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Abstract
We consider the potential use of optical traps for precision measurements in atomic hydrogen
(H). Using an implicit summation method, we calculate the atomic polarisability, the rates of
elastic/inelastic scattering and the ionisation rate in the wavelength range (395–1000) nm. We
extend previous work to predict three new magic wavelengths for the 1S–2S transition. At the
magic wavelengths, the 1S–2S transition is unavoidably and significantly broadened due to
trap-induced ionisation associated with the high intensity required to trap the 1S state. However,
we also find that this effect is partially mitigated by the low mass of H, which increases the trap
frequency, enabling Lamb–Dicke confinement in shallow lattices. We find that a H optical
lattice clock, free from the motional systematics which dominate in beam experiments, could
operate with an intrinsic linewidth of the order of 1 kHz. Trap-induced losses are shown not to
limit measurements of other transitions.

Keywords: hydrogen spectroscopy, optical lattice clock, precision measurement

1. Introduction

Fundamental physics tests in hydrogen [1–5] rely on determ-
ining two parameters; the Rydberg constant R∞, which relates
the theoretical energy scale to the SI system of units, and
the ‘size’ of the proton, characterized by its charge radius
rp, which cannot yet be accurately calculated from quantum
chromodynamics [6]. The 1S–2S transition frequency, which
has been measured with a fractional uncertainty of ∼10−15

[7, 8], can be used to precisely determine one of these para-
meters, but must be complemented by measurements of other
transitions or scattering-based measurements of rp [9]. It is
well-known that the current dataset of relevant measurements
is internally inconsistent [10, 11], and inconsistent with meas-
urements in muonic hydrogen [12]; a problem often called the
‘proton charge radius puzzle’ [13]. Whilst this variation may
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be evidence of new physics (e.g. a hidden sector, light scalar
boson [4, 5, 14]), the disagreement between two recent meas-
urements of the 1S–3S transition [15, 16] indicate that exper-
imental systematics are at least partially responsible.

Currently, all precision H spectroscopy experiments rely
on an atomic beam as the source [7, 8, 14–21]. Line shifts
and broadening due to motional (Doppler) effects are a sig-
nificant source of uncertainty, and careful velocity filtering
[7] and/or lineshape analysis (see the supplementary inform-
ation of [14]) is required to extract precise measurements of
the transition frequency. As a result, the overall uncertainty
in measurements of the 1S–2S transition has not significantly
advanced in 10 years, andmotional effects may be a significant
source of inconsistency within the H world dataset.

In contrast, the precision spectroscopy of heavier neutral
atoms has been revolutionised by the use of ultra-cold trapped
atoms in optical lattice clocks (OLCs) [22–26]. Here atoms
are confined in a ‘magic wavelength’ optical lattice such that
trap-induced lineshifts cancel, and motional effects are elim-
inated by operating in the tight confinement (Lamb–Dicke)
regime [22]. OLCs have now reached a precision of ∼10−18,
which surpasses the current definition of the SI second [27].
An anti-hydrogen (H̄) lattice clock operating on the 1S–2S

1 © 2024 The Author(s). Published on behalf of BIPM by IOP Publishing Ltd
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was recently proposed [28]; comparing H and H̄ clocks would
provide a stringent test of CPT symmetry [29–32].

A magic wavelength for the 1S–2S transition has already
been established [33, 34]. However scattering of the trapping
light can also lead to decoherence via heating, inelastic scat-
tering and ionization. Heating from elastic scattering is known
to be small [28]. Inelastic cross-sections have been calculated
for some wavelengths and final states [35–37], alongside two-
photon ionization rates from the 2S state [36, 38–42], but so
far these have not been discussed in the context of precision
measurement with optically trapped H atoms.

In this paper we give a comprehensive treatment of the
effect of trap-induced scattering and multi-photon ionisation
on measurements involving the 2S state of H. We pay spe-
cial attention to rates at four 1S–2S magic wavelengths—one
known and three newly reported. We find excellent agreement
with existing calculations and extend these works to consider
all relevant final states. At trap intensities relevant to the oper-
ation of an OLC, we find that two-photon ionisation provides
the dominant loss channel. The result is a considerable reduc-
tion in the 2S lifetime and the achievable linewidth there-
fore remains similar to atomic beam experiments. However we
show that it remains possible to reach the Lamb–Dicke regime,
eliminating motional effects up to a small relativistic Doppler
shift. An OLC could therefore test our understanding of sys-
tematic uncertainties in the H dataset at a level relevant to the
proton radius puzzle. For transitions to higher-lying states (e.g.
Rydberg states), the additional broadening no longer limits the
coherence time, and atoms trapped in an optical tweezer array,
for example, could be useful for eliminating uncertainties due
to long-range interactions.

All mathematical expressions are given in atomic units (see
e.g. [43]).

2. Numerical calculations

Central to any OLC is the optical lattice; a one dimensional
lattice is described by the potential [44]:

U(x) = U0 cos
2 kx, (1)

with

U0 =−2παFSαa (ω) I0, (2)

where k and ω are the wave number and frequency of the lat-
tice light respectively, I0 is the peak lattice intensity, αFS is the
fine structure constant, and αa is the polarisability of atomic
state a. Throughout the text, we assume that the lattice light is
linearly polarised in the ẑ direction and that this matches the
atomic axis of quantisation. It is often useful to characterise
the depth of the lattice |U0| in terms of the single lattice photon
recoil energy, Erec = ω2α2

FS/2mH
1, giving a dimensionless lat-

tice depth D= |U0|/Erec.

1 This definition (in atomic units) is equivalent to Erec = h̄2k2/2mH.

Figure 1. Polarisability of the 1S (blue dashed line) and 2S states
(solid orange line) versus wavelength. A symmetric log scale is used
on the y-axis. The four magic wavelengths listed in table 1. are
labelled as (a)–(d). Vertical dotted lines indicate 2S-nP atomic
resonances.

The polarisability of state a with zero orbital angular
momentum, l= 0 (nS state) at frequency ω is given
by [45, 46],

αa (ω) =
1
3

∑
k

(
|rka|2

ωka−ω
+

|rka|2

ωka+ω

)
. (3)

The sum is across all states k that are dipole coupled to a.
Here rka are the radial dipole matrix elements as defined in
appendix A (equation (A5)) and ωka = ωk−ωa is the differ-
ence in energy between the states k and a.

We calculate the atomic polarisability using the implicit
summation method described in appendix B. The calculation
is non-relativistic. The leading order corrections to these val-
ues come from relativistic and field configuration terms and
are of the order of∼α2

FS [33, 34]. Therefore values reported in
this paper are quoted up to four significant figures. The polar-
isability of the 1S and 2S states is plotted for a range of optical
wavelengths in figure 1.

Magic wavelengths, where the polarisability of both states
is equal, are critical for an OLC as they eliminate the dif-
ferential light shift on the clock transition. To find these
wavelengths, we numerically solve |α2S(ω)−α1S(ω)|= 0 in
the region around each intersection labelled a–d in figure 1.
We find four magic wavelengths in the considered range2 at
514.6 nm, 443.2 nm, 414.5 nm, and 399.5 nm. The polarisab-
ility at the magic wavelengths are reported in table 1.

Figure 1 and table 1 show that the polarisability at the
magic wavelength is very small, approximately 4.8 atomic

2 For comparison it is useful to give these to more significant figures:
514.6464 nm, 443.212 nm, 414.483 nm, and 399.451 nm. The first agrees very
well with the literature [33, 34].
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Table 1. Key parameters for 1S-2S spectroscopy in magic wavelength traps: polarisability α (in atomic units) of both states and the
intensity that produces a 1Erec deep lattice. Values for the Rayleigh scattering rate Rel, the Raman scattering rate Rin and the two-photon
ionisation rate Rion are stated at a depth of 1 Erec.

λ/nm α I/MW cm−2 Rel/s
−1 Rin/s

−1 Rion/s
−1

514.6 4.730 3.372 7.986× 10−3 61.49 32.19
443.2 4.813 4.460 17.16× 10−3 69.41 30.29
414.5 4.863 5.056 24.23× 10−3 73.90 29.04
399.5 4.890 5.413 29.31× 10−3 76.78 28.33

units compared to ∼280 atomic units in Sr at the 813 nm
magic wavelength [47], due to the absence of 1S resonances
at wavelengths shorter than 121.6 nm (the Lyman alpha line).
In addition, the low mass of H leads to large recoil velocities
at optical frequencies and substantial laser power is required
to trap in the 1S state. OLCs usually operate in deep optical
traps, often around 100Erec. Such a deep lattice for a hydro-
gen OLC requires intensities of 100’sMWcm−2 (see table 1),
on the order of 104 (written as O(104)) times larger than a
comparable lattice for Sr. Nevertheless, such high intensities
are achievable with current laser technology, particularly for
514.6 nmwhere significant power is available from frequency-
doubled 1029.2 nm radiation [28, 48].

A major concern in optical trapping is off-resonant atom-
photon scattering. It is useful to separate the various scatter-
ing processes by the final internal state of the atom. Firstly
we consider elastic or Rayleigh scattering. The key effect of
elastic scattering is to change the vibrational state of trapped
atoms, resulting in heating [44]. The elastic scattering rate is
closely related to the polarisability and can be written as (see
appendix A)

Rel = ω3α4
FS
8π
3
|αa (ω) |2I. (4)

This rate is the same for both the 1S and 2S states in a
magic wavelength trap. Therefore, we present a single value
for the elastic scattering rate in table 1. These rates are very
small, only approaching the spontaneous decay rate at around
1000Erec at 514.6 nm (270Erec at 399.5 nm).

Next, we consider inelastic scattering to other bound
internal states. Critically, this includes scattering directly to
the ground state. As explained in appendix A, the scattering
rate from an initial S state a to final state(s) b of energy ωb can
be expressed in the following form:

Rba = ω3
sα

4
FSAba

[∑
k

(
rbkrka
ωka∓ω

+
rbkrka
ωbk±ω

)]2

I, (5)

where ωs =−ωba±ω is the angular frequency of the scattered
photon and Aba is an angular factor. Dipole selection rules
restrict scattering to only S or D final states. Upper and lower
signs relate to Raman scattering (RS) and singly stimulated
two-photon emission (SSTPE) [49] respectively. A breakdown
of the total 2S inelastic scattering rate according to final n, l
state (summing over magnetic quantum number mb) is given
in table 2 and indicates that inelastic scattering to the ground
state is the dominant process.

The scattering rates were calculated with the same impli-
cit summation method as the polarisability (appendix B). The
elastic scattering rate is consistent with existing work [36, 50],
while results for scattering to 1S, 3S and 3D states at 514.6 nm
are in good agreement with previous calculations close to this
value [36]. The results for additional final states and other
magic wavelengths are new, to the best of our knowledge.
Leading order corrections from relativistic and field config-
uration terms are of the same order as for the polarisability.

The total inelastic scattering rate is given by the sum of RS
and SSTPE rates for all allowed final states Rin =

∑ωba<ω
b̸=a Rba.

These total inelastic scattering rates are presented in table 1
and are much larger than the corresponding elastic scattering
rates, exceeding the rate of spontaneous decay for depths as
low as O(0.1)Erec.

Lastly we consider ionisation. Single photon ionisation
from the 2S state is only possible at wavelengths below
365 nm. Ionisation at the magic wavelengths thus involves
absorption of at least two photons. We use the STRFLO
program [51] to calculate multi-photon ionisation rates. The
ionisation rates at the magic wavelengths are given in the
final column of table 1 for D= 1. Inelastic scattering rates
scale linearly with intensity, while these ionisation rates scale
with intensity squared. Therefore, ionisation quickly domin-
ates inelastic scattering as trap depth increases past O(1)Erec,
as shown in figure 2. The dominance of ionisation for relat-
ively low trap depths is a result of the low polarisability of the
1S state, and the high trapping intensities that result.

Table 1 and figure 2 indicate that at magic wavelengths, the
impact of trap induced ionisation is enormous. At a depth of
1Erec the 2S state lifetime is reduced from 125ms toO(10)ms,
while at 100Erec it becomes justO(1) µs. These results impose
severe limitations on the coherence times that can be achieved
in a H lattice clock.

The impact of operating at a magic wavelength is high-
lighted by plotting the scattering and ionisation rates as a func-
tion of wavelength, as in figure 3. In figure 3(a) the rates are
shown for a constant intensity of 100MW cm−2; correspond-
ing to trap depths ranging from 30Erec at 514.6 nm to 18Erec

at 399.5 nm. Here, peaks in the rates correspond to the res-
onances of the Balmer series. Two-photon ionisation does not
extend past the threshold at 729 nm. For longer wavelengths,
ionisation proceeds via the absorption of at least three photons.
The 3-photon ionisation rates vary as I3 but are generally much
smaller than the inelastic scattering rate at these intensities,
except at narrow 2 photon resonances with intermediate bound
states.

3
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Table 2. Rates for allowed inelastic scattering processes with nS and nD final states (listed according to final state) and total inelastic
scattering rates for the 2S initial states. The rates are given per unit depth in units of s−1 at a depth of 1Erec in the 2S state.

λ/nm 1S 3S 3D 4S 4D 5S 5D 6S 6D Rin/D

514.6 57.32 3.843 0.3329 — — — — — — 61.49
443.2 62.85 3.269 0.1861 2.295 0.8110 — — — — 69.41
414.5 65.75 3.249 0.1570 1.892 0.5481 1.467 0.8388 — — 73.90
399.5 67.53 3.272 0.1453 1.802 0.4636 1.207 0.6109 1.005 0.7460 76.78

Figure 2. Comparison between the two-photon ionisation rate
(solid blue lines) and the inelastic scattering rate (dashed orange
lines) for varying trap depth at 514.6 nm. At this scale, these plots
look the same for all magic wavelengths. The intersection between
the two lines does not change substantially either: it is at 2Erec for
514.6 nm and 3.2Erec for 399.5 nm.

In contrast, figures 3(b) and (c) show the rates at a con-
stant trap depth D= 100. In (b) it is the 2S trap depth that
is fixed, while in (c) it is the 1S trap depth. We note that D
ignores the sign of the potential; in wavelength regions where
the polarisability is negative (blue detuned) atoms are trapped
at intensity minima and the actual loss rate observed in exper-
iment may be lower. Compared to figures 3(a) and (b) shows
an extra series of divergences in the inelastic scattering and 2-
photon ionisation rates. These originate from zero-crossings of
the 2S polarisability. Here the intensity required to produce a
trap at a given depth, and hence the rates, diverge. The magic
wavelengths sit very close to these zero-crossings, suppress-
ing elastic scattering, but enhancing inelastic scattering and
ionisation at a given trap depth. The 1S polarisability is essen-
tially flat in this region and does not cross zero, so the shape
of figure 3(c) is very similar to part (a). Compared to part
(b) the rates are generally much larger, except at the magic
wavelength. Again, this is a result of the small, almost con-
stant, polarisability of the 1S state.

3. Discussion

First, we consider a 1S–2S hydrogen OLC, operating in a
magic wavelength lattice. As seen in the previous section, the

lifetime τ of the 2S state is severely reduced by two-photon
ionisation at these wavelengths. This broadens the minimal
linewidth of the 1S–2S transition, ΓFWHM = 1/(2πτ). This
effect is considerable in the deep lattices that are usual for
OLCs. For example, in a 100Erec deep magic wavelength lat-
tice, the 1S–2S line is broadened from a natural width of 1.27
Hz to an ionisation dominated ∼50 kHz.

An important motivation for using lattice-trapped atoms
is the potential to eliminate the velocity dependence of the
lineshape. To achieve this we must operate in the limit of
resolved sidebands, where the trap frequency (given in SI
units),

νT =
√
D

h
mHλ2

, (6)

is much larger than the linewidth, νT ≫ ΓFWHM. In this limit,
the effects of changes in vibrational state are separated into
distinct sideband signals. This leaves a central carrier line
that is insensitive to motional effects and symmetric in the
non-relativistic limit. The low mass of H and relatively short
magic wavelengths result in large trap frequencies, ≈

√
D×

2 MHz. This compares favourably with the linewidth and
makes it simple to achieve well-resolved sidebands. In fact,
the broadened linewidth only becomes comparable to the trap
frequencies for depths greater than3 O(1000)Erec.

It is also desirable to operate a clock in the Lamb–Dicke
regime, where the separation of vibrational states is much lar-
ger than the recoil energy of a 243 nm probe photon, hνT ≫
Eprobe. This suppresses transitions to other vibrational states
and reduces the relative size of the sideband signals com-
pared to the carrier. Whilst the Doppler-free driving of the
1S–2S transition at 243 nm suppresses first order changes in
momentum, higher-order effects due to wavefront curvature
remain. These momentum-changing effects appear in the
second-order sidebands (see appendix C). To make a quant-
itative statement, we demand that the probability of remain-
ing in the ground vibrational state Pn=0→n=0 > 0.9 (equival-
ent to η2 < 0.381), and find the results listed in table 3. We
note that the carrier remains subject to a small second-order
Doppler shift arising from time dilation [52]. Following the
calculation of [53], we obtain a fractional frequency shift of
−9.68× 10−18 in the vibrational ground state (for νT = 8.79
MHz) which corresponds to an absolute shift of −23.9mHz
in the 1S–2S transition frequency (see appendix C). Similar

3 Or for depths lower thanO(10−11)Erec, but this is smaller than the minimum
trap depth against gravity.
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Figure 3. The variation of elastic scattering (dotted blue lines), inelastic scattering (solid orange lines), and two-photon ionisation (dashed
green lines) rates from the 2S state across a range of wavelengths. The line showing two photon ionisation only extends to the threshold.
Also plotted are the three-photon ionisation rates (dashdotted lines) for wavelengths (800–1000) nm, which is the leading order ionisation
process in this region. (a) Rates at constant intensity I= 100 MWcm−2. (b) and (c) rates at variable intensities which maintain a constant
D= 100 lattice for depths defined with reference to the 2S and 1S states respectively. Black vertical lines indicate 2S atomic resonances and
red vertical lines indicate magic wavelengths.

calculations for thermal vibrational states result in a fractional
shift of O(10−17), which is still well below the current uncer-
tainty in the 1S–2S measurement [7].

It is instructive to compare the results in table 3 to measure-
ments in cold atomic beams [7, 8]. The systematic uncertainty
in beam measurements is dominated by velocity-dependent
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Table 3. The trap depth and 1S–2S linewidth at the intensity where
the Lamb–Dicke constraint is met for each magic wavelength. These
depths all relate to trap frequencies of 8.79MHz and a Lamb–Dicke
parameter of η2 = 0.381.

λ /nm (µT/
√
D)/MHz D ΓFWHM /kHz

514.6 1.50 34.5 6.43
443.2 2.02 19.0 1.95
414.5 2.31 14.5 1.14
399.5 2.48 12.5 0.857

effects such as the second-order Doppler shift. To reduce
these effects, the measurement must selectively address atoms
that sit within a very narrow range in the slow tail of the
velocity distribution. This results in a momentum-dependent
asymmetric lineshape with a measured width of ∼2 kHz [7].
The linewidths in table 3 are comparable, with the significant
advantage that the lineshape is symmetric and no longer velo-
city dependent.

One area where a trapped-atom measurements often lose
out is statistics, due to the reduced duty cycle and atom
number associated with cooling and trapping. In Sr OLCs,
statistical power is improved by reading out fluorescence
from a fast-cycling transition out of the ground state [22].
Unfortunately, due to the lack of laser power at Lyman series
wavelengths [54], such a scheme is impractical in H. At the
magic wavelength, trap-induced ionisation will provide a con-
tinuous readout of the 2S state population, with the draw-
back that it is destructive and so the trap must be replenished.
Currently, cooling and loading atomic H into an optical trap
is an open problem, but it is clear that optimising the experi-
mental duty cycle will be crucial in minimising the statistical
uncertainty that can be achieved.

An alternative to working at a magic wavelength is to
move to longer wavelengths where two-photon ionisation
is suppressed4. However, using a non-magic trap introduces
intensity-dependent systematics to the measurement exacer-
bated by the large differential light shift across the transition
(e.g. the 2S polarisability is around 40 times larger than the
1S polarisability at 1064 nm). Also, the need to trap atoms in
the 1S state as well as the 2S state means broadening from
inelastic scattering is still significant (compare figures 3(b)
and (c)). In addition, the lower trap frequencies available at
long wavelengths compared to the magic wavelengths mean
that even deeper traps are required to enter the Lamb–Dicke
regime.

However, the 2S state provides a suitable spectroscopic
ground state with accessible transitions to many states of
higher principal quantum number n (e.g. [14, 17, 18, 21]).
Transitions to high-lying Rydberg states are particularly inter-
esting in the context of a trapped atom measurement [4]. The
well-defined inter-atomic spacing of a lattice or tweezer array

4 The Lamb shift implies that a very long magic wavelength should exist
between the 2S-3P and the 2S-2P1/2/2P3/2 resonances, but this cannot be
obtained by the non-relativistic theory alone.

enables control of strong dipole–dipole interactions. It is not
necessary to trap at a 1S–2S magic wavelength, so one can
trap with much lower intensities at wavelengths with larger
2S polarisability. This significantly reduces the rates of two-
photon ionisation and inelastic scattering for traps at a given
depth (see figure 3(b)). For example, even a very deep trap of
D= 100 (for the 2S state) only quenches the 2S lifetime to
∼6ms at 1000 nm. Further, higher lying states are generally
short-lived: low-n states with lifetimes ofO(10) ns [55], whilst
high-lying states can have lifetimes of 100’s µs [56, 57]. In
this case, the reduced lifetime the 2S state does not limit the
measured linewidth which is instead dominated by the natural
lifetime of the high-lying state.

Finally, we mention the implications for measurements in
deuterium (D) and H̄. First, the non-relativistic theory of H
and D is identical up to a difference in the reduced mass, µ, of
(µD −µH)/µH = 2.702× 10−4. Thus the conclusions drawn
for H are valid for D, with relative differences in exact values
O(10−4). The structure of H and H̄ are identical. As such, the
results presented in this paper also hold for H̄ with the same
level of precision.

4. Conclusions

We have calculated the polarisability of the 1S and 2S states
in atomic hydrogen and identified new magic wavelengths
in the range (395–1000) nm (figure 1). We have also calcu-
lated the atom-photon scattering and two-photon ionisation
rates out of the 2S state in this wavelength range (figure 3),
paying particular attention to rates at the magic wavelengths
(tables 1 and 2).

Two-photon ionisation significantly broadens the 1S–2S
transition linewidth in deep magic wavelength traps. This
broadening is a consequence of the low polarisability of the
1S state and the resultant high trapping intensities. However,
the low mass of atomic hydrogen allows for high trap frequen-
cies. This makes it possible to enter the resolved sideband and
Lamb–Dicke regimes in relatively shallow traps compared to
heavier atoms like Sr (see table 3), opening a route to spectro-
scopy free from momentum-dependent systematics. In these
shallower traps, the effect of ionisation is no longer cata-
strophic, and linewidths of ∼1 kHz are achievable, especially
at the shorter magic wavelengths.

It is unlikely that a 1S–2S lattice clock will be com-
petitive as an absolute frequency reference when compared
to Sr lattice clocks or modern ion clocks. It could offer a
measurement of the 1S–2S transition in H, D and even H̄
with a narrow line, free from velocity-dependent systemat-
ics. Such a measurement provides a litmus test for unre-
cognised velocity-dependent systematics in the current H
data set. Further, comparisons between clock measurements
in H, D, and H̄ would set powerful constraints on pos-
sible physics beyond the Standard Model [58] and test CPT
symmetry [29–32].

The reduced lifetime of the 2S state does not limit
spectroscopy to higher-lying states in the same way, as the

6
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excited-state lifetimes are already short. Therefore trapped
atom spectroscopy is promising for transitions to Rydberg
states where a well-defined spacing becomes essential.
Experiments aiming to produce optically trapped cold H
atoms for precision spectroscopy are now underway in
several groups [59, 60], providing exciting perspectives
for the future
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Appendix A. Scattering rates

The differential cross section for the emission of a scattered
photon in the solid angle dΩ is given by the Kramers–
Heisenberg formula [61]:

dσ
dΩ

=

ωba<ω∑
b

∑
s=1,2

ω (±ω−ωba)
3
α4
FS

×

∣∣∣∣∣∑
k

(
ϵ∗s · rbkϵ · rka
ωka∓ω

+
ϵ · rbkϵ∗s · rka
ωkb±ω

)∣∣∣∣∣
2

, (A1)

where rka is the dipole matrix element ⟨k|r|a⟩, ωka = ωk−ωa,
ϵ is the polarisation vector of the trap photon—taken to be
linear—and ϵ1 and ϵ2 are two orthogonal unit vectors span-
ning the plane orthogonal to the direction of emission of the
scattered photon. For emission in the direction of co-latitude
angle ϑ and azimuthal angle φ, these two orthogonal vectors
could be chosen, e.g. as having polar angles ϑ1 = ϑ−π/2
and φ1 = φ for ϵ1 and ϑ2 = π/2 and φ2 = φ−π/2 for ϵ2.
Given this differential cross section, the total scattering rate
is obtained as

R=

ˆ
dΩ

dσ
dΩ

I
ω

=

ωba<ω∑
b

Rba, (A2)

where Rba is the rate of scattering from an initial state a to a
final state of energy ωb:

Rba = ω3
sα

4
FS

ˆ
dΩ

∑
s=1,2

∣∣∣∣∣∑
k

(ϵ∗s · rbk)(ϵ · rka)
ωka∓ω

+
(ϵ · rbk)(ϵ∗s · rka)

ωkb±ω

∣∣∣∣2 I. (A3)

Scattering may proceed via the absorption of a trap photon
and emission of a scattered photon of frequency ωs =−ωba+
ω (Raman scattering—RS), or via the emission of both a lattice
frequency photon and a photon of frequency ωs =−ωba−ω
(Singly stimulated two photon emission—SSTPE). The upper
signs relate to RS, and the lower signs to SSTPE—which is
only possible when b is lower in energy than a.

After some straightforward calculations one can re-cast
equation (A3) as equation (5) of section 2, where rbk and rka
represent radial matrix elements:

rbk =
ˆ ∞

0
r2drR∗

b (r)rRk (r) , (A4)

rka =
ˆ ∞

0
r2drR∗

k (r)rRa (r) , (A5)

with Ra(r), Rb(r) and Rk(r) denoting the radial wave func-
tion of the corresponding atomic states. The angular termAba

includes summation over scattered photon polarisation states,
summation over the magnetic quantum number of the final
state (the magnetic quantum number of the initial state is 0
here), and integration over the polar angles ϑ and φ. The cal-
culation yields Aba = 8π/27 when state b is an S-state and
Aba = 16π/27 when it is a D-state.

We note, in regard to the particular case of Rayleigh scat-
tering, for which a= b, that equation (4) of section 2 follows
immediately from these general results and from equation (3).

Appendix B. Implicit summation and calculation of
radial matrix elements

Calculating the polarisability and scattering rates requires the
computation of sums over all atomic states k that are dipole-
coupled to both a and b. In principle, this includes a sum over
an infinite number of discrete, bound states, and an integration
across a continuum of unbound states. Following [51, 62], we
carry out this calculation using the implicit summationmethod
(also called the Dalgarno–Lewis method [63, 64]). Here, the
sum is replaced by a single matrix element:∑

k

ϵi · rbkϵj · rka
ωk−ωa∓ω

= ⟨b|ϵi · r|Ψ⟩, (B1)

where the subscripts i and j simply identify the two polarisa-
tion vectors, and the vector |Ψ⟩ solves the equation

[H− (ωa±ω)] |Ψ⟩= ϵj · r|a⟩, (B2)

where H is the Hamiltonian including the reduced mass of the
system. The vector |Ψ⟩ includes contributions from both the
discrete and continuum parts of the spectrum.

We construct a discrete set of Laguerre functions multiplied
by spherical harmonics [65, 66],

B =

{
1
r
S(ζ)n,l (r)Ylm (θ,ϕ) : n ∈ N, l ∈ N0, |m|⩽ l

}
, (B3)

where ζ is a free, real parameter. The numbers n and l index
the Sturmian functions:

S(ζ)nl (r) =Nnl (2ζr)
l+1 e−ζrL2l+1

n−1 (2ζr) , (B4)

with Nnl a normalising constant. Lyx(s) are the associ-
ated Laguerre polynomials, expressed in the Rodriguez
representation [67].
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Such a set of Laguerre functions form a complete set span-
ning the Hilbert space of L2(0,∞) functions—the space of
square integrable functions over the semi-definite interval (see
[68] for proof). Thus, B forms a complete set spanning the rel-
evant Hilbert space.

We normalise the functions of B as Nnl =√
(n− 1)!/(n+ 2l)! such that,

ˆ ∞

0
r2dr

(
1
r
S(ζ)n ′l

)
1
r

(
1
r
S(ζ)nl

)
= δn ′n. (B5)

Orthogonality over the indexes l andm is assured by the ortho-
gonality of the spherical harmonics. This condition, and stand-
ard relations between the associated Laguerre polynomials as
presented in [67], can be used to analytically evaluate matrix
elements of operators. In this way, we produce representations
of the Hamiltonian dipole operators in the basis B; we denote
these matrices H andR respectively.

The wave function of an atomic state a is represented as a
vector a in the basis B. The angular wave functions of hydro-
gen are given by the same spherical harmonics that give the
angular parts of the basis functions B. Indeed, the quantum
numbers l and m relate directly to the indices of the same
labels. The radial wave function for atomic state a with prin-
cipal quantum number N can be decomposed over the radial
parts of the basis functions:

RNl (r) =
∑
n∈N

Cn,N,l
1
r
S(ζ)nl (r) , (B6)

where Cn,N,l are constants. We calculate this vector by numer-
ically solving the Schrödinger equation as a generalised eigen-
value problem:

Ha= ωaT a. (B7)

The overlap matrix T accounts for the non-trivial overlap
between the Sturmian functions.

The calculation of (B1) and (B2) reduces to solving themat-
rix equation,

[H− (ωa±ω)T ]Ψ=Ra, (B8)

and computing the product,

bTRΨ, (B9)

for both sums (i) and (ii) independently.
In principle, the choice of ζ is free, although convergence

is much slower for excessively large values of this parameter.
For all calculations presented in this article we let n range to
300 and set ζ = 0.3.We find that this is sufficient to ensure that
the resulting values of the scattering rate are stable to 1 part in
109 under variation to ζ ± 0.1.

The code we use is freely available at [69].
For similar calculations in alkali atoms, it is often suffi-

cient to sum across only a small number of discrete states to
converge to the correct value. However, this is not the case
in hydrogen, where continuum contributions cannot be neg-
lected. Figure 4 illustrates this point. This figure represents the

Figure 4. The fraction of the total inelastic scattering rate which
can be attributed to the lowest nP intermediate state, summed over
n, for n varying from 2 to 20. The data points and solid lines show
how this fraction increases with n at the four magic wavelengths
considered in this work. The dashed lines represent the convergent
limit of this fraction, calculated for a discrete sum up to the 100P
state. The difference between this limit and 1 is the contribution of
the continuum states.

fraction of the total inelastic scattering rate that is obtained by
summing over a finite number of bound intermediate states
only. As seen from this figure, failing to consider the con-
tinuum contributions to scattering rates underestimates them
by 23%–48% at the magic wavelengths. This underestimation
increases with photon energy.

Appendix C. Doppler free spectroscopy in optical
traps

In the Doppler free excitation on a two photon transition, the
atom experiences two separate momentum kicks in opposing
directions. Assuming that the photons come from opposing
beams oriented along the lattice axis (x̂), the atom experiences
two momentum kicks: +kx and −kx. The matrix elements for
a transition between vibrational states are given:

⟨n ′|eikx+ e−ikx|n⟩= ⟨n ′|eiη(a
†+a) + e−iη(a†+a)|n⟩, (C1)

where we have approximated the potential at bottom of a given
lattice site as harmonic: a and a† are the ladder operators for
the simple harmonic oscillator. The Lamb Dicke parameter
η =

√
Eprobe/ωT is the ratio between the recoil energy associ-

ated with probe photon absorption and the separation of vibra-
tional states.

Expanding (C1) in powers of iη, neglecting higher order
terms for small η:

⟨n ′|2+ 0− η2
(
a† + a

)2
+ 0+O

(
η4
)
|n⟩. (C2)

Terms with odd powers iη and −iη cancel, while terms with
even powers remain. The cancellation of the first order terms

8
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Table 4. Fractional SOD shift ⟨δν̂/ν⟩ for thermal states in magic wavelength lattices with trap frequencies of 8.79MHz.

λ /nm |U0|
kB

/mK n̄T=|U0|/kB ⟨δν̂/ν⟩T=|U0|/kB n̄T=|U0|/(3kB) ⟨δν̂/ν⟩T=|U0|/(3kB)

514.6 1.24 2.47 −5.75× 10−17 0.563 −2.06× 10−17

443.2 0.919 1.72 −4.29× 10−17 0.337 −1.62× 10−17

414.5 0.808 1.46 −3.79× 10−17 0.264 −1.48× 10−17

399.5 0.744 1.31 −3.51× 10−17 0.223 −1.40× 10−17

is analogous to the elimination of the Doppler shift in field free
measurements and here relates to the suppression of first order
sidebands.

Constraining consideration to leading order, one finds the
probability of transition between vibrational states:

Pn→n =
1
N

(
2− η2 − 2nη2

)2
(C3)

Pn→n+2 =
1
N
η4 (n+ 1)(n+ 2) (C4)

Pn→n−2 =
1
N
η4 (n)(n− 1) , (C5)

where N is some normalising function such that
∑

n ′ Pn→n ′ =
1 for all vibrational states n′. Transitions n→ n contribute to
the central carrier signal, whilst transitions n→ n± 2 contrib-
ute to second order sidebands and are detuned from the carrier
by ±2νT.

C.1 The second order Doppler shift

Following the arguments of [53], one obtains the following
relativistic shift to the probe frequency in the atom frame:〈

δν̂

ν

〉
n

=− hνT
4mHc2

(2n+ 1)−
(

g
2πνTc

)2

+
ϕ0

c2
. (C6)

where g is the acceleration due to gravity in the measurement
direction and ϕ0 is the gravitational potential at the centre
of a given lattice site. The first term is the frequency shift
from the second-order Doppler (SOD) effect whilst the second
and third terms describe gravitational red-shift. The gravit-
ational red-shift terms are negligible compared to the SOD
term, O(10−29) compared to O(10−17), so we have:〈

δν̂

ν

〉
n

=− hνT
4mHc2

(2n+ 1) . (C7)

Consider frequency shifts in an optical potential with trap fre-
quency 8.79MHz (as in table 3). For n= 0 we obtain a frac-
tional shift of −9.68× 10−18.

The shift in a thermal state at temperature T can be found
by replacing n in equation (C7) with the average occupation
number:

n̄=
1

exp
(
hνT
kBT

)
− 1

, (C8)

where kB is the Boltzmann constant.

The lattices described in table 3 have depths |U0|/kB
O(1)mK. Table 4 contains the SOD shift for thermal states
with temperature T= |U0|/kB and T= |U0|/(3kB) in each
magic wavelength lattice. The shallow traps and large trap fre-
quencies lead to low average occupations n̄, so thermal state
shifts remain small.
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