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Lay Summary of Thesis

The lay summary is a brief summary intended to facilitate knowledge transfer and 
enhance accessibility, therefore the language used should be non-technical and 
suitable for a general audience. Guidance on the lay summary in a thesis. (See the 
Degree Regulations and Programmes of Study, General Postgraduate Degree 
Programme Regulations. These regulations are available via: www.drps.ed.ac.uk.)

Name of student: Maximilian Parzen UUN S1827105

University email:

Degree sought: PhD Eng. No. of words in the 
main text of thesis:

30241

Title of thesis: Energy Storage Design and Integration in Power Systems by System-Value 
Optimization

Insert the lay summary text here - the space will expand as you type. 
The transition to low-carbon power systems is essential to combat climate change and ensure a 
sustainable future. One of the biggest challenges in this transition is the integration of renewable 
energy sources such as wind and solar, which are intermittent and variable in nature. Energy storage
technologies can play a crucial role in decarbonizing power systems by providing a reliable and 
flexible source of power which provides economic benefits to the system. These benefits of energy 
storage are nowadays assessed with system-value methods that highly depend on large-scale power 
system models. However, with existing methods several research questions appear: how to assess 
multiple energy storage technologies under competition, how to avoid appearing misleading energy 
storage model artefacts, is it possible to expand the geographical scope of energy models to cover 
other parts of the world? In this thesis, we build and solve large energy system optimization 
problems to explore and optimize various energy storage designs and integration's in context of 
system-value.

The first part of the thesis focuses on technology assessment methods and energy system modelling.
We explore and discuss existing methods and develop a new complementary system-value 
assessment method, known as ‘market-potential method’, that works as systematic deployment 
analysis to also consider multiple storage technologies under competition. Because the integration of
energy storage in system models can lead to unrealistic ‘unintended storage cycling’ effects that 
curtails electricity and increases operation of any generator, grid, and storage component, we 
explore its cause and suggest solutions that lead to more realistic model results by appropriate model
parameterization. To enable energy system research worldwide, including system-value assessments
for energy storage, we have extended the geographical scope from Europe to global coverage. The 
new build energy model ‘PyPSA-Earth’ is thereby demonstrated and validated in Africa.

In the second part of the thesis, we focus on applied storage design and integration system-analysis. 
First, the new created system-value method is introduced and demonstrated in a large-scale 
European transmission system. Here we focus only on Lithium battery and various hydrogen energy
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Lay Summary of Thesis
storage solutions to learn about the applicability of the method and how it differs from traditional 
levelised cost of storage (LCOS) methods. Second, adopting the new PyPSA-Earth model, we 
assess for the first time the system-value of 20 energy storage technologies with and without 
competition across uncertainty addressing, multiple scenarios for a representative future power 
system in Africa. In general, we could observe from deployment signals that not all energy storage 
technologies are relevant for the power system, the more energy storage can adapt to the power 
system the more benefits it can provide to the system, and that optimizing multiple energy storage 
options usually tends to significant total system cost reduction. Our findings provide insights into 
approaches to assess multiple energy storage technologies under competition in large-scale energy 
system models, and can inform decision-making for the sizing, integration, and deployment of 
energy storage systems in decarbonized power systems.
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Abstract

Energy storage can play a crucial role in decarbonising power systems by balancing
power and energy in time. Wider power system benefits that arise from these
balancing technologies include lower grid expansion, renewable curtailment, and
average electricity costs. However, with the proliferation of new energy storage
technologies, it becomes increasingly difficult to identify which technologies are
economically viable and how to design and integrate them effectively.

Using large-scale energy system models in Europe, the dissertation shows that solely
relying on Levelized Cost of Storage (LCOS) metrics for technology assessments can
mislead and that traditional system-value methods raise important questions about
how to assess multiple energy storage technologies. Further, the work introduces a
new complementary system-value assessment method called the market-potential
method, which provides a systematic deployment analysis for assessing multiple
storage technologies under competition. However, integrating energy storage in
system models can lead to the unintended storage cycling effect, which occurs in
approximately two-thirds of models and significantly distorts results. The thesis
finds that traditional approaches to deal with the issue, such as multi-stage opti-
mization or mixed integer linear programming approaches, are either ineffective
or computationally inefficient. A new approach is suggested that only requires
appropriate model parameterization with variable costs while keeping the model
convex to reduce the risk of misleading results.

In addition, to enable energy storage assessments and energy system research around
the world, the thesis extended the geographical scope of an existing European open-
source model to global coverage. The new build energy system model ‘PyPSA-Earth’
is thereby demonstrated and validated in Africa. Using PyPSA-Earth, the thesis
assesses for the first time the system value of 20 energy storage technologies across
multiple scenarios in a representative future power system in Africa. The results offer
insights into approaches for assessing multiple energy storage technologies under
competition in large-scale energy system models. In particular, the dissertation
addresses extreme cost uncertainty through a comprehensive scenario tree and finds
that, apart from lithium and hydrogen, only seven energy storage are optimization-
relevant technologies. The work also discovers that a heterogeneous storage design
can increase power system benefits and that some energy storage are more important
than others. Finally, in contrast to traditional methods that only consider single
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energy storage, the thesis finds that optimizing multiple energy storage options
tends to significantly reduce total system costs by up to 29%.

The presented research findings have the potential to inform decision-making pro-
cesses for the sizing, integration, and deployment of energy storage systems in
decarbonized power systems, contributing to a paradigm shift in scientific methodol-
ogy and advancing efforts towards a sustainable future.
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Figure 1 shows the coding activity from Monday to Sunday during the dissertation,
where one contribution can include several lines of code. Next to these code devel-
opment, I have also contributed to building up a popular energy system modelling
community called PyPSA meets Earth (https://pypsa-meets-earth.github.io/) to
empower others and enhance collaborative work.

Fig. 1.: GitHub contributions from Monday to Sunday over the past 4 years.

x

https://pypsa-meets-earth.github.io/


Acknowledgement

The thesis represents a research journey that wouldn’t be possible without the
support of many people.

First of all, I want to thank my supervisor Prof. Aristides Kiprakis and co-supervisor
Prof. Daniel Friedrich. They inspired me, believed in me and gave me all the freedom
and guidance needed to go and find my research path. Working with you is a pure
pleasure. Second, I want to thank Prof. Davide Fioriti, the co-leader of the grassroots
initiative PyPSA meets Earth that I founded during the process of the research
journey. Many things wouldn’t be possible without him and the amazing PyPSA
community within and outside of TU Berlin. Talking about Berlin, third, I thank Prof.
Tom Brown for co-creating and co-maintaining PyPSA. When I talk about PyPSA,
friends tell me it sounds like a church. Well, if we call it a church, you certainly
represent the pope. Forth, I appreciate and acknowledge all co-authors, colleagues,
friends, open-source and open-data contributors who contributed to this thesis. To
name a few: Fabian Neumann, Davide Fioriti, Mousa Zerai, Desen Kirli, Martin Kittel,
Hazem Abdel-Khalek, Ekaterina Fedotova, Matin Mahmood, Martha Maria Frysztacki,
Johannes Hampp, Lukas Franken, Leon Schumm and Robbie Morrison. Fifth, I
would also like to extend my thank you to my enemies for pushing me to work
harder and reminding me of the importance of perseverance in the face of adversity.
Sixth, I would like to express my deepest gratitude and appreciation to my family
Helmut Parzen, Ksenija Parzen and Daniel Parzen and many of my friends, who have
supported and encouraged me throughout my academic journey. I could not have
achieved this milestone without you. Seventh, following Snoop Dogg’s philosophy,
I want to thank me for believing in me, I want to thank me for doing all this hard
work. I wanna thank me for having no days off. I wanna thank me for never quitting.
I wanna thank me for always being a giver and trying to give more than I receive.
I wanna thank me for trying to do more right than wrong. I wanna thank me for
being me at all times.

Finally, the thesis is dedicated to my late grandfather Jakob Parzen, whose support
and wisdom have guided me throughout my academic journey and whose memory will
continue to inspire me.

xi



Funding

This work was made possible with the financial support of the postgraduate schol-
arship awarded by the School of Engineering at the University of Edinburgh. Fur-
ther, research publications were supported by UK Engineering and Physical Sci-
ences Research Council (EPSRC) grant EP/P007805/1 for the Centre for Advanced
Materials for Renewable Energy Generation (CAMREG) and EPSRC DISPATCH
(EP/V042955/1). I am grateful for the support.

xii



Declaration

I declare that (a) the thesis has been composed by myself, (b) the work is either my
owns work or clearly indicated if not, (c) the work has not been submitted for any
other degree or professional qualification except as specified and (d) any included
publications are my own work or marked as collaborative work.

Edinburgh, August 23, 2023

Maximilian Parzen



Contents

Abstract v

List of Nomenclature 1

List of Figures 5

List of Tables 13

List of Listings 15

1 Introduction 17

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Foundations 25

2.1 Energy storage ’n’ power systems . . . . . . . . . . . . . . . . . . . . 25

2.2 Energy storage design options . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Power system planning problem . . . . . . . . . . . . . . . . . . . . . 27

I Improving Energy System Modelling With Energy Storage 33

3 Modelling Power Systems with High Resolution Data - PyPSA-Earth 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 Literature analysis . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.4 Organisation of the chapter . . . . . . . . . . . . . . . . . . . 41

3.2 PyPSA-Earth model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3 PyPSA meets Earth initiative . . . . . . . . . . . . . . . . . . . 44

xiv



3.3 Data and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Workflow management tool . . . . . . . . . . . . . . . . . . . 45

3.3.2 Network topology and model . . . . . . . . . . . . . . . . . . 45

3.3.3 Fundamental shapes . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.4 Electricity consumption and prediction . . . . . . . . . . . . . 49

3.3.5 Renewable Energy Sources . . . . . . . . . . . . . . . . . . . 51

3.3.6 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.7 Spatial clustering approach . . . . . . . . . . . . . . . . . . . 52

3.3.8 Augmented line connection . . . . . . . . . . . . . . . . . . . 55

3.3.9 Model framework and solver interface . . . . . . . . . . . . . 56

3.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Network topology and length . . . . . . . . . . . . . . . . . . 57

3.4.2 Electricity consumption . . . . . . . . . . . . . . . . . . . . . 58

3.4.3 Solar and wind power potentials . . . . . . . . . . . . . . . . 58

3.4.4 Power plant database . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Demonstration of optimization capabilities in Nigeria . . . . . . . . . 64

3.5.1 Nigeria 2020 - Dispatch validation . . . . . . . . . . . . . . . 64

3.5.2 Nigeria 2060 - Net-zero study . . . . . . . . . . . . . . . . . . 65

3.6 Limitations and future opportunities . . . . . . . . . . . . . . . . . . 67

3.6.1 Missing network topology data . . . . . . . . . . . . . . . . . 67

3.6.2 Missing demand time series and prediction biases . . . . . . . 70

3.6.3 Imprecise global data . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.4 Additional technologies . . . . . . . . . . . . . . . . . . . . . 71

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Removing Unintended Storage Cycling Modelling Artefacts 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Detecting unintended storage cycling occurrence . . . . . . . 79

4.2.2 Numerical implementation and data . . . . . . . . . . . . . . 80

4.2.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Removing unintended storage cycling by variable cost additives 83

4.3.2 Effects on operational optimization . . . . . . . . . . . . . . . 85

4.3.3 Effects on investment optimization . . . . . . . . . . . . . . . 86

4.3.4 Effects on total system costs . . . . . . . . . . . . . . . . . . . 88

4.3.5 Variable costs suggestions to alleviate unintended storage cycling 88

4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xv



II Applied Energy Storage System-Value Optimization 97

5 Review of Technology Evaluation Methods 99
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2 Visible vs. hidden value . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 Cost analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4 Profit analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5 System-value analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Demonstrating the Market Potential Method in Europe 109
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 Market potential method . . . . . . . . . . . . . . . . . . . . . 113
6.2.2 PyPSA-Eur. Model structure and data . . . . . . . . . . . . . . 116
6.2.3 Energy storage scenarios . . . . . . . . . . . . . . . . . . . . . 120

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.1 Relaxing design constraints of energy storage and its benefits 123
6.3.2 Static LCOS vs modelled LCOS . . . . . . . . . . . . . . . . . 124
6.3.3 Market potential method as value indicator . . . . . . . . . . 126
6.3.4 The relevance of the market potential method . . . . . . . . . 130

6.4 Critical Appraisal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Assessing Competing Energy Storage in Decarbonized Power Systems 135
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2.1 Storage data collection . . . . . . . . . . . . . . . . . . . . . . 138
7.2.2 Model and parameters . . . . . . . . . . . . . . . . . . . . . . 139
7.2.3 Explored scenarios . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2.4 System-value measurement . . . . . . . . . . . . . . . . . . . 141

7.3 Modelling single vs multiple energy storage . . . . . . . . . . . . . . 141
7.4 Assessing technology importance . . . . . . . . . . . . . . . . . . . . 144
7.5 Technology design variation . . . . . . . . . . . . . . . . . . . . . . . 148
7.6 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8 Conclusion and Outlook 151

Bibliography 165

xvi



Nomenclature

Abbreviations

BAU Business as Usual
CSP Concentrated Solar Power
EP Energy to Power
FLH Full Load Hours
GADM Database of Global Administrative Areas
GDP Gross Domestic Product
GHG Greenhouse Gas
H2 Hydrogen
HVAC High Voltage Alternative Current
HVDC High Voltage Direct Current
H2 Hydrogen
IRR Internal Rate of Return
IPM Interior Point Method
LCOS Levelized Cost of Storage
MILP Mixed Integer Linear Program
MPI Market Potential Indicator
MPM Market Potential Method
NPV Net Present Value
PEM Proton Exchange Membrane
PV Photovoltaic
ROI Return of Investment
SOFC Solid-Oxide Fuel Cell
UC Unit Commitment
USC Unintended Storage Cycling
VRE Variable Renewable Energy
WSB Whole System Benefit

1



Nomenclature

Subscripts

i Location

l Line number

r Generator technology

s Storage technology

t Time step

Variables

H+ Storage charge capacity (MW)

h+ Storage charge (MWh)

H− Storage discharge capacity (MW)

h− Storage discharge (MWh)

Hstore
i,s Store capacity (MWh)

T Energy to discharging power ratio (MWh/MW)

e Stored energy (MWh)

F Transmission line capacity (MW)

G Generator capacity (MW)

g Generated energy (MWh)

Parameters

2 Nomenclature



η Efficiency

c Specific investment cost (e/MW)

o Variable cost (e/MWh)

T Optimization period

w Weighted duration

Nomenclature 3





List of Figures

1 GitHub contributions from Monday to Sunday over the past 4 years. . . x

1.1 The world is hungry for energy. Own illustration. . . . . . . . . . . . . 20

2.1 Illustration of energy storage design options. In power system models,
electricity storage can be either modelled as a constrained design or
an unconstrained design. These energy storage technologies are later
modelled in chapter 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 PyPSA-Earth model design. After providing the configuration parame-
ters and countries of interest, data is collected and processed to be then
fed into the PyPSA model framework, which enables to perform the
desired optimization studies such as least-cost system transition scenarios. 43

3.2 Directed acyclic graph of a PyPSA-Earth example workflow. Each box
represents a rule that modifies or creates the input, resulting in outputs.
Already computed rules are shown as boxes with dashed borders, solid
bordered rules indicate rules yet to be computed during the workflow
execution. The workflow creates here four least-cost scenarios with
varying spatial and temporal resolution and is triggered by a single line
of code. Wildcards define options for the spatial resolution with 50 and
100 clusters and the temporal resolution with 1 and 3 hours (Co2L-1H
and Co2l-3H). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Representation of transmission networks and shapes produced by
PyPSA-Earth show: (a) a sample Open Street Map transmission net-
work, (b) a clustered 420 node African transmission network and (c)
its augmented version with additional line connections to test the ben-
efits of additional interconnections. In case of c), the applied k-edge
augmentation guarantees that every node has at least a certain number
of connections, three in the case of the figure. The augmented lines
are connected by a minimum spanning tree algorithm to the nearest
neighbour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5



3.4 Fundamental shapes of Nigeria in PyPSA-Earth: (a) shows the onshore
regions represented by the Database of Global Administrative Areas
(GADM) zones at level 1, (b) shows the onshore regions represented
by Voronoi cells that are derived from the network structure, and (c)
shows the offshore regions also represented by Voronoi cells based on
the closest onshore nodes. Image produced by Hazem Abdel-Khalek. . 50

3.5 Demand predictions created per country using the synde workflow based
on GEGIS. For grey-coloured countries, synde does not provide data,
however, a heuristic creates representative time series as described in
Section 3.3.4. Image produced by Johannes Hampp, Ekaterina Fedotova
and Maximilian Parzen. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 A concept demonstration of Atlite for Nigeria. (a) Shows that envi-
ronmental and weather data is extracted in a cutout for the region
of interest. (b) The cutout is split in a raster of (0.25◦)2 or roughly
(27.5km)2 (length varies along latitude), whereby each cell contains
static or hourly time series data. The example wind speed and direct
irradiation influx time series are shown for one cutout cell that contains
an ERA5 extract of the Copernicus Data Store [77]. (c) Shows the eligi-
ble area raster, which is built by excluding protected and reserved areas
recorded in protectedplanet.net and excluding specific land-cover types
from Copernicus Global Land Service whose eligibility can vary depend-
ing on the technology. (d) Illustrates the maximal installable power
raster, which is calculated by the eligible area and the socio-technical
power density of a technology e.g. 4.6MW/km2 for solar photovoltaic.
(e) The raster is then downsampled to the region of interest or fun-
damental shape by averaging the proportion of the overlapping areas.
(f) Finally, by applying a PV technology model to (b) and combining it
with (e) one can define per region the upper expansion limit and the
maximal hourly availability constraint for a given technology. . . . . . 53

3.7 Flowchart of the powerplantmatching procedure, including the novel
OSM input (in bold) which was developed for PyPSA-Earth. Image
produced by Davide Fioriti. . . . . . . . . . . . . . . . . . . . . . . . . 54

6 List of Figures



3.8 Illustration of the clustering methodology applied for the transmission
network (red nodes and edges) and resource resolution (grey nodes
and edges). The first row shows how nodal data (i.e. generators,
storage units, electrical loads etc.) is aggregated in tandem with the
resolution of the transmission network. Three exemplary resolutions
of the network for Nigeria are displayed here: 4, 14 and 54 nodes
from left to right. The second row shows how the clustering also
allows modelling the transmission grid at a different resolution than the
resources. In this example, the transmission network contains 4 nodes
connected by 4 lines (all in red) at every resolution, while 4, 14 and
54 generation sites become available (left to right). The background
colour represents exemplary capacity factors in shades of red, for an
arbitrary technology. The darker the colour, the higher the capacity
factor. Image produced by Martha Maria Frysztacki and Maximilian
Parzen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Network topology of open available transmission network data (above
110kV) from (a) OpenStreetMap and (b) World Bank Group. The
Nigerian Transmission Company also publishes a map (c) however
without sharing the underlying data. . . . . . . . . . . . . . . . . . . . 59

3.10 Continental network topology of open available transmission network
data (above 110kV) from OpenStreetMap and the World Bank Group.
The voltage ranges from 110-765 kV in both data sets. The line visuali-
sation varies with the voltage level and includes transparency, thickness
and colour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.11 Comparison of reported [98] and predicted annual electricity consump-
tion data across African countries indicate in every country demand
growth. For 2030, the African total electricity consumption of PyPSA
aligns with other predictions from [99] and [100]. . . . . . . . . . . . 61

3.12 Total installed generation capacity in Africa by (a) country and (b)
technology, including a focus on (c) the installed capacities in Nigeria. 63

3.13 Solution time (a) and memory requirements (b) for the 2020 Nigeria
dispatch optimization for Gurobi 9.5.1, HiGHS 1.2.1 and CBC 2.10.8
solvers at different spatial resolution; solution time is weighted by
threads. Images produced by Davide Fioriti. . . . . . . . . . . . . . . . 66

3.14 Optimization results of Nigeria’s (a) 2020 power system. The coloured
points represent installed capacities. (b) Shows all network options on
a different scale as (a) with the total electricity consumption per node. 68

List of Figures 7



3.15 Optimization result represents Nigeria’s (a) 2060 power system. The
coloured points represent installed capacities. Light grey and dark grey
lines are existing and newly optimized transmission lines, respectively.
(b) Shows all network options on a different scale as (a) with the total
electricity consumption per node. . . . . . . . . . . . . . . . . . . . . . 69

3.16 Total electricity balance for the 2060 scenario. The time-series is hourly
sampled for selected days in March including electricity supply (above
zero) and consumption (below zero). CCGT and OCGT stands for closed
and open cycle gas turbines, respectively. . . . . . . . . . . . . . . . . . 69

4.1 Impact of Unintended Storage Cycling (USC) on model outputs. Ex-
emplary impact of scenarios with and without USC on storage and
renewable generation. The USC effect increases the operation of close
to zero variable cost assets. Results from a numerical analysis conducted
in this study, marked with an asterisk (∗), show Full Load Hours (FLH)
differences of up to 23% for energy storage and 5% for renewable
assets in a 100% renewable energy system scenario. . . . . . . . . . . . 76

4.2 Unintended storage cycling cases for a hydrogen storage example. The
left stack represents the electrolyser, while the right stack reflects the
fuel cell which converts electricity to hydrogen and vice versa. The
arrow size above the storage components reduces to indicate an ef-
ficiency drop. Under renewable energy surplus (variable cost = 0),
excess energy is removed from the system by USC instead of renew-
able curtailment. Thereby, USC may occur over space and time if no
constraint prohibits this artifact. . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Illustration of model output. It shows an example model scenario with
optimized generation and storage capacities in Germany for a 100%
Greenhouse Gas (GHG) emission reduction case. . . . . . . . . . . . . . 82

4.4 Analysis of USC for different model scenarios. FLH of the Hydrogen (H2)
fuel cell (lines, left y-axis) and occurrences of USC (scatter plots, right y-
axis) for three levels of solver accuracy (low, medium, high from top to
bottom) across different levels of variable cost additives for renewable
generators or H2 storage components (x-axis). FLH are averaged across
all nodes in Germany. Per scenario, the variable cost additives are
added to only one component, while no variable costs accrue for all
others. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 List of Figures



4.5 Installed capacity of all generation and storage assets for different
variable cost additive scenarios. In scenarios in red USC arises, while in
the green the effect is prevented. This figure omits illustrating results
from the scenarios using variable costs additives of 1000 e/MWh to
keep Figure 4.5 and 4.6 consistent and readable. . . . . . . . . . . . . 89

4.6 Total system costs for different variable cost additive scenarios. In
scenarios in red USC arises, while in the green the effect is prevented.
Costs of the hydrogen storage consist of electrolyser, fuel cell, and H2
storage tank. This figure omits illustrating total system costs from the
scenarios using variable costs additives of 1000 e/MWh for readability. 90

5.1 Classification of current techno-economic analysis methods in the con-
text of energy storage. *Market potential indicator is a suggested
decision metric and part of the newly introduced market potential
method. The abbreviations mean the following: LCOS, levelised cost
of hydrogen or methane (LCOH/M), Net Present Value (NPV), Internal
Rate of Return (IRR), Return of Investment (ROI). . . . . . . . . . . . . 101

6.1 High-level description of the Market Potential Method. First a market
potential indicator is derived for a single or multiple possible scenarios.
The market potential indicator is then used by an entity through a
market potential criteria to support design-decisions making on energy
storage technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Qualitative illustration of market potential criteria applied to a set
of scenarios and technology options. The "+" indicates the Market
Potential Indicator (MPI) magnitude. Additionally, the threshold rule
is set to a single plus, meaning that a company requires at least two
plus to consider a technology as a potential candidate to manufacture
or start R&D activities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Optimal generation, storage and network expansion under a 100%
emission reduction scenario and technology data for 2030. Light grey
lines showing the existing installed network capacity, dark grey lines
the additional expanded capacity. Plot produced with PyPSA-Eur. . . . 117

List of Figures 9



6.4 Description of the three storage scenarios. The cost and technical
storage parameters are chosen once and serve as input for all storage
scenarios. Scenario 1 shows the fixed energy-to-power ratio of the
hydrogen and battery unit a. In Scenario 2 and 3 all components can be
freely scaled. However, the battery is constrained to the same charger
to discharger ratio. Further, the ’b’ in the H2 − Hub scenario indicates
a new technology addition. A least-cost optimization is run with each
scenarios, whose results are used to create the spatially resolved LCOS

and market potential signals. . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Optimization result for future installed generation capacity in the ex-
emplary 100% emission reduction scenarios. The abbreviations ’ror’
stands for run of river, offwind-ac and -dc for AC and DC connected
offshore wind plants, respectively. . . . . . . . . . . . . . . . . . . . . . 125

6.6 Optimal energy to power ratio ranges in the variable Energy to Power
(EP) ratio scenario. The red line represents the fixed EP-ratio scenario
assumption. The energy to power ratios are very diversely sized in the
181 buses of the cost-optimal European system layout and in regards
to hydrogen and not necessarily equal for charger and discharger. The
electrolyser capacity is generally smaller than the fuel cell capacity,
which means that slow charging and quick discharge at few moments
is desired in the system. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.7 Static LCOS results compared to European wide modelled LCOS. The
static LCOS is marked by a red horizontal line and was calculated for
a set of assumption in Table 6.4. In contrast, the modelled LCOS is
given as points and uses spatial-temporal dissolved European energy
modelling outputs for its calculation. The size of each point shows the
optimised market potential of discharger in a given region and helps
indicating the relevance. The colour reveals full load hours for each
storage technology and helps understanding the operational behaviour
which partially lead to the LCOS. The width of the violin plot shows
the occurrence in the kernel density estimation, hence, the wider the
plot the more buses are located at the respective LCOS cost range. In
all cases, buses with less than 1 MW market potential or 80 FLH are
removed, keeping the visualisation readable. . . . . . . . . . . . . . . . 127

10 List of Figures



6.8 Market potential indicator for all charging and discharging components
in Europe for three technical storage scenarios in a zero emission
electricity system. Despite having the same economic and technical
input data the market potential vary drastically between the scenarios.
The Solid-Oxide Fuel Cell (SOFC) fuel cell and Li-battery are according
to the market potential method, the technologies which are most likely
to be valuable in the exemplary set of scenarios. Because they have an
optimised market potential indicator in each scenario. *Refers to the
total shared storage capacity. . . . . . . . . . . . . . . . . . . . . . . . 129

6.9 Optimal energy storage charger distribution in the variable energy to
power sizing scenario. Showing the location of market potential in a
100% emission reduction scenario. When compared to Figure 6.3, most
hydrogen units are co-located with wind plants while batteries gravitate
towards solar plant optimised areas [195]. . . . . . . . . . . . . . . . . 131

7.1 Illustration of scenario concept in this study. . . . . . . . . . . . . . . . 139

7.2 Clustered 10 bus representation of Nigeria’s power system. . . . . . . . 140

7.3 Optimization results for single energy storage scenarios. The y-axis,
x-axis, and marker size show the deployment required for a least-cost
2050 power system in Nigeria. The colour indicates the total system costs.142

7.4 Total system cost for energy storage scenario with (left) and without
(right) competition. Scenarios are sorted according to the total system
costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.5 Optimized charger, store, and discharger capacity for the lonely optimist
scenario in Nigeria. All technologies on the y-axis are available for the
optimization scenario in each run. One column refers thereby to one
scenario run. The x-axis shows the lonely optimist scenarios, which
assume optimistic capital costs assumptions (-30%) for the mentioned
technology while the others technologies on the y-axis are assumed to
have pessimistic capital cost assumptions (+30%). . . . . . . . . . . . 147

8.1 Storage operation in lonely optimist scenario with Lithium Ferrous
Phosphate (LFP) as optimistic capital costs in a group of pessimistic al-
ternatives. The time-series is smoothed by a 12 hour rolling aggregation,
where the upper figure shows the total storage operation, generation
and load time-series, and the lower figure the storage operation of a
selected subset of technologies. Here, the hydrogen cavern represent
the blue line with maximal storage volume of around 20GWh. . . . . 162

List of Figures 11



8.2 Storage operation in lonely optimist scenario with changing optimistic
storage scenarios. The time-series is smoothed by a 12 hour rolling
aggregation and shows only a selected set of technologies. . . . . . . . 163

12 List of Figures



List of Tables

3.1 Comparison of selected features for energy system modelling frame-
works that are applied in Africa. . . . . . . . . . . . . . . . . . . . . . . 38

3.2 HVAC and HVDC circuit line lengths of Nigeria and Africa from different
sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Nigeria 2020 dispatch comparison . . . . . . . . . . . . . . . . . . . . 65

4.1 Model input assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Variable O&M cost suggestions. The variable O&M cost are for a set of

renewable generators and storage technologies in energy models based
on 2030 data. The O&M costs exclude fuel cost, e.g. for biomass. . . . 93

6.1 Power related energy storage model inputs representing 2030 data . . 119
6.2 Energy related energy storage model inputs representing 2030 data . . 119
6.3 Annual total system costs, relative investment and curtailment data.

Variable sizing of energy storage reduces the system costs by 10%. . . 124
6.4 Additional inputs for LCOS calculation oriented on [147] and [160] . . 126

8.1 Infrastructure investment cost assumptions per technology for 2050.
All costs are given in real 2015 money. . . . . . . . . . . . . . . . . . . 157

8.2 Electricity storage overnight investment cost assumptions per technol-
ogy for 2050. Derived with geometric series applied on 2021 and 2030
PNNL data. All costs are given in real 2015 money. All costs are given
in real 2015 money. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.3 Electricity storage overnight investment cost assumptions per technol-
ogy for 2021. Derived from original PNNL data. All costs are given in
real 2015 money. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.4 Electricity storage overnight investment cost assumptions per technol-
ogy for 2030. Derived from original PNNL data. All costs are given in
real 2015 money. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

13





List of Listings

8.1 Contributed code of the required geometric series to infer realistic
cost assumptions. The code is contributed to the open-source package
technology-data which the model implements an energy storage data
interface for. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

15





Introduction 1
„Climate change is, simply, the greatest collective

challenge we face as a human family

— Ban Ki-Moon
(Politician and diplomat)

1.1 Background

The global demand for energy has reached unprecedented levels, as depicted in
Figure 1.1. However, the accompanying GHG emissions produced by predominately
fossil fuel energy generators exert significant pressure on the atmosphere, making
the transition to low-carbon power systems a critical imperative for combating
climate change and securing a sustainable future. One of the biggest challenges in
this transition is the integration of renewable energy sources, such as wind and solar,
which are intermittent and variable in nature.

Energy storage technologies can play a crucial role in decarbonising power systems
by providing a reliable and flexible source of power that can balance out mismatches
between supply and demand while also leading to economic benefits in the power
system [10]. However, with the proliferation of new energy storage technologies, it
becomes increasingly difficult to identify which technologies are most economically
viable and how to design and integrate them effectively.

One point making the economic assessment and integration of energy storage
difficult is that power systems are complex machines. The power system consists
of demand and supply devices interconnected through grid infrastructure. The
continuous matching of demand and supply in real-time is crucial for the stable
and efficient operation of the system. However, this task is complicated by the
fact that demand and supply vary across regions, depending on a multitude of
factors such as environmental conditions (e.g., weather, temperature, seasonal
effects), social conditions (e.g., cultural preferences and acceptance of certain
technologies), and technology advancements (e.g., electrification of transport). In
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addition, the transport of electricity across the grid is driven by physical principles
such as the alternating current optimal power flow, which further adds to the system’s
complexity.

Due to the inherent complexity of decision-making within large-scale systems, ca-
pacity expansion models, also known as macro-energy system models, emerged as a
critical tool for supporting decision-making [11]. They aim to effectively suggest
and compare investment alternatives considering heterogeneous power system con-
ditions. In particular, these models are built to provide a simplified representation of
the actual system and enable the exploration of optimal power system configurations
that can be modified to satisfy a range of environmental, societal, and technological
constraints as well as techno-economic uncertainties. Consequently, the application
of these models has expanded in recent years, with increasing emphasis placed on
assessing energy storage solutions in addition to other critical energy infrastructure
investments [12, 13, 14].

Even though complex decision-support models are now applied, one long-standing
challenge remains: predicting the future with certainty is impossible [15]. Retro-
spective modelling exercises have shown that least-cost optimization rarely matched
with real system observations [16]. Uncertainty in models can be understood as
’structural uncertainty’ related to an imperfect or simplified mathematical descrip-
tion of the physics and constraints and ’parametric uncertainty’ associated with
imperfect knowledge of input values, i.e. impacted by innovation or behaviour.
Both compromise every mathematical model with increasing uncertainty looking
into the more distant future [17, 18]. Several efforts to reduce uncertainty are
actively tackled. One example is the sensitivity analysis approach that requires input
parameter changes, also known as parameter sweeps, or the modelling to generate
alternatives approaches that hold input parameter constants while exploring the
near-optimal solution space [19]. Reducing uncertainty will remain essential for
successfully adopting these support decision tools.

1.2 Research Questions

Building on the high-level topic introduction from the previous section, this dis-
sertation addresses pressing research questions concerning energy storage using
energy system models. While each chapter in this thesis thoroughly examines the
background, research gap and more detailed research questions, this section only
introduces the high-level research questions and aims driving this work.
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The thesis aims to improve applied energy storage system-value optimization and
improve the underlying decision-support models. Regarding improving applied
energy storage system-value optimization, the study aims to investigate and provide
answers to the following critical research questions:

• What is the economic viability of different energy storage technologies?

• How can energy storage systems be effectively designed and integrated into
the larger energy system?

Energy system models are required tools for addressing these questions. However, for
attaining useful answers, the models’ accuracy and reliability are critical. The thesis
provides answers to the following energy modelling relevant research questions:

• Can energy system models be easily applied everywhere around the world?

• How to avoid unintended storage cycling in energy system models?

It is of utmost importance to continuously improve and expand these models in all
dimensions, which is most effectively possible with open research, open data and
open source models [20].
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Fig. 1.1.: The world is hungry for energy. Own illustration.
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1.3 Outline and Contributions

The thesis focuses on two main parts: energy system modelling and energy storage
system-value optimization which requires system modelling. In particular, the two main
themes are flanked by a foundational layer and closing remarks. Throughout the thesis,
readers will gain valuable insights into the design and integration of energy storage
systems in power systems and the use of advanced modelling techniques to optimize
their value within these systems.

Part I, focuses on improving energy system modelling with energy storage. Driven
by the need to enable energy system research in unexplored areas, including storage
assessments, the chapters extended the model scope from an established open source
EU power system model to planetary coverage while seeking to answer questions arising
from misleading model distortions that arise when energy storage are integrated into
models.

Part II, concerns about energy storage system-value optimization methods and their
implications when being applied in Europe and Africa. Here, the chapters seek to
answer what are suitable energy storage assessments methods and how they compare
to traditional LCOS and Whole System Benefit (WSB) methods. In the context of these
investigations, the work derives energy storage design and integration recommendations
of up to 20 energy storage, explores magnitudes of power system benefits, and applies
sensitivity analysis to address uncertainty.

Chapter 2 - Foundations, conveys the foundational knowledge necessary for this thesis.
It includes knowledge about power systems, energy storage modelling, various
energy storage designs, and algorithms to optimize power system operation and
investment. These topics are consistently referred to throughout the manuscript.
This chapter serves as an introduction to these concepts, which are critical for
understanding the research presented in this study.

Chapter 3 - Modelling Power Systems with High Resolution Data - PyPSA-Earth [2]
(Part I), focuses on the introduction and demonstrations of a new global energy
system model. The tool, PyPSA-Earth, has been introduced as the first open global
energy system model with data in high spatial and temporal resolution. The model
provides two main features: customizable data extraction and preparation with
global coverage and a PyPSA energy modelling framework integration. The data
includes electricity demand, generation, and medium to high-voltage networks
from open sources, yet additional data can be further integrated. A broad range
of clustering and grid meshing strategies help adapt the model to computational
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and practical needs. The chapter also validates the data for the entire African
continent and tests the optimization features with a 2060 net-zero planning study
for Nigeria. The demonstration shows that the presented developments can build a
highly detailed power system model for energy planning studies to support policy
and technical decision-making. The chapter contributes to science by enabling
science globally. PyPSA-Earth is expected to represent an open reference model
for system planning, and it is hoped that the challenges of the energy transition
can be addressed collaboratively. The introduction of the new model demonstrates
the potential of open models to provide a competitive alternative to closed-source
models for decision-makers, promoting science, collaboration, and transparent policy
decision-making.

Chapter 4 - Removing Unintended Storage Cycling Modelling Artefacts [3] (Part I),
presents an approach to avoid unintended errors appearing in energy system models
that consider energy storage. Energy system models are used for policy decisions
and technology designs. If not carefully used, models give implausible outputs and
mislead decision-making. One implausible effect is ’unintended storage cycling’,
which is observable as simultaneous storage charging and discharging. Methods
to remove such misleading effects exist but are computationally inefficient and
sometimes ineffective. Through a set of optimizations, the chapter results suggest
that determining appropriate levels of variable costs can remove these unwanted
effects. However, setting these costs appropriately depends on the allocation to com-
ponents and the solver accuracy used for the optimization. This chapter contributes
to research by providing a list of recommended variable cost model inputs as well
as a minimum threshold that can significantly reduce the magnitude and likeliness
of unintended storage cycling. Finally, the results suggest that the approach can
remove other similar misleading effects, such as unintended line cycling or sector
cycling.

Chapter 5 - Technology Evaluation Methods [4] (Part II), reviews existing evaluation
methods to assess energy storage technologies. The chapter discusses the benefits
and limitations of cost analysis, profit analysis and system-value analysis methods.
The work finds that especially system-value analysis are suited to evaluate energy
storage.

Chapter 6 - Demonstrating the Market Potential Method in Europe [4] (Part II),
introduces a new method to evaluate the system-value of energy storage. Traditional
ways to improve storage technologies are to reduce their costs; however, the cheapest
energy storage is not always the most valuable in energy systems. Modern techno-
economical evaluation methods try to address the cost and value situation but do
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not judge the competitiveness of multiple technologies simultaneously. This chapter
introduces the ’market potential method’ as a new complementary valuation method
guiding the innovation of multiple energy storage. The market potential method
derives the value of technologies by examining common deployment signals from
energy system model outputs in a structured way. The chapter applies and compares
this method to cost evaluation approaches in a renewables-based European power
system model, covering diverse energy storage technologies. The results suggest that
characteristics of high-cost hydrogen storage can be more valuable than low-cost
hydrogen storage. Additionally, they show that modifying the freedom of storage
sizing and component interactions can make the energy system significantly cheaper
and impact the value of technologies. The chapter suggests that looking beyond the
pure cost reduction paradigm and focusing on developing technologies with suitable
value approaches can lead to cheaper electricity systems in future.

Chapter 7 - The System-Value of Competing Energy Storage in Decarbonized Power
Systems (Part II), extends the previous chapter by adding uncertainty considera-
tions and investigating for the first time 20 energy storage in energy system models.
Here, two unanswered questions are explored: how significant is the system ben-
efit from optimizing energy storage with competition compared to without and
which energy storage is optimization relevant, considering uncertainty. The chapter
contributes to the body of literature with several new findings. Traditional system-
value analysis that considers only single energy storage options in power system
models may overlook significant benefits that can be obtained through the design
and operation of multiple energy storage options in symbiosis. However, with the
new assessment approach, it was found that not all technologies are optimization
relevant. By developing a set of extreme cost scenarios, the findings suggest that
certain energy storage technologies may not be worth investing in, while others pro-
vide good investment opportunities since they consistently provide system benefits
even under high-cost uncertainty. Many of the optimization-relevant energy storage
technologies can benefit from being heterogeneously sized to exploit the individual
system conditions. This also means that energy-to-power ratios can vary significantly
between technologies. The results imply that the new system-value approach can
help investment decision-makers in industry, research, and governments to better
evaluate and prioritise energy storage technologies based on their overall value in
the system.

Chapter 8 - Conclusion and Outlook, summarises the key insights from all chapters
and highlights their significance. It also discusses potential future research areas to
build upon this work and advance the body of literature.
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Foundations 2
„Life is like riding a bicycle. To keep your balance,

you must keep moving.

— Albert Einstein
(Theoretical physicist)

Abstract

This chapter establishes the essential concepts underpinning this thesis, dis-
tinct from a classical introduction. It focuses on providing a technical base
rather than outlining research gaps or objectives which are discussed for each
chapter, respectively. Here the work details critical aspects of power systems,
energy storage models, designs, and optimization algorithms necessary for
the comprehensive analyses in later chapters. It explores ’system-friendly’
technologies and ’technology-friendly’ systems, emphasizing the regional
adaptability of energy storage solutions. Additionally, it introduces a typical
power system planning optimization problem, setting the stage for deeper,
focused discussions and research explorations in subsequent parts.

2.1 Energy storage ’n’ power systems

When talking about power systems, there are system-friendly technologies and, vice
versa, technology-friendly systems. What Hirth and Müller [21] meant by system-
friendly technologies is that technologies can be designed in such a way that they
fulfil better the power system needs. For instance, seasonal supply mismatches can
be more economically supplied by flexible-sizeable energy storages such as hydrogen
storages than design-constrained and high-energy specific cost technologies such
as Li-batteries. Contrary, technology-friendly systems mean that system sometimes
have their given conditions that promote or discourage the economic installation
of certain technologies. For instance, some power systems exist that have only
little seasonal electricity supply-demand mismatches which don’t require big energy
storage solutions due to suitable demand profiles and environmental conditions.
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One example is Nigeria, with its sunny at the equator located conditions, the
power system can be economically supplied with photovoltaic and Li-battery storage
without requiring any hydrogen storage solutions [2]. Therefore, its system promotes
solar and low-power specific cost storage solutions as well as penalising wind power
as its wind yield is less economical than, e.g. it is in Europe [22]. In summary,
while power systems can be diverse through the environmental, political and social
heterogeneous conditions, specific technologies, including energy storage, are better
suited for one region than for another one. This also means that different technology
designs are likely required to exploit the value of systems.

2.2 Energy storage design options

Many things can be associated with design options. While people classify energy
storage designs according to the physical nature of how energy is stored, for instance,
as thermal, mechanical, electrical, electrochemical or chemical energy, or classify
along the typical discharge times or typical grid services [23], the section focuses
on design options which determine the functional logic. Energy storage can be
classified into three functional components: charger, discharger and store. The
charger converts one energy form to the storage energy carrier and the discharger the
storage energy carrier to another energy form. For example, in the case of Lithium
battery storage, the charger converts electric energy to electrochemical energy,
and the discharger reverts this process. Noteworthy, these functional components
typically have two distinct principles of mathematical formulation. Either the
functional components can be sizing constrained or unconstrained. One example of
sizing-constrained storage is the Lithium battery. It has a battery stack that is the
store component and one inverter that is the charger and discharger at the same time.
While the battery stack can be separately scaled from the inverter, the charger and
discharger are constrained to be of equal size. An example of non-sizing-constrained
storage is the hydrogen energy storage. Its store component can be, for instance,
a pressurised hydrogen steel tank, its charger component is an electrolyser and its
discharger component a fuel cell. Thereby all components can be independently
sized and maximal adapted for the power system needs. Figure 2.1 summarises
these two design options and classifies energy storage solutions into either option.
With this knowledge of storage design options, an energy system modeller only
requires two generic functions to model most of the energy storage technologies.
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The thesis focuses on energy storage that only discharge electricity in power system
planning problems. The following section will introduce how such problems are
typically modelled.

2.3 Power system planning problem

Contents of this chapter are based on

Maximilian Parzen et al. “PyPSA-Earth. A new global open energy sys-
tem optimization model demonstrated in Africa”. In: Applied Energy 341
(2023), p. 121096. DOI: https://doi.org/10.1016/j.apenergy.2023.
121096. URL: https://www.sciencedirect.com/science/article/pii/
S0306261923004609 cb

The following paragraphs introduce a typical power system planning problem by
formulating the open-source power system model PyPSA-Earth based on [3, 4, 19,
24, 25].

The objective of PyPSA-Earth is to minimise the total system costs, comprised of
annualised capital and operational expenditures. Capital expenditures include
capacity-related, long-term investment costs c at location i for generator Gi,r of
technology r, storage energy capacity Hstore

i,s , charging capacity H+
i,s and discharging

capacity H−
i,s of technology s and transmission line Fl. Operational expenditures

include energy-related variable cost o for generation gi,r,t and storage charging h+
i,r,t

and discharging h−
i,r,t, as well as energy-level related storage cost ei,s,t. Thereby, the

operation depends on the time steps t that are weighted by duration wt that sums
up to one year

∑T
t=1 wt = 365days ∗ 24h = 8760h.

min
G,H,F,g,h,e

(Total System Cost) =

min
G,H,F,g,h,e

[ ∑
i,r

(ci,r · Gi,r) +
∑

l

(cl · Fl)

+
∑
i,s

(cstore
i,s · Hstore

i,s + c−
i,s · H−

i,s + c+
i,s · H+

i,s)

+
∑
i,r,t

(oi,r · gi,r,t · wt) +
∑
i,s,t

(
(o+

i,s · h+
i,s,t + o−

i,s · h−
i,s,t) · wt

)
+

∑
i,s,t

(ostore
i,s · ei,s,t · wt)

]
(2.1)
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Constrained Design Unconstrained Design

Functional Energy Storage Components
Charger Store Discharger

Charger and discharger are 
one component

All components can be 
independently sized

E.g. 
Electricity

E.g. 
Electricity

E.g. Hydrogen

Example Electricity Storage:
Electrochemical:
● Lead Acid
● Lithium FeP
● Lithium NiMnCo
● Nickel Zinc
● Vanadium Redox-Flow
● Zinc-Air
● Zinc Brome Flow 
● Zinc Brome Non-Flow
Mechanical:
● Adiabatic Compressed Air
● Brick Gravity
● Aboveground Water Gravity
● Underground Water Gravity
● Pumped Hydro

Example Electricity Storage:
Chemical:
● Hydrogen
Thermal:
● Concrete Heat
● High Temp. Molten Salt
● Liquid-Air
● Low Temp. Molten Salt
● Pumped-Heat
● Sand Heat

Fig. 2.1.: Illustration of energy storage design options. In power system models, electricity
storage can be either modelled as a constrained design or an unconstrained design.
These energy storage technologies are later modelled in chapter 7.
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The objective function is subject to multiple linear constraints to make scenarios
more realistic, leading to a convex linear program with continuous variables. The
constraints explained in the following in more detail consist of i) demand equals
supply constraint, ii) geophysical and operational constraints for generators, storage
units as well as power lines, iii) Kirchhoff’s current and voltage law constraints
that represent the physics of electric energy flows in the power network, iv) a
recovering cyclic energy storage constraint and finally, and v) greenhouse gas
emissions reduction constraint. Such linear problems have, in general, one unique
objective value with sometimes multiple non-unique operational solutions [3],
making complex problems solvable in a reasonable amount of time (sometimes
multiple days).

The first constraint requires that for all substations, demand equals supply for all
times and locations. This is needed for stable system operation.

Di,r,t = Si,r,t ∀i, r, t (2.2)

Secondly, since generator and storage units, as well as transmission lines, can expe-
rience geographical restriction, PyPSA-Earth can constrain the installed capacities
and gives the options for lower as well as upper limits.

Gi,r ≤ Gi,r ≤ Gi,r ∀i, r (2.3)

H i,s ≤ Hi,s ≤ H i,s ∀i, s (2.4)

F l ≤ Fl ≤ F l ∀l (2.5)

Such constraints help to implement social, environmental or physical based boundary
conditions. Atlite is one of the tools implemented in PyPSA to quantify, for instance,
the land availability for solar and wind power plants by incorporating protected
areas and land cover classification data to reduce the renewable installation potential
[26].

Thirdly, while the previous constraint only limits the installations, some components
require time-varying operational limits. Examples of such technologies are renewable
generators and power lines with dynamic line-rating (DLR) [27] whose operation
highly depends on the weather signals. With roughly 20x20km globally rasterized
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era5 weather data that are available for more than 30 years, again produced by
Atlite, PyPSA-Earth can limit the rated power of generators Gi,r and lines Fl by a
location and time-dependent variable, i.e. temperature, wind speed, humidity and
solar irradiation, such that

0 ≤ gi,r,t ≤ gi,r,tGi,r ∀i, r (2.6)

0 ≤ fl,t ≤ f l,tFl ∀i, r (2.7)

Thirdly, the PyPSA-Earth model typically includes a linearised power flow constraint
modelling the physicality of the power transmission network. A very distinctive
feature compared to most other planning models [25]. This is done by including
Kirchhoff’s Current Law and Kirchhoff’s Voltage Law constraints.

Kirchhoff’s Current Law requires local generators and storage units as well as
incoming or outgoing flows fl,t, of incident transmission lines described by Ki,l as
the networks’ incidence matrix, to balance the inelastic electricity demand di,t at
each location i and time step t

∑
r

gi,r,t +
∑

s

h
−/+
i,s,t +

∑
l

Ki,l · fl,t = di,t ∀i, s, r, t (2.8)

While Kirchhoff’s Current Law accounts for both AC and controllable DC lines,
Kirchhoff’s Voltage Law only additionally constrains AC power lines. Here the
voltage angle difference around every closed cycle in the network must add up to
zero. PyPSA-Earth formulates this constraint using linearised load flow assumptions,
in particular, cycle basis Cl,c of the network graph where the independent cycles
c are expressed as directed linear combinations of lines [28]. This leads to the
constraints

∑
l

Cl,c · xl · fl,t = 0 ∀l, t (2.9)

where xl is the series inductive reactance of line l [19]. As might be noted, the
linearised power flow assumptions completely disregard the resistance. These
assumptions introduce negligible errors when (i) the reactance is much larger than
the resistance, such as for high voltage lines, and (ii) the voltage angel differences
are small, i.e. sin(δ) = δ [28].
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Fourth, describing storage constraints, storage charging h+
i,s,t and discharging h−

i,s,t

are both positive variables and limited by the installed capacity H+
i,s,t and H−

i,s,t.

0 ≤ h+
i,s,t ≤ H+

i,s ∀i, s, t (2.10)

0 ≤ h−
i,s,t ≤ H−

i,s ∀i, s, t (2.11)

This formulation keeps the feasible solution space convex, though it does not prevent
simultaneous charging and discharging, which is often an unrealistic effect that can
heavily distort modelling results in net-zero scenarios. Setting adequate variable cost
parameters solves this modelling artefact while keeping the problem formulation
linear [3].

The storage energy level ei,s,t is the result of a balance between energy inflow,
outflow and self-consumption. Additional to directed charging and discharging with
its respective efficiencies ηi,s,+ and ηi,s,−, natural inflow hinflow

i,s,t , spillage hspillage
i,s,t

as well as standing storage losses that reduce the storage energy content of the
previous time step by a factor of ηi,s,+ are considered.

ei,s,t = ηi,s,+ · ei,s,t−1 + ηi,s,+ · wt · h+
i,s,t − η−1

i,s,− · wt · h−
i,s,t

+ wt · hinflow
i,s,t − wt · hspillage

i,s,t ∀i, s, t
(2.12)

The amount of energy that can be stored is limited by the energy capacity of the
installed store unit Hstore

i,s [MWh], which allows independent storage component
scaling.

0 ≤ ei,s,t ≤ Hstore
i,s ∀i, s, t (2.13)

To fix the storage technology design, technology-specific energy to discharging power
ratio T s can be multiplied by the capacity of the discharging unit H−

i,s

0 ≤ ei,s,t ≤ T s · H−
i,s ∀i, s, t (2.14)

to define the upper energy limit per installed storage.

Further, the energy storage units are assumed to be cyclic, i.e., the state of charge at
the first and last period of the optimization period T (i.e. 1 year) must be equal:
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ei,s,0 = ei,s,T ∀i, s (2.15)

This cyclic definition is not mandatory but helps with the comparability of model
results. It further avoids the free use of storage energy endowment, meaning that
the model could prefer to start with a higher and end with a lower storage level to
save costs.

Finally, PyPSA-Earth can constrain the total emissions. These emissions are tracked
by a variable at each generator unit, which depends on the supply source or carrier
q. Allowing to constrain the total emission by a limiting parameter GHG by

gi,r,t,q ≤ GHG ∀i, r, t, q (2.16)

With slight modifications in the problem formulation this model support also unit
commitment and quadratic cost functions as available in the PyPSA model framework
[29].

As the foundational knowledge is conveyed, the next chapter - "Modelling Power
Systems with High Resolution Data - PyPSA-Earth" will take us further into the
realm of global energy system modeling. Here, the work introduces PyPSA-Earth, an
advanced tool providing high spatial and temporal resolution data for comprehensive
energy system analysis, focusing on customization and integration capabilities. This
chapter is a step forward from the basic concepts, moving into practical applications
and demonstrations of how these foundational elements are employed in real-world
scenarios.
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Part I

Improving Energy System Modelling With
Energy Storage





Modelling Power Systems
with High Resolution Data -
PyPSA-Earth

3

„If I have seen further it is by standing on the
shoulders of Giants.

— Isaac Newton
Mathematician and physicist

Contents of this chapter are based on

Maximilian Parzen et al. “PyPSA-Earth. A new global open energy sys-
tem optimization model demonstrated in Africa”. In: Applied Energy 341
(2023), p. 121096. DOI: https : / / doi . org / 10 . 1016 / j . apenergy .
2023.121096. URL: https://www.sciencedirect.com/science/article/
pii/S0306261923004609. GitHub: https://github.com/pz-max/pypsa-earth-
paper cb
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Abstract

Macro-energy system modelling is used by decision-makers to steer the
global energy transition toward an affordable, sustainable and reliable fu-
ture. Closed-source models are the current standard for most policy and
industry decisions. However, open models have proven to be competitive
alternatives that promote science, robust technical analysis, collaboration and
transparent policy decision making. Yet, two issues slow the adoption: open
models are often designed with particular geographic scope in mind, thus
hindering synergies to collaborate, or are based on low spatially resolved
data, limiting their use. Here the thesis introduces PyPSA-Earth, an open-
source global energy system model with data in high spatial and temporal
resolution. It enables large-scale collaboration by providing a tool that can
model the world’s energy system or any subset of it. The model is suitable for
operational as well as combined generation, storage, transmission expansion
studies. In this chapter, the novel power system capabilities of PyPSA-Earth
are highlighted and demonstrated. The model provides two main features:
(1) customizable data extraction and preparation with global coverage and
(2) a PyPSA energy modelling framework integration. The data includes
electricity demand, generation and medium to high-voltage networks from
open sources, yet additional data can be further integrated. A broad range of
clustering and grid meshing strategies help adapt the model to computational
and practical needs. As novel demonstration, a data validation for the entire
African continent is performed and the optimization features are tested with
a 2060 net-zero planning study for Nigeria - the highest populated country in
Africa. The demonstration shows that the presented developments can build
a highly detailed power system model for energy planning studies to support
policy and technical decision-making. It is anticipated that PyPSA-Earth can
represent an open reference model for system planning, and the PyPSA model
community welcomes to join forces to address the challenges of the energy
transition together.
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3.1 Introduction

3.1.1 Motivation

Energy system planning models are broadly adopted around the world. They are
used as instruments to inform policy and investment decision-making, such as
operational, supply diversification, and long-term infrastructure planning studies.
Inscrutable ‘black-box’ models, despite being criticised in academia [20], are still
the standard for high-impact modelling, such as the African Continental Power
System Plan [30]. One of the most popular commercially adopted ‘black-box’ tools
is PLEXOS. Using such tools prevents transparent decision-making while having
other major drawbacks, as described in [20]. Open-source models evolved to
overcome these typical black-box model problems and can perform equivalent or
even more tasks, but at no charge, while additionally supporting transparent and
robust analyses [25]. This also motivated popular tools from the International
Energy Agency (IEA) such as the TIMES model [31], the successor of MARKAL, to
become open-source in 2023. Further, in many examples, the European Commission
applies open tools and requests their use in funded projects, proving its belief in the
benefits of openness and transparency [32]. Now with the encouraging rise of more
than 31 open models in 2019 [33], simultaneously, concerns of failed collaboration
and duplication are arising that cost taxpayer money [34]. As a result, it becomes
increasingly important to avoid duplication and provide modelling solutions that
allow global united efforts. For these reasons, this study proposes an open-source
community-backed flexible energy system model able to represent any arbitrarily
large region of the world power system in a high spatial and temporal resolution
that leverages other existing open-source projects to serve industry, policymakers,
and researchers.

3.1.2 Literature analysis

In general, models are idealised representations of real physical systems. To
ease building idealised systems, ’frameworks’ have been developed to provide pre-
compiled equations, algorithms, solver interfaces and/or input/output features. A
framework becomes a ’model’ only when data is added that describes real physical
systems [35]. In this view, PyPSA is a framework and PyPSA-Eur and PyPSA-Earth
are models or model-generators for any subset of European and Earth energy systems,
respectively. They plug-in realistic data into the PyPSA framework like generators,
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grid infrastructure and constraints, as well as provide easy scenario building ca-
pabilities on top. Nowadays, the open-source community is rich in energy system
modelling frameworks that can provide similar functionalities. Table 3.1 compares
some available functionalities across selected widely-adopted modelling frameworks
[25, 36, 37]. Undoubtedly, each developer team might be capable of filling in
missing features, but the functionality of the frameworks is only one important part
of models, the other one, often even more relevant, is the integration of data.

Tab. 3.1.: Comparison of selected features for energy system modelling frameworks that
are applied in Africa.
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Calliope v0.6.8 [38] Python ✓ ✓ ✓
Dispa-SET v2.4 [39] GAMS ✓
GridPath v0.14.1[40] Python ✓ ✓ ✓ ✓
LEAP 2020.1 [41] NAa ✓
LUT 2021 [42] GNUb ✓ ✓ ✓
NEMO v1.7 [43] Julia ✓ ✓ ✓ ✓
OSeMOSYS 2022 [44] GNUc ✓ ✓ ✓
PLEXOS 9 [45] NAa ✓ ✓ ✓ ✓ ✓
PYPOWER 5.15.5 [46] Python ✓ ✓ ✓ ✓
PyPSA v0.20 [25] Python ✓ ✓ ✓ ✓ ✓ ✓ ✓
SPLATg 2022 [47] GAMS ✓ ✓
TIMES 2022 [31] GAMS ✓ ✓ ✓ ✓

a NA = no information available.
b Mix of GNU-Mathprog and Matlab.
c Available in GNU Mathprog, Python and GAMS.
d Linearised optimal power flow [25].
e Security constrained linearised optimal power flow [25].
f Includes myopic and perfect foresight optimizations over multiple years [48].
g Also known as SPLAT-MESSAGE.

Existing models are often designed to implement data with limited geographical
coverage, such as a specific province, country or continent [49]. Continental models
with implemented high-resolution data have proven to be the most maintained and
active, possibly by covering many regions of interest and giving the user options
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for the aggregation level [24, 50]. In contrast, there are several examples where
single-country models have soon become outdated, poorly documented or inactive
[51, 52, 53]. While global energy system models exist, they currently have several
shortcomings. The pioneering global energy system models that impacted policy and
research discussions are closed source; for instance, LOADMATCH from Jacobson
et al. [54] and LUT model from Breyer et al. [42]. ’GlobalEnergyGIS’ [55], an
open source tool which can create energy system model data for any arbitrary
region, is used in the ’Supergrid’ model [56], but misses network data or a workflow
management system that are important for flexible and reproducible data processing
[57]. Similarly, the GENeSYS-MOD model is a global open-source model; however,
it is written in GAMS, preventing free use and offers no data processing workflows
[58]. Another promising candidate is the recently released OSeMOSYS Global model,
which includes a workflow management system but misses network topology data
as well as unit-commitment and power flow constraints that have been shown to
affect model results strongly [37, 59].

Similarly, existing PyPSA models are geographically limited. While PyPSA as a
framework is adopted worldwide by many companies, non-profit organisations
and universities (see example studies in [29]), there is no global model solution
available yet. Providing a global energy system model solution has the potential to
unlock collaboration potentials that accelerate and improve the energy transition
planning.

3.1.3 Contributions

In this chapter, PyPSA-Earth is presented. It is an open-source global energy system
model with data in high spatial and temporal resolution. Here, PyPSA-Earth is clas-
sified as an energy system model even though the chapter focuses on the electricity
sector. This is done for three reasons: i) the underlying model framework allows
sector-coupling, meaning modelling not only electricity, but also other sector such
as heating and transport; ii) the model can already build hydrogen networks and
supply hydrogen demands which are not demonstrated in this study but visible in
the source code; and iii) existing work is ongoing to implement the data for the other
sectors. Across the chapter, high spatial resolution implies the ability to represent a
regional (e.g. country) energy system with a flexible number of subregions, each
of them describing an arbitrarily large (e.g. counties) or small (e.g. provinces)
proportion of the region under consideration. Similarly, high temporal resolution
means that the time series used in dispatch analyses can be hourly, sub-hourly or
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larger than an hour, in agreement with the needs of the energy model. Details on
the data and methods are explained in Section 3.3.

Users can flexibly model the world or any subset of it. Using an automated workflow
procedure, they can (a) generate energy system model relevant data and (b) perform
planning studies. The novel contributions of PyPSA-Earth are detailed as follows:

1. New model creates arbitrary high spatial and temporal resolution representa-
tion of power systems around the world

2. Automated workflow generates national, regional, continental or global model-
ready data for planning studies based on open or optionally closed data

3. Integration and linking of multiple data sources and open-source tools to
process raw data from multiple sources, e.g. OpenStreetMap

4. Provision of new spatial clustering strategies to simplify the high-resolution
model

5. Data and model validation for the African continent and Nigeria

6. Development of 2060 net-zero energy planning study for Nigeria

PyPSA-Earth includes several novel modelling features that make it unique. While
the model leverages previous open-source tools, such as PyPSA-Eur [24], the aim of
modelling the globe with flexible spatial and time resolution, the filtering method-
ology, the automatic data fetching by OpenStreetMap, and the data workflow pro-
cedures here detailed are a novelty. Accordingly, PyPSA-Earth is not an extension
of any previous models, but a novel approach and tool that is first presented here
with a focus on the African continent. In the following, PyPSA-Earth is presented
and quantitatively validated for the African continent and Nigeria; its optimization
features are finally tested for a 2060 net-zero energy planning study for Nigeria’s
electricity sector.

All code and validation scripts are shared open-source under AGPL 3.0 license. The
data, often extracted by python script activation, is available under multiple open
licenses. For a detailed license listing, see [60].
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3.1.4 Organisation of the chapter

The rest of the chapter is organized as follows. Section 3.2 introduces the novel
PyPSA-Earth model that is able to perform large-scale modelling studies. The data
processing novelties are described in detail in Section 3.3. Data validation for the
African continent is performed in Section 3.4, and a quantitative case study on
Nigeria is discussed in Section 3.5. Finally, the limitations of the model are discussed,
and the conclusions are drawn.

3.2 PyPSA-Earth model

This section describes the scope of the PyPSA-Earth model, its features as well as the
role of the initiative that is facilitating the model developments.

3.2.1 Scope

The PyPSA-Earth model is a novel open-source data management and optimization
tool that aims to provide policymakers, companies and researchers with a shared
platform for a wide range of macro-energy system analyses needed to achieve the
energy transition together. The option to create a tailored country, continental
or global model under a unique code repository maximises synergies and wider
user-benefits. For instance, one user in Africa can implement new features and data,
improve the documentation or implement bug fixes that immediately benefit all
other users around the world.

Studies that were already demonstrated in PyPSA [29], and, with the modelling fea-
tures of PyPSA-Earth described in this chapter, are now globally available include:

1. energy system transition studies

2. power system studies

3. technology evaluation studies (e.g. energy storage, synthetic fuels and hydro-
gen pipelines)

4. technology phase-out plans (e.g. coal and nuclear)

5. supply diversification studies

6. electricity market simulations
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This chapter focuses on the power system modelling features of PyPSA-Earth.

3.2.2 Features

The following features are implemented in PyPSA-Earth:

1. flexible model scope: from Earth to any subregion

2. high temporal and spatial resolution

3. model-ready data creation

4. co-optimization of investment and operation

5. single or multi-year optimization

6. flexible addition of arbitrary optimization constraints, e.g. socio-economic,
technical, or economic

Moreover, the PyPSA-Earth model has been developed with the following non-
functional requirements:

1. easy to use and learn

2. highly customizable and flexible

3. modular to include new features and data

4. fully reproducible

The proposed features of PyPSA-Earth are a novelty as compared to the literature
in Section 3.1. Furthermore, new features can be created in or adopted from other
PyPSA-based models that share a similar backbone. Examples are the work on
endogenous learning with pathway optimization and multiple investment periods
[61], dynamic line rating constraints based on spatially differing environmental
conditions [62], the implementation of generic constraint settings that enable equity
constraints such as applied in [63] and uncertainty analyses by input parameter
sweeps or by exploring the near-optimal solution space [22].

The data and methods Section 3.3 presents more details on the presented features.
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Fig. 3.1.: PyPSA-Earth model design. After providing the configuration parameters and
countries of interest, data is collected and processed to be then fed into the PyPSA
model framework, which enables to perform the desired optimization studies
such as least-cost system transition scenarios.
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3.2.3 PyPSA meets Earth initiative

The PyPSA meets Earth initiative is an independent research initiative that aims
to improve energy system planning with open solutions. It supports, builds and
maintains the PyPSA-Earth model and is therefore briefly introduced. The initia-
tive’s vision is to support transparent and debatable decision-making on the energy
matter that cannot be achieved with the status quo ruled by commercial inscrutable
closed-source “black-box” tools. Current research activities in the initiative can be
categorised into three distinct groups:

• open data

• open energy system model and

• open source solver

First, the open data activities focus on open data creation, collection, fusion, modifi-
cation, prediction and validation for energy system models. These data activities are
not limited to aggregated country information but prioritise work on high spatial
and temporal resolution data, which is fundamental for scalable and accurate mini-
grid and macro-energy system model solutions. Second, the open energy system
modelling activities focus on implementing new functions and data streams into the
model, such as building a sector-coupled model with multi-horizon optimization
that is useful across the globe. Third, open source solver-related activities deal with
benchmarks and efficient interfaces that help to adopt and develop open source
solvers. For instance, a benchmark was created that became a successful public
funding proposal and attracted sufficient funding for the open-source solver HiGHS
[7]. This activity pushes breakthroughs in large-scale optimization performance
required for energy system models, which were until now reserved only for people
that can afford commercial proprietary solvers.

In order to assure a continuous inflow of people that maintain, improve and use the
software, as needed by open-source software [64], the initiative supports a free and
open community where anyone can contribute. The initiative adopts:

• GitHub to publicly record issues, requests, solutions or source code-based
discussions

• Discord as a voice channel and messaging social platform for regular public
meetings and exchanges

• Google Drive to publicly store files and meeting notes
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Together, these tools provide the backbone of the open community supporting the
initiative goals and activities (data, model, solver).

3.3 Data and methods

In this section, the novelties of PyPSA-Earth methodology are highlighted and
described in detail. As depicted in Figure 3.1, first, a workflow management tool
is introduced that supports the model user experience. Then, data creation and
processing approaches are discussed considering the main data blocks used by the
PyPSA-Earth model: power grid topology and spatial shapes, electricity demand,
renewable potential and power plant locations. Further, a subsection describes
some advanced pre-processing techniques such as clustering and line augmentation
used to introduce data into the model in a robust and efficient way. The final part
describes the energy system modelling and optimization framework with its solver
interfaces.

3.3.1 Workflow management tool

First of all, similarly to PyPSA-Eur [24], PyPSA-Earth relies on the ’Snakemake’
workflow management [65] that decomposes a large software process into a set of
subtasks, or ’rules’, that are automatically chained to obtain the desired output. Ac-
cordingly, ’Snakemake’ helps sustainable software design that enables reproducible,
adaptable and transparent science, as described in [66]. The whole PyPSA-Earth
workflow was implemented as a new set of ’Snakemake’ rules. For more details, Fig-
ure 3.2 represents a workflow of PyPSA-Earth automatically created by ’Snakemake’
for which the user can execute any part of the workflow with a single line of code.
That is expected to improve the user and developer experience, as complex tasks are
decomposed into multiple modular smaller problems that are easier to handle and
maintain.

3.3.2 Network topology and model

The electricity network topology is one of the main inputs needed to build an energy
system model which accounts for realistic power flow approximations across regions.
The most comprehensive and accurate data on power grids are curated by the
transmission system operator. In practice, the availability of open power grid data
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Fig. 3.2.: Directed acyclic graph of a PyPSA-Earth example workflow. Each box represents
a rule that modifies or creates the input, resulting in outputs. Already computed
rules are shown as boxes with dashed borders, solid bordered rules indicate
rules yet to be computed during the workflow execution. The workflow creates
here four least-cost scenarios with varying spatial and temporal resolution and
is triggered by a single line of code. Wildcards define options for the spatial
resolution with 50 and 100 clusters and the temporal resolution with 1 and 3
hours (Co2L-1H and Co2l-3H).
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is still relatively low for many parts of the world, with the situation in Africa being
extremely sparse.

A natural way to address the lack of power grid data is to utilize open geospatial
datasets. Currently, a few open source packages have been published to extract and
build networks from such datasets (e.g. Gridkit [67], Transnet [68], SciGrid [67]).
However, each of these packages focuses on applications for a particular world
region rather than on the global coverage and there is still no ready-to-use solution
which could be implemented into a global model. To fill this gap, this work has
developed an original approach which reconstructs the network topology by relying
solely on open globally-available data. The developed approach is based on the
OpenStreetMap (OSM) datasets that are a crowd-sourced collection of geographic
information, which is daily updated and includes geolocation references [69].

The electricity network topology is created in three novel steps: i) downloading,
ii) filtering and cleaning the data, and iii) building a meshed network dataset with
transformer, substation, converter and high voltage alternating current (HVAC)
as well as high voltage direct current (HVDC) components. Figure 3.3 shows
sample raw and cleaned networks along with the options for clustering and line
augmentation that are introduced in Section 3.3.7 and 3.3.8, respectively.

For the download step, the esy-osm tool is used to allow fast retrieval of OSM data
through multi-threaded processing [70]. Appropriate OSM features are used to
extract all necessary network components, including substations, transformers and
power lines. Their geospatial description was cleaned in this process and the data
structure aligned with the PyPSA framework requirements.

Beyond that, to build the network an approach has been developed to improve the
quality of the OSM-extracted grid topology by accounting for a reasonable tolerance
of OSM-derived coordinates.

3.3.3 Fundamental shapes

Fundamental shapes represent the smallest defined regions that gather various data
types to characterise the energy system, such as in Figure 3.3 or Figure 3.4. Before
being ready for the model-framework execution, data is often provided in many
different ways, e.g. geo-referenced point locations, raster data, among others. To
properly execute the modelling, such information is gathered and aggregated at the
level of the fundamental shapes. These shapes can represent either administrative
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Fig. 3.3.: Representation of transmission networks and shapes produced by PyPSA-Earth
show: (a) a sample Open Street Map transmission network, (b) a clustered 420
node African transmission network and (c) its augmented version with additional
line connections to test the benefits of additional interconnections. In case of c),
the applied k-edge augmentation guarantees that every node has at least a certain
number of connections, three in the case of the figure. The augmented lines are
connected by a minimum spanning tree algorithm to the nearest neighbour.
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zones or spatial zones generated from the grid structure as shown in Figure 3.4
which is in the following discussed in more detail for onshore and offshore shapes.

For onshore regions, the model provides two ways to build fundamental data shapes.
The first retrieves the so-called GADM that represents administrative zones at various
levels of detail (e.g. national, regional, province, municipality) [71]. The second
one uses the substation GIS location to create Voronoi partitioned areas for each
substation, which boundary is defined as equidistant to the centroid of the nearest
sites [72]. The latter approach is beneficial to replicating the network accurately,
while the former helps communicate results.

For offshore regions, the model uses only Voronoi partitioned areas to create fun-
damental shapes. These Voronoi areas are built from high voltage onshore nodes
and are limited to the offshore extent by the Maritime Boundaries and Exclusive
Economic Zones (EEZ) data for each country [73].

3.3.4 Electricity consumption and prediction

The model currently provides globally hourly demand predictions considering
’Shared Socioeconomic Pathways’ [74] scenarios for 2030, 2040, 2050 and 2100
and weather years of 2011, 2013 and 2018. The demand time series is created using
the new contributed synde package [75] which implements a workflow management
system to extract the demand data created with the open source Global-Energy GIS
(GEGIS) package [55].

In principle, GEGIS produces hourly demand time series by applying machine
learning methods [55] using as predictors temperature, population, Gross Domestic
Product (GDP), industrial structure, heating and cooling technologies etc. This
approach is not new as it was already applied and tested in [76]. The observed
absolute error of GEGIS in the validation test is considered acceptable for energy
studies as it is 8% across 44 countries, yet with generally worse performance in
low-income countries [55].

The coverage of the synde package is currently limited. Figure 3.5 shows that there
are no data outputs for especially low-demand countries. A heuristic creates data
for the countries with missing data by scaling the Nigerian demand time series
proportionally to population and GDP. This approach is validated in Section 3.4.2.
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(a) (b)

(c)

Fig. 3.4.: Fundamental shapes of Nigeria in PyPSA-Earth: (a) shows the onshore regions
represented by the GADM zones at level 1, (b) shows the onshore regions rep-
resented by Voronoi cells that are derived from the network structure, and (c)
shows the offshore regions also represented by Voronoi cells based on the closest
onshore nodes. Image produced by Hazem Abdel-Khalek.
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Fig. 3.5.: Demand predictions created per country using the synde workflow based on
GEGIS. For grey-coloured countries, synde does not provide data, however, a
heuristic creates representative time series as described in Section 3.3.4. Image
produced by Johannes Hampp, Ekaterina Fedotova and Maximilian Parzen.

3.3.5 Renewable Energy Sources

Renewable energy sources such as solar, wind and hydro time series are modelled
with the open-source package Atlite [26]. Atlite i) creates cutouts that define spatio-
temporal boundaries, ii) prepares cutouts, which means that environmental and
weather data is added to geospatial boundaries by matching various datasets (ERA5
reanalysis data [77], SARAH-2 satellite data [78], and GEBCO bathymetry [79]),
and finally, iii) applies conversion functions to produce technology-specific spatially
resolved time series and potentials [26]. Currently, the PyPSA-Earth model frame-
work implements solar photovoltaic, on- and offshore wind turbines, hydro-runoff,
reservoir and dam power resources. In the case of hydro, the runoff time series
are obtained by Atlite for each powerplant location, as described in Section 3.3.6.
As our new contribution, the hydropower output is thereby proportionally rescaled
to match the reported total energy production of existing plants as reported per
country by [80]. At the time of writing, available in Atlite but not yet implemented
in PyPSA-Earth are potentials and time series for concentrated solar power, solar
thermal collectors, heat demand and dynamic line rating with a wide range of tech-
nology options. For details on the model implementation for each technology, the
reader is referred to the PyPSA-Eur publication which the presented model mostly
builds-upon [24]. A brief concept demonstration of Atlite is provided in Figure
3.6.
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3.3.6 Generators

Given the limitation of reliable datasets for power plants for the African region,
the existing powerplantmatching tool [81] has been extended to include additional
datasets, such as OpenStreetMap, to fine-tune the African model and validate the
results with the final goal of maximizing accuracy and quality of the result.

Powerplantmatching has been successfully proposed to estimate the location and
capacity of power plants in Europe. The validation performed with respect to the
commercial World Electric Power Plants Database (WEPP) by Platts and the dataset
by the Association of European Transmission System Operators (ENTSO-E) reaches
an accuracy of around 90% using only open data [81]. By default various open
data sources are included such as [82], ENTSO-E [83], GEO [84], and renewable
statistics by IRENA [85] among others. The approach applied for powerplantmatching
is based on the procedure depicted in Figure 3.7, where the raw datasets are first
downloaded, then filtered to remove missing or damaged data, and aggregated.
Once the refined data are obtained, the datasets are pairwise compared to identify
duplicated entries. Finally, non-duplicated data are merged into a unique dataset
and used as a source for PyPSA-Earth. Only a few of these datasets have global
scope (GEO, GPD and IRENA) and have been validated for Africa. In particular for
Africa, where data is lacking, including all available open data can be critical to
maximizing the accuracy of the results. Therefore, inspired by future work suggested
in [86], the powerplantmatching tool was extended to optionally include and process
OpenStreetMap data to improve the quality of outputs.

3.3.7 Spatial clustering approach

In order to tackle the computational complexity of solving a co-optimisation problem
of transmission and generation capacity expansion, the model offers state-of-the-
art spatial clustering methods which are adapted from the PyPSA package and
PyPSA-Eur model [25, 87]. Spatial clustering allows aggregating the nodes of
the system to reduce the complexity of the model, which is essential for reducing
computational needs.

The available clustering methods provide a focus on (i) conserving the representa-
tion of renewable potentials as well as the topology of the transmission grid, (ii)
accurately representing the electrical parameters to improve estimates of electrical
power flows in an aggregated model, (iii) aggregating spatially close nodes disre-
garding other a-priori information of the network, or (iv) according to their location
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Fig. 3.6.: A concept demonstration of Atlite for Nigeria. (a) Shows that environmental and
weather data is extracted in a cutout for the region of interest. (b) The cutout is
split in a raster of (0.25◦)2 or roughly (27.5km)2 (length varies along latitude),
whereby each cell contains static or hourly time series data. The example wind
speed and direct irradiation influx time series are shown for one cutout cell that
contains an ERA5 extract of the Copernicus Data Store [77]. (c) Shows the eligible
area raster, which is built by excluding protected and reserved areas recorded
in protectedplanet.net and excluding specific land-cover types from Copernicus
Global Land Service whose eligibility can vary depending on the technology. (d)
Illustrates the maximal installable power raster, which is calculated by the eligible
area and the socio-technical power density of a technology e.g. 4.6MW/km2 for
solar photovoltaic. (e) The raster is then downsampled to the region of interest
or fundamental shape by averaging the proportion of the overlapping areas. (f)
Finally, by applying a PV technology model to (b) and combining it with (e)
one can define per region the upper expansion limit and the maximal hourly
availability constraint for a given technology.
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Fig. 3.7.: Flowchart of the powerplantmatching procedure, including the novel OSM input
(in bold) which was developed for PyPSA-Earth. Image produced by Davide
Fioriti.

with regards to the country’s subdivisions facilitating results interpretation for policy
recommendations. An analysis of suitable clustering methods that depend on the
modelling application is provided in [88].

In summary, (i) the clustering approach that focuses on a better representation
of variable sources or sinks of the model is inspired by [89]. It includes variable
potentials, i.e. capacity factors or full load hours for solar and wind, or the variable
electricity demand as a distance metric between nodes. This is combined with
a hierarchical clustering approach, similar to the suggestions provided in [90].
However, nodes can be only aggregated when a physical transmission line connects
them instead of assuming a synthesised grid in contrast with [90]. (ii) The clustering
method that focuses on a better representation of the transmission grid was initially
suggested by [91] to be applied to the case of electricity system modelling. It is
a density-based hierarchical clustering operating on the line impedance. (iii) The
network can also be reduced using a weighted k-means algorithm on the locations
of the network nodes as explained in detail in [72]. (iv) Finally, using the GADM

shapes allows aggregating all nodes in the same shape.

Any of these methods can be applied in single or two distinct iterations, as displayed
in Figure 3.8 for Nigeria. In each of these two iterations, a different method can
be applied, choosing from (i)-(iv). In the first iteration, all nodes are clustered to a
desired number of representative nodes, aggregating generators, flexibility options
(electricity storage and transmission lines) and electrical demand. The second
iteration is optional and allows the remaining nodes to be clustered again. However,
now only the transmission network is effectively reduced such that the representation
of renewable resources is fixed to the resolution of the previous iteration (compare
the first row and second row of Figure 3.8). The spatial resolution of the transmission
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network must always be larger or equal to the resource resolution, i.e. the clustering
of the first iteration sets an upper bound.

Clustering all information simultaneously

Possibility to increase intra-nodal siting information

Fig. 3.8.: Illustration of the clustering methodology applied for the transmission network
(red nodes and edges) and resource resolution (grey nodes and edges). The first
row shows how nodal data (i.e. generators, storage units, electrical loads etc.)
is aggregated in tandem with the resolution of the transmission network. Three
exemplary resolutions of the network for Nigeria are displayed here: 4, 14 and
54 nodes from left to right. The second row shows how the clustering also allows
modelling the transmission grid at a different resolution than the resources. In
this example, the transmission network contains 4 nodes connected by 4 lines (all
in red) at every resolution, while 4, 14 and 54 generation sites become available
(left to right). The background colour represents exemplary capacity factors in
shades of red, for an arbitrary technology. The darker the colour, the higher the
capacity factor. Image produced by Martha Maria Frysztacki and Maximilian
Parzen.

3.3.8 Augmented line connection

The African network is often not well interconnected. This is due to isolated national
planning data or the presence of isolated mini-grids that are popular electrification
measures [92]. Therefore, an algorithm to mesh a given network and assess different
grades of connectivity is proposed. To investigate the benefits of meshed networks,
PyPSA-Earth can perform a k-edge augmentation algorithm that guarantees every
node has a modifiable number of connections to other nodes. Only if nodes do not
already fulfil the connectivity condition, the algorithm will create new lines to the
nearest neighbour by a minimum spanning tree. The new ’augmented’ lines can be
set to an insignificant size (e.g. 1 MW) to create new options for line expansion in
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the investment optimization. For example, Figure 3.3 shows the comparison between
the standard clustered network with 420 nodes and its augmented version. Only
the model that includes augmented line connections can explore an interconnected
continent.

3.3.9 Model framework and solver interface

The PyPSA-Earth model integrates the PyPSA model framework with its solver in-
terfaces to perform planning studies; details on the mathematical modelling are
provided in 2.3 for the sake of brevity. Using PyPSA has several benefits compared
to other tools that are briefly introduced in the following. First, PyPSA enables large-
scale optimization in Python. Python is well known for being user-friendly, but when
analysing the memory consumption and speed for building optimization problems
it was considered non-competitive compared to tools based on the programming
language ‘Julia‘ or ‘C++‘ [93] – a bottleneck which also hinders large-scale optimiza-
tion required for PyPSA-Earth. As a reaction, developers in the PyPSA ecosystem
built nomopyomo overcoming the bottlenecks [33]. More recently, the same group
is working on a general package called Linopy that promises a 4-6 runtime speed
up and a 50% improvement in memory consumption compared to the optimization
problem formulator Pyomo, possibly making it also more memory efficient than
the Julia alternative JuMP as indicated in [93]. Another point making the PyPSA
dependency attractive is that it is one of the most popular tools, as suggested by
GitHub stars in the GPST benchmark [94], possibly due to its standard component
objects and the continuously maintained documentation [29]. Finally, the frame-
work offers several solver interfaces (HiGHS, Cbc, GLPK, Gurobi, among others)
providing flexibility in solving various optimization problems with open-source and
proprietary solutions.

3.4 Validation

The data validation section aims to assess the data quality with publicly available
data: at a continental level in Africa and a country level in Nigeria.
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3.4.1 Network topology and length

Validating the African power grid is challenging. Unlike in Europe, where ENTSO-E
[95] provides reliable open data with continental scope, such a transparent data
source is lacking in Africa, and only a few utilities release open data. The self-
proclaimed most complete and up-to-date open map of Africa’s electricity network
is offered by the World Bank Group, which implements Open Street Map data,
as well as indicative maps data from multiple sources [96]. However, the World
Bank data should not be used as a single validation set, because it may report
outdated data, given that it has not been updated after 2020, and is partially based
on indicative maps rather than on geo-referenced data, making the post-validation
time-consuming. Conversely, PyPSA-Earth builds its grid topology directly from
daily updated Open Street Map data. Finally, the World Bank data also provide
less detailed information than Open Street Map; for instance, it does not give any
information on the frequency, circuit or cable number, limiting the information
that can be used for validation. In the following, grid statistics and topology are
compared on a Nigerian and African scale. This also includes nationally reported
data from the Nigerian energy commission.

First, the transmission lines are validated by comparing the total circuit lengths at
different alternate current (AC) voltage levels. Transmission lines can carry one
or more 3-phase circuits, whereby each circuit has at least three cables. Instead of
looking only at the line length, which is the distance between high voltage towers,
it is common to report the total circuit length, which multiplies each line length,
e.g. distance from the tower to tower, with the number of circuits [24]. Table
3.2 indicates that the Nigerian network length reported at the World Bank aligns
approximately with the official transmission company statistics [97], suggesting
that the World Bank data is either accurate in Nigeria or used as a reference by the
transmission system operator. This official reported total circuit length is approx-
imately 35% longer than the original Open Street Map data or the modified and
cleaned PyPSA-Earth derivative. Conversely, on a continental scale, Open Street
Map provides approximately a 117% longer total circuit length than the reported
World Bank data. To summarise, while Open Street Map data is qualitatively less
available in Nigeria by looking at the statistics, it offers significantly more data on a
continental scale.

To further compare and validate the data, Figure 3.10 highlights good agreement
between the network topology in Nigeria and Africa of OpenStreetMap and World
Bank sources. However, in central and south Nigeria, the World Bank covers more
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Tab. 3.2.: HVAC and HVDC circuit line lengths of Nigeria and Africa from different sources

Circuit lengths in 1000km
Nigeria Africa

Ref
110-220kV 220-380kV >380kV 110-220kV 220-380kV >380kV

World Bank Groupa 9.3 12.1 0.0 59.4 63.5 41.0 [96]
Open Street Map (OSM) 6.3 9.1 0.0 87.9 180.7 76.7 [69]
Transmission Company of Nigeria More than 20 - - - [97]
PyPSA-Earth (cleaned OSM) 6.7 9.1 0.0 88.3 183.7 82.9
a Information about circuits is missing.

power lines. On the African scale, the opposite is observed. Open Street Map covers
more network structures in East and North Africa.

3.4.2 Electricity consumption

This subsection validates the demand prediction on the example year 2030 for every
country in Africa by comparing the individual country consumption for 2020 and
2030 with official continental annual electricity consumption used in PyPSA-Earth.
Figure 3.11 shows 2020 reported electricity consumption data per country, published
from Our World in Data that is additionally refined by data from the global energy
think-tank Ember and BP’s statistical review of world energy [98]. The used elec-
tricity demand data in PyPSA-Earth roughly doubles from 2020 to 2030, indicating
demand growth. While national demand predictions are often not available, the
demand prediction is further validated by comparing it to other - more common -
continental demand predictions. In Africa, Our World in Data reported an electricity
consumption in 2020 of 782 TWh/a. For 2030, [99] predicted 1924TWh/a, [100]
1877 TWh/a and the PyPSA-Earth model data 1866 TWh/a, predicting more than
a doubling of Africa’s electricity consumption by 2030. In summary, looking at the
total African electricity consumption suggests that the data used in the global PyPSA
model is in the range of others.

3.4.3 Solar and wind power potentials

The validation of solar and wind potential is performed by comparing statistics by
international organizations, such as IRENA, with the outputs of the PyPSA-Earth
model, both including total generation capabilities and the specific power densities
per unit of available land.

Solar and wind potentials are well-reported across the African continent. In 2021,
the Global Wind Energy Council estimated for Africa a technical potential for wind
generation of 180.000TWh (PyPSA-Earth: 108.700TWh), which is sufficient to

58 Chapter 3 Modelling Power Systems with High Resolution Data - PyPSA-
Earth



Data: Open Street Map 132kV
330kV

(a)

Data: World Bank Group 132kV
330kV

(b)

(c)

Fig. 3.9.: Network topology of open available transmission network data (above 110kV)
from (a) OpenStreetMap and (b) World Bank Group. The Nigerian Transmission
Company also publishes a map (c) however without sharing the underlying data.
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Fig. 3.10.: Continental network topology of open available transmission network data
(above 110kV) from OpenStreetMap and the World Bank Group. The voltage
ranges from 110-765 kV in both data sets. The line visualisation varies with the
voltage level and includes transparency, thickness and colour.
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Fig. 3.11.: Comparison of reported [98] and predicted annual electricity consumption data
across African countries indicate in every country demand growth. For 2030,
the African total electricity consumption of PyPSA aligns with other predictions
from [99] and [100].

electrify the continent 250 times relative to the 2019 demand [101]. Similarly,
the International Renewable Energy Agency estimated in 2014 that the technical
potential in Africa is 660.000TWh (PyPSA-Earth: 122.200TWh), which is sufficient
to electrify the continent 916 times [102]. The discrepancy between the technical
potentials observed in the PyPSA-Earth model and the institutional reports is due
to the underlying assumptions. In fact, how many renewables can be installed in a
region depends on two main assumptions: the excluded areas [km2] and the power
density per technology [MW/km2], both discussed in the following.

While available areas are defined in a data-driven way similar to [102] and [24] (see
details in Section 3.3.5), the remaining eligible area quantifies the technical potential
per technology through the technical power density factor. However, this density
applies only to land specifically and uniquely allocated to renewable production, yet
this cannot easily be generalized to all non-protected land areas at the country level.
In fact, land areas are also necessary for non-technical activities such as economic
activities, industries, farming, well-being, and housing, among others. Accordingly,
PyPSA-Earth considers a more conservative power density coefficient to account for
such socio-economic considerations.
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Focusing on solar photovoltaic power plants, the power density of the 41 largest
installations in the world [103, 104] is assessed: the average power density is
46.4 MW/km2, the minimum 10.41 MW/km2, and the maximum 150.0 MW/km2.
The type of solar module and the solar photovoltaic plant design are driving factors
for this extensive range of values. For instance, the Cestas Solar Park in France
uses high-performing solar modules and additionally contains a compact east-west
orientation solar field design leading to the 150.0 MW/km2 extreme. Similarly to
[24], the technical power density is reduced to 10% of the average power plant
density to represent the socio-technical limit: 4.6 MW/km2 for solar photovoltaic.

For onshore and offshore wind farm technologies, this paragraph verifies power den-
sity assumptions by analysing seven existing utility-scale wind farms. The observed
average technically feasible power density for onshore wind farms is 6.2 MW/km2,
and for offshore wind farms, 4 MW/km2 [105]. Using the same approach as [24],
by default PyPSA-Earth reduces these values from 6.2 to 3 MW/km2 and from 4 to
2 MW/km2 for onshore and offshore wind farms, respectively, to represent socio-
technical power densities and give wind farms space to lower generation reducing
wake-effects.

Currently, the same socio-technical power density is applied irrespective of the land
cover type. However, roughly about 43% of the continent is characterised as extreme
deserts [106], giving the opportunity in these regions to be less conservative about
the social-technical power density.

3.4.4 Power plant database

This subsection compares the site-specific power plant database used in PyPSA-Earth
to national statistics.

Data on existing power plants is critical for accurate energy simulations as they affect
long-term investments, dispatch, and stability of the energy systems. For validation
purposes, relevant country statistics are provided by IRENA [107] and USAID [108].
While the PyPSA-Earth data is geo-referenced, hence including the location, type
and nominal capacities of each power plant, the other sources only provide country
statistics. Therefore, data used in PyPSA-Earth is of higher quality, especially for
energy system modelling in high spatial resolution that would be impossible to
perform with the IRENA and USAID sources only.

Figure 3.12(b) shows that the PyPSA-Earth model matches the largest fraction of the
installed capacity of existing databases, with 165 GW out of the 229 GW reported by
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Fig. 3.12.: Total installed generation capacity in Africa by (a) country and (b) technology,
including a focus on (c) the installed capacities in Nigeria.

IRENA. Most technologies are matched with adequate accuracy (2–15% error), yet
larger differences occur especially for coal and gas power plants, partially due to the
recent installation of power plants over the last 3-4 years, whose data has not been
updated by the sources described in Section 3.3.6. In future work, adding more
recent data sources may improve the data situation [109]. Furthermore, it is noted
that, although the current PyPSA-Earth procedure does not include geothermal
and Concentrated Solar Power (CSP) technologies, their capacity can be relevant
for certain countries (e.g. Kenya, Morrocco and South Africa), but at an African
scope, these technologies still represent a small fraction of the installed capacity.
Therefore, the proposed validation is considered of good accuracy, supporting the
appropriateness of the PyPSA-Earth model.
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3.5 Demonstration of optimization capabilities in Nigeria

At COP26, Nigeria’s president Buhari committed to net zero emissions by 2060 [110].
To demonstrate that the presented model can be useful for Nigeria’s energy planning
activities, this chapter showcases the optimization capabilities of PyPSA-Earth. In
particular, this section covers two least-cost power system optimizations, one for
2020 to reproduce the historical system behaviour and one representing a decar-
bonised 2060 scenario (see Figure 3.14 and 3.15).

3.5.1 Nigeria 2020 - Dispatch validation

The 2020 scenario applies a dispatch optimization with linear optimal power flow
constraints to simulate and validate the optimization results for Nigeria. Accordingly,
only the operation of existing infrastructure is optimized for the lowest system
cost, excluding any infrastructure expansion e.g. generation or transmission line
expansion (see Figure 3.14).

Starting with the scenario design. The power grid retrieved from OpenStreetMap
is clustered into 54 nodes, representing the aggregation zones for the demand and
supply. Since the existing network is more meshed than the OpenStreetMap based
PyPSA-Earth network (see Figure 3.10), a few augmented line connections with a
negligible minimal capacity of 1 MW are added such that every node has at least two
line connections, see (b) in Figure 3.14, and overcome short missing network data.A
total demand of 29.5 TWh is considered for 2020 using the national demand profiles
provided in PyPSA-Earth. The magnitude aligns with reports from Our World in Data
(28.2 TWh) [98]. The demand profiles are distributed across all nodes proportional
to GDP and population. With the available hourly electricity demand time series and
the existing 2020 power plant fleet (validated in Section 3.4.4), the model calculates
the optimal generator dispatch considering power flow constraints.

The dispatch validation shown in Table 3.3 compares the generation shares of the
PyPSA-Earth results to those reported at Our World in Data [98]. The comparison
highlights that PyPSA-Earth adequately represents the total electricity production
shares by source in Nigeria with acceptable accuracy. Model results for the solar
generation have a 100% accuracy compared to data provided by Our World in Data,
gas generation is 2TWh (10%) higher than the benchmark, while hydro generation
is 0.3 TWh (5%) lower. These deviations could be explained by the 1.3 TWh (4%)
higher assumption of total electricity demand and differences in the specific marginal
costs of resources. Using the cost assumptions from [50], an average marginal price
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for electricity of 59 e/MWh is derived, which aligns with reported production costs
in the range of 45 − 70 e/MWh [111].

Tab. 3.3.: Nigeria 2020 dispatch comparison

Total Hydro Coal Gas Wind Solar
PyPSA-Earth [TWh] 29.5 5.8 - 23.6 0 0.04

Our World in Data [TWh] 28.2 6.1 0.6 21.4 0 0.04

The computational needs for this scenario in terms of total solving time (compu-
tational time times the average load of the processors) and memory, are shown in
Figure 3.13. The scenario computations used 4 threads with Gurobi 9.5.1 solver
while only a single-core with HiGHS 1.2.1 and CBC 2.10.8, since their parallel
solving capabilities are currently limited. While the commercial Gurobi solver is
very efficient, the results in Figure 3.13 confirm that the open-source HiGHS solver
can also optimize the network below one day with memory requirements that are
available for laptops. One must note that this performance benchmark does not
include other possible PyPSA cases with integer variables, e.g. as used for unit com-
mitment, or quadratic cost functions which would increase the solving times. Given
the expected improvements for open-source solvers, the computational requirements
are likely to decrease significantly [7].

3.5.2 Nigeria 2060 - Net-zero study

The 2060 net-zero scenario performs a brownfield capacity expansion optimization.
This means that new renewable energy and transmission capacity can be built on
top of existing infrastructure. Simultaneously, a dispatch optimisation is performed
subject to linear optimal power flow constraints. To explore new transmission grid
structures, the meshing strategy is increased such that each node connects HVAC
lines to at least three nearest neighbouring nodes and that a random selection of far
distance nodes above 600km connects HVDC lines, see b) in Figure 3.15). Using a
random selection for long-distance HVDC can help identify valuable line connections
before applying any heuristic that might not find these. Additional to the net-zero
emission constraint, the 2060 total demand has been calibrated in agreement to
[112] to about 250 TWh by linear interpolation of the Stated Energy Policies of IEA
for Nigeria [85]. Observing the optimized infrastructure in Figure 3.14, the overall
optimal least-cost power system can be mostly supplied with solar energy and a mix
of battery energy storage. Hydrogen energy storage with steel tanks is included as
an expansion option. However, hydrogen solutions are not significantly optimized,
probably because fuel and energy trade with other countries is ignored. Also, Nigeria
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Fig. 3.13.: Solution time (a) and memory requirements (b) for the 2020 Nigeria dispatch
optimization for Gurobi 9.5.1, HiGHS 1.2.1 and CBC 2.10.8 solvers at different
spatial resolution; solution time is weighted by threads. Images produced by
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lies close to the equator, where solar irradiation is homogeneous across the year,
requiring less seasonal hydrogen energy storage. The battery storage that consists
of an inverter component [e/MW ] and a Li-Ion battery stack [e/MWh], can be
independently scaled by the model such as applied in [4]. The energy-to-power
ratio (EP) indicating the sizing between these storage components is optimized
in the range 4.5 h – 15.0 h with an average of 6.75 h. The total optimized Li-Ion
battery storage discharging capacity and energy capacity is 67.9GW and 459.7GWh,
respectively. The optimal solar capacity distribution is spatially uneven. Most solar
is expanded in the country’s north, where the solar potential is significantly higher
[113]. It is also cost-optimal to build new transmission routes in the north and east
of Nigeria, enabling the spatial distribution of electricity. The total optimized solar
PV capacity is 256.9GW , whereas about 20% of the solar energy is curtailed on an
annual average. The HVDC options are not used significantly, indicating it is not
cost-optimal in the scenario. Figure 3.16 shows the dispatch profiles outputs of
the optimization, which illustrates that most batteries charge during the day and
discharge at night. Notably, to be conservative, with cost assumptions for 2050
[114], the average marginal prices reach only 51 e/MWh, compared to 59 e/MWh

in the 2020 scenario. As a result, the optimized renewable electricity future for
Nigeria could be cheaper than today.

3.6 Limitations and future opportunities

3.6.1 Missing network topology data

Modelling can only be as good as underlying data – the same applies to PyPSA-Earth.
By relying on open sources to model energy systems, their data quality is a concern
that needs to be acknowledged in the presented work. Yet, this subsection also
describes possible procedures based on image recognition to not only improve
the data situation in PyPSA-Earth but potentially all energy models. This effort
may complement the traditional effort by public institutions that disclose data of
public relevance, such as installed network infrastructure, as performed by ENTSO-E
[83].

Compared to Europe or North America, institutions that provide infrastructure data
with geolocation for modelling have no analogues in Africa. The missing network
data situation is limiting the use of energy system models. However, other types
of data from which energy system components can be inferred exist on a much
larger scale. Satellite imagery is one such data type. As part of the PyPSA meets
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Fig. 3.14.: Optimization results of Nigeria’s (a) 2020 power system. The coloured points
represent installed capacities. (b) Shows all network options on a different scale
as (a) with the total electricity consumption per node.

68 Chapter 3 Modelling Power Systems with High Resolution Data - PyPSA-
Earth



HVAC Line Capacity
2 GW

5 GW

10 GW

HVDC Link Capacity
2 GW

5 GW

10 GW

Technology
Solar
Nuclear
Oil
Offshore Wind (AC)
Lignite
Combined-Cycle Gas
Geothermal
Biomass
Offshore Wind (DC)

Open-Cycle Gas
Coal
Onshore Wind
Reservoir & Dam
Pumped Hydro Storage
Run of River
H2 Electrolysis
H2 Fuel Cell
Battery Inverter

Generation

5.0 GW

2.5 GW

1.0 GW

Generation

5.0 GW

2.5 GW

1.0 GW

(a) (b)

Fig. 3.15.: Optimization result represents Nigeria’s (a) 2060 power system. The coloured
points represent installed capacities. Light grey and dark grey lines are existing
and newly optimized transmission lines, respectively. (b) Shows all network
options on a different scale as (a) with the total electricity consumption per
node.

01 02 03 04 05 06 07 08
March

-75

-50

-25

0

25

50

75

100

To
ta

l E
le

ct
ric

ity
 B

al
an

ce
 [G

W
]

CCGT
OCGT
Onshore wind
Solar PV
Li-Ion battery
Hydrogen
Demand

Fig. 3.16.: Total electricity balance for the 2060 scenario. The time-series is hourly sam-
pled for selected days in March including electricity supply (above zero) and
consumption (below zero). CCGT and OCGT stands for closed and open cycle
gas turbines, respectively.

3.6 Limitations and future opportunities 69



Earth initiative, researchers are exploring opportunities to use neural network-based
object detection applied to satellite imagery to enrich the existing datasets on energy
infrastructure. In the past, such efforts have either been hard to apply on larger
scales due to high requirements on manual input [115] or are coarse approximations
to the true grid structure [116]. Under the umbrella of this initiative, one aim is to
develop precise and scalable methods and base our efforts on recent advances in the
field.

3.6.2 Missing demand time series and prediction biases

Demand is a significant uncertainty factor in Africa due to the growth in magnitudes
over the following decades that has implications on results created by PyPSA-Earth.
Therefore, improving demand predictions is essential. This is also a limitation in the
data fed into the presented model and highlights research opportunities to address
this challenge. PyPSA-Earth demand data is limited, as indicated in Section 3.3.4,
by poor prediction performance for low-income countries due to input data biases
and by missing machine learning output data for some low-demand countries due
to software bugs. Additionally, while the open-source synde package [75] used
in PyPSA-Earth extended the original GEGIS package for demand prediction by a
workflow, there are opportunities to create a package focusing only on demand
prediction substituting the GEGIS design that provides all energy model data in one
package [55].

Developing a package focusing on sector-coupled energy demand forecast for macro-
energy system modelling worldwide is an opportunity to improve the status quo
of existing tools, not limited to the power sector. Further, instead of validating the
demand with annual means, one should validate with hourly officially reported
time-series, since the data quality is better indicated by the latter.

3.6.3 Imprecise global data

PyPSA-Earth relies on open data with global scope. This means that sometimes
data is used that approximate country-specific details needed for national energy
planning studies. While improving the global open data situation is one opportunity
[117], another is to enable the integration of national and regional more precise
data that can also be used as a source for validation. Therefore, PyPSA-Earth does
not only use global data as default but will allow the integration of national or
regional more precise data with specialized functions here named "linkers".
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3.6.4 Additional technologies

PyPSA-Earth includes the major transmission, generation and storage technologies,
however, some are not yet included. Examples of not implemented generation
technologies are CSP, location-based geothermal, and other secondary technologies
such as wave/tidal energy harvesting. While at a global scale, these technologies
represent a minor fraction, for country-specific analyses, they may have substantial
implications, such as in the case of Kenya for geothermal or Morocco for CSP.
Moreover, while currently only lithium-ion batteries and hydrogen energy storage
are considered, additional technologies may be considered and tested, such as the
well-known Redox Flow batteries, Compressed-Air Energy Storage (CAES), Liquified-
Air Energy Storage (LAES), that can have a large market in the future. Moreover, the
dynamic calculation of the transmission capacity as a function of weather conditions
[24], also known as Dynamic Line Rating (DLR) [118], is not yet included.

These limitations, at the time of writing, represent future opportunities to improve
the model and capture relevant technologies to perform detailed energy studies for
all countries.

3.7 Conclusion

This chapter presents the PyPSA-Earth model, which is an open-source global energy
system model in high spatial and temporal resolution. It is making high-resolution
modelling accessible to countries which so far had not detailed energy planning
scenarios developed. Using a novel comprehensive workflow procedure PyPSA-Earth
automatically downloads open data, provides model-ready data and integrates
optimization features to address large-scale energy system planning. In agreement
with the open-source spirit, the model is not built from scratch but derived from
the European-focused PyPSA-Eur model adding global data as well as several new
features.

The methodology is confirmed to be flexible and accommodate a high temporal
and spatial resolution power model for national and regional energy planning with
global scope. The validation performed for the African continent highlighted that
PyPSA-Earth successfully provides power network and installed generation data
that match trustworthy third-party national data with adequate accuracy, hence
suggesting PyPSA-Earth to be a reliable model for energy planning. The 2020 and
2060 planning studies for Nigeria have further confirmed that net-zero emission
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scenarios for the electricity sector can be performed using PyPSA-Earth, leading to
realistic results comparable with similar studies but in higher spatial detail. That
further stresses the robustness of the approach and the flexibility of the methodology
to be used in practical projects.

Given the need for reliable tools to foster the energy transition and the need for
the efficient use of resources, PyPSA-Earth can successfully support policymakers,
utilities, and scholars in providing reliable, transparent, and efficient decision-
making on energy studies. While several open source projects are developed but
discontinued, PyPSA-Earth developers aim to foster collaborative energy system
modelling on the same code-base to provide a well-maintained and robust tool,
rather than disperse resources across multiple models that get easily outdated.
Given the flexibility of the approach, additional improvements can be integrated,
and scholars interested in contributing are invited to contact the PyPSA-Earth team to
join forces. Accordingly, this chapter and the proposed tool can serve as a backbone
for further research and business activities built on top of PyPSA-Earth, to meet
various energy transition planning needs that must be cheap and fast to develop for
every nation and community on Earth.

Further studies, may address the sector-coupled version of PyPSA-Earth. In addition
to power and hydrogen data, this requires various electric as well as non-electric
demand and supply side data from other sectors including heat, industry and/or
transport. Other future work may interface energy modelling with economics
modelling for better energy policy decisions, the improvement of the demand
forecasts also in alignment with climate change scenarios, the improvement of
imprecise global network data using object detection on satellite images or the
validation of the model in other regions. To construct also reliable power systems
in Africa with less load shedding, one should dedicate future studies on frequency
response measures, black start, n-1 security constraints and similar which can be
also addressed in PyPSA. Lastly, one could also explore instead of ideal market as
often modelled in PyPSA, different market configuration for Africa.

Building on the global modeling perspective of this chapter, the next chapter -
"Removing Unintended Storage Cycling Modelling Artefacts" addresses a critical
issue in energy system models: unintended storage cycling. This chapter shifts the
focus from broad modeling capabilities to specific challenges within the modeling
process, presenting solutions to enhance accuracy and reliability in energy models
with energy storage integration.
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Removing Unintended
Storage Cycling Modelling
Artefacts

4

„Given enough eyeballs, all bugs are shallow.

— Linus Torvalds
Software engineer

Contents of this chapter are based on

Maximilian Parzen et al. “Reducing energy system model distortions from
unintended storage cycling through variable costs”. In: iScience 26.1
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105729. URL: https : / / www . sciencedirect . com / science / article /
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storage-cycling cb
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Abstract

Energy system models are used for policy decisions and technology designs.
If not carefully used, models give implausible outputs and mislead decision-
making. One implausible effect is ’unintended storage cycling’, which is
observable as simultaneous storage charging and discharging. Methods to
remove such misleading effects exist, but are computationally inefficient and
sometimes ineffective. Through 124 simulations, the chapter shows that
determining appropriate levels of variable costs depends on the variable
cost allocation to certain components and the solver accuracy used for the
optimization. For the latter, if the accuracy is set too loosely, the solver
prevents the removal of unintended storage cycling. Further, this chapter
provides a list of recommended variable cost model inputs as well as a
minimum threshold that can significantly reduce the magnitude and likeliness
of unintended storage cycling. Finally, the results suggest that the new
approach can remove other similar misleading effects such as unintended line
cycling or sector cycling.

4.1 Introduction

Energy system models are mathematical models used to investigate possible path-
ways for decarbonising our energy systems; in many cases, minimising total system
costs [49]. They provide insights on optimal dispatch and investment patterns
in the short- and long-term, thus guiding energy technology design decisions [4]
and supporting the decision-making of governments, grid operators, energy system
planners, manufacturers, and researchers. However, if not carefully used, such
models can mislead decision-making.

One model artifact distorting optimal model results is USC [119], which is observed
in 12 of 18 well-established energy system models, as reviewed by Kittel and
Schill (2022) [119]. The effect impacts storage use. Instead of curtailing Variable
Renewable Energy (VRE) surplus, the excess electricity is converted, among others,
into unintended storage losses by simultaneous charging and discharging of the
same storage capacity. The consequence of this behaviour are distortions in optimal
model outcomes. For example, energy storage or renewable generators may have
significantly more FLH in a scenario with, compared to one without USC (Figure 4.1),
signalling deceptively more intensive operation. Further, USC is technically infeasible
for some storage technologies, e.g. single lithium-ion batteries, that can either charge
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or discharge but not both simultaneously. Hence, the effect urges its removal. USC

may also manifest across space and time (Figure 4.2). For instance, USC across space
may occur in multi-regional model settings through simultaneous charging in one
region and discharging in another region for the sole purpose of dissipating surplus
renewable energy instead of curtailing it, notably in the absence of transmission
costs. Similarly, USC across time represents unintended simultaneous charging and
discharging cycles across multiple periods [119]. The fact that USC is not limited to
one point in space and time aligns with the non-guaranteed operational uniqueness
in scenarios with multiple storage assets [120].

USC is not the only such misleading effect. There is a group of related effects classified
under the term unintended energy losses, which arise in a cyclic manner [119].
Unintended, because they distort optimization results. Cyclic, as they occur in the
energy systems wherever efficiency losses are present between energy components
that cycle energy by charging and discharging, sending and receiving, or converting
and re-converting operations.

The literature on unintended energy losses is limited. State-of-the-art guidance
on best-practice energy system modelling probably unintentionally ignores these
artefacts [17, 18], while others do this intentionally [121]. Attempts to remove
unintended energy losses exist. For instance, an intuitive approach is to prohibit
simultaneous charging and discharging by introducing a binary variable. This binary
variable can then represent two mutually exclusive storage operational modes:
charging or discharging, with only one being possible at the time. Introducing a
binary variable requires reformulating the optimization from a linear to a mixed-
integer problem [122]. This reformulated problem is not only harder to solve and
require more computations, but also does not guarantee the full USC removal due to
its occurrence across space and time. Differently, [123] penalises active power losses
in the objective, however, as described in [122], this approach can distort model
outputs under heavy load conditions. This is probably the case because one uniform
penalty applied to all technologies that experience losses does not recognise any
operational order.

While the above literature provides solutions on USC arising in models that abstain
from binding renewable energy targets, Kittel and Schill (2022) [119] investigate USC

arising in models that are constrained by a binding renewable energy target. In these
models, USC causes an increase of VRE generation, which can be realised without
additional renewable capacity installations. Thus, the renewable energy target can be
achieved with less VRE capacity at lower costs. Yet, it does not serve demand, which
requires additional generation from other dispatchable technologies. Here, USC flaws
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Fig. 4.1.: Impact of USC on model outputs. Exemplary impact of scenarios with and without
USC on storage and renewable generation. The USC effect increases the operation
of close to zero variable cost assets. Results from a numerical analysis conducted
in this study, marked with an asterisk (∗), show FLH differences of up to 23% for
energy storage and 5% for renewable assets in a 100% renewable energy system
scenario.
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Fig. 4.2.: Unintended storage cycling cases for a hydrogen storage example. The left
stack represents the electrolyser, while the right stack reflects the fuel cell which
converts electricity to hydrogen and vice versa. The arrow size above the storage
components reduces to indicate an efficiency drop. Under renewable energy
surplus (variable cost = 0), excess energy is removed from the system by USC

instead of renewable curtailment. Thereby, USC may occur over space and time if
no constraint prohibits this artifact.
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both optimal dispatch and investment decisions. To remove USC, the renewable
energy constraint must include these unintended energy losses, preventing the
cost-minimizing conversion of intended VRE curtailment into unintended energy
losses.

However, the novel solution presented in Kittel and Schill [119] is not applicable to
model formulations without binding renewable targets [25, 36, 124, 125], which
are more frequently used than models with binding renewable targets [119]. In
models without binding renewable targets, USC is caused by a different mechanism:
It may arise if one or multiple options to dissipate unused energy from the system are
available and come at e.g. zero cost. Given such a parameterization, the optimization
becomes indifferent with regard to the use of any energy dissipation options. VRE

surplus energy can either be curtailed or erased from the system via unintended
energy losses from USC, distorting optimal dispatch results (see Section 4.2.1 and
4.3.1). Thus far, the removal of unintended storage cycling in energy models without
binding renewable constraint is unexplored.

This chapter addresses this gap by contributing to the existing literature in several
aspects: Firstly, it provides a method for removing USC in linear models without
binding renewable energy targets. The analysis shows that the removal can be
achieved by a deliberate setting of variable costs of affected system components.
Since variable costs penalise not only USC but also the operation of affected system
components, these must be carefully chosen. Unlike Mixed Integer Linear Program
(MILP)-based approaches, this solution keeps the problem formulation linear, making
it more effective and efficient. Secondly, it mathematically formalises how the
simultaneous charging and discharging case of USC occurs. Thirdly, it explores the
impact of USC and its removal on operational and investment decisions as well as
total system cost in a decarbonised German energy system model. To this end, here it
is demonstrated how variable costs, their magnitude and allocation, can remove USC,
while also giving new insights on the role of the solver accuracy. Finally, the chapter
provides a reviewed list of variable cost inputs, which may guide the removal of USC

in other energy models.

78 Chapter 4 Removing Unintended Storage Cycling Modelling Artefacts



4.2 Methodology

Model formulation

The occurrence of USC depends on the model formulation [119]. This chapter builds
on top of the previously introduced general power model formulation from the
Foundation chapter, Section 2.3, which abstain from binding renewable energy
target constraints. The specific model use and formulation for the demonstration
are described in Section 4.2.2.

4.2.1 Detecting unintended storage cycling occurrence

USC can be caused by charging and discharging at the same time or across space and
time. This chapter focuses on the detection of USC in form of simultaneous charging
and discharging that can be identified by analysing the storage operation patterns.

A straightforward approach to detect USC is to count the occurrence of simultaneous
charging and discharging over the optimization horizon, which is used in later parts
of this study. Here, USC may occur under three cases in energy systems with energy
storage [119]: During effective charging, effective discharging, or in an idle energy
state with effective net-zero charging.

The storage charging power h+
i,s,t describes the power provision from the grid to the

charging component. If reduced by the charging efficiency ηi,s,+, it results in storage
charging power h+

i,s,t,store that increases the storage energy level over time.

h+
i,s,t,store = ηi,s,+ · h+

i,s,t (4.1)

Likewise, store discharging power h−
i,s,t,store describes the power provision from the

storage that reduces the storage energy level over time. If reduced by the discharging
efficiency ηi,s,−, it results in the storage discharging power h−

i,s,t that provides power
to the grid.

h−
i,s,t,store =

h−
i,s,t

ηi,s,−
(4.2)

The first case USC occurs under effective charging USC+
i,s,t, which increases the

storage energy level over time:
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if h+
i,s,t,store > h−

i,s,t,store and h−
i,s,t,store > 0:

USC+
i,s,t = true

(4.3)

The second case occurs under effective discharging USC−
i,s,t, which decreases the

storage energy level over time:

if h+
i,s,t,store < h−

i,s,t,store and h+
i,s,t,store > 0:

USC−
i,s,t = true

(4.4)

The third case appears under non-zero equal charging and discharging USC=
i,s,t, or

idle energy state, which keeps the storage energy level over time constant (neglecting
standing losses):

if h+
i,s,t,store = h−

i,s,t,store and h+
i,s,t,store > 0:

USC=
i,s,t = true

(4.5)

4.2.2 Numerical implementation and data

A stylized parameterization of PyPSA-Eur [24] is used as a numerical implementation
for the model to explore the occurrence and amplitude of USC, as defined in Section
4.2. A complete model formulation of PyPSA-Eur is provided in the Appendix
of [4]. PyPSA-Eur is a European power system model, representative of energy
models that abstain from binding renewable energy targets. The analysis applies
the model to a stylised setting parameterised to the German power sector for a
100% GHG emission reduction scenario (see Figure 4.3). It limits the available set
of technologies to solar Photovoltaic (PV), onshore wind, offshore wind, as well as
an H2 storage system consisting of an electrolyser, a tank, and a fuel cell. Also, it
sets the spatial resolution to 16 nodes within Germany. Offshore wind power plants
may be connected via High Voltage Alternative Current (HVAC) or, in the case of
sites far offshore, more costly High Voltage Direct Current (HVDC) transmission lines.
The model has perfect foresight and optimizes with an hourly temporal resolution.
Weather and load data stem from 2013. Hourly load data originates from the
ENTSO-E Transparency platform and are distributed across the regions depending
on NUTS3 based GDP data (see more in [24]). All renewables and energy storage
technologies are greenfield optimized, i.e., without considering the existing capital
stock. State of charge of energy storage capacities is constrained to start and end
with 100%. The self-consumption of the H2 storage tank is assumed to be zero. The
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Tab. 4.1.: Model input assumptions.

Technology a Investment Fixed O&M Variable cost Lifetime Eff. Source

[e/kW] [e/kW/a] [e/MWh] [a] [-]

onshore wind 1040 25 variableb 30 1 DEA [127]
offshore wind (HVACc) 1890 44 variableb 30 1 DEA [127]
offshore wind (HVDCc) 2040 47 variableb 30 1 DEA [127]
PV 600 25 variableb 25 1 Schröder et al. [128]
hydrogen electrolyserd 350 14 variableb 25 0.8 Budischak et al. [129]
hydrogen storage tankd 8.44 /eMWh - variableb 20 1 Budischak et al. [129]
hydrogen fuel celld 339 10 variableb 20 0.58 Budischak et al. [129]
transmission (submarine) 2000 /eMWkm 2%/a 0 40 1 Hagspiel et al. [130]
transmission (overhead) 400 /eMWkm 2%/a 0 40 1 Hagspiel et al. [130]

a All technologies include a discount rate of 7%.
b ’Variable’ means set according to scenarios.
c Offshore wind power plants can be connected by high voltage alternating current of direct current
d Unconstrained energy storage sizing and not fixed to specific energy to power ratio.

transmission network is based on the network topology from 2020, considering
also planned lines until 2030 from the ENTSO-E Ten Year Network Development
Plan (TYNDP) 2018 [126]. Grid expansion is endogenous but limited to additional
25% newly built lines for the modelled target year to represent political hurdles of
transmission expansion [19]. Table 4.1 lists relevant techno-economic assumptions.
This stylised setting allows for demonstrating USC in the context of energy models
without binding renewable energy targets and how it can be removed by a deliberate
setting of variable costs.

4.2.3 Experimental setup

To investigate the suggested method for removing USC, in the base case scenario
the analysis sets the variable cost (EUR/MWh) of the renewable generators, H2

electrolysers, H2 tanks, and H2 fuel cells to zero. Further scenarios are then defined
varying ceteris paribus the variable cost of one of these system components in
the range e ∈ {0, 10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103}. That is, in each
scenario, the variable cost of one system component changes according to range e,
while the others are kept constant at zero. Note that, in the respective scenarios,
variable costs of all renewable generators are varied at once. Cost additives of 100
or 1000 e/MWh (10 or 100 ct/kWh) represent a demonstrative, non-realistic value
for all included technologies that could be interpreted as falsely set variable costs.

The double-precision arithmetic limits the amount of numbers a computer can recog-
nise. While optimization solvers are also influenced by double-precision arithmetic,
they additionally include tolerances to solve problems faster, which comes at the
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Fig. 4.3.: Illustration of model output. It shows an example model scenario with optimized
generation and storage capacities in Germany for a 100% GHG emission reduction
case.
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cost of accuracy. The analysis varies the precision of two Gurobi solver parameters
simultaneously yielding three scenarios: low, medium, and high accuracy. The
first modified Gurobi parameter that impacts the precision is the FeasibilityTol

or primal feasibility tolerance, which requires all constraints to satisfy a specific
tolerance to be feasible [131]. For instance, constraints such as (a ∗ x) <= b require
to hold (a ∗ x) − b <= FeasibilityTol, thus expanding the solution space. This value
is varied by e ∈ {10−5, 10−6, 10−7} from low to high accuracy. Simultaneously, the
Gurobi parameter BarConvTol is varied, which describes the barrier solver (also
known as Interior Point Method (IPM)) termination tolerance as a relative difference
between the primal and dual objective values [131]. Given one solution space for
an optimization problem, this relative difference is also known as duality gap [132],
which IPM reduce iteratively toward zero before the termination tolerance is reached.
Again, this value is varied by e ∈ {10−4, 10−5, 10−6} from low to high accuracy.

The computations to generate all results (10 ∗ 4 ∗ 3 = 120 scenarios) required 25.5 h
for 1 CPU core with 8GB memory.

4.3 Results and Discussion

In the following subsections, the analysis introduces how to remove USC as well as
investigate the impact of USC and its removal on model outcomes such as optimal
dispatch, installed capacity, and total system cost. The stylised model formulation, its
numerical implementation and the experimental setup are described in the Section
4.2.

4.3.1 Removing unintended storage cycling by variable cost
additives

Variable cost additives are defined as not necessarily true observed variable costs,
but more generally as assumed additional costs components.

Suppose an optimization problem, such as provided in the model formulation Section
4.2, finds a least-cost total system architecture. Then the system operation may adapt
any value as long as it does not lead to more cost (left side of Equation (4.6) and
(4.7)) and does not break constraints such as demand is equal to supply (described
in 4.2).

4.3 Results and Discussion 83



Further, suppose the energy system contains a renewable energy surplus at a time
step, while variable operational cost oi,s/r of storage and renewables are assumed to
be zero, then:

0 = oi,r︸︷︷︸
0

·g∗
i,r,t + o+

i,s︸︷︷︸
0

·h∗,+
i,s,t + o−

i,s︸︷︷︸
0

·h∗,−
i,s,t + ostore

i,s︸ ︷︷ ︸
0

·△e∗
i,s,t (4.6)

These zero costs may lead to a situation where surplus generation is fed into the
grid rather than curtailed. However, to guarantee the energy balance, extra surplus
generation needs to be dissipated by USC (indicated by ∗), which leads to higher
storage usage.

In contrast, in case costs exist for either generation or storage operation,

0 = oi,r · gi,r,t︸︷︷︸
0

+o+
i,s · h+

i,s,t︸ ︷︷ ︸
0

+o−
i,s · h−

i,s,t︸ ︷︷ ︸
0

+ostore
i,s · △ei,s,t︸ ︷︷ ︸

0
(4.7)

every additional operation of variable renewable generators or storage is prevented
in the first place, thus avoiding USC.

Equations (4.6) and (4.7) illustrate that a system with USC (indicated by ∗) has
components with higher operating hours than one without,

T∑
t=1

g∗
i,r,t ≥

T∑
t=1

gi,r,t (4.8)

T∑
t=1

h
∗,+/−
i,s,t ≥

T∑
t=1

h
+/−
i,s,t (4.9)

T∑
t=1

e∗
i,s,t ≥

T∑
t=1

ei,s,t (4.10)

caused by energy dissipation through excessive storage use rather than curtailing
renewable surplus.

In summary, to remove USC, a situation with USC must become more expensive than
one without because, fundamentally, the objective function aims to minimise cost.
One approach is to add variable cost oi,r > 0 to the generation dispatch. Another
is to add variable costs oi,s > 0 to any or all energy storage components, such as
charger, store or discharger. All such variable cost additives penalise any extra
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operation of generators or storage units caused by USC energy dissipation, even
across space and time. Nevertheless, since variable costs penalise not only USC but
also the operation of these units, these must be carefully chosen.

4.3.2 Effects on operational optimization

Figure 4.4 illustrates the number of hours with USC in the system (scatter plots,
right y-axis). It further shows FLH of the H2 fuel cell for varying variable costs of the
renewable generators or H2 storage components (lines, left y-axis). The approach to
count the USC occurrence is given in Section 4.2.1.

Adding variable cost to any class of storage components or all renewables can
successfully remove USC beyond a certain threshold that depends on the solver
accuracy. The observed occurrence of USC spatially averaged over all modelled nodes
with variable cost below 10−3 is roughly 5200, regardless the level of solver accuracy.
Note that for the determination of the USC occurrences, any simultaneous charging
and discharging below the energy value of 1 MWh is not counted as USC to ensure
that only significant USC energy volumes are considered. Otherwise, USC would
occur in almost every time step of every scenario with marginal energy volumes,
which may be caused by the solver tolerance and the non-uniqueness of the optimal
operation of storage assets [120].

More importantly, the USC energy volume decreases for increasing cost additives,
irrespective of the USC occurrence counting method. This decrease is illustrated by
the FLH curves in Figure 4.4. In general, the FLH curves reveal that adding variable
costs affects the operation of the storage system. The decline in FLH as the variable
cost increase is due to two overlapping effects, indicating a trade-off between the
removal of USC and an undistorted operation of the storage system. For the lower
range of the investigated variable cost additive scenarios, the reduction of the USC

energy volume is the prime driver of the FLH decline. In contrast, very high cost
additives render the storage system’s operation less economically viable, strongly
decreasing its optimal use. In the medium-to-high range of the cost additives, both
USC is prevented and storage operation remains largely constant and undistorted,
indicated by the plateau of the FLH curves.

In our stylised setting at medium solver accuracy – which refers to the PyPSA-Eur
default values [50] – USC is fully removed in any considered scenario with a variable
cost threshold of at least 10 e/MWh or 1 ct/kWh. While for scenarios with a
variable cost additive of 1 e/MWh USC still occurs, the USC energy distortions are
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only marginal with a slight increase of the fuel cell’s FLH of 21h compared to a cost
additive scenario with 10 e/MWh (1265h - 1244h). Hence, a variable cost additive
of slightly above 1 e/MWh (or 0.1 ct/kWh) is likely to prevent USC distortions in
our case study.

The very cost additive threshold that removes USC depends on the level of solver
accuracy. In the case of low solver accuracy, the threshold is relatively high at 100
e/MWh. However, FLH curves hardly stabilise in a plateau, which would indicate
that storage operation remains unaffected. This makes it difficult to identify the
optimal cost additives that prevent USC. Further, such a high variable cost additive
level is implausible for VRE or storage components. For medium and high solver
accuracy, FLH curves form a plateau, with the lower end at 10 and 1 e/MWh,
respectively. Note that this work discretely increments the variable cost additives by
one order of magnitude. The true underlying thresholds, defined by the minimum
variable costs that remove all USC, can be in between these increments.

The observed impacts of USC on the operation are extreme by design of this study.
The operational distortions are amplified through the exclusion of dispatchable
renewable and conventional generators, such as biomass, nuclear, or green gas.
Including such dispatchable generators may decrease the USC energy distortions
in many energy models, as this would introduce additional variable costs that
reduce the impact of USC (see Section 4.3.1). Nevertheless, this study also reveals
that assuming no variable cost for generators or storage technologies, as done in
multiple if not most energy system modelling studies [13, 119, 133, 134, 135], risks
unintended operational distortions. The analysis investigates if these distortions, as
well as variable cost additives, also impact the investment optimization in the next
section.

4.3.3 Effects on investment optimization

Figure 4.5 illustrates the optimized generation and storage capacity of all modelled
scenarios. The optimal installed capacity is much more robust to cost additives
than optimal operation. At additives of 1 e/MWh, which is sufficient to avoid USC
occurrence, optimal capacity results remain unaffected. Only for very high additives
of 10 to 100 e/MWh the optimal installation is affected.

In scenarios with very high VRE variable cost additives, wind power is used more,
while both PV and storage are used less. This is due to the more stable generation
pattern of wind power compared to solar PV which requires more storage to smooth
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Fig. 4.4.: Analysis of USC for different model scenarios. FLH of the H2 fuel cell (lines, left
y-axis) and occurrences of USC (scatter plots, right y-axis) for three levels of
solver accuracy (low, medium, high from top to bottom) across different levels
of variable cost additives for renewable generators or H2 storage components
(x-axis). FLH are averaged across all nodes in Germany. Per scenario, the variable
cost additives are added to only one component, while no variable costs accrue
for all others.
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its diurnal generation profile. Additionally, even though variable costs are added
only to generator operations, the use of storage becomes more expensive as storage
efficiency losses multiplies VRE generation cost. For instance, at an electricity price
of 100 e/MWh and a round-trip efficiency of 25%, discharging 1 MWh comes at
energy procurement costs of 4 MWh × 100 e/MWh (4 MWh must be charged to
generate 1 MWh of storage output). This multiplication effect of generation costs in
energy storage components would be less of an issue if generation had lower costs.
For instance, consider variable generation costs of 0 e/MWh for the same efficiency
as before. The effective operation costs of charging and discharging were zero - yet,
causing USC.

For plausible variable cost additives, USC does not impact optimal investment deci-
sions. This is one major difference to USC arising in energy models with a renewable
energy constraint, where the artifact causes complex distortions of optimal invest-
ments [119].

4.3.4 Effects on total system costs

The total system costs consist of operational and investment cost and is a key
parameter to assess the wider energy system. Figure 4.6 shows the total system
cost results for all optimization runs stacked by system components. It reveals that
scenarios with USC and applied USC removal strategies have only negligible impact
on the total system costs unless the variable costs are set too high (above or equal to
10 e/MWh). Depending on the technology for which the variable costs are added,
a significant cost increase can be detected due to the extra operational cost that
needs to be covered. Again, the assumed values, for instance, of 100 e/MWh for the
dispatch of all included renewables, might not be realistic but illustrate the impact
of mistakenly choosing the wrong values.

4.3.5 Variable costs suggestions to alleviate unintended storage
cycling

Our results suggest that variable costs should be carefully set for all assets to
guarantee the removal of USC while avoiding any distortion of optimal investment
and dispatch decisions. In our stylised setting, the lower end of the plateau of the
FLH curves in Figure 4.4 indicates the optimal threshold for an appropriate cost

88 Chapter 4 Removing Unintended Storage Cycling Modelling Artefacts



Scenarios
with USC

(red)

Scenarios 
without USC

(green)

Variable Cost Input for Components [€/MWh] 

PV

Variable Cost Input for Components [€/MWh] 

H
2
 TankH

2
 Fuel CellH

2
 Electrolysor Renewables

Fig. 4.5.: Installed capacity of all generation and storage assets for different variable cost
additive scenarios. In scenarios in red USC arises, while in the green the effect
is prevented. This figure omits illustrating results from the scenarios using
variable costs additives of 1000 e/MWh to keep Figure 4.5 and 4.6 consistent
and readable.
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Fig. 4.6.: Total system costs for different variable cost additive scenarios. In scenarios in
red USC arises, while in the green the effect is prevented. Costs of the hydrogen
storage consist of electrolyser, fuel cell, and H2 storage tank. This figure omits
illustrating total system costs from the scenarios using variable costs additives of
1000 e/MWh for readability.
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additive. Values below this threshold do not prevent USC, while values above this
threshold can lead to investment and operational distortions.

Providing variable costs above a minimum threshold is key to avoid USC in models
without binding renewable targets, even for technologies with zero or near-zero
variable costs. For instance, if a solar PV plant is given no or too small variable
costs, then solvers cannot recognise them. Consequently, these values should be
replaced by the minimum value depending on the solver accuracy and used solver.
In our stylised setting of PyPSA-Eur, this minimum value is 1 e/MWh at the used
default Gurobi solver settings of (BarConvTol = 1e−5, FeasibilityTol = 1e−6),
which remove most USC effects. While 1 e/MWh or 0.1 ct/kWh may be considered
as relatively high, our results in Figures 4.4, 4.5, and 4.6 show that these little
variable costs neither affect the investment nor the operational costs significantly,
making it a threshold candidate to alleviate large USC distortions.

From Figure 4.4, it is observed that there are multiple options to remove USC. First,
setting minimal variable cost only for one storage component, such as charger,
store, or discharger for all storage technologies in all regions across the network.
Second, imposing minimal variable costs to all VRE generation types at all locations
(see Equations 4.6 and 4.7). Third, one can also combine the first and second
point and impose minimal variable costs to all storage and generator assets. With
likely negligible affects on computational time and total system cost distortion, the
third option is recommended because it is most consistent and provides additional
redundancy to remove USC.

The fact that some technologies are assumed with zero costs for energy dispatch (see
4.2) could be reconsidered. The concept of variable cost for lifetime reductions may
justify cost assumptions for non-zero dispatch generators or storage components.
Suppose a wind turbine operates 100% and another one only 50% of all hours of a
year. Further, both turbines are equally maintained by contract-based operation and
maintenance service providers (often annualised as fix-costs). However, the twice as
much operating turbine is likely to experience, on average, earlier signs of fatigue in
the mechanical structures and power electronics [136, 137]. As a result, the turbine
with more operating hours was indeed experiencing costs, namely variable costs
for lifetime reductions that are associated with the reduced technical lifetime or
extra required operation and maintenance. Such variable cost for lifetime reductions
cost may be not trivial and vary across technologies. For instance, in the case of
thermal-based processes like steam turbines in concentrated solar power plants, a
steady rather than fluctuating operation is preferred. This reduces thermal stresses
that otherwise shorten the plant lifetime [138]. In summary, even though associating

4.3 Results and Discussion 91



variable cost to the technical lifetime is not trivial, these costs are likely to appear
in the energy systems often in addition to other variable costs e.g. parasitic loads,
water consumption. These variable costs makes it likely to argue for variable costs
greater than zero that might even reach the minimum variable cost of 1e/MWh

required to significantly remove the risk of unintended storage cycling.

In Table 4.2, a comprehensive list of variable costs suggestions is provided, including
a minimum threshold for technologies that are considered near-zero or zero variable
cost devices [139, 140]. Replacing the zero or near-zero variable costs by the
threshold often insignificantly increase computations since relatively few additional
variables need to be optimized. In general, these tabulated values contain large
uncertainties since they are not provided in great detail in the literature [141].
The suggested threshold of 1 e/MWh has to be taken with caution as it may not
apply to all energy models. The threshold is recommended for a specific modelling
tool, namely PyPSA-Eur, while using the Gurobi solver with default accuracy of
BarConvTol = 1e−5, FeasibilityTol = 1e−6. If the model formulation, the solver,
or the solver parameters differ, then this suggestion may no longer be valid. So while
the ideal threshold may require quantification for each model parameterization
separately, the values in Table 4.2 could serve as a default starting point for the
identification of an appropriate cost additive.

4.4 Limitations

In our case study, the minimum variable cost threshold of 1 e/MWh (or 0.1 ct/kWh)
removes all significant USC effects at default Gurobi solver accuracy settings without
impacting the overall optimization significantly. However, this threshold cannot
be generalised to all other energy models. Instead, the efficacy needs to be tested
for each model, solver and parameterization. This can be done by checking for
simultaneous charging and discharging while maintaining an appropriate level of
solver accuracy.

4.5 Conclusion

Reliable energy model results are essential for planning optimal pathways for the
energy transition. However, in energy models without binding renewable energy
targets, USC can distort operational results of optimized energy systems, while it
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Tab. 4.2.: Variable O&M cost suggestions. The variable O&M cost are for a set of renewable
generators and storage technologies in energy models based on 2030 data. The
O&M costs exclude fuel cost, e.g. for biomass.

Technology variable cost Source

[e/MWh]

onshore wind 1.4 DEA [127]
offshore wind 2.7 DEA [127]
PV 0 → 1∗ Clauser & Ewert [142]
CSPa 2.9 Clauser & Ewert [142]
CSP + Storage 4 Clauser & Ewert [142]
biomass 6.7a Clauser & Ewert [142]
tidal 3.1d [-]
wave 3.0d [-]
geothermal 5.6 Clauser & Ewert [142]
run of river 3.6a,b EIA [143]
hydroelectric dams 3.6a,b EIA [143]
pump-hydro storage 3.6a,b EIA [143]
battery inverter 6.8a,c EIA [143]
battery storage 13.5a,c EIA [143]
hydrogen electrolyser 3e Glenk & Reichelstein [144]
hydrogen storage tank 0f → 1∗ DEA [127]
hydrogen fuel cell 0f → 1∗ DEA [127]

∗ Reported below 1e/MWh, but set to 1e/MWh to avoid USC
a Interpolated between 2020 and 2035
b Aggregated as hydroelectric devices by EIA
c Assumption of cost split: 2/3 store and 1/3 inverter
d Assumed similar to offshore wind. Lack of alternative data [145]
e Required conversion with hydrogen energy density of 33.3kg/MWh
f DEA reports the value for the whole hydrogen storage system
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keeps investment results unaffected. This means that policy questions related to
optimal capacity expansion can be answered while disregarding the occurrence
of USC. However, when any operational signals are discussed such for technology
evaluations, then assessing USC is important. In our case study, the modelling
artifact significantly increased the FLH of storage and renewable assets of up to 23%,
potentially misleading decision-makers. Since USC is technically infeasible for some
storage technologies, e.g. single lithium-ion batteries, and can lead to significant
operational distortions, it should be removed.

This chapter shows that setting an appropriate level of variable costs is capable of
removing USC, while keeping the problem formulation linear and convex. However,
determining this level is not trivial. The optimization solver may not recognise too
low variable costs, which then does not guarantee the removal of USC. Hence, it is
recommended to set minimum variable costs at a certain threshold that depends
on the solver’s accuracy and tolerance. Very high variable cost, on the other side,
may prevent USC but can also significantly distort the relative cost ratio of available
generation and balancing technologies. As a consequence, optimal investment and
dispatch decisions may be flawed. To avoid such model distortions, it is essential to
set the variable cost carefully and as accurately as possible.

Additionally, this chapter provides a selection of recommended variable costs for a
set of storage and renewable generation technologies extracted from the literature.
These values include the identified threshold of 1 e/MWh (or 0.1 ct/kWh) as a
minimum level to remove all significant USC. While the analysis did not apply the
minimum threshold to all storage and renewable generation technologies at the
same time, the results in Figures 4.4, 4.5, and 4.6 already prove that the threshold
sufficiently reduces USC distortions without changing the optimization result much
when applied for either one of the storage components or all generators. Thus, the
values in Table 4.2 should be taken as baseline. The suggestions may also serve
as a starting point for USC tests in other model applications following the rule-of-
thumb: near-zero variable costs additives lower the risk of significant USC distortions
compared to assuming no variable costs at all.

Future work should analyse the removal of other forms of unintended energy losses
beyond USC by setting appropriate variable costs. For instance, unintended line
cycling manifests by simultaneous sending and receiving of electricity through power
lines in the distribution and transmission grid [37, 119]; and sector-coupled cycling,
e.g., by electric energy that is converted to heat by boilers and re-electrified at the
same time with organic Rankine Cycle plants. These unintended energy losses may
originate from the same issue, namely that missing operational costs make a cost-

94 Chapter 4 Removing Unintended Storage Cycling Modelling Artefacts



minimising energy model indifferent between possible options to lose unused energy
either by cyclic dissipation or VRE curtailment. Further, while this study investigates
USC in energy models triggered by insufficiently specified cost assumptions, USC also
arises when using additional constraints, e.g., binding renewable energy targets
[119]. Constraint-based unintended energy losses are not yet fully explored and
merit future research. Finally, USC can be caused by charging and discharging at the
same time or across space and time. Throughout the chapter, the focus is set to only
detect USC caused by simultaneous charging and discharging. This is accomplished by
being aware that variable cost additives penalise any extra operation of generators or
storage units caused by USC energy dissipation, even across space and time. However,
to prove this, future work should explore USC detection methods across space and
time.

Other future work can also investigate alternative methods to remove USC. A two-
step optimization approach, which has yet to be discussed in the literature, may be
able to remove USC while not risking to distort the optimization results. The first
step minimises the total system costs in an investment and dispatch co-optimization,
which results in a solution with unintended storage losses. The second step adds
the objective value from the first step as a side constraint in a dispatch optimization
which minimises the operational losses or maximises the generator curtailments in
the system to eliminate unintended storage losses. While solutions times between
the variable cost and the two-step optimization approach are likely to be in the
similar range, future work can compare these methods in more detail.

Transitioning from the storage modeling details presented in this chapter, the next
chapter - "Technology Evaluation Methods" broadens the scope to the evaluation
process of energy storage technologies. This chapter reviews existing assessment
methods, discussing their benefits and limitations. It’s a bridge from the technical
specifics of modeling to the broader context of how we understand and value energy
storage in power systems.
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Abstract

This chapter provides a comprehensive classification and evaluation of techno-
economic analysis methods for energy storage technologies, addressing their
value in both current and future market contexts. The chapter categorizes
the literature into three main approaches: cost analysis, profit analysis, and
system-value analysis, each varying in objectives and metrics. Cost analysis
focuses on the component and system costs, employing methodologies like the
levelized cost of storage (LCOS). Profit analysis, from an investor’s perspective,
incorporates real-world market dynamics and revenue streams, using metrics
like Net Present Value (NPV) and Internal Rate of Return (IRR). System-value
analysis, on the other hand, delves into the broader impacts on the energy
system, considering ’visible’ and ’hidden’ values and employing energy system
models to predict future market changes. The review suggest that while
current methods are vital for industry decision-making and policy regulation,
they often overlook the complex interactions within energy systems. There-
fore, the chapter emphasizes the need for integrated approaches that consider
both individual technology improvements and system-wide impacts to fully
understand and enhance the value of energy storage technologies.

5.1 Introduction

Energy storage technologies create value today. This is why the UK has nowadays
up to 14 potential revenue streams for energy storage technologies [146]. However,
with higher shares of VRE and the need for more long-term energy storage solutions,
the future markets might change.

This section reviews and classifies currently applied storage valuation methods, or in
other words, techno-economic analysis approaches that appraise the competitiveness
of energy storage including both, technicalities and economic measures.

This study classifies the literature into three groups: cost analysis, profit analysis and
system-value analysis, which mainly differ in the objective of the metrics. Figure
5.1 summarises what components will be discussed. These methods are broadly
employed for industry decision making, research focus consolidations, and policy
regulation [10, 147, 148], which underlines their importance and the impact of any
improvement.

100 Chapter 5 Review of Technology Evaluation Methods



TECHNO-ECONOMIC ANALYSIS

Cost analysis
(Technology specific)

Profit analysis
(Project specific)

System-value analysis
(Regional – multinational)
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Fig. 5.1.: Classification of current techno-economic analysis methods in the context of
energy storage. *Market potential indicator is a suggested decision metric and
part of the newly introduced market potential method. The abbreviations mean
the following: LCOS, levelised cost of hydrogen or methane (LCOH/M), NPV, IRR,
ROI.

5.2 Visible vs. hidden value

To understand the ’visible’ and ’hidden’ value terminology chosen to classify the
literature, one should acknowledge that current markets can be considered imperfect
and incomplete for multiple reasons:

• Markets are not temporally or spatially resolved. For instance, spot prices are
settled over larger spatial areas and not in real-time, leading to not perfect
spatial dissolved socialised grid fees [149].

• Market power can be exploited. Dominant market participants act for their
profit while damaging the average participant [149].

• Forecast information is imperfect. Forecasts of demand, wind and solar gen-
eration underlie uncertainties leading to imperfect operation and planning
[149].

• Other negative and positive externalities exist related to incomplete markets,
which distort the price. Negative externalities are, for instance, non-priced
costs for carbon emission, air pollution and biodiversity losses; positive exter-
nalities are non-priced benefits such as non-tracked carbon reduction benefits
[149].
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In this context, system-value analysis generally analyses markets by partially or
entirely reducing these market flaws. For instance, energy system models can
cover higher spatial and temporal resolution, exclude market power, assume perfect
foresight and account for externalities. However, not all models idealise. Some can
also incorporate effects of imperfect and incomplete markets by adding cost and
benefits related to uncertainty and non-optimal operation and investment [33, 49,
150].

’Visible values’ are benefits that can be priced or accounted for in real-world imperfect
and incomplete markets as used for profit analysis. In contrast, ’hidden values’ are
benefits that are not yet priced or accounted for in real world markets. An example
are hidden energy storage benefits for network or peak plant deferral or reduced
solar and wind power plant curtailments [151]. To track both hidden and visible
values, system-value approaches use idealised models assuming perfect and complete
markets.

The following subsections will clarify for each techno-economic analysis class their
objectives, methods and users, and further analyse the grade of technical detail and
how the approaches handle the role of competition in uncertain future markets.

5.3 Cost analysis

Here the cost analysis of energy storage is categorised into two groups based on the
used methodology: while one solely estimates the cost of storage components or
systems, the other additionally considers the charging cost, such as the levelised cost
approaches. Their general objective is to minimise the cost metric for a particular
technology or application.

An example of the first approach is represented in [152]. The energy weighted cost of
a storage system (e/kWh) is minimised, without any electricity price signal, by a cost
optimisation model that simultaneously maximises the round-trip efficiency of the
storage. In [153, 154], instead of assuming the cost of components, they break down
storage components or systems into materials and manufacturing processes. This
methodology, known as process-based cost analysis, allows a deeper understanding
of cost reductions by mass production or switching to different manufacturing
methods. While both approaches do not mention competitiveness or the value of
energy storage, their outputs combined with cost and benefit analysis allows finding
the value of energy storage solutions.
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The levelised cost approaches for energy storage include metrics such as the levelised
cost of storage when electricity is discharged (LCOS) and LCOH or LCOM when
hydrogen or methane are discharged, respectively [147, 155]. All the levelised cost
metrics above are similarly structured. They divide the total cost of the considered
system by the discharged energy. Both parameters must be discounted to represent
the time value of money [156]. Because all levelised cost metrics work similarly, this
section uses as generalised form the levelised cost of X (LCOX), where ’X’ indicates
that the equation holds for various discharged energy carriers:

LCOX = (
∑T

0 Total cost)Discounted

(
∑T

0 Total discharged energy)Discounted

(5.1)

Thereby, the total cost typically consists of capital expenditures, operational expendi-
tures and charging expenditures [157, 158, 159]. Sometimes additional factors are
included that can impact total cost and total discharged energy, such as degradation
rates, taxes, or self-discharging [147]. While the next chapter demonstrates that one
can also use price signals from energy system models and calculate nodal LCOS, this
is not commonly applied in the LCOS literature [4].

Levelised cost metrics are used to evaluate many applications, such as energy
arbitrage, frequency regulation, voltage regulation, system restoration and oper-
ational management (i.e. redispatch). For this purpose, the levelised cost metric
assumptions must be categorised for the specific application, such as charging price,
operational time and power to energy ratio [147, 159].

While the ’cost of component’ or ’cost of system’ approach is widely used for design
decisions with high technological detail [152, 153, 154], the levelised approaches
forego some technical detail to inform project developers and policy about their
projected competitiveness in the market [147].

Cost of component or system metrics are excellent for exploring cost reduction
opportunities in great technical detail. On the other hand, LCOS-like metrics differ
by being a good first indicator for the competitiveness between various technologies
for a particular application.

A technology improvement should lead to total system cost reductions. However,
the main limitation of cost-analysis methods is that cost reductions for one energy
technology can be only a clear signal for technology improvement under the condi-
tion that its other techno-economic characteristics do not degrade. For example, an
energy store only clearly improves if the cost reduces at least for one component
such as charger, store or discharger, while the other component costs and efficiencies

5.3 Cost analysis 103



are not negatively influenced. If this is not the case, a complex solution space exists
for which a more costly energy storage can lead to lower total system cost, and
hence, being more valuable, see Section 4.3.

5.4 Profit analysis

The profit analysis describes methods from the investor’s perspective. They tend to
choose profitable energy storage projects at current energy market designs [160,
161]. Thereby, the general objective for the investor is to maximise the profit
indicator for a given investment.

The inclusion of discharging behaviour and revenue streams are distinctive for profit
analysis. Depending on the market design, several different revenue streams for
energy storage exist. In the UK, for instance, 14 potential revenue streams exist,
such as frequency response provision or wholesale market arbitrage, which can be
power (e/kW) or energy (e/kWh) related [146]. In general, not every storage has
access to the same revenue streams due to specific characteristics and requirements
[147]. Most studies include only the energy arbitrage service from energy storage,
which means buying cheap electricity and selling it later more expensive [162].
Other studies co-optimise multiple energy services, which result in higher benefits
[162, 163, 164].

The profit analysis typically evaluates energy storage projects with capital budgeting
techniques based on discounted cash flow methods to acknowledge the time value of
money [156]. The energy storage literature uses multiple project assessment metrics:
present value (PV) is employed to calculate the feasible cost of a storage project
[160], NPV to evaluate the profitability of a project [144, 151], and IRR to determine
at which discount rate or opportunity cost a project is viable [162, 165]. NPV and IRR

are good investor signals when investment capital can be accessed easily. However,
when investment capital is limited, projects should be evaluated by a profitability
index, which relates the discounted benefits to the cost [156]. Many energy storage
studies, therefore, investigate energy storage by the profitability index [156], which
is also termed cost-benefit ratio [166, 167], NPV-ratio [168], ROI [169], return on
equity (ROE) [161], all giving the signal of how much money can be achieved per
investment. Another common metric in the context of energy storage is the payback
period [165, 170, 171], which [156] judges to be an illustrative but not useful
factor for investment decisions. Finally, when multiple energy storage technologies
with different lifetimes are evaluated and compared, such as in [144, 167, 171], an
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equivalent annual annuity metric is recommended [156]. For instance, one could
break down the NPV to an equivalent annual annuity where the highest annuity is
the preferable project.

The main limitation of the profit analysis is that it misses the ’hidden’ or broader
power system cost and benefits of energy storage. Because it only focuses on the
’visible’ cost and benefits at the current market design. Future energy markets might
internalise ’hidden’ benefits, such as shown in market design efforts to address
the previously hidden greenhouse gas emission costs. Hidden costs and benefits
are, for instance, savings due to investment deferral of network upgrades or peak
plants, or when fewer curtailments increase the value of renewable generators
[172]. Employing a hybrid method of profit and system-value analysis, the authors
in [151] added social or ’hidden’ benefits to the NPV metrics, which are not directly
accounted for in the market design. This lead to a higher value of energy storage
solutions. The drawback of the approach is that many assumptions are made
and added exogenously to the NPV characteristics ignoring the spatial and temporal
heterogeneity of the hidden cost and benefits. What may be a reasonable assumption
at one location at a specific time must not be the case at another location at the same
or another time. Including these variables endogenously, as some energy system
models do, can help anticipate better infrastructural changes and reduce risks.

As a result, the profit analysis is a useful method to investigate a storage project’s
value and competitiveness at present for a specific location at current market designs.
This might be sufficient for investors to assess short-term projects at specific locations.
However, when one looks at the value of energy storage in the long term or across
many regions, the following system-value approach can give some extra insights.

5.5 System-value analysis

As previously stated, the system-value analysis estimates the value of energy storage
which are ’visible’ and ’hidden’ at existing markets, for longer time horizon and
large spatial regions by considering perfect and complete markets in the analysis.
Energy system models are used for the system view, which optimises investment
and operation of generators, networks and storage or demand response units at the
same time to accomplish the objective of minimising total system cost. The results of
such analysis are nowadays mainly applied for policy recommendations. However,
they also reveal insights for technology design. For instance, it was found that high
capacity factor wind turbines can be equally desired in an optimal energy system
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as their less capital intensive alternative technology with lower capacity factors –
having smaller hub heights and shorter blade lengths [21, 173].

The system-value approaches are important to identify the benefits of energy storage.
Which benefits are considered depends on the energy system model design. For
instance, [13] neglects network expansion, missing significant network expansion
cost savings from storage deployment [10]. On the contrary, the authors in [10, 174]
use a model that incorporates generation, network, and system operations savings
from energy storage in the UK.

The WSB given in e/year and the marginal WSB given in e/kW or e/kWh are two
inspiring concepts how to attach a system-value to the energy storage in power
systems [10, 13, 175, 176]. Both concepts share a comparison of a none or existing
storage scenario with one that includes an energy storage expansion. Such ap-
proaches are also known as counterfactual scenarios [17]. Thereby, the total system
cost difference between the scenarios is the WSB that the energy storage creates
[174]. When the marginal WSB curve, given in e/kW or e/kWh, is integrated by
the respective storage unit (in kW or kWh), then the WSB is obtained. The marginal
WSB is described as vital since it provides the upper-cost limit for energy storage for
a given amount of installed storage [177]. Only if the marginal value is above its
marginal cost, the storage is an economically viable option and should be installed.
Additionally, to the WSB and its marginal value, the authors in [177] extended the
concept by the differentiation of the benefits in net and gross benefit. The gross
benefit excludes the investment cost of energy storage, while the net benefit includes
them. Thereby, the gross value method is used to benchmark how much the cost can
rise for a given technology. The net benefit analyses the holistic value for a specific
storage case.

Both WSB methods above lead to insightful results. For instance, (i) that every
additional installed energy storage capacity decreases its marginal value; (ii) that the
value of energy storage can suffer from competition with other flexibility providers,
such as demand response or bi-directional charging of electric vehicle; and finally
(iii) that energy storage benefits can be decomposed into its origins such as network
and peak capacity savings [10, 174].

The drawback of the WSB approaches is that they are unsuitable as evaluation
metrics to signal between multiple storage alternatives what technology is more
competitive. The WSB approaches seem to work correctly only for a single energy
storage design. When multiple energy storage units are included in the WSB analysis
at the same scenario and with variable sizing for each location, it becomes difficult
with counterfactual approaches to allocate benefits. Or, in other words, it becomes
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unclear which energy storage at what location is responsible for certain energy
storage benefits at a specific time. As a result, WSB approaches cannot assign a value
to one particular storage or compare multiple storage technology candidates.

5.6 Conclusion

This study observed that most energy storage technologies are designed with the
aim to reduce their component or storage system costs, however this approaches
ignore energy system interactions. Similar, the profit analysis is excellent to explore
the value of single storage projects under existing market condition, but is limited
when exploring future market potentials with larger system interactions. Lastly,
system-value approaches aim to acknowledge wider energy system interactions,
however, existing approaches are not practical for technology evaluation as they can
only evaluate single storage technologies.

In the next chapter "Demonstrating the Market Potential Method in Europe", a new
method is introduced that extends existing system-value literature to also enable
the system-value assessment for multiple energy storage. This novel approach is
compared with traditional cost evaluation methods in a European power system
model.
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Abstract

From a macro-energy system perspective, an energy storage is valuable if
it contributes to meeting system objectives, including increasing economic
value, reliability and sustainability. In most energy systems models, relia-
bility and sustainability are forced by constraints, and if energy demand is
exogenous, this leaves cost as the main metric for economic value. Traditional
ways to improve storage technologies are to reduce their costs; however, the
cheapest energy storage is not always the most valuable in energy systems.
Modern techno-economical evaluation methods try to address the cost and
value situation but do not judge the competitiveness of multiple technologies
simultaneously. This chapter introduces the ’market potential method’ as a
new complementary valuation method guiding innovation of multiple energy
storage. The market potential method derives the value of technologies by
examining common deployment signals from energy system model outputs
in a structured way. This work applies and compares the new method to
cost evaluation approaches in a renewables-based European power system
model, covering diverse energy storage technologies. The chapter shows that
characteristics of high-cost hydrogen storage can be more valuable than low-
cost hydrogen storage. Additionally, it reveals that modifying the freedom of
storage sizing and component interactions can make the energy system 10%
cheaper and impact the value of technologies. The results suggest looking be-
yond the pure cost reduction paradigm and focus on developing technologies
with suitable value approaches that can lead to cheaper electricity systems in
future.

6.1 Introduction

In the face of global ambitions to reduce greenhouse gas emissions, the energy
transition characterised by increasing shares of wind and solar power will benefit
from more energy storage in the future electricity system [10, 13, 178]. How
many benefits can be delivered by energy storage depends, among others, on how
future technology will be designed. Consequently, research and development (R&D)
must evaluate the techno-economic design of energy storage systems to be most
beneficial.

A traditional technology evaluation approach is to reduce the cost of its devices [179].
For energy storage, these costs can be defined as absolute costs (e), or relative
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to energy (e/kWh) or power (e/kW) quantities. In particular, in the material
science and chemistry literature, cost reductions of energy storage are a pivotal
element, alongside maintaining other storage characteristics such as a ’sufficient’
high efficiency, power and energy density, and safety [180, 181]. Though, what is
’sufficient’ high is often unclear. Only if one energy storage outperforms the other in
all characteristics it represents a superior technology; otherwise, more expensive
energy storage with suitable technical characteristics can compete as well (as will
be demonstrated in Section 6.3). Similar, evaluation techniques exist that aim to
maximise the profit, however, these are mostly suitable to evaluate single projects
(see review in Section 5.1). Fortunately, material science literature has recognised
one of the key challenges that energy storage depends on different applications and
the interaction with the energy system [182].

Alternative technology evaluation approaches use energy system models. These
tools describe energy systems mathematically and capture system-values arising
from storage interactions with the wider energy system (see Section 5.1 for more
details). Some studies applying energy system models focus on storage technology
evaluation and guidance. For instance, [176] explores the design spaces for long-
duration energy storage, [10, 13, 175] explore the system-value of generic storage
technologies and [174] explores technology specific system-values of liquid-air
energy storage and pumped-thermal electricity storage. A limitation of these studies
is that counterfactual scenarios constrain this analysis type to single generic or rigid
storage examples making the evaluation results questionable.

This study introduces as technology evaluation approach the ’market potential
method’ which can be described as systematic deployment assessment. Different
to classical market potentials that are derived from energy system models which
quantify mainly system effects [183], this work focuses on the systematic assessment
of market potentials to evaluate energy storage technologies (see Section 6.2.1).
This approach overcomes the previously described limitations and simultaneously
analyses multiple and more-flexibly sized energy storage. As discovered later in
Section 6.3, reflecting competitive situations and unique constraint demand and
supply mismatches in macro-energy systems are important factors that can affect
the system-value of energy storage.

The contribution of this work to existing literature is as follows:

• It reviews and discusses techno-economic approaches that are currently used
to evaluate and compare energy storage technology in Section 5.1. It includes
cost, profit and system-values analysis.
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• It shows that current cost metrics can be misleading for technology design
decisions. Section 6.3.2 and 6.3.3 show that a high LCOS hydrogen storage
can be equally or even more valuable than a low LCOS one from the system
perspective. The conclusion is drawn by observing the deployment of low and
high LCOS hydrogen storage systems in a least-cost power system investment
planning model.

• It extends system-value approaches by the newly developed ’market potential
method’ in Section 6.2.1. It is further applied and discussed in Section 6.3. The
market potential method systematically evaluates deployment estimations from
energy models by looking at a set of probable scenarios in high spatial-temporal
resolution over large regions such as Europe. Compared to existing alternatives
that are described in Section 5.1, the new approach could be potentially more
useful and overcomes many limitations. Research and industry could apply the
new approach as a complementary tool to guide energy storage innovation.

• It shows that modifying the freedom of storage sizing and component interac-
tions can lead to significant energy system benefits (Section 6.3.1) and impact
the system-value of a technology (Section 6.3.3). It underlines the impact of
developing and offering adaptive components, such as charger, storage and
discharger, separately instead of complete storage systems.

In this study, not all energy values are included. In general, energy storage systems
can provide value to the energy system by reducing its total system cost; and
reducing risk for any investment and operation. This chapter discusses total system
cost reduction in an idealised model without considering risks. Reducing risk
in power systems can be seen as option value [10] leading to a more beneficial
investment and operation. Furthermore, only energy balance benefits within a
European power system model are included, ignoring other energy sectors apart
from the electricity sector. This study neglects sub-hourly signals relevant to address
grid stability benefits, but includes hourly up to seasonal arbitrage based scarcity
signals relevant to address short and long-term balancing benefits (described in
Section 6.2.3).

Our findings suggest that a narrow cost focus on designing energy storage is not
enough. Future R&D design decisions should additionally use system-value insights
from energy system models. The presented market potential method could be one
approach to accomplish this.
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6.2 Methodology

The methodology section is built up as follows. First, the new system value as-
sessment method, the ’market potential method’ is defined in theory. Second, an
experimental model setup for hydrogen and battery storage is described that com-
pares cost and system-value analysis approaches. Finally, to carry out the experiment,
the power system model PyPSA-Eur is introduced with its problem formulation, set
of scenarios and model input data.

6.2.1 Market potential method

The ’market potential method’ attempts to expand the existing system-value methods
to give more useful signals of which storage technology is valuable in existing or
future energy systems. Figure 6.1 illustrates that the ’market potential method’
consists of: first, the ’market potential indicator’, which corresponds to the expanded
power or energy capacities of a storage component such as charger, discharger or
capacity unit; second, the ’market potential criteria’ which seek to support design-
decision making of storage technologies.
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Fig. 6.1.: High-level description of the Market Potential Method. First a market potential
indicator is derived for a single or multiple possible scenarios. The market
potential indicator is then used by an entity through a market potential criteria to
support design-decisions making on energy storage technology.

Market potential indicator

The foundation of the introduced method is the MPI. The MPI is not a new metric. It is
a result of energy system models that analyse scenarios in future energy systems and
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describes the total quantity of a particular storage technology in a cost minimised
electricity system [13, 184, 185]. However, the MPI has never been a central metric to
improve, compare and explore storage designs in detail; it was rather used to inform
policymakers and market participants about probable energy futures to reduce
investors’ risk [185]. The work utilises the MPI to guide technology innovation with
probable scenarios and market potential criteria.

The market potential can be either aggregated or disaggregated. In the context of
energy system models, this thesis defines the disaggregated MPI of a storage unit as
optimised (or expanded t − t0) power or energy-related size at a region. Thereby,
the market potential focuses on the storage component c, representing a charger,
discharger or store unit. The over a region i aggregated MPI is determined by:

MPIt−t0,c =
∑
i∈N

(MPI)t−t0,c,i [MW or MWh] (6.1)

It is crucial to consider the MPI by components rather than by a fixed-sized storage
system for mainly two reasons. First, grid-scale energy storage can be highly scalable
and adaptable [14, 186]. For instance, electrolysers (MW), steel tanks (MWh)
and fuel cells (MW) composing hydrogen storage systems can be freely scaled and
combined. Moreover, in a H2-hub operation, two different electrolysers could feed
the same H2-storage tank. Second, energy storage system components–for instance,
hydrogen–are not required to be at one location. Indicated by [155], hydrogen
pipelines can become an economically viable option when large amounts of hydrogen
need to be transported. Its integration means that hydrogen electrolyser and fuel
cell are not required to be located in one place. Consequently, because storage
components can be independently scaled, adaptable in operation and do not require
co-location, it seems advisable to optimise them separately.

Scenario selection and dealing with uncertainty

The use of energy system models is subject to uncertainty as predicting the future
with certainty is impossible. It is impossible because one can make decisions that
impact the future, such as done by agreeing on multilateral CO2 targets, which
improved renewable energy deployment and led to learning by doing cost reductions
effects [179]. Nevertheless, analysing a broad range of future scenarios can reduce
uncertainty [15].
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The market potential method in linear programming models relies on possible
and probable scenarios. Many different ways exist to create ’possible’ scenarios
which differ in the set of deterministic input assumption and constraints [15, 187].
However, a possible future does not necessarily mean that it is a probable one. A
good approach to develop scenarios that can be expected in future is to follow
the ones which are provided and encouraged by either national or multinational
institutions - and engage in public consultations if they require changes [185]. An
example of the latter one is the European Network of Transmission System Operator
for Electricity (ENTSO-E) which provides updates on multiple pathway scenarios
every two years based on storylines towards the European agreed targets - known
as Ten-Year Network Development Plan (TYNDP) [185]. Transparency in energy
modelling, also from trusted institutions, is a key requirement to lower uncertainty
[35].

Scenarios can be additionally selected to investigate multiple technology designs.
For instance, technology manufacturers might be interested in such analysis to guide
energy storage innovation.

This study includes three different hydrogen design constraints and two different
charger and discharger technologies for technology assessment, which are described
in more detail in Section 6.2.3. While this study uses an exemplary 100% GHG
emission reduction scenario that is sufficient for the research purpose, future work
should include probable scenarios such given by national or multinational institutions
like ENTSO-E.

Market potential criteria

The ’market potential criteria’ give the market potential indicator its meaning and
can help with decision-making. The criterion includes two simple rules. In an
optimised energy system model with many if not all technological alternatives, the
technology with:

• MPI = 0, for one scenario is probably not valuable.

• MPI > 0, for one scenario is probably valuable.

Additionally, the positive MPI magnitude can be used as supportive decision criteria
to deal with uncertainty. This can be, for instance, the ’threshold’ or the ’bigger is
better’ rule described below:
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• MPI > X or ’threshold rule’. Where a company or institution decides what
minimum market potential X must be achieved. For instance, an alkaline
electrolyser needs to have a market size of 1 GW to be an attractive technology
for a company.

• MPIA > MPIB or ’bigger is better’ rule. If two technologies A and B are
compared, the one with higher market potential is more likely to be valuable.

In particular, when the evaluation condition appears in multiple scenarios, it re-
duces the uncertainty of the statements. For instance, when hydrogen storage is
significantly optimized in all scenarios it is a clear indicator that it is likely that the
technology is valuable in many different probable futures.

Figure 6.2 illustrates how the market potential criteria could be applied as a decision
support tool. The illustrative example could lead to the anticipative decision of
a technology manufacturer or research institution to focus rather on the first two
technologies than the latter ones.

Only with the criteria one can systematically analyse the market potential indicators
and reduce risk. Together, the market potential indicator and criteria build the
market potential method.

Fig. 6.2.: Qualitative illustration of market potential criteria applied to a set of scenarios
and technology options. The "+" indicates the MPI magnitude. Additionally, the
threshold rule is set to a single plus, meaning that a company requires at least
two plus to consider a technology as a potential candidate to manufacture or start
R&D activities.

6.2.2 PyPSA-Eur. Model structure and data

The open European transmission system model PyPSA-Eur is adopted to determine
the value of various energy storage systems in a European electricity system. PyPSA-
Eur is an adaptable investment and dispatch model built on the core model PyPSA
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Fig. 6.3.: Optimal generation, storage and network expansion under a 100% emission
reduction scenario and technology data for 2030. Light grey lines showing
the existing installed network capacity, dark grey lines the additional expanded
capacity. Plot produced with PyPSA-Eur.

that combines high spatial and temporal resolution. The suitability of PyPSA-Eur
for operational studies and long-term power system planning studies is described in
[24, 25, 33]. This section briefly introduces the model structure and applied data.
The full model formulation of PyPSA-Eur is given in the Section 2.3.

PyPSA-Eur covers the European transmission model and processes electricity system
data from diverse sources. Existing conventional generators, transmission lines,
substations, and hydro storage systems, as well as planned network reinforcements,
are included with their size and location. Wind and solar based technologies are
greenfield optimised, which means that existing solar and wind capacities are
disregarded. The time series for wind and solar generators are derived from satellite
and earth observatory data [24]. Regarding power demand, the load time series
are collected from ENTSO-E data for each country and redistributed by GDP and
population over the regions. A spatial resolution of 181 nodes matched with an
hourly resolution across an entire year accounts for the complex spatio-temporal
patterns of renewables and grid congestion events that shape investment decisions
[72].
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In terms of market economics, the model assumes perfect competition and foresight
for one reference year. A detailed model description and formulation is included
in [19, 24, 25, 63]. Here, only key features and constraints are highlighted. The
model’s objective is to minimise the total system cost in the European electricity
system at the transmission level. The total system costs consist of

• investment costs, which includes the annualised capital cost of onshore and
offshore wind turbines, storage components and both HVAC and HVDC trans-
mission lines, and

• operating costs, which includes fixed operation and maintenance, and variable
operating cost.

The objective is subject to

• nodal power balance constraints that guarantee that supply equals demand at
all times,

• linearised power flow constraints modelling the physicality of power transmis-
sion,

• Solar and wind resource constraints that limit the theoretical generation time-
series. Here a single weather year is chosen for the analysis; however, this
can be extended for a more robust prediction of weather year anomalies or
variations [188].

• Renewable availability constraints which restrict solar and wind technical
potential based on environmental protection areas, land use coverage and
distance criteria.

• Emission constraint introduces a limit of carbon dioxide CO2 equivalent emis-
sion in the model that impacts technology investment and generation.

The model has many adjustable constraints. This study, similar to many others such
as [189], does not include the available Unit Commitment (UC) constraints. In fact,
UC constraints are becoming increasingly negligible in future energy systems with
increasing shares of renewables and energy storage. Mainly, because it was observed
that they only have minor impacts on investment and operational outcomes [189].
Further, UC constraints introduce extra computational burdens by the mixed-integer
formulation, which removes model convexity and, hence, leads to a nonlinear
program that requires more effort for solving. Therefore, this work excludes UC

constraints due to their minor impact on the results and large impact on the already
heavy computational requirements for the optimization (8 cores, 180 GB RAM
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solved for roughly 13h with Gurobi). Nevertheless, if a more detailed technological
performance in a high renewable electricity system with flexibility constrained
nuclear power plants is essential, this UC formulation could be included.

For the input cost and technical assumptions, the documented dataset provided
in [87] is used, referring to an electricity system scenario in 2030. The following
analysis only adjusted the dataset of [87] by the battery and hydrogen storage
system inputs summarised in Table 6.1 and Table 6.2.

Tab. 6.1.: Power related energy storage model inputs representing 2030 data

Energy storage components Electrolysor Fuel cell Battery Inverter
LCOS Scenario [Low] [High] [Low] [High] [-]

Investment [EUR/kWel] 339 677 339 423b 209c

FOMa [%/year] 2 3 2 3 3
Lifetime [a] 25 15 20 20 10
Efficiency [%] 68 79 47 58 90
Discount Rate [%] 7 7 7 7 7

Based on Ref.
[148] [148] [190] [190, 191] [191, 192]

Alkaline SOECd PEMe SOFCf Li-Ion Batteryg

a Fixed operation and maintenance cost as percent of the annualised investment costs
b Includes fuel cell stack replacement after 10 years which cost 30% of initial cost
c Includes 80 EUR/kW balance of plant, mainly assigned to wiring and connection [192]
d Solid-Oxide Electrolyser
e Proton Exchange Membrane or Polymer Electrolyte Membrane
f Solid-Oxide Fuel Cell
g Lithium-Ion Battery

Tab. 6.2.: Energy related energy storage model inputs representing 2030 data

Energy storage components H2 storage Battery storage
LCOS Scenario [High] [Low] [-]

Investment [EUR/kWhel] 8.4 8.4 188b

FOMa [%/year] - - -
Lifetime [a] 20 20 10
Efficiency [%] - - -

Based on Ref.
[191] [191] [192]
H2 steel tanks Li-Ion Battery

a Fixed operation and maintenance cost as percent of the annualised investment costs
b Includes 81 EUR/kWh for engineering, procurement and construction costs [192]
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6.2.3 Energy storage scenarios

This study looks at three different constraint energy storage scenarios in one fully
emission-free energy system scenario. As explained in Section 6.2.1, one energy
system scenario is just exemplary chosen and sufficient for this research. Multiple
system scenarios from trusted organisations such as ENTSO-E should be applied
if technology decisions are made with the Market Potential Method (MPM). As
mentioned in [21], the energy technology impacts the system value, however, the
energy system layout and constraints also impact the technology value. Therefore
Section 6.2.1 goes through the main scenario design elements, the energy system
and storage scenario design.

Starting with the energy system layout and constraints, Figure 6.3 shows an example
of the optimised European electricity landscape for the variable energy-to-power
ratio scenario, which is minimised in terms of total system costs in a 181 bus spatial
resolution. One should note that the network structure is based on ENTSO-E data
which is aggregated to show realistic line capacities between the buses.

Different to [36], the scenarios include the existing European nuclear power fleet but
acknowledge the German, Spanish, Belgium and Swiss nuclear exit. The inclusion of
nuclear power plants reduces the required VRE capacity expansion and, at the same
time, increases the share of dispatchable power plants – a measure that reduces
energy storage demand. However, the flexibility of nuclear plants is overestimated
in this study as typical ramp rates reaching up to 36%/h and minimum allowable
power of 20% per nominal power [193] are ignored. However, this chapter ignores
such unit commitment constraints to keep the model formulation convex and reduce
the number of variables for computational speed (see more details in Section 6.2.2).
It implies that this study will tend to underestimate the energy storage potential.

Further, similar to [63], an equity constraint is included that requires every country to
produce at least 80% of its total electricity demand, leading to a smooth distribution
of generators across all of Europe. This constraint is motivated by the fact that
political leaders avoid depending entirely on electricity imports but are willing to
trade considerable amounts to handle the trade-off between the economic benefits
of importing cheaper electricity and the sometimes costly independence of supply
such for isolated networks.

The network expansion is constrained to a volume of 25% compared to the existing
network capacity, acknowledging the increasing political difficulty to develop new
transmission lines. A limited network expansion can potentially lead to higher
storage demand [19]. Further constrained are hydro storage technologies. While

120 Chapter 6 Demonstrating the Market Potential Method in Europe



Cost  and technical 
characteristic selection of 

storage components

Result in one low and high 
LCOS case

LCOS ranges + market potential indicator

S2 – Variable EP ratioS1 – Fix EP ratio S3 – H2-Hub

Classic LCOS 
calculation

Ca Sa Da

1 x 100 x 1 x

Ca Sa Da

x y z x1

y

z1

x2 z2Cb

Ca DaSa

Db H
yd

ro
ge

n

S2 – Variable EP ratioS1 – Fix EP ratio

Ca Sa Da

1 x 4 x 1 x

Ca Sa Da

x y x
S3 – Variable EP ratio

Ca Sa Da

x y x

B
at

te
ry

Fig. 6.4.: Description of the three storage scenarios. The cost and technical storage parame-
ters are chosen once and serve as input for all storage scenarios. Scenario 1 shows
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potential signals.
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these are based on actual power plant data, no further capacity expansion is allowed
due to natural limitations in most regions.

The energy storage scenario design is described in Figure 6.4. First, technical and
economic parameters are chosen as model input for each storage component (see
Table 6.1 and Table 6.2) to represent a low and high LCOS case for classical LCOS

calculations. Afterwards, the resulting techno-economic details are inserted in the
model environment into three scenarios. The scenarios differ mainly in technological
design freedoms. ’Fix EP ratio’ is the most constrained energy storage scenario
having a fixed energy-to-power ratio of 100 h for the hydrogen and 4h for the
battery storage technology – such as applied in a similar range in research [147, 160,
194]. Similar to previously mentioned research publications, this fix EP scenario also
assumes that charger and discharger size are equally sized. Otherwise, ’Variable EP

ratio’ optimises for the hydrogen storage unit each component size, charger, storage
and discharger so that the energy-to-power ratio is variable. Here, the battery
remains constrained in flexible sizing as charger and discharger represent the same
component, namely the inverter, so that the battery storage can only size inverter
and battery capacity related design separately (see Battery component size variables
x, y, x in Figure 6.4). While both fix and variable EP ratio scenario optimise low-LCOS

and high-LCOS hydrogen components separately, the ’H2-Hub’ scenario permits cross
operation of hydrogen technologies. This can be considered a H2-Hub, having at one
location techno-economically different low and high LCOS charging and discharging
technologies that operate the same hydrogen storage. After applying the scenarios
in the optimization, the model results are used to create the spatially resolved LCOS

and market potential signals which are further discussed in Section 6.3.

This study creates energy storage scenarios that focus on energy arbitrage benefits
under spatially resolved perfect and complete markets. Scarcity signals relevant
to seasonal balancing are considered through ’unconstrained’ locational marginal
prices, also known as nodal prices. These nodal prices can increase to extremely
high prices such as more than 20000e/kWh and let energy storage be optimised
as a seasonal reserve, shifting cheap energy of one season to times of high prices.
As introduced in Section 5.1, the complete market considerations include the often
unaccounted or ’hidden’ values of energy storage systems, such as:

• Avoided investment cost of network expansion

• Avoided investment and operational cost of dispatchable generators

• Increased power plant utilisation/ less curtailment
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Emission targets play for the energy storage market potential a vital role. To keep
the comparability between scenarios and a decent amount of market potential for
energy storage, this chapter sets in all scenarios the CO2 emission reduction target
to 100 %.

6.3 Results and Discussion

6.3.1 Relaxing design constraints of energy storage and its benefits

As introduction to the cost and value analysis scenarios, this section discusses the
impact of design freedom on the storage components and the total system.

Increasing design freedom of energy storage can lead to significant benefits in the
electricity system. When investigating the competitiveness of energy storage, many
studies assume that the energy-to-power ratio is fixed [13, 158]. However, assuming
a fix energy to power ratio on a continental scale is an unrealistic extreme as well as
assuming that all market participants choose the perfect sizing for the market.

Table 6.3 shows that the increasing sizing complexity, however, seems worthwhile
to consider as it can lead to per annum total system cost savings of approximately
13Beor 10% in the modelled zero CO2 electricity system scenario while not leading
to significant generation portfolio changes (see Figure 6.5). Looking at the gener-
ation portfolio, the optimization result are representing currently installed power
plants in the EU for nuclear, biomass and run-of-river [81]. This analysis prohibits
these technologies from additional expansion to replicate political constraints. That
is why they are not increasing in volume. Similarly, these technologies are not
decreasing in volume because they are optimized and, hence, desirable options in
the given least-cost scenarios. While geothermal is allowed for expansion it does not
expand in future scenarios. This indicated that the technology does not contribute
to the least cost optimization result for the existing cost assumptions in the power
only scenario. Note that this result might change when changing assumptions or
adding sectors such as heating and cooling.

The total system cost thereby includes the optimisation relevant costs, which consist
of newly installed generation, storage and network components, including any
operational costs. Another approach to comprehensively quantify the savings is
by calculating the relative investment cost, which divides the total system costs
by the total electricity demand. It shows that the introduction of optimised sizing
can lead to electricity bill savings of roughly half a cent, with the H2-Hub scenario
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contributing only to negligible more savings. As a result, increasing design freedom
of energy storage can be desirable for a cheaper electricity system and should be
considered while designing technology.

Tab. 6.3.: Annual total system costs, relative investment and curtailment data. Variable
sizing of energy storage reduces the system costs by 10%.

Scenario Total system cost Relative investmenta Curtailment
[% of annual demand]

Fix EP ratio 152.9 Be 4.874 ct/kWh 0.61%
Var EP ratio 139.9 Be 4.460 ct/kWh 0.73%
H2-hub 139.7 Be 4.453 ct/kWh 0.37%
a Total system cost per annual demand

The optimal storage design depends on location and technology. Figure 6.6 shows
the EP-ratio for multiple locations and technologies with relevant market potential
in an optimal European future scenario.

Hydrogen chargers are smaller sized, and reveal a wider span of EP-ratios than
their discharger opponents, which means that slow charging and quick release seem
to be beneficial from an EU system perspective at most locations. Further, the
Li-Ion batteries are optimised with a 2-4 h EP-ratio, much smaller than the hydrogen
components. The reason for that heterogeneous design is that local diverse electricity
system situations with its network constraints, supply and demand curves, as well as
the different storage characteristics (see Table 6.1 and 6.2) benefit from a variety of
storage scaling to reach an optimal solution that minimises the electricity bills.

6.3.2 Static LCOS vs modelled LCOS

The LCOS is currently an influential metrics to benchmark technology and to discuss
their competitiveness. Therefore it is not surprising to see that technology design
is even optimised for minimum levelised costs (see Section 5.1). To show the
drawbacks of this measure, static and modelled values are calculated according to
the methodology described in Equation 5.1.

The main difference between static and modelled LCOS is what assumptions are used.
The static LCOS calculation uses directly assumed or exogenous variables such as
for full load hours, electricity prices and energy-to-power ratios. In contrast, the
modelled LCOS is based on endogenous variables determined by the energy system
model and its inherent assumptions. It means that full load hours, electricity prices
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Fig. 6.5.: Optimization result for future installed generation capacity in the exemplary
100% emission reduction scenarios. The abbreviations ’ror’ stands for run of river,
offwind-ac and -dc for AC and DC connected offshore wind plants, respectively.

and energy-to-power ratios are determined for each location by the European power
system model.

The static LCOS is calculated with the technical and economic component character-
istics in Table 6.1 and 6.2, and the LCOS assumptions given in Table 6.4. The results
of the static LCOS calculation also given in Table 6.4 show a 19.2% or 5 ct/kWh
difference for the two hydrogen storage units, whereby the battery storage seems
much more competitive.

In contrast, the modelled LCOS results are given in Figure 6.7 for most buses in the
EU electricity system for the ’variable EP ratio’ scenario. Despite having the same
input cost, lifetime, discount factor and efficiency data as the static LCOS calculation,
a wide LCOS range can be observed for each optimised storage unit which consists of
charger, storage, discharger. The LCOS ranges are roughly between 20-100, 20-55
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Tab. 6.4.: Additional inputs for LCOS calculation oriented on [147] and [160]

Hydrogen storage Battery storage
LCOS scenario [Low] [High] [-]

Discharging ratio [h] 100 100 4
Electricity price [Eur/MWh] 50 50 50
Yearly full load hours [h] 2500 2500 3400
Roundtrip efficiencya [%] 32.0 45.8 81,0
Lifetime [a] 25 15 10
Static LCOSb [ct/kWh] 0.21 0.26 0.12
a calculated product from energy storage component efficiencies in Table 6.1
b calculated with Equation 5.1, and inputs from Table 6.1 and 6.2, 6.4

and 4-14 ct/kWh for the low, high LCOS H2 unit and the battery. One reason for the
wide LCOS ranges is the heterogeneous charging and discharging behaviour, which is
indicated by diverse full load hours observed between 80-3000h; another one, the
heterogeneous nodal prices or electricity price profiles at each region; and, finally,
the heterogeneous sizing of the storage chain. While the battery technology seems
more competitive under the LCOS framing, it becomes ambiguous for hydrogen with
the overlapping LCOS ranges.

A minimum LCOS metrics as a solely technology design objective is not enough
to argue about competitiveness. Regardless of the low or high LCOS indication,
the ’variable EP scenario’ shows that all included energy storage technologies are
valuable. As noted earlier, this chapter defines a technology as valuable if it reduces
the total system costs. This is the case if a technology is part of an optimised energy
system. In Figure 6.7, all technologies reveal a market potential indicating to be
required assets to achieve the minimum total system costs. As a result, instead of
improving energy storage by minimising the LCOS, one could maximise the system-
value and assess the market potential indicator. Why reducing the total system cost
should also be in the interest of technology developers will be discussed in Section
6.3.4.

6.3.3 Market potential method as value indicator

This section reveals the market potential indicator for each technology and scenario
and evaluates it exemplary with the market potential criteria. Exemplary, because
as described in Section 6.2.1 the MPM scenarios should be chosen according to
institutional scenarios or ’beliefs’ that might be more likely to impact decision
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making. As noted earlier, the scenario design of this study is described in Figure 6.4
and helps to interpret the results.

Figure 6.8 shows the total market potential indicator for all expandable storage
components in the European market. How this market potential can be disaggregated
over Europe is demonstrated for chargers and the variable EP ratio scenario in Figure
6.9.

The first scenario shows a fixed energy to power ratio of 100h (10TWh/95GW) for
hydrogen technologies and 4h (0.07TWh/17GW) while the charging and discharging
market potential are constrained to be equal for one storage unit. In this scenario,
the main optimised hydrogen technology is the high LCOS case of the static LCOS

calculation, whereby the low LCOS case reveals a negligible market potential. It
means in simple terms that the high LCOS hydrogen unit is more likely to be valuable
and worthwhile to design or manufacture due to the approximately two orders of
magnitude higher market potential.

In the second scenario, when all hydrogen storage components, and the battery
inverter to capacity ratio, are independently scalable, one can observe a noteworthy
reduction of the market potential of battery components. This means that flexible
scaling of storage technologies can reduce the viable market for batteries. Further,
the optimised energy to power ratio impacts the market potential for hydrogen
technologies. Now, both high and low LCOS technologies possess a good market
potential and seem desirable as complementary technologies. However, the variable
sizing of hydrogen components leads to a market potential shift from charger
towards discharger components. For a fixed, variable and H2 − Hub scenario,
the total amount of hydrogen charger market potential (summing low and high
LCOS components) shifts from 95, 68 and 80 GW to a hydrogen discharger market
potential of 95, 219 and 211 GW, respectively. This makes the hydrogen discharger
components the clear winner of variable sizing through a rough doubling in market
potential.

Concerning the H2 − Hub scenario, when components are variable sized and diverse
H2 electrolyser and fuel cell technologies can simultaneously use the same storage
tank, then the storage technologies’ market potential changes remarkable again.
It makes the before well desirable solid oxide electrolyser as technology almost
negligible in terms of market potential.

As a result, the market potential indicator reveals that the design freedom of storage
is crucial because it impacts the value assessment. For instance, when variable
component sizing is possible, the Proton Exchange Membrane (PEM) fuel cell and the
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Fig. 6.8.: Market potential indicator for all charging and discharging components in Europe
for three technical storage scenarios in a zero emission electricity system. Despite
having the same economic and technical input data the market potential vary
drastically between the scenarios. The SOFC fuel cell and Li-battery are according
to the market potential method, the technologies which are most likely to be
valuable in the exemplary set of scenarios. Because they have an optimised market
potential indicator in each scenario. *Refers to the total shared storage capacity.

Alkaline electrolyser seem to be more desirable while Li-batteries lose importance in
the electricity system.

Applying the full MPM with the market potential criteria leads to the insight that
all the implemented storage components can be considered valuable. The value is
thereby derived from the fact that at least one scenario possesses a positive market
potential indicator. However, only the Li-battery, as well as the SOFC fuel cell, are the
most likely valuable technologies as they are optimised in all scenario’s and exceed
a self-defined 1 GW threshold criteria. As noted earlier, such a threshold might be
set by a manufacturer to define a minimal viable market for a technology worth
to invest. The knowledge derived from the market potential criteria can lead to
implications, for instance, that the Alkaline electrolyser manufacturer can actively
mitigate their value risk by promoting variable sizing.

Finally, the presented insights underline the misleading concept of solely cost min-
imising technologies. Not always a technology with the lowest investment or LCOS

is most valuable. It can also be the more expensive technology that can lead to a
cheaper future electricity system.
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6.3.4 The relevance of the market potential method

The market potential indicator is a helpful metric from a practical and computer
modelling perspective for manufacturers, developers and researchers. The most
important reason for the usefulness is that the market potential is a driver for
business. Successful companies want to generate money for their stakeholders and,
hence, are driven by two things, growth and profitability. The market potential
indicator for a specific product can relate the growth potential to profitability. For
instance, when a company expects to offer a future product for net costs of 10
e/kWh, it could include these costs in the energy system model with a profit and
risk premium of 5 e/kWh. The modelling output is the market potential indicator,
which is related to the profit and risk premium of 50%. As a result, the market
potential method can be useful for growth and profit evaluations of future storage
technology.

Second, the market potential can give insights into where growth markets are
located and for what reason. This can be achieved since the disaggregated market
potential can identify regions with future technology expansion (see Figure 6.9).
The electrolyser distribution reveals that in many locations, high and low LCOS units
complement each other. Additionally, when storage components are compared to
the generation distribution from Figure 6.3, most hydrogen units are co-located at
regions with wind plants (mostly northern regions). At the same time, batteries
gravitate towards solar plant optimised areas (mostly southern regions). A reason
for the observed co-location might be the diurnal solar power pattern and the multi-
day to weekly wind power pattern, which creates a network constrained mismatch
suitable for the given storage characteristics [195].

Third, the market potential is useful as an indicator of future cost reductions. Because
with the market potential, one can assume future technology deployment, which is
an implicit factor in learning by doing cost reduction effects [179] or a factor that
can be incorporated into process-based cost analysis to evaluate the cost reduction
potential [153, 154].

Forth, the market potential can reduce the structural uncertainty of the linear
programming energy system model itself. Initial cost assumptions as model inputs
are often made without knowing deployment numbers achieved in the optimisation.
Nevertheless, it is known that more extensive deployment can reduce costs due
to learning effects [179]. Since after the first model run the market potential can
function as a cost reduction signal, one can in an iterative or sequential solution
approach improve the input accuracy and, hence, lower the structural uncertainty.
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Fig. 6.9.: Optimal energy storage charger distribution in the variable energy to power sizing
scenario. Showing the location of market potential in a 100% emission reduction
scenario. When compared to Figure 6.3, most hydrogen units are co-located with
wind plants while batteries gravitate towards solar plant optimised areas [195].

Finally, the operational behaviour can be analysed with the spatially distributed
market potential due to the use of energy system models, which gives operational
times series of optimised technologies. These time series can be used to identify
operational patterns and full load hours, which might be helpful in technology
design decisions.

6.4 Critical Appraisal

What the market potential gives its power to resolve the complex value of energy
storage - the energy system model - also introduces typical limitations found in
this domain. The fundamental challenge of any mathematical energy model is to
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represent a realistic future energy system that includes all relevant physical, social
and political details [196]. Current approaches encounter limitations to represent
these details. For instance, models often aggregate in space, time and technological
resolution, and ignore unit commitment constraints to reduce the computational
requirements at the cost of reduced accuracy to represent future scenarios; or assume
perfect and complete markets, where actors have perfect foresight. Both deviate
from what can be accomplished in reality [24], and as discussed in Section 5.2, it
can be important to address additional values of energy storage.

These energy model limitations can be understood as (1) structural uncertainty
related to the imperfect mathematical description of the physics and (2) parametric
uncertainty that refers to imperfect knowledge of input values, i.e. impacted by
innovation or behaviour. Both compromise every kind of mathematical model
with increasing uncertainty looking into the more distant future and vary from
model to model [17, 18, 19]. The most important uncertainties of PyPSA-Eur are
summarised in [24], for instance, that demand profiles for regions in a country are
not disaggregated and only scaled by the GDP of the regions, hence, representing not
local differences; or missing multi-horizon optimisation, which can help to describe
investment pathways and lock-in effects; or the only focus on the electricity system,
missing alternative flexibility competitors from other sectors.

Nevertheless, most of the uncertainties can be reduced by improving future mathe-
matical descriptions of the reality and by strategies to reveal remaining uncertainties
[196]. For instance, one compelling way to address parametric uncertainty is to
give robust insights about what actions are viable within given cost assumptions by
exploring systematically scenarios and the feasibility space near the optimum, such
as applied in [22]. An approach to address the structural uncertainty, includes this
study’s missing energy storage values for sub-hourly grid services and risk confronted
investment and operation. In PyPSA-Eur many of these certainty creating features
can be implemented in short-term by state of the art techniques.

In the context of the above-described uncertainties, this study does not seek to reveal
the one true future prediction. It instead shows a set of possible future scenarios
with different technological design freedoms for the only purpose of comparing
different storage design evaluation methods.

Future work can reduce the limitations of this study, such as the inclusion of sector
coupling and pathway optimisation. Further, this study considered energy arbitrage
under perfect and complete markets. Another branch of work can include more ser-
vices relevant to grid stability and risk approaches, for instance, by investigating the
impact of imperfect and incomplete market conditions and higher spatio-temporal
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resolutions regarding market potential method results. Finally, what might be valu-
able in Europe could look different in other regions. Technology developers would
benefit from a global value assessment. Therefore, it is of utmost importance to
expand open energy system models to cover most parts of earth.

6.5 Conclusion

In the context of storage technology evaluation methods, cost reduction approaches
are failing to account for system values. This study observed that most energy
storage technologies are designed with the aim to reduce their component or storage
system costs ignoring the interaction with the energy system. However, the presented
work showed that two hydrogen long-term storages, both cheap and expensive, can
simultaneously provide benefits to the wider energy system. Therefore, missing with
existing cost reduction approaches values a technology can or cannot provide in a
wider energy system might misguide technology innovation.

System-value approaches aim to acknowledge wider energy system benefits, however,
existing approaches are not practical in the current design for technology evaluation.
This chapter overcomes many existing limitations with the newly introduced market
potential method that can be described as a systematic deployment assessment. The
market potential method provides a complementary approach to evaluate energy
storage technology from a system value perspective.

In summary, the market potential method has implications for practical and mod-
elling relevant insights for manufacturers, developers and researchers. It can be
used to

• support technology design-decision making with growth signals of magnitude
and location,

• improve the technology by changing operational behaviour or adapting mate-
rial or process selection to be most valuable for the energy system,

• concentrate policy endeavours to come closer to perfect market circumstances,
or to

• enhance energy modelling as evaluation tool itself.

The new method strongly depends on energy system modelling. Improving energy
system model design and reducing uncertainty is essential for a successful adoption.
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Here it is of unquestionable value to use open data and open source models to build
trust and credibility for decisions.

The economist Milton Friedman said that “there is one and only one social responsi-
bility of business–to use its resources and engage in activities designed to increase
its profits so long as it stays within the rules of the [market] game, which is to
say, engages in open and free competition without deception or fraud." This might
sound convenient in many cases, but in the context of developing energy technology,
the ’game’ is constantly changing due to the energy transition and sector coupling,
aiming at complete and perfect markets. Thus, maybe it is time to look beyond
the cost reduction paradigm and short-term profit focus - to develop technology
that leads to lower system cost and winning the market of the future. The market
potential method could contribute to this.

The next chapter "The System-Value of Competing Energy Storage in Decarbonized
Power Systems", extends the discussion by incorporating uncertainty into the eval-
uation of up to 20 energy storage technologies. The chapter explores the system
benefits of optimizing energy storage in competition and identifies key technologies
that are relevant for optimization. This analysis provides valuable insights for invest-
ment decision-makers, helping them prioritize energy storage technologies based on
their overall system value.
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Abstract

As the world seeks to transition to a sustainable energy future, energy stor-
age technologies are increasingly recognized as critical enablers. However,
the macro-energy system assessment of energy storage has often focused
on isolated storage technologies and neglected competition between them,
thus leaving out which energy storage to prioritise. In this chapter, I apply a
systematic deployment analysis method that enables system-value evaluation
in perfect competitive markets and demonstrates its application to 20 different
energy storage technologies across 40 distinct scenarios for a representative
future power system in Africa. Here, each storage solution is explored alone
and in competition with others, examining specific total system costs, de-
ployment configuration, and cost synergies between the storage technologies.
The results demonstrate the significant benefits of optimizing energy storage
with competition compared to without (+10% cost savings), and highlight
the relevance of several energy storage technologies in different scenarios.
This work provides insights into the role of energy storage in decarbonizing
power systems and informs future research and policy decisions. There is no
one-size-fits-all energy storage, but rather an ideal combination of multiple
energy storage options that are designed and operated in symbiosis.

7.1 Introduction

As the world looks to decarbonise its power systems in order to mitigate the impacts
of climate change, power modeling scenarios have made it increasingly clear that
energy storage will play a critical role in the transition to a more sustainable
future [160, 175, 176, 197, 198]. The rise of renewable energy sources such
as solar and wind power has presented a significant challenge for the electricity
grid, which must balance the variable and intermittent nature of these sources
with the electricity demand. Energy storage technologies provide a solution to this
challenge by allowing excess renewable energy to be stored and used when needed,
effectively decoupling the generation and consumption of electricity while adding
system-value. Here, as in [10], the system-value of energy storage refers to the
broader economic benefits that storage can provide to the power system beyond its
immediate application. These benefits include the displacement of firm generation
and network infrastructure, greater renewable energy utilisation, and the reduction
of transmission and distribution losses, which often reduces the reliance on fossil
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fuels and lowers carbon emissions. In this context, energy storage, with its system-
value provision, is a key enabler of transitioning to a cleaner, more sustainable
energy system worldwide.

Building on the discussion from chapter 5, assessing the competitiveness or suitability
of energy storage in larger power systems with well-known LCOS methods as applied
in [147, 158, 199, 200] are less suitable compared to system-value assessment
methods as applied [13, 174, 175, 176, 201]. However, all these system-value as-
sessments explore isolated storage technologies that do not consider any competition
with other storage technologies. For instance, the inspiring work in [176] assessed
a single generic energy storage in two representative decarbonised power systems.
Through a design-space exploration of the generic storage, they identified what
energy capacity costs are required to replace firm generation, which are the most
critical storage performance parameters and sizing characteristics that contribute to
the system-value. However, it is also known that adding more technology options
to models often results in synergies. These synergies reduce the significantly total
system costs, which are defined as the sum of all operational and investment costs,
raising at least questions of the validity of the previously found results of single
energy storage scenarios [4]. Expanding on this knowledge, [4] introduces and
demonstrates a systematic deployment analysis method that enables system-value
evaluation in perfect competitive markets but demonstrates the method by ignoring
uncertainty and only considering a limited amount of storage technologies, namely
hydrogen and lithium-ion energy storage.

In this chapter, I assess multiple energy storage with the newly suggested systematic
deployment analysis, also addressing uncertainty. In total, I assess the system-value
of 20 energy storage (see Figure 2.1) with and without competition across 40 distinct
scenarios for a representative future power system in Africa. I use a global coverage
open energy system model suitable for investment and operational co-optimization,
including grid infrastructure and detailed operating decisions and constraints [2].
Further, I apply this model to its already validated Nigerian power system [2],
configure it with high temporal resolution (8760h) and a spatial interconnected
10-node system to keep some of the underlying grid and environmental information
within the simplification. Within this model, I integrate for the first time 20 storage
technologies, which data is collected and expanded from Pacific Northwest National
Laboratory (PNNL) (see Table 8.2, and Methods 7.2.1). I explore two unanswered
questions: how significant is the system-benefit from optimizing energy storage with
competition compared to without, and which energy storage is optimization relevant
considering uncertainty.
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To answer the research questions, I focused on two scenario trees as illustrated
in Figure 7.1. The first scenario tree, defined as ’single storage’ scenario, involves
optimizing each of the energy storage solutions in isolation, assuming business-
as-usual costs. This scenario set includes 20 optimization runs and excludes any
competition between the different storage solutions. By doing so, it is possible to
investigate the specific total system costs (e/MWh) and deployment configuration
(GW for charger/discharger or GWh for store). The second scenario tree also involves
20 optimization runs, but in this case, all energy storage solutions can be optimized
within each scenario. This approach allows for perfect competition and cost synergies
between the different technologies. To facilitate this, this work uses the here coined
’lonely optimist’ approach, where one storage option has optimistic capital costs while
the others have pessimistic assumptions. This extreme parameterization enables
us to suggest which energy storage solutions provide system-value and which can
potentially be neglected - at least within the modelled power system conditions. By
applying the new systematic deployment analysis from [4], this work suggests that
optimizing scenarios with multiple energy storage, compared to scenarios with single
energy storage, can lead to significant system benefits between 3−29%. Considering
the extreme parameterization, it was also found that 9 out of 20 storage technologies
are optimization-relevant, often providing system benefits due to synergies in storage
design and operation. The often praised Lithium energy storage [147, 199] was
only found highly competitive in a single scenario with optimistic cost assumption
of (112e/kWh and 24e/kW). In contrast, the often studied hydrogen storage
was indeed consistently optimization relevant as well as the sand-based thermal
energy storage. However, other technologies added competitive pressure, including
gravity-brick, underground and above-ground water-based gravity and pump-heat
energy storage, compressed-air and nickel-based electricity storage. Therefore, the
system-value technology assessments with multiple energy storage technologies can
be considered as an advanced conceptual approach that could find more application
in research and industry compared to approaches that ignore competition by isolated
technology considerations.

7.2 Methods

7.2.1 Storage data collection

I extracted from a 2022 Pacific Northwest National Laboratory (PNNL) study 20
energy storage technologies and prepared it for reuse in any model [202]. All
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Fig. 7.1.: Illustration of scenario concept in this study.

included technologies are listed in Figure 2.1. The report provided techno-economic
information for various storage reference sizes for 2021 and 2030. I focused on
assumptions for the largest scale applications that range between 10 − 1000MW and
10 − 24h energy-to-power ratio. A linear extrapolation was not applicable for the
2050 compiled data (see Table 8.2) as values would turn negative. To cover more of
the existing non-linearity in cost developments [203], I created a piecewise linear
approximation based on a geometric series for the years between 2034 − 2059 with
data points in 5-year steps. To explore the data, I build an interactive web application
available at https://pz-max-energy-storage-data-explorer-app-o5viwg.streamlit.app/.
The original data, as well as the processing to clean and extrapolate, is integrated into
an open-source tool ’technology-data’ with https://github.com/PyPSA/technology-
data/pull/67.

7.2.2 Model and parameters

This study used the PyPSA-Earth model described and formulated in [2]. The model
is limited to the geographical scope of the representative power system in Nigeria
because its 2021 representation is already validated and described in [2]. I apply
techno-economic assumptions given in Table 8.1 to represent a 2050 decarbonised
power system. Further, to reduce the computational requirements, I clustered the
original, open available transmission network to 10 nodes (see Figure 7.2). Each
node captures an area for calculating renewable potential and demand.
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I contributed open-source code in https://github.com/pypsa-meets-earth/pypsa-
earth/pull/567 that makes adding new energy storage technologies to energy models
simple. For instance, instead of adding new code for each added technology in
several Python scripts, it is now possible to only add new data, and the model will
automatically add these technologies. As illustrated in Figure 2.1, energy storage
with unconstrained design is modelled such that the model can independently
optimize any functional component (charger, discharger, store). In contrast, design-
constrained technologies such as the Lithium-battery are modelled so that the
charger and discharger are constrained to be equal and share costs, representing
the battery inverter. Moreover, this work excludes self-discharge losses, which were
found to have negligible impact on the model outputs as the optimised technologies
predominately store energy below 18 days [201]. All required data for the energy
storage technologies is described in Table 8.2.

Fig. 7.2.: Clustered 10 bus representation of Nigeria’s power system.

7.2.3 Explored scenarios

Two scenario trees are explored for the 2050 fully decarbonized power system with
cost-optimal grid expansion in the model region, Nigeria. All scenarios consider a
2013 based weather year and demand profile. The latter is scaled to align with 2050
predictions as in [2]. Era5 reanalysis data is used to derive the renewable potential
calculation, and ’Shared Socioeconomic Pathways’ [74] are used for the 2050 hourly
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demand prediction (more details in [2]). Further, the scenarios include minimal vari-
able operating and maintenance costs of 0.5e/MWh to avoid unintended storage
cycling Parzen et al. [3] to reduce the risk of model distortions.

The ’single storage scenario’ tree’s attributes include optimising each energy storage
solution in isolation, assuming 2050 Business as Usual (BAU) cost assumptions
given in Table 8.2. In contrast, the ’lonely optimist scenario’ tree can optimize all
storage technologies simultaneously, assuming that always one storage technology is
optimistic (70% of BAU capital costs) while the others are pessimistic (130% of BAU

capital costs).

7.2.4 System-value measurement

According to Section 7.3, the concept of ’system-value’ for technologies is defined as
the market potential arising from the possible and probable least-cost scenarios in
capacity expansion models. This definition originates from [4], which introduces the
’market potential method,’ comprising two distinct components. The first component,
the ’market potential indicator,’ evaluates the total optimized technology size, such
as an energy storage system’s energy or power capacity. The second component, the
’market potential criteria,’ seeks to support the decision-making process in the design
of storage technologies by examining possible and probable scenarios. As per the
criteria, only an optimized energy storage system can provide system-value in a least-
cost power system optimization. The importance of technologies according to the
system-value increases with its optimized capacity, and its provision of system-value
is reinforced and more confident with its repeated optimization across multiple
probable and possible scenarios. Notably, the total system costs, including any
operation and investment costs, only indirectly impact the system-value assessment
for technologies. Decision-makers might use it to define probable scenarios. What is
likely most interesting for technology innovators, manufacturers, and regulators is
the amount of a particular technology required to be deployed to benefit the power
systems.

7.3 Modelling single vs multiple energy storage

The ’system-value’ of technologies can be defined as its market potential resulting
from possible and probable least-cost scenarios in capacity expansion models (see
Section 7.2). Figure 7.3 presents a range of optimised market potentials for various
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single-optimised energy storage technologies. Because only one storage is included in
each optimization run, these scenarios represent a case that ignores any competition.
It can be observed that the most and least optimised charger technology ranges
between 25−54GW for the gravity-brick (gravity) and compressed air energy storage
(pair), the most and least optimised dischargers ranging between 26 − 54GW for
pump-heat (phes) and the compressed air energy storage (pair), and the most and
least optimised stores ranging between 0.18 − 1.46 TWh for lead battery (lead)
and hydrogen cavern (h2cavern) storage systems, respectively. These results are
unrealistic as there are always multiple options available; nevertheless, they reveal
that every energy storage technology can serve the energy system or, in other words,
contain system-value.

Fig. 7.3.: Optimization results for single energy storage scenarios. The y-axis, x-axis, and
marker size show the deployment required for a least-cost 2050 power system in
Nigeria. The colour indicates the total system costs.

Further, observing Figure 7.3, one can see that the least-cost system model optimizes
various energy storage ratios between charger, store and discharger depending on
the technologies. As for most models [19], storage technologies are constrained
such that perfect balancing is guaranteed, ensuring no mismatch between electricity
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supply and demand. However, there is a general trade-off between storage, grid, and
supply expansion, allowing for significantly different storage designs. Theoretically,
creating a power system without any storage or grid is feasible if renewables can
be massively overbuilt and curtailed. The addition of energy storage to power
systems allows for smoothing out mismatches in time, while grid infrastructure helps
reduce mismatches in space and to exploit better resource potentials [191, 204].
Since every storage technology has different capital costs and efficiencies in the
component chain (charger, store, discharger), the design of storage technologies
changes to exploit its role in the power system to achieve the minimum total system
costs. It is important to note that the scenarios shown in the figure are only one
possible outcome of the least-cost power system optimization model, and there may
be many other factors that could influence the market potential of a technology. One
important factor, making scenarios not only possible but also more probable, is the
competition between storage technologies which is discussed next.

Figure 7.4 shows that power systems with perfect storage competition (lonely op-
timist scenario) are, on average, significantly cheaper compared to those without
storage competition (single storage scenario). First and most apparent, the competi-
tive scenarios are 29% cheaper compared to single storage optimization scenarios.
While the competitive scenario tree has few cost increases for some technologies
initially, the cost gradient becomes relatively low after the optimistic ’phes’ scenario
with changes of less than 0.1%. In contrast, one can observe continuous significant
cost increases for single storage scenarios. Surprisingly, comparing both x-axes that
are sorted according to total system costs, it was found that the order of cost-optimal
storage systems for the power system is identical. This identical order implies that
the storage that leads to the lowest total system in the single-optimized storage
scenarios, is likely also the most valuable and important storage in the context of
contributing to system benefits in the other scenario tree. Second and most impor-
tant, the power systems benefits from synergies provided by a perfect competing
storage market even under the worst cost assumptions. The total system of the most
expensive storage scenario in the competitive situation is 3% (6.295/6.108) cheaper
than the best storage scenario in the non-competitive scenario. This is remarkable
because the ’single storage’ scenario assumes business-as-usual costs for the most
favourable technology, while the most expensive ’lonely optimist’ scenario considers
optimistic costs for the least favourable storage technology (−30% of BAU) while
simultaneously for all other storage technologies pessimistic costs (+30% of BAU).
Thirdly, comparing the ’gravitywa’ storage from both scenario trees, one can find
significant cost savings when considering perfect competitive storage markets. When
considering ’gravitywa’ with BAU assumptions in both scenario trees, one can ob-
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serve 8% cost saving or 500 million e in absolute terms. Interesting, but less of an
apple-to-apple comparison, setting the ’gravitywa’ technology as optimistic, as given
in the original lonely optimist scenario, the savings add up to 13%.

These results suggest that studies that assess the system-value with single optimized
energy storage such as [13, 175, 176] miss significant benefits from synergies caused
by co-optimizing multiple energy storage technologies. It is also likely that power
systems with two or three modelled energy storage, such as [14, 195], could benefit
from system cost reduction when including more of the technologies that were found
highly optimization relevant, for instance, the gravity or sand based thermal energy
storage. When assuming similar power system conditions as in the study, the system
cost can be up to 5 − 13% for fully decarbonized power systems.

Fig. 7.4.: Total system cost for energy storage scenario with (left) and without (right)
competition. Scenarios are sorted according to the total system costs.

7.4 Assessing technology importance

The presented results in Figure 7.5 illustrate the market potential of 20 lonely
optimist scenario optimizations with 2050 techno-economic assumptions explained
in Section 7.2. Each scenario given on the x-axis requires a single optimization run,
with all technologies listed on the y-axis treated as variables. The colour gradient,
normalised to the maximum value across all runs, indicates the extent to which the
technologies are deployed in each optimization result. For example, the concrete
lonely optimist scenario assumes optimistic capital costs for concrete-based energy
storage, while the others possess pessimistic values. The following paragraphs will
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discuss the frequency and magnitude of storage technologies that are deployed
in the optimization scenarios. These results will provide a more comprehensive
understanding of the relevance and importance of each technology in the least-cost
power system.

Beginning with the frequency technologies are optimized, it is observed that 9
out of 20 technologies are optimized to a significant degree, implying that not
all technologies are relevant for least-cost power systems. These optimization
irrelevant technologies, which are here defined as being optimized below 1% of
the maximally optimized technology, include concrete, lead, liquid-air, vanadium,
both salt-based, pump-hydro, and any of the four zinc-based energy storage. They
can likely be excluded here without consequences from further parameter studies
such as global sensitivity analysis. Conversely, sand-based thermal and hydrogen
cavern-based energy storage consistently provide system benefits with high certainty
across all 20 scenarios examined. Further, several technologies, such as gravity-brick,
underground water-based gravity, lithium ferrous phosphate (LFP), lithium nickel
manganese cobalt (NMC), and pump-heat energy storage, could only compete under
optimistic capital cost assumptions, while simultaneously all other technologies
are attributed pessimistic values (see scenario design in Section 7.2.3). On the
other hand, compressed-air, above-ground water-based gravity technologies can
generally compete unless specific technologies are assumed with optimistic capital
cost assumptions. For instance, the above-ground gravity storage is not optimized
in a power system where gravity brick storage or Lithium LFP batteries possess
optimistic capital cost assumptions. Similarly, compressed-air energy storage is
not optimized when hydrogen cavern or sand energy storage is assumed to be
optimistic. While analysing the frequency of energy storage optimization in various
extreme parameterised scenarios is useful in determining its relevance, evaluating
the magnitude is also crucial in understanding the technology’s significance.

Analysing each scenario’s optimised magnitude, one can observe a wide range of
deployed amounts per scenario and technology. In particular, gravity and sand-based
energy storage have, on average, the highest deployed amounts indicating their po-
tentially essential role in the power system. Exploring some extremes of the scenario
tree, the most optimized charger is the thermal electrode charger for the sand energy
storage with 24GW as well as an average and minimum percentage of this value
of 79% and 37%. Similarly, the compressed air charger has a minimum, average,
and maximum value of 0%, 1% and 5%, while the hydrogen cavern optimization
results are 1%, 15% and 27%, respectively. The most optimized discharger is the
lithium LFP battery inverter with 25GW . Note that the lithium battery was not the
maximum charger component due to roundtrip efficiency of 0.92%, which reduces
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the optimized amount from 25GW to 23GW such that charger and discharger are of
equivalent size. Here, the relative minimum, average, and maximum values for the
compressed air discharger are 0%, 2% and 7%, for the hydrogen cavern-based fuel
cell 1%, 7% and 14%, respectively. The most optimized store is the thermal storage
of the sand storage with 877GWh with minimum and average relative values of 16%
and 27%. Similarly, the relative minimum, average, and maximum values for the
compressed air discharger are 0%, 16% and 65%, for the hydrogen cavern-based
fuel cell 1%, 7% and 67%, respectively. As a result, while sand and gravity storage
plays an important role in the power system, the other relevant technologies also
sometimes contribute significantly to the least-cost power systems.

Comparing the results to other studies, one can confirm the observation from [174]
that pumped heat energy storage can provide system benefits. However, unlike
their study, liquid air energy storage is likely not optimization relevant even when
optimizing multiple energy storage technologies. Interestingly, this work discovers
that lithium energy storage might not be optimization relevant in many cases due to
competition from other technologies, which challenges its previously overstated role
in the power system decarbonisation for energy to power ratios above one hour [147,
205]. Finally, the results reveal that gravity and sand thermal energy storage are
promising technologies that warrant further investigation and inclusion in system
planning.
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Fig. 7.5.: Optimized charger, store, and discharger capacity for the lonely optimist scenario
in Nigeria. All technologies on the y-axis are available for the optimization
scenario in each run. One column refers thereby to one scenario run. The x-
axis shows the lonely optimist scenarios, which assume optimistic capital costs
assumptions (-30%) for the mentioned technology while the others technologies
on the y-axis are assumed to have pessimistic capital cost assumptions (+30%).
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7.5 Technology design variation

It was found that energy storage technologies span vast sizing designs by analyzing
the sizing magnitude ratios between store-to-discharger components, also known as
the energy-to-power ratio (EP ratio). One can observe EP ratios for the nine relevant
storage technologies between 4 − 7h for any gravity storage, 6h for Lithium LFP,
8 − 21h for hydrogen cavern, 9 − 36h for sand-based, 3 − 19 days for compressed air
and 36 days for pumped-heat energy storage. The results imply that for the given
power system, the most critical storage categories are peak shifters (roughly < 8h),
storage that can balance mismatches also over one or multiple nights (roughly
9 − 36h) and energy storage that balance through seasonal effects (roughly 7 − 36d).
Different to [191], the results suggest different sizing patterns for hydrogen energy
storage. Compared to EP-ratios of roughly 14−21 days, this work found the hydrogen
storage to be mostly sized to balance mismatches for one or two nights. The role of
the weekly storage took the compressed-air and pumped-heat storage, which were
generally not primarily optimized, reflecting that synoptic or seasonal mismatches
are not as significant as predicted for the modelled power system close to the
equator.

While there is an extensive design space for energy storage [176, 201], the resulting
charger-to-discharger ratios suggest that there is a general tendency that the power
system benefits from oversizing the discharger components. Figure 2.1 shows that
some technologies are sizing-constrained because their charger and discharger are
the same components. Moreover, for sizing-unconstrained technologies such as
sand-based and hydrogen cavern energy storage, the results suggest charger-to-
discharger ratios between 0.28−0.61, respectively. Only for the single case for which
the pumped-heat energy storage is significantly optimized this sizing tendency is
reversed such that the pumped-heat storage is sized with a charger-to-discharger
ratio of 2.33, meaning that oversizing the charger is beneficial to the power system.
Similar results were found in [4] for a European transmission system optimization
that always oversizes, if possible, the discharger component by, on average, a factor
of two or three.

7.6 Limitation

While this study provides valuable insights into the energy storage technologies
that are most likely to provide system benefits, several limitations concerning the
model and the data should be considered when interpreting the results and making
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decisions based on them. First, this analysis assumed that all energy storage tech-
nologies have the same uncertainty range, which may be unrealistic. Incorporating
a sense of technology readiness level could provide better signals on uncertainty
ranges, as suggested in previous research [206]. Second, this analysis could benefit
from considering the feasibility of implementing certain energy storage technologies
in all regions. For example, hydrogen cavern-based energy storage may not be
feasible in some areas. Future research could include technology restrictions that
account for such limitations, similar to renewable energy limitations [26]. Third,
this study included only some possible energy storage technologies. Additional
research could identify and evaluate other technologies that could potentially pro-
vide system benefits. Fourth, this analysis did not consider competing flexibilities,
such as those introduced by the transport sector or industry load-shifting potentials,
which could challenge the system-value of energy storage [195]. Finally, to consider
better uncertainty, one could consider multiple weather years and multi-year energy
storage [14], apply global sensitivity analysis with Monte-Carlo [207] and perform
near-optimal solution explorations [19].

7.7 Discussion

The importance of system-value analysis for energy storage is increasing as it allows
decision-makers to evaluate the overall impact and value of multiple energy storage
options within a power system. In this study, traditional system-value analysis that
considers only single energy storage options in power system models may overlook
significant benefits that can be obtained by designing and operating multiple energy
storage options in symbiosis.

This analysis shows that scenarios with multiple energy storage options can result in
total power system cost savings of up to 3−29% compared to those with only a single
energy storage option. However, it is worth noting that not all energy storage options
contribute equally to achieving these system benefits. Of the 20 energy storage
options that were analysed, 11 are neither significantly nor frequently deployed in
scenarios that considered extreme cost uncertainty, making them non-competitive.

The implications of the study for decision-makers are significant. By applying system-
value analysis, investment decision-makers in industry, research, and governments
can better evaluate and prioritise energy storage technologies based on their overall
value in the system rather than solely on cost reduction as approached in [205]. The
findings suggest that certain energy storage technologies may not be worth investing
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in, while others provide good investment opportunities since they consistently
provide system benefits even under high-cost uncertainty. Understanding which
energy storage options provide the most frequent and significant benefits to a given
power system can help decision-makers focus their limited research and deployment
funds on the most viable options, potentially saving society billions of hidden costs.

Moreover, the analysis can help manufacturers and project developers design energy
storage systems most valuable to a power system. Different to [13, 176, 201],
by taking into account the benefits of multiple energy storage options, one can
can derive more realistic and practical design recommendations that consider the
competition and synergies between different storage options. The study finds
that energy storage technologies should be heterogeneously sized to exploit the
individual system conditions and that energy-to-power ratios can vary significantly
between technologies. Manufacturers can use this information to prioritise designing
technologies most likely valuable to future system configurations. In contrast, project
developers can apply the methods in the study to make more informed decisions
about where and how to deploy energy storage systems.

However, there are limitations to the study, and it is vital to continue to improve
methods, models, and data to ensure more informed decision-making in the fu-
ture. Incorporating technology readiness levels, implementing realistic technology
restrictions considering environmental and social limits, expanding the list of energy
storage technologies, analysing various other power systems and considering com-
peting flexibilities from other sectors such as transport and industry load shifting
potentials are some areas that are more discussed in the limitation Section 7.6,
which can be explored further. Another critical point is that technology assessments
should be ideally performed globally, which requires global bottom-up model efforts
such as provided in [2, 208]. Nonetheless, this study provides valuable insights into
energy storage technologies. By incorporating these insights into decision-making
processes, one can improve the overall system-value of energy storage and acceler-
ate the transition to a cleaner, more sustainable and affordable energy future. To
achieve this, actors in the field should avoid creating new models and instead focus
on improving existing models. An open and inclusive community that promotes
open research, software and data can help us progress step by step towards more
informed decision-making for energy storage.
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Conclusion and Outlook 8
This dissertation set out with the hypothesis that improved energy system modeling
and novel system-value optimization methods can enhance the economic viability
and integration of diverse energy storage technologies into wider power systems.
Addressing critical research questions, it aimed to (1) develop globally applicable
energy system models, (2) mitigate unintended modeling artefacts, (3) introduce and
validate new energy storage valuation methods, and (4) understand the optimization
relevance of various energy storage technologies considering uncertainty.

Summary of key findings

Part I - Improving Energy System Modelling with Energy Storage

This thesis has made significant strides in energy system modeling by tackling critical
challenges that impede the models’ applicability, accuracy, and effectiveness in aiding
decision-makers.

Objective 1 was met with the introduction of the first global applicable open energy
system model with high resolution data in chapter 3. This model provides a flexible
approach for data extraction and preparation with global coverage and supports
a range of clustering and grid meshing strategies, e.g. k-edge line augmentation
borrowed from graph theory, to adapt the model to computational and practical
needs. The chapter demonstrates the model’s efficacy by conducting a deep de-
carbonisation planning study for Nigeria’s power system, showcasing the potential
of the model for energy planning studies to support policy decision-making. This
substantial contribution broadens the horizons for energy system modeling, offering
a versatile tool that is accessible and applicable worldwide.

Objective 2 was addressed in chapter 4 by presenting an innovative approach
to mitigate unintended modelling artefacts in energy system models considering
energy storage. The chapter highlights that these artefacts can lead to implausible
outputs and mislead decision-making. The suggested approach recommends using
appropriate variable costs, effectively removing unintended storage cycling and other
similar misleading effects. By doing so, computationally expensive and sometimes



less effective approaches, such as formulating the optimization problem as MILP or
using multi-stage optimization, can be avoided. The chapter also provides a list
of recommended variable cost model inputs and a minimum threshold that can
significantly reduce the magnitude and likeliness of unintended storage cycling. The
applied approach not only addresses the challenge of unintended storage cycling
but also has the potential to address similar issues, such as unintended line cycling
or sector cycling, that can unknowingly distort energy model results. This holistic
approach enhances the model’s accuracy and reliability, thereby improving its utility
in decision support and technology design.

Part II - Applied Energy Storage System-Value Optimization

The thesis also provides substantial contributions toward assessing and optimizing
energy storage technologies in decarbonized power systems.

Objective 3 was pursued in chapter 5 by critically examining the benefits and limita-
tions of various evaluation methods, highlighting the potential of system-value analy-
sis to explore the value of energy storage. Building upon this analysis, chapter 6, the
dissertation also introduced the market-potential method as a new complementary
valuation approach, acknowledging that the value of energy storage is not always
directly proportional to its cost of components (e.g. charger, store, discharger). The
thesis demonstrates the effectiveness of this method in a renewables-based European
power system model, emphasising the significance of modifying storage sizing and
component interactions to enhance energy system efficiency and cost savings.

Objective 4 was tackled in chapter 7 by extending the analysis to include uncertainty
considerations and evaluated with 20 energy storage options, the optimization
relevancy of the most energy storage technologies in any energy system model. The
thesis demonstrates that optimizing multiple energy storage options in symbiosis can
provide significant system benefits and that heterogeneously sizing energy storage
technologies can maximise their value in diverse system conditions. This novel
approach provides valuable insights for decision-makers in industry, research, and
governments to better evaluate and prioritise energy storage technologies based on
their value in the power system.

Overall, this work makes significant contributions to the discourse on energy storage
evaluation and optimization, highlighting the need to consider both cost and value in
decarbonized power systems. It provides novel methodologies and insights to guide
innovation and investment in a landscape with multiple energy storage options,
aiming for more affordable, efficient, and sustainable energy systems.
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The Role of Open Data, Open Science and Open-Source Software

Open data, open-source software, and open science have been fundamental in
advancing this research and promoting knowledge sharing. Open data ensures
unrestricted access and use, open-source software allows for shared development
and distribution, and open science makes research and its outcomes accessible and
free from restrictions.

This work has built ’on the shoulder of giants’, those who devoted decades on
open data collection and open source software development. Among others, it has
benefited from OpenStreetMap data [69], extensive open storage data from PNNL
[202], and open-source tools like Python, Numpy, Pandas, Atlite, GenX, PyPSA and
PyPSA-Eur [24, 25, 26, 209]. Without this work, the thesis wouldn’t be possible.
Therefore, the thesis aimed to contribute back to the community by facilitating
open data access, fostering global model and data collaboration, and enhancing
open-source software with contributions like PyPSA-Earth [2]. The benefits of this
openness include fostering collaboration, increasing research visibility and impact,
and enabling broader participation in scientific endeavours.

Enhancements and Outlook

The limitations section of each chapter discussed several potential areas for future re-
search. Nevertheless, as the thesis concludes, a summary of essential enhancements
is given, as well as a perspective on where future research might go next.

Model design and data improvements

Energy system models are crucial to informing decision-makers about the wider
system benefits of energy storage. Therefore, if the system representation changes,
it will influence any technology assessment studies, e.g. system value assessment
for energy storage. In Part I, the work focused on solving existing challenges of
energy system models, including improving their energy storage representation
and availability worldwide. Due to the complexity of energy systems, many other
challenges should be addressed to improve the accuracy and usefulness of these
models.

In terms of model design, one possible improvement is to include sector-coupling
on a global scale, which would involve modelling not just the electricity sector but
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also other sectors such as transport, heating, and industry [210]. In particular,
sector coupling can also heavily impact the storage design and integration [201]. A
convex gas dynamics representation can be added to capture the behaviour of gas
systems when being co-optimized with the power system or other sectors. With the
power to gas movement, this is increasingly important in the energy transition, for
instance, in the case of carbon dioxide, methane or hydrogen transport modelling
[210]. Moreover, pathway optimization that describes not only what and where
infrastructure should be built but also when, considering multi-decade horizons, can
give new insights. The multi-decade perspective can also be linked to ’learning by
doing’ induced cost reductions which influence any energy model outcomes [211].

Data improvements also greatly benefit energy system modelling. Better representa-
tion of energy infrastructure could be achieved through more and better GIS-tagged
data ideally provided in global databases such as OpenStreetMap [69]. Here,
a promising way to automate data monitoring and new data provision is using
satellite-based object detection based on machine learning [115, 212]. Demand data
improvements would also provide a more accurate representation of energy usage
patterns. Most energy systems models like PyPSA-Eur and PyPSA-Earth are limited
to the same demand profile characteristics per country. Creating more realistic het-
erogeneous demand profiles based on machine learning approaches can potentially
improve energy model scenarios [55, 76]. Moreover, technology readiness level data,
such as applied for energy storage in [206, 213], would allow for a more accurate
representation of storage options in energy systems.

Finally, computational speed improvements would allow for more complex and
accurate models to be developed. In particular, increasing temporal and spatial reso-
lution can help create more realistic energy system results [72, 88, 214]. However,
the more detailed models become, the longer the model scenarios compute. One
interesting approach is to exploit the block-angular structure of massive linear prob-
lems to parallelise computations [215]. Another approach to improving optimisation
solver speed is developing problem-specific solvers [7].

Overall, these model and data improvements can significantly enhance the accuracy
and usefulness of energy system models, allowing for more informed decision-
making related to the energy transition.
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Improving system-value optimization studies

In Part II, the chapters describe a new system-value optimization method. However,
the thesis could have more extensively accounted for the uncertainty that presents
further research opportunities.

Uncertainty reduction methods are essential for improving the design and operation
of energy systems. One such method is the Monte-Carlo Method, also described as
parameter sweep [19], which involves creating hundreds or thousands of scenarios
by systematically sampling various input parameters. This allows for a stochastic
interpretation of the system’s uncertainty derived from deterministic signals. An-
other complementary method is the modelling-to-generate-alternatives approach,
which explores the near-optimal space of a single convex hull by adding objective
constraints to a single scenario with fixed input parameters [22]. In addition, consid-
ering intra-annual or multi-year modelling can provide a comprehensive picture of
system behaviour and reduce uncertainty, particularly for energy storage, which can
provide benefits across years [14]. Accounting for multiple weather years in studies
can also help reduce uncertainty from weather variability and improve planning
resilience [188]. Lastly, robust optimization methods can provide robust solutions
that avoid expensive infeasible solutions that classical stochastic approaches do not
account for [216, 217]. These methods, when applied effectively, can lead to more
reliable and resilient energy system planning decisions for energy infrastructure as
well as technology system-value assessment and optimizations in future.
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Appendix

„Everything has an end, but the sausage has two.

— Jacob Parzen
Butcher

Supplemental material

Energy storage and power system assumptions

Tab. 8.1.: Infrastructure investment cost assumptions per technology for 2050. All costs
are given in real 2015 money.

Technology
Investment
(e/kW) or
(e/kWh)

Fixed O&M
(%/year)

Lifetime
(years)

Efficiency
(%)

Source

Onshore Wind 963 1.2 30 [218]
Offshore Wind 1487 2.0 30 [218]
Solar PV (utility-scale) 265 2.5 40 [218]
Solar PV (rooftop) 475 1.6 40 [218]
Reservoir hydro 2208 1.0 80 0.9 [219]
Run of river 3312 2.0 80 0.9 [219]
HVDC overhead 432 2.0 40 [220]

1 #!/ usr/bin/env python
2 def geo_series (nom , denom =1, no_terms =1, strt =1):
3 """
4 A geometric series is a series with a constant ratio between
5 successive terms. When moving to infinity the geometric series
6 converges to a limit.
7 https :// en. wikipedia .org/wiki/ Series_ ( mathematics )
8
9 Example :

10 --------
11 nom = 1 # nominator
12 denom = 2 # denominator
13 no_terms = 3
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14 strt = 0 # 0 means it starts at the first term
15 result = 1/1**0 + 1/2**1 + 1/2**2 = 1 + 1/2 + 1/4 = 1.75
16
17 If moving to infinity the result converges to 2
18 """
19 return (sum ([ nom/denom **i for i in range(strt , strt+ no_terms )])

Listing 8.1: Contributed code of the required geometric series to infer realistic cost assump-
tions. The code is contributed to the open-source package technology-data
which the model implements an energy storage data interface for.
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Tab. 8.2.: Electricity storage overnight investment cost assumptions per technology for
2050. Derived with geometric series applied on 2021 and 2030 PNNL data. All
costs are given in real 2015 money. All costs are given in real 2015 money.

Technology
Investment
(e/kW) or
(e/kWh)

Fixed O&M
(%/year)

Lifetime
(years)

Efficiency
(%)

Source

Compressed-Air-Adiabatic-bicharger 946 0.9 60 0.72 [202]
Compressed-Air-Adiabatic-store 5 0.4 60 [202]
Concrete-charger 106 1.1 35 0.99 [202]
Concrete-discharger 427 0.3 35 0.43 [202]
Concrete-store 19 0.3 35 [202]
Gravity-Brick-bicharger 415 1.5 41 0.93 [202]
Gravity-Brick-store 131 41 [202]
Gravity-Water-Aboveground-bicharger 365 1.5 60 0.9 [202]
Gravity-Water-Aboveground-store 102 60 [202]
Gravity-Water-Underground-bicharger 905 1.5 60 0.9 [202]
Gravity-Water-Underground-store 80 60 [202]
HighT-Molten-Salt-charger 107 1.1 35 0.99 [202]
HighT-Molten-Salt-discharger 428 0.3 35 0.44 [202]
HighT-Molten-Salt-store 78 0.3 35 [202]
Hydrogen-charger 190 0.7 30 0.7 [202]
Hydrogen-discharger 179 0.6 30 0.49 [202]
Hydrogen-store 4 0.4 30 [202]
Lead-Acid-bicharger 111 2.5 12 0.88 [202]
Lead-Acid-store 282 0.3 12 [202]
Liquid-Air-charger 451 0.4 35 0.99 [202]
Liquid-Air-discharger 317 0.5 35 0.55 [202]
Liquid-Air-store 135 0.3 35 [202]
Lithium-Ion-LFP-bicharger 69 2.2 16 0.92 [202]
Lithium-Ion-LFP-store 160 0.0 16 [202]
Lithium-Ion-NMC-bicharger 69 2.2 13 0.92 [202]
Lithium-Ion-NMC-store 182 0.0 13 [202]
LowT-Molten-Salt-charger 139 1.1 35 0.99 [202]
LowT-Molten-Salt-discharger 559 0.3 35 0.54 [202]
LowT-Molten-Salt-store 48 0.3 35 [202]
Ni-Zn-bicharger 69 2.2 15 0.9 [202]
Ni-Zn-store 202 0.2 15 [202]
Pumped-Heat-charger 723 0.4 33 0.99 [202]
Pumped-Heat-discharger 507 0.5 33 0.63 [202]
Pumped-Heat-store 7 0.2 33 [202]
Pumped-Storage-Hydro-bicharger 1397 1.0 60 0.89 [202]
Pumped-Storage-Hydro-store 57 0.4 60 [202]
Sand-charger 137 1.1 35 0.99 [202]
Sand-discharger 548 0.3 35 0.53 [202]
Sand-store 5 0.3 35 [202]
Vanadium-Redox-Flow-bicharger 111 2.5 12 0.81 [202]
Vanadium-Redox-Flow-store 207 0.2 12 [202]
Zn-Air-bicharger 129 2.4 25 0.79 [202]
Zn-Air-store 156 0.2 25 [202]
Zn-Br-Flow-bicharger 36 1.8 10 0.83 [202]
Zn-Br-Flow-store 357 0.2 10 [202]
Zn-Br-Nonflow-bicharger 129 2.4 15 0.89 [202]
Zn-Br-Nonflow-store 207 0.2 15 [202]
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Tab. 8.3.: Electricity storage overnight investment cost assumptions per technology for
2021. Derived from original PNNL data. All costs are given in real 2015 money.

Technology
Investment
(e/kW) or
(e/kWh)

Fixed O&M
(%/year)

Lifetime
(years)

Efficiency
(%)

Source

Compressed-Air-Adiabatic-bicharger 946.18 0.9 60 0.72 [202]
Compressed-Air-Adiabatic-store 5.448 0.4 60 [202]
Concrete-charger 183.635 1.1 35 0.99 [202]
Concrete-discharger 734.543 0.3 35 0.41 [202]
Concrete-store 28.893 0.3 35 [202]
Gravity-Brick-bicharger 415.57 1.5 41 0.93 [202]
Gravity-Brick-store 184.331 41 [202]
Gravity-Water-Aboveground-bicharger 365.63 1.5 60 0.9 [202]
Gravity-Water-Aboveground-store 142.417 60 [202]
Gravity-Water-Underground-bicharger 905.158 1.5 60 0.9 [202]
Gravity-Water-Underground-store 112.097 60 [202]
HighT-Molten-Salt-charger 183.528 1.1 35 0.99 [202]
HighT-Molten-Salt-discharger 734.115 0.3 35 0.42 [202]
HighT-Molten-Salt-store 110.714 0.3 35 [202]
Hydrogen-charger 1208.632 0.5 30 0.7 [202]
Hydrogen-discharger 1177.152 0.5 30 0.49 [202]
Hydrogen-store 4.779 0.4 30 [202]
Lead-Acid-bicharger 147.643 2.4 12 0.88 [202]
Lead-Acid-store 360.824 0.2 12 [202]
Liquid-Air-charger 500.869 0.4 35 0.99 [202]
Liquid-Air-discharger 351.674 0.5 35 0.52 [202]
Liquid-Air-store 183.974 0.3 35 [202]
Lithium-Ion-LFP-bicharger 94.181 2.1 16 0.91 [202]
Lithium-Ion-LFP-store 316.769 0.0 16 [202]
Lithium-Ion-NMC-bicharger 94.181 2.1 16 0.91 [202]
Lithium-Ion-NMC-store 361.858 0.0 16 [202]
LowT-Molten-Salt-charger 148.856 1.1 35 0.99 [202]
LowT-Molten-Salt-discharger 595.425 0.3 35 0.52 [202]
LowT-Molten-Salt-store 68.283 0.3 35 [202]
Ni-Zn-bicharger 94.181 2.1 15 0.89 [202]
Ni-Zn-store 337.129 0.2 15 [202]
Pumped-Heat-charger 802.648 0.4 30 0.99 [202]
Pumped-Heat-discharger 563.561 0.5 30 0.61 [202]
Pumped-Heat-store 29.319 0.1 30 [202]
Pumped-Storage-Hydro-bicharger 1397.128 1.0 60 0.89 [202]
Pumped-Storage-Hydro-store 57.074 0.4 60 [202]
Sand-charger 151.781 1.1 35 0.99 [202]
Sand-discharger 607.125 0.3 35 0.51 [202]
Sand-store 7.883 0.3 35 [202]
Vanadium-Redox-Flow-bicharger 147.857 2.4 12 0.81 [202]
Vanadium-Redox-Flow-store 311.66 0.2 12 [202]
Zn-Air-bicharger 129.023 2.4 25 0.77 [202]
Zn-Air-store 192.847 0.2 25 [202]
Zn-Br-Flow-bicharger 129.023 2.4 10 0.81 [202]
Zn-Br-Flow-store 470.192 0.3 10 [202]
Zn-Br-Nonflow-bicharger 129.023 2.4 15 0.87 [202]
Zn-Br-Nonflow-store 273.108 0.2 15 [202]
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Tab. 8.4.: Electricity storage overnight investment cost assumptions per technology for
2030. Derived from original PNNL data. All costs are given in real 2015 money.

Technology
Investment
(e/kW) or
(e/kWh)

Fixed O&M
(%/year)

Lifetime
(years)

Efficiency
(%)

Source

Compressed-Air-Adiabatic-bicharger 946 0.9 60 0.72 [202]
Compressed-Air-Adiabatic-store 5 0.4 60 [202]
Concrete-charger 144 1.1 35 0.99 [202]
Concrete-discharger 576 0.3 35 0.43 [202]
Concrete-store 24 0.3 35 [202]
Gravity-Brick-bicharger 415 1.5 41 0.93 [202]
Gravity-Brick-store 157 41 [202]
Gravity-Water-Aboveground-bicharger 365 1.5 60 0.9 [202]
Gravity-Water-Aboveground-store 121 60 [202]
Gravity-Water-Underground-bicharger 905 1.5 60 0.9 [202]
Gravity-Water-Underground-store 95 60 [202]
HighT-Molten-Salt-charger 144 1.1 35 0.99 [202]
HighT-Molten-Salt-discharger 576 0.3 35 0.44 [202]
HighT-Molten-Salt-store 94 0.3 35 [202]
Hydrogen-charger 312 0.7 30 0.49 [202]
Hydrogen-discharger 414 0.5 30 0.7 [202]
Hydrogen-store 4 0.4 30 [202]
Lead-Acid-bicharger 128 2.4 12 0.88 [202]
Lead-Acid-store 320 0.2 12 [202]
Liquid-Air-charger 475 0.4 35 0.99 [202]
Liquid-Air-discharger 334 0.5 35 0.55 [202]
Liquid-Air-store 159 0.3 35 [202]
Lithium-Ion-LFP-bicharger 81 2.1 16 0.92 [202]
Lithium-Ion-LFP-store 236 0.0 16 [202]
Lithium-Ion-NMC-bicharger 81 2.1 13 0.92 [202]
Lithium-Ion-NMC-store 269 0.0 13 [202]
LowT-Molten-Salt-charger 144 1.1 35 0.99 [202]
LowT-Molten-Salt-discharger 576 0.3 35 0.54 [202]
LowT-Molten-Salt-store 58 0.3 35 [202]
Ni-Zn-bicharger 81 2.1 15 0.9 [202]
Ni-Zn-store 267 0.2 15 [202]
Pumped-Heat-charger 761 0.4 33 0.99 [202]
Pumped-Heat-discharger 534 0.5 33 0.63 [202]
Pumped-Heat-store 11 0.2 33 [202]
Pumped-Storage-Hydro-bicharger 1397 1.0 60 0.89 [202]
Pumped-Storage-Hydro-store 57 0.4 60 [202]
Sand-charger 144 1.1 35 0.99 [202]
Sand-discharger 576 0.3 35 0.53 [202]
Sand-store 6 0.3 35 [202]
Vanadium-Redox-Flow-bicharger 129 2.4 12 0.81 [202]
Vanadium-Redox-Flow-store 258 0.2 12 [202]
Zn-Air-bicharger 129 2.4 25 0.79 [202]
Zn-Air-store 174 0.2 25 [202]
Zn-Br-Flow-bicharger 81 2.1 10 0.83 [202]
Zn-Br-Flow-store 412 0.3 10 [202]
Zn-Br-Nonflow-bicharger 129 2.4 15 0.89 [202]
Zn-Br-Nonflow-store 239 0.2 15 [202]
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Examples of other energy storage scenarios

Fig. 8.1.: Storage operation in lonely optimist scenario with Lithium Ferrous Phosphate
(LFP) as optimistic capital costs in a group of pessimistic alternatives. The time-
series is smoothed by a 12 hour rolling aggregation, where the upper figure shows
the total storage operation, generation and load time-series, and the lower figure
the storage operation of a selected subset of technologies. Here, the hydrogen
cavern represent the blue line with maximal storage volume of around 20GWh.
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Fig. 8.2.: Storage operation in lonely optimist scenario with changing optimistic storage
scenarios. The time-series is smoothed by a 12 hour rolling aggregation and
shows only a selected set of technologies.
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