expand and grow. 

Organisational technological diversification is positively and statistically significantly associated with 

firm employment growth, with a single unit increase in the level of this index resulting in a 0.010% 

increase in the average employment growth. 

After taking into account the moderating effects of different variables of absorptive capacity, we 

find similar direct impacts of vertical green externalities as shown in column (1) across three different 

model specifications. As we have seen in the productivity results, we still cannot detect any of the 

statistically significant effect of intangible intensity on the relationship between green spillovers and 

employment growth. Therefore, it is reasonable to infer that intangible assets in general might not be 

specific enough to capture the absorptive capacity (Denicolai et al., 2016) required in the context of 

green-tech spillovers. More specific indicators of codified technological knowledge in the forms of 

core-technology competence and technological diversification appear to play better roles.  

In contrast to the overall negative forward spillovers of green-tech consumers, we discover a 

positive and statistically significant moderating effect of both core-technology competence and 
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technological diversification on the relationship between forward green externalities and non-green-

tech suppliers’ employment growth in column (3) and (4). This reveals that firms’ core-technology 

competence and diversified technological competence can mitigate the overall negative demand shock 

on businesses’ growth employment, which is induced by green-tech consumers. When demand shocks 

triggered by new solutions are present, core-technology competence will enable firms to better manage 

R&D investments across different technological domains including those with emerging technological 

opportunities, consequently alleviating the negative impacts on company growth. Diversified 

technological knowledge allows organisations to connect to the emerging green technologies and react 

more easily to the related technological risks and challenges, thereby weakening the destructive effects 

of consumers’ sustainability needs. 

 

To disclose the heterogenous spillover effects on employment growth, results of the subsamples 

regarding large firms and SMEs are shown in Table 4.8. 

<Table 4.8 inserts here> 

 

Interesting patterns emerge along the vertical supply chains across all the models specified. 

Although we discover the overall positive growth spillovers to non-green-tech customers in Table 4.5, 

interestingly, these positive signs become negative, albeit marginally significant, when it comes to large 

firms. This reveals that firms that are already big may not give priority to maintain employment growth 

when they are exposed to positive externalities linked to backward linkages. There is good chance that 

different organisational objectives can substitute one for another, which in our case decelerates the 

employment growth rate of large enterprises. Our result also echoes previous evidence concerning 

backward fast-growth externalities, which is that large firms seem not to profit from the positive 

spillovers of upstream fast-growth firms in terms of employment growth (Du and Vanino, 2021). 

SMEs in our sample largely drive the overall strong negative spillovers of forward green 

innovation externalities. We can deduce that compared with large businesses, SMEs are more likely to 

find it difficult to meet the market demand by green-tech consumers potentially due to resource 

constraints, resulting in market disruptions to SMEs’ outputs and thus restraining their capacity to 

expand and grow.  

However, contrasting results are detected when absorptive capacity is considered. As opposed to 

the overall negative forward spillovers on the growth of SMEs, their core-technology and diversified 

technological competence positively and statistically significantly moderate such effects in that these 

two factors abate the negative demand shocks imposed on them. This outcome highlights the important 



X. Yuan, PhD Thesis, Aston University 2022 135 

role played by technological diversification in not only predicting SMEs’ employment growth but 

alleviating the negative impact of market disruptions on their growth as well. 

 

As was the case for productivity, we split our manufacturing sample into high-tech and low-tech 

industries, with the results of employment growth summarised in Table 4.9. 

<Table 4.9 inserts here> 

 

Firms in the high-tech industry appear to be the beneficiaries of backward green spillovers in terms 

of employment growth, implying their capability to seize and grow from the green opportunities offered 

by upstream suppliers. However, high-tech companies are also the group suffering from the negative 

forward green spillovers described in column (1) of Table 4.5. As we have seen in the evidence of 

productivity, this echoes our previous explanation that high-tech businesses may make attempts to 

change routines and transform production processes, with the aim of satisfying the needs of downstream 

green innovators. However, these technology-intensive providers might be not yet equipped for 

producing the eco-friendly intermediate inputs or products in demand, given that green innovation 

represents a technological frontier with a variety of market and technological uncertainties. Businesses 

will need to employ their limited capacity for the outputs that they are unskilled in producing, resulting 

in lower productivity than previous level and thus limiting their capacity to grow. This explains the job 

destruction effect among establishments owing to the disruptions brought by downstream green 

innovators. 

Intangible-intensive companies in the high-tech industries are subjected to negative horizontal 

spillovers on employment growth, whereas their counterparts in low-tech sector reveal contrasting 

results. This can be interpreted as the evidence of competition led crowding-out effects, especially for 

intangible-intensive businesses in the high-tech sector, when businesses are clustering with green 

innovators in thick local markets. In this regard, we can deduce that establishments with intensive 

human capital will tend to face fierce competition and thus suffer from the cost of labour competition 

and poaching (Combes and Duranton, 2006) due to the presence of green innovators. 

In column (4) and (8), absorptive capacity variables in terms of intangible intensity and 

technological diversification seem to exert the moderating effects on forward green spillovers to low-

tech firms’ employment growth, such that firms’ existing knowledge assets and technological 

competence can weaken the above noted market destruction effects on the employment growth. 

Interestingly, for low-tech downstream consumers, having core-technology competence or 

technological diversification seems not to help them benefit from upstream green externalities in terms 

of employment growth. Instead, these two factors tend to slow down low-tech businesses’ employment 
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growth rate. This also echoes our previous evidence that technologically diversified low-tech 

enterprises tend to prioritise productivity rather than employment growth when they are subjected to 

positive upstream spillovers of green-tech suppliers. We can also infer from here that organisational 

objectives of increased productivity and employment growth might not always be complementary; this 

is particularly the case for low-tech firms with limited level of technological resources and intensity.  

Turning to the control variables, we also find average wage to be statistically significant in 

explaining companies’ employment growth. 

To summarise, our results underline the various externality channels through which green 

innovators influence other firms’ productivity and growth in related sectors. Productivity spillovers are 

largely pushed by localised knowledge spillovers at the horizontal level and backward linkages with 

green-tech suppliers. Employment growth externalities are mainly connected to improved intermediate 

inputs or efficiency gains from upstream green innovators, as well as increased demand driven by green-

tech consumers in the downstream sectors. Our green spillover effects are largely dependent on firm 

absorptive capacity, suggesting the moderating roles of intangible assets intensity, core-technology 

competence and technological diversification in the relationship between green innovation externalities 

and productivity and employment growth. 

 

4.5 Robustness test and additional analysis 

We believe that the results of the baseline specifications are reliable, given that the fixed-effects 

estimator is reasonably robust in estimating the population-average slope coefficients in a panel data 

setting with individual-specific slopes (Wooldridge, 2003). This estimator controls for all the time-

invariant differences between companies and eliminates the influences of time-invariant characteristics, 

allowing the study of the net effects of explanatory variables on dependent variables (Kohler and 

Kreuter, 2009). This is because it was designed to analyse the reasons and causes of changes within an 

individual or an entity (Kohler and Kreuter, 2009). 

To test the robustness of the baseline results, we relax our stringent restriction of regional boundary 

from the NUTS-2 to NUTS-1 level within the UK and recalculate the three green innovation 

externalities variables. After putting the three newly generated externalities variables into equation (1) 

– (4), we find that our main results in Table 4.4 and 4.5 remain valid29. This shows that our regression 

results are robust and consistent when we loosen the regional boundaries. We can further infer that 

green innovation spillovers and related knowledge dissemination seem to remain present over wider 

geographical ranges. 

 

                                                      
29 Results are available on request. 
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4.6 Conclusions and discussions 

4.6.1 Conclusions 

By connecting the extant environmental innovation literature with economic geography theory on 

agglomeration externalities, this work explores the external impacts of green innovation on the 

economic performance of other industrially related non-green-tech firms within the same locality. As 

far as we know, this is the first study to evaluate the extent to which spillovers of green innovation via 

both horizontal and vertical linkages drive productivity and employment growth at the firm level. 

Considering that the amount of knowledge resources and the nature of technological knowledge within 

the organisation form the important sources of absorptive capacity, we view companies’ intangible 

assets and technological competence as proxies for organisational absorptive capacity. In doing so, we 

can explore the moderating effects of intangible intensity, core-technology competence, and 

technological diversification on firms’ ability to benefit from spillovers by assisting them to sense the 

value of external green technologies and also to acquire, assimilate and exploit such knowledge. 

Additionally, we identify the heterogenous effects of agglomerated green innovation by splitting the 

whole manufacturing sample based on firm size and level of industrial technological intensity. 

Overall, our results suggest that downstream non-green-tech manufacturers benefit from their 

green-tech suppliers in terms of both productivity and employment growth, while the positive 

productivity effects are only pronounced for the technologically diversified downstream firms. SMEs 

show the potential for benefiting from the externalities of upstream green innovators in both 

productivity and employment growth. Positive upstream productivity spillovers are acquired only by 

those large enterprises with core-technology and diversified technological competence, while large 

companies experience direct negative spillovers on employment growth when they link to agglomerated 

upstream green innovators. This reveals that different organisational objectives may not always be 

complementary. Noteworthily, technological diversification makes SMEs and low-tech businesses 

capable of exploiting the positive productivity gains from upstream supplying sectors, but such 

technological competence is not helpful in maintaining the employment growth rate of low-tech 

businesses against the upstream green innovation spillovers. Furthermore, while we cannot detect any 

statistically significant results on the productivity of downstream high-tech firms, we observe strong 

positive employment spillovers from agglomerated green-tech suppliers on their growth. 

It appears that the statistically significant and positive impacts of overall horizontal productivity 

spillovers are mainly captured by the businesses with technological core competence. In particular, 

core-technology competence and diversified technological competence within both SMEs and low-tech 

firms allow them to gain efficiency improvements led by intra-industry competition within the same 

region. Typically, all of our three indicators of absorptive capacity positively moderate the horizontal 

green spillovers to low-tech businesses’ productivity. However, large firms that are intangible-intensive 
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tend to experience a negative productivity spillover effect from green-tech companies within the same 

sector and region, which can be regarded as a sign of competition led crowding-out effects on 

intangible-intensive large enterprise. Similarly, intangible-intensive companies in the high-tech 

industries are subjected to negative horizontal spillovers on growth potentially due to the cost of labour 

competition and poaching, whereas their counterparts in low-tech sector reveal contrasting results. 

Turning now to forward linkages, we observe market disruption effects on the productivity of 

large-sized and high-tech upstream suppliers. In particular, both technologically diversified companies 

in the low-tech sector and large enterprises with core-technology competence may suffer from similar 

market destruction effects resulting from forward spillovers of green-tech consumers. With regard to 

employment growth, green-tech consumers exert an overall negative forward spillover effect on our 

manufacturing sample, with the result mainly driven by SMEs and high-tech firms. Core-technology 

competence and diversified technological competence allow manufacturers, mainly SMEs and low-tech 

companies, to efficiently manage investments and respond more easily and quickly to related 

technological risks and challenges, thus alleviating the induced demand-driven shocks.  

To summarise, our results underline the various externality channels through which green 

innovators influence other firms’ productivity and growth in related sectors. Productivity spillovers are 

largely pushed by localised knowledge spillovers in the forms of demonstration effects and competition 

led efficiency improvements at the horizontal level, and by backward linkages with green-tech suppliers 

through efficiency gains and the introduction of new improved inputs. Employment growth externalities 

are mainly connected to improved intermediate inputs or efficiency gains from upstream green 

innovators, which may then give rise to firm growth. Moreover, employment growth is also derived 

from the increased demand driven by green-tech consumers in the downstream sectors, leading to job 

creation. 

The above results hint that more established firms (i.e., large-sized enterprises) tend to profit less 

than SMEs from backward linkages with green innovators in terms of both productivity and growth. 

Moreover, low-tech sector appears to the beneficiary of productivity through all the examined channels 

of green externalities. 

Our results also indicate that absorptive capacity, which in our case equates to intangible intensity, 

core-technology competence, or technological diversification, enables organisations to boost 

productivity through competition led improvements in efficiency, or through localised knowledge 

spillovers via ideas sharing, movement of workers, and other types of informal interactions. In addition, 

these three indicators make organisations capable of mitigating the induced demand-driven market 

disruptions to employment growth, whereas only core-technology competence and technological 

diversification facilitate the exploitation of positive productivity spillovers from upstream supplying 

sectors. By contrasting the results of different moderators, we infer that compared with specific 
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indicators of codified technological knowledge, intangible assets in general might not be specific 

enough to capture the absorptive capacity required in the context of green innovation spillovers. 

Relatedly, we can also conclude that, given their resistance and reluctance to make changes, the 

established companies specialised in specific technological domains tend to experience larger 

disruptions to their existing production processes and routines. This may come from the creative 

destruction triggered by green technologies. Furthermore, chances are that technology-intensive 

providers may try to satisfy consumers’ green needs even when they are not yet ready to produce such 

eco-friendly outputs, resulting in lower productivity and thus limiting their capacity to grow. These 

arguments, taken in conjunction with our earlier findings and inferences, highlight several policy 

implications. 

 

4.6.2 Managerial and policy implications 

First, our results provide empirical grounds for policies aimed at promoting green technology by 

showing that green-tech companies are able to generate overall welfare effects on the wider economy 

through their green innovations. 

Second, our conclusion that SMEs and low-tech firms are the main beneficiaries, in terms of 

productivity, of exposure to green externalities hints at the potential of the less established companies 

and the disadvantaged group for learning and growing in this environmental endeavour. This has 

meaningful implications for the formulation of policies intended to promote long-term and balanced 

growth, or to use the current buzzwords, economic growth in terms of levelling up. 

Third, even though all of our three indicators of absorptive capacity reveal, at least to some extent, 

the moderating effects on green spillovers to economic performance of other industrially related non-

green-tech firms, not all of the aspects are of equal importance. Specific measures of codified 

technological knowledge, instead of general knowledge resources, turn out to be more crucial under the 

condition of green spillovers absorption. This inference may rest on the nature of green technology, 

which stands for a technological frontier, appears to be more complex, and is thus more in need of 

knowledge and skills unlike industries’ conventional knowledge stock. As a result, businesses who wish 

to take advantage of this green transformation should focus on building their strong technological 

competence, so that they can maximise the benefits of knowledge spillovers related to green innovation 

and mitigate the induced demand-driven market disruptions. 

Fourth, just as the organisational objectives of increased productivity and employment growth 

might not always be complementary, this is also the case for policy goals (Du and Vanino, 2021). The 

national government may wish to implement policies that promote green technology and an 

environmentally sustainable society, but the indirect impacts of green innovation may not always be 
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favourable. Hence, it is important to realise the implications of green technology on the productivity 

and employment growth of other industrially related and geographically adjacent non-green-tech 

companies. 

More importantly, spillover effects of externalities of agglomerated green innovation are 

heterogeneous across different positions in the value chains, firm characteristics, and technological 

intensity within industries. This reveals the necessity to design targeted policy instruments that 

specifically consider such variations so as to maximise the rewards from green innovation. 

 

4.6.3 Limitations and future research 

This study is subject to the following limitations and raises further questions that are worthy of 

further research. For instance, with only the manufacturing sectors having been taken into account, the 

results should be interpreted with caution, particularly with regard to transferring the conclusions to the 

services sectors. This also throws up questions that are worthy of further research. For instance, Cainelli 

and Mazzanti (2013) focus on the integration of services and manufacturing sectors through push and 

pull effects and examine whether such integration will exert any impact on environmental innovation 

diffusion. It would be interesting to extend our work and verify the impacts of green innovation 

externalities on the performance of services industry companies. Such findings will be of great 

importance to policy makers’ decision making given the dominant role that services play in the UK 

economy30. 

Second, our way of defining green technology (i.e., using a search strategy based on classified IPC 

symbols) appears to be efficient at following the existing green innovation literature, but it risks 

omitting the environmental process innovations or organisational innovations that might not meet the 

patentability criteria. Thus, future research needs to go beyond the current reliance on patent 

information and employ other methodologies.  

Third, it would be valuable to explore how the agglomerated externalities of green technology 

exert impacts upon other firm performance indicators such as average wage bill and profitability, which 

will provide a broader view of the external impacts of this type of innovation. 

Given the increasing relevance of green innovation to society and the economy, it is worthwhile 

delving into the specific mechanisms and channels through which green technology can be adopted and 

diffused. 

                                                      
30 Available at: 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/695969/servic

es-blackett-report.pdf [Accessed 30 September 2022] 
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Lastly, it is not clear what kind of role the public policy plays in promoting the diffusion of green 

technology. How policy making maintains the balance between promoting such technology diffusion 

and at the same time encouraging businesses to keep investing in and inventing green technology 

appears to be a very important issue. 
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Table 4.1. Definition of variables 

 Variable name Name in the model Definition 

Dependent 

variables 
Total factor 

productivity (TFP) 
Performanceijrt 

Based on a revenue-based Cobb-Douglas production 

function with production factors of labour, capital, 

and materials, this work employs the Wooldridge 

estimator implemented via prodest command in Stata 

to estimate TFP within each industrial sector. 

 
Employment growth Performanceijrt 

The difference of the natural logarithm value of 

number of employees between t and t-1 

Independent 

variables Horizontal green 

externalities 
Horizontaljrt 

Measured by the summation of each green-tech firm 

i’s share of green patents weighted by its share of 

employment (firm i’s employment over the total 

employment of its industry j and region r at time t). 

 

Backward green 

externalities 
Backwardjrt 

The average extent of green innovation presence in 

the upstream sectors (s) of industry j within the 

same NUTS-2 region r, computed based on the 

vertical linkages between each pair of sectors (js) in 

the UK input-output matrix. 

 

Forward green 

externalities 
Forwardjrt 

The average extent of green innovation presence in 

the downstream sectors (k) of industry j within the 

same NUTS-2 region r, computed based on the 

vertical linkages between each pair of sectors (jk) in 

the UK input-output matrix. 

 
Intangible intensity Intangible_intensityit 

Calculated by dividing the intangible fixed assets 

by tangible fixed assets 

 

Core-technology 

competence 
Coretecit 

Measured by the maximum value of number of 

patents in a technological domain multiplied by the 

RTA index for the subclass of the IPC symbol (Kim 

et al., 2016): 

𝐶𝑜𝑟𝑒𝑡𝑒𝑐𝑖𝑡 = 𝑙𝑛 [𝑚𝑎𝑥(𝑅𝑇𝐴𝑖𝑞𝑡 × 𝑃𝑖𝑞𝑡)] 

Where RTA31 derives the relative importance of a 

firm’s different kinds of patenting to each field of 

technology after taking account of the firm’s share 

of total patenting in all the fields. 

 
Technological 

diversification 
TDit 

Overall technology diversification measured by 

entropy index of patents across the full IPC 

symbol32 (Kim et al., 2016) 

Control 

variables 
Patent stock PSTOCKit 

Constructed using the perpetual inventory method 

following Guellec and van Pottelsberghe de la 

Potterie (2004): 

𝑃𝑆𝑇𝑂𝐶𝐾𝑖𝑡 = 𝑃𝐹𝐿𝑂𝑊𝑖𝑡 + (1 − 𝛿) ∗ 𝑃𝑆𝑇𝑂𝐶𝐾𝑖𝑡−1 

 
Average wage Average_wageit 

Natural logarithm value of cost of employees per 

employee (report here the number) 

 
Firm size Sizeit 

Natural logarithm value of number of employees 

(report here the number) 

 
Firm age Ageit 

Number of years since establishment (report here 

the number) 

                                                      
31 Formula to calculate RTA can be found in 4.3.3.2.2 Absorptive capacity measurements. 
32 Formula can be found in 4.3.3.2.2 Absorptive capacity measurements. 
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Table 4.2. Descriptive statistics by different groups of firms 

Variables 
Total Manufacturing Large SMEs 

Medium high and high-

tech 

Medium low and Low-

tech 

Mean SD N Mean SD N Mean SD N Mean SD N Mean SD N 

Total factor 

productivity (TFP) 
0.60 0.40 58102 0.51 0.37 7097 0.61 0.40 51005 0.65 0.41 17877 0.58 0.39 40225 

Employment growth 0.01 0.15 47386 0.03 0.14 6225 0.01 0.15 41161 0.01 0.15 14858 0.02 0.15 32528 

Horizontal green 

externalities 
1.39 4.91 58102 1.39 5.49 7097 1.39 4.82 51005 2.84 6.82 17877 0.75 3.58 40225 

Backward green 

externalities 
0.04 0.10 58102 0.03 0.09 7097 0.04 0.11 51005 0.03 0.09 17877 0.04 0.11 40225 

Forward green 

externalities 
0.03 0.16 58102 0.03 0.18 7097 0.03 0.15 51005 0.03 0.10 17877 0.03 0.18 40225 

Intangible intensity 0.59 3.15 58102 0.62 2.78 7097 0.58 3.20 51005 0.97 4.09 17877 0.41 2.61 40225 

Core-technology 

competence 
0.57 1.89 58102 1.07 2.51 7097 0.50 1.77 51005 0.78 2.15 17877 0.48 1.75 40225 

Technological 

diversification 
0.06 0.27 58102 0.14 0.46 7097 0.04 0.23 51005 0.08 0.32 17877 0.04 0.25 40225 

Patent stock 0.43 0.92 58102 0.85 1.30 7097 0.37 0.83 51005 0.62 1.04 17877 0.35 0.84 40225 

Average wage 0.57 0.75 55478 0.50 0.54 7090 0.58 0.78 48388 0.48 0.30 17272 0.61 0.88 38206 

Firm size 4.23 1.27 58102 6.29 0.73 7097 3.94 1.05 51005 4.25 1.22 17877 4.22 1.29 40225 

Firm age 28.98 21.32 58102 36.54 25.96 7097 27.93 20.37 51005 28.59 20.23 17877 29.16 21.78 40225 

 

Table 4.3. Correlation coefficients of the key variables 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 

1. Total factor productivity (TFP) 1.00                       

2. Employment growth -0.01 1.00           

3. Horizontal green externalities 0.01 -0.01 1.00          

4. Backward green externalities 0.03 0.01 0.01 1.00         

5. Forward green externalities -0.04 -0.01 0.02 0.04 1.00        

6. Intangible intensity 0.14 -0.01 0.01 0.00 0.00 1.00       

7. Core-technology competence 0.04 -0.01 0.05 0.01 0.02 0.04 1.00      

8. Technological diversification 0.04 -0.01 0.04 0.00 0.01 0.03 0.68 1.00     

9. Patent stock 0.05 -0.04 0.06 0.00 0.01 0.05 0.72 0.64 1.00    

10. Average wage 0.28 -0.02 -0.05 0.03 -0.02 0.01 -0.04 -0.03 -0.05 1.00   

11. Firm size -0.16 0.09 0.00 -0.01 0.02 -0.03 0.13 0.12 0.21 -0.14 1.00  

12. Firm age -0.01 -0.06 0.01 0.01 0.00 -0.09 0.05 0.04 0.13 0.00 0.19 1.00 
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Table 4.4. Region-industry spillover effects of green-tech firms on the productivity of non-green-tech companies in the 

manufacturing sectors 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  
Total 

manufacturi

ng 

Total 

manufacturi

ng 

Total 

manufacturi

ng 

Total 

manufacturi

ng 

Total 

manufacturi

ng 

Total 

manufacturi

ng 

Total 

manufacturi

ng 

Total 

manufacturi

ng 

Horizontaljrt 0.0000 0.0000 -0.0001 -0.0000 0.0013*** 0.0011*** 0.0013*** 0.0012*** 

  (0.0001) (0.0001) (0.0001) (0.0001) (0.0004) (0.0004) (0.0004) (0.0004) 
Backwardjrt 0.0142** 0.0121* 0.0112* 0.0104 0.0802*** 0.0801*** 0.0858*** 0.0820*** 

  (0.0068) (0.0064) (0.0067) (0.0066) (0.0184) (0.0192) (0.0188) (0.0185) 
Forwardjrt -0.0014 -0.0015 -0.0020 0.0002 -0.0306** -0.0302** -0.0330** -0.0311** 

  (0.0035) (0.0035) (0.0041) (0.0037) (0.0132) (0.0133) (0.0159) (0.0144) 

Intangible intensityit 0.0041*** 0.0040*** 0.0041*** 0.0041*** 0.0116*** 0.0113*** 0.0116*** 0.0116*** 
  (0.0009) (0.0010) (0.0009) (0.0009) (0.0011) (0.0012) (0.0011) (0.0011) 

Coretecit -0.0005 -0.0005 -0.0011 -0.0005 0.0005 0.0005 0.0011 0.0006 

  (0.0008) (0.0008) (0.0008) (0.0008) (0.0017) (0.0017) (0.0018) (0.0017) 
TDit 0.0014 0.0014 0.0013 -0.0031 0.0257* 0.0259* 0.0258* 0.0250* 

  (0.0058) (0.0058) (0.0058) (0.0062) (0.0135) (0.0135) (0.0134) (0.0141) 

Horizontaljrt * 
Intangible intensityit 

 -0.0000     0.0003*   

   (0.0001)     (0.0001)   

Backwardjrt * 

Intangible intensityit 
 0.0035     0.0003   

   (0.0038)     (0.0060)   

Forwardjrt * Intangible 
intensityit 

 0.0001     -0.0015   

   (0.0018)     (0.0029)   

Horizontaljrt * 
Coretecit 

  0.0001**     -0.0000  

    (0.0000)     (0.0001)  

Backwardjrt * Coretecit 
  0.0088     -0.0154  

    (0.0061)     (0.0124)  

Forwardjrt * Coretecit 
  0.0003     0.0021  

    (0.0011)     (0.0029)  

Horizontaljrt * TDit 
   0.0005    0.0008 

     (0.0003)    (0.0012) 

Backwardjrt * TDit 
   0.1071***    -0.0496 

     (0.0320)    (0.0751) 

Forwardjrt * TDit 
   -0.0176**    0.0078 

     (0.0086)    (0.0239) 
PSTOCKit -0.0066 -0.0066 -0.0062 -0.0062 0.0251*** 0.0251*** 0.0251*** 0.0251*** 

  (0.0059) (0.0059) (0.0059) (0.0059) (0.0050) (0.0050) (0.0050) (0.0050) 

Firm size -0.0496*** -0.0497*** -0.0496*** -0.0496*** -0.0567*** -0.0567*** -0.0567*** -0.0567*** 
  (0.0064) (0.0064) (0.0064) (0.0064) (0.0031) (0.0031) (0.0031) (0.0031) 

Firm age 0.0030* 0.0030* 0.0029* 0.0029* 0.0006*** 0.0006*** 0.0006*** 0.0006*** 

  (0.0017) (0.0017) (0.0017) (0.0017) (0.0002) (0.0002) (0.0002) (0.0002) 
Constant 1.8596*** 1.8560*** 1.8616*** 1.8606*** 1.2500*** 1.2503*** 1.2497*** 1.2501*** 

  (0.0489) (0.0497) (0.0490) (0.0490) (0.0205) (0.0205) (0.0205) (0.0205) 

Hausman test (fixed 
vs random effects): 

Prob>Chi2 

0.0000; 

Chi2=170.18 

0.0000; 

Chi2=166.70  

0.0000; 

Chi2=177.71 

0.0000; 

Chi2=179.02 
    

Sector Y Y Y Y Y Y Y Y 

Year Y Y Y Y Y Y Y Y 

Firm Y Y Y Y     

Observations 58,102 58,102 58,102 58,102 58,102 58,102 58,102 58,102 
Number of firms 10,733 10,733 10,733 10,733     

R-squared 0.0172 0.0172 0.0174 0.0176 0.2404 0.2405 0.2404 0.2404 

 
Notes: Coefficients from panel fixed-effects model estimation of equation (1) – (4) are reported in column (1) – (4) respectively. 

Coefficients from pooled ordinary least squares model estimation of equation (1) – (4) are reported in column (5) – (8) respectively 

as benchmarks. Robust standard errors clustered at the firm level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Sector and year 

dummies are included.   
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Table 4.5. Region-industry spillover effects of green-tech firms on the employment growth of non-green-tech companies 

in the manufacturing sectors 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  
Total 

manufactur

ing 

Total 

manufactur

ing 

Total 

manufactur

ing 

Total 

manufactur

ing 

Total 

manufactur

ing 

Total 

manufactur

ing 

Total 

manufactur

ing 

Total 

manufactur

ing 

Horizontaljrt -0.0000 0.0000 -0.0001 -0.0001 -0.0000 -0.0000 -0.0001 -0.0001 

  (0.0002) (0.0002) (0.0002) (0.0002) (0.0001) (0.0001) (0.0002) (0.0002) 
Backwardjrt 0.0117* 0.0104* 0.0124* 0.0125** 0.0136** 0.0154*** 0.0127** 0.0132** 

  (0.0063) (0.0062) (0.0065) (0.0064) (0.0055) (0.0057) (0.0057) (0.0055) 
Forwardjrt -0.0100*** -0.0103*** -0.0132*** -0.0117*** -0.0077* -0.0104** -0.0090* -0.0076 

  (0.0035) (0.0035) (0.0045) (0.0039) (0.0042) (0.0041) (0.0054) (0.0047) 

Intangible intensityit -0.0007 -0.0006 -0.0007 -0.0007 -0.0005 -0.0005 -0.0005 -0.0005 
  (0.0008) (0.0009) (0.0008) (0.0008) (0.0004) (0.0004) (0.0004) (0.0004) 

Coretecit 0.0008 0.0008 0.0007 0.0008 0.0013** 0.0014** 0.0012* 0.0013** 

  (0.0006) (0.0006) (0.0007) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) 
TDit 0.0099** 0.0099** 0.0099** 0.0094* 0.0072* 0.0070* 0.0072* 0.0062 

  (0.0046) (0.0046) (0.0046) (0.0049) (0.0041) (0.0041) (0.0041) (0.0045) 

Horizontaljrt * Intangible 
intensityit 

 -0.0001     -0.0000   

   (0.0001)     (0.0001)   

Backwardjrt * Intangible 

intensityit 
 0.0018     -0.0036*   

   (0.0028)     (0.0022)   

Forwardjrt * Intangible 
intensityit 

 0.0017     0.0080***   

   (0.0040)     (0.0018)   

Horizontaljrt * Coretecit 
  0.0001     0.0000  

    (0.0000)     (0.0000)  

Backwardjrt * Coretecit 
  -0.0023     0.0028  

    (0.0037)     (0.0036)  

Forwardjrt * Coretecit 
  0.0017**     0.0008  

    (0.0008)     (0.0009)  

Horizontaljrt * TDit 
   0.0007    0.0002 

     (0.0005)    (0.0004) 

Backwardjrt * TDit 
   -0.0402    0.0187 

     (0.0360)    (0.0371) 
Forwardjrt * TDit 

   0.0172*    -0.0018 

     (0.0101)    (0.0102) 

PSTOCKit -0.0114** -0.0113** -0.0113** -0.0114** -0.0081*** -0.0081*** -0.0081*** -0.0081*** 
  (0.0044) (0.0044) (0.0044) (0.0044) (0.0012) (0.0012) (0.0012) (0.0012) 

Average wageit -0.2072*** -0.2072*** -0.2072*** -0.2072*** -0.0061*** -0.0061*** -0.0062*** -0.0061*** 

  (0.0195) (0.0195) (0.0195) (0.0195) (0.0012) (0.0012) (0.0012) (0.0012) 
Firm age -0.0017 -0.0017 -0.0017 -0.0017 -0.0005*** -0.0005*** -0.0005*** -0.0005*** 

  (0.0015) (0.0015) (0.0015) (0.0015) (0.0000) (0.0000) (0.0000) (0.0000) 

Constant 0.0684 0.0715 0.0703 0.0705 0.0142*** 0.0142*** 0.0144*** 0.0143*** 
  (0.0761) (0.0763) (0.0766) (0.0764) (0.0032) (0.0032) (0.0032) (0.0032) 

Hausman test (fixed vs 

random effects): 
Prob>Chi2 

0.0000; 

Chi2= 
1511.35 

0.0000; 

Chi2= 
1519.14 

0.0000; 

Chi2= 
1514.16 

0.0000; 

Chi2= 
1518.76 

    

Sector Y Y Y Y Y Y Y Y 

Year Y Y Y Y Y Y Y Y 

Firm Y Y Y Y     

Observations 53,246 53,246 53,246 53,246 53,246 53,246 53,246 53,246 

Number of firms 9,390 9,390 9,390 9,390     

R-squared 0.0324 0.0325 0.0325 0.0325 0.0103 0.0106 0.0103 0.0103 

 

Notes: Coefficients from panel fixed-effects model estimation of equation (1) – (4) are reported in column (1) – (4) respectively. 

Coefficients from pooled ordinary least squares model estimation of equation (1) – (4) are reported in column (5) – (8) respectively 

as benchmarks. Robust standard errors clustered at the firm level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Sector and year 

dummies are included.   
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Table 4.6. Region-industry spillover effects of green-tech firms on the productivity of non-green-tech companies – 

Large-sized and SMEs 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  Large SMEs Large SMEs Large SMEs Large SMEs 

Horizontaljrt 0.0001 0.0000 0.0002 0.0000 0.0000 -0.0001 0.0001 -0.0000 
  (0.0003) (0.0002) (0.0003) (0.0002) (0.0003) (0.0002) (0.0003) (0.0002) 

Backwardjrt 0.0296 0.0134* 0.0278 0.0112* 0.0073 0.0122* 0.0113 0.0112* 

  (0.0272) (0.0069) (0.0281) (0.0063) (0.0282) (0.0069) (0.0260) (0.0068) 
Forwardjrt -0.0198*** 0.0009 -0.0193*** 0.0010 -0.0165** 0.0002 -0.0176** 0.0023 

  (0.0061) (0.0034) (0.0062) (0.0034) (0.0072) (0.0041) (0.0069) (0.0036) 
Intangible intensityit 0.0049*** 0.0042*** 0.0049*** 0.0041*** 0.0049*** 0.0042*** 0.0049*** 0.0042*** 

  (0.0015) (0.0010) (0.0015) (0.0011) (0.0015) (0.0010) (0.0015) (0.0010) 

Coretecit 0.0015 -0.0007 0.0014 -0.0007 0.0008 -0.0012 0.0014 -0.0007 
  (0.0020) (0.0008) (0.0020) (0.0008) (0.0019) (0.0009) (0.0020) (0.0008) 

TDit -0.0024 0.0032 -0.0025 0.0032 -0.0027 0.0033 -0.0065 -0.0030 

  (0.0086) (0.0074) (0.0086) (0.0073) (0.0087) (0.0074) (0.0086) (0.0086) 
Horizontaljrt * Intangible 

intensityit 
   -0.0002** -0.0000      

     (0.0001) (0.0001)      

Backwardjrt * Intangible intensityit 
   0.0049 0.0036      

     (0.0073) (0.0041)      

Forwardjrt * Intangible intensityit 
   -0.0030 -0.0005      

     (0.0019) (0.0019)      

Horizontaljrt * Coretecit 
       0.0000 0.0001**   

         (0.0001) (0.0001)   

Backwardjrt * Coretecit 
       0.0178* 0.0047   

         (0.0096) (0.0077)   

Forwardjrt * Coretecit 
       -0.0053* 0.0004   

         (0.0029) (0.0011)   

Horizontaljrt * TDit 
          0.0001 0.0016* 

            (0.0005) (0.0008) 
Backwardjrt * TDit 

          0.1142*** 0.1022* 

            (0.0299) (0.0579) 

Forwardjrt * TDit 
          -0.0180 -0.0161 

            (0.0143) (0.0105) 

PSTOCKit -0.0146* -0.0073 -0.0145* -0.0072 -0.0138* -0.0070 -0.0135* -0.0070 

  (0.0084) (0.0074) (0.0084) (0.0074) (0.0081) (0.0074) (0.0081) (0.0074) 
Firm size -0.0351** -0.0490*** -0.0346** -0.0490*** -0.0353** -0.0490*** -0.0357** -0.0489*** 

  (0.0147) (0.0073) (0.0147) (0.0072) (0.0146) (0.0073) (0.0146) (0.0072) 

Firm age 0.0061** 0.0020 0.0061** 0.0020 0.0060** 0.0019 0.0061** 0.0019 
  (0.0028) (0.0021) (0.0028) (0.0021) (0.0028) (0.0021) (0.0028) (0.0021) 

Constant 0.5494*** 1.8841*** 0.5452*** 1.8803*** 0.5535*** 1.8854*** 0.5540*** 1.8837*** 

  (0.1220) (0.0566) (0.1221) (0.0575) (0.1223) (0.0567) (0.1221) (0.0567) 

Sector Y Y Y Y Y Y Y Y 

Year Y Y Y Y Y Y Y Y 

Firm Y Y Y Y Y Y Y Y 

Observations 7,097 51,005 7,097 51,005 7,097 51,005 7,097 51,005 
Number of firms 1,217 9,998 1,217 9,998 1,217 9,998 1,217 9,998 

R-squared 0.0149 0.0163 0.0152 0.0164 0.0168 0.0164 0.0178 0.0166 

 

Notes: Coefficients from panel fixed-effects model estimation of equation (1) – (4) are reported. Robust standard errors clustered at 

the firm level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Sector and year dummies are included.   
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Table 4.7. Region-industry spillover effects of green-tech firms on the productivity of non-green-tech companies – 

High-tech and low-tech sectors 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  High-tech Low-tech High-tech Low-tech High-tech Low-tech High-tech Low-tech 

Horizontaljrt 0.0000 -0.0000 0.0001 -0.0001 -0.0000 -0.0002 -0.0000 -0.0001 
  (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) 

Backwardjrt 0.0292 0.0088 0.0190 0.0087 0.0206 0.0075 0.0230 0.0057 

  (0.0178) (0.0068) (0.0162) (0.0069) (0.0187) (0.0066) (0.0179) (0.0065) 
Forwardjrt -0.0320*** 0.0006 -0.0335*** 0.0005 -0.0348*** 0.0009 -0.0283** 0.0023 

  (0.0117) (0.0036) (0.0123) (0.0037) (0.0123) (0.0043) (0.0120) (0.0039) 
Intangible intensityit 0.0059*** 0.0017 0.0061*** 0.0015 0.0059*** 0.0017 0.0059*** 0.0017 

  (0.0012) (0.0011) (0.0014) (0.0012) (0.0012) (0.0011) (0.0012) (0.0011) 

Coretecit -0.0010 -0.0002 -0.0010 -0.0002 -0.0019 -0.0007 -0.0011 -0.0002 
  (0.0012) (0.0010) (0.0012) (0.0010) (0.0012) (0.0010) (0.0012) (0.0010) 

TDit -0.0079 0.0082 -0.0079 0.0083 -0.0079 0.0087 -0.0121 0.0038 

  (0.0079) (0.0082) (0.0079) (0.0082) (0.0080) (0.0082) (0.0090) (0.0084) 
Horizontaljrt * Intangible intensityit 

   -0.0002 0.0002**      

     (0.0001) (0.0001)      

Backwardjrt * Intangible intensityit 
   0.0052 0.0006      

     (0.0047) (0.0041)      

Forwardjrt * Intangible intensityit 
   0.0013 0.0014      

     (0.0017) (0.0070)      

Horizontaljrt * Coretecit 
      0.0000 0.0002**   

        (0.0001) (0.0001)   

Backwardjrt * Coretecit 
      0.0165 0.0044   

        (0.0128) (0.0069)   

Forwardjrt * Coretecit 
      0.0025 -0.0001   

        (0.0043) (0.0011)   

Horizontaljrt * TDit 
         0.0005 0.0017*** 

           (0.0004) (0.0005) 

Backwardjrt * TDit 
         0.1294 0.0993*** 

           (0.0823) (0.0355) 

Forwardjrt * TDit 
         -0.0723 -0.0162** 

           (0.0615) (0.0081) 
PSTOCKit -0.0055 -0.0056 -0.0053 -0.0057 -0.0051 -0.0053 -0.0049 -0.0052 

  (0.0092) (0.0076) (0.0092) (0.0076) (0.0092) (0.0075) (0.0091) (0.0075) 

Firm size -0.0614*** -0.0439*** -0.0617*** -0.0439*** -0.0613*** -0.0438*** -0.0614*** -0.0438*** 
  (0.0134) (0.0068) (0.0134) (0.0068) (0.0134) (0.0068) (0.0134) (0.0068) 

Firm age -0.0034 0.0050*** -0.0034 0.0050*** -0.0037 0.0050*** -0.0037 0.0050*** 

  (0.0035) (0.0019) (0.0035) (0.0019) (0.0035) (0.0019) (0.0035) (0.0019) 
Constant 0.9832*** 0.6405*** 0.9838*** 0.6408*** 0.9913*** 0.6397*** 0.9897*** 0.6396*** 

  (0.1003) (0.0538) (0.1002) (0.0538) (0.1006) (0.0538) (0.1003) (0.0538) 

Sector Y Y Y Y Y Y Y Y 

Year Y Y Y Y Y Y Y Y 

Firm Y Y Y Y Y Y Y Y 

Observations 17,877 40,225 17,877 40,225 17,877 40,225 17,877 40,225 

Number of firms 3,059 7,678 3,059 7,678 3,059 7,678 3,059 7,678 
R-squared 0.0283 0.0106 0.0287 0.0107 0.0287 0.0108 0.0288 0.0112 

 

Notes: Coefficients from panel fixed-effects model estimation of equation (1) – (4) are reported. Robust standard errors clustered at 

the firm level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Sector and year dummies are included.   
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Table 4.8. Region-industry spillover effects of green-tech firms on the employment growth of non-green-tech companies 

– Large-sized and SMEs 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  Large SMEs Large SMEs Large SMEs Large SMEs 

Horizontaljrt -0.0001 0.0000 -0.0002 0.0001 -0.0002 0.0000 -0.0001 -0.0000 
  (0.0003) (0.0002) (0.0003) (0.0002) (0.0003) (0.0002) (0.0003) (0.0002) 

Backwardjrt -0.0305* 0.0171** -0.0295* 0.0153** -0.0319* 0.0181*** -0.0283* 0.0178*** 

  (0.0159) (0.0066) (0.0162) (0.0066) (0.0171) (0.0068) (0.0161) (0.0067) 
Forwardjrt -0.0118 -0.0092*** -0.0138 -0.0093*** -0.0098 -0.0124*** -0.0128 -0.0106*** 

  (0.0160) (0.0034) (0.0162) (0.0034) (0.0169) (0.0047) (0.0167) (0.0040) 
Intangible intensityit -0.0003 -0.0006 -0.0004 -0.0004 -0.0003 -0.0006 -0.0003 -0.0006 

  (0.0019) (0.0008) (0.0020) (0.0009) (0.0019) (0.0008) (0.0019) (0.0008) 

Coretecit 0.0022* 0.0006 0.0022* 0.0006 0.0020 0.0007 0.0022* 0.0006 
  (0.0012) (0.0007) (0.0012) (0.0007) (0.0013) (0.0008) (0.0012) (0.0007) 

TDit 0.0047 0.0138** 0.0048 0.0138** 0.0044 0.0138** 0.0054 0.0130** 

  (0.0076) (0.0058) (0.0076) (0.0058) (0.0076) (0.0058) (0.0079) (0.0062) 
Horizontaljrt * Intangible intensityit 

   0.0001 -0.0001      

     (0.0001) (0.0001)      

Backwardjrt * Intangible intensityit 
   -0.0032 0.0026      

     (0.0097) (0.0024)      

Forwardjrt * Intangible intensityit 
   0.0057* 0.0006      

     (0.0030) (0.0050)      

Horizontaljrt * Coretecit 
      0.0001 0.0000   

        (0.0001) (0.0001)   

Backwardjrt * Coretecit 
      0.0012 -0.0037   

        (0.0062) (0.0048)   

Forwardjrt * Coretecit 
      -0.0014 0.0016**   

        (0.0068) (0.0007)   

Horizontaljrt * TDit 
         0.0002 0.0011 

           (0.0004) (0.0007) 

Backwardjrt * TDit 
         -0.0404 -0.0446 

           (0.0491) (0.0481) 

Forwardjrt * TDit 
         0.0073 0.0148* 

           (0.0302) (0.0083) 
PSTOCKit -0.0149** -0.0136** -0.0148** -0.0135** -0.0147* -0.0137** -0.0149** -0.0137** 

  (0.0074) (0.0053) (0.0075) (0.0053) (0.0075) (0.0053) (0.0075) (0.0053) 

Average wageit -0.2441*** -0.2050*** -0.2442*** -0.2050*** -0.2442*** -0.2050*** -0.2441*** -0.2050*** 
  (0.0601) (0.0222) (0.0602) (0.0222) (0.0601) (0.0222) (0.0601) (0.0222) 

Firm age -0.0024 -0.0031 -0.0024 -0.0031 -0.0025 -0.0031 -0.0024 -0.0031 

  (0.0021) (0.0021) (0.0021) (0.0021) (0.0021) (0.0021) (0.0021) (0.0021) 
Constant 0.3728*** 0.1683*** 0.3747*** 0.1722*** 0.3762*** 0.1700*** 0.3735*** 0.1695*** 

  (0.0824) (0.0560) (0.0826) (0.0566) (0.0827) (0.0560) (0.0828) (0.0560) 

Sector Y Y Y Y Y Y Y Y 

Year Y Y Y Y Y Y Y Y 

Firm Y Y Y Y Y Y Y Y 

Observations 7,527 45,719 7,527 45,719 7,527 45,719 7,527 45,719 
Number of firms 1,362 8,567 1,362 8,567 1,362 8,567 1,362 8,567 

R-squared 0.0287 0.0317 0.0289 0.0319 0.0288 0.0318 0.0287 0.0318 

 

Notes: Coefficients from panel fixed-effects model estimation of equation (1) – (4) are reported. Robust standard errors clustered at 

the firm level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Sector and year dummies are included.   
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Table 4.9. Region-industry spillover effects of green-tech firms on the employment growth of non-green-tech companies 

– High-tech and low-tech sectors 

  (1) (2) (3) (4) (5) (6) (7) (8) 

  High-tech Low-tech High-tech Low-tech High-tech Low-tech High-tech Low-tech 

Horizontaljrt -0.0000 0.0000 0.0001 -0.0000 -0.0001 -0.0000 -0.0001 0.0000 
  (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) 

Backwardjrt 0.0341** 0.0072 0.0262 0.0081 0.0312** 0.0092 0.0340** 0.0084 

  (0.0143) (0.0066) (0.0166) (0.0066) (0.0156) (0.0068) (0.0147) (0.0066) 
Forwardjrt -0.0576*** -0.0035 -0.0568*** -0.0044 -0.0582*** -0.0056 -0.0566*** -0.0054* 

  (0.0140) (0.0028) (0.0147) (0.0028) (0.0149) (0.0038) (0.0145) (0.0032) 
Intangible intensityit -0.0014 0.0001 -0.0010 -0.0001 -0.0014 0.0001 -0.0014 0.0001 

  (0.0012) (0.0009) (0.0013) (0.0010) (0.0012) (0.0009) (0.0012) (0.0009) 

Coretecit 0.0002 0.0012 0.0002 0.0011 -0.0001 0.0013 0.0002 0.0012 
  (0.0010) (0.0008) (0.0010) (0.0008) (0.0011) (0.0009) (0.0010) (0.0008) 

TDit 0.0212*** 0.0008 0.0211*** 0.0011 0.0211*** 0.0010 0.0195** 0.0038 

  (0.0075) (0.0056) (0.0075) (0.0056) (0.0075) (0.0056) (0.0080) (0.0061) 
Horizontaljrt * Intangible intensityit 

   -0.0002* 0.0002*      

     (0.0001) (0.0001)      

Backwardjrt * Intangible intensityit 
   0.0033 -0.0048      

     (0.0025) (0.0058)      

Forwardjrt * Intangible intensityit 
   -0.0005 0.0108***      

     (0.0059) (0.0039)      

Horizontaljrt * Coretecit 
      0.0000 0.0001   

        (0.0001) (0.0001)   

Backwardjrt * Coretecit 
      0.0047 -0.0078*   

        (0.0067) (0.0046)   

Forwardjrt * Coretecit 
      0.0008 0.0011   

        (0.0040) (0.0007)   

Horizontaljrt * TDit 
         0.0006 0.0003 

           (0.0006) (0.0009) 

Backwardjrt * TDit 
         0.0003 -0.0974** 

           (0.0537) (0.0448) 

Forwardjrt * TDit 
         -0.0209 0.0173* 

           (0.0645) (0.0097) 
PSTOCKit -0.0169** -0.0062 -0.0168** -0.0064 -0.0168** -0.0064 -0.0166** -0.0065 

  (0.0068) (0.0058) (0.0068) (0.0058) (0.0068) (0.0058) (0.0067) (0.0058) 

Average wageit -0.1917*** -0.2137*** -0.1920*** -0.2138*** -0.1917*** -0.2137*** -0.1917*** -0.2137*** 
  (0.0402) (0.0216) (0.0402) (0.0216) (0.0402) (0.0216) (0.0402) (0.0216) 

Firm age 0.0006 -0.0026* 0.0007 -0.0026* 0.0005 -0.0026* 0.0005 -0.0026* 

  (0.0038) (0.0015) (0.0037) (0.0015) (0.0038) (0.0015) (0.0038) (0.0015) 
Constant 0.0983 0.2273*** 0.0958 0.2279*** 0.1010 0.2278*** 0.1017 0.2275*** 

  (0.1028) (0.0421) (0.1027) (0.0421) (0.1030) (0.0421) (0.1032) (0.0421) 

Sector Y Y Y Y Y Y Y Y 

Year Y Y Y Y Y Y Y Y 

Firm Y Y Y Y Y Y Y Y 

Observations 16,572 36,674 16,572 36,674 16,572 36,674 16,572 36,674 
Number of firms 2,775 6,619 2,775 6,619 2,775 6,619 2,775 6,619 

R-squared 0.0322 0.0341 0.0328 0.0343 0.0323 0.0342 0.0323 0.0342 

 

Notes: Coefficients from panel fixed-effects model estimation of equation (1) – (4) are reported. Robust standard errors clustered at 

the firm level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Sector and year dummies are included.   
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CHAPTER 5: CONCLUSION 

 

The last decade has seen an accelerating pace of important transformations of business 

environment in which businesses operate. More than ever, businesses face the need for strategising to 

respond to these transitions: the fourth generation of digital revolution known as Industry 4.0, 

transitioning to a more sustainable world, to name a few. These two driving forces of the transformation 

of GVCs, known as the digital and green transitions, are largely driven forward by technological 

advancements and innovation, and they are prone to create long-term social and economic opportunities 

and challenges. However, it is less clear how market players should respond to these technological 

transformations with the aim of maximising benefits and mitigating risks, and what kind of impacts the 

big trends will bring to the wider economy. Understanding what these big trends mean for businesses 

has critical implications for both practitioners and public policy makers. 

Against such a backdrop, this thesis was developed to investigate how companies react to the 

ongoing economic and societal challenges within their business environment during such two 

transitions. In particular, we intend to understand how businesses develop their technological 

competence or capacity for creating ground-breaking innovation within Industry 4.0 and environmental 

innovation under the current global endeavour to achieve SDGs. We also propose to analyse how the 

wave of green technology influences businesses in the wider economy through the diffusion of green 

innovation. 

For each of our empirical studies, the last chapter provides a summary of the key points that have 

been made and reviews the implications for both management and policy makers. 

 

5.1 Discussion and conclusion of Chapter 2 – Innovation of IoT technologies 

5.1.1 Summary 

Chapter 2 advances our understanding of the route towards pathbreaking innovation activities. 

Firms often face a tension between innovation persistence in their technological core competence and 

technological diversification that typically expands the boundary of knowledge. This tension is 

especially acute in the case of pathbreaking technologies such as the IoT, a core infrastructure element 

of Industry 4.0.  

Focusing on the factors that drive firms’ creation of ground-breaking IoT technologies, we 

investigate how companies’ technology trajectory in terms of their core-technology competence, 

technology diversification, and innovation persistence affects pathbreaking innovation, as measured by 

IoT technology patenting. We develop theory suggesting that technological core competence is inimical 
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to engagement in IoT patenting, whereas possessing a technological related and unrelated knowledge 

base is strongly positively linked to IoT innovation. 

We employ a multiple choice modelling approach to test the hypotheses, and confirm empirically 

that the determinants of innovation in IoT differ substantially from those of more established 

technologies. Technological specialisation in the form of firm-specific competence in their core 

technological fields tends to attenuate firms’ propensity to generate pathbreaking innovation relative to 

other traditional ICT areas. By contrast, having a diversified knowledge base facilitates searching for 

novel solutions and technological complementarities, which increases the tendency to create ground-

breaking innovations and reduces the effects of knowledge inertia. The typical characteristics of IoT 

require organisations to think beyond the scope of their proximate technological competences and to 

build diversified capabilities by exploring broader knowledge domains. The fact that previous 

innovation patterns and experience are not prerequisites for cultivating the ground-breaking IoT 

technologies appears to be good news for new entrants who wish to keep pace with the technological 

revolution despite lacking outstanding innovation performance and experience. If firms continuously 

and persistently innovate by exploiting existing knowhow and absorbing external resources, the level 

of unrelated diversification within their knowledge base tends to accumulate over time, strengthening 

organisations’ dynamic capabilities, which in turn support enterprises in taking advantage of cross-

fertilisation (Suzuki and Kodama, 2004). 

 

5.1.2 Managerial and policy implications 

Our results in Chapter 2 provide insights not only for new entrants who desire to take part in this 

new area but also for pioneering innovators who wish to strengthen their technological positions within 

Industry 4.0. First, new, agile, and young entrants, who might appear to be lagging behind, turn out to 

have a role to play in this wave of technological revolution. Second, managers should keep an eye on 

reducing the likelihood of experiencing core rigidities and the knowledge inertia induced by excessive 

focus of core technology, in order to be ready for the next generation of advanced manufacturing. Third, 

organisations ought to recognise the importance of establishing broad technological disciplines to 

absorb or incorporate streams of varieties and to produce novel knowledge combinations. Last but not 

least, given that innovation persistence does play an indirect role in promoting innovation in this 

emerging field through enhancing the effects of unrelated knowledge diversification, businesses need 

to recognise the importance of persistent knowledge accumulation so as to further gain from cross-

fertilisation. 

In respect of the policy implications, the likelihood of predicting innovators tends to become even 

weaker in the new wave of technological evolution. Therefore, governments’ approach of cherry-

picking potentially innovative firms to support is likely to bear little fruit. It seems to be more effective 
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to build a breeding ground for facilitating the formation of firms’ technological diversification and 

creating new technologies with the right nutrients. Second, fostering technological coordination and 

setting up new forms of comprehensive collaborations and partnerships between established incumbents 

and young firms might be more cost-effective ways of promoting firms’ readiness for industry 4.0. 

Finally, decision makers aiming to advance technologies in Industry 4.0 should recognise the 

stimulating effects of efficient and long-lasting policies, with their ultimate goal of catalysing growth. 

 

5.2 Discussion and conclusion of Chapter 3 – Connectivity and environmental innovation of 

developed county MNEs 

5.2.1 Summary 

The related literature on MNEs’ global connectedness is rich, but it has not been fully developed 

and tested in the context of environmental innovation. Considering that MNEs have advantages in 

undertaking innovation and R&D based on their firm-specific advantages, we still know little about if 

this is also the case with the creation of environmental innovation under the emerging sustainability 

context. In the intersection of the knowledge-based view of MNEs and the environmental innovation 

literature, prior literature neglected to consider whether the MNEs’ knowledge advantages (derived 

from global connectedness) could provide them with competitive advantage in terms of environmental 

innovation, particularly from the perspective of the parent company. Indeed, the existing conceptual 

framework of environmental innovation’s determinants did not incorporate the global connectedness 

derived from production networks and innovation networks. Answers to the aforementioned questions 

are of vital importance not only in terms of advancing the existing conceptual framework of 

environmental innovation’s determinants by analysing such innovation from the global connectedness 

lens, but also guiding actions of practitioners and policymakers who strive to engage in and drive the 

green transformation. 

We address the abovementioned gaps by explaining the determinants of environmental innovation 

through an IB and management research lens. We explore the multifacets of MNEs’ global linkages, 

including organisational linkages, production linkages, and, most importantly, cross-border innovation 

networks. In addition, we extend the existing theoretical framework of determinants of environmental 

innovation at the level of the parent firm by our incorporation of intra- and inter-MNE linkages of 

different kinds, and geographically diversified organisational spaces. Lastly, based on a large-scale 

secondary dataset, our work provides concrete empirical evidence and practical implications for the 

specificities of environmental innovation and how it is conceived and realised. 

Thus, this chapter is grounded in the knowledge-based view and MNEs’ global connectedness in 

terms of both their production and innovation activities. The knowledge-based view has a long tradition, 

which considers knowledge as a strategic resource of the firm. In this research, we combine it with the 
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more recent literature on MNEs’ global connectedness, which allows us to develop and test the global 

connectedness arguments in the context of environmental innovation. Our results demonstrate that the 

existing theories within the IB field are well placed to explain the strength of MNEs (particularly 

DMNEs) for pursuing environmental innovation endeavours. At a higher level, we bring the topic of 

environmental innovation into the IB and management research arena, laying the foundation for further 

exploration of interdisciplinary research on IB and sustainability. 

The primary aim of this chapter is to examine the factors that facilitate the firm’s environmental 

innovation capacity. To be more precise, we focus on the effects of different types of intra- and inter-

organisational production and innovation networks. By adopting a pooled Tobit modelling approach, 

we confirm empirically that wider global linkages built on production networks, and intra- and inter-

MNE innovation co-production linkages contribute to a MNE’s capability to produce environmental 

innovation. We find consistent support for the majority of our hypotheses and the results are robust to 

sensitivity testing. It indicates that developed country MNEs are in an advantageous position to develop 

such innovation capability and sheds light on their potential contribution to achieving the SDGs. 

Nevertheless, intra-organisational linkages motivated by traditional control and coordination 

mechanisms do not play an important role in environmental innovation capacity. This emphasises that 

specific types of ties related to knowledge connectivity and innovation collaboration matter important 

for environmental innovation than general control and coordination linkages. MNEs’ arrangements for 

international production and innovation activities are grounded in their cross-border organisational 

linkages. These appear to be important channels for facilitating knowledge transfer and recombination, 

which cultivates high levels of knowledge development and environmental innovation capacity. 

 

5.2.2 Managerial and policy implications 

In practical terms, our findings in Chapter 3 provide valuable insights for management and 

policymakers on how to plan and stimulate related innovative activities within the sustainable 

development domain.  

In order to be ready for the future trend of environmental innovation, MNEs, as large leading firms 

in the global value chains, are able to take advantage of their cross-border organisational linkages of 

production and innovation activities, putting them in a good position to invest in and invent new 

environmental products, processes, and novel technologies. Given the stimulating role of international 

connectedness, MNE managers pursuing greater environmental sustainability should find ways to 

further build connections related to innovative activities and improve organisational connectedness with 

diverse stakeholders globally. 

Policymakers need to take a differentiated approach when interacting with MNEs, and developed 

country MNEs in particular, because their vital role in contributing to sustainable development makes 
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them good targets for policymakers. Attention should be directed to creating and fostering mechanisms 

that can stimulate the formation and diversity of internationally integrated production networks, and 

internal and external innovation networks, in order to cultivate organisational capacity to innovate 

environmentally. 

 

5.3 Discussion and conclusion of Chapter 4 – Agglomeration externalities of green innovation 

5.3.1 Summary 

Given the increasingly crucial roles of sustainable thinking and environmental concerns, research 

on environmental innovations or green innovations, and their impacts have attracted considerable 

attention of academics and practitioners in recent years. This stream of literature has largely focused on 

the determinants of green innovation development, its internal impacts on the focal firm, and external 

impacts on the sectoral environmental performance. Despite this, we still lack understanding of how 

green technology interacts with the local economy and thus affects other firms’ economic performance. 

By connecting the environmental innovation literature with economic geography arguments on 

agglomeration externalities, we fill the knowledge gap by investigating the economic relevance of green 

innovation spillovers on the performance of other related businesses within the same locality and 

revealing the conditions under which the spillovers can happen. Moreover, we consider how different 

dimensions of absorptive capacity affect firms’ ability to leverage green innovation externalities and 

absorb such spillovers. As far as we are aware, this is the first study to investigate the spillover effects 

of green innovation via both horizontal and vertical linkages in driving firm-level economic 

performance, which tends to offer important implications for both practitioners and policy makers. 

Drawing on Orbis IP and Orbis databases for the UK manufacturers, we adopt the fixed-effects 

panel data modelling to examine the spillover effects of green-tech firms. We find that the signs and 

strength of such impacts vary across the positions of value chains and depend on firms’ characteristics 

and sectors. Overall, green technology appears to have positive spillovers on other businesses’ 

productivity and growth through the backward linkages, but it can also trigger disruptions to upstream 

suppliers’ existing production processes and routines attributable to creative destructions via the 

forward linkages. By contrasting the results of different measures of absorptive capacity, we discover 

that compared with the indicators of codified technological knowledge, intangible resources in general 

might not be specific enough to capture the capability required in the context of green innovation 

spillovers. Our result that the less established firms and the disadvantaged group reveal as the main 

beneficiaries in terms of productivity offers meaningful implications for the policy making designed to 

strive for long-term and balanced growth. 
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5.3.2 Managerial and policy implications 

Our results in Chapter 4 offer empirical grounds for managers and policy makers aiming at 

promoting green technology by showing that green-tech companies are able to generate overall welfare 

effects on the wider economy. 

First, not all the aspects of absorptive capacity are of equal importance. Measures of codified 

technological knowledge, instead of general knowledge assets, turn out to be more crucial under the 

condition of green spillovers absorption. Hence, businesses who wish to take advantage of this green 

transformation should focus on building their strong technological competence so as to maximise the 

benefits of knowledge spillovers and mitigate the induced demand-driven market disruptions. 

Second, the organisational objectives of increased productivity and employment growth might not 

always be complementary. The national government may plan to formulate policies that promote green 

technology and an environmentally sustainable society, but the impacts of green innovation are not 

always favourable. Therefore, it is important for decision makers to recognise the implications of how 

green technology influences the productivity and growth in the wider economy when implementing 

policy goals.  

More importantly, heterogeneity in the impacts of green innovation externalities across firm 

characteristics and industrial technological intensity highlights the necessity to design targeted policy 

instruments that specifically consider the variations in order to maximise the gains. 

Our conclusion that the less established firms and the disadvantaged group are the main 

beneficiaries in terms of firm productivity has meaningful implications for the policy formulation 

intended to promote long-term and balanced growth. 
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