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Abstract

The Hindley-Milner (HM) typing discipline is remarkable in that it allows statically

typing programs without requiring the programmer to annotate programs with types

themselves. This is due to the HM system offering complete type inference, meaning

that if a program is well typed, the inference algorithm is able to determine all the

necessary typing information. Let bindings implicitly perform generalisation, allowing

a let-bound variable to receive the most general possible type, which in turn may be

instantiated appropriately at each of the variable’s use sites. As a result, the HM type

system has since become the foundation for type inference in programming languages

such as Haskell as well as the ML family of languages and has been extended in a

multitude of ways.

The original HM system only supports prenex polymorphism, where type variables

are universally quantified only at the outermost level. This precludes many useful pro-

grams, such as passing a data structure to a function in the form of a fold function,

which would need to be polymorphic in the type of the accumulator. However, this

would require a nested quantifier in the type of the overall function. As a result, one

direction of extending the HM system is to add support for first-class polymorphism, al-

lowing arbitrarily nested quantifiers and instantiating type variables with polymorphic

types. In such systems, restrictions are necessary to retain decidability of type infer-

ence.

This work presents FreezeML, a novel approach for integrating first-class poly-

morphism into the HM system, focused on simplicity. It eschews sophisticated yet

hard to grasp heuristics in the type systems or extending the language of types, while

still requiring only modest amounts of annotations. In particular, FreezeML leverages

the mechanisms for generalisation and instantiation that are already at the heart of ML.

Generalisation and instantiation are performed by let bindings and variables, respect-

ively, but extended to types beyond prenex polymorphism. The defining feature of

FreezeML is the ability to freeze variables, which prevents the usual instantiation of

their types, allowing them instead to keep their original, fully polymorphic types.

We demonstrate that FreezeML is as expressive as System F by providing a transla-

tion from the latter to the former; the reverse direction is also shown. Further, we prove

that FreezeML is indeed a conservative extension of ML: When considering only ML

programs, FreezeML accepts exactly the same programs as ML itself.

We show that type inference for FreezeML can easily be integrated into HM-like
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type systems by presenting a sound and complete inference algorithm for FreezeML

that extends Algorithm W, the original inference algorithm for the HM system.

Since the inception of Algorithm W in the 1970s, type inference for the HM system

and its descendants has been modernised by approaches that involve constraint solving,

which proved to be more modular and extensible. In such systems, a term is translated

to a logical constraint, whose solutions correspond to the types of the original term.

A solver for such constraints may then be defined independently. To this end, we

demonstrate such a constraint-based inference approach for FreezeML.

We also discuss the effects of integrating the value restriction into FreezeML and

provide detailed comparisons with other approaches towards first-class polymorphism

in ML alongside a collection of examples found in the literature.
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Lay Summary

Many programming languages employ a static type system to increase the reliability of

programs, by checking if programs are well typed before executing them. A type sys-

tem may then guarantee that some formal properties hold for all well typed programs.

For example, a type system may guarantee that well typed programs will not crash due

to a function being called with an insufficient number of arguments.

Establishing whether a program is well typed works by assigning types to expres-

sions written in the language, describing their possible values. For example, the ex-

pression 123 may receive the type Int of integer numbers. The type system then defines

when a certain expression may be given a certain type. For example, the type system

may dictate that in order for a function call to be well typed, the type of the function

(encoding the number of expected parameters and their individual types) must be com-

patible with the number and types of the arguments. This in turn allows giving the

overall function call under consideration a type, derived from the function’s type.

As a more concrete example, the function inc may be defined to increase integers

by one. It may thus be given the function type Int→ Int, meaning that it is a function

that takes exactly one integer argument and returns an integer. The expression inc 1,

where inc is applied to 1, is then well typed with type Int, while inc “hello” is not.

Some type systems offer polymorphism, supporting types that can indicate that a

certain expressions can be used as if it had multiple types. For example, a user may

define a function reverse that takes an argument of type List Int (i.e., a list contain-

ing integer values), and returns a list containing the same elements, but in reversed

order. A type system could thus give reverse the type List Int → List Int. However,

a straightforward definition of reverse would usually not depend on the fact that the

input list contains integers, but only depend on the fact that it is a list. Thus, the same

implementation of the function may be used to reverse any kind of list.

A type system supporting polymorphism can represent this by allowing reverse

to receive the polymorphic type ∀a.List a → List a. Here, a is a type variable; the

universal quantification expresses that reverse’s type may be instantiated by picking

what a should be. Thus, one type that ∀a.List a → List a may be instantiated to is

the earlier type List Int → List Int. Giving reverse the former polymorphic type then

allows re-using the same definition of the function to act on many types of lists, instead

of creating duplicate versions for each list type to act on.

Another way to characterise a type system is whether it supports some degree of
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type inference. Some type systems require programmers to annotate all functions and

variables with their types. This can be laborious, which is why some languages, such

as recent versions of Java and C++, allow omitting types on certain local variables,

meaning that the language’s type system will infer the variable’s type by reasoning

about the value used to initialise it. Some type systems go further, meaning that the

programmers do not need to write any type annotations at all. The theoretical founda-

tion for this kind of type inference was established by the Hindley-Milner (HM) type

system, first incorporated into the ML language. A key formal property is that there

exist type inference algorithms for the HM system that are complete, meaning that

if there exists a way of assigning types to expressions in a program to make it well

typed, the algorithm will find it. This required a careful design of the HM type system:

It supports polymorphism, but imposes several restrictions regarding the nesting of

quantifiers within types and what types a quantified type variable may be instantiated

with. Easing these restrictions can easily result in the completeness property of type

inference to be lost.

Several type systems have been proposed that lift the restrictions imposed on poly-

morphism by the HM system, supporting what is called first-class polymorphism in-

stead. In order to have any hope of providing a complete type inference algorithm,

such systems require type annotations in some situations. This requires trade-offs, bal-

ancing the amount of type annotations required against how complicated the inference

algorithm and rules of the type system are.

This work explores FreezeML, a new type system in this design space. It is de-

signed to follow ML and the HM system particularly closely: The decision-making

about how polymorphism is introduced when, say, defining a function, and how it is

eliminated by instantiating the types of expressions is directly inspired by the cor-

responding rules of ML. This results in somewhat eager instantiation, where poly-

morphism may be instantiated in cases where the user would like it to be preserved.

FreezeML thus provides a freezing operator, which allows avoiding instantiation. We

present a type inference algorithm for FreezeML, which is closely based on Algorithm

W, the original type inference algorithm for the HM system. We also investigate a

more modern approach towards type inference for FreezeML, which acts in two steps:

Programs are first translated to a constraint, which is then separately processed by a

constraint solver. This involves the design of an appropriate constraint language and

solver. We also explore potential extensions and variations of FreezeML, and compare

it with existing systems in the design space.
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Chapter 1

Introduction

Programming languages featuring a sound static type systems provide programmers

with a strong safety guarantee: If a program is well typed, it cannot exhibit type errors

at runtime, therefore ruling out whole classes of errors. Type inference can then ease

the burden of having to specify types in the program on the programmer, possibly

avoiding the need for type annotations altogether.

The Hindley-Milner (HM) typing discipline [40, 77, 13] is remarkable in that it

guarantees the existence of a complete type inference algorithm, meaning that if a pro-

gram is well typed, the algorithm is able to determine all necessary typing information.

It requires no type annotations at all. As a result, the HM typing discipline has provided

the basis for the type systems of several industrial-strength programming languages,

such as Haskell and members of the ML family of languages, including Standard ML

and OCaml.

The HM system allows variables bound by let terms to receive polymorphic types,

reflecting that a binding can act on data of different shapes. For example, the following

program, written in an imaginary dialect of ML, defines the function every other such

that calling every other l returns a list containing only every second element from the

input list l.

let rec every other = λl.

case l of
| x :: y :: xs => y :: every other xs

| => [ ]

in
(every other [1;2;3], every other [“hello”;“world”])

Here, the HM system can correctly determine that the argument to every other must

1



2 Chapter 1. Introduction

be a list, but the type of the list’s elements is irrelevant to the function. The system can

therefore give the function the following, polymorphic type.

∀a.List a → List a

This type then allows the two subsequent calls of every other using arguments of

different list types to be accepted.

The HM system has been extended in a large variety of ways in the decades follow-

ing its inception. Examples include features such as extensible records [121, 98, 82],

type classes [120, 87, 47, 46], qualified types [44], recursive types [97], and object-

oriented programming [102], to name a few.

1.1 Beyond HM-style polymorphism

The HM type system imposes restrictions with respect to where polymorphic types

may occur. Consider a situation where we want to remove elements from two lists us-

ing a data-agnostic removal function cull, such as every other, before applying a com-

putationally expensive operation combine that turns the ith elements from the culled

lists into an element of the result list. We may hope to define a helper function doing

this as follows:

let cull and combine= λcull combine l1 l2 .

let l1 = cull l1 in
let l2 = cull l2 in
let rec map2 prefix= λl l′.

case (l, l′) of
|(x :: xs, y :: ys) => combine x y :: map2 prefix xs ys

| => [ ]

in
map2 prefix l1 l2

In order for the function cull to work on both lists, we intend for it to have the

polymorphic type ∀d.List d → List d inside cull and combine, meaning that the overall

type of cull and combine should be the following:

∀abc.(∀d.List d → List d)︸ ︷︷ ︸
cull

→ (a → b → c)︸ ︷︷ ︸
combine

→ List a︸ ︷︷ ︸
l1

→ List b︸ ︷︷ ︸
l2

→ List c (1.1)



1.1. Beyond HM-style polymorphism 3

However, this type is not supported in the HM system because it only supports

prenex polymorphism, where quantifiers may only appear at the outermost level of any

type. As an immediate consequence, lambda-bound variables can never be given poly-

morphic types. Milner himself described this as the “main limitation” of the HM sys-

tem [77]. As a result, the definition of cull and combine on the previous page would not

receive the type shown in (1.1), but instead force l1 and l2 to have the same list types,

which cull acts on. Following the definition of a type’s rank [61], systems whose type

language allows arbitrarily nested quantifiers are said to support higher-rank types.

Note that the issue regarding the typing of cull and combine is independent of the

helper function map2 prefix1 it defines; hoisting map2 prefix out of cull and combine

has no effect on the overall issue.

As another simple example that requires higher-rank types, consider a function f

that can act on various data structures containing elements of some type a. Thus, rather

than fixing the data structure to be received by f , we may want to keep it unspecified

and pass the data structure to f represented by a fold function. This would require f

to have a type of the following shape, where b is the type of the chosen accumulator

while folding.

∀a.(∀b.(a → b → b)→ b → b)︸ ︷︷ ︸
fold

→ . . .

Again, this type is not supported in the HM system.

As a further restriction, HM style type systems only permit predicative polymorph-

ism, where type variables may only be instantiated with non-polymorphic types. As

an example, consider the case where we redefine cull and combine to take a list of

culling functions instead, to be applied in sequence. We call the resulting function

list cull and combine, with the following type.

∀ab.(List (∀c.List c → List c))︸ ︷︷ ︸
list of culls

→ (a → b → c)︸ ︷︷ ︸
combine

→ List a︸ ︷︷ ︸
l1

→ List b︸ ︷︷ ︸
l2

→ List c,

Even after hypothetically extending the HM system with higher-rank types, we cannot

call it using list cull and combine (singleton every other), where singleton is defined

in the environment with the usual type ∀a.a → List a to create a singleton list from

its argument. Doing so would require instantiating the quantified type variable a in

singleton’s type with ∀c.List c → List c, which predicative polymorphism does not

1This function is known to Haskell programmers as zipWith. The OCaml standard library provides
map2, but unlike our function map2 prefix it fails if the two lists do not have the same length.



4 Chapter 1. Introduction

permit. As another example, this limitation means that in the presence of higher-

rank polymorphism, the infix application operator $ with type ∀ab.(a → b)→ a → b

cannot be used on functions with polymorphic arguments, unless an ad-hoc change is

made to the type-checker. Serrano et al. go as far as calling the lack of polymorphic

instantiation in the HM system an “embarrassing shortcoming” [109]. Offering first-

class polymorphism refers to lifting both restrictions, thus supporting higher-rank types

and polymorphic instantiation of type variables.

Examples for programming techniques that require forms of polymorphism beyond

what the HM system offers include state threads [54], short-cut deforestation [28],

dynamic typing in the style of Baars and Swierstra [2], and the scrap your boilerplate

approach towards generic programming [51]. Shan [111] provides a more detailed

overview of these and more use-cases.

The limitations of the HM system to prenex polymorphism and predicative instan-

tiation are not arbitrary, but a direct result of the balancing act that is required to obtain

a complete type inference algorithm. Easing the restrictions can easily lead to type in-

ference becoming undecidable [123, 94, 48]. For example, a term such as λ f . f f may

become typeable when polymorphism is unrestricted, but it lacks a type that is most

general in the usual sense of the HM system, therefore subsuming all other possible

choices. While a lack of principal types does not automatically preclude the existence

of a complete type inference algorithm, the example illustrates the difficulties faced in

the presence of richer forms of polymorphism.

As a result, a large field of research into type systems that integrate higher-rank

types or full first-class polymorphism into HM-style systems has emerged. The res-

ulting landscape includes a variety of different approaches, making different trade-offs

between aspects such as the complexity of the system’s specification and implement-

ation as well as the amount of type annotations required by programmers. Some sys-

tems use types that directly contain constraints on how a quantified type variable may

be instantiated [56, 59]. Other systems utilise sophisticated heuristics built into the

typing rules, guiding for example where instantiation and generalisation may be per-

formed [58, 110, 109]. These systems are aimed at catching the programmer’s intent

in most situations, but may be difficult for users to follow in those cases where they do

not.

Yet another group of systems requires users to be more explicit when using first-

class polymorphism, often asking them to choose between different sorts of poly-

morphic types [106, 89, 26].
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1.2 The Links programming language

The author’s work on a type system supporting first-class polymorphism originated in

his work on the Links programming language [11, 69]. Links is a strict, functional,

multi-tier programming language, allowing parts of an application written entirely in

Links to be executed on a web-server, an associated database server, and end users’

browsers. This involves translating Links code to JavaScript and SQL where needed.

Over the years since its inception, Links’ database-related features have been extended

to offer strong guarantees about the efficiency of the generated SQL queries [67, 7, 8]

and support relational lenses [42] as well as temporal data [23]. An experimental

version of Links supports data provenance tracking [22]. Further, support for effect

handlers [37, 39, 38] and session types has been added to Links [68, 24].

Links has also supported first-class polymorphism since its early days. However,

the existing treatment of polymorphism was a complex, ad-hoc combination of existing

approaches that had never been formalised or reached a satisfying level of reliability.

During the author’s work on a type-checker for the explicitly typed intermediate rep-

resentation (IR) of Links and subsequent investigations into the causes of ill typed

IR code being generated, it became clear that the existing support for first-class poly-

morphism needed to be overhauled. Ultimately, the decision was made to replace the

existing system with a more principled design.

1.3 The road to FreezeML

While investigating the approach towards first-class polymorphism with which to re-

place the existing one in Links, a series of required properties were crystallised. The

overarching theme was the desire to find a solution that values simplicity – in terms

of its formal specification, implementation, and the rules needed to be understood by

end users (e.g., where to place type annotations) – rather than aggressively trying to

minimise the number of type annotations.

Predictable behaviour Many existing approaches towards first-class polymorphism

rely on an elaborate type system with intricate heuristics to reduce the number of

type annotations required by the user. Vytiniotis et al. say about their own Boxy-

Types system that it is “too complicated for Joe Programmer to understand”,

and expect programmers to use the type-checker itself as the specification, ex-

perimenting with the placement of annotations if needed [117]. We follow a
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different philosophy, wanting to implement a system that is simple enough for

programmers to understand, without relying on potentially surprising heuristics.

System F types Our ideal solution would use the type language of System F and ML,

already familiar to programmers. Some systems, such as MLF [56], go bey-

ond the expressive power of System F types by allowing constraints in types

on how variables may be instantiated. Other systems, such as IFX [89], Poly-

ML [26] and QML [106], distinguish two sorts of quantified types, namely ML-

style types schemes and System F style polymorphic types, where only the latter

stays polymorphic when passed around. We agree with Russo and Vytiniotis’

assessment that this distinction is potentially confusing for programmers [106].

Further, staying within the limits of just System F types is compatible with the

existing implementation for first-class polymorphism in Links.

Close to ML type inference It should be possible to implement the solution as a simple

extension of Hindley Milner type inference, allowing it to be integrated into ex-

isting type inference systems, rather than making strong assumptions about the

underlying inference algorithm. Systems like MLF [56] and FPH [118] rely on

much more sophisticated inference and/or unification algorithms. Other systems,

such as QuickLook [109], rely on a bidirectional inference system.

The current implementation of type inference in Links – despite its multitude

of typing features – resembles an efficient implementation of Algorithm W. It

traverses the abstract syntax tree while maintaining a union-find structure of type

variables.

Thus, type inference for our approach should be flexible enough to be integrated

into the existing inference algorithm. The approach’s implementation should

not get in the way if longer term plans to overhaul type inference in Links are

realised, such as adding a degree of bidirectionality or adopting a constraint-

based inference approach.

Low syntactic overhead Of course, the desired properties stated so far could easily

be achieved when the verbosity of the resulting programs is of no concern: The

usual, Church-style explicitly typed representation of System F satisfies all prop-

erties above. The challenge lies in the tension between the simplicity of the sys-

tem while still keeping the necessary amount of type annotations in check. Thus,

the chosen approach should still have a reasonably low syntactic overhead.
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Embracing the value restriction The value restriction [126] is a simple syntactic

mechanism to ensure the soundness of polymorphic type systems in the pres-

ence of computations with side effects. It restricts what terms may be given

polymorphic types and therefore influences the design of a system providing

richer polymorphism. It was adopted in Standard ML and OCaml, using a re-

laxed version of it for the latter, as well as Links. Our goal was therefore to use

a system that works well in the presence of the value restriction.

While these properties were in part motivated by the need to implement the new ap-

proach for Links, we consider these as – somewhat subjective – desirable properties

of an approach towards first-class polymorphism on their own. As a result, we study

FreezeML as a core calculus in this work, independently from Links, but return to the

implementation of FreezeML in Links in one of the later chapters.

Ultimately, the Links authors found that none of the existing approaches towards

first-class polymorphism had these properties, meaning that they became design goals

of a new system to be developed. The new system would be focused on the simplicity

of the underlying specification. In particular, the resulting system directly leverages the

existing mechanisms for instantiation (i.e., using polymorphic values) and generalisa-

tion (i.e., creating polymorphic values): Clément et al. [10] showed that in ML, gener-

alisation and instantiation are inherently tied to let bindings and variables, respectively.

Their presentation of ML makes it clear that generalisation is only meaningful when

performed on let-bound terms prior to determining the type of the bound variable,

while instantiation happens exactly at variables, instantiating all toplevel quantifiers.

We revisit these findings more formally in the next chapter.

As a result, our approach directly uses let bindings and variables as the only mech-

anisms for generalisation and instantiation, respectively, and observe that some helpful

operators may be obtained from them as syntactic sugar. The remaining puzzle piece

then becomes how to keep values polymorphic, if polymorphism is introduced at let

bindings, but immediately lost at each use site of the variable. Our answer is the abil-

ity to freeze variables, denoted ⌈x⌉, which preserves the type of x unchanged rather

than performing instantiation. It is the defining feature of FreezeML, our type system

satisfying the requirements listed earlier.

Freezing immediately resolves the potential ambiguity when typing examples such

as singleton id. Here, id is the identity function with type ∀b.b→ b, the type of singleton

is ∀a.a → List a, as discussed in Section 1.1. This term is often used in existing literat-

ure to discuss the design decisions facing systems supporting first-class polymorphism.
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We observe that singleton must be instantiated in this term to obtain a function type.

The question remains whether or not to instantiate id, which in turn dictates the type

of the overall term. If the quantifier b in id’s type is instantiated with some type A,

then the overall application results in a list of type List (A → A). Otherwise, if id is

kept polymorphic, we obtain a singleton list of polymorphic identity functions of type

List (∀b.b → b).

Instead of relying on complex mechanisms to determine the most likely intention

of the programmer, such as taking the potential surrounding context into account,

the freezing operator allows programmers to make their intentions explicit. While

singleton id will always instantiate id, writing singleton ⌈id⌉ instead keeps it poly-

morphic. This means that while FreezeML preserves the instantiating character of

variables, a defining feature of ML, frozen variables provide users with variables that

behave closer to what they do in a logic system: They simply reflect the types associ-

ated with them in the environment, as they do in System F.

1.4 Structure and contributions of this thesis

This thesis is structured as follows. We point out the contributions C1 to C12 made by

this work as they appear in the document.

• Chapter 2 provides necessary background. We introduce ML and System F

as core calculi and discuss existing approaches for integrating first-class poly-

morphism into the HM system.

• In Chapter 3, we introduce FreezeML itself, a novel design for a type system that

integrates first-class polymorphism into ML, satisfying the design goals listed in

Section 1.3. The chapter begins with an outline of the design of FreezeML (C1),

followed by its formal definition (C2). Crucially, the type system ensures that

all occurrences of polymorphism in the types of variables are fully determined.

This means that for each variable there exists a unique type such that all other

possible types of the variable may be obtained by substituting type variables in

the former type with monomorphic types. This is achieved by limiting where

polymorphic types can occur in typing rules and requiring the use of principal

types for some terms.

We discuss translations from System F to FreezeML and backwards in Sec-

tion 3.3 (C3). Finally, we show that the FreezeML typing relation is well defined,
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despite containing typing rules that universally reason about all possible typings

of certain terms (C4). While other authors have used typing rules with similar

conditions in their systems, this issue has not been treated formally in existing

work.

• A type inference algorithm for FreezeML based on Algorithm W is presented in

Chapter 4 (C5). First, we introduce a type substitution property for FreezeML,

before presenting the actual inference algorithm. Our inference algorithm aug-

ments the original Algorithm W by globally tracking which type variables may

be substituted with polymorphic types.

• Since the inception of Algorithm W in the 1970s, type inference has been mod-

ernised by techniques that rely on constraint solving. Chapter 5 discusses an

alternative inference algorithm for FreezeML based on this concept. We first

present a suitable constraint language and how to translate FreezeML terms to

it (C6), followed by a solver for the constraint language (C7).

To the best of the author’s knowledge, the constraint language presented here

is the first whose semantics impose the usage of principal solutions for certain

constraints.

However, an important part of the solver’s metatheory remains as a conjecture,

which is required for the overall correctness of the constraint-based inference

approach. We provide a detailed discussion of the challenges faced when at-

tempting to finalise the missing proof.

• Chapter 6 provides additional discussion. We show how some real-world use

cases of first-class polymorphism can be implemented using FreezeML (C8) as

well as sketching potential variations and extensions of FreezeML (C9). Two

implementations of FreezeML are discussed, in Links and as a standalone ap-

plication (C10). We outline which properties of ML and other approaches for

first-class polymorphism in the HM system hold for FreezeML, or how they need

to be adapted to hold (C11). Finally, we compare FreezeML in detail with select

systems discussed in Chapter 2, in particular based on a collection of example

programs used in previous literature (C12).

• We conclude and discuss future work in Chapter 7.

Those proofs omitted from the main text are provided in Appendices A to C.
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1.4.1 Relationship with previous work

The material in Chapters 3 and 4 is based on the following paper.

Emrich, F., Lindley, S., Stolarek, J., Cheney, J., and Coates, J. (2020b). Freeze-

ML: Complete and easy type inference for first-class polymorphism. In Don-

aldson, A. F. and Torlak, E., editors, Proceedings of the 41st ACM SIGPLAN

International Conference on Programming Language Design and Implementa-

tion, pages 423–437. ACM

Part of this work also appears in Sections 6.3 and 6.5.

The material in Chapter 5 is based on the following paper.

Emrich, F., Stolarek, J., Cheney, J., and Lindley, S. (2022). Constraint-based type

inference for FreezeML. Proceedings of the ACM on Programming Languages,

6(ICFP):570–595

The material in Section 7.2.2 is based on the following work.

Emrich, F., Lindley, S., and Stolarek, J. (2020a). The virtues of semi-explicit

polymorphism. Extended abstract presented at the ML workshop @ ICFP 2020



Chapter 2

Background

This chapter provides background material that aids understanding of the remainder

of this thesis. We introduce notations and present ML as well as System F formally.

We then provide an overview of existing approaches towards combining the Hindley-

Milner typing discipline with richer forms of polymorphism, such as arbitrary-rank

types or fully-fledged first-class polymorphism.

2.1 Notations

Sequences and sets We write X to denote a sequence of some elements X . Se-

quences are concatenated using commas, meaning that X ,Y denotes the sequence con-

sisting of all elements from X , followed by those of Y . We also use the comma operator

on singleton elements (e.g., we may write X ,x to append x to the sequence X).

The relation # indicates disjointness between sequences as well as sets, including

singleton ones. We use ≈ to indicate that two sequences are permutations of each

other.

Given a finite set or sequence X , we denote its cardinality using |X |.

Given a set X , we write 2X for its powerset.

Functions We write dom( f ) and codom( f ) for the domain and co-domain of a func-

tion f , respectively. Given a set Z with Z ⊆ dom( f ), we write f ↾Z to denote the

restriction of f to Z.

11
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2.2 Core calculi

We now introduce ML and System F in a style that makes bound type variables explicit.

2.2.1 ML and the Hindley-Milner type system

What is now known as the Hindley-Milner (HM) type system was independently de-

veloped by Hindley [40] and Milner [77]. Hindley’s work was in the context of com-

binatory logic. Milner’s work was in the context of the ML programming language,

originally developed as part of the LCF theorem proving system [32]. Crucially, Mil-

ner established the ability of let bindings to implicitly introduce polymorphism. The

now typical presentation of the HM type system is due to Damas and Milner [13]. This

led to the system also being referred to as Damas-Milner or Damas–Hindley–Milner.

Several extensions to the original ML language, such as the addition of data-

types and a powerful module system [70], ultimately led to the definition of Stand-

ard ML [79]. Further, it marked the inception of the ML family of languages, with

OCaml and F# being prominent members. The underlying HM type system also laid

the foundation for type inference in other languages, such as Haskell, that do not share

the characteristic features of ML-like languages (e.g., mutability and call-by-value se-

mantics). A comprehensive account of the history of ML has recently been published

by MacQueen et al. [71].

In this work, unless stated otherwise, we use the term “ML” in the sense of the core

calculus studied by Damas and Milner [13], eschewing features such as datatypes,

recursion, records, and mutable references.

The syntax of this ML core calculus is shown in Figure 2.1 on the next page. We

assume that the type constructors D contain at least functions and the unit type, where

each constructor has a fixed arity, which we refer to as arity(D). Ordinary types, called

monotypes in our presentation, then consist of type variables and type constructor ap-

plications. As usual, type schemes E allow universal quantification of type variables,

but only at the outermost level. This enshrines ML’s limitation to prenex polymorph-

ism in the syntax of types. Throughout this work, we identify type contexts ∆ and

sequences of variables in quantified types. Thus, given ∆ = a, we use ∀∆.E and ∀a.E

interchangeably. Further, we identify ∀a.E and E if a is empty.

Instantiations δ map type variables to monotypes.

As mentioned before, we limit ourselves to a minimal number of syntactic forms,

meaning that terms M consist of variables, abstractions, applications, and let bindings.
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Type variables a,b,c

Type constructors D ::=→ | Unit | . . .
Monotypes S,T ::= a | DS

Type schemes E ::= S | ∀a.E

Type instantiations δ ::= /0 | δ[a 7→ S]

Term variables x,y,z

Terms M,N ::= x | λx.M | M N | let x = M in N

Values V,W ::= x | λx.M | let x =V in W

Type contexts ∆ ::= · | ∆,a

Term contexts Γ ::= · | Γ,x : E

Figure 2.1: ML syntax

We return to the role of values V in Section 2.2.1.2.

Traditional presentations of ML often do not explicitly track what type variables

are in scope – Gundry et al. [35] say that they let type variables “float in space”. In

contrast, our formalism uses type contexts ∆ that contain all type variables in scope. As

usual, term contexts Γ assign type schemes to the term variables in scope. Through-

out this work, we use the convention that the elements of each type context or term

context appearing in a judgement are implicitly required to be pairwise disjoint. For

example, premises mentioning ∆,a or Γ,x : E in typing rules implicitly imposes ∆#a

and Γ#x. This allows us to avoid dealing with shadowing by assuming appropriate

alpha-conversion has taken place.

The typing rules of ML are shown in Figure 2.2 on the following page. They are

presented in a declarative style, which is indicated by the superscript MLD. Our

explicit treatment of type variable scoping is reflected by the additional requirement

that in order for a judgement ∆;Γ ⊢MLD M : E to hold, any type scheme E appearing in

Γ must be well formed under ∆, denoted ∆ ⊢ E ok. This simply means that all free type

variables of E must occur in ∆. Similar requirements are imposed on the subsequently

introduced variations of ML.

Type schemes for variables are retrieved from the term context. Abstractions and

applications are typed as usual, but limited to monotypes. Let bindings allow obtaining

a type scheme for the bound term M as the type for x in N. The rules INST and GEN

allow performing instantiation and generalisation on arbitrary terms. Crucially, only

variables that do not appear in the surrounding context may be generalised.
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∆;Γ ⊢MLD M : E

VAR

x : E ∈ Γ

∆;Γ ⊢MLD x : E

LAM

∆;(Γ,x : S) ⊢MLD M : T

∆;Γ ⊢MLD
λx.M : S → T

APP

∆;Γ ⊢MLD M : S → T

∆;Γ ⊢MLD N : S

∆;Γ ⊢MLD M N : T

LET

∆;Γ ⊢MLD M : E ∆;(Γ,x : E) ⊢MLD N : T

∆;Γ ⊢MLD let x = M in N : T

INST

∆;Γ ⊢MLD M : E ∆ ⊢ E ≤ E ′

∆;Γ ⊢MLD M : E ′

GEN

(∆,a);Γ ⊢MLD M : E

∆;Γ ⊢MLD M : ∀a.E

Figure 2.2: ML typing rules (declarative)

The INST rule uses the generic instance relation, shown in Figure 2.3. Here,

∆ ⊢ E ≤ E ′

∆ ⊢ E ≤ E

∆,a ⊢ E ≤ E ′

∆ ⊢ E ≤ ∀a.E ′

∆ ⊢ S ∆ ⊢ E[S/a]≤ E ′

∆ ⊢ ∀a.E ≤ E ′

Figure 2.3: Generic instance relation

E[S/a] denotes capture-avoiding substitution of a with S in E. We have ∆ ⊢ E ≤ E ′

if E is more general than E ′.1 Note that we again make the type variables in scope

explicit by using a type context ∆; we require E and E ′ to be well formed under it. If

∆ ⊢ E ≤ E ′ holds, then E ′ may be obtained from E by instantiating quantifiers in E,

and quantifying over variables introduced during this instantiation step.

For example, we have the following.

⊢ ∀b.b → b ≤ Int→ Int

a ⊢ ∀b.b → b ≤ a → a

· ⊢ ∀ab.a → b → (a×b) ≤ ∀c.c → c → (c× c)

1Historically, both ≤ and ≥ (and similar symbols) have been used for the generic instance relation.
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2.2.1.1 Syntax-directed presentation

The typing rules in Figure 2.2 are declarative in the sense that each rule is concerned

with just a single aspect of the type system. As a result, more than one typing rule may

be applicable to a term M.

An important observation about the ML type system is that instantiation may be

limited to variables while generalisation may be limited to let bindings, while pre-

serving typeability. This has led to syntax-directed presentations of the ML type sys-

tem, where exactly one rule applies to each term form [10].

The typing rules for ML in this style are shown in Figure 2.4. The standalone

∆;Γ ⊢MLS M : S

VAR

x : ∀∆
′.S ∈ Γ ∆ ⊢ δ : ∆

′ ⇒ ·

∆;Γ ⊢MLS x : δ(S)

LAM

∆;(Γ,x : S) ⊢MLS M : T

∆;Γ ⊢MLS
λx.M : S → T

APP

∆;Γ ⊢MLS M : S → T

∆;Γ ⊢MLS N : S

∆;Γ ⊢MLS M N : T

LET

(∆,∆′);Γ ⊢MLS M : S

∆;(Γ,x : ∀∆
′.S) ⊢MLS N : T

∆;Γ ⊢MLS let x = M in N : T

Figure 2.4: ML typing rules (syntax-directed)

instantiation and generalisation rules are removed and fused into the VAR and LET

rules, respectively.

To denote the eager instantiation of all quantifiers performed in the VAR rule in

our notation, we use instantiations δ, as defined in Figure 2.1. Judgements of the form

∆⊢ δ : ∆′ ⇒∆′′ then impose that δ maps variables from ∆′ to types using variables from

∆ and ∆′′. Further, δ maps all variables from ∆, which denotes some kind of ambient

context, to themselves. The formal rules of the judgement are shown in Figure 2.5 on

the following page. Note that the rules impose ∆#∆′ and ∆#∆′′ as prerequisites of

∆ ⊢ δ : ∆′ ⇒ ∆′′.

The declarative and syntax-directed presentations are equivalent, besides the ability

to generalise the overall type at the toplevel [10, Theorem 2.1]. Using our notations,

this result can be stated as follows.

Lemma 2.1 (Relationship between ⊢MLD and ⊢MLS).
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∆ ⊢ δ : ∆
′ ⇒ ∆

′′

∆#∆
′′

∆ ⊢ /0 : · ⇒ ∆
′′

∆ ⊢ δ : ∆
′ ⇒ ∆

′′ (∆,∆′′) ⊢ S ∆#(∆′,a)

∆ ⊢ δ[a 7→ S] : (∆′,a)⇒ ∆
′′

Figure 2.5: ML instantiation rules

For all ∆,Γ,M and E, the following conditions hold.

1. If ∆;Γ ⊢MLS M : E then ∆;Γ ⊢MLD M : E holds.

2. If ∆;Γ ⊢MLD M : E then there exist S and ∆′ such that (∆,∆′);Γ ⊢MLS M : S and

∀∆′.S ≤ E.

2.2.1.2 The value restriction

Since the early days of ML, it was known that the combination of polymorphism and

mutability requires care to avoid unsoundness of the type system [77]. Consider the

following example.

let pl= ref [] in
pl := [3];

(head (head !pl))+3

Naively, we may consider this program to be well typed: A possible type scheme

for the empty list [] is ∀a.List a. We may therefore assign pl the type scheme ∀a.Ref

List a, where Ref is the type constructor for mutable references. We may then instanti-

ate pl to have type Ref List Int, which makes the reference assignment with a value of

type List Int well typed. Finally, we may instantiate pl again to yield Ref List List Int,

which makes the last line of the example well typed, where we dereference pl, obtain

the first element of the resulting list (using the function head), and then apply head

again to the result.

However, this program should clearly be rejected: During execution of the pro-

gram, once the last line is reached, the reference pl points to a list containing a single

integer. Therefore, the result of (head !pl) is an integer, and applying head to it would

cause havoc at runtime.

A multitude of solutions for this problem has been devised and refined over the

years [12, 115, 64, 125, 63, 41, 113, 126, 33, 25]. One early observation was that a

simple syntactic criterion may be used in tandem with more complex solutions: If a
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term is non-expansive, it is always safe to generalise its type [114]. Non-expansive

terms, also called (syntactic) values, include variables and lambda terms, and possibly

compound expressions if all of their subterms are non-expansive. The underlying idea

is that non-expansive terms must not extend the store of reference cells during execu-

tion. Most importantly, applications are not values, ruling out the creation of references

using the ref operator, such as ref [] in our example.

Wright [126] then provided empirical evidence that relying exclusively on this

mechanism works well in practice. As a result, the value restriction, imposing that

values are the only terms that may be generalised, was adopted in the revised definition

of Standard ML [78]. A slightly relaxed version, taking variance of type constructor

parameters into account, was adopted in OCaml [25].

We reflect this in Figure 2.1 on page 13 by introducing (syntactic) values V as a

separate syntactic category.

In a syntax-directed presentation, the value restriction can be implemented by mak-

ing the generalisation performed by let bindings depend on the syntactic form of the

bound term M. This is shown in Figure 2.6, where the LET rule uses the auxiliary

∆;Γ ⊢ML M : A

VAR

x : ∀∆
′.S ∈ Γ ∆ ⊢ δ : ∆

′ ⇒ ·

∆;Γ ⊢ML x : δ(S)

LAM

∆;(Γ,x : S) ⊢ML M : T

∆;Γ ⊢ML
λx.M : S → T

APP

∆;Γ ⊢ML M : S → T

∆;Γ ⊢ML N : S

∆;Γ ⊢ML M N : T

LET

∆
′ = gen(∆,S,M) (∆,∆′);Γ ⊢ML M : S

∆;(Γ,x : ∀∆
′.S) ⊢ML N : T

∆;Γ ⊢ML let x = M in N : T

Figure 2.6: ML typing rules (syntax-directed, using value restriction)

function gen, which is defined as follows. Here, ftv(S) refers to the free type variables

of S.

gen(∆,S,M) =

 ftv(S)−∆ if M is a value

· otherwise

Unless stated otherwise, we generally refer to the system with the value restriction,

shown in Figure 2.6, when referring to ML in this work.
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2.2.1.3 Properties of ML

We now revisit some well known properties of ML to facilitate comparisons with

FreezeML in subsequent chapters.

Typing in ML is stable under generalisation of variables in the environment. More

specifically, types of terms are preserved when replacing any type scheme E in the

term context with E ′, such that E is a generic instance of E ′ [13, Lemma 1].

Lemma 2.2.
For all ∆,Γ,M,E,E,E ′′ such that ∆ ⊢ E ′ ≤ E ′′ we have that ∆;(Γ,x : E ′′) ⊢MLD M : E

implies ∆;(Γ,x : E ′) ⊢MLD M : E.

Next, typing in ML is stable under substitution of type variables [13, Proposition 2].

Lemma 2.3.
If ∆ ⊢ δ : ∆′ ⇒ ∆′′, then (∆,∆′);Γ ⊢MLD M : E implies (∆,∆′′);δ(Γ) ⊢MLD M : δ(E).

The two previous lemmas equally hold for the typing relations ⊢MLS and ⊢ML.

Principality We can now define principal type schemes [13] in our notation. We say

that E is a principal type scheme of M under ∆ and Γ if the following conditions hold.

1. We have ∆;Γ ⊢MLD M : E.

2. For all E ′ such that ∆;Γ ⊢MLD M : E ′ we have E ≤ E ′.

Milner and Damas’ seminal result was then that every well typed ML term has a

principal type scheme and can be found using Algorithm W [13, 12].

Lemma 2.4 (Existence of principal type schemes).
If ∆;Γ ⊢MLD M : E, then there exists a principal type scheme of M under ∆ and Γ.

We observe that the lemma above and the idea of principal type schemes relies on

the ability to generalise terms at the toplevel, only present in the declarative specific-

ation (and hence expressed using the relation ⊢MLD). In syntax-directed presentations,

we may implicitly generalise after the fact to obtain a type scheme (as in Lemma 2.1

on page 15). Alternatively, we may state a property about all types directly derivable

in the syntax-directed presentations simply in terms of free type variables rather than

type schemes. To this end, we may also define a notion of principal types. We say

that S is a principal type of M under ∆ and Γ if there exists ∆′ such that the following

conditions hold.
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1. We have (∆,∆′);Γ ⊢ML M : S.

2. For all ∆′′,S′′ such that (∆,∆′′);Γ ⊢ML M : S′′ there exists δ such that ∆ ⊢ δ : ∆′ ⇒
∆′′ and δ(S) = S′′.

We observe that given ∆,Γ and a principal type S, we may reconstruct ∆′ as any type

context containing a superset of ftv(S)−∆.

We can use this to state the following property.

Lemma 2.5 (Existence of principal types).
If ∆;Γ ⊢ML M : S, then there exist ∆′,S′, such that S′ is a principal type of M under ∆

and Γ.

The definition of principal types and the corresponding lemma are stated in terms

of the typing relation ⊢ML, but equally hold for ⊢MLD and ⊢MLS.

The definition of principal types directly implies that they are unique up to renam-

ing of generic variables (i.e., those not in the ambient context).

Lemma 2.6 (Uniqueness of principal types).
Let S and S′ both be principal types of M under ∆ and Γ. Then there exists an instanti-

ation δ that is a bijection between the variables in ftv(S)−∆ and ftv(S′)−∆ such that

δ(S) = S′.

Note that Lemma 2.5 immediately reveals the fact that principal types (and simil-

arly, principal type schemes) capture exactly the possible types of M: The definition

of principal types tells us that all other types of M can be obtained by substituting free

variables in S, while Lemma 2.3 states that all such substitutions are valid types of M.

2.2.2 System F

System F, also called the polymorphic lambda calculus, was independently described

by Girard [29, 30] and Reynolds [103]. It extends the simply typed lambda calcu-

lus with polymorphic types. We focus on a presentation of System F in the style of

Church, where all binders are annotated with their types and polymorphism needs to

be introduced and eliminated with dedicated syntactic forms, namely type abstractions

and type applications. The syntax of System F in this style is given in Figure 2.7 on

the next page. As opposed to ML, System F types A permit quantifiers anywhere.

It is well known that it is possible to encode arbitrary inductive datatypes in System

F [62, 6, 4, 119], using a generalisation of Church’s encoding of data such as numerals

and pairs [9, 3], for instance.
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Type variables a,b,c

Type constructors D ::=→ | Unit | . . .
Types A,B ::= a | DA | ∀a.A

Term variables x,y,z

Terms M,N ::= x | λxA.M | M N | Λa.V | M A | let xA = M in N

Values V,W ::= x | λxA.M | Λa.V |V A | let xA =V in W

Type contexts ∆ ::= · | ∆,a

Term contexts Γ ::= · | Γ,x : A

Figure 2.7: System F syntax

However, to facilitate simpler comparisons between ML and System F, we again

assume that as in our definition of ML in Figure 2.1, there exists a collection of pre-

defined data constructors D.

As mention before, term abstractions must be annotated with the type of the para-

meter. Type abstractions Λa.V and applications M A provide first-class polymorphism,

as mentioned. As we are mostly concerned with variants of ML that implement the

value restriction, we present a version of System F that obeys the value restriction,

too. This is why only values V may be abstracted over types. Further, we introduce let

bindings of the form let xA = M in N. In terms of their static and dynamic semantics,

these behave as if they were syntactic sugar for (λxA.N) M. However, we keep them as

primitives so that we may categorise bindings let xA =V1 in V2 as values. We assume

a standard, call-by-value dynamic semantics of System F. Type and term contexts

remain unchanged as compared to ML, but the latter now use types A.

The typing rules for System F are shown in Figure 2.8 on the next page. Similarly

to ML, judgements ∆ ⊢ A ok state that A is well formed in context ∆. We again require

that in order for ∆;Γ ⊢F M : A to hold, all types in Γ must be well formed under ∆.

The existence of type annotations in terms means that a substitution property for

System F has to apply the substitution to terms, too. This is in contrast to the corres-

ponding property of ML (namely, Lemma 2.3), where this was not necessary.

Lemma 2.7.
If ∆ ⊢ δ : ∆′ ⇒ ∆′′, then (∆,∆′);Γ ⊢F M : A implies (∆,∆′′);δ(Γ) ⊢F δ(M) : δ(A).

Proof. By structural induction on M.
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∆;Γ ⊢F M : A

x : A ∈ Γ

∆;Γ ⊢F x : A

∆;Γ ⊢F M : A → B

∆;Γ ⊢F N : A

∆;Γ ⊢F M N : B

(∆,a);Γ ⊢F V : A

∆;Γ ⊢F
Λa.V : ∀a.A

∆;(Γ,x : A) ⊢F M : B

∆;Γ ⊢F
λxA.M : A → B

∆;Γ ⊢F M : ∀a.B ∆ ⊢ A ok

∆;Γ ⊢F M A : B[A/a]

∆;Γ ⊢F M : A ∆;(Γ,x : A) ⊢F N : B

∆;Γ ⊢F let xA = M in N : B

Figure 2.8: System F typing rules

Type inference for System F Type inference for System F is known to be undecid-

able. More specifically, the following two problems have been shown to be undecid-

able.

1. Wells [122] considered type inference for Curry-style System F, where terms

contain no typing information at all.

2. Boehm [5] and Pfenning [93, 94] considered the version of the inference problem

for Church-style System F, meaning that the term language is the one shown in

Figure 2.7. However, it is extended with term abstractions and type applications

not including types. Therefore, the latter new term form allows indicating the

fact that a type application occurs, but without stating the argument.

Perhaps surprisingly, no relationship between the two problems is known in the

sense that the negative result for each problem has not led to an answer to the other.

2.3 Existing approaches

This section gives on overview of the design space of type systems that extend the

Hindley-Milner type system with first-class polymorphism. We do not discuss systems

in detail that only provide higher-rank polymorphism but not polymorphic instanti-

ation [92, 16].2.
2While our work has little in common with that of Dunfield and Krishnaswami [16] from a technical

point of view, there is a noteworthy similarity: The latter inspired the title of this work!
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We also eschew discussing systems that are not conservative extensions of ML [95,

88], with some select exceptions. Thus, all systems discussed here do extend the HM

typing discipline, unless explicitly stated otherwise.

2.3.1 Nominal types

An early approach for adding first-class (existentially or universally) quantified types

to ML was to wrap them in dedicated nominal datatypes [100, 52, 85, 45]. Thus, such

systems allow the arguments of data constructors to have quantified types. Instead of

passing values of such quantified types directly, programmers must perform the neces-

sary injection and projection themselves. This simplifies inference, as no unification

with quantified types is necessary, only with nominal types.

As an example, consider the function cull and combine, which we discussed in

Section 1.1. In this style, we would introduce a datatype cull using

type cull= Cull of ∀b.List b → List b

and redefine the function cull and combine to have type

∀abc.cull→ (a → b → c)→ List a → List b → List c.

We may then call it for example using

cull and combine (Cull every other) (λxy.x+floor y) [1; 2; 3; 4] [1.1; 2.2; 3.3; 4.4].

This illustrates the disadvantages of this approach for one-off usages, due to the

necessity to introduce a dedicated datatype for every quantified type to be used in the

system. Further, the explicit injection and projection increases verbosity.

2.3.2 Explicit systems

The following systems rely on explicit constructs to introduce and/or eliminate first-

class polymorphism. We discuss these type systems in greater detail than others due

to their closer relationship with FreezeML. We keep editing to a minimum and use the

terminology introduced by the authors of each system, rather than trying to integrate

their systems into the naming scheme used in Section 2.2.
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2.3.2.1 IFX

The language IFX, proposed by O’Toole and Gifford [89], seems to be the first to con-

servatively extend ML while offering first-class polymorphism. Its syntax subsumes

both ML and System F; its type language distinguishes two sorts of quantifiers: Types

τ may contain arbitrary quantifiers ∀, denoting System F-style first-class polymorphic

types ∀a.τ′. The system then carries ML-style type schemes ∀̃α.τ in the term context.

As seen above, ∀̃ and ∀ quantify over variables α and a respectively. Only the latter are

user-denotable in type annotations and type applications. Finally, monomorphic types

µ arise from τ by disallowing quantifiers.

The syntax is shown in Figure 2.9. The ML and System F fragment of the language

Type identifiers a

Generic type variables α

User-provided types υ ::= a | υ1 → υ2 | ∀a.υ

Monomorphic types µ ::= a | α | µ1 → µ2

Polymorphic types τ ::= a | α | τ1 → τ2 | ∀a.τ

Type schemes η ::= τ | ∀̃α.η

Type contexts A ::= · | A,x : η

Expressions e ::= x | λx.e | e1 e2 | let x = e1 in e2

| Λa.e | λ(x : υ).e | e υ | open e | close e

Figure 2.9: IFX syntax

are typed mostly independently: The type schemes of variables are implicitly instanti-

ated with monotypes, let bindings introduce type schemes, monotypes are inferred for

un-annotated lambda parameters. System F style type abstractions and applications

introduce and eliminate ∀ quantified types. To mediate between both worlds, the term

open e instantiates the toplevel ∀-quantifiers of e’s type monomorphically. Conversely,

close e converts the principal type scheme ∀̃α.τ of e into ∀a.τ[a/α]. Crucially, close e

acts on the principal type scheme of e, rather than an arbitrary type. This is expressed

in the following typing rule for the operator.

A ⊢ e : τ α = ftv(τ)− ftv(A)

for all τ
′ : A ⊢ e : τ

′ implies A ⊢ ∀̃α.τ ≤ ∀̃(ftv(τ)− ftv(A)).τ

A ⊢ close e : ∀a.τ[a/α]
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Here, A ⊢ η1 ≤ η2 is the generic instance relation, analogously to Figure 2.3, and ftv

denotes free general type variables. Similar principality conditions were later adopted

in other systems.

When typing function applications e1 e2, the type system treats ∀ quantifiers in e1’s

type specially, allowing them to be instantiated monomorphically to reveal a function

type below.

The authors describe this as the two forms of polymorphism “coexisting” in IFX;

it leaves mostly the programmer in charge to convert between the two forms. In total,

the type system imposes principality conditions for three constructs, namely the close
operator (as shown), type abstractions, and let bindings.

2.3.2.2 Poly-ML

The characteristic feature of Poly-ML3 [26] is its usage of labels ε to track the origins

of polymorphic types. Its syntax is shown in Figure 2.10.

Variables ξ ::= α | ε

Simple types τ ::= α | τ → τ | [σ]ε

Polymorphic types σ ::= τ | ∀α.σ

Type schemes ς ::= σ | ∀ε.ς

Type contexts A ::= · | A,x : ς

Expressions a ::= x | λx.a | a a | let x = a in a | [a : σ] | ⟨a⟩ | (a : τ)

Figure 2.10: Syntax of Poly-ML

Poly-ML distinguishes simple types τ from polymorphic types σ, which allow

quantifying simple types over type variables α at the outermost level. Poly-ML uses

a special type constructor [·]ε that boxes a polymorphic type σ, turning it into a poly-

type. Note that each polytype is annotated with a label ε, we return to their role shortly.

Polytypes are considered to be simple types, meaning that boxing a polymorphic type

σ, turning it into [σ]ε, allows embedding polymorphic types into the simple types.

Given a term a with a polytype [σ]ε, its quantifiers are never instantiated implicitly.

Instead, a dedicated opening operator ⟨·⟩ allows unwrapping polytypes by instantiating

3The system was not given a name at the point of its original publication, but the name Poly-ML
seems to have been given to it retroactively [56]. It should not be confused with Poly/ML [73, 96], an
implementation of Standard ML.
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the toplevel quantifiers of σ.

The label system is used to determine when terms may be opened. Note that la-

bels ε appear as a separate form of variables in the type language. In addition to

the aforementioned polymorphic types σ, Poly-ML uses type schemes ς, which allow

quantifying simple types over type variables as well as labels at the outermost level.

Poly-ML’s type system follows other declarative presentations of ML in that it

allows arbitrary instantiation of type schemes at any point (but not of polytypes [σ]ε,

as mentioned above), as well as generalisation, subject to the usual restriction that the

variable to generalise does not appear in the context A. However, in Poly-ML, these

generalisation rules apply to type variables and labels alike. As a result, a term a

of polytype [σ]ε can be generalised to ∀ε.[σ]ε if and only if ε does not appear in the

context. The typing rule for the opening operator ⟨·⟩ then imposes that it can only be

applied to terms with type schemes of the form ∀ε.[σ]ε, but not to plain polytypes [σ]ε.

The rationale for this rule is that Poly-ML treats the existence of a label ε in the context

as a sign that the type [σ]ε was guessed, rather than provided by the user at some point.

Conversely, the only introductory form for polytypes is the wrapping operator,

where [a : σ] has type [σ]ε for some arbitrary ε, if a has type σ. Note that this allows

choosing a fresh label ε, which may later be generalised. This is in line with the fact

that the polytype of the term [a : σ] was introduced using an explicit type annotation

and not guessed.

As an example, consider the term λ f .⟨ f ⟩. Poly-ML only allows simple types τ for

function parameters. This leaves us with f : [σ]ε as the only choice for f ’s type, for

some σ and ε. However, this means that f : [σ]ε (and hence ε) appears in the context

while typing the body ⟨ f ⟩ of the function. This prevents ε from being generalised prior

to opening it, which makes the opening operation ill-typed.

As Garrigue and Rémy point out, labels never need to appear in code in their sys-

tem: Polytypes appearing in annotations may always omit labels, meaning that fresh

labels are implicitly used in their place. However, users need to be able to reason about

labels appearing in error messages and during inference.

Type annotations can be used in Poly-ML to freshen labels, which means that we

may write λ f .⟨( f : [σ])⟩ to make the earlier example well typed. Here, we may give

the subterm ( f : [σ]) the type [σ]ε1 for some ε1 not appearing in the context, and can

therefore generalise its type to ∀ε1.[σ]
ε1 . This subsequently allows the term to be

opened.

In addition to tracking that a polymorphic type originates from a type annotation
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rather than being guessed, the system can also determine when a polymorphic type

was deduced from already confirmed polymorphism. Consider the following example,

where λx : τ.a is syntactic sugar for λx. let x = (x : τ) in a.

let f = λ(g : [∀α.α → α]ε).3 in
λx.( f x,⟨x⟩)

As usual, let-bound variables may be assigned type schemes. Recall that in Poly-

ML, this includes quantifying labels at the toplevel.

We may therefore give f the type ∀ε.([∀α.α → α]ε → Int) while type-checking the

body of the let binding. When type-checking f x, we may then instantiate ε to an arbit-

rary ε′ not appearing in the context and infer [∀α.α→α]ε
′
as the type for x. This in turn

allows us to open x. This demonstrates how Poly-ML is able to propagate information

from the confirmed polytype in f ’s type to x, without relying on bidirectional typing.

However, the label system can be somewhat difficult to understand, as it is sensitive

to where type annotations appear. The first of the following terms is well typed, while

the second one is not.

λ f .⟨( f : [∀α.α → α])⟩ f

λ f .⟨ f ⟩ ( f : [∀α.α → α])

Further, annotations are not propagated inwards in the way they would in a bidirec-

tional setting. The terms let (g : [∀α.α → α]→ Int) = λ f .⟨ f ⟩ 3 in . . . and (λ f .⟨ f ⟩ 3 :

[∀α.α → α]→ Int) are both ill-typed.4

2.3.2.3 QML

Russo and Vytiniotis’ QML follows IFX and Poly-ML by distinguishing two sorts of

polymorphic types. Like IFX, they allow ∀ quantifiers to appear arbitrarily nested in

types τ, while the type environment carries type schemes Πα.τ. As opposed to IFX

and Poly-ML, QML also allows existentially quantified types in order to allow data

abstraction. The syntax of QML is shown in Figure 2.11; it subsumes the syntax of ML.

As in Poly-ML, universally quantified types are introduced using a type annotation in

terms, they have the form {α ∀β.τ} e. Here, the type variables α may appear freely in

τ and are considered existentially quantified in the sense of flexible type variables to

be determined by the type-checker. Hence, the overall type of {α ∀β.τ} e is ∀β.τ[τ′/α]

for appropriate τ′. Note that the τ′ may be arbitrarily quantified types, but must not

mention β.
4Here, we consider let ( f : σ) = a1 in a2 to be syntactic sugar for let f = ⟨[a1 : σ]⟩ in a2
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Types τ,µ ::= α | τ → τ | ∀α.τ | ∃α.τ

Type schemes ς ::= Πα.τ

Type contexts Γ ::= · | Γ,x : ς

Expressions e,u ::= x | λx.e | e e | let x = u in e

| {α ∀β.τ} e | e {α ∀β.τ}
| {α ∃β.τ} e | open {α ∃β.τ} x = u in e

Figure 2.11: Syntax of QML

All ∀ quantifiers are eliminated by a dual term form {α ∀β.τ} e, where ∀β.τ is the

type of e, again modulo the instantiation of the free variables α of τ. In particular, note

that the original type of e before the instantiation is given by the user. This is in con-

trast to IFX, which allows monomorphic instantiation without type information and

requires System F style type applications for polymorphic instantiation, and in con-

trast to Poly-ML, where the elimination form ⟨a⟩ of first-class polymorphism allows

instantiation with (boxed) polymorphic types. However, as a result, binders never need

type annotations in QML.

Existential packages are introduced analogously to universally quantified ones, us-

ing terms of the form {α ∃β.τ} e. They are eliminated using the usual open construct,

resulting in terms of the form open {α ∃β.τ} x = u in e. Note that again the full type

of the term u is given, modulo the substitution of the variables α.

Russo and Vytiniotis see their approach towards first-class polymorphism based

on fully explicit introduction and elimination forms as a refinement of earlier work

relying on explicitly declared datatypes (as discussed in Section 2.3.1), but keeping

types anonymous.

2.3.3 Systems using heuristics

We now discuss systems that use some sort of heuristics – in the widest sense of the

term – in their type systems.

2.3.3.1 HMF

HMF [58] uses just System F types; its term language extends ML with type annota-

tions on lambda parameters as well as general type annotations on terms. Unlike most

other systems, it permits a somewhat declarative account for instantiation and general-



28 Chapter 2. Background

isation, by using standalone typing rules for both applicable to arbitrary terms, in the

style of the ordinary ML rules GEN and INST (as shown in Figure 2.2 on page 14), but

with the latter rule allowing polymorphic instantiation. To retain decidable inference,

the system imposes several restrictions.

1. Function parameters have monomorphic types, unless they are annotated.

2. Let bindings must use the principal type of the let-bound term.

3. An application e1 e2 can only be typed in such a way that minimises the number

of introduced polymorphic types compared to all other typings of the expression.

4. Functions must have return types without toplevel quantifiers, unless their bodies

are type-annotated.

The first two conditions are fairly standard. The third condition means that the system

prefers monomorphic instantiation over polymorphic instantiation whenever possible.

This means that the term singleton id can be typed as List (σ → σ) for monomorphic

types σ but choosing a polymorphic type for σ or using the overall type List (∀α.α →
α) for the term requires a type annotation.

As a result, considering binary applications only would result in an increased need

for annotations. For example, consider the term cons id ids, where ids : List (∀α.α →
α) and cons : ∀α.α → List α. When only considering the subterm cons id first, the

minimality condition would not allow instantiating α with ∀β.β → β. The fact that

this instantiation is the only one that makes the overall term well typed only becomes

apparent once the argument ids is also taken into account. As a result, HMF uses a

typing rule for applications that takes arbitrary numbers of arguments into account,

requiring that the overall application is typed in a way that minimises polymorphism.

By using this rule, the example term above is accepted.

Finally, in order to permit functions whose return types have toplevel quantifiers,

which is required to encode System F in HMF, Leijen proposes rigid annotations.

This means that an expression annotated with a type prevents further instantiation or

generalisation of that term, meaning that the type annotation denotes exactly the type

of the term. Formally, this is achieved by distinguishing two categories of terms, based

on whether or not a term is type-annotated. Then, the INST and GEN rules mentioned

above only apply to the category of un-annotated terms.
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2.3.3.2 Boxy Types

The key idea of the Boxy Types [118] approach is to propagate typing information

similar to a bidirectional type system [95, 15].

In general, the defining feature of bidirectional systems is that they use two typing

judgements, reflecting in which mode the system is. In type checking mode, the type of

a term is known already and must merely be verified; type synthesis mode is used when

the type is not known. Note that this distinction between two modes in the specification

of the type systems reflects how type inference may be performed: In type checking

mode, the type of a term may be considered part of the inputs of the algorithm, whereas

it is part of the outputs in type inference mode. The typing rules for both judgements

may then occasionally switch modes. For example, a type annotation on a term results

in the system treating the annotated term in type checking mode, independently from

the mode in which the overall term is encountered. Propagation of type information

occurs, for instance, when a function is encountered in checking mode: The type of

the function’s parameter can directly be obtained from the (known) type of the overall

function.

The Boxy Types system does not follow this bidirectional approach directly. Rather

than having dedicated typing judgements for typing and inference mode each, the Boxy

Types system indicates when inference mode is entered within types themselves. Boxes

in types denote the parts of the type of a term that were inferred, whereas the non-boxed

structure of a type denotes known (i.e., checked) parts of type. The resulting syntax of

types is shown in Figure 2.12. Note that boxes are not nested, meaning that a box only

contains non-boxed types.

Vanilla monotypes τ ::= a | τ1 → τ2 | . . .
Guarded vanilla types ρ ::= τ | ρ → ρ | . . .
Vanilla polytypes σ ::= ∀a.ρ

Boxy guarded types ρ′ ::= τ | ρ′ → ρ′ | ρ | . . .
Boxy polytypes σ′ ::= ∀a.ρ′ | σ

Figure 2.12: Type language of Boxy Types system

One critique of the Boxy Types approach is that the system has a strong algorithmic

flavour, with their type system being a reflection of a particular inference algorithm.

In particular, as Vytiniotis et al. point out, there are no clear guidelines to where an-
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notations are required; they expect programmers to experiment with the type-checker

in those cases where the system does not behave as desired.

An extended version of the Boxy Types approach was used as the foundation of

the ImpredicativeTypes extension of GHC, which was subsequently abandoned due

to the complexity of the implementation and its unpredictable behaviour [27]. The

extension was later re-implemented based on the Quick Look system (discussed in

Section 2.3.3.4).

2.3.3.3 GI

The GI system [110] is named after the idea of providing guarded impredicative poly-

morphism. Its type language is that of System F, its term language simply extends ML

with type applications on function parameters as well as on arbitrary terms.

The centrepiece of the system is its typing of n-ary function applications. When

applying a function M (using our syntax for types and terms), the system follows a set

of rules that determine how quantified variables ai within M’s type may be instantiated.

Specifically, the system may allow each quantified variable ai to be instantiated with

either an arbitrarily polymorphic type, a type without toplevel quantifiers, or a fully

monomorphic type. Fully polymorphic instantiation is only permitted if the variable

ai is guarded by (i.e., appears under) a type constructor within the function’s curried

parameter types, hence the system’s name.

GI performs instantiation followed by generalisation of function arguments such

that their types may match the corresponding parameter type. Each function call is

typed without relying on information from the surrounding context, as it would be

the case in the Boxy Types system or a bidirectional setting. Similarly to HMF, the

system requires type annotations on function parameters if they are polymorphic, and

on function bodies if the function’s return type should be given a type with toplevel

quantifiers.

GI does not perform let generalisation, unless the let-bound term is annotated with

the desired result of generalisation. As a result, the system only ever needs to perform

generalisation to yield a type whose toplevel quantifiers are known, which is obtained

from the function being applied or a surrounding annotation. While this means that the

system is not a conservative extension of ML, it nevertheless represents an interesting

design point.
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2.3.3.4 QuickLook

The Quick Look (QL) system [109] is a successor of GI proposed by the same authors.

It adapts the work by Peyton Jones et al. [92] on using bidirectional typing to perform

type inference in the presence of polymorphism beyond the limits of the HM system.

The work by Peyton Jones et al. is limited to predicative systems, where bidirectional-

ity helps reduce the number of necessary type annotations. For example, if the type of

a function is known, it may be given a polymorphic parameter type without requiring

an annotation.

Quick Look combines this idea with the ability to perform impredicative instanti-

ation. This can either by achieved by providing explicit type arguments in the style of

System F, or by what Serrano et al. refer to as having a “quick look” at the arguments of

a function application. Thus, the system allows inferring impredicative instantiations

of function types, inspired by ideas of the GI system. However, unlike GI, QL does

utilise contextual information.

For example, assuming f : (List ∀a.a → a) → Int, the system is able to type f

(singleton id), by propagating the parameter type of f inwards to become the expec-

ted type of the subterm singleton id. In contrast, GI requires annotating the subterm

(singleton id). However, the ability to propagate typing information to aid type infer-

ence of function arguments exceeds what is typically supported by bidirectional type

systems (i.e., using a function’s parameter type to infer5 the types of arguments). For

example, the system allows some degree of information propagation between the types

of different arguments to deduce impredicative instantiations.

Serrano et al. emphasise that the Quick Look approach is entirely local to func-

tion applications, which is also reflected in their inference algorithm. This allowed

the approach to be implemented in GHC without requiring pervasive changes. Their

core language even eschews let bindings, making it technically not a conservative ex-

tension of ML, but they state that the locality of the approach makes it simple to add

generalising let bindings and more advanced language features.

2.3.4 MLF and its descendants

Le Botlan and Rémy state that they designed MLF [56] (also stylised as MLF) as a

continuation of their work on Poly-ML (as discussed in Section 2.3.2.2). The defining

5Using the terminology of bidirectional type inference, only the function’s type is inferred, while the
types of arguments are checked.
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feature of MLF is that it goes beyond the expressivity of System F types, by including

bounds on quantifiers. As an example, consider again the term singleton id, which

we used in Section 1.3. There, we described the challenge of deciding whether to

instantiate id (leading to type List a → a of the overall term) or not (leading to type

List (∀a.a → a)). In MLF, the principal type of the term is ∀(b ≥ (∀a.a → a)).List b.

Here, the system need not commit to an instantiation decision, but can represent in

the resulting type that the list contains elements whose type is an instance of ∀a.a →
a, including that type itself. This is achieved using flexible bounds, denoted ≥, on

quantifiers such as b.

The term language of MLF is simply that of ML extended with type annotations

on arbitrary terms. Type annotations on binders can then be derived as syntactic sugar

for the former.6

The syntax of types is given in Figure 2.13. Note that polytypes maintain a prenex

form: Quantifiers may only appear at the outermost level and in bounds. As a result, the

System F type (∀a.a → a)→ (∀a.a → a) is represented as ∀(b = (∀a.a → a)).b → b.

Here, a rigid bound is imposed on b, asserting that it is equivalent to its bound rather

than an instance of it. A bound of the form a ≥ ⊥ may be used to represent ordinary

ML types.

Monotypes τ ::= a | τ → τ | . . .
Polytypes σ ::= τ | ⊥ | ∀(a ≥ σ).σ′ | ∀(a = σ).σ′

Figure 2.13: Syntax of MLF types

Typing in MLF happens under a prefix, giving = or ≥ bounds to all type variables

in scope. Prefixes are closed and order-dependent, similar to the usage of contexts in

the work of Gundry et al. [35] as well as Dunfield and Krishnaswami [16].

MLF enjoys a principal types property and complete type inference, requiring an-

notations only on binders that are used polymorphically. Like many other systems, the

typing rules of MLF then impose that monotypes τ must be used in certain situations.

An important aspect of MLF’s usage of such monomorphism conditions is that some

typing derivations must then reason abstractly about a type by using a type variable in

its place, while access to the variable’s bound in the context is restricted.

As a result of its powerful type system, MLF programs require few annotations,

6Formally, all type annotations are desugared to term applications using a dedicated constant for
each type, meaning that it suffices to have constants as language primitives.
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while the system’s specification remains entirely declarative. Only function paramet-

ers that are used polymorphically need annotations; no annotations are required else-

where. The price of this impressive feat is the use of a somewhat involved unification

algorithm, as Vytiniotis observes [106].

HML HML [59] is a simplification of MLF. It only uses flexible bounds and only al-

lows System F types for function parameters (i.e., without carrying bounds on quantifi-

ers). Let-bound variables still use quantified type schemes (i.e., types σ in Figure 2.13,

but without rigid bounds). The result is a simple annotation rule where, unlike MLF,

all function parameters with polymorphic types require type annotations. The embed-

ding of System F into HML is even simpler than the one of the former into MLF, as

it is no longer necessary to translate System F types with nested quantifiers into MLF

types with rigidly bound quantifiers.

Leijen suggests a further simplification, called HMLF, where let-bound variables

receive System F types, too. Given a term let x = M in N, typing derivations must use

the principal type of M (possibly using arbitrarily nested flexible quantifiers), which is

then translated to a System F type, thus sacrificing generality. However, this further

limits the exposure of users to types with flexibly bound quantifiers as compared to

MLF and HML, but does not fully eliminate it. Such types may still occur in error

messages. Further, users who do not wish to reason about the principal HML type of

a let-bound term M and its translation to a System F type may have to annotate all let

bindings where M has a higher-rank type.

FPH The authors of the Boxy Types system proposed FPH [118] as another sys-

tem directly based on MLF. Unlike Boxy Types, FPH has a declarative specification.

It offers simple guideline that allows overapproximating where annotations must be

placed, which is the same rule as in HMLF (i.e., on let and lambda binders with non-

HM types). Although the system is implemented internally by reusing parts of the

MLF machinery, its specification does not use any bounded quantification. Instead, it

uses a notion of boxed types, albeit with a different meaning than in the Boxy Types

work. Leijen [59] conjectures that FPH accepts a strict subset of the programs accepted

by HMLF.
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2.3.5 Remy’s FML system

Rémy’s FML [101] system (stylised as FML) utilises the type language of System F as

well as a predicative variant, denoted ≤η
p , of Mitchell’s containment relation [80]. For

example, the following relations hold (using our syntax for types).

∀a.Int→ (a → a) ≤η
p Int→∀a.(a → a)

Unit→ (∀a.a → a) ≤η
p Unit→ (Int→ Int)

(Int→ Int)→ Unit ≤η
p (∀a.a → a)→ Unit

As illustrated here, the relation allows (monomorphic) instantiation of nested quanti-

fiers, is contravariant in function types and allows hoisting of certain quantifiers. The

FML system then satisfies the subsumption property that if term M has type A and

A ≤η
p B, then M also has type B in the same context.

The system relies on the existence of coercion functions of type A → B for all

such types with A ≤F
≈ B. Here, A ≤F

≈ B is a variant of the generic instance relation

(the original version is shown in Figure 2.3 on page 14) that allows impredicative

instantiation, but only of toplevel quantifiers, and permits the reordering of all adjacent

quantifiers, including nested ones.

These coercions must explicitly be applied whenever any impredicative instanti-

ation should be performed. Further, for all let bindings let x = M in N and applica-

tions M N, the system requires a type annotation on M whenever its type contains any

quantifiers. In the case of let bindings, this is with respect to the type of M before

generalisation occurs, otherwise the system would not be a conservative extension of

ML.

Finally, Rémy provides a sophisticated elaboration mechanism that is run on source

programs prior to type-inference. It propagates user-provided annotations throughout

the term to reduce the burden of having to provide redundant annotations that can be

deduced from other annotations due to (partial) overlap between them.
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FreezeML

In Section 1.2, we described the design goals for FreezeML to be such that it should

• have predictable behaviour,

• use System F types,

• permit type inference close to that for ML,

• have low syntactic overhead, and

• accommodate the value restriction.

In Section 3.1, we describe the design of FreezeML, guided by these design goals

and formalise the type system in Section 3.2. We show translation between FreezeML

and System F in Section 3.3. Section 3.4 addresses the fact that the typing rules for

FreezeML terms reason about all typing derivations of the term, and shows that the

resulting typing relation is nevertheless well founded.

3.1 The design of FreezeML

As per the design goals mentioned above, the type language of FreezeML is that of

System F. The behavior of FreezeML is made predictable by exactly following ML

with respect to where instantiation and generalisation occurs.

In the following, we outline the design of FreezeML guided by examples. For ref-

erence, their types are shown in Section 3.1. The first three functions were introduced

in Chapter 1, the remaining two are standard.

35
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every other : ∀a.List a → List a

cull and combine : ∀abc.(∀d.List d → List d)→
(a → b → c)→ List a → List b → List c

list cull and combine : ∀abc.List (∀d.List d → List d)→
(a → b → c)→ List a → List b → List c

singleton : ∀a.a → List a

head : ∀a.List a → a

Figure 3.1: Example functions used in this chapter

3.1.1 Implicit instantiation and freezing

In Section 2.2.1.1, we discussed that the key observation leading to the syntax-directed

presentation of ML is that it is sufficient to limit instantiation to act only on variables.

When typing the example term singleton every other from Section 1.1 in ML, the quan-

tifiers in the type of each variable are eagerly instantiated. This means that the type

∀a.List a → List a of every other is instantiated to List A → List A for some type A,

whereas the variable b of singleton’s type ∀b.b → List b is instantiated with the same

type List A → List A. This results in the overall term having the type List (List A →
List A).

We choose to preserve this behaviour of variables in FreezeML, meaning that all

variables eagerly instantiate their (toplevel) quantifiers. However, a crucial difference

is that we allow instantiation to be with polymorphic types. As a result, in FreezeML

the type A above may contain quantifiers.

This leads to the question of how to type the term list cull and combine (singleton

every other), where we defined the type of the function list cull and combine in Sec-

tion 1.1 such that it takes a parameter of type List (∀a.List a → List a). The approach

taken by some systems is to maintain sufficient context in the type system to decide that

when typing the overall term list cull and combine (singleton every other), the sub-

term every other should either re-generalise after instantiation, or instantiation should

be suppressed altogether. This may, for instance, be achieved by relying on bidirec-

tionality, or taking (possibly nested) n-ary applications into account.

The approach we take in FreezeML is different: Given that variables uncondition-

ally perform instantiation, we would still like to use variables in the style of System

F, where a variable’s type is simply taken from the environment. Thus, we intro-

duce frozen variables ⌈x⌉, which prevent instantiation. This means that only the term
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list cull and combine (singleton ⌈every other⌉), is well typed in FreezeML. While this

means requiring the programmers to be more explicit about their intent, it avoids hav-

ing to give the term (singleton every other) both of the following types, based on their

surrounding context.

List (List A → List A) (3.1)

List (∀a.List a → List a) (3.2)

In particular, there is no more general type of the term that both (3.1) and (3.2) would

be (generic) instances of, even when allowing the (generic) instance relation to perform

polymorphic instantiation.1

3.1.2 Explicit instantiation

We now consider a list cull funs of type List (∀a.List a → List a) containing poly-

morphic functions for culling lists, such as every other. Using the usual head function,

we may then use head cull funs to retrieve the first such culling function.

However, the term head cull funs [1;2;3;4] is ill-typed. FreezeML types are Sys-

tem F types in the sense that the quantified type ∀a.List a → List a of the subterm

head cull funs has no direct relationship with function types of the form ListA→ ListA.

In particular, the System F type ∀a.List a → List a is not an ML type scheme (which

would have all types of the form List A → List A as generic instances).

Instead, quantifiers must be eliminated in FreezeML. As discussed in the previous

subsection, the mechanism for doing so is using variables.

As a result, the generic instance relation, or a variation thereof that permits poly-

morphic instantiation, is not useful in FreezeML to denote when a FreezeML type is

more general than another one. The type ∀a.a → a is not more general than Int→ Int,

as in general we cannot use terms of the former type in place of terms of the latter

type. We therefore use a notion of principal types for FreezeML similar to the one in-

troduced in Section 2.2.1.3, where other types can be obtained from the principal type

by instantiating its free type variables. We formalise this notion in Section 3.2.1.1.

In our example, we may therefore introduce an intermediate variable to force in-

1Of course, this does not mean that it is impossible to define a type system together with a richer
relation between quantified types that can relate these two types to a shared more general type of the
term singleton every other. Examples for such relations include Mitchell’s undecidable containment
relation [80] as well as the decidable variants used by Rémy [101] and Peyton Jones et al. [92].
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stantiation, using the following term instead.

let f = head cull funs

in
f [1;2;3;4]

Observe that there is no generalisation occurring here, the type of f is exactly the type

of the let-bound term, which is already polymorphic. We return to the question of

when generalisation is performed by a let binding in the next subsection.

The introduction of intermediate variables can be tedious for one-off usages, we

therefore introduce a postfix instantiation operator @, where M@ is syntactic sugar

for let tmp= M in tmp. We may therefore rewrite the example as (head cull funs)@

[1;2;3;4].

3.1.3 Implicit generalisation

Previously, we have shown how the behaviour of FreezeML with respect to instan-

tiation is inspired by ML. Similarly, generalisation in FreezeML behaves just as in

a syntax-directed presentation of ML, meaning that it is limited to let bindings. For

example, the following term creates the culling function every fourth by composing

every other with itself and then uses it when calling cull and combine.

let every fourth=

λl.compose every other every other l

in
cull and combine ⌈every fourth⌉(λx y.x+floor y) [1; 2; 3; 4] [1.1; 2.2; 3.3; 4.4]

Note that due to the value restriction, we have to eta-expand the definition of

every fourth to enable generalisation.

3.1.4 Explicit generalisation

Analogously to the instantiation operator @, we define the prefix generalisation oper-

ator $ as syntactic sugar for a let binding. Concretely, $M is defined as let x=M in ⌈x⌉,

meaning that it generalises M and freezes the result. Due to the value restriction, such

a let binding only performs generalisation if M is part of an appropriate syntactic cat-

egory. We will therefore revisit the operator when introducing the syntax of FreezeML

and restrict it such that it is only applicable to terms of an appropriate syntactic cat-

egory, called guarded values in FreezeML. This category is a strict superset of the class
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of syntactic values of ML (as defined in Figure 2.1 on page 13), and therefore includes

terms such as functions.

Thus, using the generalisation operator allows us to define a list of type List (∀a.a→
a) as singleton $(λx.x).

3.1.5 Function parameters

In the presence of first-class polymorphism, function parameters may have polymorphic

types, as we have seen in the example functions such as list cull and combine dis-

cussed earlier in this section. This raises the question of inference: While all systems

of which the author is aware of reject the term λ f .( f 3, f true), some allow inferring

polymorphic parameter types under specific circumstances, using a variety of different

mechanisms.

In FreezeML, just as IFX, HMF, and GI, we choose the simplest solution that is

compatible with ML: Function parameters have monomorphic types, unless a type

annotation is present at the binding. This means that FreezeML only accepts the ex-

ample term above if it is changed to, say, λ( f : ∀a.a → a).( f 3, f true). Further, the

only necessary change to the definition of cull and combine, shown in Section 1.1, is

a type annotation on the first parameter (i.e., the polymorphic culling function to be

used).

3.1.6 Type variable scoping

The fact that FreezeML allows type annotations on binders raises the question of how

free type variables in such annotations are treated. The answer is that FreezeML

provides lexically scoped type variables [91]. Concretely, type annotations on let bind-

ings may bind type variables, but taking the value restriction into account: Given a

term let (x : ∀∆.H) = M in N, the type variables ∆ quantified at the outermost level are

bound in M if and only if M is a term that may be generalised, such as a function. This

means that in the empty context, the term let ( f : ∀a.a → a) = λ(x : a).x in . . . satisfies

the scoping rules for type variables in FreezeML, whereas let ( f : ∀a.a→ a) = id (λ(x :

a).x) in . . . does not. The latter term is therefore considered ill-formed.

We discuss alternative approaches towards type variable scoping in Section 6.2.1.2.
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3.1.7 Type equality

As usual, we consider types equivalent modulo alpha-renaming of quantified variables.

Like System F, we do not consider them equivalent modulo reordering of quantifiers

as well as the addition and removal of superfluous type variables. As a result, the

following types are all considered different in FreezeML.

∀abc.a → b → a

∀ab. a → b → a

∀ba. a → b → a

In Section 6.2.1.1, we return to this matter and discuss a variant of FreezeML that does

consider these types equivalent.

In conclusion, we can observe that FreezeML is similar to System F in the sense

that quantified types must be introduced and eliminated explicitly. However, the fact

that the introduction and elimination forms for quantified types are variables and let

bindings, respectively, means that FreezeML behaves like ML when staying within the

boundaries of ML, namely using toplevel quantification only.

3.2 Formal definition

We will now introduce FreezeML formally. Its syntax is shown in Figure 3.2 on the

following page. In addition to defining meta-variables, we introduce names for select

syntactic classes.

Types A are defined as in System F, but we distinguish two sub-categories of types.

Monomorphic types S do not contain quantifiers at all, while guarded types G may

only contain quantifiers if they appear guarded under a type constructor D, but not at

the toplevel.

FreezeML terms M extend the syntax of ML with three constructs, all of which we

discussed in the previous section: Frozen variables, annotated λ terms, and annotated

let bindings. For the purposes of the value restriction, we introduce two sub-categories

of (syntactic) values. As in ML, values V arises from M by removing applications.

Guarded values U arise from values by removing frozen variables. For let bindings,

we allow frozen variables in the let-bound term, but not the body of the binding. The
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Type variables a,b,c

Type constructors D ::= →| Unit | . . .
Types Type ∋ A,B ::= a | DA | ∀a.A

Monotypes MType ∋ S,T ::= a | DS

Guarded types GType ∋ G ::= a | DA

Type instantiations δ ::= /0 | δ[a 7→ A]

Restrictions R ::= • | ⋆
Term variables x,y,z

Terms Term ∋ M,N ::= x | ⌈x⌉ | λx.M | λ(x : A).M | M N

| let x = M in N | let (x : A) = M in N

Values Val ∋ V,W ::= x | ⌈x⌉ | λx.M | λ(x : A).M

| let x =V in W | let (x : A) =V in W

Guarded values GVal ∋ U ::= x | λx.M | λ(x : A).M

| let x =V in U | let (x : A) =V in U

Type contexts ∆ ::= · | ∆,a

Term contexts Γ ::= · | Γ,x : A

Figure 3.2: FreezeML syntax

idea of guarded values is that they have guarded types.2

We consider terms to be equivalent modulo alpha-conversion of both the term and

type variables they bind. While the former simply allows renaming lambda and let

binders, type variable bindings require additional care: As discussed in Section 3.1.6,

binding of type variables only occurs in terms of the form let (x : ∀a.H) = U in N,

where the variables a are bound in U . Thus alpha-conversion of the type annotation

a.H requires appropriate renaming within U .

As opposed to ML, type instantiations δ map variables to (arbitrarily polymorphic)

types A in FreezeML. Instantiations in FreezeML obey a restriction R on the types

in their codomain, which we return to when discussing the well-formedness rules for

instantiations. Type contexts ∆ and term contexts Γ remain unchanged as compared to

to System F.

2There is a single exception of this rule: Given bot : ∀a1 . . .an.ai, we have that the guarded value bot
can be given an arbitrary, non-guarded type such as ∀a.a → a. We return to this in Section 3.2.1.3.
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Well-formedness of types and contexts Similarly to our presentation of ML and

System F in Section 2.2, our presentation of FreezeML is explicit about the type vari-

ables currently in scope. To this end, we define the well-formedness of term contexts

and types under a given type context ∆. They are shown in Figure 3.3. Concretely,

well-formedness judgements ∆ ⊢ Γ ok state that all types in Γ are well-formed with

respect to ∆. The latter is formalised using judgements ∆ ⊢R A ok. Here, R is either

• or ⋆, meaning that A is a monomorphic type S, or a potentially polymorphic type,

respectively. We have that ∆ ⊢• A ok (stating that A well formed and monomorphic)

implies ∆ ⊢⋆ A ok. This is evoked by the last rule of the judgement ∆ ⊢R A ok in Fig-

ure 3.3. We can therefore consider restrictions to form a two-element lattice with ⋆ as

the greatest element. We write ∆ ⊢ A ok as a shortcut for ∆ ⊢⋆ A ok.

∆ ⊢R A ok

a ∈ ∆

∆ ⊢• a ok

arity(D) = n

∆ ⊢R A1 ok
· · ·

∆ ⊢R An ok

∆ ⊢R DA ok

(∆,a) ⊢⋆ A ok

∆ ⊢⋆ ∀a.A ok

∆ ⊢• A ok

∆ ⊢⋆ A ok

∆ ⊢ Γ ok

∆ ⊢ · ok
∆ ⊢ A ok ∆ ⊢ Γ ok

∆ ⊢ Γ,x : A

∆;Γ ⊢ M ok
x ∈ Γ

∆;Γ ⊢ ⌈x⌉ ok

x ∈ Γ

∆;Γ ⊢ x ok

∆;(Γ,x : A) ⊢ M ok

∆;Γ ⊢ λx.M ok

∆ ⊢ A ok
∆;(Γ,x : A) ⊢ M ok

∆;Γ ⊢ λ(x : A).M ok

∆;Γ ⊢ M ok
∆;Γ ⊢ N ok

∆;Γ ⊢ M N ok

∆;Γ ⊢ M ok ∆;(Γ,x : A) ⊢ N ok

∆;Γ ⊢ let x = M in N ok

∆ ⊢ A ok (∆′,A′) = split(A,M) (∆,∆′) ⊢ M ok ∆;(Γ,x : A) ⊢ N ok

∆;Γ ⊢ let (x : A) = M in N ok

Figure 3.3: FreezeML well-formedness rules
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Well-formedness of terms As discussed in the previous section, the toplevel quan-

tifiers of the annotation A of a let-bound variable are bound in the let-bound term M if

and only if M is a guarded value. We formalise this using the well-formedness judge-

ment ∆;Γ⊢M ok on terms, also shown in Figure 3.3. It checks that all type annotations

only refer to type variables that are in scope according to the aforementioned scoping

rules. Conversely, it also checks that M only refers to term variables in scope. For both

checks, ∆ and Γ denote the ambient contexts containing potential free variables.

The only interesting rules are those for annotated binders, which check that the

type annotation A is well formed in the current context ∆. In addition, the typing rule

for annotated let bindings also extends the context ∆ with some ∆′ when checking the

well formedness of the let-bound term M. Here, ∆′ is determined using the auxiliary

function split, which is defined as follows.

split(∀∆′.H,M) =

{
(∆′,H) if M ∈ GVal

(·,∀∆′.H) otherwise

It evokes that ∆′ corresponds to the outermost quantifiers of A if M is a guarded value,

and is empty otherwise. Observe that the second element of the tuple returned by split

is ignored by the well-formedness rule for annotated let bindings. We re-use split for a

different purpose later, where the second element is used.

Note that the well-formedness relation only uses the term context Γ to track what

variables are in scope, ignoring the types therein. Thus, the rules binding an un-

annotated variable term variable x add (x : A) to the term context, where A is arbitrarily

chosen.

FreezeML instantiations Similarly to our definition of ML, we use instantiations δ

in the FreezeML typing rules. We augment the well-formedness judgements ∆ ⊢ ∆′ ⇒
∆′′ for instantiations used in ML (shown in Figure 2.5 on page 16), with a restriction

R that all types in the codomain must obey. Therefore, ∆ ⊢ ∆′ ⇒• ∆′′ states that δ

instantiates variables with monomorphic types, while using ⋆ instead removes this

constraint. The rules of the judgement are shown in Figure 3.4 on the next page.

Indirect dynamic semantics We will not give a dynamic semantics of FreezeML

directly, instead defining it in terms of the translation from FreezeML to System F,

given in Section 3.3.2. We then immediately have that FreezeML’s type system, defined

in the next subsection, is sound due to the soundness of System F and the type-

preserving nature of the translation (stated in Theorem 3.2). A similar approach is
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∆ ⊢ δ : ∆
′ ⇒R ∆

′′

∆#∆
′

∆ ⊢ /0 : · ⇒R ∆
′

∆ ⊢ δ : ∆
′ ⇒R ∆

′′ (∆,∆′′) ⊢R A ok ∆#(∆′,a)

∆ ⊢ δ[a 7→ A] : (∆′,a)⇒R ∆
′′

Figure 3.4: FreezeML instantiations

taken in HMF [57], GI [110] and the Boxy Types system [117]. In the latter work,

Vytiniotis et al. argue that this has the following advantage, besides trivially obtaining

a type soundness result: For languages whose evaluation or subsequent compilation

is based on a System F-style intermediate representation, the formal definition of the

dynamic semantics can more closely resemble the actual implementation. Both GHC

and Links use such intermediate representations.

However, Russo and Vytiniotis [106] consider the ability to define a simple reduc-

tion semantics to be a design goal for their QML system, making it easier to reason

about dynamic behaviour directly, rather than through an intermediary.

3.2.1 Typing rules

FreezeML typing judgements are of the form ∆;Γ ⊢ M : A, the rules are shown in

Figure 3.5 on the following page. In order for any FreezeML typing judgement to

hold, we also implicitly require the following well-formedness conditions to hold.

1. Γ is well formed under ∆ (i.e., ∆ ⊢ Γ ok).

2. M is well formed under ∆ and Γ (i.e., ∆;Γ ⊢ M ok).

Also recall that we established the convention in Section 2.2.1 that any judgement,

such as ∆;Γ ⊢ M : A, further imposes that ∆ and Γ each consist of pairwise different

elements.

The typing rules rely on the auxiliary relations principal and ⇕ (discussed sub-

sequently in Section 3.2.1.1) and the auxiliary function split (discussed subsequently

in Section 3.2.1.3). They are formally defined in Figure 3.6 on page 47. While principal

is used to impose that some derivations use principal types of certain terms, split and

⇕ are used to implement the value restriction without requiring separate rules.

Observe that the typing rules are syntax-directed. Frozen variables are typed by

simply returning the associated type from Γ. Plain variables x are typed similarly

to ML (shown in Figure 2.6 on page 17), by instantiating the toplevel quantifiers of



3.2. Formal definition 45

∆;Γ ⊢ M : A

VARFROZEN

x : A ∈ Γ

∆;Γ ⊢ ⌈x⌉ : A

VARPLAIN

x : ∀a.H ∈ Γ ∆ ⊢ δ : a ⇒⋆ ·

∆;Γ ⊢ x : δ(H)

APP

∆;Γ ⊢ M : A → B ∆;Γ ⊢ N : A

∆;Γ ⊢ M N : B

LAMPLAIN

∆;(Γ,x : S) ⊢ M : B

∆;Γ ⊢ λx.M : S → B

LAMANN

∆;(Γ,x : A) ⊢ M : B

∆;Γ ⊢ λ(x : A).M : A → B

LETPLAIN

a = ftv(A′)−∆ (∆,a);Γ ⊢ M : A′ principal(∆,Γ,M,a,A′)

(∆,a,M,A′) ⇕ A ∆;(Γ,x : A) ⊢ N : B

∆;Γ ⊢ let x = M in N : B

LETANN

(a,A′) = split(A,M) (∆,a);Γ ⊢ M : A′
∆;(Γ,x : A) ⊢ N : B

∆;Γ ⊢ let (x : A) = M in N : B

Figure 3.5: FreezeML typing rules

x’s type in Γ. However, as opposed to ML, the instantiation is polymorphic, as de-

noted by the subscript ⋆ on the instantiation judgement in VARPLAIN. Applications

are also standard. Un-annotated lambda abstractions are typed by choosing a mono-

morphic type S for the parameter. Annotated lambdas use the user-provided type A

instead. Note that the implicit precondition of typing judgements regarding the well-

formedness of contexts ensures that the premise of LAMANN implies that A is well

formed in ∆.

3.2.1.1 Generalisation and principality

As discussed in Section 3.1.3, let bindings perform generalisation in FreezeML, subject

to the value restriction.

Recall that in ML, the expression let f = λx.x in f 3 can be given the type Int
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using different derivations.

• The subterm λx.x may be given the type Int→ Int, making this the type of f .

• The same subterm may be given type a → a for some fresh a, meaning that a

can be generalised to obtain the ML type scheme ∀a.a → a for f . As a result, f

must be instantiated in the body of the let binding prior to being applied to 3.

However, additional restrictions are required in FreezeML when typing let x =

M in N. Consider the slight variation let f = λx.x in ( f 3, ⌈ f ⌉) of the example. If we

allowed both types for f (i.e., Int→ Int and ∀a.a → a), the term could be given both

of the following two types.

Int× (Int→ Int)

Int× (∀a.a → a)

In Section 3.1.2 we discussed that we will express principal types in FreezeML

strictly in terms of instantiating free type variables, rather than using, say, an impredic-

ative variant of the generic instance relation. However, there is no type A that we could

give the term in FreezeML such that instantiating A would yield both types above. We

observe that the term let f = λx.x in ⌈ f ⌉ already exhibits the same problematic beha-

viour. Without further restrictions, the term could be given types such as (Int→ Int)

and (∀a.a → a), which are unrelated in FreezeML, and there is no more general type

of the term that could be instantiated to yield both.

In practice, the problem also affects type inference: If we allowed both types for f ,

we would require some kind of backtracking during type inference. Inferring a type for

let f = λx.x in ⌈ f ⌉ 3 would necessitate observing that f must be given type Int→ Int

instead of ∀a.a → a after processing its definition. Only the former choice for the type

of f makes the term well typed.

We now introduce the notion of the principal type A for a term M in FreezeML

under a given type context ∆ and term context Γ, following a similar definition for ML

in Section 2.2.1.3. It must be possible to obtain all other types of M by instantiating

the free type variables of A, possibly with polymorphic types. We formalise this using

the relation principal, which is defined in Figure 3.6 on the next page. In a context

consisting of ∆ and Γ, principal(∆,Γ,M,∆′,A) holds if A is a type of M. Here, ∆′

explicitly denotes the free type variables of A that do not appear in the ambient type

context ∆. It must then be the case that any other type of M can be obtained from A by
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split(∀∆′.H,M) =

{
(∆′,H) if M ∈ GVal

(·,∀∆′.H) otherwise

principal(∆,Γ,M,∆′,A′) =

(∆,∆′);Γ ⊢ M : A′ and

(for all ∆′′,A′′ | if (∆,∆′′);Γ ⊢ M : A′′

then there exists δ such that

∆ ⊢ δ : ∆′ ⇒⋆ ∆′′ and δ(A′) = A′′)

(∆,a,M,A′) ⇕ A

M ∈ GVal

(∆,a,M,A′) ⇕ ∀a.A′

∆
′ = a ∆ ⊢ δ : ∆

′ ⇒• · M ̸∈ GVal

(∆,a,M,A′) ⇕ δ(A′)

Figure 3.6: Auxiliary functions and relations for FreezeML typing

instantiating the variables in ∆′, potentially with polymorphic types. As an example,

we have principal(∆, ·,λx.x,a,a → a) for any ∆ with a#∆.

On principal types and type schemes In Section 2.2.1.3, we provided the closely

related definitions of principal types and principal type schemes in the context of ML.

While the former instantiates free type variables, the latter instantiates existing quanti-

fiers using the generic instance relation.

The alert reader may notice that this gives rise to a similar notion of type schemes

in FreezeML. If principal(∆,Γ,M,∆′,A) holds in FreezeML, it means that the variables

in ∆′ are generic in the sense that they do not appear in the ambient type context ∆.

Thus, in contexts ∆ and Γ, we have that ∆′ together with A could be considered as the

principal type scheme of A. We could make this explicit in FreezeML by introducing

a separate universal quantifier such as ∀̃. After all, this is what systems like IFX and

QML do, as discussed in Section 2.3.2.

We avoid extending our language of types in this way due to the fact that principal

types (and thus, a potential new notion of principal type schemes) are only used when

typing let bindings in FreezeML. In particular, unlike in IFX, QML and Poly-ML,



48 Chapter 3. FreezeML

FreezeML term contexts Γ would never contain such type schemes.

3.2.1.2 Plain let bindings

To enforce the value restriction, the typing of terms let x = M in N differs based on

whether M is a guarded value or not. Before examining the rule LETPLAIN in Fig-

ure 3.5, which handles both cases, we first consider the following specialised rule for

illustrative purposes. It handles the case that M is some guarded value U equivalently

to LETPLAIN.
LETPLAIN-VALUE

a = ftv(A′)−∆ (∆,a);Γ ⊢U : A′ principal(∆,Γ,U,a,A′)

A = ∀a.A′
∆;(Γ,x : A) ⊢ N : B

∆;Γ ⊢ let x =U in N : B

The need for principality conditions discussed in Section 3.2.1.1 means that when

typing terms let x =U in N under context ∆ and Γ, we use the principal type A′ for U ,

meaning that we require principal(∆,Γ,U,a,A′). Note that this implies (∆,a);Γ ⊢U :

A′, which we include as a separate premise for the sake of clarity.

The type for x is then obtained by generalising the principal type A′ of U , meaning

that we quantify it over the variables in a. Note that the definition of principal does not

enforce that a are exactly the free type variables of A′ without those in ∆, neither does

it impose any ordering on the variables in ∆. As a result, all of the following hold.

principal(·, ·,λxy.x,(a,b), a → b → a) (3.3)

principal(·, ·,λxy.x,(b,a), a → b → a) (3.4)

principal(·, ·,λxy.x,(a,b,c), a → b → a) (3.5)

However, generalising the type a → b → a by universally quantifying it over any of

the sequences (a,b), (b,a), or (a,b,c) yields different FreezeML types. Thus, we

additionally require a = ftv(A′)−∆ as a premise in the typing rule, which only leaves

(3.3) when typing a term of the form let g = λxy.x in N. This is due to the fact

that we define the operator ftv(A′) to return free type variables ordered by their first

occurrence in A′. Further, we assume that this ordering is preserved under standard set

and vector manipulations, such as removing ∆ from ftv(A′). The result of quantifying

the principal type A′ over the variables a is then the type of the variable x used in N.

In the example term let g = λxy.x in N, this means that ∀ab.a → b → a is the only

possible type given to g when typing N. Similarly, the example term let f = λx.x in
⌈ f ⌉ 3 from Section 3.2.1.1 is rejected in FreezeML.
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The following lemma shows that principal types are unique modulo renaming the

variables that appear freely in the type and are not part of the ambient context ∆.

Lemma 3.1 (Uniqueness of principal types modulo renaming of free variables).
Let ∆ ⊢ Γ ok and ∆;Γ ⊢ M ok hold as well as principal(∆,Γ,M,∆′,A). Then for all ∆′′,

B we have that principal(∆,Γ,M,∆′′,B) holds iff we have

• ∆#∆′′ and

• there exists a bijection δ between ftv(A)−∆ and ftv(B)−∆ such that δ(A) = B.

Proof. Follows easily from the definition of principal but requires appropriate strength-

ening/weakening properties (formalised in Lemma A.1 in Appendix A.1) as well as a

simple substitution property, such as Lemma 4.1 introduced later in Section 4.1.

This means that all possible types that can be given to x in LETPLAIN-VALUE are

alpha-equivalent. Also note that the lemma enshrines the intuition that ∆ is the ambient

context by requiring ∆ ⊢ Γ ok and ∆;Γ ⊢ M ok. We could add these conditions directly

to the definition of principal, but decided to keep it standard. In typing rules using

principal, such as LETPLAIN-VALUE and LETPLAIN, both well-formedness condi-

tions are satisfied due to the implicit preconditions of the typing judgement.

No generalisation must occur in let bindings when the let-bound term M is not

a guarded value. However, the principality condition is still necessary in the non-

generalising case. Consider the following term, where bot : ∀a.a.

let f = bot bot in ( f 3, ⌈ f ⌉) (3.6)

Without the principality condition, we may instantiate the non-value term bot bot to

yield types such as Int→ A and ∀a.a → A and use these as the type for f . However,

there would then be no principal type for f (which can be observed using ⌈ f ⌉) sub-

suming all possible choices. Note that the quantifiers in the types for f result from

instantiation in bot bot, rather than generalisation at the let binding. Therefore, a bind-

ing let x = M in N where M is not a guarded value is typed by giving x a type that is

obtained by instantiating the principal type A′ of M, rather than generalising it.

However, we observe that arbitrary instantiation leads to the same problem we en-

countered to motivate the need for the principality condition when discussing the term

(3.6) above. We have principal(·,Γ,bot bot,a,a), where Γ contains the aforementioned

type of bot. If we allowed any instantiation of a to yield the type of f , we could again

choose f : Int → A or ∀a.a → A, but there is no principal type for f that makes the
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term (3.6) well typed when polymorphic instantiations (such as the latter choice) are

permitted. Therefore, we must impose that the type chosen for f must be obtained

from the principal type by monomorphic instantiation only.

To obtain syntax-direct typing rules for FreezeML, we introduce a single typing

rule LETPLAIN for the generalising and non-generalising case in Figure 3.5. As de-

scribed above, we need to reason about the principal type A′ of M in both cases. The

two cases then only differ in how they obtain the type A for x from the principal type

A′ of M. This is achieved using the helper judgement (∆,a,M,A′) ⇕ A, also defined in

Figure 3.6. Intuitively, we may consider (∆,a,M,A′) to be the inputs of the relation,

the possible choices for the output A then differ based on the syntactic category of M.

If M is a guarded value, then generalisation takes place and A is uniquely determined

as ∀a.A′. Otherwise, no generalisation must take place and A is obtained from A′ by

applying some arbitrary monomorphic instantiation δ, acting on the variables a.

3.2.1.3 Annotated let-bindings

Annotations on let-bound variables are used for two purposes in FreezeML, beyond

just providing documentation. The first is inherently coupled with the use of principal

types in un-annotated let bindings. Let Γ contain the function take choose of type

(∀a.a → a → a)→ A for some A. We have principal(·,Γ,λx y.x,(a,b),a → b → a), as

discussed in (3.3) on page 48, meaning that let choose= λxy.x in take choose ⌈choose⌉
is ill-typed. An appropriate type annotation that imposes a non-principal type for

choose makes the term well typed.

let (choose : ∀a.a → a → a) = λxy.x in take choose ⌈choose⌉

We discussed the second use of annotated let bindings in Section 3.1.6, namely the

fact that we chose a scoping behaviour for type variables in FreezeML where annotated

let bindings may bind type variables, if the let-bound term is a guarded value.

As a result, some let bindings need to be annotated in order to bind a type vari-

able needed in the annotation of a polymorphic function parameter. As an example,

consider the following term.

let (ep : ∀b.(∀a.(a× Int×String)→ b)→ b) =

λ( f : ∀a.(a× Int×String)→ b). f (“hello”,5,“hello”)

in
singleton ⌈ep⌉
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This example illustrates the usual encoding of existential packages using universal

types, where ∃a.A := ∀b.(∀a.A → b) → b. Using this abbreviation, the type of ep is

∃a.(a× Int×String), and the overall type of the term is List ∃a.(a× Int×String). We

may interpret the latter type as a heterogeneous list of elements together with the size of

each element and a representation thereof as a string. Concretely, ep is then a package

consisting of the string “hello” together with its size and the string itself. Crucially, the

annotation on ep brings the type variable b into scope, which is then used freely in the

type annotation on f .

To implement the distinction between the generalising and non-generalising case,

we use the helper function split in the rule LETANN in Figure 3.5 on page 45. The

function split was originally introduced in Section 3.2 for the purposes of defining

well-formedness of terms and is shown again in Figure 3.6. Its usage in LETANN

splits all toplevel quantifiers from the type annotation A if the let bound-term M is

a guarded value. Otherwise, the result a returned by split is empty, meaning that no

generalisation is performed and M must have exactly type A.

Guarded values and their types At the beginning of Section 3.2, we mentioned the

intuition behind the definition of guarded values U being that their types should be

guarded (i.e., not have toplevel quantifiers). This property is what enables the scoping

rules of annotated let bindings, as implemented by the well-formedness judgement

∆;Γ ⊢ M ok in Figure 3.3. Given let (x : ∀∆′.H) = M in N, where M is a guarded

value U , we know without type-checking U that the quantifiers ∆′ cannot originate

from the type of U itself, due to its type being guarded.

Instead, the user must have intended for these quantifiers to be the result of gener-

alisation, meaning that the let binding under consideration introduces these quantifiers,

rather than them already being present in the type of U itself. In other words, the se-

quence a in the rule LETANN in Figure 3.5 on page 45 corresponds exactly to the type

variables being generalised by the let binding itself. If M is not a guarded value, then

the usage of split in that rule ensures that a is empty, corresponding to the fact that no

generalisation must occur. This property of LETANN is important for the translation

from FreezeML to System F, defined subsequently in Section 3.3.2. The translation

must be able to introduce System F explicit type abstractions exactly where FreezeML

generalisation introduces quantifiers.

As mentioned before, the only guarded value that may be given a non-guarded

type is a variable bot with bot : ∀a1 . . .an.ai ∈ Γ, or one or more nested let bindings
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whose body is in turn such a variable bot. In this case, the type of the term bot may

have a type A with toplevel quantifiers, due to ai being instantiated with A directly.

To preserve the property that a in LETANN corresponds to the type variables being

generalised, we must rule out the case where ai is instantiated with such a type A

with toplevel quantifiers. This is achieved by the function split, whose definition in

Figure 3.6 dictates that if M is a guarded value, then its type, called A′ in LETANN, is

a guarded type H.

As a result, a term such as let ( f : ∀abc.a) = bot in ... remains well typed in

FreezeML, but its typing derivation instantiates bot’s type with the variable a, which is

then generalised (and syntactically brought into scope) at the let binding. Instantiating

bot’s type with ∀abc.a directly is not possible.

Finally, we observe that when only considering principal types, the property that

guarded terms have guarded type holds unconditionally. The principality condition

rules out instantiating bot and its variations with a quantified type.

Lemma 3.2.
Let ∆ ⊢ Γ ok and ∆;Γ ⊢ M ok hold. If principal(∆,Γ,U,∆′,A), then A has no toplevel

quantifiers.

Proof. The proof works by reasoning about the type inference algorithm presented in

Chapter 4 and is therefore left until Appendix A.6.

3.2.2 Operators as syntactic sugar

In Section 3.1, we defined the operators $ and @ to perform generalisation and instan-

tiation, respectively. We defined them as syntactic sugar using plain let bindings. We

now add a third operator, a variation of the generalisation operator $ that is annotated

with the type that should result from generalisation. It is desugared to an annotated let

binding. Just like its un-annotated counterpart $, the new operator is only defined on

guarded values U .

Altogether, the definitions of the three operators are as follows.

M@ := let x = M in x (3.7)

$U := let x =U in ⌈x⌉ (3.8)

$AU := let (x : A) =U in ⌈x⌉ (3.9)

By unfolding the syntactic sugar, we can obtain direct typing rules for each oper-

ator. One may hope that the resulting typing rule for the instantiation operator would
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be equivalent to the following, simple rule. It permits polymorphic instantiation of the

toplevel quantifiers of M’s type.

INSTWRONG

∆;Γ ⊢ M : ∀∆
′.H ∆ ⊢ δ : ∆

′ ⇒⋆ ·

∆;Γ ⊢ M@ : δ(H)

Unfortunately, this is not the case. In fact, the rule is both unsound and incomplete

with respect to the typings of let x = M in x.

Consider the term (id id)@, which is desugared to let x = id id in x. We have

principal(∆,Γ, id id,a,a→ a) where a ̸∈∆. Due to the term id id being non-generalisable,

x is assigned a type that results from monomorphically instantiating a → a. This shows

that the @ operator can affect how instantiation is performed within the term it is ap-

plied to, beyond just instantiating toplevel quantifiers. For instance, this means that

∆;Γ ⊢ M : H does not in general imply ∆;Γ ⊢ M@ : H. This is witnessed by ∆;Γ ̸⊢
(id id)@ : (∀b.b)→ (∀b.b), as this would require polymorphic instantiation of the type

variable a. However, the latter judgement would hold according to INSTWRONG,

showing its unsoundness.

Further, we have that ∆;Γ ⊢ let x = λx.x in x : (∀b.b) → (∀b.b) holds, but the

rule INSTWRONG does not permit this typing of (λx.x)@. This is due to the fact

that INSTWRONG does not take the generalisation into account that the underlying let

binding may perform. This illustrates the rule’s incompleteness.

In order to reflect the typing of the binding let x = M in N that the term M@

desugars to, its direct typing rules rely on the principal type of M. The typing rule

INSTQUANTIFIED in Figure 3.7 on the following page handles the case where M’s

principal type is ∀a.H for some non-empty a (i.e., the principal type is indeed quanti-

fied). By Lemma 3.2, this implies that M is not a guarded value. This means that any

generic variables b (i.e., variables not part of the ambient context) that may appear in

H are instantiated monomorphically by the let binding when obtaining a type for x.

As a result, the overall type of M@ must result from instantiating the variables

a polymorphically (happening at the use-site of the variable x in the desugared term)

while instantiating those in b monomorphically (happening at the let binding in the

desugared term).

As an example, let ( f : ∀b.b → ∀a.a → b) ∈ Γ and we consider applying the in-

stantiation operator to the term M := f id. We then have principal(. ,Γ,M,b,∀a.a →
(b → b)). When applying the rule INSTQUANTIFIED we then have a = a and b = b.

We may thus instantiate a polymorphically, with types such as ∀c.c, while b must be
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instantiated monomorphically. This results in the following, reflecting the behaviour

of the term let x = f id in x.

· ;Γ ⊢ (f id)@ : (∀c.c) →
(
Int→ Int

)
· ;Γ ̸⊢ (f id)@ : (∀c.c) →

(
(∀d.d)→ (∀d.d)

)

INSTQUANTIFIED

principal(∆,Γ,M,b,∀a.H) a ̸= ·
∆ ⊢ δa : a ⇒⋆ · ∆ ⊢ δb : b ⇒• ·

∆;Γ ⊢ M@ : δa(δb(H))

INSTGUARDED

principal(∆,Γ,M,∆′,H) R =

⋆ if M ∈ GVal

• otherwise
∆ ⊢ δ : ∆

′ ⇒R ·

∆;Γ ⊢ M@ : δ(H)

GENPLAIN

principal(∆,Γ,U,∆′,A) ∆
′ = ftv(A)−∆

∆;Γ ⊢ $U : ∀∆
′.A

GENANN

(∆,∆′);Γ ⊢U : H

∆;Γ ⊢ $∀∆′.HU : ∀∆
′.H

Figure 3.7: FreezeML typing rules for syntactic sugar

Alternatively, in the case that M’s principal type is guarded, the term let x =M in x

resulting from expanding M@ may either perform generalisation (if M ∈ GVal) fol-

lowed by polymorphic instantiation of the temporary variable x, or instantiate mono-

morphically (if M ̸∈ GVal). Both cases are handled by the rule INSTGUARDED.

As it is somewhat unintuitive to apply the instantiation operator to a term whose

(principal) type has no toplevel quantifiers to begin with, it may be advisable to emit a

warning when the rule INSTGUARDED applies to a usage of @, and only consider the

cases handled by INSTQUANTIFIED as appropriate usages of @.

The remaining two rules in Figure 3.7 handle both versions of the generalisation

operator $. They straightforwardly implement the expected behaviour, due to both op-

erators being limited to apply to guarded values only. Hence, the resulting let bindings

can always perform generalisation. Note that in GENPLAIN, Lemma 3.2 guarantees

that the type A is actually a guarded type H.

We can then easily check the correctness of the rules in Figure 3.7.
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Lemma 3.3.
The typing rules in Figure 3.7 are sound and complete with respect to the typings of

the terms resulting from expanding the definitions (3.7) to (3.9).

Proof. When considering ∆;Γ ⊢ M@ : A, the typing derivation of its expansion let x =

M in x has the following form for some A′,∆′,δ,∆′′,H ′′, where δ(H ′′) = A must hold.

(x : ∀∆
′′.H ′′) ∈ (Γ,x : ∀∆

′′.H ′′) ∆ ⊢ δ : ∆
′′ ⇒⋆ ·

∆;(Γ,x : ∀∆
′′.H ′′) ⊢ x : δ(H ′′)

∆
′ = ftv(A′)−∆ (∆,∆′);Γ ⊢ M : A′ principal(∆,Γ,M,∆′,A′)

(∆,∆′,M,A′) ⇕ ∀∆
′′.H ′′

∆;Γ ⊢ let x = M in x : δ(H ′′)

We distinguish two cases.

1. If M ∈ GVal, the definition of ⇕ imposes ∀∆′′.H ′′ = ∀∆′.A′. Due to Lemma 3.2,

we further have that M has a guarded principal type H ′, yielding ∀∆′′.H ′′ =

∀∆′.H ′.

We now show that the derivation above is valid if and only if ∆;Γ ⊢ M : δ(H ′′)

is derivable using INSTGUARDED. The premises of the rule when M ∈ GVal

are then equivalent to the following for some ∆′′′, and H ′′′, with the overall type

being δ′′′(H ′′′).

principal(∆,Γ,M,∆′′′,H ′′′)

∆ ⊢ δ′′′ : ∆′′′ ⇒⋆ ·

Due to the strengthening/weakening properties of principal (see Lemma A.1

in Appendix A.1) these conditions are equivalent to the situation where ∆′′′ =

ftv(H ′′′)−∆ holds, which we may therefore assume w.l.o.g. We then have that

these conditions hold if and only if the derivation above for let x = M in x is

valid, by equating ∆′′ = ∆′′′, H ′′ = H ′′′ and δ = δ′′′.

2. Otherwise, if M ̸∈ GVal, the definition of ⇕ imposes ∀∆′′.H ′′ = δ′(A′) for some

δ′ with ∆ ⊢ δ′ : ∆′ ⇒• ·. We further distinguish two sub-cases, based on whether

the principal type A′ of M has toplevel quantifiers or not.

(a) If the type A′ of M is guarded, we have that ∆′′ is empty. The premises

of INSTGUARDED are then again equivalent to the following (but the rule
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imposes a monomorphic instantiation this time), and we may again assume

w.l.o.g. that ∆′′′ = ftv(H ′′′)−∆.

principal(∆,Γ,M,∆′′′,H ′′′)

∆ ⊢ δ′′′ : ∆′′′ ⇒• ·

We may therefore establish the validity of these conditions by equating

δ′ = δ′′′, ∆′ = ∆′′′ and H ′′′ = A′.

(b) Otherwise, if A′ has a non-empty sequence a of toplevel quantifiers, (i.e.,

A′ = ∀a.H for some H), we show that the typing derivation for the let

binding shown earlier is valid if and only if the rule INSTQUANTIFIED is

applicable. The premises of the latter are as follows.

principal(∆,Γ,M,b,∀a.H) a ̸= ·

∆ ⊢ δa : a ⇒⋆ · ∆ ⊢ δb : b ⇒• ·

As before, we assume w.l.o.g. that b = ftv(∀a.H)− ∆. We may equate

H ′′ = δb(H), ∆′ = a, ∆′′ = b, δ′ = δb and δ = δa. We then have that the

derivation for let x = M in x is valid iff the premises of INSTQUANTIFIED

are satisfied and we further have δ(H ′′) = δa(δb(H)) (i.e., both derivations

yield the same type).

The correctness of the direct typing rules for the operators $U and $AU follows imme-

diately when adapting the typing rules for plain and annotated let bindings, respect-

ively, to the generalisable case.

3.3 From System F to FreezeML to System F

We now show that FreezeML is indeed as expressive as System F by showing an em-

bedding of the latter in the former. We also discuss the reverse direction.

3.3.1 Embedding System F into FreezeML

The translation from System F to FreezeML relies on type information. To this end, we

extend System F typing judgements ∆;Γ ⊢F MF : A (defined in Figure 2.8 on page 21)

to ∆;Γ ⊢F MF : A ; M, where MF is a System F term and M is the translated FreezeML
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term. Throughout this section, non-terminals standing for System F terms receive a

subscript F to help distinguish them from FreezeML terms.

The translation is designed such that the translation M has the same type A as the

original term MF and further, it is the only such type of M. The rules are shown in Fig-

ure 3.8. Alternatively, we could define the translation on System F typing derivations

using the original typing judgement. The typing rules themselves remain unchanged

as compared to Figure 2.8.

∆;Γ ⊢F MF : A ; M

x : A ∈ Γ

∆;Γ ⊢F x : A ; ⌈x⌉

∆;Γ ⊢F MF : A → B ; M

∆;Γ ⊢F NF : A ; N

∆;Γ ⊢F MF NF : B ; M N

∆;(Γ,x : A) ⊢F MF : B ; M

∆;Γ ⊢F
λxA.MF : A → B ; λ(x : A).M

(∆,a);Γ ⊢F VF : B ; M

∆;Γ ⊢F
Λa.VF : ∀a.B ; $∀a.B(M@)

∆;Γ ⊢F MF : ∀a.B ; M

∆;Γ ⊢F MF A : B[A/a] ; let x = M in $B[A/a] x

∆;Γ ⊢F MF : A ; M ∆;(Γ,x : A) ⊢F NF : B ; N

∆;Γ ⊢F let xA = MF in NF : B ; let x = M in N

Figure 3.8: System F typing rules with translation to FreezeML

System F variables are translated to frozen variables. For term abstractions and

applications, we simply translate their subterms. The translations of these three term

forms do not rely on typing information.

The translations of System F type abstractions and applications, which work on one

quantifier at a time, need to bridge the behavioural gap with FreezeML, which may in

general instantiate or generalise multiple quantifiers at once. A System F term Λa.VF

is translated to $∀a.B (M@), where M is the translation of VF and B is its type. Recall

that desugaring the generalisation operator yields let (x : ∀a.B) = M@ in ⌈x⌉.

Here, we need to instantiate M in order to ensure that the let-bound term is a

guarded FreezeML value, enabling generalisation. In general, the translation preserves

non-expansiveness between the two systems, meaning that System F values are turned

into FreezeML values.
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Lemma 3.4.
Let VF be a System F value. If ∆;Γ ⊢F VF : A ; M, then M is a FreezeML value.

Proof. By structural induction on VF.

However, when applying this lemma to the translation of Λa.VF, we observe that it

only guarantees that the translation M of VF is a FreezeML value, but not necessarily

a guarded value. Therefore, in the translation of System F type abstractions, we use

M@ ≡ let y = M in y as the term bound by the outer, annotated let binding. Here we

rely on the fact that if M is a value, then M@ is a guarded value, making generalisation

in FreezeML possible. Note that overall, the annotated let binding evokes that those

toplevel quantifiers of B (i.e., the type of VF), that were instantiated when writing M@

are immediately re-generalised, in addition to the type variable a. The type annotation

on the let binding also brings a in scope in M, reflecting the fact that it may occur

freely in VF. We will show an example for this translation shortly.

The translation of type applications MF A similarly has to instantiate all toplevel

quantifiers of the type ∀a.B of MF, in particular those potentially found in B, and

immediately re-generalise the quantifiers of B. We may hope that this can be achieved

analogously to type abstractions, which would yield let (x : B[A/a]) = M@ in ⌈x⌉ as

the translation result, where M is the translation of MF. However, the value restriction

prevents this idea from working correctly. We cannot guarantee that M is a value,

which is required to ensure that M@ is a guarded value and can be generalised.3 We

work around this by first introducing a separate binding for M. The uniqueness of

types of the terms produced by our translation ensures that M has principal type ∀a.B.

The overall translation of the type application is then let x = M in $B[A/a] x. Note that

x receives type ∀a.B. Then, all quantifiers of the latter type are instantiated by the term

x, including instantiating a to A, and we re-generalise potential quantifiers in B at the

instantiation operator. Note that the need to let-bind M and not being able to substitute

x with M@, let alone just M, illustrates that the standard substitution properties of ML

with respect to let bindings only hold in FreezeML when additional restrictions are

imposed. We will revisit this question in Section 4.1.

The translation of System F let bindings, which we introduced for the purposes of

the value restriction, works by simply translating the two subterms, but drops the type

annotation.
3We can actually characterise the syntactic category of M more accurately. The fact that M has a

unique, toplevel quantified type means that by Lemma 3.2 it cannot be a guarded value. However, it
may or may not be an ordinary value.
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As an example for the overall translation, we consider the System F term Λc.mkPair

c c. Here, we assume that mkPair is given type ∀ab.a → b → (a× b) in Γ, meaning

that it is a function acting like the pair data constructor. As a result, the example term

merely restricts mkPair to create pairs of two elements of the same type. The transla-

tion then proceeds as follows.

c;Γ ⊢mkPair : ∀ab.a → b → (a×b) ; ⌈mkPair⌉

c;Γ ⊢mkPair c : ∀b.c → b → (c×b) ; let x2 = ⌈mkPair⌉ in $∀b.c→b→(c×b) x2︸ ︷︷ ︸
=: M2

c;Γ ⊢mkPair c c : c → c → (c× c) ; let x1 = M2 in $c→c→(c×c) x1︸ ︷︷ ︸
=: M1

·;Γ ⊢ Λc.mkPair c c : ∀c.c → c → (c× c) ; $∀c.c→c→(c×c)(M1@)

The example illustrates how the translation mediates between the instantiation be-

haviour of both languages: To translate the subterm mkPair c with type variable c in

scope, we bind x2 to the translation ⌈mkPair⌉ of the left-hand side and use it freely

in the body of the binding. Of course, this instantiates both quantifiers in x2’s type

∀ab.a → b → (a× b), whereas the term mkPair c is only supposed to instantiate the

first one. Thus, a generalisation operator restores the second quantifier b, resulting in

the overall translation M2 of the inner type application with type ∀b.c → b → (c×b).

The term M2 then appears as a subterm of M1, the result of translating mkPair c c.

Note that here, the generalisation operator annotated with c → c → (c× c) does not

actually perform generalisation, but acts just as a type annotation. The term M1 is

in turn instantiated (which has no effect in our example) and generalised to yield the

overall translation of the original example term.

Of course, the example translation also shows that the resulting terms are unneces-

sarily complex. After expanding all syntactic sugar, the translated example contains

six let bindings, although it is equivalent to the following, much simpler FreezeML

term.

$∀c.c→c→(c×c) mkPair ≡ let (x : ∀c.c → c → (c× c)) =mkPair in ⌈x⌉

We could immediately obtain a translation creating smaller terms by translating n-ary

type abstractions and type applications (e.g., define the translation on M A, where M

is not a type application itself). We eschew formalising this for the sake of retaining a

more compositional translation directly following the source syntax of System F.

The correctness properties of the translation mentioned earlier can be formalised

as follows.
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Theorem 3.1.
Let ∆;Γ ⊢F MF : A ; M for some System F term MF and FreezeML term M. Then the

following conditions hold.

1. We have ∆;Γ ⊢ M : A in FreezeML.

2. For all ∆′ and B we have that (∆,∆′);Γ ⊢ M : B in FreezeML implies A = B.

Proof. By structural induction on the System F term under consideration, to which

exactly one typing/translation rule must have applied.

• Case x, λxA.MF, MF NF: Straightforward. The uniqueness of the type of the

translated FreezeML term follows from just being the type of the variable (case

x), from the type being a sub-expression of the type of a subterm (case MF NF),

possibly in combination with the unique type A provided as an annotation on the

function parameter (case λxA.MF).

• Case Λa.VF, We have ∆;Γ ⊢ VF : ∀a.B ; $∀a.B (M@) for some B and M. By

inversion on the typing rule we further have (∆,a);Γ ⊢F VF : B ; M.

By Lemma 3.4 we have that M is a FreezeML value, making M@ a guarded

value. Thus, we may use the rule GENANN from Figure 3.7 on page 54 to derive

∆;Γ ⊢ $∀a.B(M@) : ∀a.B. Let b denote the toplevel quantifiers of B, meaning that

we have B = ∀b.H for some H. GENANN then requires us to show (∆,a,b);Γ ⊢
M@ : H. It also requires ∀a.B to be well formed in context ∆, which implicitly

follows from (∆,a);Γ ⊢ M : B. Note that the uniqueness of the type ∀a.B for the

overall translated term follows directly from being the type of the annotation on

the generalisation operator.

Recall that M@ is syntactic sugar for let x = M in x; we show how to derive

(∆,a,b);Γ ⊢ let x = M in x : H. Let B′ = ∀c.H ′ be alpha-equivalent to B such

that all c are fresh and let δ = [b/c]. Note that this implies δ(H ′) = H. Applying

the IH to M yields (∆,a);Γ ⊢ M : ∀c.H ′ and by ∀c.H ′ being the unique type of

M (modulo alpha-equivalence) also principal((∆,a),Γ,M, ·,∀c.H ′).

We can therefore derive the following, independently from whether M is a guarded

value or not.
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(∆,a,b);Γ ⊢ M : ∀c.H ′

(x : ∀c.H ′) ∈ Γ

(∆,a,b) ⊢ δ : c ⇒⋆ ·

∆;Γ,x : ∀c.H ′ ⊢ x : δ(H ′)

((∆,a,b), ·,M,∀c.H ′) ⇕ ∀c.H ′

·= ftv(∀c.H ′)− (∆,a,b) principal((∆,a,b),Γ,M, ·,∀c.H ′)

(∆,a,b);Γ ⊢ let x = M in x : H

• Case MF A, with ∆;Γ ⊢F MF A : B[A/a]; let x = M in $B[A/a] x and ∆;Γ ⊢F MF :

∀a.B ; M.

Similarly to the previous case, we get ∆;Γ ⊢ M : ∀a.B and principal(∆,Γ,M, ·,
∀a.B) by induction and in particular the uniqueness condition. As in the previous

case, let b again denote the toplevel quantifiers of B, meaning that we have B =

∀b.H for some H. Let B′ = ∀c.H ′ be alpha-equivalent to B such that all c are

fresh. However, this time we define δ such that δ(a) = A and δ(ci) = bi, yielding

∀b.δ(H ′) = B[A/a].

Altogether, this now allows us to derive ∆;Γ ⊢ let x = M in $B[A/a] x : B[A/a]

as follows. Note that we again use GENANN from Figure 3.7. Regarding the

uniqueness of types, we again rely on the fact that the annotated generalisation

operator ensures this for the overall term.

∆;Γ ⊢ M : ∀ac.H ′

(∆,b) ⊢ δ : (a,c)⇒⋆ ·

(∆,b);(Γ,x : ∀ac.H ′) ⊢ x : δ(H ′)

∆;(Γ,x : ∀ac.H ′) ⊢ $B[A/a] x : B[A/a]

(∆, ·,M,∀ac.H ′) ⇕ ∀ac.H ′

·= ftv(∀ac.H ′)−∆ principal(∆,Γ,M, ·,∀ac.H ′)

∆;Γ ⊢ let x = M in $B[A/a] x : B[A/a]

• Case let xA = M in N: Straightforward application of the IH to the subterms,

again relying on the fact that the unique type of M becomes the type of x in the

un-annotated FreezeML let binding.
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3.3.2 Translating FreezeML to System F

We now consider the reverse direction, translating FreezeML to System F. Recall that

the dynamic semantics of FreezeML terms is then defined by this translation. This

translation also relies on type information, meaning that we again extend the typing

judgements of the source language, this time FreezeML, to perform the translation.

The rules of this extended typing relation are shown in Figure 3.9.

∆;Γ ⊢ M : A ; MF

VARFROZEN

x : A ∈ Γ

∆;Γ ⊢ ⌈x⌉ : A ; x

VARPLAIN

x : ∀a.H ∈ Γ ∆ ⊢ δ : a ⇒⋆ ·

∆;Γ ⊢ x : δ(H) ; x δ(a)

APP

∆;Γ ⊢ M : A → B ; MF ∆;Γ ⊢ N : A ; NF

∆;Γ ⊢ M N : B ; MF NF

LAMPLAIN

∆;(Γ,x : S) ⊢ M : B ; MF

∆;Γ ⊢ λx.M : S → B ; λxS.MF

LAMANN

∆;(Γ,x : A) ⊢ M : B ; MF

∆;Γ ⊢ λ(x : A).M : A → B ; λxA.MF

LETPLAIN

a = ftv(A′)−∆ (∆,a);Γ ⊢ M : A′ ; MF principal(∆,Γ,M,a,A′)

(∆,a,M,A′) ⇕ (A,∆′,δ) ∆;(Γ,x : A) ⊢ N : B ; NF

∆;Γ ⊢ let x = M in N : B ; let xA = Λ∆
′.δ(MF) in NF

LETANN

(a,A′) = split(A,M) (∆,a);Γ ⊢ M : A′ ; MF ∆;(Γ,x : A) ⊢ N : B ; NF

∆;Γ ⊢ let (x : A) = M in N : B ; let xA = Λa.MF in NF

Figure 3.9: Translation from FreezeML to System F

As expected, frozen variables are translated to ordinary System F variables. A plain

variable x is translated to x A1 . . .An, where the types Ai are obtained from instantiating

all toplevel quantifiers of x’s type according to the instantiation δ used in the typing

derivation. As in the translation from System F to FreezeML, term abstractions and

applications are translated homomorphically. Here, un-annotated function parameters

are annotated during the translation.
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To translate plain let bindings, we introduce an extended version of the ⇕ relation

used in LETPLAIN, now yielding judgements (∆,a,M,A′) ⇕ (A,∆′,δ). The relation

was originally defined in Figure 3.6 on page 47. The left-hand side of the relation

symbol (i.e., the “inputs” of the relation, as it acts like a function) remain unchanged,

but we add a sequence of type variables ∆′ and a substitution to the right-hand side

(i.e., the “outputs”).

(∆,a,M,A′) ⇕ (A,∆′,δ)

M ∈ GVal

(∆,a,M,A′) ⇕ (∀a.A′,a, /0)

∆ ⊢ δ : a ⇒• · M ̸∈ GVal

(∆,a,M,A′) ⇕ (δ(A′), ·,δ)

As in the original version, A arises from A′ either by quantifying over the variables

a (if M ∈ GVal), or otherwise by applying a monomorphic substitution δ with ∆ ⊢
δ : a ⇒• · to A′. In the extended version, the returned sequence ∆′ corresponds to

the variables that were newly quantified by ⇕, meaning that ∆′ is equal to a if M is

generalisable and empty otherwise. For the instantiation δ the rule then ensures that ∆⊢
(a−∆′)⇒• · holds. In particular, δ is the empty substitution if M is non-generalisable.

Otherwise, we return the same instantiation used to create A from A′.

In the rule LETPLAIN in Figure 3.9 we then define the body of the translated Sys-

tem F let binding to abstract over the type variables in ∆′ as returned by ⇕, meaning that

we universally quantify exactly those variables that the original let binding generalises.

The premise (∆,a);Γ ⊢ M : A′ of LETPLAIN remains unchanged as compared to

the original typing rule, but now produces a System F term MF. We then have that

(∆,a);Γ ⊢ MF : A′ holds in System F. We rely on the standard substitution property for

System F (see Lemma 2.7 on page 20) to observe that we then have ∆;Γ ⊢ δ(MF) : A,

for the term MF, which is used under the type abstraction in the generated let body.

Here, δ is the instantiation returned by ⇕, meaning that it only has an effect if M is not

guarded.

Recall that we discussed in Section 3.2.1.2 that the premise (∆,a);Γ ⊢ M : A′ of

LETPLAIN is redundant, as it is already implied by principal(∆,Γ,M,a,A′), and only

included for illustrative purposes. An alternative definition of LETPLAIN in Figure 3.9

could therefore use the premise ∆;Γ ⊢ M : δ(A′) ; M′
F and use this term M′

F in place

of δ(MF) in the translation result. Note that ∆;Γ ⊢ M : δ(A′) is also implied by the

principality premise. While this alternative definition of LETPLAIN shows that we can
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eschew applying a substitution to terms as part of the translation, it strays further from

the original typing rules.

As an example, consider the following two translations, where we again assume

mkPair : ∀ab.a → b → (a×b).

let f = mkPair in f 3 4 : (Int× Int) ; let f ∀cd.c→d→(c×d) = Λcd.mkPair c d

in f Int Int 3 4

let f = ⌈mkPair⌉ in f 3 4 : (Int× Int) ; let f ∀ab.a→b→(a×b) =mkPair

in f Int Int 3 4

The translation of annotated let bindings in LETANN can directly use the type

variables returned by the helper function split (defined in Figure 3.6 on page 47) in the

original rule to determine those variables that are generalised at the let binding. These

type variables are consequently abstracted over in the result term.

As a final example, we consider the FreezeML term

$∀c.c→c→(c×c) mkPair ≡ let (x : ∀c.c → c → (c× c)) =mkPair in ⌈x⌉

again, which was the manual translation of the System F term Λc.mkPair c c into

FreezeML discussed in Section 3.3.1. Using the rules in Figure 3.9, this term is trans-

lated to the System F term let x∀c.c→c→(c×c) = Λc.mkPair c c in x. It corresponds

exactly to the original source term, modulo an inconsequential let binding at the top-

level.

The correctness of the translation depends on a property analogous to Lemma 3.4

on page 58, showing that non-expansiveness is preserved by the reverse translation as

well.

Lemma 3.5.
Let V be a FreezeML value. If ∆;Γ ⊢V : A ; MF for some System F term MF, then MF

is a System F value.

Proof. By structural induction on V .

This property is required in order to show that if the n-ary type abstractions gen-

erated by the rules LETPLAIN and LETANN in Figure 3.9 are non-vacuous (i.e., when

the list of quantifiers is non-empty), then the terms under Λ are System F values.

The overall correctness property of the translation is then the following.
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Theorem 3.2.
If ∆;Γ ⊢ M : A ; MF then ∆;Γ ⊢F MF : A

Proof. By structural induction on the FreezeML term under consideration.

• Case x, ⌈x⌉, M N, λx.M, λ(x : A).M: Straightforward.

• Case let x = M in N: LETPLAIN must have applied and we have ∆;Γ ⊢ letx =

M in N : B ; let xA = Λ∆′.δ(MF) in MF for some A,B,δ,∆′,a,MF, and NF,

further subject to the following conditions.

(∆,a);Γ ⊢ M : A′ ; MF a = ftv(A′)−∆ (∆,a,M,A′) ⇕ (A,∆′,δ)

∆;(Γ,x : A) ⊢ N : B ; NF

The principality premise of LETPLAIN involving M and A′ is not used.

To derive ∆;Γ ⊢F xA = Λ∆′.δ(MF) in NF : B, we must show that ∆;Γ ⊢F Λ∆′.

δ(MF) : A and ∆;(Γ,x : A) ⊢F NF : B holds. The latter follows directly by induc-

tion. Note that this also implies the well-formedness of A under ∆.

It remains to show ∆;Γ ⊢F Λ∆′.δ(MF) : A, for which we distinguish two sub-

cases.

1. If M ∈ GVal, the definition of (the extended version of) ⇕ imposes A =

∀a.A′ and ∆′ = a and that δ is empty. This makes δ(MF) equivalent to

MF. By Lemma 3.5 we have that the latter is a System F value, making

Λ∆′.MF well formed. Applying the IH to (∆,a);Γ ⊢ M : A′ ; MF gives us

(∆,a);Γ⊢F MF : A′, and repeated application of the System F typing rule for

type abstraction (if a = ∆′ is non-empty) turns this into the desired premise

∆;Γ ⊢F Λ∆′.MF : ∀a.A′.

2. If M ̸∈ GVal, then ⇕ imposes ∆′ = ·, A = δ(A′) and ∆ ⊢ δ : a ⇒• ·. This

makes the type abstraction vacuous (i.e., Λ∆′.δ(MF) is just δ(MF)). We

obtain (∆,a);Γ ⊢F MF : A′ by induction as in the previous case. Substituting

with δ gives us ∆;δ(Γ) ⊢F δ(MF) : δ(A′) (see Lemma 2.7 on page 20). An

implicit precondition of ∆;(Γ,x : A) ⊢ N : B is ∆ ⊢ Γ,x : A, which implies

that δ has no effect on Γ. In total this yields the desired premise ∆;Γ ⊢F

Λ∆′.δ(MF) : A.

• Case let (x : A) = M in N, being translated to let xA = Λa.MF in NF: The rule

LETANN imposes that if M ∈GVal then a are the toplevel quantifiers of A, and A′
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denotes the guarded remaining type. Lemma 3.5 again shows that the translation

of M is a value, making the surrounding type abstraction well formed. We obtain

the necessary premises about the types of the translation of M and N by induction

(and repeated type abstraction) as in the un-annotated case.

The case if M is not a guarded value is even simpler because then a is empty and

A′ and A are identical.

3.4 Well-definedness of typing relation

Replacing the premise principal(∆,Γ,M,∆′,A′) of the LETPLAIN typing rule in Fig-

ure 3.5 on page 45 with its definition yields the following.

LETPLAIN-EXPANDED

a = ftv(A′)−∆ (∆,a);Γ ⊢ M : A′ (∆,a,M,A′) ⇕ A ∆;(Γ,x : A) ⊢ N : B

(for all ∆
′′,A′′ : if (∆,∆′′);Γ ⊢ M : A′′

then there exists δ such that

∆ ⊢ δ : a ⇒⋆ ∆
′′ and δ(A′) = A′′)

∆;Γ ⊢ let x = M in N : B

This reveals that the LETPLAIN typing rule uses typing judgements on the left-hand

side of an implication, and thus in a negative position. Ruling out negative occurrences

of the relation under consideration in derivation rules is a simple syntactic criterion for

establishing that the rules yield a well-defined relation.

We now show despite violating this condition, our typing rules nevertheless induce

a well-defined relation. Here we utilise the fact that all FreezeML typing rules only

ever use typing judgements that involve proper subterms in their premises, in particular

in the principality condition on let bindings. To this end, we show that there exists a

well-defined function J from FreezeML terms to triples (∆,Γ,A). We then show that

if we were to define the typing relation such that ∆;Γ ⊢ M : A holds if and only if

(∆,Γ,A) ∈ J (M), then we have ∆;Γ ⊢ M : A exactly if a FreezeML typing rule from

Figure 3.5 is applicable.

More concretely, we show that each time a typing rule applies to some term M, the

corresponding triple is contained in J (M) and we show that the rules are invertible,

meaning that for each J (M), a single typing rule corresponding to the shape of M is



3.4. Well-definedness of typing relation 67

applicable. We define the function J as follows. It is defined mutually recursively

with another function P , the counterpart to the relation principal. Thus P maps terms

to quadruples (∆,Γ,∆′,A), expressing that A is the principal type of M in contexts ∆

and Γ using fresh variables from ∆′. Recall that FreezeML typing judgements ∆;Γ ⊢
M : A implicitly require that Γ and M are well formed. Further, recall that all of our

judgements implicitly require that contexts contain no duplicates, which applies to ∆

and Γ here. These implicit preconditions are reflected in J .

J (⌈x⌉) = {(∆,Γ,A) | ∆ ⊢ Γ ok,(x : A) ∈ Γ}

J (x) = {(∆,Γ,δ(H)) | ∆ ⊢ Γ ok and (x : ∀∆
′.H) ∈ Γ

and ∆ ⊢ ∆
′ ⇒⋆ ·}

J (λx.M) = {(∆,Γ,S → B) | (∆,(Γ,x : S),B) ∈ J (M)}

J (λ(x : A).M) = {(∆,Γ,A → B) | (∆,(Γ,x : A),B) ∈ J (M)}

J (M N) = {(∆,Γ,B) | (∆,Γ,A → B) ∈ J (M) and (∆,Γ,A) ∈ J (N)

for some A}

J (let x = M in N) = {(∆,Γ,B) | ∆;Γ ⊢ M ok and (∆,Γ,∆′,A′) ∈ P (M)

and ∆
′ = ftv(A′)−∆ and (∆,∆′,M,A′) ⇕ A

and (∆,(Γ,x : A),B) ∈ J (N)}

J (let (x : A) = M in N) = {(∆,Γ,B) | (a,A′) = split(A,M) and ((∆,a),Γ,B) ∈ J (M)

and (∆,(Γ,x : A),B) ∈ J (N)}

P (M) = {(∆,Γ,∆′,A) | ((∆,∆′),Γ,A) ∈ J (M) and for all ∆
′′,A′′

((∆,∆′′),Γ,A′′) ∈ J (M)

implies that there exists δ such that
∆ ⊢ δ : ∆

′ ⇒⋆ ∆
′′ and δ(A) = A′′}

Note that we do not claim that the functions J and P are computable. In fact, while

ML enjoys a principal types property, where the context ∆,Γ is fixed (as discussed in

Section 2.2.1.3), it lacks principal typings, where all possible types under all possible

contexts of a term are taken into account [124]. This fact carries over to FreezeML,

meaning that as a result, there is no guarantee that the sets J (M) and P (M) are finitely

representable for all M. However, our only concern is that the functions J and P are

well defined.

Lemma 3.6.
For all M, the sets J (M) and P (M) are well defined.
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Proof. Both properties can easily be shown simultaneously by structural induction on

M. While P uses J on the same term, J uses P only on subterms.

As a more technical property, we now show that the definition of J ensures the

implicit well-formedness conditions imposed on typing judgements.

Lemma 3.7.
If (∆,Γ,A) ∈ J (M), then ∆ ⊢ Γ ok and ∆;Γ ⊢ M ok.

Proof. By structural induction on M.

Note that this property also implies that ∆ and Γ contain no duplicates, by virtue of

appearing in a judgement.

We now introduce alternative versions of the FreezeML typing relation ⊢ as well

as principal, named ⊢J and principalP , respectively. They are defined as follows.

∆;Γ ⊢J M : A iff (∆,Γ,A) ∈ J (M)

principalP (∆,Γ,M,∆′,A) iff (∆,Γ,∆′,A) ∈ P (M)

First, we make the unsurprising observation that principalP adheres to the definition

of principal in Figure 3.6.

Lemma 3.8.
principalP (∆,Γ,M,∆′,A′) holds iff

(∆,∆′);Γ ⊢J M : A′ and

(for all ∆′′,A′′ | if (∆,∆′′);Γ ⊢J M : A′′

then there exists δ such that

∆ ⊢ δ : ∆′ ⇒⋆ ∆′′ and δ(A′) = A′′)

Proof. Follows immediately from the involved definitions.

We now show that the relation ⊢J follows the rules in Figure 3.5, meaning that

if a rule with its premises expressed in terms of ⊢J and principalP applies (and the

implicit well-formedness conditions are also satisfied), then the conclusion of the rule

also holds in terms of ⊢J . In this sense, this shows that ⊢J is complete with respect to

the FreezeML typing rules.

Lemma 3.9.
All of the following implications hold.

1. If ∆ ⊢ Γ and ∆;Γ ⊢ ⌈x⌉ ok and (x : A) ∈ Γ, then ∆;Γ ⊢J ⌈x⌉ : A.
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2. If ∆ ⊢ Γ and ∆;Γ ⊢ x ok and (x : ∆′.H) ∈ Γ and ∆ ⊢ δ : ∆′ ⇒⋆ ·, then ∆;Γ ⊢J x :

δ(H).

3. If ∆ ⊢ Γ and ∆;Γ ⊢ M N ok and ∆;Γ ⊢J M : A → B and ∆;Γ ⊢J N : A, then

∆;Γ ⊢J M N : B.

4. If ∆ ⊢ Γ and ∆;Γ ⊢ λx.M ok and ∆;(Γ,x : S) ⊢J M : B, then ∆;Γ ⊢J λx.M : S → B.

5. If ∆ ⊢ Γ and ∆;Γ ⊢ λ(x : A).M ok and ∆;(Γ,x : A) ⊢J M : B, then ∆;Γ ⊢J λ(x :

A).M : S → B.

6. If ∆ ⊢ Γ and ∆;Γ ⊢ let x = M in N ok and

∆′ = ftv(A′)−∆ and

(∆,∆′);Γ ⊢J M : A′ and

principalP (∆,Γ,M,∆′,A′) and

(∆,∆′,M,A′) ⇕ A and

∆;(Γ,x : A) ⊢J N : B,

then ∆;Γ ⊢J let x = M in N : B.

7. If ∆⊢Γ and ∆⊢ let (x : A) =M in N ok and (a,A′) = split(A,M) and (∆,a);Γ⊢J

M : A′ and ∆;(Γ,x : A) ⊢J N : B, then ∆;Γ ⊢J let (x : A) = M in N : B.

Proof. For each term M, the corresponding property follows directly from the defini-

tion of J (M).

Finally, we show that if ∆;Γ ⊢J M : A holds, then exactly one of the rules from Fig-

ure 3.5 is applicable (i.e., its premises and implicit well-formedness preconditions are

satisfied), thus showing that ⊢J is sound with respect to the typing rules in Figure 3.5

and the rules are invertible.

Lemma 3.10.
For all ∆ and Γ the following conditions hold.

1. For all x and A such that ∆;Γ ⊢J ⌈x⌉ : A, we have ∆ ⊢ Γ and ∆;Γ ⊢ ⌈x⌉ ok and

(x : A) ∈ Γ.

2. For all x and A such that ∆;Γ ⊢J x : A, there exist ∆′,H,δ such that ∆ ⊢ Γ and

∆;Γ ⊢ x ok and (x : ∆′.H) ∈ Γ and ∆ ⊢ δ : ∆′ ⇒⋆ · and A = δ(H).

3. For all M,N,B such that ∆;Γ ⊢J M N : B, there exists A such that ∆ ⊢ Γ and

∆;Γ ⊢ M N ok and ∆;Γ ⊢J M : A → B and ∆;Γ ⊢J N : A.
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4. For all x,M,A′ such that ∆;Γ ⊢J λx.M : A′, there exist S,B such that ∆ ⊢ Γ and

∆;Γ ⊢ λx.M ok and ∆;(Γ,x : S) ⊢J M : B and A′ = S → B.

5. For all x,M,A,A′ such that ∆;Γ ⊢J λ(x : A).M : A′ there exists B such that ∆ ⊢ Γ

and ∆;Γ ⊢ λ(x : A).M ok and ∆;(Γ,x : A) ⊢J M : B and A′ = A → B.

6. For all x,M,N,B such that ∆;Γ ⊢J let x = M in N : B, there exist ∆′,A,A′ such

that ∆ ⊢ Γ and ∆;Γ ⊢ let x = M in N ok as well as the following conditions hold.

∆
′ = ftv(A′)−∆ (∆,∆′);Γ ⊢J M : A′ principalP (∆,Γ,M,∆′,A′)

(∆,∆′,M,A′) ⇕ A ∆;(Γ,x : A) ⊢J N : B

7. For all x,M,N,B,A such that ∆;Γ ⊢J let (x : A) = M in N : B, there exist a,A′

such that ∆ ⊢ Γ and ∆;Γ ⊢ let (x : A) = M in N ok and (a,A′) = split(A,M) and

(∆,a);Γ ⊢J M : A′ and ∆;(Γ,x : A) ⊢J N : B.

Proof. In each of the seven properties, we are assuming ∆;Γ ⊢J M : A for some ∆;Γ ⊢J

M : A, and therefore (∆,Γ,A) ∈ J (M). The satisfaction of the two well-formedness

properties ∆ ⊢ Γ ok and ∆;Γ ⊢ M ok that need to be shown in each of the seven cases

follow from Lemma 3.7. The remaining conditions in each case follow from the defin-

ition of J (M) for the particular shape of M.

We have thus shown that we may define the typing relation as a well-founded re-

cursive function, using the same rules as the ones shown in Figure 3.5. We have also

shown that the rules are invertible, in the sense that given a typing judgement, we can

conclude that the premises of exactly one of the rules in Figure 3.5 must hold. There-

fore, we can circumvent any issues that would arise from performing induction over

the potentially infinite derivation trees in our system, instead performing induction on

the structure of terms and inverting typing judgements. This work seems to be the first

among the systems that employ some kind of principality condition in its typing rules

(either in a core system [89, 58] or a variation of a proposed system [26, 117, 59]), that

discusses this aspect in detail.

Note that alternative approaches exist to show that the typing relation is well defined.

For example, assuming that Ψ denotes the set of all quadruples (∆,Γ,M,A), we may

interpret the rules in Figure 3.5 as a function φ from 2Ψ to 2Ψ. Proving that φ is mono-

tone with respect to the complete lattice (2Ψ,⊆) would then be sufficient to show the

existence of a (least) fixpoint of φ, which we then take as the typing relation ⊢ ⊂ 2Ψ.

However, we have not pursued this alternative approach so far.



Chapter 4

Type inference for FreezeML based on
Algorithm W

This chapter shows how Algorithm W, the type inference algorithm for ML developed

by Milner and Damas, can be adapted to work for FreezeML. To this end, we first

discuss type substitution in FreezeML. In particular, we show how to augment the type

system to explicitly represent which type variables can and cannot be substituted with

polymorphic types while preserving typeability.

4.1 Type substitution in FreezeML

In Section 2.2.1.3, we re-iterated that ML typing is stable under substitution of type

variables, as formalised in Lemma 2.3 on page 18. The same property holds for

FreezeML, simply due to the fact that in the context of ML, we defined instantiations

to carry monomorphic types in their codomain (see Figure 2.5). We can therefore state

the same property for FreezeML, but need to use an instantiation δ that is explicitly

restricted to monomorphic types. Finally, we observe that the presence of free type

variables in type annotations may make them subject to substitution, too.

We could state substitution properties for FreezeML that take type annotations into

account, and therefore apply δ to the term under consideration, similar to the substitu-

tion property for System F (see Lemma 2.7 on page 20). However, we have no need

for such a property in the remainder of this work and eschew considering type substi-

tutions that apply to FreezeML terms for the sake of simplicity. Instead, we consider

the free type variables in annotations to be rigid and not subject to substitution. This

leads to the following property.

71
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Lemma 4.1 (Stability of typing under monomorphic substitution).
If ∆ ⊢ δ : ∆′ ⇒• ∆′′ and ∆;Γ ⊢ M ok, then (∆,∆′),Γ ⊢ M : A implies (∆,∆′′),δ(Γ) ⊢ M :

δ(A).

Proof. Follows from the more general Lemma 4.4 together with Lemma 4.2, both of

which are introduced later in this section.

Observe that a typing judgement (∆,∆′),Γ ⊢ M : A allows Γ and A to contain free

type variables from ∆ as well as ∆′, but the well-formedness premise ∆;Γ ⊢ M ok of

the lemma ensures that annotations in M may only refer to type variables from ∆.

4.1.1 Issues with polymorphic substitution

So far, for the sake of exposition, we have only considered monomorphic substitution.

Going beyond monomorphic substitution reveals the following issue. We have both

a;Γ ⊢ id : a → a and b;Γ ⊢ λx.x : b → b in FreezeML, but the two terms do not be-

have the same in terms of type substitution. While we have a;Γ ⊢ id : A → A for any

well formed, possibly polymorphic type A, we only have b;Γ ⊢ λx.x : S → S for mono-

morphic S. In other words, a may be substituted with polytypes, while b may only be

substituted with monotypes. To capture exactly all the possible types of a given term,

we therefore need to formalise this difference.

To this end, we extend type contexts ∆ to restriction contexts Θ. These carry a

restriction R for every type variable in scope which indicates whether the type variable

may be substituted with monomorphic types or polymorphic types. Further, well-

formedness judgements of types are extended to Θ ⊢R A ok as shown in Figure 4.1.

Θ ⊢R A ok

(a : R) ∈ Θ

Θ ⊢R a ok

arity(D) = n

Θ ⊢R A1 ok
· · ·

Θ ⊢R An ok

Θ ⊢R DA ok

Θ,a : ⋆ ⊢R A ok

Θ ⊢⋆ ∀a.A ok

Θ ⊢• A ok

Θ ⊢⋆ A ok

Figure 4.1: Well-formedness of types under restriction contexts

The only difference between ∆ ⊢R A ok (defined in Figure 3.3 on page 42) and

Θ ⊢R A ok is that we only have Θ ⊢• a ok if (a : •) ∈ Θ, but not if (a : ⋆) ∈ Θ. In other
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words, while ∆ ⊢R A ok implicitly treated all type variables as monomorphic, the new

judgement uses the restrictions from Θ. Recall that we implicitly required every type

context ∆ appearing in a judgement to contain pairwise different variables. The same

condition carries over to judgements using restriction contexts Θ, such as Θ ⊢R A ok
and subsequently introduced ones.

We then define substitutions θ similarly to instantiations δ, mapping type variables

to types.

Restriction contexts Θ ::= · | Θ,a : R

Type substitutions θ ::= /0 | θ[a 7→ A]

We will occasionally convert between type contexts ∆ and restriction contexts Θ.

We use the free type variable operator ftv to obtain a type context from a restriction

context, by simply dropping the restrictions associated with each variable. We also

define an operator for the opposite direction: Given a type context ∆ we define ∆R to

be the restriction context where all variables are given restriction R. Concretely, if ∆ is

a, then ∆• is a : •.

While a well-formededness judgement ∆ ⊢ δ : ∆′ ⇒R ∆′′ for instantiations (defined

in Figure 3.4) imposes a single restriction R on all δ(a), substitutions θ obey restric-

tions on a per-variable basis. If θ is a well formed substitution, denoted ∆ ⊢ θ : Θ⇒Θ′,

then for all (a : R) ∈ Θ we have that θ maps a to a type A that obeys restriction R in

restriction context (∆•,Θ′). The well-formedness judgement for substitutions is form-

alised in Figure 4.2. We write ιΘ for the substitution with domain Θ that maps all

variables therein to themselves. Thus, we have ∆ ⊢ ιΘ : Θ ⇒ Θ for all ∆ disjoint from

Θ.

Finally, we introduce a new version of the well-formedness judgements for term

contexts, written Θ ⊢ Γ ok, also shown in Figure 4.2 on the following page. It imposes

that every free type variable appearing in a type in Γ must be restricted to monomorphic

types/substitution by Θ. Note that this is different from requiring that all types in Γ are

monomorphic. If we consider a singleton term context containing only x, we have that

while Θ ⊢ (x : ∀a.a → a) ok holds for any Θ, we only have Θ ⊢ (x : ∀a.a → b) ok if

(b : •) ∈ Θ.

4.1.2 The extended FreezeML typing relation

We now introduce the extended FreezeML typing relation, using restriction contexts

instead of type contexts, resulting in judgements of the form Θ;Γ ⊢E M : A. Its typing
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∆ ⊢ θ : Θ ⇒ Θ
′

∆#Θ

∆ ⊢ /0 : · ⇒ Θ

∆ ⊢ θ : Θ ⇒ Θ
′ (∆•,Θ′) ⊢R A ok ∆#(Θ,a : R)

∆ ⊢ θ[a 7→ A] : (Θ,a : R)⇒ Θ
′

Θ ⊢ Γ ok

Θ ⊢ · ok

Θ ⊢⋆ A ok Θ ⊢ Γ ok
for all a ∈ ftv(A) : (a : •) ∈ Θ

Θ ⊢ Γ,x : A

Figure 4.2: Well-formedness of substitutions and well-formedness of term contexts

under restriction contexts

rules, shown in Figure 4.3 on the next page, arise from the original FreezeML typing

rules (see Figure 3.5 on page 45), by simply replacing type contexts ∆ with restriction

contexts Θ. The implicit preconditions of Θ;Γ ⊢E M : A now become ftv(Θ);Γ ⊢ M ok
and Θ ⊢ Γ ok.

Note that in the rule VARPLAIN, we convert Θ back to a type context when stating

the well-formedness premise for the substitution δ. In the rule LETPLAIN, we do the

same to re-use the original definition of ⇕. We also re-use the existing definition of

principal, meaning that it remains to be defined in terms of the original typing relation.

We return to this issue later.

Given that the premises in the rules in Figure 4.3 are mostly carbon copies of

those of the original typing relation, except for some changes to the involved contexts,

the reader may wonder how the extended typing judgement differs from the original

one. Recall that the goal of defining judgements Θ;Γ ⊢E M : B was that this judge-

ment should permit a substitution property reflecting exactly when the original typing

judgement would have allowed replacing a type variable with a polymorphic type.

To this end, we observe that there are only two FreezeML typing rules in Figure 3.5

that impose some kind of monomorphism condition that may hence be invalidated

when a substitution with a polymorphic type has occurred.

1. In LAMPLAIN, any type variable occurring in S must not be substituted with a

polytype, as this would mean that S is no longer a monomorphic type, as required

for un-annotated lambdas.

2. For let x = M in N where M ̸∈ GVal, the rule LETPLAIN dictates that the type A
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Θ;Γ ⊢E M : A

VARFROZEN

x : A ∈ Γ

Θ;Γ ⊢E ⌈x⌉ : A

VARPLAIN

x : ∀a.H ∈ Γ ftv(Θ) ⊢ δ : a ⇒⋆ ·

Θ;Γ ⊢E x : δ(H)

APP

Θ;Γ ⊢E M : A → B Θ;Γ ⊢E N : A

Θ;Γ ⊢E M N : B

LAMPLAIN

Θ;(Γ,x : S) ⊢E M : B

Θ;Γ ⊢E
λx.M : S → B

LAMANN

Θ;(Γ,x : A) ⊢E M : B

Θ;Γ ⊢E
λ(x : A).M : A → B

LETPLAIN

a = ftv(A′)−Θ

(ftv(Θ),a,M,A′) ⇕ A

(Θ,a : •);Γ ⊢E M : A′
Θ;(Γ,x : A) ⊢E N : B principal(ftv(Θ),Γ,M,a,A′)

Θ;Γ ⊢E let x = M in N : B

LETANN

(a,A′) = split(A,M) (Θ,a : •);Γ ⊢E M : A′
Θ;(Γ,x : A) ⊢E N : B

Θ;Γ ⊢E let (x : A) = M in N : B

Figure 4.3: FreezeML extended typing rules

must arise from A′ by monomorphically instantiating the variables a in A′ using

some instantiation δ′. Thus, if any of the type variables in ftv(δ′(a)) were to

be substituted with a polymorphic type, then a typing derivation for the substi-

tuted judgement would have to use a polymorphic δ′ instead, violating the rule’s

premises.

Thus, in the first case the extended typing relation must ensure that the free type

variables of S are monomorphic in the ambient restriction context Θ. However, the

typing premise Θ;(Γ,x : S) ⊢E M : B of LAMPLAIN has Θ ⊢ Γ,x : S ok as an implicit

precondition, which requires exactly this property about S.

In the second case, the rule LETPLAIN of the extended typing judgement must

ensure that all type variables in δ′(a) must be monomorphic (or rigid, i.e., contained
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in ∆) in the ambient restriction context. However, as A is defined to be δ′(A′) in this

case and all a are guaranteed to appear freely in A′, a similar implicit precondition of

LETPLAIN′s premise Θ;(Γ,x : A) ⊢E N : B ensures exactly that.

In conclusion, we observe that the implicit precondition Θ ⊢ Γ ok of the exten-

ded typing judgement alone enables the desired substitution property by imposing

monomorphism restrictions on all type variables that may not be substituted with poly-

morphic types. Intuitively, this condition enshrines that the polymorphism occurring

in the type A of any term variable x must be fully determined before (x : A) may be

added to the term context Γ, which is a cornerstone for ensuring that type inference is

decidable for FreezeML.

Returning to our example terms on page 72, we may now observe the following

when using the extended typing relation.

(a : •);Γ ⊢E id : a → a

(a : ⋆);Γ ⊢E id : a → a

(b : •);Γ ⊢E λx.x : b → b

(b : ⋆);Γ ̸⊢E λx.x : b → b

This reflects our earlier discussion about λx.x not being able to be typed with (∀a.a →
a)→ (∀a.a → a), while id can.

4.1.2.1 Old against new

Before stating the type substitution lemma of the extended typing relation, we explore

the relationship between the latter and the original typing relation. We observe that the

original typing relation is a subrelation of the extended one if temporarily identify typ-

ing contexts ∆ = a with restriction contexts a : •. This is formalised by the following

lemma.

Lemma 4.2 (Relationship between original and extended FreezeML typing relation).
The following conditions hold for all a, Γ, M, and A.

1. If ∆;Γ ⊢ M : A then ∆•,Γ ⊢E M : A.

2. If Θ;Γ ⊢E M : A then ftv(Θ);Γ ⊢ M : A.

Proof. Straightforward structural induction on M for both properties. The principality

premises in the LETPLAIN rule of each system can be used unchanged for the corres-

ponding derivation in the other systems, as both use the same principal relation defined

in terms of the original typing relation.
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No need to change the principality relation Note that the premise (Θ;a : •);Γ ⊢E

M : A′ of LETPLAIN is not implied by principal(ftv(Θ),Γ,M,a,A′), which was the case

for the corresponding premises in the original LETPLAIN rule. This is due to principal

being defined in terms of the original typing relation. However, leaving the stronger

condition (Θ;a : •);Γ ⊢E M : A′ as a standalone premise has another advantage, in ad-

dition to mirroring the original version of the rule more closely. With this premise we

can establish that there is in fact no need to redefine principal to a different version,

say principalE, that would be expressed in terms of the extended typing relation. The

following lemma shows that in addition to (Θ;a : •);Γ ⊢E M : A′, the remaining condi-

tions of this hypothetical premise principalE(Θ,Γ,M,∆,A′) are already established by

the premises in the LETPLAIN rule in Figure 4.3.

Lemma 4.3 (Relationship between principal and ⊢E).
Let principal(ftv(Θ),Γ,M,a,A) hold. Then for all A′ and Θ′ we have that if (Θ,Θ′);Γ⊢E

M : A′ then there exists δ such that ftv(Θ) ⊢ δ : a ⇒⋆ ftv(Θ
′) and δ(A) = A′.

Proof. For every such (Θ,Θ′);Γ ⊢E M : A′, we can apply Lemma 4.2, yielding (ftv(Θ),

ftv(Θ′));Γ ⊢ M : A′. By principal(ftv(Θ),Γ,M,a,A′) we then have that an appropriate

δ exists.

4.1.3 Substitution property

We may now use the extended FreezeML typing relation to state a type substitution

property going beyond monomorphic substitution. The substitution lemma relies on

the key property of the extended FreezeML typing relation introduced in the previous

section, namely the fact that Θ,(a : ⋆);Γ ⊢E M : A implies that a may safely be substi-

tuted with any (well formed) polymorphic type without breaking typeability. There-

fore, a substitution θ that is well-formed with respect to the restriction context used in

a typing judgement involving ⊢E preserves typeability. Further, as expected for a sub-

stitution property, the resulting type of the term results from applying θ to the original

type.

Lemma 4.4 (Stability of typing under substitution).
If ∆ ⊢ θ : Θ ⇒ Θ′ and ∆;Γ ⊢ M ok, then (∆•,Θ);Γ ⊢E M : A implies (∆•,Θ′);θ(Γ) ⊢E

M : θ(A).

Proving this is straightforward, with one notable exception: When proving that

(∆•,Θ);Γ ⊢ let x = M in N : A implies (∆•,Θ′);θ(Γ) ⊢ let x = M in N : θ(A), we
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need to reason about the principal type of M in context (∆•,Θ′);θ(Γ). Here we need

to rely on the property that principality is also stable under substitution.

Lemma 4.5 (Stability of principality under substitution).
Let (∆•,Θ)⊢Γ ok and ∆;Γ⊢M ok and ftv(Θ′)#∆′. If principal((∆, ftv(Θ)),Γ,M,∆′,A)

and ∆ ⊢ θ : Θ ⇒ Θ′, then principal((∆, ftv(Θ′)),θ(Γ),M,∆′,θ(A)).

Unfortunately, while this property is intuitively correct, it is not straightforward

to prove. Crucially, according to the definition of principal, we need to show that for

any ∆′′ and A′′ we have that (∆, ftv(Θ′),∆′′);θ(Γ) ⊢ M : A′′ implies that A′′ can be ob-

tained from θ(A) using an appropriate substitution. However, the fact that principal((∆,

ftv(Θ)),Γ,M,∆′,A) holds does not immediately help towards this goal, as it only ap-

plies to typing judgements involving the original term context Γ.1

However, the reasoning behind how principal types are obtained for each term and

how they are influenced by substitutions is exactly what is required to establish the

correctness of the type inference algorithm introduced later in this chapter. In fact,

Lemma 4.5 easily follows from several properties derived from the completeness of

our type inference algorithm and the fact that it infers principal types.

The proofs of Lemmas 4.4 and 4.5 are then shown in Appendix A.3. Of course, care

is required to avoid circular reasoning, as the correctness of the inference algorithm in

turn relies on the overall substitution property (i.e., Lemma 4.4). We address this in

Appendix A.5.

4.2 Unification

In general, unification is the process of determining for two terms Φ and Ξ whether

there exists a substitution υ, called unifier, such that υ(Φ) and υ(Ξ) are equivalent.

Robinson [105] has shown that unification is decidable if Φ and Ξ are first-order terms

and the notion of equivalence is syntactic equality. Further, if successful, his algorithm

yields most general unifiers υg, meaning that for every other unifier υo there exists υ′

such that υo = υ′ ◦υg. First-order unification is an essential ingredient of Algorithm

W. Higher-order unification, where the language of terms to be unified is extended to

lambda terms, is undecidable in general [43, 31], but various decidable fragments have

been identified [76, 65, 107, 108, 66].

We define an extension of Robinson’s algorithm that can unify quantified types and

1Surprisingly, the other two systems known to the author that state a type substitution property for a
typing relation with a principality condition do not give any details for its proof [89, 57].
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takes restrictions R imposed on type variables into account. The algorithm is shown

in Figure 4.4 on the following page. In addition to the types Au and Bu to unify,

the algorithm takes two type contexts as input. The sequence ∆ contains rigid type

variables, also called skolem variables or skolem constructors [52], that are in scope

but must not be substituted with other types. The second context Θ contains flexible

variables that may be substituted with other types. These substitutions are subject to

the restrictions in Θ, which we return to later.

The input types Au and Bu are expected to be well formed under the combined

restriction context (∆•,Θ). If successful, the algorithm returns an updated restriction

context Θ′ with ftv(Θ′) ⊆ ftv(Θ) and a most general unifier θ of Au and Bu. The

algorithm ensures that ∆ ⊢ θ : Θ ⇒ Θ′ holds.

The algorithm is defined in terms of the structure of Au and Bu; the first clause that

applies is executed. Our presentation loosely follows that of Leijen [58]. In general,

the algorithm may only fail if Au and Bu do not match any of the five clauses given for

U, or if an assertion or recursive invocation of U fails.

If both types are the same type variable (from either ∆ or Θ), the algorithm returns

Θ unchanged and returns the identity on Θ as their unifier. If both types are applica-

tions of a type constructor D, the corresponding arguments are unified, subject to the

intermediate unifier accumulated so far.

If two quantified types ∀a.A and ∀b.B are to be unified, the algorithm picks a fresh

skolem variable c, and unifies the result of replacing the quantified variable a and b

with c in A and B, respectively. Due to c being added to ∆ it will not be substituted

with other types, but a flexible variable may be substituted with c (explained below).

The latter would however represent a case of a quantified variable escaping its scope.

Therefore, the algorithm performs an escape check to ensure that examples such as

U(·,(d : ⋆),∀a.a → a,∀b.b → d) fail.

Finally, if none of these cases apply, but one of the two types to unify is a flexible

variable, it may be unified with the other type A. This leads to a unifier that maps a to A

and is the identity on all other variables. However, this is subject to additional checks.

The idea is that unifying a with some type A always succeeds if the restriction on a is ⋆

(i.e., polymorphic) in the context. Otherwise, if a is restricted to monomorphic types,

the substitution is only permitted if A is a monomorphic type after demoting all of its

free flexible type variables to •. This is formalised using the helper function demote.

In general, demote(R,Θ,a) returns a restriction context Θ′ containing exactly the

variables from Θ. The sequence a must contain a subset of the variables of Θ. If R is
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U(∆,Θ,A,B)

U(∆,Θ,a,a) =

return (Θ, ιΘ)

U(∆,Θ,D A,D B) =

let (Θ1,θ1) = (Θ, ιΘ)

let n = arity(D)

for i ∈ 1 . . .n

let (Θi+1,θi+1) =

let (Θ′,θ′) = U(∆,Θi,θi(Ai),θi(Bi))

return (Θ′,θ′ ◦θi)

return (Θn+1,θn+1)

U(∆,Θ,∀a.A,∀b.B) =

let c ̸∈ ∆,Θ

let (Θ1,θ
′) = U((∆,c),Θ,A[c/a],B[c/b])

assert c /∈ ftv(θ′)

return (Θ1,θ
′)

U(∆,(Θ,a : R),a,A) =

U(∆,(Θ,a : R),A,a) =

let Θ1 = demote(R,Θ, ftv(A)−∆)

assert (∆•,Θ1) ⊢R A ok
return (Θ1, ιΘ1 [a 7→ A])

demote(R,Θ,∆)

demote(⋆,Θ,a) = Θ

demote(•, ·,a) = ·
demote(•,(Θ,b : R),a) = demote(•,Θ,a),b : • (b ∈ a)

demote(•,(Θ,b : R),∆) = demote(•,Θ,a),b : R (b ̸∈ a)

Figure 4.4: Unification algorithm
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⋆, then Θ is left unchanged. Otherwise, the restrictions of all variables from a are set

to • in the result Θ′, and left unchanged for all variables in Θ−a.

The unification algorithm then implements the check described on page 79 by as-

serting that (∆•,Θ1) ⊢R A ok holds, where Θ1 is the result of demoting free variables in

A and R is the restriction of a in the original restriction context. Note that the context

Θ1 used for this well formedness check does not contain a, which implicitly performs

an occurs check, disallowing recursive types. Note that returning Θ1 also shows that a

is not considered further after this point, the returned substitution effectively removes

the variable.

Overall, the treatment of restrictions by the unification algorithm illustrates the role

of restrictions on type variables during type inference. If a type variable appears freely

in one of the types to be unified, no substitution for it is currently known. Demoting

such a variable to • then corresponds to unification uncovering a constraint on the

variable, specifically the fact that it must only be substituted with monomorphic types

going onward.

As an example, consider U(·,(a : •,b : ⋆,c : ⋆),a,b → c). This successfully returns

(b : •,c : •), [a 7→ (b → c)]. Demoting b and c resulted in the type b → c being mono-

morphic, meaning that it can be substituted for a. However, U(·,(a : •,b : ⋆),a,∀c.b →
c) fails. The type ∀c.b → c is still polymorphic, even after demoting the restriction on

b to •. Thus, the same example would succeed if we had (a : ⋆) in the input context

instead.

Finally, U(·,(a : •,b : •,),a,a → b) fails due to the occurs check.

Regarding the correctness of U, we first observe its termination.

Theorem 4.1 (Termination of U).
The function U terminates on all inputs.

Proof. We utilise a standard argument for termination of the original algorithm [81],

which also applies to our version. We define the degree of a tuple (A,B) of types as a

tuple (m,n), where m is the number of distinct type variables occurring freely in A or B

and n is the sum of the sizes of A and B (counting all occurrences of type constructors,

quantifiers, and type variables). We then observe that for all recursive calls performed

by U(∆,Θ,A,B), the degree of the arguments (A′,B′) is strictly lexicographically smal-

ler than the degree of (A,B). This follows from the fact that whenever our algorithm

constructs a substitution θ with a non-identity mapping a 7→ A′′, it removes a from the

codomain of θ.
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The unification algorithm is sound, meaning that if it succeeds, the result is indeed

a well formed unifier of the input types.

Theorem 4.2 (Soundness of U).
Let (∆•,Θ) ⊢⋆ A ok and (∆•,Θ) ⊢⋆ B ok hold. If U(∆,Θ,A,B) = (Θ′,θ) holds, then

we have ∆ ⊢ θ : Θ ⇒ Θ′ and θ(A) = θ(B).

Proof. Let A′ and B′ denote the types to unify. We observe that structural induction

on the input types is not sufficient, as the algorithm is recursively invoked on parts

of either type after applying an intermediate substitution. Instead, the proof is by

complete induction on the number of recursive invocations of U. Due to Theorem 4.1,

we know that this number is finite.

Since we are assuming that unification succeeds, we only consider the different

shapes of A′ and B′ where a clause of U in Figure 4.4 applies.

• Case A′ = B′ = a: The desired properties follow immediately for the identity

substitution ιΘ.

• Case A′ = D A, B′ = D B, where A = A1, . . . ,An and B = B1, . . . ,Bn: The reas-

oning in this case is largely standard, just accommodating our usage of expli-

cit contexts. We perform a nested induction, showing that for all 0 ≤ j ≤ n

the following holds: We have ∆ ⊢ θ j+1 : Θ ⇒ Θ j+1 and θ j+1(Ak) = θ j+1(Bk)

for all 1 ≤ k ≤ j. Due to Θ1
def
= Θ and θ1

def
= ιΘ, this holds immediately for

j = 0. For j > 0, we have θ j+1
def
= θ′ ◦ θ j, where θ′ is the result of unifying

θ j(A j) and θ j(B j). According to the outer induction hypothesis we then have

θ′(A j) = θ′(B j) and ∆ ⊢ θ′ : Θ j ⇒ Θ j+1. Composing θ j with θ′ to yield θ j+1

does not change the fact that it is a unifier of all Ak and Bk for 1 ≤ k < j (see

Lemma A.5 on page 229), meaning that θ j+1 is indeed a unifier of Ak and Bk

for all 1 ≤ k ≤ j. Further, by Lemma A.4 on page 229 we have the desired

well-formedness of the composition.

• Case A′ = ∀a.A, B′ = ∀b.b: By induction we have θ′(A[c/a]) = θ′(B[c/b]) and

(∆,c) ⊢ θ′ : Θ ⇒ Θ1. The escape check allows us to strengthen the latter to the

desired property ∆ ⊢ θ′ : Θ ⇒ Θ1.

By alpha-equivalence, we may assume that in addition to c, a and b are also

fresh. Hence, no variable capture is taking place when applying θ′, and we have

that θ′(A[c/a]) = θ′(B[c/b]) implies θ′(∀a.A) = θ′(∀b.B).
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• Case A′ = a or B′ = a: By the definition of demote, we have ftv(Θ) = ftv(Θ1).

This implies a ̸∈Θ1 and due to the assertion (∆•,Θ1)⊢R A ok we have a ̸∈ ftv(A).

Therefore, the returned substitution has no effect on A. Together with ∆ ⊢ ιΘ :

Θ ⇒ Θ1 and the assertion, we obtain ∆ ⊢ ιΘ[a 7→ A] : (Θ,a : R)⇒ Θ1.

Unification is also complete, meaning that if two types have a unifier θ, then U
succeeds. In this case, the returned unifier is also more general than θ, meaning that it

can be composed with another substitution to yield θ.

Theorem 4.3 (Completeness and generality of U).
Let (∆•,Θ) ⊢⋆ A ok and (∆•,Θ) ⊢⋆ B ok and ∆ ⊢ θ : Θ ⇒ Θ′ hold. If θ(A) = θ(B),

then there exist θ′,θ′′,Θ′′ such that U(∆,Θ,A,B) = (Θ′′,θ′′) and ∆ ⊢ θ′ : Θ′′ ⇒ Θ′ and

θ = θ′ ◦θ′′.

Proof. The proof is by complete induction on the number of recursive calls, for the

same reason as outlined in the proof of Theorem 4.2. We perform a case analysis over

all possible shapes of A and B.

• Case A = D A1 . . .An, B = D B1 . . .Bn. We perform a nested induction, showing

that for any 0 ≤ j ≤ n, the following holds:

1. The invocation U(∆,Θ j,θ j(A j),θ j(B j) succeeds.

2. There exists θ′j such that ∆ ⊢ θ′j : Θ j+1 ⇒ Θ′ and θ = θ′j ◦θ j+1

For j = 0, the first condition is vacuous and we may choose θ′0 = θ.

For the case j > 0 we first show that U(∆,Θ j,θ j(A j),θ j(B j) succeeds. Ac-

cording to the nested induction hypothesis, we have that θ = θ′j−1 ◦ θ j and

∆ ⊢ θ′j−1 : Θ j ⇒ Θ′. We may therefore apply the outer induction hypothesis,

guaranteeing that unification succeeds. Let θ′U) be the substitution returned by

U(∆,Θ j,θ j(A j),θ j(B j).

The inner induction hypothesis further yields the existence of θ′′ such that θ′j−1 =

θ′′ ◦θ′U and ∆ ⊢ θ′′ : Θ j+1 ⇒ Θ′. Taking θ′j to be θ′′, we then observe the follow-

ing.

θ = θ
′
j−1 ◦θ j = θ

′′︸︷︷︸
def
= θ′j

◦ θ
′
U ◦θ j︸ ︷︷ ︸

def
= θ j+1

Thus, we have shown both parts of the nested induction hypothesis and observe

that for j = n it implies the statement of the theorem.
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• Case A = ∀a.A′, B = ∀b.B′. By alpha-equivalence, we may assume that a and b

are fresh, which means that θ(A) = θ(B) implies θ(A′) = θ(B′). Let c ̸∈ ∆,Θ be

the variable picked by the algorithm. Thus, we have that c does not appear in the

domain of θ and we have θ(A′) = θ(A′[c/a]) = θ(B′) = θ(B′[c/b]).

We may assume w.l.o.g. that c#Θ′ holds.2 We thus have (∆,c) ⊢ θ : Θ ⇒ Θ′.

We observe that A′[c/a] and B′[c/b] are the types used in the recursive call. By

induction we have that U((∆,c),Θ,A′[c/a],B′[c/b]) succeeds, returning some

(Θ1,θ
′) for which there exists θ′′ such that θ = θ′′ ◦θ′ and (∆,c) ⊢ θ′′ : Θ1 ⇒ Θ′.

Note that the latter implies c#Θ1.

We show c ̸∈ ftv(θ′) by contradiction: Otherwise, there would exist d ∈ Θ such

that c ∈ ftv(θ′(d)). However, by θ = θ′′ ◦ θ′ and θ′′(c) = c (due to c#Θ1) this

would imply c ∈ ftv(θ(d)) = ftv(θ′′(θ′(d))). By assumption ∆ ⊢ θ : Θ ⇒ Θ′, this

violates c#Θ′,∆. Thus the assertion in the algorithm succeeds.

Using the same reasoning, we can show that for all a ∈ ftv(θ′), we have c ̸∈
ftv(θ′′(a)). Now let a := Θ1 − ftv(δ′) and θ′′′ := θ′′↾(Θ1−a)[a 7→ Unit]. This

means that we turn θ′′ into a substitution that behaves identically when composed

with θ′, but whose codomain does not contain c.

This construction guarantees that θ′′′ has the necessary properties, namely θ′′′ ◦
θ′ = θ′′ ◦θ′ = θ and ∆ ⊢ θ′′′ : Θ1 ⇒ Θ′.3

• Case A = a. If B = a, the algorithm returns (Θ, ιΘΘ) due to its first clause.

Choosing θ′ = θ yields the required properties.

In the case B ̸= a, we observe that the assumptions θ(a) = θ(B) and ∆ ⊢ θ :

Θ ⇒ Θ′ imply a ∈ Θ. Due to types being finite syntax trees, this also implies

a ̸∈ ftv(B).

Let Θ′′ := Θ−a. We show that choosing θ′ to be θ restricted to Θ′′ (i.e., without

the mapping for a) satisfies the required properties. Note that this immediately

yields ∆θ′ : Θ′′ ⇒ Θ′.

As the algorithm chooses θ′′ = ιΘ[a 7→ B], we first need to show that θ = θ′ ◦
ιΘ[a 7→ B]. To this end, it suffices to show that θ′(B) = θ(a), which holds by

θ(B) = θ(a) and a ̸∈ ftv(B).

2Otherwise, we may perform the subsequent reasoning on θf = [c 7→ d]◦θ for some fresh d, which
gives us ∆ ⊢ θf : Θ ⇒ Θ′− c,d and θf(A) = θf(B). We can then revert the renaming in the end.

3The unification algorithm actually guarantees that θ′ is surjective with respect to Θ1, meaning that
a is always empty. However, there is no need to rely on this fact here, by turning θ′′ into θ′′′ instead.
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It remains to show that the algorithm actually succeeds and that we have ∆ ⊢ θ′ :

Θ1 ⇒ Θ′.

We first consider the case where (a : ⋆) ∈ Θ. We then have that Θ1
def
= demote(⋆,

Θ′′, ftv(B)−∆) = Θ′′. As a result, the assertion is immediately satisfied by as-

sumptions ∆•,Θ ⊢ B ok and the result a ̸∈ ftv(B) shown earlier, meaning that the

algorithm succeeds. We observe that ∆ ⊢ θ′ : Θ1 ⇒ Θ′ follows immediately.

In the case (a : •) ∈ Θ, we have that Θ1
def
= demote(•,Θ′′, ftv(B)−∆ contains the

same variables as Θ′′, but those in ftv(B)−∆ (i.e., the free flexible variables of

B) are monomorphic.

By ∆ ⊢ Θ ⇒ Θ and (a : •) ∈ Θ we have (∆•,Θ′) ⊢• θ(a) ok, which implies that

θ(a) contains no quantifiers and only variables marked as monomorphic in Θ′.

By θ(a) = θ(B) we thus have that θ maps all free flexible type variables of B

to monomorphic types. Thus, when considering the restriction θ′ of θ, we have

∆ ⊢ θ′ : Θ1 ⇒ Θ′.

• Case B = b, A is not a variable. We observe that this is the only remaining

case: If A is a quantified type or type constructor application, then assumption

θ(A) = θ(B) imposes that B is either a variable, or otherwise it must have the

same shape as A (i.e., also be a quantified type or an application of the same type

constructor). We may then use the same reasoning as in the case A = a.

4.3 Type inference algorithm

The type inference algorithm is implemented using the function infer, which is defined

in Figure 4.5 on the next page. It takes a type context ∆, a restriction context Θ, a

term context Γ and a term M as input. Here, ∆ and Θ play similar roles as in the

unification algorithm: While ∆ contains rigid variables, Θ contains flexible variables

that may be solved during inference in the sense of finding substitutions for them. As

mentioned before, we consider type variables in M to be rigid and not subject to sub-

stitution, which is formalised by requiring ∆;Γ ⊢ M ok as a precondition for invoking

infer. Similarly, we must have (∆•,Θ) ⊢ Γ ok. Note that as usual, this means that Γ

may contain type variables that may be refined by the inference algorithm by finding

substitutions for them, but the well formedness condition imposes that such type vari-

ables are restricted to monomorphic solutions. The function infer then succeeds if and
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infer(∆,Θ,Γ,M)

infer(∆,Θ,Γ,⌈x⌉) =
let A = Γ(x)

return (Θ, ιΘ,A)

infer(∆,Θ,Γ,x) =

let ∀a.H = Γ(x)

let b#∆,Θ

return ((Θ,b : ⋆), ιΘ,H[b/a]))

infer(∆,Θ,Γ,M N) =

let (Θ1,θ1,A′) = infer(∆,Θ,Γ,M)

let (Θ2,θ2,A) = infer(∆,Θ1,θ1(Γ),N)

let b#∆,Θ

let (Θ3,θ3[b 7→ B]) =

U(∆,(Θ2,b : ⋆),θ2(A′),A → b)

return (Θ3,θ3 ◦θ2 ◦θ1,B)

infer(∆,Θ,Γ,λx.M) =

let a#∆,Θ

let (Θ1,θ[a 7→ S],B) =

infer(∆,(Θ,a : •),(Γ,x : a),M)

return (Θ1,θ,S → B)

infer(∆,Θ,Γ,λ(x : A).M) =

let (Θ1,θ,B) =

infer(∆,Θ,(Γ,x : A),M)

return (Θ1,θ,A → B)

infer(∆,Θ,Γ, let x = M in N) =

let (Θ1,θ1,A) = infer(∆,Θ,Γ,M)

let ∆′ = ftv(θ1)−∆

let ∆′′ = ftv(A)− (∆,∆′)

∆′′′ =

∆′′ if M ∈ GVal

· otherwise

let Θ′
1 = demote(•,Θ1,∆

′′)

let (Θ2,θ2,B) = infer(∆,Θ′
1 −∆′′′,θ1(Γ),x : ∀∆′′′.A,N)

return (Θ2,θ2 ◦θ1,B)

infer(∆,Θ,Γ, let (x : A) = M in N) =

let (∆′,A′) = split(A,M)

assert ∆′ # ∆,Θ

let (Θ1,θ1,A1) = infer((∆,∆′),Θ,Γ,M)

let (Θ2,θ
′
2) = U((∆,∆′),Θ1,A′,A1)

let θ2 = (θ′2 ◦θ1)

assert ftv(θ2)# ∆′

let (Θ3,θ3,B) = infer(∆,Θ2,(θ2(Γ),x : A),N)

return (Θ3,θ3 ◦θ2,B)

Figure 4.5: Type inference function infer
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only if M is well typed in the given contexts. It then returns a tuple (Θ,θ,A), where

∆ ⊢ θ : Θ ⇒ Θ′ and θ substitutes variables in Γ such that A is a principal type of M

under (∆,Θ′) and θ(Γ). We formalise this in Section 4.3.1.

The inference algorithm is defined in terms of the shape of the input term. If the

term under consideration is a frozen variable, infer requires that the variable appears

in Γ. If so, the restriction context is returned unchanged, together with an identity

substitution and the type of x obtained from Γ.

In case of a plain variable, inference behaves like the original Algorithm W. The

(toplevel) quantifiers in the type of x are instantiated with fresh variables b. The only

non-standard aspect is that we add the variables b with restrictions ⋆ to the returned

restriction context. This ensures that these variables may be unified with polymorphic

types later. Note that for both sorts of variables, inference fails if the variable is not

found in Γ. Besides that, the algorithm may only fail if an explicit assertion, a call to

U, or a recursive call of infer fails.

The treatment of function applications M N is also standard. We infer types the

type A′ of M and then the type A of N, piping the updated context and substitution

obtained from the earlier step through. A fresh (polymorphic) type variable b is then

used to unify the overall function type A′ with the type A → b, to reflect the fact that A

is the inferred type of the argument N.

Type inference for un-annotated functions is standard, too. A fresh variable a is

used as the type of x while inferring a type for the body of the function. The only

difference is that we explicitly mark the type variable a as monomorphic, reflecting the

fact that we must only infer monomorphic parameter types. Inference for annotated

functions works analogously, but no fresh type variable needs to be introduced for the

type of the parameter. Note that the well formedness condition on the overall term

imposes that the type annotation only contains variables from ∆, hence not subject to

substitution.

As examples, consider the following three inference outcomes.

infer(·, ·, ·,λx.x) = ((a : •), [],a → a) (4.1)

infer(·,(b1 : •),( f : b1 → b1, id : ∀c.c → c), f id) = (Θ,θ,b2 → b2) (4.2)

infer(·,(b1 : •),( f : b1 → b1, id : ∀c.c → c), f ⌈id⌉) fails (4.3)

where Θ = (b2 : •),θ = [b1 7→ (b2 → b2)]

In the first example, we observe that performing inference on the term λx.x results
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in a restriction context with a fresh variable a. It is monomorphic, as it was introduced

as the type of an un-annotated lambda parameter. The domain of the returned substi-

tution is the initial restriction context and therefore empty. Note that the usage of x in

the body of the function did not result in new type variables being created as a result

of instantiation, due to the lack of (toplevel) quantifiers in the type of x, namely a.

In the second example, we perform inference for the term f id, where we have

b1 : • while f has type b1 → b1 and id has its usual type. Inference for the subterm f

has no effect, while inference for the subterm id instantiates its type to b2 → b2 for a

fresh polymorphic variable b2. Inference for the application f id then involves calling

U(·,(b1 : •,b2 : ⋆,b3 : ⋆),b1 → b1,(b2 → b2) → b3), where b3 is the fresh variable

introduced to represent the function’s return type. This results in the following.

((b2 : •), [b1 7→ (b2 → b2),b2 7→ b2,b3 7→ (b2 → b2)])

Composing all intermediate substitutions then effectively restricts the domain of

the resulting overall substitution to b1, leading to the inference result shown in (4.2).

Finally, example (4.3) fails as a monomorphism restriction is violated during uni-

fication.

Plain let bindings Inference for terms let x = M in N works as follows. First, type

inference is performed for M, yielding result (Θ1,θ1,A). The goal of the algorithm is

then to identify those free type variables of A that are generalisable. Recall that the

typing rule for let bindings imposes that actual generalisation only takes place if M is a

guarded value. In fact, if the let-bound term M is a guarded value and generalisation is

to be performed, our inference function behaves like the original Algorithm W, except

for modifications needed to incorporate the fact that the contexts ∆ and Θ explicitly

denote the current set of type variables in scope.

In general, variables already present in the surrounding contexts ∆ and Θ must

not be generalised. However, while inferring a type for M, some variables from Θ

may have been substituted with other types. Thus, the sequence ∆′ is defined by the

algorithm as those flexible variables not to be generalised, by taking the flexible vari-

ables in the codomain of θ1.4 The sequence ∆′′ then contains the generalisable type

variables of A, by removing all rigid variables and those in ∆′. The different behaviour

4Alternatively, instead of using ftv(θ1) in the definition of ∆′, we may consider only its subset
ftv(θ1Γ) instead. This is justified since flexible variables appearing in ftv(θ1) but not in ftv(θ1Γ) will
not be encountered while inferring a type for M. This alternative definition of ∆′ would be more in line
with classic presentations of Algorithm W.
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of let bindings based on whether or not M is a guarded value is then implemented by

defining ∆′′′. It contains the variables that will actually be quantified to yield the type

of x in N.

First, the subset ∆′′ of the variables Θ1 is unconditionally demoted to be mono-

morphic, yielding Θ′
1. Inference for the subterm N then depends on whether or not M

is a guarded value. If it is, the variables ∆′′ are removed from Θ′
1 prior to the recursive

call to infer, making the previous demotion step void (i.e., all previously demoted vari-

ables are immediately removed). Instead, the variables in ∆′′′ are universally quantified

in order to yield the type of x. If M is not a value, ∆′′′ is empty, meaning that removing

it from Θ′
1 has no effect and no quantification takes place.

We consider the following examples.

infer(·, ·,Γ, let g1 = λx.x in ⌈g1⌉) = (·, [],∀a.a → a) (4.4)

infer(·,(b1 : •),Γ, let g2 = λ(x : Int). f id in ⌈g2⌉) = (Θ′,θ′, Int→ b2 → b2) (4.5)

where Γ = ( f : b1 → b1, id : ∀c.c → c), Θ
′ = (b2 : •)

θ
′ = [b1 7→ (b2 → b2)]

In the first example, the let-bound term is the one used in (4.1). Assuming that a

fresh variable a is again introduced for the type of x, we have ∆′ = · and ∆′′ = ∆′′′ = a

once inference is performed for the let binding. Thus, we have g1 : ∀a.a → a in the

term context while performing inference for the body.

The let-bound term in the second example is the one from (4.2), but wrapped in a

lambda term to yield a guarded value. We observe that the variable b1 appears in the

surrounding context and is therefore not a generalisable variable. However, the result

of performing inference for f id, as shown in (4.2), indicates that b1 is substituted with

b2 → b2. This is correctly reflected in the algorithm, where b2 appears in the sequence

∆′ produced by the algorithm, and therefore not in ∆′′, which is empty. In general, note

that whenever our algorithm returns a triple such as (Θ1,θ1,A), we have θ1(A) = A

(i.e., in the returned type A, all substitutions discovered by the algorithm have already

been applied). Together with the fact that the algorithm returns idempotent substitu-

tions, this means that a variable such as b1 in (4.5), which is substituted with another

type rather than itself, can never appear freely in the type A of the let-bound term M.

Conversely, for all generalisable variables b ∈ ∆′′, we must have θ1(b) = b in the let

case of the inference algorithm.

Annotated let bindings For annotated bindings let (x : A) = M in N, the inference

algorithm relies on the same function split (defined in Figure 3.6 on page 47) used
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by the corresponding typing rule. This means that if M is a guarded value, then ∆′

contains all of its toplevel quantifiers and A′ is the remaining guarded type. Otherwise,

∆′ is empty and A′ is identical to A. The assertion ∆′ #∆,Θ merely ensures that if

M is a guarded value and ∆′ thus represents the toplevel quantifiers of A, then A has

been sufficiently alpha-converted so that these quantifiers are fresh with respect to the

contexts used for inference. As a result, this assertion is always satisfiable.

The algorithm then unifies A′ with A1, the type inferred for M in a context where

∆′ is added to the rigid variables. Thus, if M is a guarded value, we expect A1 to

be a guarded value, too. Otherwise, when ∆′ is empty, we unify A and the inferred

type for M directly. The algorithm then performs an escape check. Note that we may

alternatively define (Θ2,θ
′
2) = U(∆,Θ1,A,∀∆′.A1).

We again consider examples.

infer(·, · , · , let (h1 : ∀b.b → b) = λx.x in⌈h1⌉) = (·, [],∀b.b → b) (4.6)

infer(·, · ,Γ , let (h2 : ∀b.b → b) = id ⌈id⌉ in⌈h2⌉) = (·, [],∀b.b → b) (4.7)

infer(·,(a1 : •) ,Γ , let (h3 : ∀b.b → b) = f in⌈h3⌉) fails (4.8)

where Γ = ( f : a1 → a1, id : ∀c.c → c)

In the first example, we have ∆′ = b and obtain the result shown in (4.1) yet again when

inferring the type of the let-bound term. We then perform U(b,(a : •),b → b,a → a,

yielding (·, [a 7→ b]), leading to the result shown in (4.6).

In the second example, we have Θ1 = ·, A1 = ∀c.c → c and θ1 = [a1 7→ A1,a2 7→
A1]. However, split sets ∆′ = · and we perform U(·,Θ1,∀b.b → b,∀c.c → c).

The third example fails due to a1 being substituted with b and therefore violating

the escape check.

In conclusion, we observe that the function infer in Figure 4.5 is a modest extension

of Algorithm W. This is no surprise, since a design goal of FreezeML was specifically

to follow the HM system, and hence Algorithm W, regarding when generalisation and

instantiation occurs. The key additions are the usage of restriction contexts, indicating

what unification variables may or may not stand for polymorphic types. Unification

has been extended to arbitrarily quantified types, checking and updating restrictions

as needed. As a result, a key deviation from the HM system, namely the polymorphic

instantiation of all quantifiers of a term variables’ types, merely requires adding freshly

introduced type variables with restriction ⋆ instead of • to the restriction context when

handling term variables. While the restriction to use principal types for let-bound

terms affects the overall system’s metatheory, this need not be reflected in the inference
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algorithm.

4.3.1 Properties of the inference algorithm

We first observe that the inference algorithm terminates.

Theorem 4.4 (Termination of infer).
The function infer terminates on all inputs.

Proof. All recursive invocations of infer happen on strict subterms of the input term.

The inference algorithm uses the function U, which is also guaranteed to terminate

(see Theorem 4.1).

We use the extended FreezeML typing relation ⊢E, introduced in Section 4.1.2, to

express the correctness properties of the inference algorithm. We first show that infer

is sound, meaning that the type A inferred for a term M is indeed a valid type of M in

the context obtained from using the returned restriction context Θ′ and substitution θ.

Theorem 4.5 (Soundness of infer).
Let (∆•,Θ)⊢Γ ok and ∆;Γ⊢M ok. If infer(∆,Θ,Γ,M)= (Θ′,θ,A) then ∆⊢ θ : Θ⇒Θ′

and (∆•,Θ′);θ(Γ) ⊢E M : A.

Proof. By induction on structure of M, details in Appendix A.4.

Further, we show that the inference algorithm is complete and most general. If a

type A can be given to a term M by applying a substitution to Γ, then type inference

on the term succeeds. In addition, the returned substitution θ′′ can be refined using a

substitution θ′ to obtain the original substitution and θ′′ can be used to turn the inferred

type into A.

Theorem 4.6 (Completeness and generality of infer).
Let ∆;Γ ⊢ M ok and (∆•,Θ) ⊢ Γ ok and ∆ ⊢ θ : Θ ⇒ Θ′. If (∆•,Θ′);θ(Γ) ⊢E M : A, then

there exist Θ′′,θ′,θ′′,A′ such that infer(∆,Θ,Γ,M) = (Θ′′,θ′′,A′) and ∆ ⊢ θ′ : Θ′′ ⇒ Θ′

and θ = θ′ ◦θ′′ and θ′(A′) = A.

Proof. By induction on structure of M, details in Appendix A.4.

Finally, we relate the output (Θ,θ,A) of the inference algorithm to the original

FreezeML typing relation. Here, we consider the case where Γ only contains variables

from ∆ and the restriction context is empty, which is how the algorithm would typically

be used to perform overall type inference. As a result, this immediately yields that the
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returned substitution θ is empty. In contrast, Theorems 4.5 and 4.6 are suitable for

inductive reasoning for inference on subterms.

First, we observe that the type A returned by the algorithm is principal in the sense

of the principal predicate (which was defined in terms of the original typing relation).

Secondly, the types of M in term context Γ and any type contexts that extends ∆ are

exactly those that are obtained from A using a well formed substitution with domain Θ

(i.e., the restriction context returned by the inference algorithm).

Theorem 4.7.
Let ∆ ⊢ Γ ok and ∆;Γ ⊢ M ok. If infer(∆, ·,Γ,A) = (Θ,θ,A) then the following holds.

1. We have principal(∆,Γ,M, ftv(Θ),A).

2. For all ∆′,A′ we have (∆,∆′),Γ⊢M : A′ iff there exists θ′ such that ∆⊢ θ′ : Θ⇒∆′

and θ(A) = A′.

Proof. This is a simplified version of Lemma A.13 in Appendix A.4.

Theorem 4.8 (Existence of principal types).
If M is well typed in FreezeML in contexts ∆ and Γ then there exist ∆′ and A such that

principal(∆,Γ,M,∆′,A).

Proof. By Lemma 4.2 we have that M is also well typed using the extended FreezeML

typing relation. Theorem 4.6 then guarantees that infer succeeds, which means that the

existence of the principal type follows from Theorem 4.7.



Chapter 5

Constraint-based type inference for
FreezeML

The type inference algorithm presented in the previous chapter is based on Algorithm

W, the original type inference algorithm devised for the HM system. This makes Al-

gorithm W a natural basis for a type inference algorithm for an extension of ML, such

as ours, and has been adapted by other extensions providing first-class polymorph-

ism [89, 117, 58].

However, in the decades following the inception of the HM system and Algorithm

W, type systems and inference systems utilising constraints have gained popularity. In

the late 1980s and early 1990s, a multitude of systems were developed that employ

some notion of constraints, in order to implement individual language features. Ex-

amples of such systems include work on type classes and overloading [120, 47, 87, 84]

as well as record types [121, 98] and subtyping [1, 112, 17].

Subsequently, approaches were developed that generalise the treatment of con-

straints, rather than be tailored to a specific use case or constraint language. Jones

[44] presented a variation of ML with qualified types, and showed how his general

approach can be instantiated to implement the language features listed above. In his

system, type inference and qualified types are largely orthogonal: During type infer-

ence, constraints are treated in a purely syntactic manner and mostly just accumulated.

Later work by Odersky et al. [86] on the HM(X) framework had a similar goal:

The framework is parameterised in a concrete constraint domain X , similarly to Jones’

system. Odersky et al. then present a generic algorithm that performs type inference,

independent from the constraint domain X . The framework then guarantees that the

resulting type systems is sound as well as the soundness and completeness of the infer-

93
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ence algorithm. This means that users of the framework merely have to show that their

choice of X satisfies the formal requirements imposed by the framework to obtain the

meta-theoretic properties established by the framework.

The inference algorithm shown by Odersky et al. works by generating and solving

appropriate constraints. Thus, rather than merely performing inference for a constraint-

based type system, constraints are at the heart of their inference algorithm, performing

inference with constraints. While their generic algorithm is oblivious of the constraint

domain X , it still depends on domain-specific functionality, such as a decidable de-

cision procedure for normalising constraints, which involves determining their satis-

fiability.

Later, Pottier and Rémy [97] presented a variant of the HM(X) framework that

refines the two-stage approach of constraint generation and constraint solving. In

contrast to earlier work, their approach allows complete separation between the two

phases: Instead of interleaving constraint generation and constraint solving for sub-

terms as part of an overall type inference algorithm, Pottier and Rémy show how a

term can be translated to a constraint as a whole. Then, the resulting constraint is

guaranteed to be satisfiable if and only if the original term was well typed, thus re-

ducing the type inference problem to a constraint satisfiability problem. Further, the

types of the term can be obtained from the solutions of the constraint. This approach

offers a greater separation of concerns: Once a term has been translated to a constraint,

the original term plays no further rule during the next stage of type inference, namely

constraint solving. While Pottier and Rémy discuss how their work can be adapted to

handle some extensions of the HM system, their solver itself is not generic in the sense

of being independent of the constraint domain.

In practice, the usefulness of a constraint-based inference approach has been demon-

strated by the GHC Haskell compiler, well known for its multitude of type system

extensions, which relies on constraint-based type inference [72, 90].

In this chapter, we present a constraint-based type inference system for FreezeML

that follows the spirit of Pottier and Rémy’s approach with two independent stages:

We show a translation of FreezeML terms to constraints, and provide a solver for our

constraint language. While this inference process is not currently parameterised over

a constraint domain, we conclude the chapter with a comparison with HM(X).
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5.1 Constraint language

In this section, we present the constraint language used for our constraint-based infer-

ence approach. The key mechanism used by Pottier and Rémy [97] to reduce the type

inference problem for a whole program to a constraint solving problem is the inclusion

of term variables in their constraint language. It comprises constraint forms that bind

term variables and forms that use them.

We use the same approach for our system. The resulting language of constraints C

is defined as follows.

C ::= true |C1 ∧C2 | A ∼ B | ⌈x : A⌉ | x ⪯ A | ∀a.C | ∃a.C |mono(a)

| def (x : A) in C | let⋆ x = ⊓a.C1 in C2 | let• x = ⊓a.C1 in C2

As usual, our language contains tautological constraints (true) and logical con-

junctions (C1∧C2). Constraints A ∼ B assert that A and B are equal, meaning that after

substituting the flexible type variables therein, both types are syntactically equivalent

modulo alpha-conversion. The constraint forms ∀a.C and ∃a.C bind type variables

that are universally and existentially quantified in C, respectively. Constraints ⌈x : A⌉
and x ⪯ A reason about the type of the term variable x. Any solution of a constraints

mono(a) must choose a monomorphic type for a.

The remaining three constraint forms, namely def constraints and two forms of let

constraints, bind term variables in terms. We consider constraints equivalent modulo

alpha-conversion of both the type and term variables bound within a constraint.

We define interpretations as quadruples ∆;Ξ;Γ;δ, consisting of a rigid type context

∆, a flexible type context Ξ, a term context Γ, and a substitution δ. We return to the role

of each component of an interpretation shortly. We then give a semantics of constraints

by defining when a constraint is satisfied by an interpretation, denoted ∆;Ξ;Γ;δ ⊢ C,

making the interpretation a model or solution of C.

Both contexts ∆ and Ξ in an interpretation follow the same grammar, which is in

turn equivalent to the grammar of type contexts introduced before (see Figure 3.2 on

page 41). The only difference is that the former contains type variables treated as

rigid, whereas the latter contains type variables considered flexible. Thus, the role of

Ξ is similar to that of restriction contexts introduced in Section 4.1, in the sense of

indicating which flexible type variables are in scope, but without carrying information

about the restrictions on these type variables. Term contexts Γ are defined and used

as before. Instantiations δ are also formally defined as before, used here to map all

flexible type variables from Ξ to types well formed under ∆.
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Given fixed ∆, Ξ and Γ, our constraint language is designed with the goal that every

constraint satisfiable under these contexts has a principal/most general model using

these contexts. We will formalise the notion of most general solutions in Section 5.1.2.

We say that an interpretation consisting of ∆,Ξ,Γ,δ is well formed if we have ∆ ⊢
Γ ok and ∆ ⊢ δ : Ξ ⇒⋆ ·. Note that this implies ∆#Ξ and that both Γ and the codomain

of δ only contain rigid variables from ∆. As usual in this work, we make it an implicit

precondition of the constraint satisfaction judgements that the used interpretation is

well formed.

The rules of the constraint satisfaction relation are shown in Figure 5.1 on the next

page. The rules for true and conjunctions are straightforward. To satisfy a constraint

A ∼ B, both A and B must be well formed types under the combined restriction context

(∆•,Ξ), using the judgement defined in Figure 4.1 on page 72.1 We then require that

the interpretation δ of flexible variables indeed makes A and B equal.

Constraints of the form ⌈x : A⌉ assert that the type of x is A. As A may contain flex-

ible variables, the corresponding rule SEM-FREEZE applies δ to it before comparing

the result with the type for x in Γ. Conversely, constraints of the form x ⪯ A assert that

all toplevel quantifiers in the type of x may be instantiated to yield A. The resulting

rule again needs to apply δ to A. Note that usually, in order to be the result of instan-

tiation, δ(A) has to be a guarded type, meaning that it has no toplevel quantifiers. The

only exception are constraints bot⪯ A, where bot : ∀a1, . . . ,an.ai ∈ Γ.

The rule for constraints ∀a.C simply adds a to the rigid type context ∆, meaning

that the satisfaction of C is independent of any further information about a. Conversely,

the rule SEM-EXISTS establishes that a constraint ∃a.C is satisfiable if a type A can

be chosen for a such that C is satisfied by the extended interpretation. A constraint

mono(a) is satisfied if and only if a is either a rigid type variable or one interpreted

with a monomorphic type.

We now consider the constraint forms binding term variables.

5.1.1 Definition constraints

A definition constraint (or “def” constraint, directly reflecting the syntax) def (x :

A) in C binds the term variable x with type A in the sub-constraint C. Here, unlike

for instance annotated lambda terms in FreezeML, A may contain flexible type vari-

1Note that the restrictions on the type variables in scope are not relevant for the satisfaction of
these well-formedness premises. This means that we could equivalently require (∆, ftv(Θ) ⊢ A and
(∆, ftv(Θ) ⊢ B, using the type well-formedness judgement defined in Figure 4.1 on page 72.



5.1. Constraint language 97

∆;Ξ;Γ;δ ⊢C

SEM-TRUE

∆;Ξ;Γ;δ ⊢ true

SEM-AND

∆;Ξ;Γ;δ ⊢C1

∆;Ξ;Γ;δ ⊢C2

∆;Ξ;Γ;δ ⊢C1 ∧C2

SEM-EQUIV

δ(A) = δ(B)

(∆,Ξ) ⊢ A ok (∆,Ξ) ⊢ B ok

∆;Ξ;Γ;δ ⊢ A ∼ B

SEM-FREEZE

Γ(x) = δ(A)

∆;Ξ;Γ;δ ⊢ ⌈x : A⌉

SEM-INSTANCE

Γ(x) = ∀a.H ∆ ⊢ δ
′ : a ⇒⋆ · δ

′(H) = δ(A)

∆;Ξ;Γ;δ ⊢ x ⪯ A

SEM-FORALL

(∆,a);Ξ;Γ;δ ⊢C

∆;Ξ;Γ;δ ⊢ ∀a.C

SEM-EXISTS

∆;(Ξ,a);Γ;δ[a 7→ A] ⊢C

∆;Ξ;Γ;δ ⊢ ∃a.C

SEM-MONO

∆ ⊢• δ(a) ok

∆;Ξ;Γ;δ ⊢mono(a)

SEM-DEF

∆;Ξ;(Γ,x : δ(A));δ ⊢C

for all a ∈ ftv(A) : ∆;Ξ;Γ;δ ⊢mono(a)

∆;Ξ;Γ;δ ⊢ def (x : A) in C

SEM-LETGEN

mostgen(∆,(Ξ,a),Γ,C1,∆m,δm)

∆o = ftv(δm(Ξ))−∆ b = ftv(δm(a))−∆,∆o

∆ ⊢ δ
′ : ∆o ⇒• · A = δ

′(δm(a))

(∆,b);(Ξ,a);Γ;δ[a 7→ A] ⊢C1 ∆;Ξ;(Γ,x : ∀b.A);δ ⊢C2

∆;Ξ;Γ;δ ⊢ let⋆ x = ⊓a.C1 in C2

SEM-LETNONGEN

mostgen(∆,(Ξ,a),Γ,C1,∆m,δm)

∆ ⊢ δ
′ : ∆m ⇒• · A = δ

′(δm(a))

∆;(Ξ,a);Γ;δ[a 7→ A] ⊢C1 ∆;Ξ;(Γ,x : A);δ ⊢C2

∆;Ξ;Γ;δ ⊢ let• x = ⊓a.C1 in C2

Figure 5.1: Satisfiability of constraints
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ables. However, the semantics of def constraints in Figure 5.1 impose a crucial side

condition: All flexible type variables in A must be interpreted with monomorphic types

by any model of the def constraint.

Intuitively, this preserves the invariant that in FreezeML, only fully determined –

rather than guessed – polymorphism may appear in the types of term variables and

can thus be instantiated. As an example of the concrete need for the restriction to

monomorphic solutions, we consider the constraint Cm defined as def (x : a) in x ⪯
Int→ Int ∧ c ∼ (a → Int). If we allowed polymorphic solutions for a, the constraint

would be satisfied by interpretations choosing c 7→ (∀b.b → b)→ Int) or c 7→ ((Int→
Int)→ Int). However, there exists no more general type that may be chosen for c and

hence no most general solution of the constraint would exist.

Note that the requirement for free type variables in the annotation A to be instan-

tiated monomorphically does not preclude A being polymorphic. The constraint

def (∀a.a → b) in true is satisfiable, its solutions are all interpretations that map b

to an arbitrary monomorphic type.

Finally, we observe that it is not possible to avoid the monomorphism requirement

in the semantics of definition constraints by using appropriate mono constraints. The

constraint mono(a)∧Cm is logically equivalent to the constraint Cm itself, which we

defined earlier on this page, even if we were to drop the monomorphism requirement

from the semantics of def constraint. However, as discussed before, its sub-constraint

Cm would still not have a most general solution. This means that while we can use

mono constraints to suppress polymorphic solutions, removing the monomorphism

requirement from definition constraints would immediately lead to the existence of

satisfiable constraints without most general solutions.

5.1.2 Generalising let constraints

We now discuss the two closely related forms of let constraints. We refer to let⋆ x =

⊓a.C1 in C2 as a generalising let constraint, whereas let• x = ⊓a.C1 in C2 is a non-

generalising one. Both forms of constraints bind the type variable a in C1 and the term

variable x in C2. In both cases, only the principal solution for a in C1 will be used

to determined the type for x. Thus, we can consider let constraints as performing a

special kind of existential quantification of the type variable a in C1, that only permits

principal solutions. The details of how the type for x is determined from the solution

for a differ between the two forms of let constraints. We first consider generalising
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let constraints, where the type of x is the result of generalising the solution for a. We

return to non-generalising let constraints afterwards.

Before discussing the exact semantics of polymorphic let constraints, we make

some observations that led to the overall semantics of let constraints.

Need to generalise principal solution As mentioned, a constraint let⋆ x = ⊓a.C1 in
C2 existentially quantifies a as a flexible type variable in C1, but in such a way that

we must choose the most general solution for a that satisfies C1. This is similar to

the principality condition imposed on FreezeML let terms and necessitated by similar

reasons. As an example, consider the following constraint.

let⋆ x = ⊓a.

=: C′︷ ︸︸ ︷
∃b1.a ∼ (b1 → b1) in

x ⪯ (Int→ Int)∧∃b2.⌈x : b2⌉∧ c ∼ (b2 → Int)︸ ︷︷ ︸
=: C′′

(5.1)

The only free type variable of the overall constraint is c, but models of the con-

straint may choose both c 7→ (∀a.a→ a)→ Int and c 7→ (Int→ Int)→ Int, with no more

general solution existing. This closely resembles the example illustrating the need for

the monomorphism requirement on definition constraints shown in Section 5.1.1 and

the examples motivating the principality condition on let terms in Section 3.2.1.1. Note

that due to the types Int→ Int and ∀a.a → a being incomparable in FreezeML, the pre-

vious example would already exhibit the lack of principal solutions if we took C′′ to be

⌈x : c⌉ instead. To have any hope of ensuring the existence of principal solutions for our

constraint language, we must therefore require that let constraints let⋆ x =⊓a.C1 in C2

use the principal solution for a in C1 as the type to be generalised to obtain the type for

x.

The rule SEM-LETGEN in Figure 5.1 formalises this using the predicate mostgen,

defined in Figure 5.2 on the following page, which closely resembles the principal pre-

dicate used in the typing rule for let terms. We have that mostgen(∆,Ξ,Γ,C,∆m,δm)

holds if (∆,∆m),Ξ,Γ,δm is a model of C and every other model based on ∆,Ξ,Γ can be

obtained by refining δm by composition. Here, the variables in ∆m can be considered

to be rigid placeholders for variables left undetermined by C. Note that we effectively

consider ∆, Ξ, and Γ as inputs of the relation, meaning that we only considering most

general interpretations of C among those interpretations using ∆, Ξ, and Γ. In partic-

ular, the term context Γ is fixed. This resembles how principal is used to reason about
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mostgen(∆,Γ,C,∆m,δm)

mostgen(∆,Ξ,Γ,C,∆m,δm) =

(∆,∆m);Ξ;Γ;δm ⊢C and

(for all ∆′′,δ′′ | if (∆,∆′′);Ξ;Γ;δ′′ ⊢C

then there exists δ′ such that

∆ ⊢ δ′ : ∆m ⇒⋆ ∆′′ and δ′ ◦δm = δ′′)

Figure 5.2: Definition of mostgen

the principal types of a terms, as opposed to principal typings, a distinction discussed

in Section 3.4.

Returning to the example constraint in (5.1) and its sub-constraint C′, let a and ∆

and Ξ be pairwise disjoint. We observe that mostgen(∆,(Ξ,a), ·,C′,b, [a 7→ (b → b)])

then holds for all b#(∆,Ξ,a).

The rule SEM-LETGEN uses the similar premise mostgen(∆,(Ξ,a),Γ,C1,∆m,δm).

It then determines the two subsets ∆o and b of ∆m. The sequence ∆o denotes those

undetermined variables that are related to the set Ξ of flexible variables from the outer

context in the sense that they appear in ftv(δm(Ξ)). As usual, such variables must not

be generalised. Note that we explicitly exclude the mapping for a when determining

∆o as a is not part of the surrounding context from the perspective of the let constraint

under consideration.

In turn, b contains the type variables appearing in the most general solution for a,

except those from ∆o and ∆. The variables in b are then generalised when determining

the type of x in SEM-LETGEN. Note that similarly to the relation principal, the defin-

ition of mostgen allows superfluous variables to appear in ∆m, in the sense that they

may not appear in the codomain of δm. If we disregard such superfluous variables and

assume ∆m ⊆ ftv(δm), then ∆o and b form a partitioning of ∆m.

The mostgen premise of SEM-LETGEN results in constraint satisfaction judge-

ments appearing in a negative position in the rule. This raises the same questions

regarding the well-definedness of the constraint satisfaction relation as for the typing

relation of FreezeML terms. We observe that as for let terms, the mostgen condition on

let constraints only involves sub-terms/sub-constraints. We may therefore perform the

same line of reasoning as in Section 3.4 to show the well-definedness of the constraint

satisfaction relation, but eschew formalising this here.
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Safe interaction with surrounding context We have just outlined how the rule

SEM-LETGEN in Figure 5.1 splits the type variables in ∆m into those appearing in

the outer context, named ∆o, and the remaining free type variables of δm(a) (i.e., the

solution for a in the most general model of the first subconstraint C1 of the let con-

straint). The latter sequence is named b by the rule, and corresponds to the variables

that are generalised when constructing the type for x in C2.

We now observe that one more condition is required to ensure that no undetermined

polymorphism enters the term context. As an example, we consider the following

constraint.

let⋆ x = ⊓a.a ∼ b in x ⪯ (Int→ Int) (5.2)

For the principality condition in SEM-LETGEN, we observe that mostgen(·,(a,b), ·,
a ∼ b,c,δ′) holds, where δ′(a) = δ′(b) = c. As a result, we have b = ·, meaning

that no type variables will be generalised to obtain the type for x. Naively, the rule

may then permit whatever type the surrounding context picked for b of x. However,

the constraint (5.2) would then have multiple models, choosing types such as ∀c.c,

∀c.c → c, or (Int → Int) for b. All three types are incomparable in FreezeML, and

no most general model of the constraint would exist. This is due to the fact that the

different choices of potentially polymorphic types for b leak into the term context and

subject it to instantiation.

To this end, we consider the free type variables of δm(a) that appear in ∆o, and are

therefore not generalised. The rule SEM-LETGEN then imposes that the type chosen

for x must result from monomorphically instantiating the variables in ∆o. In other

words, this means that the type A of x is obtained from δm(a), the most general type

for a permitted by the constraints in C1, by generalising the variables in b and mono-

morphically instantiating the non-generalisable variables from ∆o. For the example

constraint (5.2), this leads to the only choice for b being the type Int→ Int.

Finally, we observe that not all choices for A in SEM-LETGEN may be compatible

with the ambient instantiation δ. To this end, consider the following variation of (5.2).

b ∼ Bool ∧ let⋆ x = ⊓a.a ∼ b in x ⪯ (Int→ Int) (5.3)

For the let constraint, we still have mostgen(·,(a,b), ·,a ∼ b,c,δ′), using the same δ′

as before, which simply maps a and b to the same fresh variable c. However, choosing

A to be Int → Int is incompatible with the choice for b by the ambient instantiation

δ, which must map b to Bool, due to the newly added constraint b ∼ Bool. To ensure

that the choice of A is compatible with the ambient context, the rule SEM-LETGEN
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uses the premise ∆;Ξ;Γ;δ[a 7→ A] ⊢ C1. Note that here, the ambient instantiation δ

is used, rather than δm. While this premise holds when applying the rule to the let

sub-constraint of (5.2), it fails in the case of (5.3), correctly determining the latter to

be unsatisfiable.

In summary, we observe that the semantics of polymorphic let constraints imple-

ment two ideas that have previously occurred in FreezeML: A principality condition,

here in the form of requiring the usage of a most general solution, and a monomorph-

ism requirement that avoids undetermined polymorphism in the term context. Form-

alising the interplay between the two conditions then leads to the somewhat intricate

rule SEM-LETGEN in Figure 5.1.

No other constraint based type inference system is known to the author which em-

ploys a principality condition in the semantics of its constraint language.

5.1.3 Non-generalising let constraints

As we have just seen, the rule SEM-LETGEN in Figure 5.1 determines the two subsets

∆o and b of ∆m. The type of x is then obtained by generalising the variables b and

monomorphically instantiating the variables ∆o in a way that is compatible with the

ambient instantiation.

As their name suggests, non-generalising let constraints do not perform general-

isation. Instead, they monomorphically instantiate the variables in b, in addition to the

variables in ∆o.

We may therefore define the semantics of non-generalising let constraints as fol-

lows, with the only two changes as compared to SEM-LETGEN highlighted.

SEM-LETNONGEN-ALT

mostgen(∆,(Ξ,a),Γ,C1,∆m,δm)

∆o = ftv(δm(Ξ))−∆ b = ftv(δm(a))−∆,∆m

∆ ⊢ δ
′ : (∆o,b) ⇒• · A = δ

′(δm(a))

(∆,b);(Ξ,a);Γ;δ[a 7→ A] ⊢C1 ∆;Ξ;(Γ,x : A );δ ⊢C2

∆;Ξ;Γ;δ ⊢ let⋆ x = ⊓a.C1 in C2

Thus, the domain of the instantiation δ′ is extended by b and no generalisation is

performed to obtain the type of x from A, instead using A directly.

As discussed in Section 5.1.2, the type variables in ∆m not appearing in ∆o or b
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are superfluous. The rule SEM-LETNONGEN in Figure 5.1 is a simplification of the

rule SEM-LETNONGEN-ALT, utilising this fact. In SEM-LETNONGEN, all variables

in ∆m are monomorphically instantiated by δ′.

As an example, consider the following variation of (5.1) from page 99, where the

only change is using a non-generalising let constraint instead.

let• x = ⊓a.∃b1.a ∼ (b1 → b1) in

x ⪯ (Int→ Int)∧∃b2.⌈x : b2⌉∧ c ∼ (b2 → Int)

This constraint is still satisfiable, but all models must choose the type (Int→ Int)→ Int

for c, as opposed to (∀a.a → a)→ Int in the original version (5.1).

5.1.4 Well-formedness of constraints

After defining when an interpretation ∆,Ξ,Γ,δ satisfies a constraint, we now introduce

the notion of constraints being well formed. The relation largely exists for technical

reasons, to formalise what type and term variables may appear freely in a constraint

during proofs.

Constraint well-formedness judgements are written ∆;Ξ;Γ ⊢ C ok, stating that all

type variables appearing in C are either bound appropriately within C or appear in

(∆,Ξ). Conversely, term variables must have been bound within C or appear in Γ.

The rules of the relation are shown in Figure 5.3 on the following page. Note that

the relation is independent from an instantiation δ. Further, while a term context Γ

appears in well-formedness judgements, it is only used to track what term variables

are in scope, their types are ignored. We used term contexts Γ in a similar fashion in

well-formedness judgements ∆;Γ ⊢ M ok for FreezeML terms, defined in Section 3.2.

As a result, in the rule for let constraints, an arbitrary type A may be picked for x.

Finally, we observe that all satisfiable constraints are well formed under their mod-

els. This is in contrast to FreezeML typing judgements, where we required well-

formedness of the term as a precondition in order to achieve greater separation between

the typing rules and the scoping rules for type variables in annotations.

Lemma 5.1 (Constraint satisfaction implies well-formedness).
If ∆;Ξ;Γ;δ ⊢C holds, then ∆;Ξ;Γ ⊢C ok holds.

Proof. By structural induction on C, observing that the premises of each rule explicitly

or via implicit preconditions establish the necessary well-formedness conditions.
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∆;Ξ;Γ ⊢C ok

∆;Ξ;Γ ⊢ true ok

a ∈ (∆,Ξ)

∆;Ξ;Γ ⊢mono(a) ok

∆;Ξ;Γ ⊢C1 ok ∆;Ξ;Γ ⊢C2 ok

∆;Ξ;Γ ⊢C1 ∧C2 ok

∆;(Ξ,a);Γ ⊢C ok

∆;Ξ;Γ ⊢ ∃a.C ok

(∆,a);Ξ;Γ ⊢C ok

∆;Ξ;Γ ⊢ ∀a.C ok

(∆,Ξ) ⊢ A ok (∆,Ξ) ⊢ B ok

∆;Ξ;Γ ⊢ A ∼ B ok

x ∈ Γ (∆,Ξ) ⊢ A ok

∆;Ξ;Γ ⊢ x ⪯ A ok

x ∈ Γ (∆,Ξ) ⊢ A ok

∆;Ξ;Γ ⊢ ⌈x : A⌉ ok

(∆,Ξ) ⊢ A ok ∆;Ξ;(Γ,x : A) ⊢C ok

∆;Ξ;Γ ⊢ def (x : A) in C ok

∆;(Ξ,a);Γ ⊢C1 ok
∆;Ξ;(Γ,x : A) ⊢C2 ok

∆;Ξ;Γ ⊢ letR x = ⊓a.C1 in C2 ok

Figure 5.3: Well-formedness of constraints

5.2 Constraint generation

We now present a translation from FreezeML terms to our constraint language, such

that the resulting constraint is satisfiable if and only if the term is well typed. Further,

we show how the types of the well typed term can be obtained from the models of the

constraint.

The translation is defined as a function JM : AK, where M is the term to translate

and A is the expected type of M. We assume that M is well formed under the given

contexts ∆ and Γ (i.e., we have ∆;Γ ⊢ M ok).

In the simplest use case, the only free variables of A are rigid variables from ∆. A

constraint such as Jλx.x : Int→ IntK then asserts that the given term has the given type,

effectively allowing type checking.

However, we additionally permit A to contain flexible variables from some Ξ (i.e.,

(∆,Ξ) ⊢ A ok) in order to perform type inference. In general, the free type variables

of the constraint JM : AK are exactly those of A. The models of the constraint JM : AK

then interpret the free flexible variables of A such that A becomes a valid type of M.
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This means that despite the expected type A appearing as an input of the translation,

we may still perform type inference: We may simply pick a single variable a ∈ Ξ

as A. For example, the models of Jλx.x : aK are exactly those that interpret a with a

valid type of λx.x. We can therefore use constraints both to perform type checking

and type inference. Since A is an arbitrary type, we can also generate constraints that

simultaneously make assertions about part of a term’s type, while inferring other parts

of the type, as in the constraint Jλxy.x+ y : Int→ a → bK.

The translation function is shown in Figure 5.4. We assume that all variables ai

J⌈x⌉ : AK = ⌈x : A⌉

Jx : AK = x ⪯ A

JM N : AK = ∃a1.(JM : a1 → AK∧ JN : a1K)

Jλx.M : AK = ∃a1,a2.(a1 → a2 ∼ A∧def (x : a1) in JM : a2K)

Jλ(x : B).M : AK = ∃a1.B → a1 ∼ A∧def (x : B) in JN : a1K

Jlet x =U in N : AK = let⋆ x = ⊓a.JU : aK in JN : AK

Jlet x = M in N : AK = let• x = ⊓a.JM : aK in JN : AK (if M ̸∈ GVal)

Jlet (x : ∀b.H) =U in N : AK = (∀b.JU : HK) ∧ def (x : ∀b.H) in JN : AK

Jlet (x : B) = M in N : AK = JM : BK ∧ def (x : B) in JN : AK (if M ̸∈ GVal)

Figure 5.4: Translation from FreezeML terms to constraints

existentially bound by the translation are fresh. Unsurprisingly, both forms of vari-

ables are translated to the related constraint forms. The translation of applications is

standard. A fresh variable a1 is introduced for the type for the argument N. Given that

the type of the overall application is expected to be A, the type of the function M must

then be a1 → A.

For un-annotated functions, type variables a1 and a2 are introduced for the para-

meter and return type, respectively. The translation is again similar to the one used

by Pottier and Rémy [97]. The variable a1 is then the sole annotation on the vari-

able x bound by the def constraint. Finally, an equality constraint asserts that a1 → a2

corresponds to the expected overall type of the function. Note that the semantics of

def constraints then enforce that only monomorphic types for a1 are permitted. For

annotated functions, we can simply eschew the flexible variable standing for the para-

meter type and reuse the type annotation directly. This illustrates the dual purpose of

constraints as both performing type inference and asserting types. Note that by the
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assumption that the term to translate is well formed under some ∆, the annotation A

may only refer to type variables from ∆, which are hence considered rigid.

The translation of un-annotated let bindings simply introduces let constraints. The

value restriction is implemented at this point, by choosing the kind of let constraint

based on the syntactic category of the let-bound term. Only a guarded term leads to

the generation of a generalising let constraint.

No let constraints need to be generated for annotated terms let (x : B) = M in N.

The translation again implements the value restriction. In both cases, the resulting

constraint contains def (x : B) in JN : AK as sub-constraint, where A is the expected

overall type. If M is a guarded value U , and may therefore be generalised to obtain type

B, the typing rule for annotated let terms (see Figure 3.5 on page 45) imposes that M

must have a guarded type, called H in the corresponding translation case. The toplevel

quantifiers a of B are then universally quantified on the constraint level, resulting in

the conjunct ∀a.JM : HK being generated. Otherwise, if M is not a guarded value, we

simply assert that the type of M is B.

As an example, we consider the translation of the following term M.

λx. let f = λy.x in f 3

It has type S → S for all monomorphic types S that are well formed under the given

context.

The result of JM : aK is the constraint shown in Figure 5.5 on the next page. Here,

for simplicity we assume that Ji : AK def
= A ∼ Int for all integer literals i. Of course,

we may generalise this and assume that the translation has access to an environment

containing the types of built-in constants, which we eschew formalising.

We observe that due to the sub-constraint (b1 → b2) ∼ a, the overall constraint

must equate b1 and b2 and assert that they may only be interpreted with monomorphic

types. Further, note that under a term context containing (x : b1), the sub-constraint

C′′ is logically equivalent to ∃b4.(b4 → b1) ∼ b3 ∧mono(b4). This means that the

type of f in C′′′ is ∀b4.b4 → b1. The constraint C′′′ is equivalent to f ⪯ Int → b2,

which due to f ′s type then yields the equivalence of b1 and b2. The monomorphism

of the type is enforced by b1 appearing in the type annotation in a def constraint,

namely the one binding x. Thus, the overall constraint in Figure 5.5 is equivalent to

∃b.a ∼ (b → b) ∧ mono(b).
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Jλx. let f = λy.x in f 3 : aK =

∃b1 b2. b1 → b2 ∼ a ∧
def (x : b1) in

let⋆ f = ⊓b3.

C′′ := Jλy.x : b3K︷ ︸︸ ︷
∃b4 b5.b4 → b5 ∼ b3 ∧

(
def (y : b4) in x ⪯ b5

)
in

∃b6. f ⪯ b6 → b2 ∧ b6 ∼ Int︸ ︷︷ ︸
C′′′ := J f 3 : b2K

=: C′

where C′ = Jlet f = λx.y in f 3 : b2K

Figure 5.5: Translation example

5.2.1 Correctness of the translation

We first observe that the translation produces a well formed constraint from any well-

formed FreezeML term. Of course, the constraint may be unsatisfiable.

Lemma 5.2 (Well-formedness of constraints obtained from terms).
If ∆;Γ ⊢ M ok and (∆,Ξ) ⊢ A ok then ∆;Ξ;Γ ⊢ JM : AK ok.

Proof. By induction on the structure of M. We observe that the only free type variables

of JM : AK are those appearing freely in A and in the type annotations appearing within

M. By ∆;Γ ⊢ M ok we have that all such free type variables in the annotations in M

are rigid variables from ∆. Hence, the only other type variables appearing in JM : AK

are those from Ξ.

In order to prove the soundness and completeness of the translation, we need to

formalise the close relationship between principal (a relation involving terms, defined

in Section 3.2.1) and mostgen (a relation involving constraints, defined in Section 5.1.2)

The principal type A of a term M is exactly the type that the most general solution of

the constraint JM : aK must use for a.

Lemma 5.3 (Relationship between principal and mostgen).
Let a#(∆,∆′) and ∆;Γ ⊢ M ok. Then we have principal(∆,Γ,M,∆′,A) iff mostgen(∆,a,

Γ,JM : aK,∆′, [a 7→ A]).

Proof. Recall the definitions of principal and mostgen:
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principal(∆,Γ,M,∆′,A) =

(∆,∆′);Γ ⊢ M : A and (5.4)

(for all ∆
′′,A′′ | if (∆,∆′′);Γ ⊢ M : A′′

then there exists δ such that

∆ ⊢ δ : ∆′ ⇒⋆ ∆′′ and δ(A) = A′′)

(5.5)

mostgen(∆,a,Γ,δ,JM : aK,∆′, [a 7→ A]) =

(∆,∆′);a;Γ; [a 7→ A] ⊢ JM : aK and (5.6)

(for all ∆
′′,δ′′ | if (∆,∆′′);a;Γ;δ′′ ⊢ JM : aK

then there exists δ such that

∆ ⊢ δ : ∆′ ⇒⋆ ∆′′ and δ′′ = δ◦ [a 7→ A])

(5.7)

⇒ We apply Theorem 5.1 to (5.4), immediately yielding the desired property (5.6).

To show (5.7), we assume (∆,∆′′);a;Γ;δ′′ ⊢ JM : aK, which implies that δ′′ =

[a 7→ A′′] for some A′′.

By Theorem 5.2 this gives us (∆,∆′′);Γ⊢M : A′′. According to (5.5), there exists

a δ with the desired properties.

⇐ We apply Theorem 5.2 to (5.6), which gives us satisfaction of property (5.4).

To show (5.7), we assume (∆,∆′′);Γ ⊢ M : A′′. Theorem 5.1 then gives us

(∆,∆′′);a;Γ; [a 7→ A′′] ⊢ JM : aK. According to (5.7) there exists an appropri-

ate δ.

We observe that this proof relies on the soundness and completeness of the trans-

lation, as subsequently stated in Theorems 5.1 and 5.2. The proofs of these theorems

in turn use Lemma 5.3, but only on sub-constraints.

We can now formalise the soundness of the translation, stating that if M has type

A, then JM : aK has a model that maps a to A.

Theorem 5.1 (Soundness of constraint generation with respect to typing relation).
Let ∆;Γ ⊢ M : A hold and a#∆. Then we have that ∆;a;Γ; [a 7→ A] ⊢ JM : aK holds.
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Proof. We prove the following, more general property by induction on M: Let (∆,Ξ) ⊢
A and ∆ ⊢ δ : Ξ ⇒⋆ · and ∆;Γ ⊢ M : δ(A). Then we have that ∆;Ξ;Γ;δ ⊢ JM : AK holds.

See Appendix B.2 for details.

Conversely, if JM : aK has a model, then its solution for a is a valid type of M.

Theorem 5.2 (Completeness of constraint generation with respect to typing relation).
Let ∆;Γ ⊢ M ok hold. Then ∆;a;Γ;δ ⊢ JM : aK implies ∆;Γ ⊢ M : δ(a).

Proof. We strengthen the property to the following, stronger statement: If ∆;Γ ⊢ M ok
and (∆,Ξ) ⊢ A ok hold, then ∆;Ξ;Γ;δ ⊢ JM : AK implies ∆;Γ ⊢ M : δ(A). The proof is

then by structural induction on M, see Appendix B.2 for details.

5.3 Constraint solving

We now present a solver for our constraint language. It is a stack machine, loosely

based on the HM(X) solver presented by Pottier and Rémy [97]. The solver is defined

in terms of states s and a transition relation between them. The transitions represent

the steps taken by the solver, unless it is stuck (i.e., no transition is possible) indicating

that the constraint under consideration is unsatisfiable.

Unlike the solver by Pottier and Rémy, ours relies on a deterministic transition

relation, where at most one rule applies. We first discuss states of the machine before

proceeding to the transition relation.

5.3.1 Machine states

The states s of the solver are the form (F,Θ,θ,C). Here, the only kind of component

not previously discussed elsewhere is the stack F . The role of the different components

in the state is as follows.

5.3.1.1 Stack and in-progress context

The first component of a machine state is the stack F . It is closely related to the last

component of the state, the in-progress constraint C. While the latter denotes what

constraint to process (i.e., solve) next, the stack indicates in which context C occurs.

The stack not only contains bindings for type and term variables in C, but also indicates

how to proceed once C has been solved.
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To this end, stacks are defined as possibly empty lists of stack frames f , which

directly correspond to those constraint forms with at least one sub-constraint, and are

separated by the :: operator.

Frames f ::= 2∧C | ∀a | ∃a | letR x = ⊓a.2 in C | def (x : A)

Stacks F ::= · | F :: f

We can interpret stacks as a linearisation of a constraint with a single hole. Concretely,

consider the stack F defined as follows.

∃a :: def (x : ∀b.b → b) :: 2∧⌈x : a⌉

It stands for the single-hole constraint ∃a.def (x : ∀b.b→ b) in 2∧⌈x : a⌉. Observe

that stacks grow to the right and the first/leftmost element of the stack corresponds to

the outermost part of the resulting constraint.

This gives rise to the operator F [−] for plugging a constraint into the remaining

hole.2 It is defined as follows.

·[C] = C

(F :: 2∧C2)[C1] = F [C1 ∧C2]

(F :: ∀ a)[C] = F [∀a.C]

(F :: ∃ a)[C] = F [∃a.C]

(F :: letR x = ⊓a.2 inC2)[C1] = F [letR x = ⊓a.C1 in C2]

(F :: def (x : A))[C] = F [def (x : A) in C]

As a result, we have the following for our example stack F .

F [x ≺ Int→ Int] = ∃a.def (x : ∀b.b → b) in x ⪯ (Int→ Int)∧⌈x : a⌉

We observe that a stack F synthesises a rigid context, flexible context and term

context denoting what elements are in scope at the hole due to the surrounding type

and term variables bindings in F . We formalise this using functions rc(F), fc(F) and

tc(F), respectively, which are defined in Figure 5.6 on the following page. Note that

the term variables bound by let frames are not considered by tc(F). While x is in

scope in the constraint C of a frame letR x = ⊓a.2 in C , it is not in scope in the

2Given this definition, the reader may wonder why we do not define stacks directly as “constraint
contexts” in the style of an evaluation context (i.e., defining F ::= [] | F [[ ]∧C] | . . . ). We avoid this
notation in order to be able to easily reason about the head and tail of stacks F . While our solver only
operates on the the rightmost stack frame(s) of the stack, we need to reason about the left-most frames
as part of our metatheory in Section 5.4.
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hole. Further, note that the binders for type and term variables appearing directly in

the constraint part C of frames 2∧C and letR x =⊓a.2 in C are ignored, as they never

bind variables that are in scope in the hole.

rc(F) =


· if F = ·

rc(F ′), a if F = F ′ :: ∀a

rc(F ′) otherwise (F = F ′ :: )

fc(F) =



· if F = ·

fc(F ′), a if F = F ′ :: ∃a or

F = F ′ :: letR x = ⊓a.2 in C2

fc(F ′) otherwise (F = F ′ :: )

tc(F) =


· if F = ·

tc(F ′), (x : A) if F = F ′ :: def (x : A)

tc(F ′) otherwise (F = F ′ :: )

Figure 5.6: Functions for synthesising contexts from stacks

In addition, we define btv(F) and bv(F) to stand for all type variables (rigid or

flexible) and term variables bound by the stack frames in F , respectively. Here, we

again ignore type and term variables bound within the constraints appearing in con-

junction and let frames. As a result, btv(F) contains simply the union of rc(F) and

fc(∆). Unlike tc(F), we have that bv(F) also contains those term variables bound by

let frames.

Finally, by abuse of notation, we allow writing f :: F and F1 :: F2 to add a frame at

the front of the stack and to concatenate two stacks, respectively. We use this to pattern-

match stacks: For example, given a stack F , asserting that F is equal to ∀a :: ∃b :: F ′

or equal to F ′ :: ∀a :: ∃b allows us to extract all but two innermost or outermost frames,

respectively, captured by F ′.

5.3.1.2 Unification context

Each solver state contains a restriction context Θ and substitution θ, both of which were

previously defined in Section 4.1.1. Together, we refer to Θ and θ as the unification
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context of the state.

The type variables in Θ must correspond exactly to those bound by the stack F and

in scope in the in-progress constraint (i.e., fc(F) and Θ contain the same variables).

The role of the restrictions in Θ remains as before: If (a : •) ∈ Θ, then a may only be

interpreted with monotypes, otherwise polytypes are permitted.

The substitution θ encodes the currently known equalities imposed on the type

variables in Θ. To this end, we must have that ∆ ⊢ θ : Θ ⇒ Θ holds, meaning that

θ contains mappings for all flexible type variables currently brought in scope by the

stack F .

For example, when processing the constraint ∃ab.a ∼ (b → b)∧mono(b), right

after ∃a and ∃b are encountered by the solver, we have Θ = (a : ⋆,b : ⋆) and θ = [a 7→
a,b 7→ b] in the resulting state, indicating that no further knowledge about the variables

is present. After progressing further, we will eventually reach a state with a 7→ (b → b)

and (b : •) in its unification context.

This illustrates that the components Θ and θ can be considered to be a residual

constraint (or solved form) representing the current knowledge about flexible variables.

We can concretise this by directly translating Θ and θ into a corresponding constraint.

This is achieved by translating all (a : •) ∈ Θ to mono(a) constraints and replacing

all mappings of θ with corresponding equality constraints. We refer to the former

constraint as U(Θ) and the latter as U(θ), with U(Θ,θ), the overall representation of

the unification context as a constraint, simply defined as their conjunction. Formally,

these constraints are defined as follows.

U(Θ) =
∧

(a :•)∈Θ mono(a)

U(θ) =
∧

a∈ftv(Θ) a ∼ θ(a)

U(Θ,θ) = U(Θ)∧U(θ)

Given a state (F,Θ,θ,C), we may then consider the constraint F [U(Θ,θ)∧C] to

be a logical representation of the overall state as a constraint. We will revisit this

perspective when discussing the correctness of the solver, by relating the state before

and after each transition using the constraints obtained from each of the two states in

this way.

Instead of carrying Θ and θ in states, we could alternatively carry U(Θ,θ) as a

dedicated constraint in each state, similarly to the usage of unification constraints in

the solver of Pottier and Rémy.3 Their representation is more easily extensible (as they
3However, Pottier and Rémy’s unification constraints consist of multi-equations. These expose the
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may extend the language of residual constraints), while our representation is slightly

simpler for our purposes as we can re-use the existing well-formedness definitions

from Chapter 4, relating Θ and θ.

5.3.1.3 Well-formedness of machine states

To define when an overall state (F,Θ,θ,C) is well formed, we first consider the well-

formedness of its stack component F . To this end, we use well-formedness judgements

Θ ⊢ F ok, the rules for which are shown in Figure 5.7.

Θ ⊢ F ok

· ⊢ · ok

rc(F);Θ; tc(F) ⊢C ok Θ ⊢ F ok

Θ ⊢ F :: 2∧C ok

Θ ⊢ F ok a ̸∈ btv(F)

Θ ⊢ F :: ∀ a ok

Θ ⊢ F ok a ̸∈ btv(F)

(Θ,a : R) ⊢ F :: ∃ a ok

x ̸∈ bv(F) Θ ⊢ F ok
for all a ∈ ftv(A)− rc(F) : (a : •) ∈ Θ

Θ ⊢ F :: def (x : A) ok

rc(F);Θ;(tc(F),x : A) ⊢C ok
x ̸∈ bv(F) Θ ⊢ F ok

(Θ,a : R) ⊢ F :: letR′ x = ⊓a.2 inC ok

Figure 5.7: Well-formedness of stacks

We have that Θ ⊢ F ok holds if all type variables bound by frames in F are pair-

wise different, similarly for all term variables. Further, for all constraints C appearing

somewhere in a stack frame, such as 2∧C, it must be the case that C is well formed

with respect to the contexts that may be synthesised to represent the surrounding bind-

ings on the stack. As in other well-formedness relations before, the concrete types

associated with term variables are ignored by the relation, which is why the rule for

let frames uses an arbitrary type A when synthesising a term context under which its

sub-constraint is checked for well-formedness.

Finally, the judgement checks that Θ contains exactly the same type variables as

fc(F), and all variables therein that appear in an annotation on a def frame must carry

a monomorphic restriction in Θ.

underlying union-find structure more explicitly as compared to a simple set of equality constraints.
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We may now define that an overall machine state s = (F,Θ,θ,C) is well formed,

denoted ⊢ s ok, if and only if the following conditions hold.

1. We have Θ ⊢ F ok.

2. We have rc(F) ⊢ θ : Θ ⇒ Θ.

3. The substitution θ is idempotent, meaning that for all a ∈ ftv(Θ),b ∈ ftv(θ(a))

we have θ(b) = b.

4. The constraint C is well formed under the contexts induced by F , meaning that

rc(F); fc(F); tc(F) ⊢C ok holds.

Also note that a well formed state is closed in the sense that its stack binds all type

and term variables that may occur freely in C, appear in Θ, or appear in the domain

and co-domain of θ.

Lemma 5.4 (Well-formedness of constraints obtained from states).
Let ⊢ (F,Θ,θ,C) ok hold. Then the constraints F [C] and F [U(Θ,θ)∧C] are well

formed under empty rigid, flexible and term contexts.

Proof. By induction on structure of F .

5.3.2 Solving rules

As mentioned before, the solver is defined in terms of a transition relation between

states. The possible transitions are defined in Figure 5.8 on the following page. At

most one rule applies to any state.

We will generally invoke the solver on states of the form (·, ·, /0,∀∆.∃Ξ.C). Execu-

tion of the solver then either reaches a final state (indicating that the original constraint

C is satisfiable) or otherwise gets stuck before reaching such a state. Final states have

the form (∀∆ :: ∃(Ξ,Ξ′),Θ,θ, true), allowing a model for the constraint C to be read

off. We will formalise these correctness properties in Section 5.4.

We now discuss the individual rules of the solver in detail.

5.3.2.1 Basic constraints

Type equality constraints A ∼ B are simply deferred to the unification algorithm U, as

defined in Figure 4.4 on page 80, by the rule S-EQ, after applying θ to A and B.
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(F,Θ,θ,A ∼ B) (F,(Θu,Θ
′),θu ◦θ, true)→ (S-EQ)

where (Θu,θu) = U(rc(F),Θ,θ(A),θ(B))

Θ ≈ (Θ′,Θ′′) ftv(Θ′′) = ftv(Θu)

(F,Θ,θ,⌈x : A⌉) (F,Θ,θ, tc(F)(x)∼ A)→ (S-FREEZE)

(F,Θ,θ,x ⪯ A) (F,Θ,θ,∃a.H ∼ A)→ (S-INST)

where ∀a.H = tc(F)(x) a#btv(F)

(F,Θ,θ,mono(a)) (F,Θ′,θ, true)→ (S-MONO)

where b = ftv(θ(a))− rc(F) Θ′ = (Θ−b)∪b : •
(rc(F)•,Θ′) ⊢• θ(a) ok

(F,Θ,θ,C1 ∧C2) (F :: 2∧C2,Θ,θ,C1)→ (S-CONJPUSH)

(F :: 2∧C2,Θ,θ, true) (F,Θ,θ,C2)→ (S-CONJPOP)

(F,Θ,θ,∃a.C) (F :: ∃a,(Θ,a : ⋆),θ[a 7→ a],C)→ (S-EXISTSPUSH)

(F :: f :: ∃a,Θ,θ, true) (F :: ∃c :: f ,Θ′,θ↾Θ′ , true)→ (S-EXISTSLOWER)

where f is neither a let or ∃ frame b; c = partition(a,θ,Θ)

Θ′ = Θ−b |a|> 0

(F,Θ,θ,∀a.C) (F :: ∀ a,Θ,θ,C)→ (S-FORALLPUSH)

(F :: ∀ a,Θ,θ, true) (F,Θ,θ, true) where a ̸∈ ftv(θ(Θ))→ (S-FORALLPOP)

(F,Θ,θ,def (x : A) in C) (F :: def (x : A),Θ′,θ,C)→ (S-DEFPUSH)

where b = ftv(θ(A))− rc(F) Θ′ = (Θ−b)∪b : •
for all a ∈ ftv(A) : Θ′ ⊢• θ(a) ok

(F :: def (x : A),Θ,θ, true) (F,Θ,θ, true)→ (S-DEFPOP)

(F,Θ,θ, letR x = ⊓b.C1 in C2) (F :: letR x = ⊓b.2 in C2,(Θ,b : ⋆),θ[b 7→ b],C1)→
(S-LETPUSH)

(F :: let⋆ x = ⊓b.2 in C :: ∃a,Θ,θ, true) (F :: ∃a′′,Θ′,θ↾Θ′ ,def (x : B) in C)→
(S-LETPOP⋆)

where a′; a′′ = partition((a,b),θ,Θ) A = θ(b) c = ftv(A)∩a′ Θ′ = Θ−a′ B = ∀c.A

(F :: let• x = ⊓b.2 in C :: ∃a,Θ,θ, true) (F :: ∃(c,a′′),Θ′,θ↾Θ′ ,def (x : A) in C)→
(S-LETPOP•)

where a′; a′′ = partition((a,b),θ,Θ) A = θ(b) c = ftv(A)∩a′ Θ′ = Θ− (a′− c)

Figure 5.8: Constraint solving rules
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As a minor technical concern, recall that U may return a restriction context Θu

that contains only a subset of the variables of input restriction context Θ. This is due

to U removing variables a from the returned restriction context when discovering a

mapping a 7→ A where a ̸= A. Since U returns – and our solver acts on – idempotent

substitutions, this means that the type A mentioned above cannot contain a freely.

Thus, the resulting substitution is guaranteed to remove a whenever it is applied.

However, in our solver this removal from the restriction context would mean that

the resulting state created by S-EQ may have a stack F with Θu ̸⊢F , making the state ill

formed. While we may define a variant of U that eschews removing variables from the

restriction context, thereby ensuring ftv(Θ) = ftv(Θu), the rule S-EQ simply re-adds

the removed variables Θ′ to the restriction context of the result state. Recall that we

use ≈ to indicate when two sequences, including restriction contexts, are permutations

of each other.

This treatment of Θh highlights the fact that our constraint solver uses the stack to

indicate what flexible type variables are in scope and the restriction context is merely

supposed to contain the restrictions on the variables in scope. A mechanism discussed

in Section 5.3.2.2 then ultimately ensures that the substituted variable a mentioned

above is indeed removed at a later point, namely when returning to the stack frame

binding it.

The unification algorithm is treated as a black box by the constraint solver. This

essentially allows us to parameterise the constraint over the equational theory of types

implemented by the unification algorithm. We return to the discussion of alternative

equational theories in Section 6.2.1.1. An alternative approach would be to implement

unification directly in terms of constraint solving, by adding dedicated rules for indi-

vidual unification steps to the solver itself [26, 110]. For example, we may rewrite

A1 → A2 ∼ B1 → B2 to A1 ∼ B1 ∧ A2 ∼ B2.

Freezing constraints of the form ⌈x : A⌉ are handled by introducing an equality con-

straint between A and the type associated with x in an enclosing def frame in the state’s

stack F . In the rule S-FREEZE, this is formalised by using tc(F), which synthesises a

term context from the def frames in F .

Conversely, an instantiation constraint x ⪯ A is replaced by ∃a.(H ∼ A), where the

type associated with x in the stack is ∀a.H. As expected, this corresponds to instanti-

ating all toplevel quantifiers of x’s type to obtain A.

Given an in-progress constraint mono(a), the solver restricts all free flexible type

variables of θ(a) to monomorphic types. Afterwards, it verifies that this makes θ(a) a
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monomorphic type in the resulting restriction context. Thus, the rule verifies that the

current information about a is compatible with a being monomorphic and ensures that

it cannot become polymorphic during subsequent solving steps.

The rules S-CONJPUSH and S-CONJPOP are used for solving conjunctions. When

encountering a constraint C1 ∧C2, we turn its first sub-constraint into the in-progress

constraint of the subsequent state. A stack frame 2∧C2 is added to the stack. As

a result, once C1 is solved (i.e., the in-progress constraint becomes true) the rule

S-CONJPOP pops the stack frame and proceeds with solving C2. This pattern of

*PUSH rules extracting a new in-progress constraint from a larger constraint and adding

a stack frame, in combination with a corresponding *POP rule is exhibited by multiple

other pairs of rules.

5.3.2.2 Existential quantification

The rule S-EXISTSPUSH handles constraints of the form ∃a.C′. It adds a correspond-

ing stack frame and initialises a allowing it to be polymorphic.

Here and in other rules handling an in-progress constraint that binds type or term

variables, we implicitly assume that the constraint has been alpha-converted to ensure

that any such bindings do not clash with variables already bound by the stack. In the

case of S-EXISTSPUSH, this means that we assume a ̸∈ btv(F).

In general, existential quantifiers remaining on top of the stack once the in-progress

constraint is solved require careful consideration. While some quantifiers may be

simply dropped, others may need to be moved downwards in the stack – effectively

increasing their syntactic scope – if the bound type variable is still used.

To this end, consider the following transitions from s1 to s3. As usual, →+ denotes

the transitive closure of the transition relation.

(∃a :: 2∧a ∼ Int, (a : ⋆), [a 7→ a], ∃b1 b2 b3.a ∼ (b1 → b2)∧b1 ∼ b2) =: s1

→+ (∃a :: 2∧a ∼ Int :: ∃b1 :: ∃b2 :: ∃b3, Θ2, θ2, true) =: s2

→ (∃a :: ∃b2 :: 2∧a ∼ Int, (a : ⋆,b2 : ⋆), [a 7→ (b2 → b2),b2 7→ b2], true) =: s3

where Θ2 = (a : ⋆,b1 : ⋆,b2 : ⋆,b3 : ⋆),

θ2 = [a 7→ (b2 → b2), b1 7→ b2, b2 7→ b2, b3 7→ b3]

The steps from s1 to s2 represent the solving of the constraint ∃b1 b2 b3.a ∼ (b1 →
b2) ∧ b1 ∼ b2.

In s2, we observe that removing the stack frames for b1 and b3 is possible at this
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point, neither variable is needed anymore. However, the variable b2 appears in the

mapping for the variable a (i.e., the outer context from the perspective of the frames

binding b1 to b3). Thus, a standard approach is to lower the existential frames for vari-

ables still required in subsequent states within the stack, while removing unnecessary

ones [97]. The variable b3 illustrates that merely appearing in the co-domain of θ is

not a sufficient condition for being a variable that should be kept.

The rule S-EXISTSLOWER acts on stacks of the form F ′ :: ∃a, a shorthand for F ′ ::

∃a1 :: · · · :: ∃an. In general, this shorthand allows n to be zero, but S-EXISTSLOWER

requires n ≥ 1 to ensure that the rule only applies to states whose stack ends with one

or more existential frames.

The rule also requires that F ′ (i.e., the prefix of the stack before ∃a) does not end

with an existential or let frame. The former ensures that the rule exhaustively applies

to all existential frames on top of the stack at once. The latter is due to the fact that

existential frames right above a let frame must be handled directly by the rules for let

frames.

The rule S-EXISTSLOWER then partitions the variables a into two subsets: Those

variables that appear in the co-domain of θ when restricted to the outer stack frames

(i.e., excluding the mappings for the variables a) and those that do not. This is imple-

mented using the helper function partition, which is defined as follows and returns two

sequences.

partition(Ξ,θ,Θ) = Ξ′;Ξ′′ where

(Ξ′,Ξ′′) = Ξ and

for all a ∈ Ξ : a ∈ Ξ′′ iff a ∈ ftv(θ↾(ftv(Θ)−Ξ))

In S-EXISTSLOWER, the variables in the first sequence returned by partition are

removed from Θ and θ, while the existential frames binding the variables in the second

sequence are lowered within the stack. In our example transitions, applying the rule

S-EXISTSLOWER to s2 leads to the state s3. Here, b2 has been lowered within the

stack while b1 and b3 have been removed. Subsequent solving steps will eventually

get stuck once unification of b2 → b2 and Int fails.

5.3.2.3 Universal quantification

When processing a constraint ∀a.C, a stack frame is added for the binding before solv-

ing C. Once the stack frame is about to be popped by S-FORALLPOP, an escape check

is performed, ensuring that no other existentially quantified variable is unified with (a
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type containing) a. Note that due to this escape check it is strictly required to drop un-

necessary existentials in S-EXISTSLOWER, rather than merely being an optimisation.

Consider the following transitions for solving the overall constraint ∃a.∀c.∃b.b ∼ c.

(·, ·, [ ],∃a.∀c.∃b.b ∼ c)

→+ (∃a :: ∀c :: ∃b, (a : ⋆,b : ⋆), [a 7→ a,b 7→ c], true) =: s4

S-EXISTSLOWER→ (∃a :: ∀c, (a : ⋆), [a 7→ a], true) =: s5

S-FORALLPOP→ (∃a, (a : ⋆), [a 7→ a], true) =: s6

If the rule S-EXISTSLOWER had lowered the binding for b in the step from s4 to s5,

rather than correctly identifying it to be unnecessary and removing it, this would yield

the following state s′5 instead.

(∃a :: ∃b :: ∀c, (a : ⋆,b : ⋆), [a 7→ a,b 7→ c], true)

However, the escape check only succeeds when S-FORALLPOP is applied to s5, but

not when applied to s′5. Thus, lowering the binding for b would have made the solver

incomplete, as the original constraint is satisfiable. Instead, the solver correctly reaches

the final state s6.

5.3.2.4 Definition constraints

A constraint of the form def (x : A) in C is handled by the rules S-DEFPUSH and

S-DEFPOP. Similarly to the rule S-MONO, all free flexible type variables b of θ(A)

are restricted to monomorphic types in the resulting restriction context Θ′. The rule

then checks that all existing mappings for variables in b are compatible with these

updated restrictions. As an equivalent alternative, we may instead assert that rc(F) ⊢
θ : Θ′ ⇒ Θ′ holds or add a conjunct

∧
b∈b mono(b) to the in-progress constraint C.4

As an example, we consider the following constraint Cex. It is logically equivalent

to the translation result Jλx. let f = λy.x in f 3 : aK shown earlier in Figure 5.5 on

page 107, yet slightly simplified for conciseness.5 As discussed then, the constraint

4Note that we must, however, update Θ to Θ′ as part of adding the def frame to the stack in
S-DEFPUSH. This is required to ensure that the resulting state is well formed, which imposes
monomorphism conditions on free variables found in the type annotations of def frames. While
Θ′ ⊢ F :: def (x : A) ok is guaranteed to hold, Θ ⊢ F :: def (x : A) ok is not.

5We may further simplify the constraint Cex by dropping the sub-constraint mono(b4), which yields
an overall constraint still logically equivalent to the one shown in Figure 5.5. This is due to the variable
b4 being generalised by the enclosing let constraint, at which point the restriction of b4 to monotypes
becomes irrelevant. However, the current version of Cex ensures that its sub-constraint C′′

ex is also equi-
valent to its counterpart C′′ in Figure 5.5.
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is equivalent to the even simpler form ∃b.a ∼ (b → b)∧mono(b), meaning that we

expect b1 and b2 appearing in Cex to be equated and restricted to monomorphic types

during solving.

Cex := ∃b1 b2. b1 → b2 ∼ a ∧
def (x : b1) in

let⋆ f = ⊓b3.

=: C′′
ex︷ ︸︸ ︷

∃b4 b5.b4 → b5 ∼ b3 ∧ mono(b4) ∧ x ⪯ b5 in

f ⪯ Int→ b2︸ ︷︷ ︸
=: C′′′

ex

=: C′
ex

The solver proceeds as shown in Figure 5.9. Here, we again add a toplevel existen-

tial frame for a, the variable standing for the overall type of the term, in the initial state

s7. Recall that Ξ⋆ stands for the restriction context Θ containing the same variables as

Ξ, but with restriction ⋆ on all variables. We sometimes omit identity mappings b 7→ b

when showing substitutions and indicate this with ellipses.

(∃a,(a : ⋆), [a 7→ a],

=Cex︷ ︸︸ ︷
∃b1 b2.b1 → b2 ∼ a ∧ def (x : b1) in C′

ex) =: s7

→+ (∃a b1 b2, (a,b1,b2)
⋆, [a 7→ (b1 7→ b2), . . . ], def (x : b1) in C′

ex) =: s8

S-DEFPUSH→ (∃a b1 b2 :: def (x : b1), (a : ⋆,b1 : •,b2 : ⋆), [a 7→ (b1 7→ b2), . . . ],C′
ex) =: s9

→+ (∃a b1 b2 :: def (x : b1), (a : ⋆,b1 : •,b2 : •), θ13, true) =: s13

S-DEFPOP→ (∃a b1 b2, (a : ⋆,b1 : •,b2 : •),θ13, true) =: s14

where θ13 = [a 7→ (b2 7→ b2),b1 7→ b2,b2 7→ b2]

Figure 5.9: Solving of the example constraint Cex

In state s8, the in-progress constraint defines x using type b1. Applying S-DEFPUSH

to this restricts b1 to monomorphic types in the successor state s9. Further solving from

the latter state onward eventually leads to the state s13, where b1 has been equated with

b2. We will show the intermediate states s10 to s12 shortly in Section 5.3.2.5, when

discussing how the let constraint C′
ex is solved.

In state s13, no further checks are required when popping the def frame, leading

to the final state s14. Instead, the monomorphism restriction on b1 would prevent any

polymorphic solution for this variable.
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As mentioned on page 119, the constraint Cex is equivalent to ∃b.a ∼ (b → b)∧
mono(b). We observe that the solution b2 → b2 for a in the final state s14 as well as the

restriction of b2 to monotypes therein correctly reflects this.

5.3.2.5 Generalising let constraints

Upon encountering a constraint letR x = ⊓b.C1 in C2, a corresponding stack frame is

added by S-LETPUSH, as well as entries in the unification context for the type variable

b bound by the let constraint. Note that the added frame is marked with the form of let

constraint (generalising or non-generalising). The solver then proceeds with solving

the sub-constraint C1.

When applied to our previously considered example state s9 in Figure 5.9, part of an

overall execution of the solver on the constraint Cex, this results in the state s10, shown

in Figure 5.10 on the next page. Subsequent solving of the sub-constraint C′′
ex (i.e., the

first sub-constraint of the let constraint) then leads to the state s11. The intermediate

steps involve solving the sub-constraint x ⪯ b5 of C′′
ex, which is rewritten to b1 ∼ b5

(rule S-INST) at that point and then solved (rule S-EQ). This leads to the mapping

b1 7→ b5 in s11.

Once the in-progress constraint is solved, let frames for generalising let constraints

are handled by the rule S-LETPOP⋆. Note that it applies if the in-progress constraint

is solved and there is a let frame marked with ⋆ on top of the stack, or such a frame

followed by a series of existential frames binding variables a. The latter is the case

for our example state s11 in Figure 5.10. Such variables may reside on top of the

stack either due to appearing at the toplevel of the constraint C1 (i.e., the first sub-

constraint of the overall let constraint), or by being lowered there by rules such as

S-EXISTSLOWER. Note that the latter rule may move existential frames down to, but

not past, surrounding let frames on the stack.

The rule S-LETPOP⋆ then splits the existentially bound variables using the func-

tion partition, similarly to S-EXISTSLOWER. Here, the existentially bound variables

include the variables a mentioned before as well as the variable b, bound by the let

frame itself. This results in the sequence a′′ of variables related to type variables from

the surrounding context and those variables a′ that are not. The goal of the rule is to

create a def frame with a binding for the term variable x that was bound by the original

let constraint that led to the let frame under consideration. The type for x is obtained

from θ(b) def
= A, the solution for b after the solver processed the first sub-constraint of

the let constraint. Since S-LETPOP⋆ handles frames resulting from generalising let
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(

=: F9︷ ︸︸ ︷
∃a b1 b2 :: def (x : b1),

=: Θ9︷ ︸︸ ︷
(a : ⋆,b1 : •,b2 : ⋆),

=: θ9︷ ︸︸ ︷
[a 7→ (b1 7→ b2), . . . ], C′

ex) = s9

= (F9,Θ9,θ9, let x = ⊓b3.

=C′′
ex︷ ︸︸ ︷

∃b4 b5.b4 → b5 ∼ b3 ∧ mono(b4) ∧ x ⪯ b5 in C′′′
ex)

S-LETPUSH→ (F9 :: let⋆ f = ⊓b3.2 in C′′′
ex, (Θ10,b3 : ⋆),θ10[b3 7→ b3], C′′

ex) =: s10

→+ (F9 :: let⋆ f = ⊓b3.2 in C′′′
ex :: ∃b4 b5, Θ11, θ11, true) =: s11

S-LETPOP⋆→ (F9 :: ∃b5, Θ12, θ12, def ( f : ∀b4.b4 → b5) in

=C′′′
ex︷ ︸︸ ︷

f ⪯ (Int→ b2)) =: s12

→+ (∃a b1 b2 :: def (x : b1),Θ13, [a 7→ (b2 7→ b2),b1 7→ b2,b2 7→ b2], true) = s13

where Θ11 = (Θ12,b3 : ⋆,b4 : •) θ11 = θ12[b3 7→ (b4 → b5),b4 7→ b4]

Θ12 = (a : ⋆,b1 : •,b2 : ⋆,b5 : •) θ12 = [a 7→ (b5 → b2),b1 7→ b5, . . . ]

Θ13 = (a : ⋆,b1 : •,b2 : •)

Figure 5.10: Solving of the let sub-constraint C′
ex of Cex

constraints, the type for x is then determined from A by quantifying the generalisable

type variables therein.

The aforementioned sequence a′ returned by partition contains those variables that

may potentially be generalised. However, a′ may contain additional variables that were

created while the solver processed the first sub-constraint of the let constraint, which

do not actually appear in A. Due to FreezeML’s notion of type equality, adding such

unnecessary quantifiers to the type of x would result in an incorrect type.

Therefore, the solver determines the sub-sequence c of a′ of variables that actually

appear in A. Recall that ftv(A) returns the free variables of A ordered by their appear-

ance within A; we assume that this ordering is preserved under intersection when defin-

ing c. The rule S-LETPOP⋆ then creates an in-progress constraint def (x : ∀c.A) in C,

where C is the second sub-constraint of the original let constraint. Note that the type

∀c.A may contain free flexible variables (namely, those which may appear in a′′). As

expected, these type variable are monomorphised when the def constraint is processed

subsequently. The rule then removes the variables from a′ in the successor state,

they were either generalised in the type of x or are no longer needed. The bindings
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for the variables in a′′ are preserved but moved downwards in the stack, similarly to

S-EXISTSLOWER.

In our example in Figure 5.10, S-LETPOP⋆ is applied to state s11, resulting in s12.

When applying the rule we have that a′ contains b3 and b4, while a′′ contains b5, due

to θ11(b1) = b5. Further, A is b4 → b5 and c is just b4. This leads to the overall

in-progress constraint def ( f : ∀b4.b4 → b5) in C′′′
ex in the subsequent state s12. The

rule also appends a binding for b5 to the end of the resulting stack, ensuring that the

variable is bound by the stack when appearing freely in the type annotation on f in the

def constraint.

Substituting new type variables with old ones Note that in the step from s11 to s12

in Figure 5.10, the need to keep the variable b5 and lower it in the stack is due to the

unification of b5 and b1 discussed earlier when detailing the solver steps that led from

s10 to s11. Here, when solving b1 ∼ b5, the “older” (i.e., bound lower in the stack)

variable b1 was substituted with the “younger” variable b5, simply because b1 appears

on the left-hand side of the equality constraint. This led to the mapping b1 7→ b5 in θ11

(defined in Figure 5.10).

Had we substituted b5 with b1 instead, we could have dropped b5 from the stack,

rather than lowering it. An optimisation that prefers substituting newer variables with

older ones could easily be implemented in our solver using ranks, whose usage we dis-

cuss in Section 5.3.3. This potentially leads to fewer variables needing to be preserved

during the lowering of existentials.

Purely coincidentally, the variable b5 is later dropped when s12 is further processed,

solving the constraint f ⪯ (Int→ b2). While doing so, b5 is unified with b2, which is

already known to be equal to b1 at that point, eventually leading to the state s13. This

state and its successor s14 was already shown earlier in Figure 5.9, where s14 concluded

the solving of Cex.

5.3.2.6 Non-generalising let constraints

For non-generalising let constraints, a stack frame is added as described at the be-

ginning of Section 5.3.2.5. When removing this frame once the first sub-constraint

of the let constraint is solved, the rule S-LETPOP• acts mostly analogously with

S-LETPOP⋆. In particular, the sequences a′,a′′, and c as well as the type A are defined

as in the latter rule. The only difference is that rather than universally quantifying the

variables in c when creating the type annotation for x, the type A is used unchanged,
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meaning that the variables c appear freely in it. As a result, the bindings for the vari-

ables c must be preserved in the successor state.

Like the other free flexible variables in the annotation, the variables c are then

monomorphised when the def constraint is processed.

As an example, we consider the variant Ĉex of the constraint Cex, as defined on

page 120, that uses a non-generalising let constraint rather than a generalising one. We

observe that this constraint is in fact logically equivalent to the original one: When us-

ing a non-generalising let constraint, f will obtain the type b4 → b5, where b4 appears

freely and is restricted to monomorphic types, rather than being universally quanti-

fied, as in the original version. This means that when encountering the sub-constraint

f ≺ Int→ b5, no instantiation takes place, but b4 is unified with Int. This has no further

consequences, and b5 is unified with b2, as it is when solving the original constraint.

The solver operates on this variant of Cex similarly as on the original one. The

steps from s7 to s11, shown in Figures 5.9 and 5.10, are performed identically, except

for the let stack frame being marked with • instead. The resulting state s′11 is shown

in Figure 5.11 on the following page. Note that the sub-constraints C′′
ex and C′′′

ex remain

unchanged as they appear in Cex and are shown on page 120. Applying S-LETPOP•
then yields the state s′12. Note that in contrast to the step from s11 to s12, the variable

b4 has been lowered in s′12 rather than being removed. This is necessary due to b4

appearing freely in the type of f this time.

Subsequent solving then leads to the same state s13 and final state s14 shown in

Figure 5.9 as for the original constraint Cex.

5.3.3 Relationship between partition function and ranks

In the original Algorithm W, the determination of what type variables to generalise

at let bindings is based on whether or not a variable appears in the result of applying

the current substitution to the term context. In our type inference algorithms, similar

checks are performed.

• In our variant of Algorithm W in Figure 4.5 on page 86, defining ∆′= ftv(θ1)−∆

when handling let bindings performs a similar check.

• In our constraint solver, using partition(a,θ,Θ) splits a based on their appear-

ance in the codomain of θ.

A more efficient technique that avoids searching the codomain of a substitution
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(∃a,(a : ⋆), [a 7→ a],

= Ĉex︷ ︸︸ ︷
∃b1 b2.b1 → b2 ∼ a ∧ def (x : b1) in let• f = ⊓b3.C′′

ex in C′′′
ex)

→+ (F9 :: let• f = ⊓b3.2 in C′′′
ex :: ∃b4 b5, Θ′

11, θ′11, true) =: s′11

S-LETPOP•→ (F9 :: ∃b4b5, Θ′
12, θ′12, def ( f : b4 → b5) in

=C′′′
ex︷ ︸︸ ︷

f ⪯ (Int→ b2)) =: s′12

→+ (∃a b1 b2 :: def (x : b1),Θ13, [a 7→ (b2 7→ b2),b1 7→ b2,b2 7→ b2], true) = s13

S-DEFPOP→ s14

where

F9 = ∃a b1 b2 :: def (x : b1)

Θ′
11 = (Θ′

12,b3 : ⋆) θ′11 = θ′12[b3 7→ (b4 → b5)]

Θ′
12 = (a : ⋆,b1 : •,b2 : ⋆,b4 : •,b5 : •) θ′12 = [a 7→ (b5 → b2),b1 7→ b5, . . . ]

Θ13 = (a : ⋆,b1 : •,b2 : •)

Figure 5.11: Solving variant Ĉex of Cex with non-generalising let constraint

function is the usage of ranks6. During inference, an integer index is associated with

each type variable a, indicating the outermost term variable binder whose type men-

tions a. The decision whether a type variable can be generalised can then be made

solely by inspecting its rank. Different variants of the approach exist, varying in terms

of which term variable binders (i.e., lambda or let binders) are considered and how

ranks are initialised [99, 74, 50].

While we eschew a full complexity analysis of our constraint solver, we now show

how the decisions about what type variables to generalise made in our solver can dir-

ectly be related to approaches using ranks. More concretely, we introduce a notion

of ranks for type variables in our system and show how we may re-define the helper

function partition to utilise them.

To this end, we define the function atv that returns a sequence of all type variables

(flexible and rigid) bound by the frames of a stack. Here, we only consider well-formed

stacks, guaranteeing that all such variables are pairwise different.

6This usage of the term rank is unrelated to the notion of ranks in the sense of higher-rank poly-
morphism [61].
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atv(F) =



· if F = ·

fc(F ′),a if F = F ′ :: ∃a or

F = F ′ :: letR x = ⊓a.2 in C2 or

F = F ′ :: ∀a

fc(F ′) otherwise (F = F ′ :: )

Therefore, if atv(F) = (a1, . . . ,an), then a1 is the outermost type variable bound in

F and atv(F) is an interleaving of rc(F) and fc(F), as defined earlier in Figure 5.6.

Let a stack F with atv(F) = (a1, . . . ,an), a variable b ∈ atv(F), and a substitution θ

with rc(F) ⊢ θ : Θ ⇒ Θ be given, where ftv(Θ) = fc(F). We may then define the index

of ai ∈ atv(F) as its (1-based) index i in atv(F) and its rank as the smallest index of

any variable b such that ai appears in ftv(θ(b)), or ∞ if b ̸∈ ftv(θ).

index(b,F) = i ∈ {1,n} such that ai = b

rank(b,θ,F) =

mini∈{1, ...,n |b∈ ftv(θ(ai))} i if such an i exists

∞ otherwise

For convenience, we also define index(F) = n (i.e., the length of atv(F)).

Note that in contrast to the usual notion of ranks, ours indexes binders of type

variables, rather than term variables. Further, we have θ(c) = c for all rigid variables

(i.e., c ∈ rc(F)). This means that given a rigid variable c with index i, no variable other

than c may have rank i. However, the rank of a rigid variable is not necessarily equal to

its index, if it appears in the mapping of another existential. We are interested in these

cases for the purposes of detecting escaping quantifiers.

Finally, we observe that those variables a with rank ∞ are those that are eliminated

by θ, meaning that θ(a) = A where a ̸= A. Note that our idempotency condition on

substitutions in well formed states (see Section 5.3.1.3) then imposes a ̸∈ ftv(θ).

We can now relate ranks to the behaviour of the partition function introduced in

Section 5.3.2.2. We assume that there exists a stack F = F1 :: F2 such that Θ ⊢ F ok
and Ξ = fc(F2), meaning that Θ contains exactly the flexible variables bound by F and

F2 is a suffix of F binding exactly the flexible variables in Ξ (and possibly other rigid

ones). We then observe that the following, alternative definition of partition yields the
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same results.

partition′(Ξ,θ,F1,F2) = Ξg;Ξl where

Ξg = {a ∈ Ξ | index(F1)+1 ≤ rank(a,θ,F)} and

Ξl = {a ∈ Ξ | rank(a,θ,F)< index(F1)+1}

We can use this alternative version of partition directly in Figure 5.8, taking F1 :=

F :: f and F2 := ∃a in S-EXISTSLOWER as well as F1 := F and F2 := letR x =

⊓b.2 in C :: ∃a in both S-LETPOP rules. Note that we are adding 1 to index(F1)

in the definition of Ξg and Ξl to obtain the index in the combined stack F1 :: F2 of the

first type variable bound by F2. Therefore, when used by S-EXISTSLOWER, we have

that index(F1)+ 1 is the index of the first variable from the sequence a in the overall

stack. When used by the S-LETPOP rules, index(F1)+ 1 is the index of the variable

b bound by the let frame under consideration. Using ranks, we can then perform the

escape check for the universally quantified variable a in S-FORALLPOP by verifying

that rank(a,θ,F :: ∀a) = index(F)+1 holds.

We can formalise the correctness of this alternative version of partition as follows.

Since neither version makes any guarantees about the order of variables within the two

returned sequences, we simply state that the corresponding sequences returned by each

function are permutations of each other.

Lemma 5.5 (Correspondence of partition and partition′).
Let F = F1 :: F2 and Θ ⊢ F ok and rc(F) ⊢ θ : Θ ⇒ Θ and Ξ ≈ fc(F2). Further, let the

following hold.
partition(Ξ,θ,Θ) = Ξ1;Ξ2

partition′(Ξ,θ,F1,F2) = Ξ′
1;Ξ′

2

Then we have Ξ1 ≈ Ξ′
1 and Ξ2 ≈ Ξ′

2.

Proof. We first observe that the definitions of both helper functions immediately guar-

antee that they return a partitioning of the input sequence Ξ. Now, let atv(F1) =

(b1, . . . ,bn). It then suffices to show that Ξ2 and Ξ′
2 contain the same variables.

a ∈ Ξ2

(by definition of partition)

iff exists b ∈ Θ−Ξ s.t. a ∈ ftv(θ(b))

(by ftv(Θ)−Ξ ⊆ atv(F1) and

θ(c) = c ̸= a for all c∈ atv(F1)− ftv(Θ))

iff exists i ∈ {1,n} s.t. a ∈ ftv(θ(bi))
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(by definition of rank)

iff rank(a,θ,F1)≤ n

(by F1 being prefix of F , index(F1) = n)

iff rank(a,θ,F)≤ n

(by definition of partition′)

iff a ∈ Ξ
′
2

Recall that the first set returned by partition are those variables that we may gener-

alise in S-LETPOP⋆ in Figure 5.8 when determining the type of the let-bound variable

x. However, we must only generalise those variables that actually appear in the type

A, which is defined as θ(b) in the rule. Further, due to FreezeML adopting the same

equational theory on types as System F, the variables must be quantified in the order in

which they appear in A.

Using ranks, we can perform the first step directly within (a redefined version of)

the partition function, returning only variables appearing in A = θ(a), by refining the

partition′ function as follows:

partition′′(Ξ,θ,F1,F2) = Ξg;Ξl where

Ξg = {a ∈ Ξ | index(F1)+1 = rank(a,θ,F)} and

Ξl = {a ∈ Ξ | rank(a,θ,F)< index(F1)+1}

The only difference as compared to partition′ is that we require equality in the rank

check for Ξg, thus discarding the variables related to any of the variables in a, but not

A. Note that in a solver for a variant of FreezeML where the order of quantifiers does

not matter, further discussed in Section 6.2.1.1, we may generalise the first set returned

by this function directly.

5.3.3.1 Practical concerns

So far, we have discussed how to re-define the partition function used by our constraint

solver in a way that relies on ranks instead of inspecting the codomain of θ. Of course,

instead of re-calculating the rank of type variables whenever needed, the efficiency

benefits of the rank-based approach stem from maintaining the ranks of all type vari-

ables during constraint solving and updating them individually as needed. This could

be achieved in the standard way in our system. If the unification algorithm detects
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that some flexible variable a is to be unified with some type A, then the ranks of all

variables in A are lowered to the minimum of their current rank and the index of a. Of

course, ranks would also need to be updated when lowering existentials in the stack.

Note that an alternative definition of rank-based generalisation may group exist-

entials together with the next enclosing ∀ or let frame, if such a frame exists. The

choice for defining ranks and indices in a more fine-grained manner in this section was

mostly to facilitate a simpler comparison with the existing definition of partition. We

conjecture that using a more traditional approach where ranks refer to the indices of

let frames rather than type variable binders would similarly be possible. Regardless,

our definition of ranks simply increases the range of possible indices used as ranks, but

does not otherwise negatively affect the efficiency of the rank-based approach.

5.4 Metatheory of the constraint solver

We now discuss the correctness of our solver and the constraint-type inference ap-

proach as a whole.

In Section 5.3.1.2 we described how a solver state (F,Θ,θ,C) may be interpreted

as a more structured representation of the constraint F [U(Θ,θ)∧C]. Here, U(Θ,θ)

contains mono and equality constraints induced by Θ and θ.

An important correctness property of a constraint solver is that whenever it takes a

step from some (well formed) state s0 to s1, then the constraint representations of both

states should be logically equivalent. For example, such a preservation result is given

for the HM(X) solver by Pottier and Rémy [97, Lemma 10.6.9].

However, the semantics of let constraints in our language require additional re-

strictions when stating such a property for our system. To motivate the need for these

restrictions, we first make a general observation in Section 5.4.1 about let constraints

in our system. We then state the preservation property in Section 5.4.2. We outline

difficulties encountered when proving said property, which is why it remains as a con-

jecture.

In Sections 5.4.3 and 5.4.4 we then state the overall correctness of the solver and

constraint-based inference approach, respectively, contingent on the preservation con-

jecture stated in Section 5.4.2.
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5.4.1 Hoisting sub-constraints out of let constraints

Recall that in our system, constraints let x = ⊓b.C1 in C2 require reasoning about the

most general solution of C1. We now discuss how this prevents some transformations

on let constraints that would preserve logical equvialence in systems without this re-

quirement for most general solutions.

Assuming b ̸∈ ftv(C′
1), we observe that the following two constraints C and C′ are

not logically equivalent in general, irrespective of the choice of R.

C := letR x = ⊓b.(C1 ∧C′
1) in C2

C′ := C′
1 ∧ (letR x = ⊓b.C1 in C2)

This is due to the monomorphism conditions imposed on certain type variables by

the semantics of let constraints (see rules SEM-LETGEN and SEM-LETNONGEN in

Figure 5.1 on page 97): Given a most general solution δm of the first sub-constraint of

a let constraint (such as C1 ∧C′
1 in the case of C) the semantics require monomorphic

interpretations for all type variables that appear in the type δm(b) and are bound by

the surrounding context. As a result, satisfiability can differ based on whether a poly-

morphic solution for a type variable is imposed by a sub-constraint of the let constraint

itself or outside of the let constraint.

To illustrate this, we consider two concrete examples for C and C′, named Ch and

C′
h. Their sub-constraints C1 and C′

1 also shown. The choice of the sub-constraint

named C2 earlier is irrelevant, we pick true here.

Ch := ∃a. let⋆ x = ⊓b.(

=:C1︷ ︸︸ ︷
b ∼ a ∧

=:C′
1︷ ︸︸ ︷

a ∼ ∀c.c) in true

C′
h := ∃a.(a ∼ ∀c.c)︸ ︷︷ ︸

=C′
1

∧ let⋆ x = ⊓b. b ∼ a︸ ︷︷ ︸
=C1

in true

Here, hoisting the sub-constraint C′
1 out of the let constraint turns the satisfiable con-

straint Ch into the unsatisfiable constraint C′
h. We now outline the technical reasons for

the satisfiability of Ch and the unsatisfiability of C′
h.

Constraint Ch is satisfiable We first consider the most general solution δm of the

constraint b ∼ a ∧ a ∼ ∀c.c (i.e., C1 ∧C′
2). Clearly, it simply maps a and b to ∀c.c.

We formalise this using the mostgen relation, assuming empty type and term con-
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texts, and that no flexible variables except a and b are in scope.

mostgen(·,(a,b), ·,
=C1︷ ︸︸ ︷

b ∼ a ∧
=C′

1︷ ︸︸ ︷
a ∼ ∀c.c, ·,

=:δm︷ ︸︸ ︷
[a 7→ ∀c.c,b 7→ ∀c.c]) (5.8)

We now consider the derivation of ∆;Ξ;Γ;δ ⊢ let⋆ x = ⊓b.C1 ∧C′
1 in true (i.e,

satisfaction of the let sub-constraint of Ch), again assuming that ∆ and Γ are empty,

while Ξ contains only a, the type variable bound by the surrounding existential. The

derivation then has the following form, relying on the earlier mostgen judgement.

mostgen(·,(a,b), ·, C1 ∧C′
1, ·, δm)

∆o = ftv(δm(b)) b = ftv(δm(b))−∆,∆o

∆ ⊢ δ
′ : ∆o ⇒• · A = δ

′(δm(b))

·;(a,b); ·;δ[b 7→ A] ⊢C1 ∧C′
1 ·;a;(x : ∀b.A);δ ⊢ true

·;a;Γ;δ ⊢ let⋆ x = ⊓b.C1 ∧C′
1 in true

Here, ∆o and b are empty, meaning that δ′ is the empty substitution, and A is ∀c.c. In

other words, the monomorphisation mechanism built into let constraints in our system,

implemented by the monomorphic substitution δ′ in the derivation above, has no effect

in this example. We have thus shown that the constraint Ch is indeed satisfiable.

Constraint C′
h is unsatisfiable We now show that the constraint C′

h is unsatisfiable.

Recall that it is defined as ∃a.a ∼ ∀c.c ∧ let⋆ x = ⊓b.a ∼ b in true. We again consider

the most general solution of the first sub-constraint of the let constraint, which is a ∼ b

this time (i.e., just C1 instead of C1 ∧C′
1 in the case of Ch). Formally, we have the

following, expressing that the most general solution δ′m of C1 maps both variables a

and b to a fresh skolem variable d.

mostgen(·,(a,b), ·,
=C1︷ ︸︸ ︷

b ∼ a,

∆′
m︷︸︸︷

d ,

=:δ′m︷ ︸︸ ︷
[a 7→ d,b 7→ d]) (5.9)

Note that any derivation of ·; ·; ·;δ⊢C′
h would require a sub-derivation for ·;a; ·; [a 7→

∀c.c] ⊢ let⋆ x = ⊓b.C1 in true. Any other interpretation for a would violate the con-

junct a ∼ ∀c.c.

To derive the latter (i.e., ·;a; ·; [a 7→ ∀c.c] ⊢ let⋆ x = ⊓b.C1 in true), the following

additional premises would need to be satisfied, somewhat analogous to the derivation

for Ch above.

∆
′
o = ftv(δ′m(b)) = d b′ = ftv(δ′m(b))−∆,∆o = · A′ = δ

′′(δ′m(b))
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∆ ⊢ δ
′′ : ∆

′
o ⇒• · (5.10)

·;(a,b); ·; [a 7→ ∀c.c,b 7→ ∀b′.A′] ⊢ a ∼ b (5.11)

However, these conditions are unsatisfiable. As shown in (5.9), we have δ′m(b) = d.

Further, the domain ∆′
o of δ′′ is just d. The only interpretation of b that can lead to sat-

isfaction of (5.11) is ∀c.c, meaning that δ′′ must map d to ∀c.c, so that ∀b′.A′ becomes

∀c.c. However, (5.10) imposes that δ′′ must be a monomorphic instantiation, ruling

this choice out. Thus, no such δ′′ exists, and the overall constraint C′
h is unsatisfiable.

In total, we observe that hoisting the sub-constraint C′
1 out of the first sub-constraint

of the let binding has changed the most general solution of the first sub-constraint, as

shown in the difference between (5.8) and (5.9). In Ch, the polymorphic solution is

imposed within the let binding itself, and therefore reflected in the most general type

of the first sub-constraint. After hoisting the constraint out of the let binding, leading

to the constraint C′
h, the most general solution does not involve any polymorphism at

all anymore. The monomorphisation mechanism built into let constraints – required to

have any hope to guarantee the existence of most general solutions for the constraint

language – then rules out the polymorphic instantiation that would yield the required

type.

5.4.2 Preservation property

As mentioned in the beginning of Section 5.4, our goal is to state a property such

as the following: If state (F0,Θ0,θ0,C0) steps to some state (F1,Θ1,θ1,C1), then the

constraints F0[C0 ∧U(Θ0,θ0)] and F1[C1 ∧U(Θ1,θ1)] should be logically equivalent.

In the previous section, we observed that hoisting some sub-constraints out of let

bindings may make them unsatisfiable. We now relate this observation about let bind-

ings to the desired preservation property: Our solver may take steps which effectively

transform the constraint representation of the involved states similarly to the hoist-

ing transformation discussed in the previous section. Therefore, additional measures

are required to ensure that these steps of the solver do not invalidate the preservation

property.

As a concrete example, let s0 be a state with the following components.

F0 = ∃a

Θ0 = (a : ⋆)

θ0 = [a 7→ ∀c.c]

C0 = let⋆ x = ⊓b.b ∼ a in true
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Applying the solver rule S-LETPUSH (see Figure 5.8 on page 115) to this state yields

the successor state s1 = (F1,Θ1,θ1,C1) with the following components.

F1 = ∃a :: let⋆ x = ⊓b.2 in true

Θ1 = (a : ⋆,b : ⋆)

θ1 = [a 7→ ∀c.c,b 7→ b]

C1 = b ∼ a

Note that the constraint representation F0[C0 ∧ U(Θ0,θ0)] of s0 is ∃a.(let⋆ x =

⊓b.b ∼ a in true)∧ a ∼ ∀c.c, which is equivalent to the constraint C′
h discussed in

Section 5.4.1, up to reordering of conjuncts. Similarly, the constraint representation

of s1 is identical to the constraint ∃a.let⋆ x = ⊓b.b ∼ a∧a ∼ ∀c.c in true, which was

named Ch in Section 5.4.1. We thus observe that the solver has effectively performed

a lowering step (i.e., the reverse of hoisting), moving a constraint from outside of a

let constraint inside of it. As discussed in Section 5.4.1, only the constraint Ch is

satisfiable, while C′
h is not. The solver has thus turned a state with an unsatisfiable con-

straint representation into a constraint with a satisfiable one, violating the preservation

property stated in the beginning of this section.

However, we observe that a state like s0 never occurs while solving a constraint ob-

tained from a FreezeML program using the translation defined in Section 5.2. Whenever

this translation yields a constraint letR x =⊓b.C1 in C2, we have that the only free flex-

ible type variable that C1 may contain is b. We introduce the judgement ∆ ⊢ftv C ok to

denote that this condition holds for a constraint C and its sub-constraints. As usual,

∆ tracks the rigid variables in scope. It is formalised in Figure 5.12 on the following

page. The only non-trivial rules are those for ∀ constraints, which bring additional

rigid variables into scope, and the rule for let constraints, where the free flexible type

variables of the first sub-constraint are inspected.

For all states (F,Θ,θ,C) encountered while solving constraints obtained through

the translation from FreezeML terms, we have rc(F) ⊢ftv C ok. Recall that rc(F) de-

notes the variables bound by ∀ frames in F , thus binding all rigid variables that are in

scope in C. We will revisit this invariant of the constraint solver and how it is estab-

lished by the constraint translation in Sections 5.4.3 and 5.4.4.

Note we deliberately keep the additional relation ∆ ⊢ftv C ok on constraints separate

from the existing well-formedness relation ∆;Ξ;Γ ⊢ftv C ok for constraints (see Fig-

ure 5.3 on page 104). The former relation is used to restrict the constraint components

of the states encountered by the solver. However, our we must still reason about con-
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∆ ⊢ftv C ok

∆ ⊢ftv true ok ∆ ⊢ftv mono(a) ok ∆ ⊢ftv A ∼ B ok

∆ ⊢ftv x ⪯ A ok ∆ ⊢ftv ⌈x : A⌉ ok

∆ ⊢ftv C1 ok ∆ ⊢ftv C2 ok

∆ ⊢ftv C1 ∧C2 ok

∆ ⊢ftv C ok

∆ ⊢ftv def (x : A) in C ok

∆ ⊢ftv C ok

∆ ⊢ftv ∃a.C ok

(∆,a) ⊢ftv C ok

∆ ⊢ftv ∀a.C ok

ftv(C1)−∆ ⊆ {a} ∆ ⊢ftv C1 ok ∆ ⊢ftv C2 ok

∆ ⊢ftv letR x = ⊓a.C1 in C2 ok

Figure 5.12: Definition of ∆ ⊢ftv C ok

straints for which the ⊢ftv condition does not hold. In particular, the overall constraint

representation F [C∧U(Θ,θ)] of a state (F,Θ,θ,C) need not satisfy this condition.

We now return to stating a preservation property for our solver. The following

property is analogous to the one described at the beginning of this section, but incor-

porates the assumption that rc(F ′) ⊢ftv C ok holds for the constraint component of the

initial state, where F ′ is its stack component. The property also assumes that there

exist some initial contexts ∆ and Ξ, represented by the outermost frames of both states.

These initial contexts and the interpretation of the variables in Ξ are used to reason

about the overall correctness of the solver in Section 5.4.3.

Conjecture 5.1 (Preservation).
Let ⊢ (∀∆ :: ∃Ξ :: F0,Θ0,θ0,C0) ok and rc(∀∆ :: ∃Ξ :: F0) ⊢ftv C ok and

(∀∆ :: ∃Ξ :: F0,Θ0,θ0,C0)→ (∀∆ :: ∃Ξ :: F1,Θ1,θ1,C1)

hold. Then we have that

∆;Ξ; ·;δ ⊢ F0[C0 ∧U(Θ0,θ0)] iff ∆;Ξ; ·;δ ⊢ F1[C1 ∧U(Θ1,θ1)]

holds.

While the author conjectures that this property holds, it does not currently have a

proof. The remainder of this subsection is structured as follows: In Section 5.4.2.1, we

outline a potential proof of Conjecture 5.1. It relies on two auxiliary properties, namely

Conjectures 5.2 and 5.3, which would allow this proof of Conjecture 5.1 to be com-

pleted. Section 5.4.2.2 focuses on Conjecture 5.2, explaining in detail the challenges
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encountered when attempting to prove it. The issues affecting Conjecture 5.3 are sim-

ilar. We then summarise the situation regarding the lacking proof of Conjecture 5.1 in

Section 5.4.2.3.

5.4.2.1 Towards a proof of Conjecture 5.1

Before discussing the difficulties encountered while attempting to find a proof of Con-

jecture 5.1, we observe the following, unsurprising property, which may be used in a

potential proof of Conjecture 5.1.

Intuitively, it states that given two logically equivalent constraints C and C′, we

have that if C appears as a sub-constraint of some C′′, then replacing C with C′ within

C′′ yields a constraint logically equivalent to C′′. Instead of using some kind of substi-

tution operator, we state the property by plugging constraints into stacks.

Lemma 5.6 (Substituting logically equivalent constraints).
Let C and C′ be logically equivalent. Then F [C] and F [C′] are logically equivalent.

Proof. By induction on the structure of F . In the case of a let frame, we observe

that the definition of mostgen directly implies that for all ∆,Ξ,Γ,∆m,δm we have

mostgen(∆,Ξ,Γ,C,∆m,δm) iff mostgen(∆,Ξ,Γ,C′,∆m,δm).

We now return to discussing a potential proof of Conjecture 5.1. Since the second

state in the statement of Conjecture 5.1 is obtained by applying one of the rules in

Figure 5.8, we may expect a successful proof to perform a case analysis on the used

rule. We will organise the rules into two groups. For the first group, the statement of

Conjecture 5.1 can be shown to hold; we outline the necessary steps. We then consider

the second group, comprising two rules, and discuss the problems encountered while

attempting to prove their correctness, which ultimately prevents the proof of Conjec-

ture 5.1 from being completed.

First group of rules The first group consists of all rules except S-FREEZE and

S-INST. Recall that we are given ∆,Ξ,δ as well as states s0 = (F0,Θ0,θ0,C0) and

s1 = (F1,Θ1,θ1,C1) and need to show that ∆;Ξ; ·;δ ⊢ F0[C0∧U(Θ0,θ0)] iff ∆;Ξ; ·;δ ⊢
F1[C1 ∧U(Θ1,θ1)] holds.

For each rule in the first group, we apply the following proof strategy: We identify

a shared prefix Fp of F0 and F1, which induces F ′
0 and F ′

1 such that F0 = Fp :: F ′
0 and

F1 = Fp :: F ′
1. Showing ∆;Ξ; ·;δ ⊢ F0[C0 ∧U(Θ0,θ0)] iff ∆;Ξ; ·;δ ⊢ F1[C1 ∧U(Θ1,θ1)]
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then becomes equivalent to showing the following:

∆;Ξ; ·;δ ⊢ Fp[F ′
0[C0 ∧U(Θ0,θ0)]] iff ∆;Ξ; ·;δ ⊢ Fp[F ′

1[C1 ∧U(Θ1,θ1)]]

Let C′
0 and C′

1 be defined as F ′
0[C0 ∧U(Θ0,θ0)] and F ′

1[C1 ∧U(Θ1,θ1)], respectively.

We then show that C′
0 and C′

1 are logically equivalent, which immediately yields the

desired property for the rule under consideration by applying Lemma 5.6.

The prefix Fp can easily be read off from the corresponding rule directly, it gener-

ally corresponds to the part of the stack being left unchanged by the rule in question.

For some rules, proving the equvialence of the induced constraints C′
0 and C′

1 is

trivial, since both constraints only differ slightly. For example, for rules CONJPUSH

the prefix Fp is the stack called F in the definition of the rule itself, meaning that

the only difference between the resulting constraints C′
0 and C′

1 is the order of some

conjuncts.

Other cases rely on hoisting properties that do not involve let constraints: Assum-

ing that f is not a let frame, and C′ does not contain type or term variables bound by f

towards its hole, we have that f [C∧C′] and f [C]∧C′ are logically equivalent.

The following cases are particularly interesting:

• In the case of S-EQ, we rely on the fact that our unification algorithm is sound

and yields most general unifiers (see Theorems 4.2 and 4.3).

• In the case of S-LETPUSH, we have that C0 is of the form letR x = ⊓b.Ĉ1 in Ĉ2

for some constraints Ĉ1 and Ĉ2. We then need to show that the constraints

(letR x = ⊓b.Ĉ1 in Ĉ2)∧U(Θ0,θ0) and letR x = ⊓b.Ĉ1 ∧U(Θ1,θ1) in Ĉ2 are

logically equivalent.

This crucially relies on the additional premise that rc(∀∆ :: ∃Ξ :: Fp) ⊢ftv C0 ok
holds, meaning that we have ftv(Ĉ1)− (∆, rc(Fp)) ⊆ {b} (i.e., the only flexible

variable in Ĉ1 may be b), while U(Θ0,θ0) cannot contain b.

• The rules S-LETPOP⋆ and S-LETPOP• require relating let constraints to defini-

tion constraints, which involves reasoning about the most general solution of the

first sub-constraint of the let constraint. While the cases are laborious, they only

involve reasoning about the most general solutions of constraints of a simple,

known shape, instead of reasoning about the most general solutions of arbit-

rary constraints: We only need to reason about the most general solution of

constraints of the form ∃a.U(Θ0,θ0) (i.e., quantified conjunctions of mono and
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equality constraints), for which we can read off most general solutions immedi-

ately.

Second group of rules The second group of rules includes only S-FREEZE and

S-INST. We first describe the issues faced in the proof case when S-FREEZE was

used and briefly describe how similar issues are faced in the other case.

Thus, let F,Θ, and θ be defined as in the definition of rule S-FREEZE; we further

have C0 = ⌈x : A⌉ and C1 = tc(F)(x)∼ A. We define B := tc(F)(x). We will attempt to

apply the same proof strategy as for the first group of rules, that is, identifying a prefix

Fp of the stacks of both states and then proving the equivalence of C′
0 and C′

1, which

are induced by the choice of Fp in the same fashion as before.

Following the approach taken for the first group of rules, a natural choice for Fp

would be F (i.e., the entire stack before and after the step). This choice induces C′
0 =

⌈x : A⌉∧U(Θ,θ) and C′
1 =B∼A∧U(Θ,θ). However, we observe that these constraints

are not logically equivalent in general: As an example, assume F = ∃b :: def (x : b→ b)

and A = Int → Int, which implies B = b → b. We assume that there is no further

knowledge about b, except that it must be monomorphic since it appears in the type

of x in a well-formed state (i.e., Θ = (b : •) and θ = [b 7→ b]). The conjunctions with

U(Θ,θ) = mono(b)∧b ∼ b in both C′
0 and C′

1 are largely irrelevant for the remainder

of this discussion.

We first observe that both F [C′
1] = ∃b.def (x : b → b) in (⌈x : Int→ Int⌉∧U(Θ,θ))

and F [C′
1] = ∃a.def (x : b → b) in (a → a ∼ Int→ Int∧U(Θ,θ)) are tautological con-

straints.

However, ⌈x : Int→ Int⌉∧U(Θ,θ) (i.e., C′
0) and b → b ∼ Int→ Int∧U(Θ,θ) (i.e.,

C′
1) are not logically equivalent. Both constraints have different models: Constraint

C′
0 is satisfiable if and only if the term context maps x to Int → Int, while b may be

interpreted with arbitrary monomorphic types. Conversely, C′
1 is satisfied by models

that interpret b with Int→ Int, while the term context is irrelevant.

This shows that the local reasoning that was adequate for the first group of rules,

where we only consider the constraints induced by just the tip of the stack of both states

and their constraint component, does not work for S-FREEZE: When only comparing

the constraints ⌈x : Int→ Int⌉∧U(Θ,θ) and b → b ∼ Int→ Int∧U(Θ,θ) in isolation,

the relationship between x and its supposed type b → b is lost.

We observe that whenever rule S-FREEZE applies, the stack F contains a defini-
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tion frame binding x.7 Formally, this means that F is of the form F ′ :: def (x : B) :: F ′′

for some F ′ and F ′′. Thus, we may still apply the overall strategy described for the

first group, but choose the prefix Fp to be F ′ instead. This induces C′
0 = def (x :

B) in F ′′[⌈x : A⌉ ∧U(Θ,θ)] and C′
1 = def (x : B) in F ′′[B ∼ A∧U(Θ,θ)], again let-

ting B := tc(F)(x). We may thus prove these choices of C′
0 and C′

1 to be logically

equivalent instead. As opposed to the previous, unsuitable choice of Fp, we effectively

increased the amount of context preserved in C′
0 and C′

1, thus retaining the relationship

between x and B. We may state the desired equivalence of C′
0 and C′

1 as the following,

standalone property:

Conjecture 5.2 (Substituting freezing constraints).
The constraints

def (x : B) in F [⌈x : A⌉ ]

and

def (x : B) in F [B ∼ A]

are logically equivalent.

This property directly corresponds to the intuition that a constraint ⌈x : A⌉ simply

asserts that the type of x is B, subject to instantiation of the free flexible variables in A

and B.

Note that in order to apply this property in a potential proof of Conjecture 5.1, we

would choose the stack F in the statement of Conjecture 5.2 to be F ′′ :: 2∧U(Θ,θ)

(i.e., we may move U(Θ,θ) from the hole to a new conjunction frame at the top of

the stack). Thus, we may prove correctness of the S-FREEZE case of Conjecture 5.1

directly by using Conjecture 5.2. We will return to the latter conjecture shortly in

Section 5.4.2.2.

Meanwhile, we observe the following about the rule S-INST, the other rule in the

second group of rules: We may apply the same reasoning as in the case for the rule

S-FREEZE. This means choosing Fp in the same manner, inducing C′
0 and C′

1 as fol-

lows, for some b and H:

C′
0 = def (x : ∀b.H) in F ′′[x ⪯ A ∧ U(Θ0,θ0)]

C′
1 = def (x : ∀b.H) in F ′′[∃b.(H ∼ A) ∧ U(Θ0,θ0)]

Recall that H denotes guarded types (i.e., without toplevel quantifiers). We may

7Recall that while let frames in F may bind term variables, they do not bind them towards the hole.
Thus, tc(F) only returns bindings due to definition constraints.
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thus prove the correctness of the S-INST case of Conjecture 5.1 by using the following

conjecture similarly to the previous case.

Conjecture 5.3 (Substituting instantiation constraints).
The constraints

def (x : ∀b.H) in F [x ⪯ A]

and

def (x : ∀b.H) in F [∃b.(H ∼ A)]

are logically equivalent.

This property directly reflects the semantics of instantiation constraints: The con-

straint x ⪯ A expresses that the toplevel quantifiers of x’s type can be instantiated to

yield A, after instantiation of the free flexible variables in A. The semantics of defin-

ition constraints require that any model (∆,Ξ,Γ,δ) of def (x : ∀b.H) in . . . interprets

the free type variables of H monomorphically. This means that the toplevel quantifiers

of δ(∀b.H), the type subsequently associated with x in the term context, are still just b.

5.4.2.2 Towards a proof of Conjecture 5.2

We now discuss the issues faced when attempting to prove Conjecture 5.2.

Since both constraints are similar def constraints, we obtain by inversion that that it

suffices to show the following property to prove Conjecture 5.2: For all ∆,Ξ,Γ,δ such

that (∆,Ξ) ⊢⋆ B ok and ∆ ⊢• δ(b) ok for all b ∈ ftv(B), we have

∆;Ξ;(Γ,x : δ(B));δ ⊢ F [⌈x : A⌉ ] iff ∆;Ξ;(Γ,x : δ(B));δ ⊢ F [B ∼ A ]. (5.12)

Note that this directly encodes the monomorphism condition imposed by the original,

toplevel definition constraint.

There are two potential approaches for proving this refined property inductively:

Either by induction on the structure of the stack F , or by induction on the structure of

the constraint F [⌈x : A⌉ ].8

Note that both approaches are somewhat dual: Given that stacks are inductively

defined as F ::= F :: f | ·, the first approach involves reasoning about the shape of

the innermost part of the constraint F [⌈x : A⌉ ] (i.e., the subconstraint immediately sur-

rounding ⌈x : A⌉). Conversely, reasoning about the structure of the whole constraint

F [⌈x : A⌉ ] involves reasoning about the overall shape of the constraint. Effectively,

8Of course, we may also perform induction on the structure of F [B ∼ A ] in the second approach.
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this approach also reasons about the structure of the stack F , but analyses the outer-

most stack frame instead. We explore the two approaches separately.

First approach: Induction on the structure of F All cases are straightforward, ex-

cept for the case where F is of the shape F ′ :: f and f is of the shape letR y=⊓b.2 in C.

Note that if it was the case that f [⌈x : A⌉ ] and f [B ∼ A ] are logically equivalent, we

could apply Lemma 5.6 on page 135 to obtain logical equivalence of F [⌈x : A⌉] and

F [B ∼ A]. However, expanding both constraints yields letR y = ⊓b.⌈x : A⌉ in C and

letR y = ⊓b.B ∼ A in C, which are clearly not logically equivalent in general.

The fact that Lemma 5.6 is not applicable is unsurprising: It requires a relation-

ship between f [⌈x : A⌉ ] and f [B ∼ A ] independent of the connection between x and B,

stronger than what we are given. Proving logical equivalence of the two constraints re-

quires considering all possible interpretations of the flexible variables in scope, instead

of respecting the connection established between B and the type of x via the interpret-

ation δ in (5.12). In turn, Lemma 5.6 would establish a stronger relationship between

F [⌈x : A⌉ ] and F [B ∼ A ] than what is required.

We may thus hope to find a slightly refined version of Lemma 5.6 which does not

require full logical equivalence of the given constraints, but only requires a slightly

weaker relationship that only considers those interpretations that respect the connec-

tion between certain flexible type variables and term variables. However, the author

has so far not succeeded in finding such an alternative version. Any attempt at proving

correctness of such an alternative version of Lemma 5.6 that imposes a weaker rela-

tionship between the constraints named C and C′ therein has been unsuccessful when

reaching the case of a let constraint: The mostgen condition imposed by the semantics

of let constraints effectively requires reasoning about all possible models of the con-

straint, not just those exhibiting a particular relationship with the given term context.

Second approach: Induction on the structure of F [⌈x : A⌉ ] We now discuss at-

tempts to prove (5.12) by structural induction on the constraint F [⌈x : A⌉ ]. Again, all

cases are straightforward, except when F [⌈x : A⌉ ] is of the form letR y=⊓c.F ′[⌈x : A⌉ ]
in C2, meaning that F = f :: F ′. We focus on the case where R = ⋆ (i.e., F [⌈x : A⌉ ] is a

generalising let constraint), the problems encountered for non-generalising constraints

are analogous.

Let J 1 and J 2 be the judgements ∆;Ξ;(Γ,x : δ(B));δ ⊢ let⋆ y =⊓c.F ′[⌈x : A⌉ ] in C

and ∆;Ξ;(Γ,x : δ(B));δ ⊢ let⋆ y = ⊓c.F ′[B ∼ A ] in C, respectively. We need to show
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that J 1 is derivable if and only if J 2 is. Let C1 := ⌈x : A⌉ and C2 := B ∼ A.

According to rule SEM-LETGEN in Figure 5.1, we have that for all i ∈ {1,2}, any

derivation of J i then has the following shape.9

mostgen(∆,(Ξ,c),(Γ,x : δ(B)),F ′[Ci],∆i
m,δ

i
m)

∆
i
o = ftv(δi

m(Ξ))−∆ ∆
i
g = ftv(δi

m(c))−∆,∆i
o

∆ ⊢ δ
i : ∆

i
o ⇒• · Ai = δ

i(δi
m(c))

(∆,∆i
g);(Ξ,c);(Γ,x : δ(B));δ[c 7→ Ai] ⊢ F ′[Ci]

∆;Ξ;(Γ,x : δ(B),y : ∀∆
i
g.A

i);δ ⊢C

∆;Ξ;(Γ,x : δ(B));δ ⊢ let⋆ y = ⊓c.F ′[Ci] in C

We focus on two difficulties encountered when trying to obtain a derivation of J 2

from that of J 1.

The first difficulty is that one would have to show that the existence of a most gen-

eral solution of the constraint F ′[⌈x : A⌉] implies the existence of such a most general

solution of F ′[B ∼ A]. In general, it is possible to infer the existence of most general

solutions for satisfiable constraints from the overall correctness property of the solver

stated later in this chapter (see Conjecture 5.4 in Section 5.4.3). However, this correct-

ness property depends on Conjecture 5.1 and inherits the restriction regarding free type

variables in let constraints imposed in Conjecture 5.1: Conjecture 5.4 only applies to

constraints C′ with ∆′ ⊢ftv C′ ok (for some initial ∆′), which does not generally hold for

F ′[⌈x : A⌉ ] or F ′[B ∼ A]. Of course, it is also the case that relying on this kind of reas-

oning to establish the existence of most general solutions requires care to ensure that

the dependence between the involved proofs would be well founded: If Conjecture 5.2

and Conjecture 5.4 were successfully proven this way, they would (transitively) rely

on each other.

We now focus on the second difficulty encountered when trying to obtain a deriv-

ation of J 2 from that of J 1. We observe that the most general solutions of F ′[⌈x : A⌉ ]
and F ′[B ∼ A] are not guaranteed to be identical in general, which inherently causes

the derivations of J 1 and J 2 to differ, due to the use of the most general solution δi
m

in each. As an example for this difference between the most general solutions, we

consider the following example for the property (5.12), where F is f :: F ′ and C is

9We use superscripts instead of subscripts here to avoid interfering with the naming scheme used for
the premises of let constraints throughout this work.
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arbitrary:

F ′ = ·
f ′ = let⋆ y = ⊓c.2 in C

A = c

B = b → b

This means that the judgements J 1 and J 2 become the following:

∆;Ξ;(Γ,x : δ(b → b));δ ⊢ let⋆ y = ⊓c. ⌈x : c⌉ in C

∆;Ξ;(Γ,x : δ(b → b));δ ⊢ let⋆ y = ⊓c. b → b ∼ c in C

As expected, it is indeed the case that for any choice of ∆,Ξ,Γ and δ satisfying the

precondition ∆ ⊢• δ(B) ok (i.e., δ(b) is a monotype), we then have that if J 1 is deriv-

able, then J 2 is derivable, too.10 We will explain why this is the case by focusing on

the more interesting case where b is a flexible variable (i.e., b ∈ Ξ). To simplify the

reasoning, we further assume that Ξ contains no other variables and the other contexts

are empty (i.e., Ξ = b and ∆ = Γ = ·).
We then have that the following holds for the any derivation of J 1, using the naming

scheme established in the abstract derivation of J 1 shown on the previous page.

mostgen(·,(b,c),(x : δ(b → b)),⌈x : c⌉,∆1
m,δ

1
m)

∆1
g = ·

δ1
m(c) = δ(b → b)

domain(δ1) # ftv(δ1
m(c))

A1 = δ1(δ1
m(c)) = δ(b → b)

·;b;(x : δ(B),y : A1);δ ⊢C

This reflects that the most general solution δ1
m of the constraint ⌈x : c⌉ under term

context (x : δ(b → b)) maps c to δ(b → b). The latter type is then given to y in the

second sub-constraint of the overall let constraint.

However, we observe that rewriting ⌈x : c⌉ (the sub-constraint appearing in J 1) to

b → b ∼ c (the sub-constraint appearing in J 2), changes the most general solution.

Concretely, we have that the most general solution δ2
m of the constraint b → b ∼ c

(under any term context) maps b to some fresh b′, and c to (b′ → b′). We may then still

derive J 2, but the derivation is somewhat different.

10The reverse direction also holds, but as mentioned earlier, we focus on the case of obtaining a
derivation for J 2 from one for J 1.
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mostgen(·,(b,c),(x : δ(b → b)),b → b ∼ c,

=: ∆2
m︷︸︸︷

b′ ,

=:δ2
m︷ ︸︸ ︷

[c 7→ (b′ → b′),b 7→ b′])

∆
2
o = ftv(δ2

m(b)) = b′ ∆
2
g = ftv(δ2

m(c))−∆
2
o = ·

∆ ⊢ δ
2 : ∆

2
o ⇒• · A2 = δ

2(δ2
m(c)) = δ(b → b)

·;(b,c);(x : δ(B));δ[c 7→ A2] ⊢ b → b ∼ c ·;b;(x : δ(B),y : A2);δ ⊢C

·;b;(x : δ(b → b));δ ⊢ let⋆ y = ⊓c.b → b ∼ c in C

The crucial part here is the following: Despite the fact that the most general solu-

tion of the first sub-constraint of the let constraint changed as compared to the deriva-

tion of J 1, the type ultimately given to y is guaranteed to be same as in the derivation

of J 1. Concretely, we have that A1 = A2 = δ(b → b). This allows us to re-use the fact

that ·;b;(x : δ(B),y : A1);δ ⊢C holds from the derivation of J 1.

The reason why y receives the same type δ(b → b) as in the derivation of J 1 is as

follows. While the most general solution for c is b′ → b′, the type A2 ultimately used

for y is obtained by applying a monomorphic substitution δ2 to δ2
m(c). The second-to-

last premise ·;(b,c);(x : δ(B));δ[c 7→ A2] ⊢ b → b ∼ c then enforces that δ2(b′) = δ(b).

The latter type is guaranteed to be monomorphic, as imposed on (5.12).

This is not a coincidence: In the semantics of constraints let⋆ y = ⊓c.C1 in C2 (see

rule SEM-LETGEN in Figure 5.1 on page 97), the second to last premise, regarding C1,

is specifically designed to ensure that the most general solution for c in C1 is refined

in a way such that the type ultimately given to y is compatible with the existing inter-

pretations of type variables (i.e., the mappings of the ambient instantiation δ in the rule

SEM-LETGEN).

We may thus summarise the second difficulty encountered when attempting to

prove (5.12) by induction on the structure of F [⌈x : A⌉ ] as follows: We have shown

alongside an example that the most general types used in the derivations of J 1 and J 2

may differ. Concretely, we have observed how the most general solution of F ′[B ∼ A ]

has become more general than the most general solution of F ′[⌈x : A⌉ ]. However, our

example has illustrated how the type ultimate given to the term variable y bound by

the let binding under consideration remains unchanged: The additional condition im-

posed on let bindings ensuring compatibility with the ambient instantiation forces the

more general type δ2
m(c) to be instantiated back to δ1

m(c) when determining the type

ultimately given to y. So far, the author of this work has not succeeded in proving

this aspect formally. Reasoning about the exact relationship between the most gen-

eral solutions of F ′[⌈x : A⌉ ] and F ′[B ∼ A ] appears challenging: One of the appeal-
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ing characteristics of the constraint-based inference approach is that the solver modi-

fies constraints in a way that the involved constraints remain logically equivalent. In

contrast, the reasoning needed here effectively requires formalising how transforming

F ′[⌈x : A⌉ ] into F ′[B ∼ A ] changes the (most general) solutions of the constraints.

We have thus shown the obstacles faced when attempting either of the two inductive

proof strategies outlined for Conjecture 5.3.

5.4.2.3 Summary

In total, we observe the following regarding a preservation property for our solver. The

mostgen condition used in the semantics of let constraints leads to additional restric-

tions being required in the preservation property for our system, leading to the property

stated in Conjecture 5.1. We outlined how this property may be proved, except for the

cases when the rules S-FREEZE or S-INST were applied. For these last two cases,

we have distilled the missing parts to complete the proof of Conjecture 5.1 into two

simple, standalone conjectures, namely Conjectures 5.2 and 5.3.

We have then discussed different potential approaches for proving Conjecture 5.2,

all of which have been unsuccessful so far, in part due to the aforementioned restric-

tions imposed in Conjecture 5.1. Although not discussed further, similar problems are

encountered when attempting a proof of Conjecture 5.3. Altogether, this means that

Conjecture 5.1 does not have a complete proof at this point and remains a conjecture.

5.4.3 Correctness of the solver

We now prove additional properties of our solver. Together with Conjecture 5.1, these

then lead to an overall correctness property of the solver.

One important property is termination of the solver.

Theorem 5.3 (Termination).
The constraint solver terminates when invoked on any well formed input state.

Proof. We show the existence of a well-ordering < on states such that s → s′ implies

s′ < s. See Appendix B.3 for details.

We now observe that whenever the constraint representation of a well formed state

s is satisfiable and the state s is not final (as defined in Section 5.3.2), then the solver

can take a step.
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Theorem 5.4 (Progress).
Let ⊢ (F,Θ,θ,C) ok and F [C] ̸= ∀∆.∃Ξ.true for all ∆,Ξ. Further, let ·; ·; ·; /0 ⊢ F [C∧
U(Θ,θ)] hold. Then there exists a state s1 such that (F,Θ,Γ,θ,C)→ s1.

Proof. By case analysis regarding the shape of C, showing that one of the rules from

Figure 5.8 is applicable. Details are provided in Appendix B.3.

Note that combining the termination of the solver (Theorem 5.3) and the preserva-

tion property (Conjecture 5.1), implies that for every state with a satisfiable constraint

representation, the solver eventually reaches a final state. Conversely, it means that

when executed on a state with a non-satisfiable constraint representation, the solver

must eventually get stuck, as all well formed final states have a satisfiable constraint

representation.

We can formalise these findings in the following property, stating the overall cor-

rectness of the solver. Due to its dependence on Conjecture 5.1, it remains a con-

jecture. Given Γ = (x1 : A1), . . . ,(xn : An), we define def Γ in C as the constraint

def (x1 : A1) in . . . def (xn : An) in C. The conjecture then states that a constraint C

has a model ∆,Ξ,Γ,δ if and only if the solver reaches a final state from the constraint

∀∆.∃Ξ.def Γ in C and δ is a refinement of the substitution θ in the final state. Here,

by “refinement” we mean composing with a well formed substitution θ′, respecting the

restriction context returned by the solver. Note that in order to apply Conjecture 5.1,

we further require ⊢ftv C ok.

Conjecture 5.4 (Correctness of the constraint solver).
Let ∆ ⊢ Γ ok and ∆;Ξ;Γ ⊢C ok and ∆ ⊢ftv C ok. Then we have

∆;Ξ;Γ;δ ⊢C

iff

there exist Θ,θ′,θ,Ξ′ s.t.

(·, ·, /0,∀∆.∃Ξ. def Γ in C)→∗ (∀∆ :: ∃ (Ξ,Ξ′),Θ,θ, true) and

∆ ⊢ θ′ : Θ ⇒ · and

(θ′ ◦θ)↾Ξ = δ.

Proof (dependent on Conjecture 5.1). The contingent proof relies on a slightly more

general property, formalised as Conjecture B.1 in Appendix B.3, which in turn may be

shown to hold by relying on Conjecture 5.1. Conjecture B.1 also imposes an additional

well-formedness condition on states, which is separately shown to be preserved as an

invariant during solving (Lemma B.6). See Appendix B.3 for details. △
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Note that this correctness property also implies that our solver returns most general

solutions. The result θ of the solver is independent from δ. Due to its deterministic

nature we therefore have that any such δ can be obtained as a refinement of the substi-

tution θ returned by the solver. We thus have that all satisfiable constraints C, subject

to the restriction ∆ ⊢ftv C ok, have a most general solution.

5.4.4 Correctness of constraint-based type inference

So far, we have discussed the correctness of the constraint solver in isolation, inde-

pendent from FreezeML terms. We may now relate the typings of a FreezeML term

M to the output of the solver when run on the constraint obtained from M, as defined

in Section 5.2. Thus, we state two properties encoding the overall correctness of the

constraint-based type inference approach. These two properties rely on Conjecture 5.4

defined in the last section, which is why they remain as conjectures, ultimately depend-

ing on Conjectures 5.2 and 5.3 discussed in Section 5.4.2.

These properties also rely on the fact that constraints obtained from FreezeML

terms satisfy the additional condition imposed on free type variables in let constraints.

We formalise this as follows.

Lemma 5.7.
If ∆;Γ ⊢ M ok and (∆,Ξ) ⊢ A ok then ∆ ⊢ftv JM : AK ok.

Proof. By induction on the structure of M. By Lemma 5.2 on page 107, we have that

the only free type variables of the constraint JM : AK are those appearing freely in A and

(in the type annotations appearing) in M. If M is a term let x = M′ in N′, we then have

that the first sub-constraint of the resulting let constraint is JM′ : aK. This constraint

may thus only contain a and the variables appearing freely in M′. By assumption

∆;Γ ⊢ M ok we have that the latter variables are a subset of ∆.

As a first correctness property of the overall inference approach, we state that ex-

ecuting the solver on a the constraint JM : aK, where a is a fresh placeholder for the

type of M, yields a sound type inference algorithm. More concretely, if the solver

reaches a final state containing some Θ and θ, then any substitution θ′ that respect the

restrictions Θ may be used to refine θ(a) to a valid type of M.

Conjecture 5.5 (Constraint-based type-checking is sound).
Let ∆ ⊢ Γ and ∆;Γ ⊢ M ok and a#∆. If (·, ·, /0,∀∆.∃a. def Γ in JM : aK) →∗ (∀∆ ::

∃ (a,b),Θ,θ, true) and ∆ ⊢ θ′ : Θ ⇒ · then ∆;Γ ⊢ M : (θ′ ◦θ)(a).
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Proof (dependent on Conjecture 5.4). Follows from Lemma 5.7, Theorem 5.2, and Con-

jecture 5.4, details in Appendix B.4. △

Alternatively, we may use the extended FreezeML typing relation, defined in Sec-

tion 4.1.2, and restate the conclusion of the conjecture such that (∆•,Θ);Γ ⊢E M : θ(a)

holds. By Lemma 4.4 on page 77, this then implies the original statement of Conjec-

ture 5.5.

Conversely, we state that the inference algorithm is complete, meaning that if M

has type A, then the solver reaches a final state and A can be obtained from θ(a). It is

also most general, as any such A can be obtained from the same θ(a) this way.

Conjecture 5.6 (Constraint-based type-checking is complete and most general).
Let a#∆. If ∆;Γ⊢M : A then there exist Ξ,Θ,θ, δ such that (·, ·, /0,∀∆ .∃a .def Γ in JM :

aK)→∗ (∀∆ :: ∃ Ξ,Θ,θ, true) and A = δ(θ(a)).

Proof (dependent on Conjecture 5.4). Follows from Lemma 5.7, Theorem 5.1, and Con-

jecture 5.4, details in Appendix B.4. △

We again observe that we may rephrase the conjecture, stating in its conclusion

that principal(∆,Γ,M,Ξ,θ(a)) holds.

Note that the chain of contingent proofs provided throughout this section shows

that we immediately obtain the overall correctness of the solver if Conjectures 5.2

and 5.3 were proved to hold.

5.5 Comparison with HM(X)

We now compare our constraint-based type inference approach with the work by Pot-

tier and Rémy [97].

5.5.1 Interdefinability of constraint forms

In the constraint language by Pottier and Rémy, all def constraints can be substituted

with equivalent constraints not using these forms in a purely syntactic fashion (i.e.,

without needing to perform any solving). Further, let bindings are simply defined as

syntactic sugar for other constraints. We now compare these aspects to our constraint

language and explore which related substitutions our language permits.
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5.5.1.1 Definition constraints

The reader may have observed that our monomorphism constraints can be encoded

by definition constraints: The constraint mono(c) is logically equivalent to def (x :

a) in true. Nevertheless, we keep the former as primitives in our constraint language

to mirror a constraint substitution property of Pottier and Rémy’s language.

Their work uses constraints of the form def (x : σ) in C, where σ is a (qualified)

type scheme of the form ∀a [C′].τ. Here, C′ constrains the possible instantiations of a,

analogously to qualified types, and τ cannot contain further quantifiers or constraints.

Of course, a may be empty, and C′ may be the trivial constraint true. Conversely, type

schemes may be uninhabited, such as ∀a [false].Int.

In their work, it is then the case that def (x : ∀a [C′].τ) in C is logically equival-

ent to the constraint resulting from replacing every occurrence of x ⪯ τ′ inside C with

∃a.(C′∧ τ ≤ τ′). Here, ≤ denotes subtype constraints, for the purposes of this discus-

sion we may use equality constraints instead. Note that if x does not appear freely in

C, then the overall constraint is satisfiable even if the type of x is uninhabited.

One advantage of using def constraints rather than directly replacing them using

the equivalence above is that the size of constraints generated from terms is linear in

the size of the original term. They allow marking where substitution is (logically) oc-

curring, without needing to perform the actual syntactic manipulation of the constraint.

Using mono constraints, we can state a similar substitution property for def con-

straints in our language. Here, we need to reflect that all free type variables appearing

in the type annotation must be monomorphic, as imposed by the semantics of def con-

straints.

Conjecture 5.7 (Substitution of def constraints).
The constraint def (x : ∀∆.H) in C is logically equivalent to C′ ∧

∧
a∈ftv(H)mono(a).

where C′ results from C by replacing all of its sub-constraints of the form ⌈x : A⌉ with

(∀∆.H)∼ A and all sub-constraints of the form x ⪯ A with ∃∆.(H ∼ A).

We observe that this property is a slightly more general version of what can be

obtained from repeated applications of Conjectures 5.2 and 5.3. While the latter two

only reason about constraints resulting from plugging ⌈x : A⌉ or x ⪯ A into a stack,

they may appear in arbitrary positions in the property above. However, this is merely

a matter of presentation, successful proofs of Conjectures 5.2 and 5.3 would lead to a

proof of Conjecture 5.7 as well.
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5.5.1.2 Let constraints

In Pottier and Rémy’s work, let constraints have the form let (x : σ) in C, where σ is a

again a qualified type scheme of the form ∀a[C′].τ. The only difference with their def

constraints is that let constraints require the type scheme σ to be inhabited. Thus, they

define the previous let constraint to be syntactic sugar for (∃a.C′) ∧ (def (x : σ) in C).

No substitution for generalising let constraints However, the author believes that

there is no hope of finding a similar relationship between let constraints and other

constraints in our system that does not involve solving the sub-constraint C1 of letR x =

⊓a.C1 in C2 first.

Let constraints are the only place in our system that exposes the polymorphic types

arising from generalisation. We cannot obtain a constraint equivalent to the previous

let constraint (choosing ⋆ for R) by replacing all ⌈x : A⌉ appearing in C2 with ∃a.(C1 ∧
a ∼ A). If generalisation occurs, such as in the example let⋆ x = ⊓a.(∃b.a ∼ b →
b) in ⌈x : ∀b.b → b⌉, this substitution scheme fails.

Conversely, we cannot obtain a constraint equivalent to the previous let constraint

by replacing all x ⪯ A in C2 with ∃a.(C1 ∧a ∼ A). If no generalisation occurs, such as

in the example let⋆ x = ⊓a.a ∼ ∀b.b → b in x ⪯ (Int→ Int), this also fails.

One solution may be the introduction of generalisation constraints, where ⊓a.C : A

asserts that the result of generalising the principal solution for a in C is A.

No substitution for non-generalising let constraints Finally, for non-generalising

let constraints, no syntactic way of eliminating them seems to exist, either. A constraint

equivalent to let• x = ⊓a.C1 in C2 would have to impose monomorphism constraints

on exactly those type variables appearing in the most general solution for a when

solving C1. In particular, ∃a.
(
C1 ∧def (x : a) in C2

)
is not equivalent to the previous

let constraint, as it forces the entire type of x to be monomorphic. This would turn

let• x = ⊓a.a ∼ ∀b.b → b in x ⪯ (Int→ Int) into an unsatisfiable constraint.

One solution could be the introduction of qualified type schemes in FreezeML,

where ∀a [C].A is the type resulting from generalising the most general solution for A

in C with respect to a. We would then introduce a form of instantiation constraint,

optionally limited to monomorphic instantiation. We expect that this approach may

subsume the introduction of dedicated generalisation constraints mentioned in the pre-

vious paragraph when discussing generalising let constraints.
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However, care is required if one were to allow instantiation constraints between

arbitrary types of the form A ⪯ B in our constraint language, rather than just allowing

our current constraints of the form x ⪯ A.

This is due to the dual purpose that term variables serve in our constraint-based

approach. In addition to marking where substitution occurs, as in HM(X), they enforce

the simple invariant in our constraint language that only fully known polymorphism

can be instantiated. Our monomorphism conditions on def and let constraints impose

that the polymorphism occurring in the types of term variables is uniquely determined,

reflecting a similar invariant holding for the FreezeML term language. Weakening this

property can easily lead to the loss of principal solutions.

We leave the addition of constrained types to our system as future work and briefly

revisit it in Section 7.2.3.

Substituting def constraints with let constraints We now observe that the reverse

direction, replacing def constraints with let constraints, is indeed possible. However,

we still keep def constraints as a simpler form in the language. In particular, recall

that our solver eventually replaces a constraint letR x = ⊓a.C1 in C2 with a suitable def

constraint once C1 is solved (see the two S-LETPOP rules in Figure 5.8 on page 115).

Lemma 5.8 (Def constraints as let constraints).
Let a# ftv(A). Then following constraints are logically equivalent.

def (x : A) in C

let⋆ x = ⊓a.a ∼ A in C

let• x = ⊓a.a ∼ A in C

Proof. We consider a well formed interpretation (∆,Ξ,Γ,δ); due to the assumption

a# ftv(A) we can assume w.l.o.g. that a#(∆,Ξ) holds. We first examine the conditions

imposed by the semantics of generalising let constraints onto the interpretation to be a

model of let⋆ ⊓a.a ∼ A in C.

Using the meta-variable names from SEM-LETGEN in Figure 5.1 on page 97, we

observe that the premise mostgen(∆,(Ξ,a),Γ,a ∼ A,∆m,δm) holds if and only if we

have the following: There exists a bijection δf between Ξ and c, which is a subset of

∆m, such that δm(a) = δf(A) and δm↾Ξ = δf. This yields ∆o = c and thus b = ·. The

premise regarding the satisfiability of C1 requires that δ′(δm(a)) = δ(A) holds. This is

equivalent to δ′(δf(A)) = δ(A). As δf simply renames variables, the premise ∆ ⊢ δ′ :

∆o ⇒ · requires that δ maps all free flexible type variables of A to monomorphic types.
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Altogether, this means that we have that (∆,Θ,Γ,δ) is a model of the constraint let⋆ x=

⊓a.a ∼ A in C if and only if δ maps all flexible type variables of A to monomorphic

ones and we have that ∆;Ξ,(Γ,x : δ(A));δ ⊢C holds. These are exactly the conditions

imposed by the semantics of def constraints for ∆;Θ;Γ;δ ⊢ def (x : A) in C to hold.

Showing the equivalence of the latter constraint and let• x = ⊓a.a ∼ A in C works

analogously.

5.5.2 Remy’s extension of HM(X) solver to support FML

To perform type inference for the FML system (discussed in Section 2.3.5), Rémy

[101] shows that a simple extension of the original HM(X) solver by Pottier and Rémy

is sufficient. In particular, it is not necessary to extend the solver to permit polymorphic

interpretations of type variables.

The only change to the constraint languages is the addition of constraints of the

form A ≤′ B. Such constraints are satisfied if and only if there exists a monomorphic

interpretation φ of all variables in c := ftv(A)∪ ftv(B) such that φ(A)≤F
≈ φ(B), where

the latter relation is the System F generic instance relation modulo reordering of nested

quantifiers (see Section 2.3.5).

Pottier and Rémy shows that such constraints can be solved in two steps. First, A

and B are normalised (i.e., putting quantifiers in a canonical order and removing super-

fluous ones) to ∀a.H1 and ∀b.H2, respectively. Then, whether the resulting types satisfy

the System F generic instance relation (i.e., polymorphic instantiation of toplevel quan-

tifiers) is equivalent to checking whether the constraint ∀b.∃a.(H1 = H2) holds. Here,

the free variables c of H1 and H2, as defined earlier, must be instantiated monomorph-

ically, while only the type variables a may be interpreted using polymorphic types.

These constraints can then be solved in isolation, it is guaranteed that the polymorphic

types picked for the variables a are entirely local to this sub-constraint and do not leak

into (i.e., affect) the rest of the constraint solving problem.

In other words, the fact that FML requires type annotations for all polymorphic

instantiations implies that the solver only has to be able to check that two types,

whose polymorphism is fully known, satisfy the System F generic instance relation.

This entirely local treatment of polymorphic unification variables is not sufficient for

FreezeML, where a polymorphic interpretation of a type variable may need to spread

globally. In particular, there is no counterpart in Remy’s system to a constraint such

as ⌈x : a⌉ from ours, which would require equating a with the (qualified) type scheme
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associated with the term variable x.

5.5.3 Other aspects

We now collect some additional differences between our approach and the work by

Pottier and Rémy.

Representation of unification context As mentioned in Section 5.3.1.2, Pottier and

Rémy’s solver carries the currently known constraints imposed on type variables as a

dedicated constraint ∃a.CU, where CU is quantifier-free and in solved form. In particu-

lar, rather than storing a substitution θ in solver states, they maintain multi-equations,

which directly expose the underlying union-find structure. Each multi-equation is of

the form a1 = · · · = an = A, where all ai are part of the same union-find set, and A is

its representative. A similar design could be adopted for our solver, requiring to allow

mono constraints in solved forms.

We would then replace the component Θ with the constraint U(Θ) (as defined in

Section 5.3.1.2), which then becomes a sub-constraint of CU. The component θ would

be replaced by appropriate multi-equations in CU.

Supporting recursive types In Pottier and Rémy’s work, supporting recursive types

is simply a matter of removing the occurs check in their unification algorithm. In our

work, the counterpart to this check is the assertion (∆•,Θ1)⊢R A ok from the last clause

of the unification algorithm in Figure 4.4 on page 80. It ensures that when detecting

that a substitution a 7→ A should be performed, a does not appear in A.

However, it is not clear to the author what the implications of supporting recursive

types in our system would be. On one hand, our meta-theory relies on the fact that

substitutions are idempotent (which is a direct result of the aforementioned assertion)

in several instances. One solution may be the introduction of explicit µ types. Support

for recursive types therefore remains as future work.

Optimisations The solver presented by Pottier and Rémy implements several optim-

isations, in particular related to reducing the number of distinct type variables present

in solver states. For example, their solver avoids substituting old type variables with

new ones, an issue we discussed in Section 5.3.2.5. While their formalism does not

directly incorporate ranks (see Section 5.3.3), their system is set up to support their

usage easily.
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The author of this work believes that many of these optimisations could be added

to our solver, at the cost of making its rules more complex.

Non-deterministic rules Pottier and Rémy’s HM(X) solver relies on a non-deter-

ministic transition relation between states. One on hand, this means that each rule

serves a specific purpose, avoiding complex rules such as our S-LETPOP⋆ in Fig-

ure 5.8, which lowers existentials, performs generalisation and turns the solved let

frame into a def constraint. On the other hand, understanding the overall workings of

the HM(X) solver requires an understanding of the subtle interplay between a larger

number of rules.

It would nevertheless be interesting to investigate if it is possible to re-define our

solver in such a fashion.





Chapter 6

Discussion

This chapter explores practical work in FreezeML, showing how two programming

techniques relying on first-class polymorphism can be implemented using FreezeML.

Potential extensions and variations to FreezeML’s design are also sketched.

Further, we discuss some formal properties of FreezeML and two implementations

of it. Finally, we compare FreezeML with the existing approaches towards first-class

polymorphism discussed in Section 2.3.

Throughout this chapter, we generally assume that the following functions are in

scope.

id : ∀a.a → a

auto : (∀a.a → a)→ (∀a.a → a)

choose : ∀a.a → a → a

singleton : ∀a.a → List a

app : ∀a,b.(a → b)→ a → b

revapp : ∀a,b.a → (a → b)→ b

6.1 Programming in FreezeML

We now discuss two real-world use-cases of first-class polymorphism and how they

can be used in FreezeML. In order to ensure that the examples stay (mostly) within the

vanilla FreezeML language introduced in this work, we picked two example use-cases

that do not rely on additional advanced typing features, such as higher-kinded types or

type classes.

155
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6.1.1 Existential types

We briefly mentioned in Section 3.2.1.3 that existential types ∃a.A can be encoded as

System F types ∀b.(∀a.A → b)→ b.

We follow Le Botlan’s example program [55, Section 12.2] of a server processing

tasks, originally given in the context of MLF. Each task consists of a value of some

type A and a function from A to Unit. The server then acts on a list of such tasks,

applying each function to the corresponding argument, where each argument may have

a different type A. To allow the server to process a list of these tasks, we represent each

task with type ∃a.a× (a → Unit), effectively hiding the heterogeneous nature of the

tasks.

In the following, we use syntax combining let bindings with function definitions

found in many functional programming languages. Concretely, let f x1 . . . xn =M in N

is syntactic sugar for let f = λx1 . . . xn.M in N. Potential annotations on any of the

xi are simply transformed to annotations on the corresponding lambda binder. We also

use type annotations of the form (M : A), which are syntactic sugar for λ(x : A).⌈x⌉) M.

We omit the part in N of each binding, simulating toplevel let bindings without any

further effects on typing.1

We use Task a as a parameterised type alias that expands to a× (a → Unit). While

such type aliases are available in Links, we only use them here to obtain a more concise

presentation of the types of our examples, but they will not appear in actual terms.

Le Botlan first defines a function encapsulate, which given a task t performs the

encapsulation into an existentially typed value.

let encapsulate t = $

∃a.Task a︷ ︸︸ ︷
∀b.(∀a.(a×a → Unit)→ b)→ b

λ( f :∀a.(a×a→Unit)→ b). f t

While both MLF and FreezeML require an annotation on f , we additionally require

an annotated generalisation operator in FreezeML. The annotation on the operator is

required in order to bind the type variable b, which then appears freely in the annotation

on f .

Using the Task type alias and the aforementioned definition of existential types, we

then have the following.

encapsulate : ∀c.(Task c →∃a.Task a)

1Alternatively, the reader may imagine that each let binding here ends with a dangling in and con-
tinues at the next code snippet shown in the text.
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As in MLF, we can define create as a curried version of encapsulate (that also

swaps the order of arguments) without needing an annotation.

let create f arg = encapsulate (arg, f )

The function serve then performs a single task; its type is (∃a.Task a)→ Unit.

let serve (t :

∃a.Task a︷ ︸︸ ︷
∀b.(∀a.(a×a → Unit)→ b)→ b) = t $

(
λp.((snd p) (fst p) : Unit)

)
In contrast to MLF, we require an annotation on the task t as it has a polymorphic

type. Further, we need to explicitly perform generalisation to ensure that the function

passed to t is polymorphic. Note that we also need to annotate the body of the func-

tion, simply writing $(λp.(snd p)(fst p)) generalises to the type ∀a,b.(a×a → b)→ b

instead, which cannot be passed to t. Thus, the annotation Unit on the body of the

lambda forces b to be Unit instead. Alternatively, we may use the annotated general-

isation operator, requiring a longer annotation.

The implementation of the server then remains unchanged as compared to MLF.

let task list= [create print int 1; create print string “hello”]

let server = iter list serve task list

Here, we use auxiliary functions with the following, unsurprising types.

print int : Int→ Unit

print string : String→ Unit

iter list : ∀a.(a → Unit)→ List a → Unit

6.1.2 State threads

Another use-case of first-class polymorphism that does not rely on other advanced typ-

ing features are state threads2 [54, 53]. Launchbury and Peyton Jones demonstrate how

this approach allows introducing mutable references into a language while preserving

referential transparency by encapsulating a stateful computation that creates a value of

type a inside a monad ST t a. We will return to the role of the type parameter t shortly.

Unlike Haskell’s IO monad, ST allows the result of the stateful computation to

escape. This is achieved by applying runST to the computation v, which effectively

executes v and returns its result. However, it is carefully designed such that executing

2Note that the usage of the term “thread” here is not related to parallelism, but expresses the inde-
pendence of stateful operations.



158 Chapter 6. Discussion

v cannot read or modify references created outside of v. This can be achieved by using

higher-rank types, rather than runtime checks. A phantom type variable t is used to

track which thread each reference appears in.

To this end, we may use a type sref t a of safe references storing values of type a,

where the variable t denotes the thread. The following operations are then defined to

create, read, and update such references. Here, ! and := are prefix and infix operators,

respectively. While their syntax resembles the ML operators on references, their types

are more involved.

mkref : ∀a, t.a → ST t (sref t a)

(!) : ∀t,a. sref t a → ST t a

(:=) : ∀t,a. sref t a → a → ST t Unit

We observe that mkref does not return a reference directly, but yields a computation

creating the reference. Crucially, the thread parameter t of that reference is coupled to

the thread parameter of the encapsulating computation. While the ! and := operators

act on references directly, and may thus be used within a computation, they return

computations.

The monadic nature of ST becomes apparent when the following two operations

are added.

return : ∀a, t.a → ST t a

then : ∀t,a,b.ST t a → (a → ST t b)→ ST t b

Here, the function then is the monad’s bind operation, used to sequence two computa-

tions by giving access to the result of the first one. We can interpret the usage of t in

then’s type such that then v f is only well typed if the thread variables of both v and f

allow them to be part of the same thread.

So far we have not given the type of runST. The idea of the thread parameter is

that it should precisely rule out programs such as the following. Here, we use λ().M

as syntactic sugar for λ(x : Unit).M, where x is fresh.3 We also allow () to appear

in the syntactic sugar for let bindings mixed with function definitions introduced in

Section 6.1.1

3This is of course just a special case of the ability to use general-purpose patterns in place of binders
found in many functional programming languages.
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let v = runST (mkref 0) (6.1)

let setv x = runST (v := x) (6.2)

let readv () = runST (!v) (6.3)

If this program were accepted, referential transparency would be lost: The value of

readv () depends on prior invocations of setv.

Launchbury and Peyton Jones’s solution is that in order for runST M to be well

typed, M must not just be a state thread, but its thread variable t must be generalis-

able. The way the different operations that may appear in M force equality between

thread variables then means that M cannot access any references that are present in the

surrounding context. Thus, the type of runST is as follows.

runST : ∀a.(∀t.Unit→ ST t a)→ a

Here, in contrast to the canonical definition of runST, we thunk the computation passed

to runST with a Unit argument simply to circumvent the FreezeML value restriction,

in order to permit generalisation of t even when M is a function application (e.g., M is

a usage of then at the toplevel).4

Note that with this type of runST, the earlier example is indeed rejected, even when

performing the necessary thunking and inserting a generalisation operator. We first

consider (6.1). While the term $(λ().mkref 0) indeed has type ∀t.(Unit→ ST t Int), it

cannot be passed to runST. This is due to the the quantifier t escaping its scope in the

hypothetical return type sref t Int of runST $(λ().mkref 0).

We also cannot adapt (6.3) to become well typed. If we have v : ST t ′ Int in the

term context, where t ′ is free, then $(λ(). !v) cannot generalise t ′, meaning that the

term cannot be supplied to runST. While we cannot create a variable of such a type

using terms such as (6.1), it is still useful to define helper functions called from within

a computation to receive sref arguments. We will see such an example shortly when

discussing an example in Section 6.1.2.1.

Finally, if the term context contained v :∀t.ST Int t instead, the term runST $(λ(). !v)

becomes well typed. However, the types of the functions related to ST shown so far

prevent us from creating values of this type.
4Note that in order for a language to offer referential transparency in the presence of threaded state,

it must of course not provide other, unconstrained means of providing side effects, such as ordinary
references usually found in ML. However, in that case, the value restriction would not be necessary to
have in the language in the first place and we may use a variant of FreezeML without it, which we return
to in Section 6.2.1.3.
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6.1.2.1 Stateful Fibonacci numbers

So far, we have shown how state threads can not be used. We now show a working ex-

ample program, namely the calculation of Fibonacci numbers using mutable state. For

readability, we define let∗ x = M in N as syntactic sugar for the term then M (λx.N),

similarly to Haskell’s do notation.

let fib n = fib : Int→ Int

let rec fib′ i v1 v2 = fib′ : ∀t.Int→ sref Int t → sref Int t → ST Int t

if i ≤ 0 then
!v2

else
let∗ x1 = !v1 in
let∗ x2 = !v2 in
let∗ () = (v2 := x1) in
let∗ () = (v1 := x1 + x2) in
fib′ (i−1) v1 v2

in
runST $(λ().

let∗ v1 =mkref 1 in
let∗ v2 =mkref 0 in
fib′ n v1 v2)

Figure 6.1: Example function calculating Fibonacci numbers with safe mutable refer-

ence

The function fib in Figure 6.1 creates two references v1 and v2. The helper function

fib′ evokes that if v1 contains the j-th Fibonacci number and v2 contains its predecessor,

then after executing fib′ k v1 v2 we have that v1 contains the ( j+k)-th Fibonacci number

and v2 contains its predecessor.

The function fib′ is recursive, we thus assume the usual typing of recursive bind-

ings, meaning that fib′ has a monomorphic type, and only receives the polymorphic

type shown on the right in Figure 6.1 for subsequent use. We discuss polymorphic

recursion, where a recursive function may receive a polymorphic type inside its own

body, later in Section 6.2.2.2. In fact, the helper function fib′ is entirely typeable in the
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HM system; the only part of the example in Figure 6.1 going beyond HM typeability

are the type of runST and the generalisation operator around the argument to runST.

While the type hints shown in Figure 6.1 and the subsequent example in Figure 6.2

are helpful from a usability perspective, they are not necessary for the programs to

type-check. Of course, all examples would remain valid if we used annotated let bind-

ings with the shown types.

Launchbury and Peyton Jones proposed state threads in the context of Haskell.

They point out that due to Haskell’s lack of support for first-class polymorphism (un-

less using certain GHC language extensions), runST requires ad-hoc treatment by the

type-checker, similarly to its treatment of the infix function application operator $.

This special treatment prohibits some usages of runST as a regular function. In con-

trast, we can use runST as a first-class function in FreezeML without requiring any

ad-hoc treatment, as illustrated in the following example in Figure 6.2. Here, we as-

sume that fib′ has been factored out of fib in Figure 6.1 and is available as a standalone

function. Of course, a corresponding version of this program can be written in Haskell

by using appropriate GHC extensions.

let mkfibST n = $(λ(). mkfibST : Int→ (∀t.Unit→ ST Int t)

let∗ v1 =mkref 1 in
let∗ v2 =mkref 0 in
fib′ n v1 v2)

in
let fibSTs= fibSTs : List (∀t.Unit→ ST Int t)

[mkfibST 3; mkfibST 5; mkfibST 10]

in
map runST fibSTs

Figure 6.2: Example for using runST as a first-class function

Of course, the example is inefficient in the sense that no partial results are shared

between the three computations being executed.

6.2 Variations and Extensions of FreezeML

This section proposes potential variations and extensions of our type system.
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6.2.1 Variations

We now discuss ideas that would change the behaviour of FreezeML in certain ways.

6.2.1.1 Unordered FreezeML

FreezeML uses not only the type language of System F, but also its equational theory

for types. This means that the order of quantifiers is relevant and we cannot add or

remove superfluous (i.e., not appearing freely under the quantifier) variables at will.

Concretely, it means that none of the following types are equivalent in FreezeML.

∀a,b.a → b → a

∀b,a.a → b → a

∀a,b,c.a → b → a

Choosing this equational theory for FreezeML is rooted in the perspective of treat-

ing programming in FreezeML as a way of seamlessly mixing ML and System F. This

choice of equational theory has some advantages over an “unordered” theory, where

the order of quantifiers is disregarded. For example, adopting the latter for FreezeML

would mean that the term $(λxy.x) could be given both of the following two types.

$(λx,y.x) : ∀a,b.a → b → a

$(λx,y.x) : ∀b,a.a → b → a

Choosing between these two types leads to different System F translations, even

though the types would be equivalent, unique types of the term in this variant of

FreezeML. Unfolding the syntactic sugar for the $ operator in the term and apply-

ing the translation from FreezeML to System F in Figure 3.9 on page 62 results in the

following, different System F terms.

·; · ⊢ $(λx,y.x) : ∀a,b.a → b → a ; let f = Λa,b.λxa yb.x in f

·; · ⊢ $(λx,y.x) : ∀b,a.a → b → a ; let f = Λb,a.λxa yb.x in f

Another advantage of our “ordered” equational theory is the ability to incorpor-

ate type applications directly into the language. In the context of FreezeML, we will

consider this extension in Section 6.2.2.1. They play a particularly important role

in Explicit FreezeML, discussed in Section 7.2.2. Explicit FreezeML subsumes both

FreezeML (as syntactic sugar) and System F.

Of course, our choice of equational theory in FreezeML also has disadvantages.

Firstly, given badf : ∀b,a.a → b → a and take f : (∀a,b.a → b → a) → Unit, we
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cannot write take f ⌈bad f⌉ directly, but need to re-generalise it by writing take f

$bad f instead. If the order was swapped (i.e., we have bad f : ∀a,b.a → b → a and

take f : (∀b,a.a → b → a)→ Unit instead), the re-generalisation operator would even

require an annotation.

Secondly, some type languages do not naturally induce a canonical order of quan-

tifiers (e.g., quantifying variables in their order of appearance by default). For record

types, such an ordering might be obtained artificially by ordering its fields alphabet-

ically. Other types, such as union and intersection types do not induce a canonical

ordering at all.

Some mixed approaches towards these problems exist: The GI system [110] uses

the same equational theory of types as FreezeML, but its ability to implicitly instantiate

and re-generalise function arguments allows it to accept take f bad f nevertheless. This

fails when the order mismatch appears nested within the involved types, meaning that

in GI we cannot apply a function of type (Unit→∀a,b.a → b)→ Unit to an argument

of type Unit→∀b,a.a → b.

Visible type application [18] follows a slightly different approach, introducing a

distinction between ordered-agnostic type schemes ∀{a} and quantified types ∀a that

respect the order of quantifiers. This reflects a similar distinction between two sorts

of polymorphic types being made in to IFX [89] and QML [106]. However, Eisen-

berg et al. define a subsumption relation between the two sorts of polymorphic types,

meaning that the following holds in their system.

∀{a,b}.a → b → b ≥ ∀a,b.a → b → a ≤ ∀{b,a}.a → b → a

The subsumption relation then allows ∀a-quantified types to be used where a ∀{a}-

quantified type is expected, but not vice versa. This approach is adopted in the Quick

Look system [109], but its authors give few details about this particular aspect of their

system.

In the context of FreezeML, the author conjectures that it is possible to define a

variant of FreezeML that ignores the order of quantifiers. The resulting system should

enjoy the same soundness and completeness properties of type inference as the ori-

ginal one. The changes to the inference procedure should be limited to the unification

algorithm; an appropriate alternative algorithm is given by Garrigue and Rémy [26].

Alternatively, Leijen [58] suggests in the context of HMF that the inference algorithm

can maintain the invariant that all types are in canonical form (i.e., ordering quantifi-

ers based on their first appearance), meaning that we could even leave the unification
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algorithm unchanged and only canonicalise all user-provided type annotations.

6.2.1.2 Different type variable scoping

In FreezeML, an annotated binding let (x : ∀a.H) = M in N binds the type variables

a in M, if M is a guarded value. In particular, all type variables appearing freely in

an annotation must have been bound this way, unless they are part of some initial type

context ∆. A similar approach to the lexical scoping of type variables is adopted in the

Boxy Types system [117], where the toplevel quantifiers of any annotation on a let-

bound variable are unconditionally bound in the first subterm. Other approaches rely

on partial type annotations, which treat free type variables appearing in annotations as

being existentially quantified [26, 58, 101, 106], possibly limiting their instantiation to

monomorphic types.

The lexical scoping behaviour of our approach has both advantages and disad-

vantages, which become apparent in the body of the encapsulate function that we in-

troduced as an example in Section 6.1.1. It was defined as follows, where we have

expanded all syntactic sugar.

let encapsulate =

λ t.

let (box : ∀b.(∀a.(a×a → Unit)→ b)→ b) =

λ( f : ∀a.(a×a → Unit)→ b). f t

in
⌈box⌉

Here, the annotation on box is only required to bind the type variable b, so that it

can appear freely in the annotation on f . Using partial annotations would then allow

us to drop the annotation on box. However, it may be the intention of the user to be

specific about the fact that the return type of f is the same b as in the annotation on

box, both for documentation purposes and to spot mistakes more easily.

For example, consider the following variation of the program, where we assume

that partial annotations are supported. The only differences are the removal of the

annotation on box and the addition of 3 to the result of f t.
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let bad encapsulate =

λt.

let box=
λ( f : ∀a.(a×a → Unit)→ b).( f t)+3

in
⌈box⌉

The function bad encapsulate is well typed, but its type is the following, which will

cause subsequent type errors when writing the remaining code shown in Section 6.1.1.

∀c.(c× c → Unit)→ (∀a.(a×a → Unit)→ Int)→ Int

Providing the original annotation on box would make the program fail to type-

check, as it should. However, in the presence of partial annotations, the occurrence of

b in the type of f is unrelated to its quantified occurrence in the annotation on box.

Consequently, the type error shown to the user is regarding the mismatch between the

type of ( f t)+3 compared to the expected type of box. The lexical scoping behaviour

of FreezeML would instead report more accurately that the term ( f t)+3 is ill typed,

as ( f t) does not have type Int.

This suggests a combined approach, where users can refer to type variables lexic-

ally bound by surrounding bindings, but may also use variables that are existentially

bound in annotations. We may adapt the syntax used by QML for this purposes, where

all type annotations begin with a list of variables that are existentially quantified. If

the user then decides to eschew the annotation on box when defining encapsulate, they

may write the definition of the former as λ( f : b ∀a.(a×a →Unit)→ b). f t, explicitly

marking b as an unknown, monomorphic type.5

The author conjectures that simple changes to the translation from FreezeML terms

to constraints are sufficient to yield an inference algorithm for this approach. The

changes to Figure 5.4 on page 105 are the following; no changes to the constraint

language or its solver are required.

Jλ(x : c B).M : AK = ∃c,a1.
(
B → a1 ∼ A ∧ def (x : B) in JN : a1K

)
Jlet (x : c ∀b.H) =U in N : AK = ∃c.

(
(∀b.JU : HK) ∧ def (x : ∀b.H) in JN : AK

)
Jlet (x : c B) = M in N : AK = ∃c.

(
JM : BK ∧ def (x : B) in JN : AK

)
(if M ̸∈ GVal)

5QML does permit free variables in type annotations (i.e., not mentioned in the list of existentially
quantified variables part of the annotation), but it does not support binding such variables elsewhere, as
we suggest here. As a result, free type variables in QML annotations act as if the whole program was
parameterised over them, similarly to appearing in the initial type context ∆ in our approach.
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Note that any of the variables c actually appearing in the remainder of the annota-

tion are implicitly monomorphised, when B or ∀b.H appear in the annotation on the def

constraint. Further, the fact that all c are existentially quantified at the toplevel of the

resulting sub-constraint implies that for generalising let bindings, none of the variables

c may be instantiated with b, the variables generalised at the let binding. Likewise, the

variables c cannot be instantiated with potential quantifiers appearing in the type B in

the other two cases.

This reflects the fact that the following term would be ill-typed under this proposal,

to enforce the invariant that we can only quantify over known types.

let (wrong : b ∀a.a → b) = λx.x in . . .

6.2.1.3 FreezeML without the value restriction

So far, we have only considered FreezeML with the value restriction. This is due

to the fact that the lexical scoping of typing variables depends on it. Recall that

let (x : ∀a.H) = M in N binds the type variables a in M if and only if M is a guarded,

and hence generalisable, value. As discussed in Section 3.2.1.3, if M is a guarded

value and the overall let binding is well typed, then we can assign a guarded type to

it that is generalised to ∀a.H. In particular, this means that in the generalisable case,

we can safely assume that all toplevel quantifiers appearing in the annotation are the

result of generalisation at the let binding, rather than already being part of the type of

M. Conversely, if M is not guarded, no generalisation must take place, and all such

quantifiers must have already been part of M’s type. As a result, the value restriction

enables a simple syntactic criterion for where toplevel quantifiers must originate from,

and thus, whether or not they should be brought into lexical scope.

Unfortunately, this criterion is invalidated when removing the value restriction

from FreezeML. Consider the term let ( f : ∀a.a → a) = foo () in . . . . If foo’s type is

Unit→∀a.(a → a), then no generalisation takes place, the type of foo () is ∀a.a → a.

However, if its type is ∀a.Unit→ a → a, then the type of foo () is B → B for any B and

may be generalised to type ∀a.a → a.6

The only other system known to the author adopting a similar lexical scoping

strategy is the Boxy Types approach. It does not use the value restriction, but avoids

6These two types of foo given here are isomorphic in the sense that there exists a transformation
function between terms of each type that is βη-equivalent to the identity function [104]. This is reflec-
ted in the type instance/subtype/equivalence relations of some systems [56, 85, 92, 101], but they are
unrelated in FreezeML.
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the problem stated here by imposing that the types of let bound terms can never have

toplevel quantifiers. Indeed, we may enforce a similar rule for let bindings, meaning

that the toplevel quantifiers of let-bound annotations are always brought into scope.

Assuming foo :Unit→∀a.(a→ a), we would then have to perform instantiation manu-

ally, writing let ( f : ∀a.a→ a) = (foo ())@ in . . . . We could also change the behaviour

of annotated let bindings let (x : A) = M in N such that they implicitly instantiate M′s

type and re-generalise it to obtain A. However, the author considers this to subvert the

spirit of FreezeML, where instantiation is limited to variables.

Finally, another solution would be to simply adopt a different strategy for lex-

ical scoping: In Section 6.2.1.2, we discussed integrating partial annotations into

FreezeML, in combination with the existing lexical scoping mechanism where let bind-

ings may bind type variables. We may simply drop the latter, meaning that all free type

variables in annotations are implicitly existentially quantified.

6.2.2 Extensions

We now discuss potential enhancements of FreezeML. These are usually assumed to

occur on top of the original definition of FreezeML in Chapter 3, but we discuss the in-

teraction of some extensions with the variations previously discussed in Section 6.2.1.

6.2.2.1 Explicit type applications

In FreezeML, users need not state how variables should be instantiated, even if the

instantiation is polymorphic, as this is determined automatically. However, FreezeML

always instantiates all toplevel quantifiers, mirroring the behaviour of ML. While this

behaviour reflects what happens in ML, in the presence of first-class polymorphism,

there are situations where we may want to instantiate only some quantifiers, while

retaining others.

Consider the function mkPair : ∀a,b.a → b → (a× b), acting like the data con-

structor for pairs. In System F, we may write mkPair Int to obtain a function of type

∀b.Int→ b → (Int× b). However, in FreezeML, this can only be achieved by instan-

tiating both quantifiers, and then re-generalising against the desired result type, using

the annotated generalisation operator in the term $∀b.Int→b→(Int×b)mkPair. Of course,

the term M to supply a type argument to may in general not be a variable already. The

translation of System F type applications to FreezeML in Figure 3.8 on page 57 shows

that in this case, we need to bind it to a variable first. Thus, the encoding of type
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applications in FreezeML can be somewhat cumbersome and requires a type annota-

tion showing the desired type after the instantiation in full, rather than just the type

argument.

We may therefore consider adding type applications as a language primitive to

FreezeML. However, this changes one of the invariants of FreezeML, namely that only

variables are instantiated. The system guarantees that all occurrences of polymorph-

ism in the types of variables are uniquely determined. This is no longer the case once

arbitrary terms may be applied to types. While we conjecture that the resulting system

still enjoys principal types and complete type inference, the invalidation of the afore-

mentioned invariant complicates its meta-theory. We revisit explicit type applications

in the context of Explicit FreezeML in Section 7.2.2.

6.2.2.2 Recursive definitions

Practical programming languages usually provide programmers with means to define

recursive functions. We already had to rely on them in our example program in Fig-

ure 6.1 on page 160 without discussing them in detail. We may thus add bindings of

the form let rec f = M in N to FreezeML, where f is in scope in M and N. However,

care is required when typing such expressions. Even allowing polymorphic recursion

in the style of Mycroft [83], where f can receive the same ML type scheme in M and

N, leads to undecidable type inference [36, 49].

We therefore propose the following translation rules from recursive let bindings

to constraints, augmenting the existing translation function shown in Figure 5.4 on

page 105. It adopts the standard solution of forcing the type of f to be monomorphic

in the first subterm of the let binding.

Jlet rec f =U in N : AK = let⋆ f = ⊓a.
(
def ( f : a) in JU : aK

)
in JN : AK

Jlet rec f = M in N : AK = let• f = ⊓a.
(
def ( f : a) in JM : aK

)
in JN : AK (if M ̸∈ GVal)

Here, we add a def constraint that brings f into scope in the sub-constraints JU : aK

and JM : aK, respectively. Its type is the same variable a that will be generalised or

instantiated (based on which sort of let constraint is generated, in line with the value

restriction) to yield the type of f used in the sub-constraint JN : AK. Here, by appearing

freely in the annotation of a def constraint, a is implicitly monomorphised. Recall that

this does not prevent it from being generalised.



6.2. Variations and Extensions of FreezeML 169

As a result we have that the following constraint is satisfiable (the program itself

would of course diverge when executed). For clarity, we alpha-renamed the mono-

morphised definition of id to idm.

Jlet rec id= λx.id x in ⌈id⌉ : ∀b.b → bK =

let⋆ id= ⊓a.

def (idm : a) in
∃a1,a2.

(a1 → a2)∼ a ∧
def (x : a1) in ∃a3.idm ⪯ (a3 → a2)∧ x ⪯ a3

in
⌈id : ∀b.b → b⌉

Note that neither of the two instantiation constraints performs instantiation, as

both idm and x have monomorphic types with no toplevel quantifiers. The first sub-

constraint of the overall let constraint is logically equivalent to ∃c.a ∼ (c → c) ∧
mono(c).

Polymorphic recursive bindings can be allowed by requiring them to be annotated.

We may therefore add a recursive counterpart to our annotated let bindings, using the

following constraint translation rules.

Jlet rec ( f : ∀b.H) =U in N : AK = def ( f : ∀b.H) in
(
(∀b.JU : HK) ∧ JN : AK

)
Jlet rec ( f : B) = M in N : AK = def ( f : B) in

(
JM : BK ∧ JN : AK

)
(if M ̸∈ GVal)

As compared to the translation of the non-recursive variants, we merely moved the con-

straints ∀b.JU : HK, respectively JM : BK, such that they appear under the def constraint

binding f .

It remains to give typing rules for the two new flavours of recursive let bindings

and prove that the correctness of the translation, as expressed in Theorems 5.1 and 5.2,

still holds in presence of the new constraint generation rules shown here.

6.2.2.3 Type annotation propagation

The undecidability of full type inference in the presence of first-class polymorphism

means that all approaches discussed in Section 2.3 (as well as FreezeML) require users

to provide type annotations to make some programs well typed. As a result, some



170 Chapter 6. Discussion

of these systems go to great lengths to propagate the user-provided types throughout

the type system as far as possible, in order to minimise the need for annotations [117,

109].

Nevertheless, it is still possible to avoid some duplication occurring in annota-

tions without greatly complicating the system, escaping “the siren call of mixing type

annotation with type inference”, as Leijen [58] puts it. Rémy [101] suggests a soph-

isticated technique for type annotation propagation, which acts as a preprocessing step

before type-checking/inference. A simpler variant was suggested for HMF [58], which

focuses on deconstructing annotations on whole terms into suitable annotations for its

subterms.

For FreezeML, we may add the following, simple rule, evoking that function para-

meter types contained in the overall annotation on a let binding are propagated inwards

onto the lambda binders.

let ( f : ∀a.A1 → ··· → An → B) = λx1, . . . ,xn.M in N

;

let ( f : ∀a.A1 → ··· → An → B) = λ(x1 : A1), . . . ,(xn : An).M′ in N′

Here, M′ and N′ result from applying the rule recursively.

This would already allow us to avoid the duplication of information exhibited by

the two annotations needed in the definition of the example function encapsulate in

Section 6.1.1. Concretely, the suggested propagation scheme would allow us to rewrite

it as follows, omitting the annotation on f . Recall that $A M is syntactic sugar for

let (x : A) in ⌈x⌉, meaning that the propagation rule is applicable.

let encapsulate t = $∀b.(∀a.(a×a→Unit)→b)→b
λ f . f t

6.3 Implementations

FreezeML has been implemented in two ways, which we discuss here.

6.3.1 FreezeML in Links

As mentioned in the introduction, FreezeML was originally devised in the context of

the Links programming language [11, 69]. Indeed, Jonathan Coates, while an under-

graduate student intern contributing to the Links project, was able to replace Links’ ex-

isting treatment of first-class polymorphism with the FreezeML approach, despite the
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multitude of type system features present in the language (described in Section 1.2). In

line with Links’ existing approach towards type inference loosely based on Algorithm

W (but using mutable union-find structures), this implementation is inspired by the

description of unification and inference in Chapter 4. We believe that this suggests that

FreezeML interacts well with a variety of other, orthogonal language features and is a

suitable candidate for integration into a variety of programming languages.

FreezeML is implemented in Links largely following the description of the system

in Chapter 3. Following Links’ existing behaviour, this implementation of FreezeML

obeys the value restriction. It also uses the equational theory of System F types with

respect to the ordering of quantifiers in types. The only notable difference between

FreezeML as described in this work and its implementation in Links are the following.

1. In order to be compatible with Links’ existing scoping behaviour of type vari-

ables, it allows free type variables to appear in terms which are implicitly bound

at the enclosing toplevel binding.

2. Rather than treating the restrictions R on type variables as a standalone concept,

they are integrated into Links’ kinding system.7 For example, this kind system

is also used to indicate when a type variable is a row variable, or to indicate that

type variable may be instantiated with linear types. The kinding system is also

used by Links’ session typing and language-integrated query features.

The second difference above is the only friction point between FreezeML and other

language features. Consider the well typed Links example program in Figure 6.3 on

the following page. It contains two definitions of the identity function and the function

auto, which expects the polymorphic identity function as its parameter and returns it.

The keyword fun denotes the beginning of a function definition, which may op-

tionally be equipped with a signature, stating its name and whole type, using the

keyword sig. Function parameters in Links are always enclosed in parentheses, which

is also reflected in how function types are printed. Function bodies are enclosed in

braces; the language is expression-based and the expression appearing in the function

body is its return value.

The example contains two identical definitions of the identity function, with and

without a signature. Both definitions are accepted, we return to the role of the annota-

tion on id2 shortly. The function auto’s parameter must be annotated, since it has a

7For this reason, what we call the restriction of a type variable in this work was originally referred
to as its kind in an earlier publication [20].
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fun id1(x) {

x

}

sig id2 : forall a, e::Row. (a) -e-> a

fun id2(y) {

y

}

fun auto(f : (forall a, e::Row. (a) -e-> a)) {

˜f

}

Figure 6.3: Example showing Links version of auto and two alternative definitions of

id

polymorphic type.

The only notable difference between the types id : ∀a.a → a and auto : (∀a.a →
a) → (∀a.a → a) that the reader may expect and those appearing in Figure 6.3 are

the following: Due to Links’ type effect system and resulting support for effect poly-

morphism, the function arrows appearing in id2’s type and the parameter type of auto

additionally contain a row variable e. In each case, the variable e has kind Row and is

universally quantified, in addition to a. This reflects that the identity function as well

as the parameter f of auto are polymorphic not just in their argument type, but also

their effects. Links’ type system can infer effects, and effect polymorphism integrates

seamlessly into FreezeML.

Typing the identity function in Links For reasons unrelated to effect types, the

inferred type of id1 in Figure 6.3 is not the same type as the one of id2. This is due to

Links detecting that the parameter x of id1 is used linearly (i.e., exactly once), which

is reflected in its kind. Conversely, the annotation on id2 implicitly states that the type

a of y may not be instantiated with linear types. This means that the inferred type of

id1 is the following.

forall b::Type(Any,Any), e::Row. (b) -e-> b
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Here, the kind Type(Any,Any) of b is different from the kind Type(Unl,Any)

implicitly given to a in the other annotations. Here, Type followed by Any is the kind

of proper types (e.g., not a row) that can be instantiated with any type, including linear

ones. Conversely, Unl indicates that the overall kind of b does not permit instantiation

with linear types. The second component of the tuple following Type in either kind is

not relevant for this discussion.

While Links supports notions of subtyping and subkinding, its type system does

not have any kind of subsumption rule based thereon (i.e., it does not support implicit

coercion). As a result, we have that the application auto(∼id1) fails due to a type

mismatch, while auto(∼id2) is accepted. Here, ∼ is the syntax for the freeze operator

in Links, while function application uses C-style parentheses.

Alternatively, we could change the annotation on the parameter f to restrict a to

linear types in order to accept the un-annotated id1 as an argument, but not id2. This

is, of course, a reasonable restriction to impose on the identity function. In general,

this example does however illustrate how Links’ eager desire to infer linearity, which

is generally a reasonable design choice, can increase the need for annotations on func-

tions that should be passed around polymorphically.

The Links team has so far avoided implementing implicit sub-typing coercions, as

many of the traditional use-cases of sub-typing are covered by using row polymorph-

ism in Links. However, the team could consider implementing a simple subsumption

rule for subtypes as long as the types only differ in their kinds.

6.3.2 Standalone implementation of FreezeML using constraint-

based inference approach

The author has created a standalone implementation of the constraint-based type in-

ference approach from Chapter 5 in OCaml. The implementation of the translation

from terms to constraints and the constraint solver closely follow the corresponding

definitions in Figures 5.4 and 5.8.

However, the solver is parameterised in the unification algorithm on which it re-

lies. The author has implemented both the unification algorithm shown in Figure 4.4

as well as the unification algorithm proposed by Garrigue and Rémy [26]. The former

algorithm is used by default, whereas the latter algorithm is used to achieve the beha-

viour described in Section 6.2.1.1, namely ignoring the order of quantifiers as well as

superfluous ones.
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We have validated this implementation (including both notions of type equival-

ence) using a test suite containing a collection of examples exhibiting first-class poly-

morphism found in existing literature. This collection will be further discussed in

Section 6.5.6.

6.4 Properties of FreezeML

We already formalised the relationship between FreezeML and System F by showing

translations between the two systems in Section 3.3. Further, we gave a type substitu-

tion property for FreezeML in Section 4.1.

We now discuss further formal properties of FreezeML. First, we show that the

latter is indeed a conservative extension of ML in the sense that all well typed ML

programs are accepted in FreezeML (with the same types), while FreezeML does not

accept ML programs that are rejected in ML itself.

We also discuss additional properties of ML and other systems supporting first-

class polymorphism and whether they hold in FreezeML.

6.4.1 Relating ML and FreezeML

We now show that FreezeML is indeed a conservative extension of ML. To formalise

this, we refer to types of the form ∀a.S as ML type schemes and ML terms correspond

to the subset of FreezeML terms shown in Figure 2.1 on page 13 (i.e., not containing

frozen variables and no annotated let or lambda binders).

We observe that FreezeML might give some ML terms unnecessarily polymorphic

types. For example, assuming that id is assigned its usual type in the context, which is

an ML type scheme, we may give the term id the type (∀a.a)→ (∀a.a) in FreezeML,

which is neither a valid ML type scheme nor derivable using the ML types rules in

Figure 2.6 on page 17.

However, we observe that the principal type of any ML term is always mono-

morphic in FreezeML.

Lemma 6.1.
Let M be an ML term and let ∆ ⊢ Γ ok hold, where Γ only contains ML type schemes.

Then principal(∆,Γ,M,∆′,A) implies that A is a monotype.

Proof. By reasoning about the type inference algorithm in Figure 4.5 on page 86,

details in Appendix C.1.
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We also observe that FreezeML type derivations for ML programs may assign non-

HM types to some subterms, but this is not necessary to type them, as there always

exists a derivation that only assigns monotypes to each term.

Lemma 6.2.
Let M be an ML term and let ∆ ⊢ Γ ok hold, where Γ only contains ML type schemes.

Then ∆;Γ ⊢ M : S implies that there exists a derivation of the latter judgement where

every subterm of M is assigned a monomorphic type.

Proof. All cases are straightforward by induction on the structure of M, except for

term applications, where we reason about the type inference algorithm again. See

Appendix C.1 for details.

We use the previous two lemmas to prove the main theorem about the relationship

between ML and FreezeML.

Theorem 6.1 (Correspondence of ML and FreezeML on ML subset).
Let M be an ML term and let ∆ ⊢ Γ ok hold, where Γ only contains ML types. Then the

following holds.

1. We have ∆;Γ ⊢ML M : S iff ∆;Γ ⊢ M : S.

2. S is the principal type of M under ∆ and Γ in ML iff principal(∆,Γ,M, ftv(S)−
∆,S) holds.

Proof. We show both properties simultaneously by induction on the structure of the

term under consideration.

• First part, ⇒ direction: All cases are straightforward, except for the case let x =

M in N. According to the ML type derivation we have (∆,∆′);Γ ⊢ML M : S′

and ∆;(Γ,x : ∀∆′.S′) ⊢ML N : S. Here, ∆′ is defined by the gen helper function.

In ML, there must exist a principal type Sp of M under ∆ and Γ; let us define

∆p := ftv(Sp)−∆. By the second part of this theorem we then have principal(∆,

Γ,M,∆p,Sp). Note that the latter immediately implies (∆,∆p);Γ ⊢ M : Sp.

If M ∈ GVal we have that ∆′ = ftv(S′)−∆. We have that ∀∆′.S′ is a generic

instance of the principal type scheme ∀∆p.Sp and therefore have that ∆;(Γ,x :

∀∆′.S′) ⊢ML N : S implies ∆;(Γ,x : ∀∆p.Sp) ⊢ML N : S (Lemma 2.2). We then get

∆;(Γ,x : ∀∆p.Sp) ⊢ N : S using the induction hypothesis.

Otherwise, if M ̸∈ GVal, we have ∆′ = ·. Due to Sp being principal, we have

that ∀∆′.S′ = S′ can be obtained from Sp using a monomorphic instantiation, as
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required by the ⇕ premise of the FreezeML derivation. We then get ∆;(Γ,x :

S′) ⊢ N : S directly using the induction hypothesis.

• First part, ⇐ direction: In the (plain) variable case, we have that an ML type

scheme is instantiated to the monomorphic type S, meaning that the instantation

is monomorphic and we can re-use it in the corresponding ML derivation. Term

abstractions are straightforward.

For term applications M N, we rely on Lemma 6.2 to show that there exists S′

such that M and N can be given types S′ → S and S′, respectively. This is crucial

in order to be able to apply the induction hypothesis.

For the case let x = M in N, we use Lemma 6.1 to show that the principal type

A′ of M is monomorphic. Let ∆′ := ftv(A′)−∆. We can then apply the induction

hypothesis to (∆,∆′);Γ ⊢ M : A′ and ∆;(Γ,x : A) ⊢ N : S. If M ∈ GVal, ⇕ dictates

A = ∀∆′.A′ and we can directly use the two ML typing judgements obtained

above for the corresponding derivation of the overall let term in ML. Otherwise,

if M ̸∈GVal, we have that A results from A′ by using a monomorphic instantiation

δ with ∆ ⊢ ∆′ ⇒⋆ ·, making it a monotype. To obtain the typing premise for M in

the ML derivation, we can apply δ to ∆;Γ⊢ML M : A′ (using Lemma 2.3), yielding

the desired judgement ∆;Γ ⊢ML M : A.

• Second part, ⇐ direction: Let ∆′ := ftv(S)−∆. By assumption principal(∆,Γ,

M,∆′,S) we have (∆,∆′);Γ ⊢ M : S and thus by the first part of this theorem,

(∆,∆′);Γ ⊢ML M : S. We now assume (∆,∆′′);Γ ⊢ML M : S′′ for some ∆′′,S′′. We

need to show that there exists an ML instantiation δ such that S′′ = δ(S) and

∆ ⊢ δ : ∆′ ⇒• ∆′′. (Note that the ML and FreezeML well-formedness relation for

instantiations coincide for monomorphic ones). By principal(∆,Γ,M,∆′,S) we

have that such an instantiation exists, but it may be polymorphic (i.e., we only

have ∆ ⊢ δ : ∆′ ⇒⋆ ∆′′). However, the fact that all variables in ∆′ appear in S and

δ(S) is monomorphic implies that δ is indeed monomorphic.

• Second part, ⇒ direction: Let ∆′ := ftv(S)− ∆. By the existence of prin-

cipal types (Theorem 4.8) we may assume that there exist Ap and ∆p such that

principal(∆,Γ,M,∆p,Ap). Further, we assume that, Ap and S cannot be obtained

from each other using a bijective renaming of free type variables (i.e., we assume

that there exists a principal type of M that is different from S). By Lemma 6.1

we then have that Ap is a monotype and by the right-to-left direction of the
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second part of this theorem we then have that A is a principal type of M un-

der ∆ and Γ in ML. As we assumed that S is such a principal type in ML, this

violates the uniqueness of principal types in ML (see Lemma 2.6), meaning S

can in fact be obtained from A by renaming free variables which in turn makes

principal(∆,Γ,M,∆′,S) hold (see Lemma 3.1).

Note that although individual parts of the proof directly rely on each other for the

same term, the reasoning is not circular: When proving the first part of the theorem, we

apply the second part of the theorem only to subterms. The proofs of the two directions

of the second part of the theorem use the first part on the same term. For the second

part of the theorem, the proof of the left-to-right direction relies on the right-to-left

direction, but not vice versa.

Note that using a monotype S in Theorem 6.1 does not weaken the right-to-left-

direction of the theorem: Every well typed FreezeML term has a principal type (see

Theorem 4.8), and we know that ML terms have monomorphic principal types (see

Lemma 6.1). Thus, every well typed ML term has a monomorphic (principal) type S

in FreezeML, even if it may also be typed with other, more polymorphic types such as

(∀a.a)→ (∀a.a) being a type of the term id.

6.4.2 Stability of typing under simple program transformations

FreezeML has no special heuristics built into the typing rules of term applications M N,

typing them just as System F does. As a result, such terms retain their original types

when adding an application of app or revapp (i.e., which simply perform application

or reverse application, respectively). This is a useful property when defining operators

such as Haskell’s application operator $, or piping operators such as |> and <| to

reduce the number of parentheses in a term.

Lemma 6.3 (Insertion of app and revapp).

1. If ∆;Γ ⊢ M N : A, then ∆;Γ ⊢ app M N : A.

2. If ∆;Γ ⊢ M N : A, then ∆;Γ ⊢ revapp N M : A.

Proof. Inverting ∆;Γ ⊢M N : A immediately yields the necessary premises to construct

appropriate derivations using the FreezeML typing rule APP.
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The same property holds for many other systems, including ML, MLF, HML, FPH,

HMF, GI, QL, Poly-ML and QML. Notable exceptions are Boxy Types and IFX. Sys-

tems that do treat applications specially often need to type-check applications by con-

sidering more than one argument at once (e.g., GI, QL, HMF).

We now observe that like other systems that only infer monomorphic parameter

types (e.g., HMF, IFX, GI, HML and FPH), FreezeML only allows eta-expansion of

a function term M if the parameter has a monomorphic type. Of course, any func-

tion M may be eta-expanded by providing a type annotation. Systems such as QL

(when in type-checking mode), Poly-ML and MLF can guarantee that eta expansion

never requires a type annotation due to their sophisticated mechanisms for propagating

type information. In QML, this is achieved with a much simpler mechanism, namely

requiring full type annotations at all instantiation sites of a polymorphic parameter.

Lemma 6.4 (Eta expansion).

1. If ∆;Γ ⊢ M : S → B, then ∆;Γ ⊢ λx.M x : S → B.

2. If ∆;Γ ⊢ M : A → B, then ∆;Γ ⊢ λ(x : A).M x : A → B.

Proof. We can immediately construct the necessary derivations.

6.4.2.1 Let abstraction and let substitution

In ML, the following transformations are guaranteed to preserve the types of terms:

Any subterm M of a term can be replaced by a fresh variable x by inserting a let

term binding x to M. Conversely, any term let x = M in N can be replaced by the

second subterm after replacing all occurrences of x by M. In the following, we refer to

the first transformation as let abstraction and to the second as let substitution.

The properties of these transformations get more complicated in the presence of

the value restriction and side effects. Let abstraction is only guaranteed to succeed if

a single instance of M is hoisted out of the program, otherwise the value restriction

may step in to prevent different required instantiations of x. Also, if M has side effects

and occurs multiple times, then either transformation may change program behaviour,

even if the program remains well typed.

Before discussing these transformations in the context of FreezeML, we make an-

other observation. In ML, types of terms are preserved when replacing the type of

a variable in the environment with a more general one according to the ML generic

instance relation defined in Figure 2.3 on page 14. This property is formalised in
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Lemma 2.2 on page 18. However, this property does not hold in FreezeML, even when

only considering predicative instantiation (as the ML generic instance relation does).

While ⌈ f ⌉ 3 is well typed in a context giving f the type Int→ Int, it becomes ill typed

when assigning the type ∀a.a → a to f , even though the former is a generic instance

of the latter. We conjecture that the property does hold in FreezeML if no freezing

operations occur in the term, but have not proven this. After all, Theorem 6.1 implies

that the transformations do work when staying within the ML subset of FreezeML.

In particular, it is not sufficient to require that only the variable that receives a more

general type is never frozen, while allowing other variables to be frozen. The term

let g = f in⌈g⌉ 3 exhibits the same problem as before when changing the type of f .

We can relate this observation to let abstraction in FreezeML: Hoisting arbitrary

terms may change the syntactic categories of let-bound terms and thus influence whether

generalisation occurs. For example, consider the artificial term in Figure 6.4. Note that

let f =
let y = id id in id︸ ︷︷ ︸

=: M′

in
⌈ f ⌉ 3

Figure 6.4: Example term defining f before applying let abstraction

the variable y is unused, but the fact that the term M′ is not a (guarded) value prevents

generalisation, thus allowing f to receive type Int→ Int, making the overall term well

typed.

As a result, hoisting the subterm id id out and replacing it with the variable x leads

to the ill typed term in Figure 6.5. This is due to the fact that the only possible type of

f now becomes ∀a.a → a, and applying it frozen to 3 fails.

Of course, this example relies on the fact that the original term freezes a variable

with a monomorphic type. This is perfectly legal in FreezeML and the author considers

potential variations of the language that would disallow this to contradict the spirit of

FreezeML: Frozen variables are just System F variables, with no further strings (or

side-conditions) attached. However, this suggests that we may state a let abstraction

property for FreezeML that imposes some conditions regarding frozen variables.

Note that we can also use the earlier examples to illustrate an issue with let substi-

tution. We may consider Figure 6.5 to be the original term, in which case the term in
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let x= id id in
let f =

let y = x in id

in
⌈ f ⌉ 3

Figure 6.5: Example term defining f after performing let abstraction

Figure 6.4 shows the result of performing let substitution to x. Thus, the transformation

has again changed typeability.

These examples show that the value restriction makes stating general let abstraction

and substitution properties for FreezeML somewhat subtle. The author conjectures that

the following let abstraction and substitution properties hold, but has not attempted

detailed proofs.

• Guarded values U can always be hoisted and replaced by a newly introduced

variable x. The fact that U is replaced with the guarded term x means that

the value categories of any surrounding term subject to the replacement do not

change. Further, while the newly created let binding may generalise U , this can

subsequently be reverted by instantiating x. This even works when substitut-

ing multiple occurrences of U within the same term. Note that the category of

guarded values covers lambda functions. In the author’s experience, anonym-

ous functions are typical candidates for being hoisted and named when writing

functional programs.

• We now outline criteria for a let abstraction property for the case where the term

M to hoist is not a guarded value. In this case, M is let-bound and replaced by

the frozen variable x. Concretely, the term M has to satisfy both of the following

properties.

1. We impose that M does not appear under the left-hand side of a let-binding.

This is to avoid the problems described in Figures 6.4 and 6.5. Recall that

in general, a let binding let y = M′ in N′ is a guarded value if N′ is itself

a guarded value. However, M′ only has to be a value (see category V in

Figure 3.2 on page 41), which form a superset of guarded values. This

means that replacing, say, a term application with a frozen variable may
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change the syntactic category of the overall let binding if it is performed

within M′, but leaves the syntactic category unchanged if the replacement

occurs within N′.

2. We require M to have a unique type. This is required to avoid a problem

illustrated by the well typed term auto (id id). Here, id id requires poly-

morphic instantiation to obtain type (∀a.a → a)→ (∀a.a → a), as expected

by auto. However, allowing let abstraction of this subterm would lead to

the following, ill typed term.

let x = id id in auto ⌈x⌉

Here, the fact that id id is not a guarded value forces monomorphic instanti-

ation to yield the type for x (see rule LETPLAIN in Figure 3.5 on page 45),

making it impossible to give it the required type.

We could alternatively restate this requirement such that M must only be

hoisted if it is not subject to polymorphic instantiation. However, requiring

M to have a unique type means that we can hoist multiple occurrences of M

at once, leading to the problem already described for ML, where different

occurrences would require different instantiations.

• Regarding let substitution in a term let x = M in N, we conjecture that it is

sufficient to require that M does not appear on the left-hand side of a let binding

within N. We would then substitute plain occurrences of x in N with M@ and oc-

currences of ⌈x⌉ in N with $M. Here, we assume that the generalisation operator

$ is defined on arbitrary terms, even though we only defined it on guarded val-

ues in Section 3.2.2. Concretely, after expanding the syntactic sugar, this means

replacing all x with let y = M in y and replacing all ⌈x⌉ with let y = M in ⌈y⌉,

where y is fresh.

The author considers achieving certainty about these properties an important piece

of future work.

6.5 Related work

We now compare FreezeML to the existing approaches discussed in Section 2.3, fo-

cusing on the systems related to FreezeML in some particular way.
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6.5.1 IFX

IFX [89] is similar to FreezeML in that it allows introducing first-class polymorphism

without type annotations by using the principal type of the term. However, FreezeML

avoids the distinction between ML type schemes and System F-style quantified types.

In IFX, the term letx = e1 ine2 assigns the principal type scheme of e1 of the form

∀̃α.τ to x in e2, whereas the term closee receives the principal quantified type ∀a.τ.

Recall that the former sort of polymorphic types is instantiated implicitly, whereas the

latter requires explicit instantiation.

O’Toole and Gifford observe that type schemes and let bindings can be made su-

perfluous in their design by replacing every let x = e1 ine2 by the following.

(λ(x : τ).e2[(open x)/x])(close e1)

Note that this comes at the cost of a type annotation τ if e1 has a polymorphic principal

type. However, they do not pursue this idea or its implications further. In FreezeML,

we go the opposite direction: Let bindings introduce System F-style polymorphism in

our system, which is the only sort of polymorphism used in FreezeML.

The close operator in IFX can only be used to introduce first-class polymorphism

using principal types. To use non-principal types, explicit type abstractions must be

used, which also bring type variables into scope to be used in annotations. As a result,

the definition of the choose function in IFX requires writing Λa.λ(x : a)(y : a).x. In

FreezeML, this is achieved by writing let (choose : ∀a.a → a → a) = λx,y.x in . . .

instead.

Another difference between FreezeML and IFX is how instantiation is performed.

In the latter, instantiation of type schemes is performed with monomorphic types at

variables, just as in ML. Conversely, ∀ quantifiers can be eliminated in three different

ways, as described in Section 2.3.2.1.

1. Terms open e can be used to instantiate all toplevel ∀ quantifiers of e’s type with

monomorphic types.

2. System F-style explicit type applications can be used to perform instantiation.

3. To reduce the number of necessary open operations, IFX allows monomorphic-

ally instantiating toplevel ∀ quantifiers appearing in the type of e1 in applications

e1 e2.
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As a result, polymorphic instantiations always require type applications. To remedy

this, O’Toole and Gifford consider an extension of their system by incorporating a

typing rule originally proposed by McCracken [75].

IPA
A ⊢ e1 : ∀ai.τf → τr A ⊢ e2 : τa {τi} ⊆ ftv(τf) τa = τf[τi/ai]

A ⊢ e1 e2 : τr[τi/ai]

This rule permits instantiating ∀ quantifiers in e1’s type with polymorphic types as

long as the instantiations of all quantifiers are fully determined by the type τa of the

argument e2.

O’Toole and Gifford state uncertainty about the completeness of the resulting in-

ference algorithm. While the author of this thesis believes that adding this rule is

unproblematic from the perspective of type inference, it does have two disadvantages.

1. The rule only acts on ∀ quantified types rather than type schemes. This means

that in order to change the term singleton id to produce a list of polymorphic

identity functions, we must not only convert id to have a ∀-quantified type, but

also singleton. Thus, we need to write (close singleton) (close id) to make the

IPA rule applicable.

2. The rule makes simple modifications fragile. Changing the earlier term (close
singleton) (close id) to (close app)(close singleton) (close id) retains typeabil-

ity.

However, changing it to (close revapp) (close id) (close singleton) results in the

rule IPA not being applicable anymore. This is due to the subterm (close revapp)

(close id) no longer determining the instantiation of the type variable b in the

type ∀a,b.a → (a → b) → b of (close revapp). Therefore, an explicit type ap-

plication is needed to type the following term in IFX even when using the IPA

rule.

(close revapp) (∀a.a → a) (List (∀a.a → a)) (close id) singleton

In order to support terms like this without annotations, the rule IPA would have

to be extended to take n-ary applications into account. This somewhat ad-hoc

treatment of applications is used in (or considered as an extension for) a variety

of other systems [58, 117, 110, 109].
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In summary, O’Toole and Gifford’s work seems to originate the idea of introducing

first-class polymorphism into an HM-based type system by using the principal type of

a given term. However, unlike FreezeML, they keep the worlds of HM-style type

schemes and first-class polymorphic types separated, only suggesting a heuristic in the

typing rule of application rules as convenience to narrow the gap between the two.

In terms of instantiation, IFX does not allow polymorphic instantiation of arbitrary

terms, which is possible in FreezeML (but may requiring the introduction of a variable

first).

Note that the reliance of IFX on explicit type applications for some instantiations

makes the system inherently dependent on an equational theory of types that respects

the order of quantifiers. In contrast, we discussed in Section 6.2.1.1 that disregarding

the order of quantifiers should not cause problems for FreezeML.

6.5.2 Poly-ML

Among all existing systems combining ML and first-class polymorphism, FreezeML is

most closely related to Poly-ML [26]. The latter differentiates ML-style type schemes

σ and first-class polymorphic types (in the form of boxed polymorphic types [σ]),

similarly to IFX and QML. However, it allows impredicative instantiation of boxed

polymorphism without specifying the instantiation further, just using the ⟨ ⟩ operator.

In particular, the user need not use explicit type abstractions (as is sometimes required

in IFX), or state the original type of the term before instantiation, as in QML. As

we describe in Section 2.3.2.2, Poly-ML uses labels to track the origins of first-class

polymorphic types, meaning that type schemes ς in Poly-ML can not only quantify

type variables, but also label variables.

Garrigue and Rémy [26] describe their systems as providing semi-explicit poly-

morphism because of where type annotations are needed: In their system, the ⟨ ⟩ op-

erator is always required to indicate when to eliminate first-class polymorphism, but

without needing to provide further information on how to instantiate. The operator [ ]

used to introduce boxed (i.e., first-class) polymorphism always requires an annotation.

In FreezeML, all polymorphism is first-class, and we integrate its introduction and

elimination into the same mechanisms used for this in vanilla ML, namely let bindings

and variables. A key insight is then that this is sufficient to achieve the same expressive-

ness as System F; we can use these mechanisms to encode the explicit instantiation and

generalisation operators defined as language primitives in IFX, Poly-ML, and QML.
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Further, since the introduction and elimination of polymorphism occurs in FreezeML

exactly where it does in ML, it allows us to type the ML subset of the language us-

ing first-class polymorphic types, rather than needing a separate notion of ML type

schemes. However, we will see in Section 6.5.2.1 that it is easy to translate FreezeML

into Poly-ML programs.

Another perspective on the difference between FreezeML and systems distinguish-

ing different sorts of polymorphic types, as IFX, Poly-ML and QML do, is the fol-

lowing: FreezeML uses syntax to distinguish whether a variable should be instantiated

(using id) or not (using ⌈id⌉). Systems like Poly-ML use different types to ensure

this by distinguishing between id : ∀a.→ a and id′ : [∀a.→ a]. While id is implicitly

instantiated, id′ must be explicitly instantiated by writing ⟨id′⟩.8

However, our emphasis on the fact that FreezeML uses only System F types leads

to a more accurate characterisation of the relationship: In IFX, QML, and Poly-ML, if

a variable x has a first-class polymorphic type (i.e., a type with a toplevel ∀ quantifier

in QML and IFX, and a type ∀ε.[σ]ε in Poly-ML), then usages of the variable x retain

the first-class polymorphism, while an explicit instantiation form is required in each

system (i.e., open in IFX, ⟨·⟩ in Poly-ML, {α ∀β.τ} x in QML).

In this sense, the instantiation behaviour in FreezeML is the dual of the behaviour

found in these three other systems: Variables are instantiated by default, and a special

operator, namely freezing, must be used to retain first-class polymorphism. The fact

that this resembles the behaviour of ML is what allows us to combine the two sorts

of polymorphism found in the other systems into one, and type the ML subset of the

language using it.

6.5.2.1 Translation from FreezeML to Poly-ML

The duality between the instantiation behaviour of FreezeML and Poly-ML becomes

apparent when defining a translation from FreezeML to Poly-ML.

This is enabled by the fact that unlike the open operator of IFX, the Poly-ML oper-

ator ⟨·⟩ may instantiate with (boxed) polymorphic types. Conversely, the instantiation

operator in QML requires an explicit type annotation.

We first define two translations from FreezeML types (but allowing only → as a

type constructor) to Poly-ML types.

8Note that in order for ⟨id′⟩ to be well typed, id′ must actually have the type scheme ∀ε.[∀a.a → a]ε

in the environment. However, this is orthogonal from the discussion here and not the case in IFX or
QML.
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Let ε0 be a fixed label. Then J Kτ is defined as follows, yielding a simple type

τ of Poly-ML. The translation simply boxes all adjacent quantifiers, including at the

toplevel.

JaKτ = a

JA1 → A2Kτ = JA1Kτ → JA2Kτ

J∀∆.HKτ = [∀∆.JHKτ]
ε0 if ∆ ̸= ·

The translation J Kς is defined as ∀ε0.JAKτ, yielding a Poly-ML type scheme ς. It is

applied to term contexts by applying J Kς to the types therein.

Our translation from FreezeML to Poly-ML relies on type information. We there-

fore extend FreezeML typing judgements to translation judgements of the form ∆;Γ ⊢P

M : A ; aP, where aP is a Poly-ML term. Its definition is shown in Figure 6.6 on the

following page.

Frozen variables are translated to ordinary variables in Poly-ML. For plain vari-

ables, the translation depends on their types: Polymorphic variables x are opened,

resulting in ⟨x⟩, while variables whose type does not have toplevel quantifiers are trans-

lated to just x.

Applications and abstractions are translated by inductively translating their parts.

In the annotated case, we have that the translation, λ(x : JAKτ).a, is syntactic sugar for

λx. letx = (x : JAKτ) ina in Poly-ML.

For un-annotated let bindings, we use the extended version of the ⇕ judgement,

defined in Section 3.3.2. Thus, ∆′ denotes the variables to be quantified at the let

binding, which are either b if M is a guarded value or empty otherwise. If no gener-

alisation happens (i.e., M is not a guarded value, or there are simply no variables to

quantify over), the let bound term in the translation is simply the translation a1 of M.

Otherwise, it is [a1 : ∀∆′.JA′Kτ], meaning that we introduce first-class polymorphism in

Poly-ML.

The translation for annotated let bindings works analogously: Here, the function

split, defined in Figure 3.6 on page 47, is used to determine the variables ∆′ that are

generalised at the binding from the annotation A, based on whether M is a guarded

value or not. We then insert the box operator if actual generalisation happens, or just a

type annotation otherwise.

We may summarise the invariants of the translation as follows:

• Whenever an un-annotated lambda binding causes a binding (x : S) to enter the

term context in FreezeML, then the corresponding Poly-ML translation ensures
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∆;Γ ⊢P M : A ; a

x : A ∈ Γ

∆;Γ ⊢P ⌈x⌉ : A ; x

x : H ∈ Γ

∆;Γ ⊢P x : H ; x

x : ∀∆
′.H ∈ Γ ∆ ⊢ δ : ∆

′ ⇒⋆ ·
∆
′ ̸= ·

∆;Γ ⊢P x : δ(H) ; ⟨x⟩

∆;Γ ⊢P M : A → B ; a1 ∆;Γ ⊢P N : A ; a2

∆;Γ ⊢P M N : B ; a1 a2

∆;(Γ,x : S) ⊢P M : B ; a

∆;Γ ⊢P
λx.M : S → B ; λx.a

∆;(Γ,x : A) ⊢P M : B ; a

∆;Γ ⊢P
λ(x : A).M : A → B ; λ(x : JAKτ).a

b = ftv(A′)−∆

(∆,b,M,A′) ⇕ (A,∆′,δ)

(∆,b);Γ ⊢P M : A′ ; a1 ∆;(Γ,x : A) ⊢P N : B ; a2

principal(∆,Γ,M,b,A′) aP =

a1 if b = ·

[a1 : ∀∆
′.JA′Kτ] otherwise

∆;Γ ⊢P let x = M in N : B ; let x = aP in a2

(b,A′) = split(A,M) (∆,b);Γ ⊢P M : A′ ; a1

∆;(Γ,x : A) ⊢P N : B ; a2 aP =

(a1 : JAKτ) if b = ·

[a1 : ∀∆
′.JA′Kτ] otherwise

∆;Γ ⊢P let (x : A) = M in N : B ; letx = aP in a2

Figure 6.6: Translation from FreezeML to Poly-ML
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that (x : JSKτ) may enter the environment. Observe that this type does not contain

ε0 freely, thus meaning that it does not prevent ε0 from being generalised.

• For all other forms of binders that result in (x : A) entering the term context, the

corresponding translation ensures that a type equivalent to (x : ∀ε0.JAKτ) enters

the Poly-ML environment. Note that if A does not contain quantifiers, then ε0

does not appear freely in JAKτ. In that case, the Poly-ML type scheme ∀ε0.JAKτ

is equivalent to just JAKτ.

As an example, consider the following FreezeML term.

let inc= λx.x+1 in
let id= λy.y in
auto ⌈id⌉, id (inc 3)

It is translated to the following Poly-ML term.

let inc= λx.x+1 in
let id= [λy.y : ∀α.α → α] in
auto id, ⟨id⟩ (inc 3)

Here, for the variable id with a (boxed) toplevel quantified type, we observe the du-

ality between plain variables and frozen variables in FreezeML, compared with opened

variables and plain variables in Poly-ML. The variables x and inc with monomorphic

types remain without a surrounding ⟨ ⟩ operator. Note that this would even be the case

if the latter two variables appeared frozen in the source term. The type of the variable

auto is translated to ∀ε.([∀α.α → α]ε → [∀α.α → α]ε). Since it has no toplevel quan-

tifiers in the source type and thus no toplevel box in the Poly-ML type, it is not opened

by the translation.

We conjecture that the translation always yields well typed terms of the corres-

ponding translated types, using the second variant of Poly-ML that incorporates the

value restriction [26, Section 5], in order to make the systems comparable. Concretely,

we conjecture that if ∆;Γ ⊢P M : A ; aP holds, then JΓKς ⊢ aP : JAKτ holds in Poly-

ML. Recall that we use aP for Poly-ML terms instead of just a to avoid confusion with

(FreezeML) type variables.

We also observe that in the translation in Figure 6.6, there is only one case where

the resulting terms contain additional type information not contained in the FreezeML

source term: When creating a box operator in the ∆′ ̸= · cases of both let translation
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rules, a type annotation is required in Poly-ML that is not required in FreezeML. We

may therefore define Poly-ML†, a variant of Poly-ML extended with a new boxing op-

erator. The existing boxing operator of the form [aP : σ] asserts that the Poly-ML term

aP has the polymorphic type σ (which may contain toplevel quantifiers), the resulting

type is [σ]ε for any ε. We suggest adding the form [aP] that does not require the user to

provide σ, but uses the principal σ instead.

We would then use this operator in the aforementioned two cases, and never need to

insert additional type annotations not already present in the source term. The converse

direction certainly does not hold: Poly-ML’s label system allows inferring (boxed)

polymorphism in function parameter types without requiring an annotation in certain

cases. This is not possible in FreezeML.

Desugaring FreezeML to Poly-ML? The similarities between FreezeML and Poly-

ML raise the question of whether it is possible to desugar FreezeML to Poly-ML (i.e.,

defining a translation that is entirely syntactic and does not rely on typing information).

Of course, this desugaring would need to target Poly-ML†, the variant of Poly-ML we

defined earlier that allows introducing first-class polymorphism using principal types

rather than an annotation.

We investigate the following translation idea, relying on the duality between plain

variables in FreezeML and the open operator of Poly-ML.9 For the sake of this discus-

sion, we only consider variables bound by let bindings without an annotation. Thus, we

focus on terms of the form let x = M in N. We may translate all plain (i.e., not frozen)

occurrences of x in N to ⟨x⟩, and translate ⌈x⌉ to just x. In order for this to work, we

box the type of any let-bound term M, rather than just boxing terms with polymorphic

types. Thus, the translation of the let binding would be let x = [aM] in aN, where aM

and aN are the translation of M and N, respectively. Note the Poly-ML† box operator

enclosing aM.

To state an invariant for the translation, we define a third translation function J Kσ

from a FreezeML type to a polymorphic type σ in Poly-ML. It behaves like J Kτ but

leaves quantifiers at the toplevel unboxed.

JaKσ = JaKτ

JA1 → A2Kσ = JA1 → A2Kτ

J∀∆.HKσ = ∀∆.JHKτ if ∆ ̸= ·

9Didier Rémy suggested this desugaring idea to the author of this work.
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The translation invariant is that if a FreezeML let binding adds (x : A) to the term

context, then the corresponding Poly-ML let binding gives x the type ∀ε0.[JAKσ]
ε0 .

Note that this is different from the type-directed translation discussed earlier. The

invariant here states that the type of x is unconditionally boxed at the toplevel, even

if the type within the box is not polymorphic. For example, we may end up with a

binding (x : ∀ε0.[Int]
ε0).

Using this translation idea, the FreezeML term let id1 = id in id1 4 is desugared to

let id1 = [⟨id⟩] in ⟨id1⟩ 4. Here, we indeed have id1 : ∀ε0.[∀α.α → α]ε0 when typing

⟨id1⟩ 4, making the term well typed.10 Note that under this desugaring scheme, the

Poly-ML type of id assumed to be present in the environment would be ∀ε0.[∀α.α →
α]ε0 .

However, this translation scheme seems to fail when the let-bound term already

has a polymorphic type. Consider the following two FreezeML terms (on the left) and

their Poly-ML translations (on the right).

let id2 = id id in id2 4 ; let id2 = [⟨id⟩ ⟨id⟩] in ⟨id2⟩ 4

let id3 = id ⌈id⌉ in ⟨id3⟩ 4 ; let id3 = [⟨id⟩ id] in ⟨id3⟩ 4

Both FreezeML terms are well typed, but only the translation of the first yields a well

typed Poly-ML term. In the second Poly-ML translation result (binding id3), the prin-

cipal type scheme of ⟨id⟩ id is ∀ε0.[∀α.α → α]ε0 , which would then be boxed again,

leading to the perfectly legal type scheme ∀ε0.[[∀α.α → α]ε0]ε0 for id3. Note that it

exhibits two nested levels of boxing, meaning that the single open operator in the sub-

term ⟨id3⟩ 4 leads to an ill typed function application. It may be possible to redefine

the un-annotated boxing operator [aP] suggested for Poly-ML† such that it would only

perform boxing if the principal type of aP is not already boxed, leading to the variant

Poly-ML‡.

In our example, the definitions of id2 and id3 both belong to the category of non-

guarded values. However, the double boxing issue described here seems to be unrelated

to the value restriction:

• If we keep the current translation, but change the [ ] operator to only generalise

the type prior to boxing if the enclosed term is a value, then the problem persists.

10The reader may wonder why we chose the lone variable id as the let-bound term. This is to avoid
discussing the desugaring of terms such as un-annotated lambdas, which requires a slightly different
desugaring approach. Since this is orthogonal from the issue subsequently discussed here, we avoid
detailing the desugaring of such terms.
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This change only affects whether id2 receives type ∀ε0.[∀α.α→α] or ∀ε0.[Int→
Int]ε0 , while the doubly boxed type of id3 is unaffected.

• If we changed the translation so that no box operator is inserted when the let-

bound term is not a guarded FreezeML value, then the types assigned to id2 and

id3 would again differ in that the type of the former contains no box, while the

type of the latter contains a box. This would again affect the typeability of the

body of each binding.

As a result, the author of this work is uncertain whether or not it is possible to

define a desugaring between FreezeML and Poly-ML. In particular, it seems to the

author that the variant Poly-ML‡ suggested to address the introduction of duplicate

boxes does not enjoy principal types. While the principal type scheme of λx.[x] in

Poly-ML† would be ∀α,ε.α → [α]ε, this does not hold for Poly-ML‡. Instantiating

α with a boxed type such as [Int]ε0 results in the return type of the function having

two immediately nested boxes, which the [ ] operator of Poly-ML‡ would not allow. It

may be possible to address this problem by refining the equational theory of types in

Poly-ML‡ to disregard such duplicate boxes.

The existence of a desugaring between FreezeML and Poly-ML deserves further

investigation in the future. On one hand, the similarities between the two systems sug-

gests that a desugaring between them may exist. On the other hand, the fact that plain

variables in FreezeML do not syntactically indicate whether they actually perform in-

stantiation of any toplevel quantifiers or not may make this impossible.

6.5.3 QML

Like IFX and Poly-ML, QML [106] relies on a distinction between ML type schemes

and first-class polymorphic types. Unlike the former two and our system, QML also

incorporates existential types in addition to universally quantified ones.

The system requires type annotations at the introduction and elimination forms

of first-class polymorphism, making the system somewhat verbose to use. However,

the authors of QML state that their goal is the simplicity of the underlying formalism

and its meta-theory. Indeed, QML always allows eta-expansion without requiring an-

notations, while not relying on complex mechanisms, such as Poly-ML’s label system.

Further, the language permits a simple, direct reduction semantics.

One of the suggestions the authors make to ease the burden of annotations is to

define syntactic sugar for annotations on function parameters with the following effect.
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λ(x : ∀α.α → α).e ≡ λy. let x = y {∀α.α → α} ine

Here, x is annotated with the polymorphic type ∀α.α → α, but the elaboration of this

sugar means that x receives the type scheme Π(α).α → α in e. This is achieved by

eliminating the first-class polymorphism first (using y {∀α.α → α}), and then per-

forming ML-style generalisation at the let binding. Mixing first-class polymorphic

types and ML type schemes, in particular in such a way that makes it opaque to the

user, is exactly what FreezeML tries to avoid.

Russo and Vytiniotis later reflect that “the fact that HMF does not require two dis-

tinct universal quantifiers (as we do) may be simpler for programmers” [106]. They

subsequently discuss the potential effects of merging the two types of universal quanti-

fiers in their system. Two of their resulting comments are highly relevant in the context

of FreezeML.

1. They observe the typical difficulty of needing to make decisions about whether

or not to instantiate certain term variables or not, similarly to what we discussed

in Section 1.3.

2. They consider the option of using the existing ML constructs for the introduction

and elimination of first-class polymorphism (i.e., using let bindings and variables

for this), just as FreezeML does. However, they observe that this requires the

user to “laboriously follow the typing rules” [106, Section 7.3] to conclude where

instantiation of non-variable terms must be forced by inserting explicit operators.

In FreezeML, the answer to the first issue is the freezing operator. With respect to

the second issue, the author of this work believes that it is reasonable to ask program-

mers to have a clear picture of where exactly polymorphism occurs in their programs

based on simple rules, even if it requires users to determine where additional operators

are required to achieve the desired typing.

We conjecture that it would be possible to add an introductory form for first-class

polymorphism to QML that uses the principal type of the given term, similarly to the

close operator of IFX and the operator we suggest in Section 6.5.2 to obtain Poly-ML†

from Poly-ML. However, we do not see a straightforward way to change the elimina-

tion of first-class polymorphism in QML such that it would not require an annotation.
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6.5.4 HMF

Like FreezeML, HMF [58] just uses a single sort of quantified type. However, in

contrast to our system, HMF is able to account for instantiation and generalisation in

a declarative fashion, providing standalone typing rules for them, analogously to the

INST and GEN rules of ML (as shown in Figure 2.2). In FreezeML both operations are

inherently tied to individual syntactic forms.

The price that HMF pays for this is the need for a minimality condition on types

that is imposed while typing term applications and treating them as n-ary forms, as

discussed in Section 2.3.3.1, going beyond the principality condition on let bindings

shared with FreezeML. Further, the type system cannot give toplevel polymorphic re-

turn types to functions without annotations. However, the resulting type system seems

to require fewer annotations than FreezeML. One aspect shared between FreezeML

and HMF is that the typing restrictions it imposes on let bindings as well as applica-

tions make some terms ill typed that would be accepted if the restrictions were removed

from the typing rules. This is in contrast to the value-restricted variant of Poly-ML [26,

Section 5], where the principality condition on let bindings never prevents typing a

term that would otherwise be accepted. Instead, it only affects the possible derivations

of the same judgements. Nevertheless, we conjecture that this would no longer be the

case in Poly-ML†, the extension we proposed in Section 6.5.2.

Finally, we observe that Leijen’s proposal of rigid annotations is similar in spirit

to frozen variables in FreezeML. As discussed in Section 2.3.3.1, a rigidly annotated

term (e : σ) prevents the ubiquitous generalisation and instantiation rules from being

applicable. In this sense, the FreezeML term ⌈x⌉ is equivalent to a rigidly annotated

term (x : σ) in HMF, where σ is the type of x. This illustrates that in FreezeML,

we do not require type annotations to perform freezing, but need to bind the term

under consideration to a variable first. This in turn requires a type annotation for non-

principal types (assuming the variable is let-bound). Thus, a variant of HMF containing

a freezing operator on arbitrary terms using their principal types would be closely

related to FreezeML, similarly to the idea of extending Poly-ML to Poly-ML†.

6.5.5 GI

The GI system [110] and FreezeML both rely on System F types. Other than that, the

systems are rather different in spirit, due to GI’s type system trying to minimise the

number of annotations using heuristics.
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One similarity is that GI uses three syntactic forms of unification variables dur-

ing inference, denoting whether they can unify with fully polymorphic types, mono-

morphic types, or what we call guarded types (i.e., types without toplevel quantifiers).

The first two forms correspond to unification variables restricted with restrictions ⋆ and

• in our systems, respectively. We believe that both representations are largely equi-

valent, but prefer ours, where a restriction context Θ directly corresponds to residual

constraints consisting only of mono constraints (as discussed in Section 5.3.1.2).

One interesting difference is that the various forms of restrictions imposed by type

variables are only present during inference in GI. Their substitution property for types

does however only permit monomorphic instantiation. This means that while id may

be given any type A → A in FreezeML for arbitrarily polymorphic A, GI only permits

monomorphic types in place of A. In other words, the distinction between allowing

monomorphic and polymorphic types is visible in the possible types of FreezeML

terms, whereas in GI it is only used to check the validity of certain polymorphic in-

stantiations that are strictly required to make a term well typed.

6.5.6 Example-guided comparison

We now compare most of the systems discussed throughout this work based on a set of

examples collected from existing literature. The examples were originally collected by

Serrano et al. [110, 109] comparing Quick Look, GI, MLF, HMF, FPH and HML. We

restate their results for these systems here and add IFX, Poly-ML, QML and FreezeML

to the comparison.

The example terms assume that the functions with corresponding types shown in

Figure 6.7 on the following page are in scope, containing many of the example func-

tions we have already used earlier in this work.

For IFX, Poly-ML and QML we assume that all the types given in Figure 6.7 that

have toplevel quantifiers use the notion of ML type schemes of the respective sys-

tems. Of course, all these systems dictate that for nested quantifiers, we must use

first-class polymorphic types. For example, this means that the type of id from Fig-

ure 6.7 becomes the QML type scheme Π(α).α → α in QML, while the type of ids is

List (∀α.α → α). Notice the different quantifiers used in each case.

The examples are divided into four collections, called A, B, C, and E. Note that

there is no collection D, we follow the naming scheme introduced by Serrano et al.

[109]. We only deviate from their naming scheme in a few cases where they gave a
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head : ∀a.List a → a id : ∀a.a → a

tail : ∀a.List a → List a ids : List (∀a.a → a)

[ ] : ∀a.List a inc : Int→ Int

(::) : ∀a.a → List a → List a choose : ∀a.a → a → a

singleton : ∀a.a → List a poly : (∀a.a → a)→ Int×Bool

(++) : ∀a.List a → List a → List a auto : (∀a.a → a)→ (∀a.a → a)

length : ∀a.List a → Int auto′ : ∀b.(∀a.a → a)→ (b → b)

map : ∀a b.(a → b)→ List a → List b

app : ∀a b.(a → b)→ a → b

revapp : ∀a b.a → (a → b)→ b

runST : ∀a.(∀s.ST s a)→ a

argST : ∀s.ST s Int

pair : ∀a b.a → b → a×b

pair′ : ∀b a.a → b → a×b

Figure 6.7: Type signatures for example functions

single number to multiple related terms that exhibit differences in the systems that we

add to the comparison.

The tables shown in Figures 6.8 to 6.10 then contain one column per system. In

each such column, we use to indicate that the term in that row is accepted by the

system without changes and if it is not, for example because a type annotation must

be added, or the term cannot be accepted even after adding annotations. We use for

cases where the original term is not accepted, but it is sufficient to add some operator

to the example term to make it type-check if said operator does not include any sort

of type annotation. Thus, can only appear in the columns for IFX (adding open or

close), Poly-ML (adding the ⟨ ⟩ operator) or FreezeML (adding ⌈ ⌉, $ or @).

In some rows of the table, we state how the corresponding example would have

to be modified in order to be accepted by a particular system. This is usually done to

show how to modify terms to become well typed in FreezeML, but we sometimes show

the necessary modifications required for other systems, in particular if an example is

accepted by all but one system.

We generally consider the original version of each system, as defined by the cor-
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responding authors, without any of the language extensions they might propose. We

sometimes indicate how a given result may change when using particular extensions.

For the four systems added to the comparison by the author of this work, the results

were established manually by using the typing rules of each system, rather than relying

on potential implementations.

While our tables contain results for all terms collected by Serrano et al., we eschew

going through every single one, instead focusing on examples illustrating differences

between the systems. Further, we do not consider this comparison to be a quantitat-

ive analysis of how many annotations each system may typically require in practice.

After all, the examples were often presented in existing literature to illustrate differ-

ent aspects of typing terms in the presence of first-class polymorphism, but are not

necessarily representative of real-world programs.

Collection A The first subset A of examples is shown in Figure 6.8 on the next page,

containing examples performing polymorphic instantiation.

We observe that the term choose [ ] id (example A3) cannot be typed in IFX, even

when using the IPA rule proposed by the authors (see Section 6.5.1) to implicitly in-

stantiate first-class polymorphism in application positions. This is due to the necessary

impredicative instantiation not being deducible just from the subterm choose [ ] and

illustrates the need for n-ary application rules in other systems, such as HMF, GI and

QL. Poly-ML and FreezeML can type the same term without using n-ary application

rules by allowing arbitrary polymorphic instantiation.

The term λ(x : ∀a.a → a).x x (example A4) can be typed in IFX only when using

the IPA rule, which we indicate with the superscript I. In Poly-ML, the first occurrence

of x in the body of the function must be replaced with ⟨x⟩ to open it. Note that the an-

notation on x must also be boxed. As the need for this boxing within polymorphic

annotations is entirely mechanical, we implicitly assume that it takes place for all an-

notations involving annotations with polymorphic types in Poly-ML.

In example A5, we observe an issue already discussed in Section 6.5.1: In order

for the IPA rule to become applicable, we must convert id from having a type scheme

to having a first-class polymorphic type.

Example A8 illustrates that almost no system can handle the isomorphic types of

auto and auto′.11

11Even in MLF, these types are not equivalent, but the type of auto′ is more general. Only FML (not
part of the comparison table, see Section 2.3.5) treats these types as equivalent.
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A Polymorphic instantiation

A1 λxy.x

A2 choose id

A3 choose [] ids

A4 λ(x : ∀a.a → a). x x I

A5 id auto

IFX: (close id) auto

I

A6 id auto′ I

A7 choose id auto

A8 choose id auto′

A9 f (choose id) ids

FreezeML: f (choose ⌈id⌉) ids

P P

A10a poly id

FreezeML: poly ⌈id⌉

I P P

A10b poly (λx.x)

FreezeML: poly $(λx.x)

I P P

A10c id poly (λx.x)

FreezeML: id poly $(λx.x)

I P P

A11 k (λ f . f 1, f true) xs

A12a poly id

FreezeML: poly ⌈id⌉

I P P

A12b app poly id

FreezeML: app poly ⌈id⌉

I P P

A12c revapp id poly

FreezeML: revapp⌈id⌉ poly

P P

A13a app runST argST

FreezeML: app runST ⌈argST⌉

I P P

A13b revapp argST runST

FreezeML: revapp ⌈argST⌉ runST

P P

where
f : ∀a.(a → a)→ List a → a

k : ∀a.a → List a → Int

xs : List((∀a.a → a)→ (Int×Bool))
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Figure 6.8: Example collection A



198 Chapter 6. Discussion

The term f (choose id) ids (see example A9) illustrates some interesting differ-

ences between the different systems. Here, the type of f is ∀a.(a → a)→ List a → a

(as shown in the bottom left corner of the table in Figure 6.8). First, we observe the

limits of HMF’s rule to imposing the use of the least polymorphic type that makes an

application well typed. Even applying the rule across all arguments of f (as the n-ary

application rule of HMF allows) does not help, as the system is forced to pick an insuf-

ficiently polymorphic type when typing the subterm choose id first. FreezeML would

pick the same type as HMF for the latter subterm, rather than keeping id polymorphic.

Thus, we must freeze id to make the term well typed in FreezeML.

In Poly-ML and QML, we must use the explicit introductory forms for first-class

polymorphism to lift id from having a type scheme to having a first-class polymorphic

type. Thus, we must replace id with [id : ∀α.α → α] in Poly-ML and {∀α.α → α} id in

QML. However, as mentioned in Sections 6.5.2 and 6.5.3, the author of this work con-

jectures that it is possible to equip both systems with introductory forms for first-class

polymorphism that could use the principal type instead of requiring an annotation. We

indicate this with P in the table (i.e., with our proposed extensions of both systems,

the entry would become instead).

Example A12 again shows the limits of IFX, the term needs to be rewritten to the

following to become well typed.

(close revapp) (∀a.a → a)
(
(∀a.a → a)→ (Int×Bool)

)
(close id) poly

Collections B Collection B contains functions on polymorphic lists, it is shown in

Figure 6.9 on the following page.

All examples can be adapted to become well typed without annotations in FreezeML,

using the freezing, instantiation, or generalisation operator. The same holds for almost

all examples in QML and Poly-ML when using the extensions discussed in the context

of collection A.

One outlier is example B7b, which QML requires to be changed to the following.

((head ids) {∀a.a → a}) true

As mentioned before, we do not believe that an un-annotated version of this elimination

form can be added to QML without requiring additional changes to the system.

Example B5, where the lists (singleton id) and ids are concatenated, illustrates

some differences between the systems using heuristics. In GI and HMF, the subterm

(singleton id) is typed in isolation, without taking the surrounding context into account.



6.5. Related work 199

Q
L

G
I

M
L

F

H
M

F

FP
H

H
M

L

IF
X

Po
ly

-M
L

Q
M

L

Fr
ee

ze
M

L

B Functions on polymorphic lists

B1a length ids; tail ids; head ids

IFX needs (close f ) for all functions f

I

B1b singleton id

B2 id :: ids

FreezeML: ⌈id⌉ :: ids

I P P

B3 (λx.x) :: ids

FreezeML: $(λx.x) :: ids

I P P

B4 singleton inc ++ singleton id

B5 singleton id ++ ids

FreezeML: singleton ⌈id⌉ ++ ids

I P P

B6 map poly (singleton id)

FreezeML: map poly (singleton ⌈id⌉)

I P P

B7a map head (singleton ids)

IFX needs type application

B7b head ids true

FreezeML: (head ids)@ true

I

C Inference of polymorphic lambda binders and generalisation points

C1a λ f .( f 1, f true)

C1b λ( f : ∀a.a → a).( f 1, f true)

Poly-ML:

λ( f : [∀a.a → a]).(⟨ f ⟩ 1,⟨ f ⟩ true)
C1c g (λ f .( f 1, f true))

C2 r (λx y.y)

FreezeML: r $(λx.$(λ y. y))

I P P

where
g : ((∀a.a → a)→ (Int×Bool)→ Char)

r : (∀a.a →∀b.b → b)→ Int
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Figure 6.9: Example collections B and C
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The guardedness condition in GI and the requirement to use least polymorphic types

in HMF then impose that id must be instantiated. As a result, both systems require

a type annotation to accept the example. Only the more elaborate heuristics of QL

do take the surrounding context into account when typing this subterm, meaning that

no annotation is required. Of course, the example does require some adaption to be

accepted by any of the four explicit systems.

Collection C Collection C, also shown in Figure 6.9, contains examples where poly-

morphic function parameter types must be inferred or it must be inferred where exactly

generalisation should happen.

No system can type λ f .( f 1, f true), only Quick Look’s bidirectionality can do

so if sufficient context is present (see example C1c). While Poly-ML’s label system

can be used to infer some polymorphic function parameters, it cannot do so in example

C1c (after adding appropriate open operators around both usages of f ) : At the point of

typing ⟨ f ⟩ 1 and ⟨ f ⟩ true, the label associated with f ’s boxed polymorphic type appears

in the environment, making it illegal to open f , even though the label is freshened when

typing the application g (λ f . . . .).

All systems in the table can type the original example when an annotation is given

on f , but Poly-ML requires opening f ’s boxed polymorphic type first.

Example C2 illustrates the difficulties of determining generalisation points. In the

explicit systems, this can be mitigated by inserting appropriate operators, rather than

type annotations. In fact, all of IFX, Poly-ML, QML and FreezeML reject even the

simpler term poly (λx.x) as they never perform generalisation of an arbitrary term that

would lead to a polymorphic function argument unless explicitly instructed to do so.

The same term is accepted by the first six systems compared in Figure 6.9.

Collection E Collection E in Figure 6.10 on the next page contains examples related

to eta-expansion and other small program transformations.

Of the systems shown in the table, only MLF, Poly-ML and QML unconditionally

guarantee stability of typing under eta-expansion without requiring an annotation even

if the eta-expanded function has a polymorphic parameter type. This coincides exactly

with the results for example E2a.

Adding an annotation on the overall function allows QL to propagate it to the binder

x, as shown in E2b. Syntactic annotation propagation could also be used to type the

example, for example when using the corresponding extension of HMF. We mark this
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E η-expansion

E1a k h lst

E1b k (λx.h x) lst

FreezeML: k $(λx.h x) lst

I P P

E2a λx.poly x

E2b (λx.poly x) : (∀a.a → a)→ (Int×Bool) A

E3a app poly id

FreezeML: app poly ⌈id⌉

I P P

E3b app (λx.poly x) id

FreezeML:

app (λ(x : ∀a.a → a).poly ⌈x⌉) ⌈id⌉

P P

E4a map poly ids

IFX: (close map) poly ids

I

E4b map (λx.poly x) ids

FreezeML:

map (λ(x : ∀a.a → a).poly ⌈x⌉) ids
E5a compose poly head

IFX needs 3 type applications

E5b λxs.poly (head xs)

FreezeML:

λ(xs : ∀a.a → a).poly (head ⌈xs⌉)
where

k : ∀a.a → List a → a

h : Int→∀a.a → a

lst : List (∀a.Int→ a → a)
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Figure 6.10: Example collection E
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reliance on an extension by writing A.

Note that Poly-ML and QML fail on example E3b not due to the eta expansion

therein, but simply because id needs to be lifted to have a first-class polymorphic type.

Example E5b effectively eta-expands the composition of head and poly, the only

examples succeeding are the same ones that support general eta-expansion, as in ex-

ample E2a.

Summary As expected, we observe that the systems relying on heuristics or some

degree of MLF types (shown as the first six systems in the tables in Figures 6.8 to 6.10)

require fewer annotations than the explicit systems (shown in the last four columns of

the tables). The systems in the latter group are designed such that users need to be

more explicit about their intentions. In particular, IFX, Poly-ML and QML require the

usage of dedicated operators at all introduction and elimination sites of their notions

of first-class polymorphism. In FreezeML, this is not the case for all introduction and

elimination sites of polymorphism, which is always first-class, due to the coupling

with the existing behaviour of ML. However, users may still need to freeze variables

as well as insert instantiation and generalisation operators. Nevertheless, the results in

the table indicate that those situations where FreezeML requires the insertion of a type

annotation (e.g., on a function parameter or when using the annotated generalisation

operator) often coincide with situations where many of the six systems in the first group

also require annotations.

We observe that Poly-ML and QML require many more type annotations than

FreezeML in order to accept the examples in Figures 6.8 to 6.10. This may be al-

leviated by using the language extensions that the author of this work proposed for

both systems that rely on principal types, as indicated with P in the tables. However,

while the author of this work conjectures that these extensions preserve the existence

of principal types in each system, no attempts have been made to formalise them and to

prove the correctness of the updated inference algorithms. It would also be interesting

to investigate how our proposed extensions would affect any of the other properties

given about each system by their original developers.

Independently from these potential extensions, Poly-ML and QML can type some

examples without type annotations where FreezeML does require annotations, due to

the ability of the former two systems to infer polymorphic types for function paramet-

ers in certain situations. This is never possible in FreezeML (as well as GI, HMF, FPH

and HML). We observe that even when allowing the use of the IPA rule in IFX, the
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system still requires more user intervention than the other three explicit systems.

Of course, the results in Figures 6.8 to 6.10 do not necessarily present a realistic

picture of the differences between the systems when writing real-world programs. In

addition, the comparison does not take into account the ability of users to reason about

their programs and understand potential typing errors in each system.





Chapter 7

Conclusions and future work

We now summarise the findings of this thesis and outline future work.

7.1 Concluding remarks

This work introduced FreezeML, an approach for integrating first-class polymorphism

into the HM typing discipline. It embraces the existing mechanisms for generalisation

and instantiation found in the HM system, namely coupling them with let bindings

and variables, respectively. While the automatic instantiation of variables is all that

is needed when staying within the limits of the HM system, the presence of first-

class polymorphism necessitates the ability to keep values polymorphic. FreezeML

answers this by equipping users with the ability to sidestep the magic that is implicit

instantiation in the form of the freezing operator, and provide variables that simply

reflect their associated types.

This thesis shows that combining freezing with the existing mechanisms for gener-

alisation and instantiation mentioned above are all the ingredients required to support

first-class polymorphism. The result is a type system where all of its rules are taken

from either ML or System F directly, except for let bindings.

Completeness of type inference is ensured by two invariants.

I-1. Ensuring that all polymorphism occurring in the types of term variables is

uniquely determined

I-2. Limiting instantiation to term variables

To ensure the first condition for un-annotated binders, FreezeML impose that lambda-

bound variables only receive monomorphic types, while let bindings must determine

205
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the type of the variable based on the principal type of the let-bound term.

FreezeML incorporates the value restriction by default. Based on the observation

that the types of generalisable terms do not have toplevel quantifiers1, we can use a

simple rule for bringing type variables into scope using annotations on let bindings.

However, the value restriction imposes that additional monomorphisation is required

when handling non-generalising let bindings without annotations in order to maintain

invariant I-1.

As we have seen in Section 6.5.6, these conditions result in a type system that only

requires a moderately increased number of necessary type annotations as compared to

other systems when considering typical example terms from the literature. While users

still need to add freezing operators as well as instantiation and generalisation hints,

the author considers this to be an acceptable compromise compared to other systems

whose specification is more complex, or that rely on a more complex language of types.

Two type inference algorithms We have presented two type inference algorithms in

this work. The first one is a modest modification of Algorithm W. The key additions

are the usage of restriction contexts, indicating what unification variables may or may

not stand for polymorphic types as well as the extension of unification to arbitrarily

quantified types. During unification, restrictions need to be to checked and updated as

needed.

Presenting a type inference algorithm based on Algorithm W shows that FreezeML

imposes few requirements on the underlying inference algorithm. Further, being able

to directly relate the principal types of FreezeML to the output of the algorithm made

certain proofs about principal types (e.g., Lemma 3.2 on page 52) trivial. However,

time has not stood still since the inception of Algorithm W in the 1970s. Type infer-

ence approaches based on constraint solving have been developed since, whose bene-

fits have been illustrated in theory by the existence of extendable frameworks such as

HM(X) [86] and OutsideIn(X) [116] as well as in practice by enabling the extensibility

of GHC.

We have adapted Pottier and Rémy’s approach [97] for FreezeML, where the en-

tire type inference problem can be reduced to a constraint solving problem, allowing

the translation and solving stages to be completely independent. However, the overall

correctness of the approach remains as a conjecture due to its dependence on Conjec-

1As pointed out at the end of Section 3.2.1.3, there is a single exception to this rule, which causes no
problems.
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ture 5.1. We have discussed the obstacles faced when attempting to close this gap in

detail in Section 5.4.2.

Section 6.2 offered a glimpse of the benefits of the constraint-based approach,

where some extensions can be achieved simply by changing the translation function,

but keeping the solver as is.

7.2 Future work

Of course, one important piece of future work is proving that Conjecture 5.1 holds, thus

obtaining an overall correctness result for the constraint-based inference approach. We

now explore additional avenues for future work, some of which have already been

mentioned earlier.

7.2.1 Performing type inference in context

FreezeML typing judgements are explicit about the type variables in scope, which

are left implicit in many traditional presentations of ML. This is particularly useful in

FreezeML where we need to track what type variables can and cannot be substituted

with polymorphic types.

This makes the type inference in context approach [35, 34] a natural candidate

for adaption. In that work, contexts are not only used to track what type and term

variables are in scope, but also record constraints imposed on them. For example,

contexts can record known equalities between types and type variables. Crucially,

contexts are ordered, where the entry for the nth variable in the context can only men-

tion the n− 1 previous variables in the context. This idea is similar to the usage of

telescopes [14] in dependently typed systems. In the setting of first-class polymorph-

ism, the idea of enriching ordered contexts with additional information is reminiscent

of the order-dependent prefixes of MLF. They also appear in the work of Dunfield and

Krishnaswami [16], which considers higher-rank polymorphism, but only predicative

instantiation.

Thus, we consider an approach based on type inference in context for FreezeML to

be an interesting third way, as a middle-ground between Algorithm W and constraint-

based inference. It avoids the gap between terms and constraints naturally present

in constraint-based inference, while still collecting constraints in a disciplined man-

ner during inference, resolving the “dependency panic” that Gundry attributes to Al-
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gorithm W [34].

We return to this approach when discussing Explicit FreezeML next.

7.2.2 Explicit FreezeML

In FreezeML, generalisation and instantiation are inherently coupled to let bindings

and (plain) variables, respectively. As a consequence, the typing rules for both con-

structs are concerned with more than one aspect of typing: As in a syntax-direct

presentation of ML, the rule for let x = M in N couples generalising the type of M

with binding the variable x, while the typing rule for the term x looks up its type and

performs instantiation.

The reader may therefore wonder whether there exists a declarative presentation of

FreezeML, where each rule only has a single role, avoiding the somewhat algorithmic

flair of the FreezeML typing rules in Figure 3.5 on page 45. After all, such a declarative

presentation does exist for ML, as shown in Section 2.2.1, where generalisation and

instantiation are performed by standalone rules.

Unfortunately, it is easy to see that the notion of type equivalence and principal

types in FreezeML prevents this. If we added suitable versions of INST and GEN to

FreezeML, performing polymorphic instantiation and generalisation to the principal

type, we observe the following problem. Returning to our example singleton id from

Section 1.3, we observe that in this modified version of the system, we could assign the

types List (∀a.a → a) and ∀a.List (a → a) to the term, with no principal type existing.

This is not surprising: After all, systems that do employ standalone instantiation and

generalisation rules, such as HMF, rely on careful heuristics elsewhere in the type

system to limit their application.

One way to resolve this issue without complicating the typing rules is by denoting

explicitly in syntax where instantiation and generalisation may occur. The resulting

system, called Explicit FreezeML, then enjoys a simple, declarative specification. In

the following, we use P and Q to refer to Explicit FreezeML terms.

Concretely, the FreezeML term let x = U in N, where U is a guarded value and

hence generalisable, is translated to the Explicit FreezeML term let ⌈x⌉= Λ•.P in Q,

where P and Q are the translated versions of the corresponding subterms. The Explicit

FreezeML term relies on two constructs: Let bindings in Explicit FreezeML do not

perform generalisation or impose a principality condition, but simply bind variables,

similarly to let bindings in our version of System F (see Figure 2.8 on page 21). Note
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that the “frozen” let bindings of Explicit FreezeML are written using ⌈x⌉ to distinguish

them from those let bindings found in FreezeML (but absent in Explicit FreezeML).

When applied to a term, the operator Λ•.P generalises it, using its principal type.

Explicit FreezeML also introduces a postfix instantiation operator P ⋆, which in-

stantiates all toplevel quantifiers of P’s type with polymorphic types. We can then

translate a plain (i.e., instantiating) FreezeML variable x to the Explicit FreezeML

term ⌈x⌉ ⋆. As a result, plain variables are not required in Explicit FreezeML, it only

uses frozen ones. A second instantiation operator P• performs monomorphic instan-

tiation instead. It can be used to obtain an explicit variant of ML itself, translating all

terms x to ⌈x⌉• instead.

In order to translate annotated let bindings of FreezeML to Explicit FreezeML, we

may introduce a generalisation primitive ΛA.P that generalises P to type A, rather than

to the principal one. However, we observe that this operator need not be a language

primitive if we add System F style type abstractions to the language. Using our earlier

translate of type annotations using annotated lambda terms, we may then define the

following syntactic sugar within Explicit FreezeML.

(P : A) ≡ (λ(x : A).⌈x⌉) P

Λ∀a.H .P ≡ Λa.(P : H) ≡ Λa.((λ(x : H).⌈x⌉) P)

Using this, we may then translate FreezeML terms let (x : A) = M in N to let ⌈x⌉=
ΛA.P in Q.

The syntactic sugar used within Explicit FreezeML and the translation from Freeze-

ML to Explicit FreezeML (denoted ;) is shown in Figure 7.1 on the following page.

Here, we use the convention that P and Q denote the translation of the first and second

subterm of the original term (if existent), respectively. We observe that the translation

is in fact a desugaring, in the sense that it can be performed on untyped terms and does

no rely on type-checking the source program.

For the sake of simplicity, we do not enforce the value restriction within Explicit

FreezeML, but implement it as part of the translation. However, we could also intro-

duce a notion of syntactic values in Explicit FreezeML itself.

7.2.2.1 Retaining principal types

So far, we have not presented the full syntax of Explicit FreezeML. Based on our

informal description so far, one may assume that it is defined as follows.

P,Q ::= ⌈x⌉ | λx.P | λ(x : A).P | P Q | Λa.P | P A | let ⌈x⌉= P in Q | P• | P⋆
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(P : A) ≡ (λ(x : A).⌈x⌉) P

Λ∀a.H .P ≡ Λa.(P : H)

x ; ⌈x⌉⋆
⌈x⌉ ; ⌈x⌉

λx.M ; λx.P

λ(x : A).M ; λ(x : A).P

M N ; P Q

let x =U in N ; let ⌈x⌉= Λ•.P in Q

let x = M in N ; let ⌈x⌉= (Λ•.P)• in Q if M ̸∈ GVal

let (x : A) =U in N ; let ⌈x⌉= ΛA.P in Q

let (x : A) = M in N ; let ⌈x⌉= (P : A) in Q if M ̸∈ GVal

Figure 7.1: Explicit FreezeML syntactic sugar and translation from FreezeML

However, this system would lack principal types for two reasons.

1. Allowing System F style type abstractions without further restrictions can lead

to terms having different, incomparable types. As an example, consider Λa.λx.x.

We may pick a as the type for x, the principal type of the overall term is then

∀a.a → a. However, not picking a leads to the principal type ∀a.b → b for

some fresh b. This issue is what led to the incompleteness of McCracken’s

system [75], as identified by O’Toole and Gifford [89].

2. In Section 3.2.1.2 we used the following FreezeML term as an example for why

monomorphic instantiation is required in FreezeML when the let-bound term is

a not a value and therefore not generalised (see (3.6) on page 49)

let f = bot bot in ( f 3, ⌈ f ⌉)

A similar issue arises in Explicit FreezeML, where all let bindings are non-

generalising. For example, consider the following related term, which we may

naively consider to be the translation of the previous FreezeML term.

let f = (⌈bot⌉ ⋆) (⌈bot⌉ ⋆) in ( f 3, ⌈ f ⌉)

However, this term would have types such as (Int× (Int → Int)) and (Int×
(∀a.a → a)), but there would exist no principal one. As usual, the problem

is that we would allow arbitrary polymorphism to enter the term context.
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ITerm ∋
I,J ::= ⌈x⌉

| λ(x : A).I

| I Q

| Λa.I

| I A

| let ⌈x⌉= I in J

| Λ•.P

MTerm ∋
M,N ::= ⌈x⌉

| λ(x : A).M

| M Q

| Λa.I

| M A

| let ⌈x⌉= M in N

| Λ•.P
| λx.M

| M•

PTerm ∋
P,Q ::= ⌈x⌉

| λ(x : A).P

| PQ

| Λa.I

| PA

| let ⌈x⌉= M in Q

| Λ•.P
| λx.P

| P•
| P⋆

Figure 7.2: Syntax of Explicit FreezeML

Both problems can be addressed in a similar way, by defining subsets of terms that

are more restricted in what types they may have. Of course, our goal is that Explicit

FreezeML terms P have principal types.

However, we also define terms M that guarantee that all their types can be ob-

tained from the principal one using monomorphic instantiation only. The key idea is to

disallow the polymorphic instantiation operator in M-terms.

We also define terms I that are guaranteed to have unique types. Here, we dis-

allow both forms of instantiation operators, meaning that only System F style type

applications remain to eliminate quantifiers, as well as removing un-annotated lambda

functions.

This leads to the overall syntax of Explicit FreezeML shown in Figure 7.2. Note

that the first problem we described is solved by only allowing I-terms under type ab-

stractions. The second problem is solved by only allowing M-terms as let-bound terms

in the last two categories. This means that Explicit FreezeML preserves the invariant

I-2 mentioned on page 205. However, the invariant I-1 is not maintained in Explicit

FreezeML, which is also the case when adding explicit type applications to FreezeML,

as discussed in Section 6.2.2.1.

While this does not preclude the existence of principal types, it makes proving their

existence more challenging as compared to the original design of FreezeML, where

only known polymorphism is instantiated. For example, the term ⌈bot⌉ ⋆ Int allows
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any type of the form ∀a.A for the subterm ⌈bot⌉⋆, where A may contain a freely.

However, while none of these types are most general, the overall term has principal

type a for some fresh a.

Returning to the syntax of Explicit FreezeML in Figure 7.2, we further observe that

the generalisation operator is allowed in all term forms (as it guarantees a unique type

of the resulting term) and function arguments can always be P terms, as the overall

function type dictates the type of the argument.

7.2.2.2 Summary

Explicit FreezeML can be considered to be an alternative, rationalised perspective on

FreezeML. Effectively, the generalisation and instantiation operators, defined as syn-

tactic sugar in FreezeML (see Section 3.2.2), become language primitives in Explicit

FreezeML. This allows us to state a declarative specification of FreezeML. The care-

ful definition of three different classes of terms denote a purely syntactic criterion to

ensure the existence of principal types.

The author of this thesis has designed a type inference algorithm for Explicit

FreezeML that is based on type inference in context (described in Section 7.2.1). How-

ever, this work is not finished at the time of writing.

We observe that the instantiation and generalisation primitives of Explicit FreezeML

are closely related to operators found in the systems discussed in Section 2.3.2, but our

system eschews the introduction of two separated forms of quantified types. The gen-

eralisation operator Λ• of Explicit FreezeML is similar to the close operator of IFX.

Its annotated counterpart ΛA is similar to the [−] operator of Poly-ML and the prefix

version of the {−} operator in QML. In turn the monomorphic instantiation operator

• is similar to the open operator of IFX, while polymorphic instantiation resembles

Poly-ML’s ⟨−⟩.

7.2.3 FreezeML(X)

Our constraint-based inference algorithm introduced in Chapter 5 performs type in-

ference using an intermediary, namely the constraint language. While this on its own

increases modularity, the natural end goal would be to fully embrace the constraint-

based approach by allowing constraints to appear in types in the style of qualified

types. Abstracting over the concrete constraint domain would then allow us to define

“FreezeML(X)”, a framework in the style of HM(X) or OutsideIn(X) for defining sys-
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tems with first-class polymorphism using the ideas of FreezeML.

This would involve formalising requirements imposed upon the constraint domain

X to ensure the existence of a complete inference algorithm, possibly by defining such

an algorithm with individual parts of it being specific to X .

To the best of the author’s knowledge, no such framework exists presently that

supports first-class polymorphism. The definition of HM(X) only considers prenex

polymorphism and polymorphic instantiation. While Serrano et al. state that their work

on the GI [110] and QL [109] systems is in the context of the OutsideIn(X) framework,

they do not explain the relationship in detail or formalise it. Further, their work does

not include completeness results of their inference algorithms.

Concrete evidence for an amicable interaction of qualified types and first-class

polymorphism exists. While Jones’ work on qualified types is mostly focused on in-

tegrating it into an ML-style language and offering type inference, he also presents a

version of System F with qualified types [44]. Leijen and Löh show that even a system

as expressive as MLF can be extended to support qualified types [60].

However, in the presence of qualified types, the ordered treatment of quantifiers

in FreezeML and Explicit FreezeML may pose problems. Jones provides an example

where a field l is projected from a record r twice, using a constraint language for a

record type systems. In his system, the concrete example term λr.(r.l,r.l) could be

given both of the following two types.

∀r.∀a.∀b. r has l : a,r has l : b ⇒ (a,b)

∀r.∀a. r has l : a ⇒ (a,a)

Here, constraints r has l : a indicate that record type r has a field l of type a. In the first

type, the underlying equational theory of record types then implies that a and b must

be equal.

In Jones’ system, the two types are principal and equivalent. However, type-

checking for two terms with these types would behave differently in the presence of

explicit type applications, due to the different number of quantified variables.

7.2.4 Formalising variations and extensions

In Section 6.2, we discussed some variations and extensions of FreezeML. For most

extensions, we discussed how to extend either the type inference algorithm based on

Algorithm W or the constraint-based approach to support the extension. Nevertheless,

we have not proved any of these extensions to be correct.
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We expect this to be straightforward for some extensions, such as allowing free

type variables in annotations (Section 6.2.1.2), removing the value restriction (Sec-

tion 6.2.1.3), and recursive function definitions (Section 6.2.2.2), in particular in those

cases where it suffices to change the translation from terms to constraints. We expect

some variations and extensions to be more difficult to prove correct.

The most elegant way to prove the correctness of Unordered FreezeML (Sec-

tion 6.2.1.1) would be to abstract our correctness proofs over the equational theory

of types used. We would then abstractly rely on the fact that the unification algorithm

U is correct with respect to that theory. While this is mostly the case (i.e., the proofs

rarely reason about type equality and if so, in contexts where the unification algorithm

is used), this is not formalised in our current presentation of the proofs.

We may also be able to make use of the future work on Explicit FreezeML when

reasoning about FreezeML itself. Once we have proved that the former system enjoys

principal types and that the translation between the two system preserves types, we

may be able to use these results to show that adding System F style type applications

to FreezeML itself leaves its key properties intact.
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[100] Rémy, D. (1994). Programming objects with ML-ART, an extension to ML with

abstract and record types. In TACS, pages 321–346. Springer-Verlag.
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Appendix A

Proofs for Chapters 3 and 4

This appendix contains proofs for properties stated in Chapters 3 and 4, but not given

there.

We use the following definitions and notations in this appendix and subsequent

ones.

• Given (a : R) ∈ Θ, by abuse of notation, we write Θ(a) for R.

• We define ⊆ to be order-agnostic on any kind of context (i.e., ∆,Ξ,Θ), meaning

that we have ∆ ⊆ ∆′ iff the set of variables in ∆ is a subset of those in ∆′. Note

that for restriction contexts, this means that Θ ⊆ Θ′ holds iff for all (a : R) ∈ Θ

we have (a : R) ∈ Θ′ (i.e., restrictions are preserved).

• Restrictions form a lattice whose ordering relation ≤ satisfies exactly R ≤ R for

all R and • ≤ ⋆.

A.1 Implicitly used properties

We now state some basic auxiliary properties that we may use in subsequent proofs

without explicitly referencing the corresponding lemma.

The following lemma collects some straightforward strengthening and weakening

properties: We may add and remove otherwise unused type variables from contexts.

Lemma A.1 (Strengthening and weakening).
Let ∆F and ΘF each contain no duplicate type variables. Further, for all ∆′

F in the two-

element set {∆F, ftv(ΘF)}, let ∆′
F #∆,∆′,∆′′, ftv(Θ), ftv(Θ′), ftv(Θ′′) and ∆′

F # ftv(A) and

∆′
F # ftv(Γ) and ∆′

F # ftv(M) and ∆′
F # ftv(δ) and ∆′

F # ftv(θ) hold. Note that no require-

ments are imposed on ∆1 and Θ1.
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Then the following holds.

1. ∆ ⊢ A ok iff (∆,∆F) ⊢R A ok

2. Θ ⊢ A ok iff (Θ,ΘF) ⊢R A ok

3. ∆ ⊢ Γ ok iff (∆,∆F) ⊢ Γ ok

4. Θ ⊢ Γ ok iff (Θ,ΘF) ⊢ Γ ok

5. ∆;Γ ⊢ M ok iff (∆,∆F);Γ ⊢ M ok

6. ∆ ⊢ δ : ∆′ ⇒ ∆′′ iff (∆,∆F) ⊢ δ : ∆′ ⇒ ∆′′

7. ∆ ⊢ δ : ∆1 ⇒ ∆′′ iff ∆ ⊢ δ : ∆1 ⇒ (∆′′,∆F)

8. ∆ ⊢ θ : Θ′ ⇒ Θ′′ iff (∆,∆F) ⊢ θ : Θ′ ⇒ Θ′′

9. ∆ ⊢ θ : Θ1 ⇒ Θ′′ iff ∆ ⊢ θ : Θ1 ⇒ (Θ′′,ΘF)

10. ∆;Γ ⊢ M : A, iff (∆,∆F);Γ ⊢ M : A

11. Θ;Γ ⊢E M : A iff (Θ,ΘF);Γ ⊢M: A

12. principal(∆,Γ,M,∆′,A) iff principal((∆,∆F),Γ,M,∆′,A)

13. principal(∆,Γ,M,∆′,A) iff principal(∆,Γ,M,(∆′,∆F),A).

Proof. Each property can be shown by induction on the element under consideration.

The proofs for properties 10 to 13 are mutually dependent, but in a well founded fash-

ion: Properties 10 and 11 rely only on property 12 and this reliance only involves strict

subterms.

The following lemma relates the two well-formedness judgements for types, ∆ ⊢R

A ok and Θ ⊢R A ok as well as stating some manipulations of restriction contexts that

preserve them. Recall that ∆R stands for a restriction context where all variables from

∆ receive restriction R.

Lemma A.2 (Relationships between type well-formedness judgements).
The following properties hold:

1. ∆ ⊢R A ok implies ftv(∆)• ⊢R A ok

2. Θ ⊢R A ok implies ftv(Θ) ⊢R A ok
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3. (Θ,Θ′) ⊢R A ok implies (Θ, ftv(Θ)•) ⊢R A ok

4. (Θ, ftv(Θ′)•) ⊢⋆ A ok implies (Θ,Θ′) ⊢⋆ A ok

Proof. Follows directly from the definitions of both well-formedness judgements.

The following lemma relates the two well-formedness judgements for term con-

texts, ∆ ⊢ Γ ok and Θ ⊢ Γ ok.

Lemma A.3 (Relationships between term context well-formedness judgements).
The following properties hold:

1. ∆ ⊢ Γ ok implies ∆• ⊢ Γ ok

2. Θ ⊢ Γ ok implies ftv(Θ) ⊢ Γ ok

Proof. Follows directly from the definitions of both well-formedness judgements.

Lemma A.4 (Properties of substitutions).
Let ∆ ⊢ θ : Θ1 ⇒ Θ2 hold. Then we have the following:

1. (∆•,Θ1) ⊢R A ok implies (∆•,Θ2) ⊢R θ(A) ok

2. (∆•,Θ1) ⊢ Γ ok implies (∆•,Θ2) ⊢ θ(Γ) ok

3. ∆ ⊢ θ′ : Θ2 ⇒ Θ3 implies ∆ ⊢ θ′ ◦θ : Θ1 ⇒ Θ3

4. ∆ ⊢ θ′ : Θ1, ftv(Θ2)
• ⇒ Θ3 implies ∆ ⊢ θ′ : Θ1,Θ2 ⇒ Θ3

5. ∆ ⊢ θ′ : Θ1 ⇒ Θ2,Θ3 implies ∆ ⊢ θ′ : Θ1 ⇒,Θ2, ftv(Θ3)
•

Proof. Follows straightforwardly from the involved definitions and Lemma A.2.

The following property is trivial, but important for the proof of Theorem 4.2 and

referenced from there.

Lemma A.5.
Let ∆ ⊢ θ : Θ ⇒ Θ′ and ∆ ⊢ θ′ : Θ′ ⇒ Θ′′. Further, let A and B be well formed under

(∆,Θ). If θ(A) = θ(B) then (θ′ ◦θ)(A) = (θ′ ◦θ)(B).

Proof. Follows immediately from premises.
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A.2 Auxiliary lemmas

We now state additional properties used in subsequent proofs.

So far, the type substitution properties discussed in this work (i.e., Lemma 4.1 and

Lemma 4.4) always assumed that the term under consideration is well formed under

a type context ∆ (i.e., only uses variables from ∆ in annotations) that is not subject to

substitution. General substitution properties that do substitute type variables in terms

are not required in this work. Nevertheless, we define the following property that does

take type variables in terms into account. However, it is limited to the trivial case

where type variables are simply renamed, rather than substituted with arbitrary types.

Lemma A.6 (Renaming of type variables bound in terms).
Let a;Γ ⊢ M ok and b#Θ. Further, let δ be a bijection between a and b such that

δ(a) = b.

Then we have that (a•,Θ);Γ ⊢E M : A implies (b
•
,Θ);δ(Γ) ⊢E M[b/a] : δ(A).

Proof. We prove the statement of the lemma in parallel with the following, additional

property: If a, ftv(Θ)⊢Γ ok and a;Γ⊢M ok and b#∆′, then principal((a, ftv(Θ)),Γ,M,

∆′,A) implies principal((b, ftv(Θ)),δ(Γ),M[b/a],∆′,δ(A)). We may prove this prop-

erty using the original statement of this lemma together with Lemma 4.1 (to perform

some freshening of variables not apearing in the term), and then utilise this additional

statement on subterms when proving the original statement of the lemma by structural

induction on M.

The following lemma states that the original and extended FreezeML typing judge-

ments both ensure that any type given to a term is well-formed under the given contexts.

Lemma A.7 (Well-formedness of accepted types).
The following properties hold.

1. If ∆;Γ ⊢ M : A, then ∆ ⊢ A ok.

2. If Θ;Γ ⊢E M : A, then Θ ⊢ A ok.

Proof. The first property can easily be proved by structural induction on M. The

second part of the lemma follows immediately by Lemma 4.2 and the fact that for

all Θ′ and A′, we have Θ′ ⊢⋆ A′ ok iff ftv(Θ′) ⊢⋆ A′ ok (i.e., the restrictions in Θ′ are

irrelevant for the polymorphic version of the well-formedness judgement).
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Lemma A.8 (Principal types contain no spurious variables).
Let ∆;Γ ⊢ M ok and (∆,∆′) ⊢ Γ ok. If principal((∆,∆′),Γ,M,∆′′,A), then ftv(A) ⊆
(∆, ftv(Γ)−∆,∆′′) holds.

Proof. The principality premise directly implies (∆,∆′,∆′′);Γ ⊢ M : A. Note that ac-

cording to Lemma A.7, we then have ftv(A)⊆ ∆,∆′,∆′′.

We now assume that there exists an a ∈ ftv(A)−∆− ftv(Γ)−∆′′, which implies

a ∈ ∆′. Let Sg be a monomorphic ground type (e.g., Unit). Further, let δg such that

δg(b) = b for all b ∈ ∆′ − a and δg(a) = Sg. This definition implies (∆,∆′′) ⊢ δg :

∆′ ⇒• ∆′.

By Lemma 4.1, applying this substitution to the earlier typing judgement for M

yields (∆,∆′,∆′′);δg(Γ) ⊢ M : δg(A). Since δg maps all variables in Γ to themselves,

this is equivalent to (∆,∆′,∆′′);Γ ⊢ M : δg(A). Note that by assumption a ∈ ftv(A), the

types δg(A) and A are not the same. We then observe that there exists no δ such that

(∆,∆′) ⊢ δ : ∆′′ ⇒ ∆′′ and δ(A) = δg(A), since δ maps a to itself. This violates the

assumption principal((∆,∆′),Γ,M,∆′′,A),

A.2.1 Auxiliary properties of unification algorithm

Lemma A.9 (Properties of returned restriction context).
Let (∆•,Θ) ⊢ A ok and (∆•,Θ) ⊢ B ok. Then U(∆,Θ,A,B) = (Θ′,θ′) implies the fol-

lowing.

1. We have ftv(Θ′)⊆ ftv(Θ).

2. We have ftv(θ′)−∆ ≈ ftv(Θ′) (i.e., θ is surjective with respect to Θ′).

Proof. Like other proofs about the unification algorithm, by induction on the number

of recursive calls to U.

All modifications of the restriction context originate from the last two clauses in

the definition of the algorithm in Figure 4.4, where a flexible variable a is unified with

a type A other than itself. As per the assertion we have that A does not contain a.

The returned substitution contains identity mappings for all variables in ftv(Θ)− a,

meaning that we have ftv(θ′)−∆ ≈ ftv(Θ)− a Of course, this also means that the

variables in Θ1 are a (strict) subset of those in Θ.

The following lemma states that the substitutions returned by U are idempotent.

Further, we have that the returned unifier contains identity mappings for all variables
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found in the input restriction context, but not in the input types. The restrictions on

these variables are preserved in the output unchanged.

Lemma A.10 (Properties of returned substitution).
Let (∆•,Θ) ⊢ A ok and (∆•,Θ) ⊢ B ok. Then U(∆,Θ,A,B) = (Θu,θu) implies the

following.

• For all a ∈ ftv(θu) we have θu(a) = a.

• For all a ∈ ftv(Θ)− ftv(A)− ftv(B) we have θu(a) = a and Θ(a) = Θu(a).

Proof. By induction on number of recursive calls to U. Note that by Theorem 4.2 we

have that Θ is indeed the domain of θu.

The first interesting case arises in the last two clauses in the definition of the al-

gorithm in Figure 4.4, where a flexible variable a is unified with a type A other than

itself. These clauses represent the origin of non-identity mappings in the resulting sub-

stitution. Crucially, the assertion (∆•,Θ1) ⊢R A then ensures a ̸∈ ftv(A), as a is not

present in Θ1. Since a is one of the input types, this immediately gives us the second

statement of the lemma.

The other interesting case is the unification of data constructors. We perform a

nested induction, assuming the following:

∆ ⊢ θi : Θ ⇒ Θi (1)

ftv(θi)−∆ ≈ ftv(Θi) (2)

ftv(Θ)⊇ ftv(Θi) (3)

θi is idempotent (as defined in the first statement of this lemma) (4)

In each step, we obtain ∆ ⊢ θ′ : Θi ⇒ Θ′ from Theorem 4.2 and the surjectivity of θ′

w.r.t. Θ′ from the second part of this lemma. We have ftv(Θi) ⊇ ftv(Θ′) according to

Lemma A.9. We can then easily obtain properties (1) to (3) for the composition θi+1.

To show that θi+1 is idempotent, we assume a ∈ Θ and b ∈ ftv(θi+1(a)), which

implies b ∈ ∆, ftv(Θ′). If b ∈ ∆, we immediately have the desired property θi+1(b) = b.

Otherwise, there exists c ∈ ftv(θi(a)) such that b ∈ ftv(θ′(c)). By induction, θ′ is

idempotent, meaning that θ′(b) = b holds. By ftv(Θi)⊇ ftv(Θ′), we further have that

b ∈ Θ′ implies b ∈ Θi. Due to (2), we then have that b ∈ ftv(θi). By (3) we have b ∈ Θ.

The idempotence of θi then gives us θi(b) = b. Altogether, this implies θi+1(b) = b,

which was required to show that θi+1 is idempotent.
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A.2.2 Auxiliary properties of inference algorithm

The following lemma states that the results of the type inference function infer are

unique up to the choices of type variables picked by the algorithm.

Lemma A.11 (Equivalence of inference results modulo renaming).
Let infer(∆,Θ,M,A) return (Θ1,θ1,A1) and (Θ2,θ2,A2). Then there exists a bijective

substitution θ such that · ⊢ θ : Θ1 ⇒ Θ2 and · ⊢ θ−1 : Θ2 ⇒ Θ1 and A2 = θ(A1) and

θ◦θ1 = θ2.

Proof. The unification algorithm U shown in Figure 4.4 is deterministic except for the

choice of the skolem variable c in the case where quantified types are unified. The

variable c does however not appear in the result and is only used for the escape check.

The type inference algorithm in Figure 4.5 is deterministic except for the choices

of the following variables:

• The choice of b when instantiating a plain variable

• The choice of b used as a placeholder for the return type of M′ when inferring a

type for M′ N′

• The choice of a used for the type of an un-annotated lambda parameter

Thus, we can easily obtain the desired property for infer by structural induction on

M.

The following lemma states that whenever a term context Γ already contains suffi-

cient information to type a term M, then the inference algorithm will return a substitu-

tion that may only rename variables, but not perform other changes.

Lemma A.12 (Inferred substitutions for valid contexts).
Let ∆;Γ ⊢ M ok and ∆;Θ ⊢ Γ ok hold. If (∆•,Θ);Γ ⊢E M : A, then infer(∆,Θ,Γ,M) =

(Θ′,θ,A′) implies that θ maps all a ∈ Θ to pairwise different variables in Θ′.

Proof. By Theorem 4.5, we have ∆ ⊢ θ : Θ ⇒ Θ′.

We have ∆ ⊢ ιΘ : Θ ⇒ Θ for the identity substitution on Θ. We may thus apply

Theorem 4.6 and Lemma A.11 to (∆,Θ); ιΘ(Γ) ⊢ M : A, yielding the existence of θ′

such that ∆ ⊢ θ′ : Θ′ ⇒ Θ and ιΘ = θ′ ◦θ. This implies the desired property.
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A.3 Stability of typing and principality under substitu-

tion

We may now prove the stability of FreezeML typing under substitution, as stated in

Lemma 4.4. As discussed in Section 4.1.3, this property crucially relies on the fact

that principality is also preserved under substitution, which we prove first.

Lemma 4.5 (Stability of principality under substitution; lemma originally stated on

page 78).
Let (∆•,Θ)⊢Γ ok and ∆;Γ⊢M ok and ftv(Θ′)#∆′. If principal((∆, ftv(Θ)),Γ,M,∆′,A)

and ∆ ⊢ θ : Θ ⇒ Θ′, then principal((∆, ftv(Θ′)),θ(Γ),M,∆′,θ(A)).

Proof. Let ∆g := ftv(Γ)−∆ and ∆A := ftv(A)− (∆,∆g). By Lemma A.8, we then have

∆A ⊆ ∆′. Note that by assumption (∆,Θ) ⊢ Γ ok, we have (a : •) ∈ Θ for all a ∈ ∆g.

We define θg as the restriction of θ to ∆g. Further, let ∆′
g := ftv(θg)−∆.

We therefore have ∆ ⊢ θg : ∆•
g ⇒ ∆′

g
•(1). and ∆ ⊢ θg : ∆g ⇒• ∆′

g (2). Note that in the

former, we ignore the restrictions that Θ′ may carry for the variables in ∆′
g and replaced

them all with • instead. In the latter, we treat the substitution θ as an instantiation.

We may then strengthen the assumption of A being the principal type of M to

principal((∆,∆g),Γ,M,∆A,A) (3). We will prove that this implies principal((∆,∆′
g),

θg(Γ),M,∆A,θg(A)). This is equivalent to principal(∆,∆′
g,θ(Γ),M,∆A,θ(A)), which

we may in turn weaken to the principality property stated by the lemma.

Proving principal((∆,∆′
g),θg(Γ),M,∆A,θg(A)) requires showing the following.

P-1. We have (∆,∆′
g,∆A);θg(Γ) ⊢ M : θg(A).

P-2. For any arbitrarily chosen Ac,∆c, we have that (∆,∆′
g,∆c);θg(Γ) ⊢ M : Ac im-

plies that there exists δc such that ∆,∆′
g ⊢ δ : ∆A ⇒⋆ ∆c and Ac = δc(θg(A)).

We have that (3) implies (∆,∆g,∆A);Γ ⊢ M : A, we can then immediately show

P-1 by applying Lemma 4.1, using (2). The remainder of this proof is concerned with

showing P-2, which is achieved by relying on the completeness of type inference and

the principality of inferred types.

We assume that Ac and ∆c are given and the aforementioned typing judgement to

hold. We apply the completeness theorem (Theorem 4.6) to the judgement (∆•,∆′•
g ,∆

•
c);

θg(Γ) ⊢E M : Ac (obtained from using Lemma 4.2) and the substitution θg (after weak-

ening (1) to ∆ ⊢ θg : ∆•
g ⇒ ∆′

g
•,∆•

c), which then guarantees that invoking infer(∆,∆•
g,
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Γ,M) succeeds, returning some (Θi,θi,Ai), and there exists θ′ such that we have the

following.

∆ ⊢ θ
′ : Θi ⇒ (∆′•

g ,∆
•
c) (4)

θg = θ
′ ◦θi (5)

Ac = θ
′(Ai) (6)

Note that by soundness of inference (Theorem 4.5), we have (∆•,Θi);θi(Γ) ⊢ M : Ai,

which implies ftv(Ai) ⊆ ∆, ftv(Θi) (see Lemma A.7). The same theorem also implies

∆ ⊢ θi : ∆•
g ⇒ Θi. We assume w.l.o.g. that all variables in ftv(Θi)−∆g are fresh with

respect to all previously mentioned contexts, in particular
(
ftv(Ai)−∆, ftv(θi(∆g))

)
#∆g (7) and ftv(Θi)#∆A (8). Formally, this freshness assumption is justified as we may

otherwise apply a renaming substitution δf to Ai that performs the necessary freshen-

ing, while preserving the existence of an appropriate θ′ satisfying the properties (4)

to (6) for δf(Ai).1

By Lemma A.12 we have that θi is merely a renaming of type variables. Concretely,

θi is a bijection between ∆g and ftv(θi) =: ∆r, a subset of Θi. We observe that by (1),

(4) and (5), we have that ∆ ⊢ θ′↾∆r : ∆•
r ⇒ ∆′

g
• (9) holds.

The high-level idea of the remainder of the proof is to relate θ′(Ai), which we know

to be equal to Ac, and δc(θg(A)), which we must show to be equal to Ac by providing

an appropriate choice for δc. We observe that θ′ plays two separate roles: On the

codomain of θi, θ′ is the same as θg, except that it must undo the renaming performed

by θi (see (5)). On the generalisable variables within Ai (i.e., those not in the codomain

of θi), θ′ performs the necessary instantiation to obtain Ac from Ai (see (6)). Here, we

have that Ai is a principal type of M in term environment θi(Γ). Since θi simply

renames variables, this allows us to relate Ai and the type A, which by assumption is

a principal type of M in the original term context Γ prior to the renaming. Thus, we

have that Ai and A are equal modulo a bijection of a subset of the free type variables in

each type. As a result, we may establish θ′(Ai) = Ac = δc(θg(A)) by choosing δc such

that it first renames the generalisable variables of A (namely, ∆A) to the corresponding

ones in Ai, and then uses θ′ to perform the necessary instantiation to obtain Ac from a

principal type of M. Accounting for the various renamings makes showing these steps

1This assumption directly reflects the behaviour of the inference algorithm: The output restriction
context Θi may re-use some variables from the input restriction context, which corresponds to the vari-
ables ∆g in our case. All other variables in Θi are chosen fresh by the algorithm. The reasoning why
the assumption is formally justified may equivalently be used to justify the assumption that all of Θi is
disjoint from any of the contexts used beforehand, but we eschew making this stronger assumption as it
contradicts what the algorithm does.
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in full detail in the remainder of this proof somewhat tedious.

Concretely, the principality of inferred types (Lemma A.13) implies that we have

principal(∆,∆′
p,θi(Γ),M,∆p,Ai), where ∆p = ftv(Θi)−∆r and ∆′

p = ftv(Θi)−∆′
p. We

may strengthen this to principal(∆,θi(∆g),θi(Γ),M,∆′′
p,Ai), where ∆′′

p = ftv(Ai)−∆,

θi(∆g). Inverting the renaming performed by θi then yields principal((∆,∆g),Γ,M,

∆′′
p,θ

−1
i (Ai)), utilising the fact that θ

−1
i has no effect on ∆ and ∆′′

p . Since we already

know that A is a principal type of M in the same contexts, the uniqueness of principal

types (Lemma 3.1) guarantees the existence of a renaming δ such that ∆,∆g ⊢ δ : ∆A ⇒•

∆′′
p and θ

−1
i (Ai)) = δ(A) as well as δ−1(θ−1

i (Ai))) = A (10).

We choose δc to be θ′ ◦δ, which immediately yields the required property ∆,∆′
g ⊢

δc : ∆A ⇒⋆ ∆c. It remains to show that this choice results in the desired relationship

δc(θg(A)) = Ac.

We require two additional properties before being able to show this. First, note

that the earlier freshness assumption (7) is equivalent to ∆′′
p #∆g (11). Secondly, we

have that δcθ′δ−1(Ai) = θ′(Ai) (12) holds. To show the latter, we consider the different

cases for a ∈ ftv(Ai)⊆ ∆,∆r,∆
′′
p . For a ∈ ∆, this follows immediately.

1. If a ∈ ∆r, we have that δ−1 has no effect and thus θ′(δ−1(a)) = θ′(a). The free

type variables of the latter type are a subset of ∆,∆′
g (due to (9)), which is disjoint

from ∆A, meaning that applying δc has no effect.

2. If a ∈ ∆′′
p , we have that δ−1(a) is a single type variable b from ∆A, meaning

that applying θ′ has no effect. Thus, we have θ′(δ−1(a)) = b. By definition

of δc and the fact that δ inverts the earlier renaming from a to b, we have that

δc(b) = θ′(δ(b)) = θ′(a).

Equipped with these properties, we may finally prove δc(θg(A)) = Ac as follows.
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δcθg(A))

(by (5) and (8))

= δcθ′θi(A)

(by (10)

= δcθ′θi(δ
−1θ

−1
i (Ai))

(by ∆A #∆g and ∆
′′
p #∆r we have that

θi and δ
−1 may be applied in any order)

= δcθ′δ−1θiθ
−1
i (Ai)

(by (11) and θi ◦θ
−1
i = ι∆r)

= δcθ′δ−1(Ai)

(by (12))

= θ′(Ai)

(by (6))

= Ac

Lemma 4.4 (Stability of typing under substitution; lemma originally stated on page

77).
If ∆ ⊢ θ : Θ ⇒ Θ′ and ∆;Γ ⊢ M ok, then (∆•,Θ);Γ ⊢E M : A implies (∆•,Θ′);θ(Γ) ⊢E

M : θ(A).

Proof. By structural induction on the term under consideration. All cases are straight-

forward, except plain let bindings where Lemma 4.5 is required to show that principal

types are also stable under substitution.

A.4 Correctness of type inference algorithm

We may now prove the main correctness theorems of our solver, namely Theorems 4.5

and 4.6.

First, we prove the following lemma, which is a more general version of The-

orem 4.7 on page 92. As opposed to the theorem, Lemma A.13 shown here supports

the case where infer may be invoked with a non-empty restriction context Θ. We then

immediately obtain the statement of Theorem 4.7 by picking Θ = ·.
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Lemma A.13 (Principality of inferred types).
Let (∆•,Θ) ⊢ Γ ok and ∆;Γ ⊢ M ok and infer(∆,Θ,Γ,M) = (Θ′,θ,A) hold. Further,

let ∆′ = ftv(Θ′)− ftv(θ) and ∆′′ = ftv(Θ′)−∆′. Then the following holds.

1. We have principal((∆,∆′′),θ(Γ),M,∆′,A).

2. For all a and A′ we have (∆,∆′′,a),θ(Γ) ⊢ M : A′ iff there exists θ′ such that

(∆,∆′′) ⊢ θ′ : Θ′′ ⇒ a• and θ′(A) = A′, where Θ′′ ⊆ Θ′ and ftv(Θ′′) = ∆′.

3. We have ∆′′ ≈ ftv(θ)−∆.

Proof. We first observe that the second statement of the lemma implies the first one:

According to the left-to-right direction of the second statement, any type A′ of M in

the shown contexts can be obtained from A using a substitution θ′ whose domain is

∆′. Thus, we may use θ′ as the instantiation δ that is required by the definition of

principal((∆,∆′′),θ(Γ),M,∆′,A), since (∆,∆′′)⊢ θ′ : Θ′′⇒ a implies (∆,∆′′)⊢ δ : ∆′⇒⋆

a. The only aspect remaining in order to prove principal((∆,∆′′),θ(Γ),M,∆′,A) is that

(∆,∆′′,∆′);θ(Γ) ⊢ M : A holds. This follows from the right-to-left direction of the

second statement of the lemma: We may choose a = ∆′ and A′ = A, in which case θ′ is

simply the identity.

By Theorem 4.5, we have ∆ ⊢ θ : Θ ⇒ Θ′ (1), which implies the third statement of

the lemma.

We now focus on proving the second statement of the lemma, which simply amounts

to applying the soundness and completeness theorems of the inference algorithm.

• ⇒: We may simultaneously strengthen and weaken (1) to obtain ∆ ⊢ θ : Θ ⇒
∆′′ •,a• (2). Lemma 4.2 allows us to state the typing judgement assumed for A′ in

this direction of the proof as (∆•,∆′′•,a•);θ(Γ) ⊢E M : A′ (i.e., using the extended

typing relation).

We may then apply Theorem 4.6 to this typing judgement and (2). Since in-

ference results are unique up to renaming (see Lemma A.11), we can assume

w.l.o.g. that the result of infer mentioned in Theorem 4.6 is identical to (Θ′,θ,A).

The theorem then states that there exists θ′′ such that the following conditions

hold.

∆ ⊢ θ
′′ : Θ

′ ⇒ (∆′′•,a•)

θ = θ
′′ ◦θ

θ
′′(A) = A′
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By θ = θ′′ ◦θ, we have that the restriction of θ′′ to ∆′′ is the identity substitution.

We may therefore define θ′ as the restriction of θ′′ to those variables in A but not

in ∆′′ (i.e., the domain of θ′ is ∆′) while preserving θ′′(A) = A′ = θ′(A). This

definition of θ′ also gives us (∆,∆′′) ⊢ θ′ : Θ′′ ⇒ a•, where Θ′′ is like Θ′, but

contains only entries for the variables in ∆′.

• ⇐: By Theorem 4.5 we have (∆•,Θ′);θ(Γ) ⊢E M : A (3). We extend θ′ to θ′′

by adding mappings a 7→ a for all a ∈ ∆′′. Due to ftv(Θ′)≈ (∆′,∆′′), this yields

∆ ⊢ θ′′ : Θ′ ⇒ (∆′′•,a•). By Lemma 4.4, applying θ′′ to (3) yields (∆•,∆′′•,a•);

θ′′(θ(Γ)) ⊢E M : θ′′(A). By ∆′ # ftv(θ(Γ)) as well as assumption θ′(A) = A′, this

is equivalent to (∆•,∆′′•,a•);θ(Γ) ⊢E M : A′. Applying Lemma 4.2 then yields

the desired judgement (∆,∆′′,a);θ(Γ) ⊢ M : A′.

Theorem 4.5 (Soundness of infer; theorem originally stated on page 91).
Let (∆•,Θ)⊢Γ ok and ∆;Γ⊢M ok. If infer(∆,Θ,Γ,M)= (Θ′,θ,A) then ∆⊢ θ : Θ⇒Θ′

and (∆•,Θ′);θ(Γ) ⊢E M : A.

Proof. In the following, to avoid name clashes with other meta-variables, let M0 and

A0 denote the term under consideration and its inferred type, respectively. The proof is

then by induction on M0. In other words, we assume (∆•,Θ) ⊢ Γ ok (1) and ∆;Γ ⊢
M0 ok (2) and as well as infer(∆,Θ,Γ,M0) = (Θ′,θ,A0) (3) and show the follow-

ing.

∆ ⊢ θ : Θ ⇒ Θ
′ (I)

(∆•,Θ′);θ(Γ) ⊢E M0 : A0 (II)

In each case, we directly use the meta-variables that the algorithm introduced (e.g.,

in the case for ⌈x⌉ we assume that A is defined as Γ(x)). We provide the largest amount

of detail for the let cases.

• Cases x and λ⌈x⌉:

Straightforward.

• Case λx.M and λ(x : A).M

Can easily be shown by applying the induction hypothesis to the recursive call

to infer.
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In the un-annotated case, the fact that infer succeeded on M0 implies that decon-

structing the substitution returned by the recursive call into θ[a 7→ S] succeeded,

meaning that a is indeed substituted with a monomorphic type, allowing us to

construct a typing derivation the an un-annotated function.

In the annotated case, we rely on the fact that the inferred substitution θ has no

effect on A, due to (2), which implies ∆⊢A. This yields θ(Γ,x : A) = (θ(Γ),x : A)

• Case M N:

By induction, we have the following:

(∆•,Θ1);θ1(Γ) ⊢E M : A′ (4)

(∆•,Θ2);θ2(Γ) ⊢E N : A (5)

Let θ′3 denote the substitution obtained from U, which implies θ′3 = θ3[b 7→ B].

By soundness of unification (Theorem 4.2), as well as the earlier applications of

the induction hypothesis, we have the following

∆ ⊢ θ1 : Θ ⇒ Θ1 ∆ ⊢ θ2 : Θ1 ⇒ Θ2 ∆ ⊢ θ
′
3 : (Θ2,b : ⋆)⇒ Θ3

which implies ∆ ⊢ θ3 : Θ2 ⇒ Θ3.

The soundness theorem also gives us θ′3(θ2((A′)) = θ′3(A → b), which is equi-

valent to θ3(θ2((A′)) = θ3(A)→ B,

We may then apply Lemma 4.4 to (4) and (5), using substitutions θ3 ◦θ2 and θ3,

respectively. Together with θ3(θ2((A′)) = θ3(A) → B, this allows us to derive

(∆•,Θ3);θ3θ2θ1(Γ) ⊢E M N : B.

• Case let x = M in N:

By definition of infer, we have (Θ1,θ1,A) = infer(∆,Θ,Γ,M) (6). By induc-

tion, this implies (∆•,Θ1);θ1(Γ) ⊢E M : A (7) and ∆ ⊢ θ1 : Θ ⇒ Θ1 (8). By

Lemma A.7, the former implies ftv(A)⊆ ∆,Θ1.

By definition of infer we further have

∆
′ = ftv(θ1)−∆

∆
′′ = ftv(A)−∆,∆′

= (ftv(A)−∆)− ftv(θ1) (9)

Together with (8), these definitions yield ftv(A) ⊆ ∆,∆′,∆′′ ⊆ ∆, ftv(Θ1) (10).
By applying Lemma A.13 to (6), we obtain principal((∆,∆′),θ1(Γ), ftv(Θ1)−
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ftv(θ1),A) which we may simultaneously weaken (in the first component) and

strengthen (in the fourth component) to principal((∆,Θ1−∆′′),θ1(Γ),∆
′′,A) (11).2

Next, infer defines Θ′
1 = demote(•,Θ1,∆

′′) and (Θ2,θ2,B) = infer(∆,Θ′
1 −∆′′′,(

θ1(Γ),x : ∀∆′′′.A
)
,N) (12).

By definition of ∆′′, we have ∆′′ # ftv(θ1) and thus ∆ ⊢ θ1 : Θ ⇒ Θ1 −∆′′ (13).

Let ∆′′ have the form (a1, . . . ,an). We then define ∆′′
G as (b1, . . . ,bn), for fresh bi,

meaning that in particular we have ∆′′
G #Θ2 (14). We define θ′2 as follows, which

implies θ2↾∆′ = θ′2↾∆′(15), and thus θ′2 ◦θ1 = θ2 ◦θ1 (16).

θ
′
2(c) =

bi if c = ai ∈ ∆′′

θ2(c) if c ∈ Θ1 −∆′′

We distinguish between M being a guarded value or not. In each case, we show

that there exists A′ such that the following conditions are satisfied:

∆ ⊢ θ
′
2 ◦θ1 : Θ ⇒ Θ2 (17)

∆
′′
G = ftv(θ′2(A))−∆, ftv(Θ2) (18)

(∆•,Θ2,∆
′′
G
•);θ

′
2(θ1(Γ)) ⊢E M : θ

′
2(A) (19)(

(∆, ftv(Θ2)),∆
′′
G,M,θ′2(A)

)
⇕ A′ (20)

(∆•,Θ2);
(
θ
′
2(θ1(Γ)),x : A′) ⊢E N : B (21)

principal
(
(∆, ftv(Θ2)),θ

′
2(θ1(Γ)),M,∆′′

G,θ
′
2(A)

)
(22)

– Sub-case M ∈ GVal: By definition of infer, we have ∆′′′ = ∆′′.

In order to apply the induction hypothesis to (12), we need to show ∆,Θ′
1−

∆′′′ ⊢ θ1(Γ),x : ∀∆′′.A ok. First, by (1) and (13) and the stability of well-

formedness of term contexts under substitution (see Lemma A.4), we have

∆,Θ1 −∆′′′ ⊢ θ1(Γ) ok.

By (10) we have (∆•,Θ1) ⊢ A ok and thus (∆•,Θ1 −∆′′) ⊢ ∀∆′′.A ok. It

remains to show that for all a ∈ ftv(A)−∆′′ we have (∆,Θ1) ⊢• a ok. For

a ∈ ∆, this follows immediately. Otherwise, by applying Lemma A.8 to

2Applying Lemma A.13 here to obtain the principality judgement required to derive the well-
typedness of the overall term M0 later on somewhat obfuscates the unavoidable dependence between
our main correctness theorems for infer (namely, Theorems 4.5 and 4.6): The proof of Lemma A.13
crucially relies on Theorem 4.6 (i.e., the fact that inference is complete and yields most general types).
As discussed in Appendix A.5, these dependencies are well founded as they are via subterms.
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(11), we obtain a ∈ ftv(θ1(Γ)), meaning that there exists b ∈ Γ such that

a ∈ ftv(θ1(b)). By (∆•,Θ) ⊢ Γ ok we have (∆•,Θ) ⊢• b ok, which implies

(∆•,Θ1) ⊢• θ1(b) ok, which further implies (∆•,Θ1) ⊢• a ok. By Θ1 −
∆′′′ = Θ′

1 −∆′′′ we then have ∆,Θ′
1 −∆′′′ ⊢ θ1(Γ),x : ∀∆′′′.A ok

In summary, we can apply the induction hypothesis by which we then have

(∆•,Θ2);θ2(θ1(Γ),x : ∀∆′′′.A)⊢E N : B (23) and ∆⊢ θ2 : Θ1−∆′′⇒Θ2 (24),
the latter of which implies ∆ ⊢ θ′2 : Θ1 ⇒ Θ2,∆

′′
G
• (25) due to our definition

of θ′2.

We choose A′=∀∆′′
G.θ

′
2(A), therefore satisfying (20). By (13), (16) and (24),

condition (17) is also satisfied.

Due to our choice of θ′2 we have θ′2(θ1(Γ)= θ2(θ1(Γ)) and by (14) and (24)

also θ2(∀∆′′′.A) = θ2(∀∆′′
G.A[∆

′′
G/∆′′]) = ∀∆′′

G.θ
′
2(A). Together, this means

that (23) is equivalent to (21).

By Lemma 3.1, we may convert (11) to principal((∆, ftv(Θ1)−∆′′),θ1(Γ),∆
′′
G,

A[∆′′
G/∆′′]). By applying Lemma 4.5 to the latter principality judgement as

well as (14) and (24) we obtain, principal((∆, ftv(Θ2)),θ2(θ1(Γ)),∆
′′
G,θ2(A

[∆′′
G/∆′′])), which is equivalent to (22).

We now show (18): Recall that ftv(A) ⊆ ∆, ftv(Θ1) holds. Thus, together

with (25), we then obtain ftv(θ′2(A)) ⊆ ∆, ftv(Θ2),∆
′′
G. Further, by defini-

tion of ∆′′ we have ∆′′ ⊆ ftv(A). Together with θ′2(∆
′′) = ∆′′

G, this results in

the desired equation ∆′′
G = ftv(θ′2(A))−∆, ftv(Θ2) (i.e., (18)).

By applying Lemma 4.4 to (7) and (25), we obtain (19).

– Sub-case M ̸∈ GVal: By definition of infer, we have ∆′′′ = ·.

We show that the induction hypothesis is applicable to (12). To this end, we

show (∆•,Θ′
1 −∆′′′) ⊢ θ1(Γ),x : ∀∆′′′.A ok. We have (∆•,Θ1) ⊢ θ1(Γ) ok

and and ftv(A) ⊆ ∆, ftv(Θ1). It remains to show that for all a ∈ ftv(A) we

have (a : •)∈ (∆•,Θ′
1). If a ∈ ∆′′, then by definition of Θ′

1 as resulting from

Θ1 by demoting all variables in ∆′′ we have (a : •) ∈ Θ′
1. Otherwise, we

may use the same reasoning as in the case M ∈ GVal.

By induction, we then have (∆•,Θ2);θ2(θ1(Γ),x : A) ⊢E N : B (26) and

∆ ⊢ θ2 : Θ′
1 ⇒ Θ2 (27).

This, together with the definition of θ′2 then implies that we have ∆ ⊢ θ′2 :

Θ1 ⇒ (Θ2,∆
′′
G
•) (28) and due to (15) also satisfaction of (17).

We may then show that (18), (19) and (22) hold as in the case M ∈ GVal.
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Recall that θ′2(∆
′′) = ∆′′

G. Let δ be a substitution with domain ∆′′
G such

that for all bi ∈ ∆′′
G we have δ(bi) = θ2(ai), where ai is the corresponding

variable from ∆′′ (i.e., θ′2(ai) = bi). All variables from ∆′′ are monomorphic

in Θ′
1 (as these are precisely the variables that were subject to demotion),

meaning that by (27) we have (∆•,Θ2) ⊢• θ2(ai) ok for all such ai. As a

result, we have (∆, ftv(Θ)) ⊢ δ : ∆′′
G ⇒• · and δ(θ′2(A)) = θ2(A). We define

A′ to be this type, yielding satisfaction of (20).

Together with (17) this means that (26) is equivalent to the desired typing

judgement (21) for N.

We have thus shown that (16) to (22) hold in each case.

We can now derive the following, showing (II), observing that each premise

directly corresponds to one of (18) to (22).

∆
′′
G = ftv(θ′2(A))−∆, ftv(Θ2)

(∆•,Θ2,∆
′′
G
•);θ

′
2(θ1(Γ)) ⊢E M : θ

′
2(A)(

(∆, ftv(Θ2)),∆
′′
G,M,θ′2(A)

)
⇕ A′

(∆•,Θ2);(θ′2(θ1(Γ)),x : A′) ⊢E N : B

principal
(
(∆, ftv(Θ2)),θ

′
2(θ1(Γ)),M,∆′′

G,θ
′
2(A)

)
(∆•,Θ2);θ

′
2(θ1(Γ)) ⊢E let x = M in N : B

The implicit precondition (∆•,Θ2) ⊢ θ′2(θ1(Γ)) ok of this judgement follows

from (19), which has a similar precondition that we may strengthen appropriately

due to ∆′′
G #θ′2(θ1(Γ)).

By (16) and (17) we have also shown (I).

• Case let (x : A) = M in N:

Let A = ∀∆′′.H for appropriate ∆′′ and H. According to (2), we have ∆ ⊢ A (29).

We distinguish two cases, between whether M is a guarded value or not. We

show that the following conditions hold for the choice of A′ and ∆′ imposed by

(∆′,A′) = split(A,M) (30) in each case.

(∆,∆′) ⊢ A′ (31)

ftv(A)#∆
′ (32)

∆
′ #Θ (33)
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– Sub-case M ∈ GVal: We have split(A,M) = (∆′′,H) (i.e, ∆′ = ∆′′ and A′ =

H).

Together with (29) we have (∆,∆′) ⊢ H (satisfying (31)). The assertion

∆′ #∆,Θ guarantees (33). By A = ∀∆′.A′ we further have ftv(A)#∆′.

– Sub-case M ̸∈ GVal: We have split(A,M) = (·,A) (i.e, ∆′ = · and A′ = A).

This immediately satisfies (32) and (33). It further makes (29) equivalent

to (31).

Moreover, by (2), we have ∆,∆′ ⊢ M ok (34) using inversion.

We show that (∆•,Θ1,∆
′ •);θ1(Γ) ⊢E M : A1 (35) holds. By (1) and since ∆′ #Θ,

we have (∆•,∆′ •,Θ)⊢Γ ok. Together with (34), we then have (∆•,∆′ •,Θ1);θ1(Γ)

⊢E M : A1 and (∆,∆′) ⊢ θ1 : Θ ⇒ Θ1 (36) by induction. Further, this implies

∆′ #Θ1.

By (35) we also have (∆•,∆′ •,Θ1) ⊢ A1 ok. Recall (∆,∆′) ⊢ A′ ok and therefore

(∆•,∆′•,Θ1) ⊢ A′ ok. Thus, by Theorem 4.2, we have θ′2(A1) = θ′2(A
′) (37) and

(∆,∆′) ⊢ θ′2 : Θ1 ⇒ Θ2 (38).

According to the assertion, we have ftv(θ′2 ◦θ1)#∆′ (39). By definition of infer,

we have θ2 = θ′2 ◦θ1 (40), yielding (∆,∆′) : θ2 : Θ ⇒ Θ2, which further implies

∆′ #Θ2 (41). By (39), we can strengthen the previous well-formedness judge-

ment to ∆ ⊢ θ2 : Θ ⇒ Θ2 (42).

By (34), (35) and (38), and Lemma 4.4, we have (∆•,∆′•,Θ2);θ′2(θ1(Γ)) ⊢E M :

θ′2(A1). By (36), (38) and (40), this is equivalent to (∆•,∆′•,Θ2);θ2(Γ) ⊢E M :

θ′2(A1) (43).

By (31) and (38) we have θ′2(A
′) = A′. Together with (37), this makes (43)

equivalent to (∆•,∆′•,Θ2);θ2(Γ) ⊢E M : A′ (44).

By definition of infer, we have (Θ3,θ3,B) = infer(∆,Θ2,(θ2Γ,x : A),N). Due

to (2), we have ∆ ⊢ N ok. By (29) and Θ2 #∆, we have (∆•,Θ2) ⊢ x : A ok.

Together with (1) and (42) we then have ∆•,Θ2 ⊢ (θ2(Γ),x : A) ok. Therefore,

by induction, we have (∆•,Θ3);θ3(θ2(Γ),x : A) ⊢E N : B (45) and ∆ ⊢ θ3 : Θ2 ⇒
Θ3 (46).

By (42), (46), and composition, we have ∆ ⊢ θ3 ◦θ2 : Θ ⇒ Θ3 (I).

We now perform freshening of ∆′ due to the fact that in general, we may not have
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∆′ #Θ3.3 Let a = ∆′ and δ = [a 7→ c] for fresh c. We now define ∆′′′ to be empty

if M ̸∈ GVal and otherwise we define it to be c. Further, let A′′′ be identical to A

if M ̸∈ GVal and otherwise we define it to be the result of alpha-converting the

toplevel quantifiers ∆′ of A to ∆′′′. Together, these definitions yield the following.

Observe that in the case M ̸∈ GVal, applying δ to A′ simply has no effect.

(∆′′′,δ(A′)) = split(A′′′,M) (47)

A′′′ = ∀∆
′′′.δ(A′) (48)

We may now apply Lemma A.6 to (44), yielding (∆•,∆′′′•,Θ2);δ(θ2(Γ)) ⊢E

M[c/a] : δ(A′). By ∆′ #∆,Θ2, this is equivalent to (∆•,∆′′′•,Θ2);θ2(Γ)⊢E M[c/a] :

δ(A′)

We apply Lemma 4.4 again, this time to the previous typing judgement and (46),

yielding (∆•,Θ3,∆
′′′•);θ3(θ2(Γ)) ⊢E M[c/a] : θ3(δ(A′)).

We have ftv(δ(A′))⊆ ∆,c, meaning that the previous judgement is equivalent to

(∆•,Θ3,∆
′′′•);θ3(θ2(Γ)) ⊢E M[c/a] : δ(A′) (49).

Together with (1), we obtain (∆•,Θ3) ⊢ θ3(θ2(Γ)) ok and can derive the follow-

ing:
(∆′′′,δ(A′)) = split(A′′′,M)

(∆•,Θ3,∆
′′′•);θ3(θ2(Γ))) ⊢E M[c/a] : δ(A′)

(∆•,Θ3);θ3(θ2(Γ)),x : A′′′ ⊢E N : B

(∆•,Θ3);θ3(θ2(Γ)) ⊢E let (x : A′′′) = M[c/a] in N : B

Here, the first two premises follow from (47) and (49), respectively. The final

premise follows from (45), observing that the types assigned to x in both judge-

ments are alpha-equivalent. For the same reason, the term in the judgement we

just derived is alpha-equivalent to M0, meaning that we have shown (II).

Theorem 4.6 (Completeness and generality of infer; theorem originally stated on page

91).
Let ∆;Γ ⊢ M ok and (∆•,Θ) ⊢ Γ ok and ∆ ⊢ θ : Θ ⇒ Θ′. If (∆•,Θ′);θ(Γ) ⊢E M : A, then

there exist Θ′′,θ′,θ′′,A′ such that infer(∆,Θ,Γ,M) = (Θ′′,θ′′,A′) and ∆ ⊢ θ′ : Θ′′ ⇒ Θ′

and θ = θ′ ◦θ′′ and θ′(A′) = A.
3In practice, this disjointness condition does of course hold: We have ∆′ #Θ2, and all variables in Θ3

not already in Θ2 were chosen fresh by the algorithm.
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Proof. In the following, to avoid name clashes with other meta-variables, we refer to

the term under consideration as M0, the inferred type as A′
0 and the substitution used to

type M0 as well as its type as θ0 and A0, respectively. As mentioned at the beginning

of this section, the proof is then by induction on M0. In other words, we assume

that we have ∆;Γ ⊢ M0 ok (1) and (∆•,Θ) ⊢ Γ ok (2) and ∆ ⊢ θ0 : Θ ⇒ Θ′ (3) and

(∆•,Θ);θ0(Γ) ⊢E M0 : A0 (4). We then show the existence of A′
0,θ

′,θ′′ and Θ′′ with the

following properties.

infer(∆,Θ,Γ,M0) = (Θ′′,θ′′,A′
0) (I)

∆ ⊢ θ
′ : Θ

′′ ⇒ Θ
′ (II)

θ0 = θ
′ ◦θ

′′ (III)

θ
′(A′

0) = A0 (IV)

We provide the greatest amount of detail for the let cases.

• Case x:

This case crucially relies on the premise (2), which implies that the type of x in

Γ only contains monomorphic type variables.

Let x have some type ∀∆′.H ′ (for fresh ∆′) in Γ and thus θ0(Γ(x)) = θ0(∆
′.H ′).

However, the fact that all free variables of Γ are monomorphic in Θ implies

that θ0(∆
′.H ′) = ∀∆′.θ0(H ′), where θ0(H ′) is guaranteed to be a guarded type

(i.e., the substitution preserves the quantifier structure). Thus, by (4) we have

A0 = δ(θ0(H ′)) for some instantiation δ with ∆, ftv(Θ′) ⊢ ∆′ ⇒⋆ ·. The in-

ference algorithm succeeds, choosing fresh b = (b1, . . . ,bn) for the quantifiers

a = (a1, . . . ,an) = ∆′ of Γ(x). We may then define θ′ to be a substitution with

domain (ftv(Θ),b) such that θ′(c) = θ0(c) for all c∈Θ and θ′(bi) = δ(ai), yield-

ing the desired properties.

• Case ⌈x⌉:

We immediately get the desired result by choosing θ′ := θ0.

• Case λx.M:

Straightforward by applying the induction hypothesis. Let θi be the substitution

obtained from the recursive call. Theorem 4.5 guarantees that we have ∆ ⊢ θi :

(Θ,a : •)⇒ Θ1.

This guarantees that θi does indeed contain a mapping for a and it must be a

monotype S (i.e., the deconstruction of θi in the algorithm succeeds). We may
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then choose θ′ to be the substitution obtained by induction.

• Case λx.M:

Similar to the previous case. The only important difference is that by (1), we

have that A only contains variables from ∆, which implies θ0(Γ),x : A = θ0(Γ,x :

A), which is required to apply the induction hypothesis.

• Case M N:

By inversion on (4) we have (∆•,Θ′);θ0(Γ)⊢E M : AN →A0 and (∆•,Θ′);θ0(Γ)⊢E

N : AN for some type AN .

We apply the induction hypothesis to both recursive calls of infer.

The first use of the induction hypothesis yields the existence of θ′1 such that

∆ ⊢ θ
′
1 ⊢ Θ1 ⇒ Θ

′ (5)

θ0 = θ
′
1 ◦θ1

θ
′
1(A

′) = AN → A0

The second application of the induction hypothesis (using (5)) yields the exist-

ence of θ′2 such that

∆ ⊢ θ
′
2 ⊢ Θ2 ⇒ Θ

′

θ
′
1 = θ

′
2 ◦θ2

θ
′
2(A) = AN

Now, let θb the substitution with domain ftv(Θ2),b such that θb(c) = θ′2(c) for

all c ∈ Θ2 and θb(b) = A0.

This definition yields ∆⊢ θb : (Θ2,b : ⋆)⇒Θ′. We may then show that θb(θ2(A′))

= AN → A0 = θb(A → b) holds.

This allows us to apply Theorem 4.3 to obtain the existence of an instantiation

θ′ with the required properties.

• Case let x = M in N: Inverting (4) gives us the existence of ∆p,Ap,Ax such that

the following holds.

∆p = ftv(Ap)−∆ (6)

((∆, ftv(Θ′)),∆p,M,Ap) ⇕ Ax (7)

(∆•,Θ′,∆•
p);θ0(Γ) ⊢E M : Ap (8)

(∆•,Θ′);(θ0(Γ),x : Ax) ⊢E N : A0 (9)
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principal((∆, ftv(Θ′)),θ0(Γ),M,∆p,Ap) (10)

We may assume w.l.o.g. that ∆p is fresh with respect to Θ and Θ1 (11). Oth-

erwise, we may apply a renaming substitution to the variables in ∆p, which of

course preserves principality (Lemma 3.1), while the substitution property on

typings (Lemma 4.4) ensures that the statements (7) to (9) still hold. Note that

(10) already implies ∆p #∆, ftv(Θ′).

We weaken (3) to ∆ ⊢ θ0 : Θ ⇒ (Θ′,∆•
p) (12). The well-typedness of M (see (8))

then allows us to apply the induction hypothesis, guaranteeing that the first re-

cursive call of the inference algorithm succeeds, returning (Θ1,θ1,A). It further

guarantees the existence of θ′M such that we have the following.

∆ ⊢ θ
′
M : Θ1 ⇒ (Θ′,∆p) (13)

θ0 = θ
′
M ◦θ1 (14)

Ap = θ
′
M(A) (15)

We now show that ∆p, the generalisable type variables according to the typing

derivation, and ∆′′, the generalisable type variables as determined by the infer-

ence algorithm are identical, modulo a bijective renaming performed by θ′M.

Formally, we will show that θ′M(∆′′) = ∆p holds.

According to Lemma A.13, the type A inferred for M is principal. Concretely,

we have principal((∆,∆ng),θ1(Γ),M,∆g,A) (16), where ∆g = ftv(Θ′′)− ftv(θ1)

and ∆ng = ftv(Θ′′)−∆g ≈ ftv(θ1)−∆ (17). We therefore have principal((∆,∆′),

θ1(Γ),M,∆g,A) (18), where ∆′ is defined by the algorithm.

We now strengthen (18) by replacing ∆g with the set of free variables appearing

in A, minus those that are non-generalisable. To this end, we take ∆′′ = ftv(A)−
∆,∆′, as defined in the inference algorithm. As a result, we have that ∆′′ contains

the set of variables obtained from intersecting ∆g and ftv(A), ordered by their

first appearance within A. We then observe that for any a ∈ ∆g such that a ̸∈ ∆′′,

we have a ̸∈ ∆ and a ̸∈ ftv(A) (both by definition of ∆′′) and a ̸∈ ftv(θ1(Γ)) (due

to a ̸∈ ftv(θ1) and (2), which implies ftv(Γ)⊆ ∆, ftv(Θ)) and a ̸∈ ftv(M) (due to

a#∆ and (1), which implies ftv(M)⊆ ∆). Thus, we may indeed strengthen (18)

to principal((∆,∆′),θ1(Γ),M,∆′′,A) (19).

Next, we define θr := θ′M↾∆′ . Let Θr be the subset of Θ1 containing exactly the
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variables in ∆′. By (13), this gives us ∆ ⊢ θr : Θr ⇒ (Θ′,∆p). However, since

the domain of Θr contains exactly those flexible variables in the codomain of θ1,

we can obtain θ0 = θr ◦θ (20) from (14). The knowledge about the codomain of

θ0 (see (3)) then allows us to strengthen the earlier well formedness judgement

regarding θr to ∆ ⊢ θr : Θr ⇒ Θ′ .

Altogether, this allows us to apply Lemma 4.5 to (19), yielding principal((∆,

ftv(Θ′)),θr(θ1(Γ)),M,∆′′,θr(A)) which by (20) is equivalent to principal((∆,

ftv(Θ′)),θ0(Γ),M,∆′′,θr(A)).

The uniqueness of principal types now allows us to relate Ap (a principal type of

M, see (10)) and θr(A), stating that there must exist a bijection between ∆p and

∆′′, equating the two types. By (15) and the fact that θr is like θ′M except acting

like the identity on ∆′′, we have that θ′M is such a bijection when restricted to ∆′′.

Let n be the number of elements in ∆′′. Since both ∆p and ∆′′ are ordered with

respect to the first appearance of each variable in the respective type, we have

that for all i ∈ {1, . . . ,n}, θ′M maps the i-th variable of ∆′′ to the i-th variable in

∆p). Thus, we have shown the desired property θ′M(∆′′) = ∆p (21).

We observe that we have ftv(A)⊆ ∆,∆′,∆′′ due to the definition of the latter two

sequences by infer (22).

We now distinguish two sub-cases, based on the shape of M′, and show that

in each case, there exists a substitution θc such that the following conditions

hold.

∆ ⊢ θc : (Θ′
1 −∆

′′′)⇒ Θ
′ (23)

(∆•,Θ′);θc
(
θ1(Γ),x : ∀∆

′′′.A
)
⊢E N : A0 (24)

θ0 = θc ◦θ1 (25)

– First sub-case, M ∈ GVal: By definition of infer and ⇕ we have ∆′′ = ∆′′′

and Ax = ∀∆p.Ap. Since demote(•,Θ1,∆
′′′) only affects variables in ∆′′′,

we have Θ′
1 − ∆′′′ = Θ1 − ∆′′′ (i.e., all demoted variables are removed).

We define θc such that it acts like θ′M on the subset ∆′ (i.e., the flexible

variables in the co-domain of θ1) of its domain. For all other b (i.e., b ∈
ftv(Θ1)−∆− ftv(θ1)), let θc(b) be an arbitrary, monomorphic ground type,

such as Unit.4

4Note that the mappings for variables in b ∈ ftv(Θ1)−∆− ftv(θ1) are irrelevant for anything other



250 Appendix A. Proofs for Chapters 3 and 4

By (3), (13) and (14), our choice of θc yields θ0 = θc ◦ θ1 and ∆ ⊢ θc :

(Θ′
1−∆′′′)⇒ Θ′ and θ0(Γ) = θc(θ1(Γ)). The first two properties are those

we intend to show for our choice of θc. The latter property allows us to

show that the earlier typing judgement for N (see (9)) is equivalent to the

desired judgement (∆•,Θ′);θc
(
θ1(Γ),x : ∀∆′′′.A

)
⊢E N : A0. All that remains

to show is that both judgements assign the same type to x.

To this end, we prove θc(∀∆′′′.A) = Ax as follows.

θc(∀∆′′′.A)

= θc(∀∆′′.A)

= θc(∀∆p.A[∆p/∆′′]) (by |∆′′|= |∆p| and Θ1 #∆p #Θ′,see (11))

= ∀∆p.θc(A[∆p/∆′′]) (by (21) and (22) and θ′M↾∆′ = θc↾∆′)

= ∀∆p.(θ
′
M(A)) (by (15))

= ∀∆p.Ap

= Ax

– Second sub-case, M ∈ GVal: In this case we have ∆′′′ = · and Ax = δx(Ap)

for some instantiation δx with ∆, ftv(Θ′) ⊢ δx : ∆p ⇒• · (26). We define

θc similarly to the previous sub-case. Its domain Θ′
1 − ∆′′′ additionally

contains the variables from ∆′′ this time. For those variables b ∈ ∆′′, we

define θc to be δx(θ
′′(b)), meaning that we first perform the renaming from

∆′′ to ∆p (see (21)), and then perform the same monomorphic instantiation

as δx. Altogether, this yields the following definition for θc.

θc(b) =


θ′M(b) if b ∈ ∆′

Unit if b ∈ Θ1 −∆′,∆′′

δx(θ
′
M(b)) if b ∈ ∆′′

Note that the first two cases yield the definition of θc in the previous sub-

case and we obtain θ0 = θc ◦θ1 using the same reasoning. To show satis-

faction of ∆ ⊢ θc : (Θ′
1 −∆′′′)⇒ Θ′, we observe that Θ1 and Θ′

1 (which is

identical to Θ′
1−∆′′′) differ only in that all variables in ∆′′ now have restric-

tion •. However, by (21) and (26) we have ∆⊢ (δx◦θ′M↾∆′′) : ∆′′⇒• ftv(Θ
′),

guaranteeing that θc maps all variables in ∆′′ to monomorphic types.

than reasoning about the codomain of θc. Just re-using the mappings from θ′M (i.e., b 7→ θ′M(b)) for these
variables b is not possible as per (13), θ′M(b) may contain variables from ∆p, which is not permitted in
order for θc in order for ∆ ⊢ θc : (Θ′

1 −∆′′′)⇒ Θ′ to hold.
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As in the previous case, we show that (∆•,Θ′);θc
(
θ1(Γ),x : ∀∆′′′.A

)
⊢E N :

A0 holds due to (9) and θc(∀∆′′′.A) = Ax, which we show as follows.

θc(∀∆′′′.A)

= θc(A) (by (21) and (22) and the def. of θc)

= δx(θ
′
M(A)) (by (15))

= δx(Ap)

= Ax

We have thus shown that in each sub-case, our choice of θc satisfies the condi-

tions (23) to (25).

Applying the induction hypothesis to (23) and (24) then yields that the second re-

cursive call to infer succeeds, returning (Θ2,θ2,B), and there exists θ′N satisfying

the following.

∆ ⊢ θ
′
N : Θ2 ⇒ Θ

′ (27)

θc = θ
′
N ◦θ2 (28)

A0 = θ
′
N(B) (29)

This also means that inference for the overall let binding succeeds.

Since infer returns (Θ2,θ2 ◦θ1,B), we have Θ′′ = Θ2 and θ′′ = θ2 ◦θ and A′
0 =

B. We choose θ′ to be θ′N, means that by (27) and (29) we immediately have

satisfaction of (II) and (IV), respectively.

By (25) and (28), we also have θ0 = θc ◦θ1 = (θ′N ◦θ2) ◦θ1 = θ′N ◦ (θ2 ◦θ1) =

θ′ ◦θ′′, showing satisfaction of (III).

• Case let (x : A) = M in N:

By (4) and inverting LETANN, there exist ∆G and AM such that we have

∆G,AM = split(A,M) (30)

(∆•,Θ′,∆•
G);θ0(Γ) ⊢E M : AM (31)

A = ∀∆G.AM (32)

(∆•,Θ′);
(
θ0(Γ),(x : A)

)
⊢E N : A0 (33)

By alpha-equivalence, we assume ∆G #Θ.

Note that by definition of infer and split, we have ∆G = ∆′ and A′ = AM (34). By

(31), we have ∆′ #Θ′ (35). We weaken (3) to (∆,∆′) ⊢ θ0 : Θ ⇒ Θ′.
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The assertion ∆′ #∆,Θ is immediately satisfied in the case where M ̸∈GVal. Oth-

erwise, it is satisfied due the assumption ∆G #Θ and the fact that judgements such

as (31) further imply ∆′ #∆.

By inversion on (1), we have (∆,∆′);Γ ⊢ M ok and ∆;(Γ,x : A) ⊢ N ok and ∆ ⊢
A ok (36), which implies (∆,∆′) ⊢ A′ ok (37).

Together with (31) we then have the following by induction: infer((∆,∆′),Θ,Γ,M)

succeeds, returning (Θ1,θ1,A1) and there exists θ′M such that

(∆,∆′) ⊢ θ
′
M : Θ1 ⇒ Θ

′ (38)

θ0 = θ
′
M ◦θ1 (39)

θ
′
M(A1) = AM (40)

Theorem 4.5 yields (∆,∆′)⊢ θ1 : Θ⇒Θ1 (41) and (∆•,∆′ •,Θ1);θ1(Γ)⊢E M : A1,

which implies (∆•,∆′ •,Θ1) ⊢ A1 (42) (see Lemma A.7).

We then have
θ′M(A1)

= AM (by (40))

= A′ (by (34))

= θ′M(A′) (by (37) and (38))

In addition to this equality and (38) as well as (42), we have ∆•,∆′ •,Θ1 ⊢ A′ by

weakening (37). Hence, Theorem 4.3 yields the following: U((∆,∆′),Θ1,A′,A1)

succeeds, returning (Θ2,θ
′
2), and there exists θ′U such that

(∆,∆′) ⊢ θ
′
U : Θ2 ⇒ Θ

′ (43)

θ
′
M = θ

′
U ◦θ

′
2 (44)

By Theorem 4.2, we have (∆,∆′) ⊢ θ′2 : Θ1 ⇒ Θ2. Together with (41) and

composition, we then have (∆,∆′) ⊢ θ2 : Θ ⇒ Θ2 (45).

By (39) and (44), we have θ0 = θ′U ◦θ′2 ◦θ1 = θ′U ◦θ2 (46). We show ftv(θ2)⊆
∆,Θ2: Otherwise, if a ∈ Θ and b ∈ ∆′ such that b ∈ ftv(θ2(a)), then by (43),

θ′U(b) = b and b ∈ ftv(θ′U(θ2(a))) = ftv(θ0(a)), violating (3).

Therefore, the assertion ftv(θ2)#∆′ succeeds, allowing us to strengthen (45) to

∆ ⊢ θ2 : Θ ⇒ Θ2 (47).

By (36) we have ftv(A)⊆ ∆, and together with (43) this yields θ′U(A) = A (48).
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We then have the following, where we refer to the final judgement as (49).

∆,Θ′;θ0(Γ),x : A ⊢E N : A0 (by (33))

implies ∆,Θ′;θ
′
U(θ2(Γ)),x : A ⊢E N : A0 (by (43), (45) and (46))

implies ∆,Θ′;θ
′
U(θ2(Γ),x : A) ⊢E N : A0 (by (48))

By (2) and (47), we have (∆,Θ2) ⊢ θ2(Γ) ok. Together with (36), we then have

(∆,Θ2) ⊢ θ2(Γ),x : A ok.

Hence, induction on (47) and (49) shows that infer(∆,Θ2,(θ2(Γ),x : A),N) suc-

ceeds, returning (Θ3,θ3,B) and there exists θ′N such that

∆ ⊢ θ
′
N : Θ3 ⇒ Θ

′ (50)

θ
′
U = θ

′
N ◦θ3 (51)

θ
′
N(B) = A0 (52)

We have shown that all steps of the algorithm succeed. According to the return

values of infer, we have Θ′′ = Θ3, θ′′ = θ3 ◦ θ2, and A′
0 = B. Let θ′ := θ′N. By

(50), this choice immediately satisfies (II).

We show (III):

θ0

= θ′U ◦θ2 (by (46))

= θ′N ◦θ3 ◦θ2 (by (51))

= θ′ ◦θ′′ (by θ′ := θ′N and θ′′ := θ3 ◦θ2 )

By θ′ = θ′N, (52) yields (IV).

A.5 Dependencies between proofs

As mentioned before, the correctness proofs of our inference algorithm exhibit some

mutual dependencies. For example, the proof of Lemma 4.5 – the key property we use

to prove stability of typing under substitution (Lemma 4.4) – relies on the completeness

of inference (Theorem 4.6). Likewise, the soundness proof of our inference algorithm

(Theorem 4.5) depends on the principality of inferred types (Lemma A.13), which in

turn depends on the completeness theorem.
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However, we now outline that the overall proof strategy is nevertheless well foun-

ded. Intuitively, this is due to the fact that for all groups of potentially circular de-

pendencies it is always the case that some usages of other properties are through strict

subterms.

Concretely, Figure A.1 on page 256 shows all lemmas and theorems defined in

Chapters 3 and 4 as well as Appendix A that exhibit some non-trivial dependencies

between each other. As subsequently explained, our goal is to detect potential cyclic

dependencies between proofs. Therefore, we exclude properties whose proofs have

no dependencies at all and some properties where it is clear that they cannot be part

of a cycle in the graph, because they only rely on other properties without further

dependencies. For instance, we need not consider any of the properties related to

unification further.

We may interpret each node in the graph as a property (i.e., a lemma or theorem)

P[M] of terms M. An edge P −→ Q between nodes P and Q in the graph then denotes

that the proof of property P[M] depends on property Q[M]. In other words, these edges

denote when a proof directly uses another property on the same term M.

Figure A.1 does not include edges for cases where a property P[M] relies on some

Q[M′] where M′ is a strict subterm of M. In particular, the proofs of Lemma 4.4

and Theorems 4.5 and 4.6 only exhibit such dependencies, and therefore the corres-

ponding nodes in Figure A.1 have no outgoing edges.

We then observe that the graph in Figure A.1 contains no cycles. As a result,

we observe that the properties in the graph can – and in fact have to – be proved

using a single, mutual induction. Thus, the individual proofs of these properties shown

earlier merely constitute the parts of this overall induction, rather than being standalone

proofs.

A.6 Properties of principal types

The following lemma was stated in Section 3.2.1.3, but no proof was given as it relies

on reasoning about the type inference function infer, which had not been introduced at

that point.

Lemma 3.2 (as originally stated on page 52).
Let ∆ ⊢ Γ ok and ∆;Γ ⊢ M ok hold. If principal(∆,Γ,U,∆′,A), then A has no toplevel

quantifiers.
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Proof. The principality premise implies (∆,∆′);Γ ⊢ U : A. According to Lemma 4.2,

we then have (∆•,∆′ •);Γ ⊢E U : A. By completeness of inference (Theorem 4.6) we

thus have that infer(∆, ·,Γ,U) succeeds and returns some (Θ,θ,A′). Due to the princip-

ality of inferred types (Lemma A.13), we have that A′ is a principal type of M in term

context θ(Γ), where Lemma A.12 further states that θ merely renames type variables.

Together with the uniqueness of inferred types (Lemma A.11) we then have that A and

A′ are the same modulo a renaming of type variables therein.

It is therefore sufficient to prove that for all ∆i,Θi,Mi,Ui we have that if infer(∆i,

Θi,Mi,Ui) returns some (Θ′
i,θi,Ai), then Ai has no toplevel quantifiers. Proving this is

a straightforward by induction on U .

For plain variables and lambda abstractions, this follows immediately from the

shape of the type returned by infer. The only other possible forms of guarded values

are (possibly annotated) let bindings. For both sorts of let bindings, the definition of

guarded values guarantees that the second subterm is a guarded value, and the type

returned for the overall binding is the type inferred for that subterm. Thus, the desired

result follows immediately by induction.
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Chapter 3 Chapter 4 Appendix A

Lemma 4.1

Lemma 4.4

Lemma 4.5

Theorem 4.5

Theorem 4.6

Theorem 4.7

Theorem 4.8

Lemma 3.1

Lemma A.6

Lemma A.7

Lemma A.8

Lemma A.12

Lemma A.13

Figure A.1: Dependencies between properties in Chapters 3 and 4 as well as Ap-

pendix A



Appendix B

Proofs for Chapter 5

This appendix contains the remaining proofs for properties stated in Chapter 5.

B.1 Auxiliary properties

We provide four auxiliary properties that are used in subsequent proofs.

The following lemma states that we may weaken any mostgen judgement by adding

additional flexible variables to Ξ that are mapped to pairwise different, fresh variables.

Lemma B.1 (Weakening mostgen).
Let mostgen(∆,Ξ,Γ,C,∆m,δm) and (∆,Ξ,∆m)#(a,b). Then we have mostgen(∆,(Ξ,a),

Γ,C,(∆m,b),δm[a 7→ b]).

Proof. By mostgen(∆,Ξ,Γ,C,∆m,δm) we have (∆,∆m);Ξ;Γ;δm ⊢C and therefore (∆,

∆m);Ξ;Γ ⊢ C ok (see Lemma 5.1). This means that none of the variables in a are

constrained in any way by C, meaning that the most general solution maps them to

pairwise disjoint, fresh variables, like b.

The following lemma describes solutions for constraints U(Θ,θ). The lemma is

somewhat specialised for the specific places where we use it, by introducing an extra

type context ∆′ and an existential quantifier around U(Θ,θ).

Lemma B.2.
Let ∆ ⊢ θ : Θ ⇒ Θ and ∆,∆′ ⊢ Γ ok and ftv(Θ) = Ξ,a. Further, let θ be idempotent.

257
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Then we have

(∆,∆′);Ξ;Γ;δ ⊢ ∃a.U(Θ,θ)

iff

there exists θ′ such that (∆,∆′) ⊢ θ′ : Θ ⇒ · and δ = (θ′ ◦θ)↾Ξ.

Proof. By definition, the sub-constraint U(θ) of U(Θ,θ) contains constraints of the

form a ∼ θ(a) for all a in Θ. These constraints are satisfied by exactly those substi-

tutions δ refining θ. The idempotency premise ensures that we have δ(θ(a)) = δ(a).1

In addition, the • sub-constraints in U(Θ) are satisfied iff the refinement respects the

restrictions in Θ.

The next lemma states how most general solutions of constraints U(Θ,θ) look like.

Lemma B.3.
Let the following conditions hold:

• ∆ ⊢ θ : Θ ⇒ Θ

• ftv(Θ) = Ξ,a

• ∆ ⊢ Γ ok

• b = ftv(θ↾Ξ)−∆

• θ is idempotent

Then we have

mostgen((∆,∆′),Ξ,Γ,∃a.U(Θ,θ),∆m,δm)

iff

there exist pairwise different c ⊆ ∆m s.t. δm = [b 7→ c]◦ (θ↾Ξ)

Proof. Follows directly from Lemma B.2 and the observation that the most general

solution of U(Θ,θ) is the one that maps all flexible variables in ftv(θ) to fresh, pairwise

disjoint rigid variables. Observe that by assumption ∆ ⊢ θ : Θ ⇒ Θ and the fact that

rigid variables are considered monomorphic we have ∆ ⊢ [b 7→ c] ◦θ : Θ ⇒ · as well.

1Note that if only ∆ ⊢ θ : Θ ⇒ Θ holds, but θ is not idempotent, U(Θ,θ) may even be unsatisfiable!
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B.2 Correctness of constraint generation

We now prove the soundness and completeness theorems for the translation from

FreezeML terms to constraints defined in Section 5.2.

Theorem 5.1 (Soundness of constraint generation with respect to typing relation; the-

orem originally stated on page 108).
Let ∆;Γ ⊢ M : A hold and a#∆. Then we have that ∆;a;Γ; [a 7→ A] ⊢ JM : aK holds.

Proof. We prove the following, more general property by induction on M, focusing on

the cases for let bindings. If (∆,Ξ) ⊢ A and ∆ ⊢ δ : Ξ ⇒⋆ · and ∆;Γ ⊢ M : δ(A) hold,

then we have that ∆;Ξ;Γ;δ ⊢ JM : AK holds.

• Case let x = M′ in N′, where M′ ∈ GVal:

The derivation of ∆;Γ ⊢ M : δ(A) has the following form, for some B,B′,∆p.

∆p = ftv(B′)−∆ (∆,∆p,M′,B′) ⇕ B

(∆,∆p);Γ ⊢ M′ : B′
∆;Γ,x : B ⊢ N : δ(A) principal(∆,Γ,M′,∆p,B′)

∆;Γ ⊢ let x = M′ in N : δ(A)

By M′ ∈GVal we have B= ∀∆p.B′ and JM : AK= let⋆ x=⊓b.JM′ : bK in JN′ : AK.

We assume w.l.o.g. that Ξ#(∆,∆p) and b#(∆,∆p,Ξ).

By induction we have (∆,∆p);(Ξ,b);Γ;δ[b 7→ B′] ⊢ JM′ : bK and ∆;Ξ;(Γ,x :

B);δ ⊢ JN′ : AK. By Lemma 5.3, principal(∆,Γ,M′,∆p,B′) implies mostgen(∆,b,

Γ,JM′ : bK,∆p, [b 7→ B′]). Let a := ∆p and δm := [b 7→ B′][a 7→ c] for fresh c and

∆m := (∆p,c).

According to Lemma B.1 we can thus weaken the earlier judgement involving

mostgen to mostgen(∆,(Ξ,b),Γ,JM′ : bK,∆m,δm).

Let ∆o := c and δ′ := [c 7→Unit]. Due to c# ftv(B′) we have δ′(δm(b)) = δ′(B′) =

B′.

We can then derive the following.

mostgen(∆,(Ξ,b),Γ,JM′ : bK,∆m,δm)

∆o = ftv(δm(Ξ))−∆ ∆p = ftv(δm(b))−∆,∆o

∆ ⊢ δ
′ : ∆o ⇒• · B′ = δ

′(δm(b))

(∆,∆p);(Ξ,b);Γ;δ[b 7→ B′] ⊢ JM′ : bK ∆;Ξ;(Γ,x : B);δ ⊢ JN′ : AK

∆;Ξ;Γ;δ ⊢ let⋆ x = ⊓b.JM′ : bK in JN′ : AK
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• Case let x = M′ in N′, where M′ ̸∈ GVal:

We have a derivation of the same shape as in the previous case. However, by

M′ ̸∈ GVal we have B = δ(B′) and JM : AK= let• x = ⊓b.JM′ : bK in JN′ : AK, for

some δ′ such that ∆ ⊢ δ′ : ∆p ⇒• ·.

Let ∆o,a,c,∆m and δm be defined as in the previous case and we extend δ′ to δ′′

such that δ′′ := δ′[c 7→ Unit]. This implies ∆ ⊢ δ′′ : ∆m ⇒• · and B = δ′(B′) =

δ′′(B′) = δ′′(δm(b)).

Using the same reasoning as in the previous case we obtain mostgen(∆,(Ξ,b),

Γ,JM′ : bK,∆m,δm).

By Lemma 4.1, we can apply δ′ to (∆,∆p);Γ ⊢ M′ : B′ and obtain ∆;δ′(Γ) ⊢ M′

: δ′(B′). By ∆p # ftv(Γ) and the definition of B this is equivalent to ∆;Γ ⊢ M′ : B.

By induction, we then have ∆,(Ξ,b);Γ;δ[b 7→ B] ⊢ JM′ : bK. We also obtain

∆;Ξ;(Γ,x : B);δ ⊢ JN′ : AK by induction, as in the previous case. We can then

derive the following.

mostgen(∆,(Ξ,b),Γ,JM′ : bK,∆m,δm)

∆ ⊢ δ
′′ : ∆m ⇒• · B = δ

′′(δm(b))

∆;(Ξ,b);Γ;δ[b 7→ B] ⊢ JM′ : bK ∆;Ξ;(Γ,x : B);δ ⊢ JN′ : AK

∆;Ξ;Γ;δ ⊢ let• x = ⊓b.JM′ : bK in JN′ : AK

• Case let (x : B) = M′ in N′, where M′ ∈ GVal:

Let a, H such that B = ∀a.H.

The derivation of ∆;Γ ⊢ M : δ(A) has the following form, for some ∆′,B,B′:

(∆′,B′) = split(B,M′) (∆,∆′);Γ ⊢ M′ : B′
∆;(Γ,x : B) ⊢ N′ : δ(A)

∆;Γ ⊢ let (x : B) = M′ in N′ : δ(A)

By M′ ∈ GVal, we have ∆′ = a, B′ = H and JM : AK = (∀a.JM′ : HK)∧def (x :

B) in JN′ : AK. By induction, we have (∆,∆′);Ξ;Γ;δ⊢ JM′ : HK (5) and ∆;Ξ;(Γ,x :

B);δ ⊢ JN′ : AK (6).

Recall that an implicit precondition of ∆;Γ) ⊢M : δ(A) we have ∆ ⊢M ok, which

implies ∆ ⊢ B ok.

We now show that ∆;Ξ;Γ;δ is a model for both conjuncts of JM : AK. For the first

conjunct, (∀a.JM′ : HK), we can obtain a derivation from a series of applications
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of rule SEM-FORALL from Figure 5.1 on page 97 once for each variable in ∆′,

starting from (5). For the second conjunct, we construct the following derivation.

∆;Ξ;(Γ,x : δ(B));δ ⊢ JN′ : AK

for all a ∈ ftv(B) | ∆;Ξ;Γ;δ ⊢mono(a)

∆;Ξ;Γ;δ ⊢ def (x : B) in JN′ : AK

The first premise is satisfied due to (6) and ∆ ⊢ B ok, which implies δ(B) =

B. The second premise also follows from ∆ ⊢ B ok, as it implies ftv(B) ⊆ ∆,

meaning that all such variables are monomorphic.

• Case let (x : A) = M′ in N′, where M′ ̸∈ GVal:

Analogous to the previous case, with ∆′ = /0, B′ = B. In particular, we do not

need to apply SEM-FORALL.

Theorem 5.2 (Completeness of constraint generation with respect to typing relation;

theorem originally stated on page 109).
Let ∆;Γ ⊢ M ok hold. Then ∆;a;Γ;δ ⊢ JM : aK implies ∆;Γ ⊢ M : δ(a).

Proof. We prove the following, slightly more general property by induction on M: If

∆;Γ ⊢ M ok and (∆,Ξ) ⊢ A ok and ∆;Ξ;Γ;δ ⊢ JM : AK, then ∆;Γ ⊢ M : δ(A).

Note that by the implicit preconditions of ∆;Ξ;Γ;δ ⊢ JM : AK we have ∆#Ξ and

∆ ⊢ Γ ok and ∆ ⊢ δ : Ξ ⇒⋆ ·. The latter implies ∆ ⊢ δ(A) ok.

We focus on the let cases.

• Case let x = M′ in N′, M′ ∈ GVal:

We have ∆;Ξ;Γ;δ ⊢ let⋆ x = ⊓b.JM′ : bK in JN′ : AK. The derivation of this has

the following form for some B,a,∆m,∆o,δm and δ′:

mostgen(∆,(Ξ,b),Γ,JM′ : bK,∆m,δm)

∆o = ftv(δm(Ξ))−∆ a = ftv(δm(b))−∆,∆o

∆ ⊢ δ
′ : ∆o ⇒• · B = δ

′(δm(b))

(∆,a);(Ξ,b);Γ;δ[b 7→ B] ⊢ JM′ : bK ∆;Ξ;(Γ,x : ∀a.B);δ ⊢ JN′ : AK

∆;Ξ;Γ;δ ⊢ let⋆ x = ⊓b.JM′ : bK in JN′ : AK

By induction, this gives us (∆,a);Γ ⊢ M′ : B and ∆;(Γ,x : ∀a.B) ⊢ N′ : δ(A).

By M′ ∈ GVal, we have ∆ ⊢ M′ and ∆ ⊢ Γ. According to Lemma 5.2 this im-

plies ∆;b;Γ ⊢ JM′ : bK ok (i.e., b is the only free flexible variable of JM′ : bK).
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This means that JM′ : bK leaves all variables of Ξ entirely unconstrained. There-

fore, we have that δm maps all of Ξ to fresh variables c ⊆ ∆m and in particular

c# ftv(δm(b)). This implies ∆o ≈ c and a = ftv(δm(b))−∆,∆o = ftv(δm(b))−∆

(i.e., removing ∆o from the subtracted context has no effect) and B = δm(b) (i.e.,

applying δ′ to δm(b) has no effect).

As a result, we have that we may strengthen mostgen(∆,(Ξ,b),Γ,JM′ : bK,∆m,δm)

to mostgen(∆,b,Γ,JM′ : bK,a, [b 7→ δm(b)]). We may then apply Lemma 5.3 to

the latter, yielding principal(∆,Γ,M′,a,B).

We can therefore derive the desired property ∆;Γ ⊢ let x = M′ in N′ : δ(A) as

follows:

a = ftv(B)−∆

(∆,a,M′,B) ⇕ ∀a.B (∆,a);Γ ⊢ M′ : B ∆;(Γ,x : ∀a.B) ⊢ N′ : δ(A)

principal(∆,Γ,M′,a,B)

∆;Γ ⊢ let x = M′ in N′ : δ(A)

• Case let x = M′ in N′ if M′ ̸∈ GVal:

This case is largely analogous to the previous one. This time we have a derivation

of the form:

mostgen(∆,(Ξ,b),Γ,JM′ : bK,∆m,δm)

∆ ⊢ δ
′ : ∆m ⇒• · B = δ

′(δm(b))

∆;(Ξ,b);Γ;δ[b 7→ B] ⊢ JM′ : bK ∆;Ξ;(Γ,x : B);δ ⊢ JN′ : AK

∆;Θ;Γ;δ ⊢ let• x = ⊓b.JM′ : bK in JN′ : AK

Let A′ := δm(b) and a := ftv(A′)−∆. By mostgen(∆,(Ξ,b),Γ,JM′ : bK,∆m,δm)

we have (∆,∆m);(Ξ,b);Γ;δm ⊢ JM′ : bK. By induction, this implies (∆,∆m);Γ ⊢
M′ : A′, which we can strengthen to (∆,a);Γ ⊢ M′ : A′

We obtain ∆;(Γ,x : B) ⊢ N′ : δ(A) directly by applying the induction hypothesis

to ∆;Ξ;(Γ,x : B);δ ⊢ JN′ : AK. Likewise, we obtain principal(∆,Γ,M′,a,A′) using

the same reasoning as in the previous case.

Finally, we observe that ∆ ⊢ δ′↾a : a ⇒• · holds and B = δ′↾a(A′). Therefore, we

have (∆,a,M,A′) ⇕ B
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Thus, we can derive the following:

a = ftv(A′)−∆ (∆,a,M,A′) ⇕ B

∆,a;Γ ⊢ M : A′
∆;Γ,x : A ⊢ N : δ(A) principal(∆,Γ,M,a,A′)

∆;Γ ⊢ let x = M′ in N′ : δ(A)

• Case let (x : B) = M′ in N′ if M′ ∈ GVal:

Let b and H such that B = ∀b.H.

We then have ∆;Ξ;Γ;δ ⊢ (∀b.JM′ : HK) ∧ def (x : B) in JN′ : AK. The deriva-

tion tree of this contains derivations for (∆,b);Ξ;Γ;δ ⊢ JM′ : HK and ∆;Ξ;(Γ,x :

δ(B));δ ⊢ JN′ : AK.

By ∆;Γ ⊢ M ok we have ∆ ⊢ B (i.e., B contains no flexible variables). Therefore,

δ(B) = B and δ(H) = H. By induction, this then gives us (∆,b);Γ ⊢ M′ : H and

∆;(Γ,x : B) ⊢ N′ : δ(A).

Hence, we can derive

(b,H) = split(B,M′) (∆,b);Γ ⊢ M′ : H ∆;Γ,x : B ⊢ N′ : δ(A)

∆;Γ ⊢ let (x : B) = M′ in N′ : δ(A)

• Case let (x : B) = M′ in N′ if M′ ̸∈ GVal:

This case is similar to the previous one: We have ∆;Ξ;Γ;δ ⊢ JM′ : BK) ∧ def (x :

B) in JN′ : AK this time and δ(B) = B due to ∆;Γ ⊢ M ok.

We get ∆;Γ ⊢ M′ : B and ∆;(Γ,x : B) ⊢ N′ : δ(A) by induction and can derive

(·,B) = split(B,M′) ∆;Γ ⊢ M′ : B ∆;Γ,x : B ⊢ N′ : δ(A)

∆;Γ ⊢ let (x : B) = M′ in N′ : δ(A)

B.3 Correctness of constraint solver

We now show proofs of Theorems 5.3 and 5.4. We also show how the main correctness

properties for our constraint solver, namely Conjecture 5.4, may be proved, assuming

that Conjecture 5.1 holds.

We also prove three additional auxiliary lemmas directly related to the constraint

solver.
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Lemma B.4 (Stack machine steps preserve well-formedness of states).
If ⊢ s ok and s → s′ then ⊢ s′ ok.

Proof. By case analysis over which stack machine rule was applied. In the case S-EQ,

we require Lemmas A.9 and A.10 to show the idempotence and well-formedness of

the substitution in the new state.

Lemma B.5 (Well-ordering on states).
There exists a strict well-ordering < on the set St of stack machine states such that for

all s,s′ ∈ St with s → s′ we have s′ < s.

Proof. First, we define the size of a constraint C, denoted |C|, s.t.

|true| = 0

|mono(a)| = 1

|A ∼ B| = 1

|⌈x : A⌉| = 2

|x ⪯ A| = 2

|∃a.C| = 1+ |C|
|∀a.C| = 1+ |C|

|def (x : A) in C| = 1+ |C|
|C1 ∧C2| = 1+ |C1|+ |C2|

| letR x = ⊓a.C1 in C2| = 3+ |C1|+ |C2|

Next, we define insts(C) to be the number of instantiation (sub-)constraints in C.

We now define the function | · | that maps states to elements of N0×N0×N0×N0:

|( f0 :: · · · :: fn,Θ,θ,C)|=
(
insts(C), |F [C]|, |C|, max{i | 0 ≤ i ≤ n, fi is an ∃ frame}

)
We observe that the lexicographic ordering <lex on tuples from N0×N0×N0×N0

constitutes a well-ordering on such tuples and we will show below that for each step

s → s′ we have that |s′|<lex |s| holds. However, the function | · | on states is surjective,

which implies that defining s′ < s iff |s′|<lex |s| would not yield a total order on states.

Hence, let <ord be some arbitrary strict well-order on states. We then define

s′ < s iff |s′|<lex |s| or
(
|s′|= |s| and s′ <ord s

)
which is indeed a well-ordering.

It remains to show that each step of the stack machine produces a smaller state

w.r.t. | · |. Hence, assume s → s′, where s = (F,Θ,θ,C) and s′ = (F ′,Θ′,θ′,C′).
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• If the step is the result of applying the rule S-EQ, S-FREEZE, or S-MONO, then

we have F = F ′ and |C′|< |C|, yielding |s′|<lex |s| via the second component of

the tuples.

• If the step is the result of applying S-INST, we have insts(C′) = insts(C)−1 and

we have |s′|<lex |s| via the first component of the tuples.

• If the step is the result of applying the rule S-CONJPOP, S-FORALLPOP, or

S-DEFPOP, we have insts(C) = insts(C′) and |F ′[C′]|< |F [C]|, yielding |s′|<lex

|s| via the second component of the tuple.

• If the step is the result of applying the rule S-CONJPUSH, S-EXISTSPUSH,

S-FORALLPUSH, S-DEFPUSH, or S-LETPUSH, we have insts(C) = insts(C′)

and F [C] = F ′[C′], but |C′|< |C|, yielding |s′|<lex |s| via the third component of

the tuples.

• If S-EXISTSLOWER got applied, let c and a be defined as in the rule, F = f0 ::

. . . fn, and l = |a|. Note that the rule imposes l > 0 and we have C =C′ = true.

We observe that c is a subset of a. If |a|> |c| , we have |F ′[C′]|< |F [C]| because

the set of frames of F ′ is a strict subset of the frames in F . We then obtain |s′|<lex

|s| immediately via the second component of the tuples (the first component

remains unchanged). Otherwise, we have that the two sets are equal. In that

case we have |F [C]| = |F ′[C′]| (as there is merely a reordering of stack frames

happening) and |C| = |C′| = 0. The resulting stack F ′ is of the form f ′0 :: . . . f ′n,

where f ′n = fn−l (not an ∃ frame), and f ′n−1 is an ∃ frame.

Together, we have |s|= (insts(C), |F [C]|,0,n), and |s′|= (insts(C′), |F [C]|,0,n−
1), and insts(C) = insts(C′), yielding |s′|<lex |s|.

• If rule S-LETPOP⋆ was applied, we use the following reasoning: F is of the

form F0 :: let⋆ x = ⊓c.2 inĈ :: ∃a and C is true. This yields

|F [C]| = |F0[let⋆ x = ⊓c.∃a.true in Ĉ]|
= | let⋆ x = ⊓c.true in true|+ |∃a.true|+ |Ĉ|+ |F0[true]|
= 3+ |a|+ |Ĉ|+ |F0[true]|,

Let a′′ be defined as in the rule. We have

|F ′[C′]|= |F0[∃a′′.def (x : A) in Ĉ] = 1+ |a′′|+ |Ĉ|+ |F0[true]|
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Proving F ′[C′]< F [C] is therefore equivalent to proving

1+ |a′′|+ |Ĉ|+ |F0[true]|< 3+ |a|+ |Ĉ|+ |F0[true]|
equiv. a′′ < 2+a.

We observe that a′′ is a strict subset of (a,c) and hence |a′′| < |a|+2, meaning

that the inequality above holds.

We have insts(C)= insts(C′), and therefore |s′|<lex |s| via the second component

of the tuples.

• The reasoning for rule S-LETPOP• is analogous to the previous case. The only

change is that we need to observe that (c,a′′) is a subset of (a,c).

Theorem 5.3 (Termination; theorem originally stated on page 144).
The constraint solver terminates when invoked on any well formed input state.

Proof. Follows immediately from Lemma B.5, which guarantees the absence of infin-

ite sequences of steps.

Theorem 5.4 (Progress; theorem originally stated on page 145).
Let ⊢ (F,Θ,θ,C) ok and F [C] ̸= ∀∆.∃Ξ.true for all ∆,Ξ. Further, let ·; ·; ·; /0 ⊢ F [C∧
U(Θ,θ)] hold. Then there exists a state s1 such that (F,Θ,Γ,θ,C)→ s1.

Proof. Let s := (F,Θ,θ,C). By assumption, we have ·; ·; ·; /0 ⊢ F [C∧U(Θ,θ)] (1).
We first assume C ̸= true and show that one of the rules in Figure 5.8 is applicable.

• Case C1 ∧C2: Rule S-CONJPUSH is applicable.

• Case A ∼ B: The left-hand-side of S-EQ matches. The derivation of (1) must

contain a subderivation of the form

δ(A) = δ(B)

rc(F); fc(F); tc(F);δ ⊢ A ∼ B

for some δ, where fc(F)≈ ftv(Θ).

We also have rc(F); fc(F); tc(F);δ ⊢⊢U(Θ,θ), which by Lemma B.2 means that

δ is a refinement of θ (i.e., δ = θ′ ◦θ for some θ′ with rc(F) ⊢ θ′ : Θ ⇒ ·).

Theorem 4.3 then guarantees that unification succeeds.
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• Case ⌈x : A⌉: The left-hand-side of S-INST matches. By (1) we have x ∈ tc(F),

meaning that the rule succeeds.

• Case x ⪯ A: Rule S-FREEZE is applicable (using the same argument to show

x ∈ tc(F) as in the previous case).

• Case ∃a.C′: Rule S-EXISTSPUSH is applicable.

• Case ∀a.C′: Rule S-FORALLPUSH is applicable.

• Case def (x : A) in C′: The left-hand-side of S-DEFPUSH matches.

The derivation of (1) must contain a sub-derivation of the form

(for all a ∈ ftv(A)− (rc(F),∆′) | (rc(F),∆′); fc(F);δ(tc(F));δ ⊢mono(a)

(rc(F),∆′); fc(F);(δ(tc(F)),x : δA);δ ⊢C′

(rc(F),∆′); fc(F);δ(tc(F));δ ⊢ def (x : A) in C′

for some δ, where C′ =C∧U(Θ,θ) and ftv(Θ) = Ξ. Note that by ⊢ s ok we have

ftv(A)⊆ (rc(F), fc(F)).

According to Lemma B.2, we have δ = θ′ ◦θ for some θ′ with (rc(F),∆′) ⊢ θ′ :

Θ ⇒ ·. Therefore, the monomorphism conditions imposed by S-DEFPUSH are

satisfied.

• Case mono(a): Analogous to def case; the sub-derivation for mono(a) implies

that the monomorphism conditions imposed by S-MONO are satisfied, making

the rule applicable.

• Case letR x = ⊓a.C1 in C2: Rule S-LETPUSH is applicable.

We now consider the case that C is true. Due the assumption about the shape of

F [C], we know that F is neither empty nor of the shape ∀∆ :: ∃a for any a.

We perform a case analysis on the topmost stack frame of F :

• Case 2∧C2: Rule S-CONJPOP is applicable.

• Case def (x : A): Rule S-DEFPOP is applicable.

• Case letR x = ⊓a.C1 in C2: Rule S-LETPOP⋆ or S-LETPOP• is applicable,

where the sequence a mentioned in the rule’s definition is empty. None of the

respective rule’s side conditions can fail.
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• Case ∀a: Let F ′ be defined such that F = F ′ :: ∀a. By assumption s ok we have

that the variables in Θ are exactly the variables bound by ∃ or let frames in F ′.

Suppose there exists b ∈ ftv(Θ) such that a ∈ ftv(θ(b)), which would cause the

rule to fail. Then there exists a frame f in F ′ that binds b. Let Fp be the (possibly

empty) prefix of F ′ up to, but not including, frame f and let Fs be the (possibly

empty) suffix from there (i.e., F ′ = Fp :: f :: Fs).

We distinguish two sub-cases further:

1. If f = ∃b then the derivation of (1) must contain a sub-derivation of the

following form:

(rc(Fp),∆
′);(fc(Fp),b);δ(tc(Fp));δ[b 7→ A] ⊢C′

(rc(Fp),∆
′); fc(Fp);δ(tc(Fp));δ ⊢ ∃b.C′

for some A, δ, and ∆′, where C′ = Fs[C∧U(Θ,θ)].

Note that (rc(Fp),∆
′);(fc(Fp),b);δ(tc(Fp));δ[b 7→ A] ⊢C′ implies (rc(Fp),

∆′) ⊢ A ok (2). Further, due to the fact that Fs contains the frame ∀a, we

have a ̸∈ rc(Fp),∆
′ (3).

Likewise, there exists a subderivation showing (rc(F),∆′′); fc(F);δ′′(tc(F));

δ′′ ⊢ U(Θ,θ) for some ∆′′ and δ′′, where ∆′′ ⊇ ∆′ and δ′′ is an exten-

sion of δ[b 7→ A]. By Lemma B.2 we have that there exists θ′ such that

rc(F),∆′′ ⊢ θ′ : Θ ⇒ · and δ′′ = (θ′ ◦ θ). Because δ′′ is an extension of

δ[b 7→ A], this implies A = θ′(θ(b)).

By a ∈ rc(F) we have θ′(a) = a. Due to assumption a ∈ ftv(θ(b)) we

then have a ∈ ftv(A) However, we have a ̸∈ btv(Fp),∆
′ (3) and rc(Fp),∆

′ ⊢
A ok (2), yielding the contradiction a ̸∈ ftv(A).

2. If f is of the the form let⋆ x = ⊓b.C1 in C2 then the derivation of (1) must

contain a sub-derivation of the following form:

. . .

(rc(Fp),∆
′,a);(fc(Fp),b);δ(tc(Fp));δ[b 7→ A] ⊢C1

(rc(Fp),∆
′); fc(Fp);δ(tc(Fp));δ ⊢ let⋆ x = ⊓b.C1 in C2

for some A,∆′,a and δ, where C1 =Fs[C∧U(Θ,θ)]. We have (rc(Fp),∆
′,a)⊢

A ok and a ̸∈ rc(Fp),∆
′,a and may therefore obtain the same contradiction

as in the previous case f = ∃b.

3. The case let• x = ⊓b.C1 in C2 is analogous.
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• Case ∃a: If the topmost stack frames of F have the shape letR x = ⊓a.2 in C′ ::

∃b, then S-LETPOP⋆ or S-LETPOP• is applicable, as discussed before. Oth-

erwise, due to our assumption about the shape of F [C], there exists a frame f

in F that isn’t an ∃ frame and we can apply S-EXISTSLOWER, which always

succeeds.

We now show how Conjecture 5.4, the main correctness property of the solver,

may be proved, contingent on Conjecture 5.1. We state a slight variation of the former

in Conjecture B.1 on the following page, more suitable for inductive reasoning, and

subsequently show that it implies Conjecture 5.4.

We first formalise an additional well-formedness condition for whole states, which

is required to state Conjecture B.1. Conjecture 5.4 only reasons about states of the

simple form (·, ·, /0,∀∆.∃Ξ.def Γ in C) (in particular: states with an empty stack), but

Conjecture B.1 allows for more general forms of states.

While it is sufficient to require ∆ ⊢ftv C ok in Conjecture 5.4, we need a more in-

volved property for Conjecture B.1 to represent that the ⊢ftv condition imposed on the

constraint components of states is preserved for all intermediate states encountered

during solving. This effectively amounts to showing that whenever · ⊢ftv C0 ok and

(·, ·, /0,C0) →∗ (F1,Θ1,θ1,C1), then we have rc(F1) ⊢ftv C1 ok as well. Intuitively this

holds due to the fact that whenever C1 is a let constraint, it must have appeared as a

sub-constraint of the original constraint C0.

We need to state a condition such that for the initial state s0 in Conjecture B.1

we have ⊢ftv C′ ok for its constraint component C′. However, we additionally need to

ensure that the latter condition is preserved once the solver takes a step from s0 to a

successor state. As this step may involve moving parts from the state’s stack into its

constraint component, this condition must involve reasoning about both the constraint

and stack component of states.

To this end, we define an additional well-formedness relation on stacks, denoted

⊢ftv F ok. Intuitively, it described that for each constraint C contained within a frame f

of the stack, we have ∆ ⊢ftv C ok, where ∆ are the rigid variable bound by the prefix of

F up to f . Here, constraints contained within a frame f refers to the constraints within

a conjunction or let frame. The new relation is then formalised in Figure B.1 on the

next page.

We then define the relation ⊢ftv s ok on states s= (F,Θ,θ,C) such that ⊢ftv s ok holds
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⊢ftv F ok

⊢ftv · ok

rc(F) ⊢ftv C ok

⊢ftv F :: 2∧C ok

⊢ftv F ok

⊢ftv F :: ∀ a ok

⊢ftv F ok

⊢ftv F :: ∃ a ok

⊢ftv F ok

⊢ftv F :: def (x : A) ok

rc(F) ⊢ftv C ok ⊢ftv F ok

⊢ftv F :: letR x = ⊓a.2 inC ok

Figure B.1: Definition of ⊢ftv F ok

iff ⊢ftv F ok and rc(F) ⊢ftv C ok hold.

Note that we could have combined these additional well-formedness relations ⊢ftv

F ok and ⊢ftv s ok with the existing well-formedness relations on stacks and states,

defined in Section 5.3.1.3, instead. We are only interested in stacks and states that

satisfy these conditions. However, recall that for constraints the distinction between

∆;Ξ;Γ ⊢C ok and ∆ ⊢ftv C ok is strictly necessary. We thus choose to mirror the same

distinction for stacks and states for the sake of consistency.

We may then show that this condition on states is indeed preserved during execu-

tion of the solver:

Lemma B.6.
If ⊢ftv s0 ok and s0 → s1 then ⊢ftv s1 ok.

Proof. By case analysis on the applied rule from Figure 5.8.

Recall that the following property is a slight variation of Conjecture 5.4; we use it

in the contingent proof of the latter.

Conjecture B.1.
Let s = (∀∆ :: ∃a :: F,Θ,θ,C) and ⊢ s ok and ⊢ftv s ok. Then we have the following:

∆;a; ·;δ ⊢ F [C∧U(Θ,θ)]

iff

there exist Θ′,θ′′,θ′,b s.t.

s →∗ (∀∆ :: ∃ (a,b),Θ′,θ′, true) and

∆ ⊢ θ′′ : Θ′ ⇒ · and

(θ′′ ◦θ′)↾a = δ

Proof (dependent on Conjecture 5.1). We show each direction individually:
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=⇒ By transfinite induction on the well-ordering < on stack machine states s whose

existence is shown in Lemma B.5. Hence, we assume that the left-to-right direc-

tion of the lemma holds for all s′ on the left of the →∗ s.t. s′ < s and show that

the left-to-right direction holds for s on the left of →∗, too.

To this end, let s = (∀∆ :: ∃a :: F,Θ,θ,F,C) and we assume ⊢ s ok (1) as well as

⊢ftv s ok (2) and ∆;a; ·;δ ⊢ F [C∧U(Θ,θ)] (3).

We first consider the case that s is already a final state in the senses of this lemma,

meaning that F is of the shape ∃b for some b and C is true. Further, we have

θ = θ′ and Θ = Θ′, where ftv(Θ)≈ a,b.

This makes (3) equivalent to ∆;a; ·;δ ⊢ ∃b.U(Θ,θ). Applying Lemma B.2 then

gives us the existence of an appropriate θ′′.

We now consider the case where s is not a final state, i.e., we don’t have F [C] =

∃b.true for any b. We observe that (3) implies ; ·; ·; /0 ⊢ ∀∆ :: ∃a :: F [C∧U(Θ,θ)].

This allows us to apply Theorem 5.4, showing that the machine can take a step

from s to a new state s1. We now show that s1 is of the form (∀∆ :: ∃a ::

F1,Θ1,θ1,C1) for some F1,Θ1,θ1, and C1:

If F is empty, then C must not be true. All stack machine rules applicable in this

case preserve all existing stack frames. Otherwise, if F is not empty, we observe

that the only rules of the stack machine that may replace more than the topmost

stack frame are S-EXISTSLOWER, S-LETPOP•, and S-LETPOP⋆.

If S-EXISTSLOWER was applied, we observe that the only way for the vari-

ables a in the definition of the rule S-EXISTSLOWER not to be disjoint from

the variables a in the statement of this lemma is if the stack of s is of the form

∀∆ :: ∃a :: ∃b for some b, which violates the assumption about the shape of F [C]

above. Therefore, if S-EXISTSLOWER was applied, the bottom-most frames

∀∆ :: ∃a of s remained unchanged. If S-LETPOP⋆ or S-LETPOP• was applied,

then F must contain a let frame and any stack frames below that in s (in particu-

lar, the frames ∀∆ :: ∃a) remain unchanged.

Therefore, the ∀∆ :: ∃a frames at the bottom of s’s stack are preserved by any

rule possibly turning s into s1. Using (1) and (2) and the fact that the lower stack

frames of s1 are ∀∆ :: ∃a, we may apply Conjecture 5.1 to the step s → s1, which

gives us

∆;a; ·;δ ⊢ F [C∧U(Θ,θ)] iff ∆;a; ·;δ ⊢ F1[C1 ∧U(Θ1,θ1)] (4)
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By Lemma B.5, we further have s1 < s (5). From Lemmas B.4 and B.6 we

obtain ⊢ s1 ok (6) and ⊢ftv s1 ok (7), respectively.

Combining (3) with (4) gives us ∆;a; ·;δ ⊢ F1[C1 ∧U(Θ1,θ1)]. This, together

with (5), (6) and (7) allows us to apply the induction hypothesis to s1. This gives

us the existence of Θ′,θ′′,θ′,a such that the following holds.

(∀∆ :: ∃a :: F1,Θ1,θ1,C1)→∗ (∀∆ :: ∃ (a,b),Θ′,θ′, true) (8)

∆ ⊢ θ
′′ : Θ

′ ⇒ · (9)

(θ′′ ◦θ
′)↾a = δ (10)

The step s→ s1 extends (8) to (∀∆ ::∃a :: F,Θ,θ,C)→∗ (∀∆ ::∃ (a,b),Θ′,θ′, true)

and (9) as well as (10) show us that θ′′ has the desired properties.

⇐= Let s be the state (∀∆ :: ∃a :: F,Θ,θ,C). We prove this direction by induction on

the length n of the sequence s →n (∀∆ :: ∃ (a,b),Θ′,θ′, true). By assumption, we

also have ∆ ⊢ θ′′ : Θ′ ⇒ · (11) and (θ′′ ◦θ′)↾a = δ (12).

If n = 0 we have Θ = Θ′, θ = θ′, C = true, and F = ∃b. The property to

prove simplifies to ∆;a; ·;δ ⊢ ∃b.U(Θ,θ). This follows directly from applying

Lemma B.2 to (11) and (12).

In the inductive step there exists some s1 s.t.

s → s1 →∗ (∀∆ :: ∃(a,b),Θ′,θ′, true)

We now assume that F [C] is not of the form ∃c.true for any c (otherwise, s would

already be a final state in the sense of this lemma and we finish the proof directly

using the n = 0 case above).

Therefore, using the same reasoning as in the =⇒ direction, we know that s1 is

of the form (∀∆ :: ∃a :: F1,Θ1,θ1,C1) for some F1,Θ1,θ1, and C1. According

to Lemmas B.4 and B.6, we have ⊢ s1 ok and ⊢ftv s1 ok, respectively. We can

therefore apply Conjecture 5.1 to this single step, yielding

∆;a; ·;δ ⊢ F [C∧U(Θ,θ)] iff ∆;a; ·;δ ⊢ F1[C1 ∧U(Θ1,θ1)] (13)

We apply the induction hypothesis to the sequence s1 →∗ (∀∆ :: ∃(a,b),Θ′,θ′,

true), yielding ∆;a; ·;δ ⊢ F1[C1 ∧U(Θ1,θ1)] By (13), this gives us the desired

property ∆;a; ·;δ ⊢ F [C∧U(Θ,θ)].
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△

Conjecture 5.4 (Correctness of the constraint solver; conjecture originally stated on

page 145).
Let ∆ ⊢ Γ ok and ∆;Ξ;Γ ⊢C ok and ∆ ⊢ftv C ok. Then we have

∆;Ξ;Γ;δ ⊢C

iff

there exist Θ,θ′,θ,Ξ′ s.t.

(·, ·, /0,∀∆.∃Ξ. def Γ in C)→∗ (∀∆ :: ∃ (Ξ,Ξ′),Θ,θ, true) and

∆ ⊢ θ′ : Θ ⇒ · and

(θ′ ◦θ)↾Ξ = δ.

Proof (dependent on Conjecture B.1). Let a denote the variables in Ξ. Further, let

θa := [a 7→ a] and Θa := (a : ⋆). We have

(·, ·, /0,∀∆.∃a.def Γ in C) →∗ (∀∆ :: ∃a,Θa,θa,def Γ in C)

after |∆| applications of the rule S-FORALLPUSH and |a| applications of the rule

S-EXISTSPUSH. Let the former state be defined as s, the latter one as s′. Here, due to

∆;Θ;Γ ⊢C ok, we have ⊢ s′ ok.

Therefore, for all Θ̂, θ̂,b we have

s′ →∗ (∀∆ :: ∃ (a,b),Θ̂, θ̂, true)

iff

s →∗ (∀∆ :: ∃ (a,b),Θ̂, θ̂, true)

We observe that from assumption ∆ ⊢ftv C ok we immediately obtain ⊢ftv s′.

Now, let F be the empty stack. We then have

∆;Ξ;Γ;δ ⊢C

iff ∆;Ξ; ·;δ ⊢ (def Γ in C) (by ∆ ⊢ Γ ok :

all mono. conditions satisfied)

iff ∆;Ξ ; ·;δ ⊢ (def Γ in C)∧U(Θa,θa) (U(Θa,θa) is equivalent to true)

iff ∆;Ξ ; ·;δ ⊢ F [(def Γ in C)∧U(Θa,θa)] (F is empty)

Using this, the equivalence to prove then follows directly from Conjecture B.1. △
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B.4 Correctness of constraint-based type inference

We now show how we may prove Conjectures 5.5 and 5.6, which state the overall

correctness of the constraint-based inference approach, assuming that Conjecture 5.4

holds.

Conjecture 5.5 (Constraint-based type-checking is sound; conjecture originally stated

on page 146).
Let ∆ ⊢ Γ and ∆;Γ ⊢ M ok and a#∆. If (·, ·, /0,∀∆.∃a. def Γ in JM : aK) →∗ (∀∆ ::

∃ (a,b),Θ,θ, true) and ∆ ⊢ θ′ : Θ ⇒ · then ∆;Γ ⊢ M : (θ′ ◦θ)(a).

Proof (dependent on Conjecture 5.4). Suppose (·, ·, /0,∀∆.∃a.def Γ in JM : aK)→∗ (∀∆ ::

∃ (a,b),Θ,θ, true) and ∆ ⊢ θ′ : Θ ⇒·. Let s refer to the first state of the sequence above

and s′ to its last state.

We apply Lemma 5.2, which gives us ∆;a;Γ⊢ JM : aK ok. We therefore have ⊢ s ok.

By Lemma B.4 we then have ⊢ s′ ok, too, which implies ∆ ⊢ Θ ⇒ · and ftv(Θ) = b,a.

We can therefore define δ as θ′ ◦θ↾{a}. By Lemma 5.7, we have ∆ ⊢ftv JM : aK

Together, this allows us to apply Conjecture 5.4. We use the right-to-left direction

of the theorem such that we need to show that the following properties hold:

(·, ·, /0,∀∆.∃a. def Γ in JM : aK)→∗ (∀∆ :: ∃ (a,b),Θ,θ, true)

∆ ⊢ θ
′ : Θ ⇒ ·

(θ′ ◦θ)↾a = δ

The first two properties follow immediately by assumption, the third one holds

by definition of δ. Therefore, the right-to-left direction of Conjecture 5.4 gives us

∆;a;Γ;δ ⊢ JM : aK. Theorem 5.2 then immediately yields ∆;Γ ⊢M : δ(a). By definition

of δ this is equivalent to the property to show. △

Conjecture 5.6 (Constraint-based type-checking is complete and most general; con-

jecture originally stated on page 147).
Let a#∆. If ∆;Γ⊢M : A then there exist Ξ,Θ,θ, δ such that (·, ·, /0,∀∆ .∃a .def Γ in JM :

aK)→∗ (∀∆ :: ∃ Ξ,Θ,θ, true) and A = δ(θ(a)).

Proof (dependent on Conjecture 5.4). We assume ∆;Γ ⊢ M : A, which implies ∆ ⊢ Γ

and ∆;Γ ⊢ M ok. This means that Theorem 5.1 gives us ∆;a;Γ; [a 7→ A] ⊢ JM : aK.

We may further apply Lemma 5.7, yielding ∆ ⊢ftv JM : aK.
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We may thus apply the left-to-right direction of Conjecture 5.4 (using JM : aK for C

and [a 7→ A] for δ in the theorem’s statement) which gives us the existence of Θ,θ,θ′,c

such that the following conditions hold.

(·, ·, /0,∀∆.∃a.def Γ in JM : aK)→∗ (∀∆ :: ∃(a,c),Θ,θ, true) (1)

∆ ⊢ θ
′ : Θ ⇒ · (2)

(θ′ ◦θ)↾{a} = [a 7→ A] (3)

Clearly, we have (θ′◦θ↾{a})(a) = (θ′◦θ)(a) = [a 7→A](a) =A, which is the second

property we need to show (choosing θ′ for δ). By choosing Ξ = (a,c), property (1)

becomes the first property that we needed to show. △





Appendix C

Proofs for Chapter 6

This appendix contains those proof omitted from Chapter 6, specifically Section 6.4.1.

C.1 Proofs for Section 6.4.1

Lemma C.1.
Let (∆•,Θ) ⊢ S ok and (∆•,Θ) ⊢ S′ ok. Then U(∆,Θ,S,S′) = (Θ′,θ) implies that all

types in the codomain of θ are syntactic monotypes.

Proof. As with earlier proofs related to the unification algorithm, by induction on the

number of recursive calls to U. The only interesting case where a non-identity map-

ping is added to the resulting substitution is when a flexible variable a is unified with

a type A. By assumption, A is either S or S′, meaning that we add a mapping from a to

a syntactic monotype.

Lemma C.2.
Let M be an ML term and let ∆ ⊢ Γ ok hold, where Γ only contains ML type schemes.

Then infer(∆,Θ,Γ,M) = (Θ′,θ,A) implies that A is a syntactic monotype and all types

in the codomain of θ are syntactic monotypes.

Proof. By structural induction on M, reasoning about the behaviour of infer in each

case. The cases for plain variables and lambda abstractions are straightforward. In the

case for term abstractions we rely on Lemma C.1. In the case for plain let bindings

let x = M in N we observe that the type we add for x to the environment is an ML type

scheme, allowing us apply the induction hypothesis to N.
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Lemma 6.1 (as originally stated on page 174).
Let M be an ML term and let ∆ ⊢ Γ ok hold, where Γ only contains ML type schemes.

Then principal(∆,Γ,M,∆′,A) implies that A is a monotype.

Proof. Since M is an ML term, it cannot contain free type variables. The principality

premise implies that M only contains free term variables from Γ. Altogether, this yields

∆;Γ ⊢ M ok.

By completeness of inference (Theorem 4.6) infer(∆, ·,Γ,M) succeeds, returning

some (Θ,θ,A′). By principality of inferred types (Theorem 4.7), principal(∆,Γ,M,

ftv(Θ),A′) holds, and by uniqueness of principal types (Lemma 3.1) we have that A

and A′ are equal modulo a renaming of free type variables. Lemma C.2 then states that

A′ is a syntactic monotype, and hence A is, too.

Lemma 6.2 (as originally stated on page 175).
Let M be an ML term and let ∆ ⊢ Γ ok hold, where Γ only contains ML type schemes.

Then ∆;Γ ⊢ M : S implies that there exists a derivation of the latter judgement where

every subterm of M is assigned a monomorphic type.

Proof. By structural induction on the term under consideration. In the case for let x =

M in N, we rely on Lemma 6.1 to establish that the type used for M, namely the

principal one, is monomorphic, and hence x receives an ML type scheme when typing

N.

All other cases are straightforward, except when for term applications M N. The

problem is that while we know by assumption that the return type of M is the mono-

morphic type S, the parameter of the function M (and hence the type of N) may use a

polymorphic type. We show that we can, however, always construct a derivation for

∆;Γ ⊢ M N : S that assigns a monomorphic parameter type to M.

To this end, we consider the individual steps taken by infer(∆, ·,Γ,M N), as defined

in Figure 4.5 on page 86. Let θ′3 := θ3[a 7→ B] and ∆′ := ftv(B)−∆. We then have ∆′ ⊆
ftv(Θ3). By Lemma 4.4 and Theorems 4.2 and 4.5 we have (∆,Θ3);Γ⊢E M : θ′3(θ2(A′))

and (∆,Θ3);Γ ⊢E N : θ′3(A). Using Lemma 4.2, this gives us the following.

(∆, ftv(Θ3));Γ ⊢ M : θ
′
3(θ2(A′)) (1)

(∆, ftv(Θ3));Γ ⊢ N : θ
′
3(A) (2)

By soundness of unification (Theorem 4.2) we have θ′3(A → b) = θ′3(A) → B =

θ′3(θ2(A′)) (3).
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By principality of inferred types (Theorem 4.7) we have principal(∆,Γ,M N, ftv(Θ3),

B), which implies that there exists δp such that ∆ ⊢ δp : ftv(Θ3)⇒⋆ · and δp(B) = S.

Note that this implies that δp is a monomorphic instantiation when its domain is re-

stricted to ∆′. We may now define δ with domain ftv(Θ3) such that δ(a) := δp(a) for

all a ∈ ∆′. For all other a ∈ Θ3, let δ(a) be an arbitrary type that is monomorphic in ∆,

such as Unit. We observe that δ(B) = δp(B) = S and ∆ ⊢ δ : ftv(Θ3)⇒• ·.
We can apply δ to (1) and (2), which together with (3) gives us ∆;Γ⊢M : δ(θ′3(A))→

S and ∆;Γ ⊢ N : δ(θ′3(A)), according to Lemma 4.1. Thus, we can ultimately construct

the following derivation.

∆;Γ ⊢ M : δ(θ′3(A))→ S ∆;Γ ⊢ N : δ(θ′3(A))

∆;Γ ⊢ M N : S

By Lemmas C.1 and C.2 we have that A′,A and B are syntactic monotypes as well

as that θ1,θ2 and θ′3 only have syntactic monotypes in their codomains. Thus, we have

that δ(θ′3(A)) is monomorphic, too.
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