
This thesis has been submitted in fulfilment of the requirements for a

postgraduate degree (e. g. PhD, MPhil, DClinPsychol) at the University of

Edinburgh. Please note the following terms and conditions of use:

This work is protected by copyright and other intellectual property rights,

which are retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or

study, without prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without

first obtaining permission in writing from the author.

The content must not be changed in any way or sold commercially in

any format or medium without the formal permission of the author.

When referring to this work, full bibliographic details including the

author, title, awarding institution and date of the thesis must be given.

A foundation for synthesising programming
language semantics

Sándor Bartha
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

CDT Data Science

School of Informatics

The University of Edinburgh

2024

Abstract
Programming or scripting languages used in real-world systems are seldom designed

with a formal semantics in mind from the outset. Therefore, the first step for devel-

oping well-founded analysis tools for these systems is to reverse-engineer a formal

semantics. This can take months or years of effort.

Could we automate this process, at least partially? Though desirable, automati-

cally reverse-engineering semantics rules from an implementation is very challenging,

as found by Krishnamurthi, Lerner and Elberty. They propose automatically learning

desugaring translation rules, mapping the language whose semantics we seek to a sim-

plified, core version, whose semantics are much easier to write. The present thesis

contains an analysis of their challenge, as well as the first steps towards a solution.

Scaling methods with the size of the language is very difficult due to state space

explosion, so this thesis proposes an incremental approach to learning the translation

rules. I present a formalisation that both clarifies the informal description of the chal-

lenge by Krishnamurthi et al, and re-formulates the problem, shifting the focus to the

conditions for incremental learning. The central definition of the new formalisation is

the desugaring extension problem, i.e. extending a set of established translation rules

by synthesising new ones.

In a synthesis algorithm, the choice of search space is important and non-trivial,

as it needs to strike a good balance between expressiveness and efficiency. The rest

of the thesis focuses on defining search spaces for translation rules via typing rules.

Two prerequisites are required for comparing search spaces. The first is a series of

benchmarks, a set of source and target languages equipped with intended translation

rules between them. The second is an enumerative synthesis algorithm for efficiently

enumerating typed programs. I show how algebraic enumeration techniques can be ap-

plied to enumerating well-typed translation rules, and discuss the properties expected

from a type system for ensuring that typed programs be efficiently enumerable.

The thesis presents and empirically evaluates two search spaces. A baseline search

space yields the first practical solution to the challenge. The second search space is

based on a natural heuristic for translation rules, limiting the usage of variables so that

they are used exactly once. I present a linear type system designed to efficiently enu-

merate translation rules, where this heuristic is enforced. Through informal analysis

and empirical comparison to the baseline, I then show that using linear types can speed

up the synthesis of translation rules by an order of magnitude.

iii

Lay summary

Computers are curious machines – they do not work according to a fixed plan, but

rather the plan itself can be changed. This plan is called a program. Processors nowa-

days can execute billions of instructions in every second, and the plans they follow in

doing so can be exceedingly complicated. It is way beyond human capabilities to fine

control these plans, to write the programs by instructions the machine understands.

Fortunately, computers can help manage the very problem their enormous capabil-

ities cause. Programmers usually do not use the instructions built into the machine.

Instead, they use programming languages to give a high level description of the plan.

The computer itself interprets these high level plans through a program: an interpreter,

that can translate the high level description to instructions the machine can understand.

Interpreters are very complicated. All that are in use contain bugs – they do not

work exactly as we wish. They often behave in unexpected ways, differently how the

programmer expects it, their behaviour can surprise even their creators. Moreover, for

a different kind of computer with different built-in instruction set, we need a different

interpreter to run the same programs. Since interpreters are so complex, it is very

hard to make sure that two different version of the interpreter of a particular language

interprets programs the same way – there are often subtle differences.

One way to tackle some of these problems is to create a reference version of the

interpreter for the language, which does not try to efficiently execute the programs,

and not tied to a particular architecture. Instead, it is defined mathematically, in a way

that is both precise and (relatively) easy to understand for human experts. It is called a

definitional interpreter, or operational semantics. It can be used to find bugs in existing

interpreters, or to develop tools for programming that need a precise definition of the

language.

Unfortunately, programming languages are rarely designed in advance with a math-

ematically precise meaning, and engineers need to extract the definition from an ex-

isting interpreter. This reverse engineering can be challenging and cumbersome, and

few of the programming languages that are in use today has a full formal operational

semantics.

The idea this thesis is built upon is that we can use computers to help us finding the

operational semantics for an existing language, based on an existing interpreter. The

computer can generate candidate definitional interpreters, and test them by comparing

them to the existing implementation. As computers are really fast, they can test mil-

iv

lions of potential mathematical definitions quickly, and find the one which corresponds

to the actual behaviour of the interpreter.

This task, however, is still really hard. I imagined an interactive system where

humans and computers work together. I investigated the assumption that the mathe-

matical definition of a programming language can be found in small, incremental steps.

I also investigated what kind of definitions are good to try out so that we have a good

chance to find the one we would like. I evaluated my work on simplified examples, as

presently we can not apply my methods to real world languages.

v

Acknowledgements
My first heartfelt thanks goes to James Cheney. I could not have wished for a better

supervisor. His constant responsiveness, helpfulness, stability and reliability have been

invaluable. The care and attention shown in his suggestions, criticisms, and questions,

could be a course in itself. The critical feedback I received from him was always

driving me forward, and never holding me back. His immense knowledge has been

available to me for almost six years now, and it has enriched me and provided me with

a lasting perspective into the future.

I am also hugely grateful to my second supervisor, Vaishak Belle, who has provided

a perspective into wider applications of my research topic, always coming up with fresh

questions and feedback, and never missing a chance to encourage me. The learning

opportunities I had while working as a research assistant under his supervision were

extremely useful on my PhD journey.

The present version of the thesis has been greatly improved by the insightful com-

ments and recommendations of my two examiners, Meng Wang and Liam O’Connor.

I greatly appreciate the time they took to thoroughly review the thesis, their feedback

allowed me to correct many errors and strengthen the presentation.

Covid hit just halfway into the research, and Jane Hillston and Mary Cryan have

been extremely helpful when I needed support.

The journey would have been lonely without my fellow researchers. I want to thank

Michael P. J. Camilleri, my office mate for six years, for always being ready to listen

to my problems and to cheer me up, and Weili Fu, who spent hours understanding

my ideas and giving useful feedback. I would also like to thank Wilmer Ricciotti and

Elizabeth Polgreen for pointing me towards research relevant to my topic.

I am obligated to my wonderful proofreader, László Vincze, who was always ready

to re-read the rewritten text just one more time on short notice.

I am grateful to my family for their support throughout the PhD years. I am in-

debted to my parents, without whose assistance I would not have been here. This

thesis is dedicated to the love of my life, my wife, Judit, without whose longstand-

ing support and encouragement none of this would have been possible. Finally, I am

grateful to my children, Sebő and Johanna, who bore with me through hectic times,

and provided a turbulent and energetic work environment.

vi

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

The thesis – in particular Chapters 2, 4 and 6 – contains material presented in the

following publication, of which I am first author:

• Bartha, S., Cheney, J., and Belle, V. (2021). One down, 699 to go: Or, synthe-

sising compositional desugarings. Proceedings of the ACM on Programming

Languages, 5(OOPSLA)

(Sándor Bartha, Edinburgh, Scotland, 2023)

vii

To Judit

viii

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Overview of the problem . 2

1.3 Contributions of this thesis . 5

1.4 Thesis structure . 8

2 Problem analysis 9
2.1 The challenge and its research context 9

2.1.1 KLE’s challenge . 10

2.1.2 The challenge’s background in formal semantics 11

2.1.3 A brief and high-level overview of program synthesis 14

2.1.4 Past solution attempts . 20

2.2 Critical analysis of the challenge . 25

2.2.1 Challenges . 25

2.2.2 My approach . 28

3 Benchmarks 31
3.1 Pidgin languages . 31

3.2 Pidgin extensions . 34

3.2.1 Basic list comprehensions 34

3.2.2 Try-catch-finally . 35

4 Formal framework 39
4.1 Background - monads . 40

4.2 Syntax . 42

4.3 Semantics . 44

4.4 Translations . 49

4.5 Correctness . 55

ix

4.6 Sublanguages . 57

4.7 The desugaring extension problem 59

4.8 Sequential learning . 61

4.9 Conditions of a solution . 62

4.10 Concluding remarks . 65

5 Enumerating typed program fragments 67
5.1 Introduction . 69

5.2 Algebraic enumerations . 71

5.2.1 Combinators for enumerations 72

5.2.2 Datatype-generic enumerations 74

5.3 Enumerating proofs . 75

5.3.1 Enumerating data systems 75

5.3.2 Data systems and type systems 78

5.3.3 Abstract proof systems . 79

5.3.4 Enumerating finitely branching proof systems 81

5.3.5 Finitely branching type systems 84

5.4 Symmetries in proof and type systems 85

5.4.1 Finitely branching proof systems 85

5.4.2 Adequate representation of judgements 87

5.4.3 Curry-Howard property . 88

5.5 Related work . 90

5.6 Summary . 94

6 Searching for desugarings 95
6.1 Search spaces for translation rules 97

6.1.1 Relabelling . 97

6.1.2 Substitutions . 99

6.1.3 Substitutions as a type system 101

6.1.4 Analysing arguments . 102

6.1.5 Errors . 103

6.1.6 Transforming arguments . 103

6.1.7 Layering . 105

6.1.8 Fresh name generation . 106

6.1.9 Summary: the complete meta-language for translation rules . 107

6.2 Evaluation . 108

x

6.2.1 Hypothesis and methodology 108

6.2.2 Pidgin languages . 110

6.2.3 Basic list comprehensions 115

6.2.4 Try/Catch/Finally . 118

6.2.5 Human overhead . 120

7 A linear type system for the efficient enumeration of translation rules 121
7.1 Background . 121

7.2 Motivation . 123

7.3 The effect of pruning non-linear terms 124

7.4 A linear search space . 127

7.4.1 Type system for terms with linear variables 127

7.4.2 The CASE, ERROR and TRANSFORM rules 129

7.4.3 Bound linear variables . 130

7.4.4 Summary - a linear search space for desugarings 132

7.5 Empirical evaluation . 133

7.5.1 Pidgin benchmark and list comprehensions benchmark 133

7.5.2 Try/catch/finally benchmark 134

8 Conclusion and future work 137
8.1 Summary . 137

8.2 Weak points . 138

8.3 Future work . 139

A Reference implementation of Pidgin 141

Bibliography 147

xi

Chapter 1

Introduction

1.1 Motivation

Many different languages are used to describe automated systems. In addition to the

multitude of general purpose programming languages, large systems rely on various

domain specific languages, configuration languages, query languages and modelling

languages. The specification for libraries, frameworks or hardware components is of-

ten given by an abstract language. These languages frequently change their behaviour

from version to version, further increasing their number. Every system seems to invent

its own idiosyncratic notation to represent computations.

The specifications of these languages tend to be insufficiently precise. Ambiguities

are inevitable if the specification is written in a natural language. Various implemen-

tations may interpret the requirements differently, making it difficult to port the pro-

grams between them. Future version changes may break properties that the creators

are unaware of but that the users rely on, thus making programs unnecessarily difficult

to maintain. Security risks may go unnoticed, impacting every system built with the

language [Amin and Tate, 2016].

By contrast, formal semantics are a pure mathematical model of the programming

language. Their purpose, like that of other mathematical models, is to help understand

the system and guide our reasoning about it. Formal semantics are useful for the main-

tenance and analysis of programming languages. A formal semantics is a prerequisite

for applying formal methods or static analysis. Moreover, the ability to reconstruct the

semantics of an opaque system would make it possible to compare properties of the

induced semantics with the intended design, aiding the rationalisation or redesign of

the language.

1

2 Chapter 1. Introduction

The usage of formal semantics is standard in the hardware industry [Kern and

Greenstreet, 1999], and there is a lot of research effort to formalise aspects of main-

stream languages [Jung et al., 2017; Nienhuis et al., 2016]. However, their impact on

the wider software industry is modest: the vast majority of systems in use today do not

have formal semantics. This is partly because practitioners who design languages often

lack the skills needed to write formal semantics. There are only a small number of lan-

guages, like Scheme [Abelson et al., 1991] or Standard ML [Milner et al., 1997], that

were designed with formal semantics in mind. But more importantly, writing formal

specifications is tedious, especially if we want to write the specification retrospectively

for an existing system without one. To get a sense of the scale of the work involved

in writing the full formal semantics of one language, we can look at some recent ex-

amples for popular programming languages, such as JavaScript [Maffeis et al., 2008;

Guha et al., 2010], R [Morandat et al., 2012], Python [Politz et al., 2013], and PHP [Fi-

laretti and Maffeis, 2014]. Each of these formal semantics is the result of months of

work by research groups.

An appealing idea is to partially automate the process of reverse engineering se-

mantics of programming languages. Krishnamurthi, Lerner and Elberty, the authors of

˙˙The Next 700 Semantics: A Research Challenge” (2019) gave an initial analysis of

the problem of semi-automation, and posed it as a challenge for the research commu-

nity. A full solution to their challenge would facilitate defining the formal semantics

for programming languages. The title of their work alludes to Peter Landin’s landmark

paper “The Next 700 Programming Languages” (1966), written more than 50 years

ago, which facilitated the creation of these languages in the first place.

The present thesis aims to envision a possible solution: an assistant software to

ease the work of semantic engineers. This goal can perhaps best be characterised as

a semi-automatic semantics synthesis assistant requiring additional user guidance or

feedback in the course of its operation, and the present work hopefully brings this

one step closer to realisation. Throughout my work, I will follow and build upon the

pioneering analysis of Krishnamurthi et al., hereinafter abbreviated as KLE.

1.2 Overview of the problem

Let us step into the shoes of the semantics engineer, whose task it is to reverse engineer

interpretable formal specifications for an actual programming language by observing

the behaviour of its opaque or non-intelligible interpreter. For textual languages, these

1.2. Overview of the problem 3

formal descriptions are divided into two parts: the language’s (concrete) syntax, which

describes the translation of the string representation into abstract syntax trees (terms),

and its semantics, which describes the behaviour of the terms. We can distinguish

between two separate tasks: reverse-engineering a formal grammar for a language

from its examples, and reverse-engineering formal semantics for the term language.

Reverse-engineering a formal grammar for a string language from its examples is

also an interesting problem. Known as unsupervised grammar induction, or grammat-

ical inference, it is a well-studied task with applications in pattern recognition, com-

putational biology, and, most importantly, in natural language processing [Clark and

Lappin, 2010; Muralidaran et al., 2021]. But this is a different task, and not that im-

portant to semantic engineers, as most languages already have formal syntax: parsers

in interpreters and compilers are routinely generated from a grammar given in BNF

or similar formats. Moreover, not all languages even have string representation: for

example, there are some abstract languages used to describe libraries, and some in-

termediate languages which are only represented by data structures inside compilers.

In the present thesis, we focus solely on term languages consisting of abstract syntax

trees, and by “language” we always mean a term language.

Languages are usually riddled with many varieties of interrelated constructs. The

tedious parts of producing formal specifications involve writing a lot of small example

programs covering the wide range of language features, then testing their behaviour

through the opaque implementation. As a first step towards achieving partial automa-

tion, KLE suggest that semantics be divided into a complex part provided by human se-

mantic engineers, and a tedious but shallow part hopefully synthesised automatically.

They formulate this division as follows: let human engineers first specify a core ver-

sion of the language, capturing its essential features, reducing the potentially hundreds

of language constructs to a few. Next, have them provide a definitional interpreter (e.g.

a direct implementation of an operational semantics) for this core language, which is

much smaller. The computer’s task then is reduced to finding translation rules from

the original (source) language to this core language, based on observing the behaviour

of source programs. Our goal is to automatically find a program that translates source

terms into core terms.

To use a familiar example, let the source language be a simple functional lan-

guage with arithmetic. We give its semantics by first providing the semantics of the

λ-calculus extended with the primitive types (numbers) and operations (arithmetic) of

the language, then translating additional language constructs into this core language.

4 Chapter 1. Introduction

let x = 1 in x+ x ⇝ 2

let x = 2 in 1 ⇝ 1

(a) Partial input: test cases for let expression

Jlet i = e1ine2K =
(
λ i .Je2K

)
Je1K

(b) Partial output: translation rule for let expression

Figure 1.1: Learning translation rule example

Figure 1.1a shows some potential test cases run on the opaque interpreter of the source

language, and Figure 1.1b shows an example translation rule that should be generated

based on these test cases. The rule expresses a let expression (in the source language)

in terms of a λ expression and application (which are both parts of the reduced core

language). This example shows the semantics of one language construct for the sake

of demonstration, but in the general case, the source language may contain hundreds of

constructs that need to be reduced to the core language: this reduction of the number

of term constructors is the main point of the translation.

KLE also suggest a natural search space: compositional translations, which we

already relied on in our example. They aim to synthesise a separate rule (or rules) for

each source language term constructor.

Their formulation is insightful and practical, but at this point, the specified task

is still open-ended. Without additional assumptions, the framework can apply to any

compositional translation between formal languages. While this makes the formulation

widely applicable, it also presents a very difficult challenge. The challenge is hard in

two ways. First, it is a difficult problem computationally:

• The search space is enormous, even larger than the search spaces of common,

already notoriously hard problems in program synthesis.

• The learning framework is non-standard, which prevents us from applying most

existing learning methods out-of-the-box.

Second, KLE’s the informal description leaves many important questions open:

• What is a shallow translation rule?

1.3. Contributions of this thesis 5

• What class of languages do we target: can it be non-deterministic? What side

effects can it have?

• Is the core interpreter opaque?

Accordingly, the design space of the open-ended problem is very complex, as it

allows several different problem formulations. The overall difficulty of the challenge

is well illustrated by the fact that KLE investigated four natural-seeming approaches

based on existing learning or synthesis algorithms, but found that none were able to

fully solve the problem they set.

1.3 Contributions of this thesis

As suggested by the above, my goal was to set up a research path that enables grad-

ual progress. This involved looking for simplifying assumptions and developing an

empirically testable baseline solution for the simplified problem in tandem. Chapter 2

presents the research context, contains a critical analysis of the open-ended challenge

of KLE, and details our two main simplifying assumptions corresponding to these joint

tasks:

• The main simplifying assumption is that it is possible to learn the semantics

incrementally, in small steps. In the present thesis we work under the assumption

that the user provides an appropriate decomposition of the language, and the

automated solution is only required to find a portion of the full compositional

translation, while at the same time it can rely on the part of the translation which

is already established.

• The main assumption behind the empirically testable solution is that it is use-

ful to limit our attention to only one aspect of program synthesis—the search

space—and employ enumerative synthesis as the search technique.

Accordingly, the main contribution of the thesis can be summarised in two points:

1. Establishing a formal framework in Chapter 4 that both clarifies the informal de-

scription of KLE and re-formulates the problem based on my own critical analy-

sis. The formalisation highlights that there are important choices left unattended

in the informal description. The reformulation shifts the focus of the framework

to the conditions for incremental learning, which not only allows us to set up

6 Chapter 1. Introduction

much simpler and easier-to-solve subtasks, but also allows a continuous transi-

tion from trivial tasks to a full solution. Accordingly, at the heart of the chapter

lies the definition of the desugaring extension problem, a central problem for

our research, which poses the task of automatically extending a set of estab-

lished translation rules with a small number of new rules covering new language

features. The framework also contains the simplifications needed to ensure di-

rect testability, and clarifies the concept of compositional translations to enable

the definition of search spaces for them.

2. Defining search spaces by typing rules to find a good balance between expres-

siveness and efficiency, and evaluating them on a set of benchmarks. This in-

volved a series of steps:

(a) Chapter 3 defines a series of benchmarks which I implemented in Haskell.

That is, the chapter presents simplified source and target (core) languages,

and intended translation rules between them. The first benchmark is the

pair of languages KLE used to demonstrate the potential complications of

modelling desugarings. Dubbing these the Pidgin source and core, I im-

plemented them and used them to evaluate the expressiveness of search

spaces. I also implemented two other benchmarks, one of which was based

on translating list comprehension syntax into monadic operations, inspired

by the (more complex) definition of list comprehensions in Haskell, and a

second which was a translation of a try/catch/finally construct into try/catch

constructs.

(b) Chapter 5 presents a general method for enumerating typed program frag-

ments, based on algebraic enumerations of type derivations. The enumera-

tion library is also implemented in Haskell, and the enumerative synthesis

algorithm employed in later chapters is based on it. Reviewing algebraic

enumerations that were originally applied to enumerating algebraic data

types, I show that they can be applied to the more general task of enu-

merating typed term languages with a context of variables, based on the

deductive (typing) rules. I also demonstrate the possibility of applying it to

more expressive languages, like fragments of the simply typed λ-calculus.

I highlight the conditions required for a (relatively) efficient enumeration.

Note that the content of this chapter is based on what I found efficient in

practice, and lacks formal analysis or exhaustive comparison to other meth-

1.3. Contributions of this thesis 7

ods. The evaluation of the enumeration method is through the case studies

presented in later chapters. Note that our paper [Bartha et al., 2021] re-

lied on this enumeration algorithm for evaluation, but it did not go into

discussing it.

(c) Chapter 6 creates a baseline search space for the re-formulated problem,

and evaluates it on the set of benchmarks using enumerative synthesis. This

can serve both as a baseline for future improvements to compare to, and as a

building block of future synthesis algorithms employing more sophisticated

search techniques. The successful synthesis of the intended translations of

the benchmarks requires not only a user-defined decomposition of the full

benchmarks into a series of steps, but additional user guidance as well,

which is carefully recorded. The combined run-times obtained for each

full benchmark (all which are solved incrementally, in multiple steps) are

summarised in the following table:

Benchmark Time

Pidgin 40min 32s

List comprehensions 25min 30s

Try/catch/finally 2h 5m 49s

(d) Chapter 7 creates a refined, linear search space, based on the observation

that in most translation rules, variables are used exactly once. I gave an

informal comparison of the asymptotic growth of the base and linear search

spaces, and evaluated the linear search space on a subset of the benchmarks,

demonstrating that these heuristics can lead to faster learning by an order

of magnitude:

Benchmark Time Baseline speed-up

Pidgin 2min 25s 40min 32s ×16.8

List comprehensions 1m 49s 25min 30 s ×14.0

The open-endedness of the problem allows for many different approaches, and we

were necessarily obliged to limit the scope of the current thesis. Hoping that this work

will lay a helpful foundation for this fascinating new area of research, it is important

to highlight its boundaries. These can be summarised in four points:

• Some simplifying assumptions allow for directly testing correctness in a rela-

tively straightforward way, but they also limit the solution to a restricted subset

of the general problem domain.

8 Chapter 1. Introduction

• The enumerative algorithm requires user guidance: this is expected, as mirrored

in the envisioned assistant software rather than a fully automated learning algo-

rithm.

• The enumerative algorithm does not scale to larger programs.

• The set of benchmarks used for evaluation are limited.

I view these not as fatal flaws, but rather possible new research directions, which

I summarise in the concluding Chapter 8. I believe that this thesis could serve as the

foundation for future works in this area by providing a formal definition of the problem

and by defining search spaces that could be used in other synthesis algorithms.

1.4 Thesis structure

The content of the thesis is structured as follows:

Chapter 2 presents the research context and a critical analysis of the open-ended

challenge of KLE, and details our two main simplifying assumptions. We assume that

incremental learning is possible, and delineate the scope of the present work by focus-

ing on a single aspect of synthesis: the search space.

As the challenge presented by KLE is open-ended and hard, it is premature to aim

for a full solution. Rather, we need to content ourselves with gradual progress, along

with a way to quantify said progress. Chapter 3 introduces benchmarks, which I rely on

to both demonstrate the problem, and to empirically evaluate algorithms that synthesise

translation rules.

Chapter 4 specifies a formal framework for incremental learning, defining the

desugaring extension problem, a central problem for our research.

Chapter 5 describes a general enumeration algorithm that can be used for both

synthesis and testing, and which also provides the basis for later chapters.

Chapter 6 explores the design space of the open problem, proposes search spaces,

and evaluates my research assumptions and the enumeration algorithm on our case

studies.

Chapter 7 contains a description of a linear type system, allowing for the fast enu-

meration of translation rules, and accelerating the process of synthesis by at least an

order of magnitude.

Finally, Chapter 8 highlights the limitations of my approach, and identifies possible

future directions for research.

Chapter 2

Problem analysis

In this chapter, I present the research challenge of KLE and my own views of the

problem. Thus, the chapter is divided into two distinct parts. The first section reviews

past work: the challenge and its research context, as well as all past solution attempts

I am aware of. I also included a brief review of some of the research underpinning my

own analysis. The second section is a critical analysis of the problem, followed by my

own approach building on it, listing my assumptions and reasoning. The contributions

of the present thesis are built upon this analysis.

2.1 The challenge and its research context

As already emphasised in the Introduction, the immediate context for the present thesis

is the vision of “The Next 700 Semantics: A Research Challenge” by Krishnamurthi,

Lerner and Elberty (2019, abbreviated as KLE). The authors highlight the need for

and lack of formal semantics of many languages in use, and point out that the reverse

engineering process required to retrospectively write formal semantics for an already

existing language is tedious. They put forth the need for semi-automation: the task

is to automatically synthesise parts of the semantics of a source term language. This

challenge, and the research in the present thesis, lies at the intersection of two fields:

formal semantics and program synthesis. We start with a detailed review of the chal-

lenge, as well as a brief summary of both fields in their relation to the challenge.

9

10 Chapter 2. Problem analysis

2.1.1 KLE’s challenge

KLE suggest searching for the semantics of a programming language in a specific for-

mat. This allows sharing the work between a human semantic engineer and the seman-

tics synthesis assistant program, but they also argue that this format is useful on its

own merits.

The main idea of KLE is to divide the work between human and computer as de-

picted by Figure 2.1, quoted from their paper.

source program core program

source output core output

desugar

source interpreter core interpreter

compare

Figure 2.1: Testing strategy for desugarings (cf. Krishnamurthi et al. [2019])

They trust the human semantic engineer to write a reduced, core version of the

source language, together with an operational semantics (a definitional interpreter) for

this core language. Note that both languages are term languages. They expect the com-

puter to automatically find a desugaring translation from the original source language

to this reduced core version, based on the testing strategy shown in Figure 2.1. We

can execute source programs with the source interpreter, or desugar the same source

programs with a candidate translation into core programs, and execute them with the

core interpreter. Comparing the results we can test the candidate translation. The com-

parison may need to take into account the candidate translation itself, as the outputs

may use different representation for the source and core languages.

KLE choose the term “desugaring” (as opposed to more general words like compi-

lation or translation) to emphasise the requirements that the translation be “shallow”,

non-expressive. They also expect the translation to be compositional, consisting of

separate translation rules for every language construct in the source language. We will

refer to this general and informally specified challenge as the desugaring problem, or

alternatively as KLE’s challenge.

2.1. The challenge and its research context 11

2.1.2 The challenge’s background in formal semantics

KLE’s desugaring problem is based on an ongoing body of research in the area of

formal semantics of programming languages.

We can summarise the main point of KLE’s desugaring problem as follows:

1. We seek the semantics in the form of a translation between term languages, from

the source language (whose semantics we seek) to the core language (whose

semantics we assume to be known).

2. We look for the translation in a compositional form: we assume that it can be

decomposed into separate rules according to the abstract syntax of the source

language.

3. The translation we seek is assumed to be a shallow syntactic translation: a desug-

aring.

4. The semantics is operational, and thus executable and testable: through the op-

erational semantics of the core language, we can compare the original imple-

mentation of the source language to the induced semantics.

The appeal of this formulation is that KLE build on standard practices in the area

of programming language semantics.

Semantics as a translation The problem of defining semantics is as old as philoso-

phy itself: we cannot create meaning from nothing. The early pioneers of formal (or

mathematical) semantics of programming languages were well aware of this. Object-

ing to the criticism that formal semantics was necessarily circular—since the language

in which we express the semantics should have formal semantics itself—John Mc-

Carthy famously retorted “Nothing can be explained to a stone” [McCarthy, 1966].

At a high level, meaning is often expressed as a translation from the language whose

semantics we are interested in to a language whose meaning we presume to understand.

Compositional translation Defining the semantics structurally, following the ab-

stract syntax of the source language, has a long tradition, going back at least to Burstall’s

“structural induction” [Burstall, 1969] and his student, Gordon Plotkin’s structural op-

erational semantics (SOS) [Plotkin, 1981]. The latter is also one of the most influential

12 Chapter 2. Problem analysis

frameworks for operational semantics. Many modern frameworks for operational se-

mantics follow in its footsteps.

But unlike SOS semantics, KLE expects the semantics to be expressed by a trans-

lation. We expect this translation to be built up from separate translation rules for each

source language construct in a structured, compositional manner. Thus, the semantics

we seek is not only structurally defined, but also compositional.

Desugarings But, as KLE point out, not every semantics is equal in value: we wish

to gain insight into the essence of the language. This motivates the division of the

full semantics of the source language into an “essential” core language and a “shal-

low” translation into it. The distinction of expressive and shallow features goes back

a long way, originally proposed by Peter Landin, whose seminal work, “The Next 700

Programming Languages” (1966) KLE alluded to. Landin introduced the expression

“syntactic sugar” (the source of the technical term “desugaring”), describing how var-

ious concepts in programming languages can be explained as being a syntactic variant

of λ-terms [Landin, 1964], essentially reducing a programming language to the λ-

calculus. (The translation shown previously in Figure 1.1 is an example of syntactic

sugar, demonstrating how a (non-recursive) let expression could be viewed as a syn-

tactic variant of a λ-application.) Landin had many followers, most notably Reynolds

[1997]. KLE themselves referred to the formal theory of expressiveness of Felleisen

[1991], who summarises the various precursors of this distinction, and defined “syn-

tactic abstractions” as an attempt to capture the same notion that KLE called desugar-

ing. Felleisen lists many names for the notion across various areas, like “macros” in

Lisp [Kohlbecker, 1986]. This theory of expressiveness is an important starting point

as the first formal definition of what we consider “shallow”, but, as is apparent from

KLE’s investigations, the exact distinction can be further refined, and in the present the-

sis we will consider a more broad definition of shallow translations. Nevertheless, even

if the distinction between shallow and essential is unsettled, KLE argue that presenting

the semantics this way has a long tradition and many benefits on its own, mainly, that

it gives insight into the language.

KLE observes that a translation defined by a separate macro expansion for every

source construct can be modelled by a tree transducer [Comon et al., 2007]. They

highlight that this model is limited, however, and introduce a pair of simplified lan-

guages (a source and a core version) to demonstrate potential problems with the tree

transducer model (hence using simple macro expansions as desugaring rules). We rely

2.1. The challenge and its research context 13

on their example languages throughout this thesis, and dubbed them “Pidgin source”

and “Pidgin core”. These languages are part of our benchmark suite, and we quote

them in Figure 3.1a.

KLE also argues that this distinction is also a good way of dividing the work be-

tween humans and machines. They recall their experience on two works presenting

the full semantics of a language divided this way into an essential core and a desug-

aring translation: the semantics of Javascript [Guha et al., 2010] and the semantics of

Python [Politz et al., 2013]. They argue that finding the core of a language requires

insight and domain knowledge, so it is appropriate to entrust a human semantic engi-

neer with this task. They also report that writing the semantics for this core language

is usually straightforward, while writing the desugaring translation that covers every

language feature can be very tedious, as it requires more repetitive work, further moti-

vating the division of work between humans and machines.

Tested semantics If the semantics is operational, it can itself be implemented, serv-

ing as a mathematically defined reference implementation of the language (a defini-

tional interpreter, as explained by Reynolds). This allows semantic engineers, who

attempt to describe programming languages that already have an implementation but

no semantics, to test their induced semantics against the original implementations of

the language. Tested semantics have become a recurring theme in the last two decades,

and KLE underscored the need for tested semantics, as it is important for established

languages to have the formal semantics conform to existing implementations, rather

than merely to ideals in the head of a researcher. KLE lists a long line of work in this

area [Bodin et al., 2014, 2018; Bogdanas and Roşu, 2015; Charguéraud et al., 2018;

Dasgupta et al., 2019; Ellison and Roşu, 2012; Filaretti and Maffeis, 2014; Guha et al.,

2010; Hathhorn et al., 2015; Hildenbrandt et al., 2018; Kheradmand and Roşu, 2018;

Park et al., 2015; Politz et al., 2012, 2013], which demonstrates the need for tested

semantics.

Setting up the problem as finding a testable compositional desugaring translation be-

tween languages makes it widely applicable. This formulation is insightful and prac-

tical, but the challenge remains very hard. KLE’s earnest efforts in publishing their

four failed attempts is both illustrative of the difficulty of the problem, and provides

significant guidance.

In the following section, we start with a brief review of program synthesis, followed

14 Chapter 2. Problem analysis

by a more detailed analysis of past solution attempts, focusing on KLE’s findings.

2.1.3 A brief and high-level overview of program synthesis

The desugaring problem is a problem of program synthesis, but rather a unique one. It

is relatively new, with not even any partially successful solutions for me to build on.

The specification significantly differs from those used in major synthesis frameworks

or algorithms.

This section aims to give a high level overview of program synthesis, providing

context for the rest of the chapter. This will establish the background for past solu-

tion attempts detailed in Section 2.1.4. It serves as the basis of comparison for the

differences between existing methods and the challenge in Section 2.2.1. And finally,

it underpins my arguments for the direction I chose, as described in Section 2.2.2.

The bulk of the thesis (the following chapters) does not directly build on the material

presented in this section; rather, this section serves as the context and basis for my

approach.

Program synthesis is a vast research area, with many methods and applications;

listing them all would be beyond the scope of the present thesis. We refer the reader to

Gulwani et al. [2017] for a recent survey of the field, acknowledging that this area is

developing very quickly, with many newer results not included there. This section will

summarise selected parts of the survey.

Program synthesis is a second-order search problem: the task is to find a program

that satisfies a specification on all inputs. Search algorithms can be classified by three

properties: the specification format, the set in which we look for a solution, and the

search method. Gulwani et al. [2017] classifies program synthesis methods around

these three dimensions: user intent (the specification), search space, and search tech-

nique. When we develop a new synthesis method, the user intent is largely dictated

by the task at hand, while the search technique can be freely chosen. Search space

selection falls somewhere in between these two extremes.

We start with a list of various forms of user intents and classes of search spaces.

Next, we move on to briefly cover the most popular search methods.

User intent

User intent is the input of a synthesis algorithm, and can take various forms based on

the application domain. As our aim is to highlight the difference between problem

2.1. The challenge and its research context 15

specifications in program synthesis and the desugaring problem, we briefly list the

most typical specification formats.

Examples Input-output examples are easy to obtain in some domains, but can be

ambiguous. Hence the synthesised program may not generalise well. Example-

based learning is known as inductive synthesis, or programming by examples,

and is one of the most popular forms of input for synthesis algorithms.

Trace A trace is a detailed, step-by-step behaviour on certain inputs, and contains

more information than simple input-output examples, but could be more taxing

to provide from the user’s perspective.

Logical specification A logical specification is a formal relation between inputs and

outputs. It is precise and succinct, and can be very efficiently leveraged by con-

straint based systems. But it can be quite tricky to write, and many problems are

not trivial to encode as logical constraints.

Templates Program synthesis methods often rely on cooperating with the user, by al-

lowing them to write part of the solution. A template is a high-level program

written by the user, with some “holes” in it that the synthesis algorithm is sup-

posed to fill. A more limited version of templates is a sketch [Solar-Lezama

et al., 2008], a template where the holes are over a bounded domain.

Hints The user can also specify program fragments that the solution should (attempt

to) use.

Programs The specification itself can be a program, where the task is to find a more

optimised version, or an observably equivalent program in a different language.

Static semantics Some systems expect the user to provide the type of the program in

an expressive type system.

Natural language Many modern systems use natural language as the input, as it can

be easier for a non-technical user to produce. Recent years saw enormous im-

provements in this area, with even domain-agnostic large language models ca-

pable of generating complex programs.

16 Chapter 2. Problem analysis

Search space

As we have already noted in the Introduction, one goal of the present thesis is to find

good search spaces for KLE’s challenge.

A crucial aspect of setting up such a search is finding a representation of programs—

a search space—that can “strike a good balance between expressiveness and effi-

ciency” (Gulwani et al. [2017], section 1.3.2). It can be a domain specific language

or a subset of an existing language. It can be an imperative language, a functional

language, or a logic language.

Sometimes the search space has limited expressivity, such as regular expressions or

tree transducers, but often it is a subset of a Turing-complete language. Some synthesis

methods target expressions of a first-order theory, like linear arithmetic.

The most common way to specify a search space is through a grammar, usually a

context-free grammar: SyGus (syntax-guided synthesis) [Alur et al., 2013] is a popular

standard for specifying synthesis problems using context-free grammars.

A grammar usually allows for the creation of a wide range of programs, and errs

on the side of expressiveness. To alleviate this, the high level control structure is often

limited, e.g. to sequential programs. Another way to set up a limited search space is

by defining a parametric search space: sketches define a parametric search space over

a bounded domain. In some statistical learning methods, the usual search space is a

high-dimensional function space over real (floating-point) parameters.

Note that there is some overlap between the user intent and the search space. Some

methods to provide user intent, like templates or types for the program, limit the search

space, while others, like examples or natural language, do not affect it directly.

Search technique

Gulwani et al. [2017] highlights four important areas of search techniques: enumera-

tive search, constraint solving, stochastic search and programming by examples.

Enumerative synthesis We will be testing search spaces by enumerative synthesis

in this thesis, so it is worth covering this area in more detail. Note, however, that we

do not build on common enumerative techniques, therefore the following only serves

as a context for the research, not a foundation.

Enumerative search based syntheses are conceptually simple: we enumerate all

programs generated by a grammar up to a given size, and check for a condition. Despite

2.1. The challenge and its research context 17

being simple, they “have proven to be one of the most effective techniques for synthe-

sising small programs in rich complex hypothesis spaces” (Gulwani et al. [2017], p.

57). The reason is that while enumerative methods are very sensitive to space explo-

sion, excellent techniques have been developed for pruning and accelerating program

synthesis. Thus, the main focus of enumerative methods is on pruning and, to a lesser

extent, ordering the search space. Most implementations are limited to context-free

grammars, but the basic pruning techniques do not depend on the grammar, and can be

generalised. We start our overview by briefly listing the main techniques for pruning

and acceleration.

There are two main basic enumerative search algorithms, both of which allow for

different pruning techniques. Top-down methods, as their name implies, generate the

terms of the grammar starting from the top of the abstract syntax tree, maintaining

a set of partial derivations. They usually check for subsumption to prune the search

space. Note that the subsumption relation depends on term equality, which, in synthesis

algorithms, takes into account the properties of operators, such as commutativity.

Bottom-up methods start from the leaves (terminals) of the abstract grammar, and

maintain a set of small programs from which to build larger ones. As the maintained

set contains complete programs, we can execute them. Bottom-up methods often check

for program equivalence to prune the search space.

Many award-winning synthesis methods are based on enumerative synthesis, in-

cluding MagicHaskeller [Katayama, 2013], Unagi [Akiba et al., 2013], and EUSOLVER

[Alur et al., 2017]. These usually employ additional methods for faster synthesis. Two

such main techniques are offline exhaustive enumeration and unification. Offline ex-

haustive enumeration involves evaluating all programs up to a given size on a large set

of predefined inputs, thereby obtaining a mapping between programs and input-output

pairs, and using the map during the active phase to retrieve programs corresponding to

examples. Unification in this context refers to a divide-and-conquer method, where we

synthesise smaller programs on part of the specification, which are then unified for a

full solution.

Another technique is to build a probabilistic model in advance, based on training

data. The model attempts to predict program attributes, and can be used to augment

various search techniques, including enumerative synthesis. While original approaches

required pre-existing training data and learning the model before the synthesis phase,

there is one enumerative synthesis algorithm that has been scaled by learning a proba-

bilistic model during the synthesis phase, without relying on training data [Barke et al.,

18 Chapter 2. Problem analysis

2020].

Enumerations are also the main building block of more complex synthesis sys-

tems, where they are combined with other search techniques. CVC4SY [Reynolds

et al., 2019] is an enumerative synthesiser that is part of a constraint-based synthesis

framework. The Duet system [Lee, 2021] combines bottom-up enumerative synthesis

with top-down propagation. Top-down propagation is a common divide-and-conquer

search method in inductive synthesis, where the input-output examples are propagated

downwards to smaller sub-problems.

Stochastic search Stochastic search techniques involve first learning a distribution

over the search space, where the distribution is based on the specification, then sam-

pling this distribution for programs. Three popular classes of techniques are the Metropolis-

Hastings algorithm, genetic programming, and machine learning.

Metropolis-Hastings is a popular Markov Chain Monte Carlo (MCMC) algorithm.

These methods define a distribution on programs using a score function, which mea-

sures how well the program satisfies the specification. Starting with a random program

in the search space, we do a random walk, attempting to increase the score function.

The distribution modelled by the score function is usually high-dimensional and highly

irregular, where the Metropolis-Hastings algorithm is known to perform well compared

to other MCMC algorithms.

Genetic programming is a different kind of stochastic search algorithm, based on

genetic algorithms inspired by the biological process of natural selection. Genetic al-

gorithms attempt to find a solution to a search problem through gradual optimisation.

They keep track of a set of candidate solutions (a population), which are randomly

modified by a set of operations, commonly including crossover (combining candi-

dates) and mutation (small changes in a candidate). Candidates that perform better

according to a metric will multiply, while those that perform worse are removed from

the population. Genetic programming applies this general search method to programs.

Instead of specifying a distribution by a score function, we can try to learn it from

the specification using machine learning. An example of this method is Menon et al.

[2013], which learns the distribution from input-output examples. With the recent

success of deep learning methods, it is no surprise that neural networks also have been

applied to the task of program synthesis.

2.1. The challenge and its research context 19

Constraint-based synthesis Constraint solving refers to the task of finding an in-

stantiation of free variables in a logic formula that makes the formula true. In program

synthesis, the entire specification (including syntactic restrictions) is encoded in a sin-

gle formula, in the form of ∃P∀iΦ(P, i), where P is the free variables determining the

program, i is the free variables determining the input, and Φ is a logic formula express-

ing the specification. The two main methods to find an instantiation for P is through

a SAT/SMT solver in solver-aided methods, or through inductive logic programming

as a logic program. While the two areas were developed independently and are quite

different, we may note that many inductive logic programming frameworks are based

on answer set programming, where common implementations also rely on SAT/SMT

solvers.

Encoding the specification in a logic formula is cumbersome and time-consuming.

SKETCH [Solar-Lezama et al., 2008] was the first meta-synthesis framework for solver-

aided synthesis, which could encode the specification in a host language, then solve

synthesis problems through a built-in solver. SKETCH is named after sketches, high-

level programs written by the user, with some “holes” over a bounded domain that the

synthesis algorithm is supposed to fill. The holes are mapped to the variables of a logic

formula, following a formal semantic framework for the SKETCH language. SKETCH

is a highly influential framework with many applications and followers.

In inductive logic programming (ILP), the task is to generalise positive and negative

examples to logic programs. The speciality of this technique is that the examples, the

syntactic and semantic bias (templates for logic programs and their specification) are

all represented as logic programs. As the outputs are also logic programs, ILP is also

capable of learning non-deterministic programs, which most other methods do not

target.

Programming by examples While the above three general methods can target syn-

thesis problems given by various user intents, deductive search targets one very com-

mon specification format: input-output examples. The area is called inductive synthe-

sis, or programming by examples. Deductive search is a divide-and-conquer algorithm,

where we decompose the synthesis problem into smaller sub-problems by pushing the

input-output examples through the grammar top-down. The most influential frame-

work is called Prose (originally FlashMeta) [Polozov and Gulwani, 2015], which is

based on inverse semantics for the operators, while Myth [Osera and Zdancewic, 2015]

and Synquid [Polikarpova et al., 2016] are based on a type-theoretic interpretation of

20 Chapter 2. Problem analysis

synthesis problems, and guide the search by the type of the program in an expressive

type system.

2.1.4 Past solution attempts

The present section provides an overview of other attempts that address the desugaring

problem, following KLE and my own past work. KLE discuss four attempts to solve

the desugaring problem: they report three attempts of their own, and analyse a fourth

method from the research literature that addresses a similar problem. Although their

summaries do not contain the details of the algorithms or their evaluation criterion,

essential research insights can be gained from the accounts of their partial attempts.

As these past attempts only share the goal but not the tools with the present thesis,

the bulk of the thesis does not build on this section. However, the critical analysis in

Section 2.2.2 refers to these research insights as well as to the summary of my own

past work. A further goal of this section is to discuss related works, to give a more

complete picture of the challenge and its history.

The first two attempts analysed by KLE

Their first two attempts, based on a naive tree matching algorithm and Gibbs sampling,

were inspired by the solutions of a similar problem in natural language translation:

learning tree transducers between two term languages. As KLE pointed out, there is a

crucial difference between the desugaring problem and learning natural language trans-

lations: in the latter, we assume the existence of a corpus of translations between the

source and target languages, but there is no ground truth to test a potential translation

against. In their learning framework (Figure 2.1) the situation is reversed. We do not

have example translations (in other words, the desugaring problem is not an inductive

learning problem), but we do have ground truth: we can test a potential translation by

comparing the two outputs obtained by the source and core interpreters. To accom-

modate the algorithms, KLE assumed the existence of such translation examples (i.e.

pairs consisting of a source program and its corresponding intended translation in the

core language), which would be unlikely to be much easier to produce than the rules

themselves. KLE also highlights that the tree transducer model is limited, and can not

express many naturally occurring translation rules even in theory. With their Pidgin

languages (see benchmark 3.1), they highlight that many common intended translation

rules in this domain cannot be expressed with tree transducers. While extended tree

2.1. The challenge and its research context 21

transducers may handle these cases, the inference problem for extended tree transduc-

ers is even harder. Thus, the first two attempts required additional user guidance and

relied on a limited search space.

The search method used in the first attempt was a naive search, which is better

viewed as a program specification in terms of a naive algorithm than a serious attempt

at a solution. The second method, based on Gibbs sampling, was developed building

on this specification. A stochastic search algorithm based on Gibbs sampling was used

to learn tree transducers. Gibbs sampling is a Markov Chain Monte Carlo algorithm,

closely related to the Metropolis-Hastings algorithm, which we briefly reviewed in

Section 2.1.3.

For the desugaring problem, we can set up a metric on translations using the test-

ing framework depicted in Figure 2.1. We can generate source programs, then test

whether the two outputs (through the source interpreter, and, via the candidate transla-

tion, through the core interpreter) agree for a given translation. A metric can be based

on the percentage of source programs upon which a candidate translation passes this

test. But this property is still too discrete, and KLE noted that the convergence of the

algorithm is troublesome.

Third attempt: genetic programming

The third method was based on genetic programming, which we briefly reviewed in

Section 2.1.3. In the case of the desugaring problem, we can use the same metric as we

introduced for Gibbs sampling, the number of source programs upon which a candidate

translation passes the test shown in Figure 2.1.

In theory, this method could work with an arbitrary search space, and is not lim-

ited to tree transducers. It also does not necessarily need additional user guidance.

However, they found that convergence is still troublesome when using genetic pro-

gramming, and KLE noted that they could not scale it to even the simplified Pidgin

languages. We can conclude that it is not straightforward to apply stochastic search

algorithms to the desugaring problem, because the score function we have at hand is

too discrete.

Fourth attempt: constraint-based program synthesis

Their fourth method was a constraint-based program synthesis framework named SYN-

TREC [Inala et al., 2017]. Here, KLE’s analysis is based on SYNTREC’s reported

22 Chapter 2. Problem analysis

abilities and benchmarks, rather than their first-hand experience on applying it to the

desugaring problem. The benchmark suite used in evaluating SYNTREC had some

tasks to synthesise simple, structurally recursive translations between term languages.

SYNTREC is built on the top of SKETCH, extending it with an ability to automat-

ically generate (part of) the sketches following structural recursion on an algebraic

datatype. Thus, it allows a different form of user intent: instead of a sketch, we can

define the high-level structure by algebraic data types (ADTs), and the synthesis algo-

rithm generates structurally recursive translations from one ADT to another.

KLE noted that some benchmarks solved by SYNTREC can be seen as a simplified

version of the desugaring problem, as these benchmarks synthesise mappings between

algebraic data types that can represent languages. There are differences, however.

Applying SYNTREC on the desugaring problem relies on additional assumptions, in

order to accommodate the learning framework to constraint-based program synthesis.

First, the problem needs to be simplified by assuming a shared output space for the

two interpreters, allowing the comparison of the outputs directly, without relying on

the translation to be synthesised. This avoids using the unknown translation (what

we aim to learn) twice in the problem specification and is crucially relied upon in the

constraint solver. Moreover, SYNTREC does not allow desugarings to deviate from a

fixed structurally recursive structure; essentially, it can only synthesise tree homomor-

phisms. While this allows learning simple desugarings very fast, the method can not

be applied to the more complicated desugarings of the Pidgin languages, which we

will discuss in detail in the next chapter. KLE shows that the intended desugaring for

the SFor source constructor, see Figure 3.1, cannot be expressed with this restriction,

as it requires a deep re-arranging of children, which is common in desugarings. This

limitation is shared between the search space of SYNTREC and three transducers used

in the first two solution attempts.

Finally, SYNTREC also requires a deep embedding of the core interpreter into the

framework: the core interpreter must be implemented in the framework’s language,

the SKETCH language. But, as noted by KLE, the formal semantics of even a rela-

tively small language is too large for program synthesis methods to handle, and ex-

panding these semantics in the framework results in huge constraints. The authors

of SYNTREC reported an exponential explosion of the search space for certain target

languages: when the target language has state, the SKETCH framework translates the

implementation of the target language into huge constraints. In the benchmarks suc-

cessfully solved by SYNTREC, the target languages are much simpler than what we

2.1. The challenge and its research context 23

would expect from an “essence” of a programming language. A further problem with

this approach is that producing such an embedding is already non-trivial.

In summary, KLE listed four problems with constraint-based methods:

1. the requirement of a shared output space for the source and core languages,

2. the search space excludes desugarings that re-arrange children,

3. the requirement of a deep embedding of the core interpreter into the framework,

which could be hard to produce, and

4. the exponential explosion of the search space for core languages with state.

My own previous attempt: inductive logic programming

The only other work I am aware of in the context of synthesising semantics of a pro-

gramming language is my own [Bartha and Cheney, 2020]. Note, however, that this

work did not address KLE’s challenge, instead focusing on a closely related but differ-

ent problem. The following brief overview summarises my results and the obstacles I

encountered through this line of research, and compares the task with the desugaring

problem.

In the generic context of reverse engineering the semantics of an existing system,

input-output examples are naturally available, as we can execute an existing program

on arbitrary inputs. We can even use active learning, executing the interpreter inside

the learning process. Inductive logic programming [Muggleton and de Raedt, 1994]

aims to learn logical rules, generalising individual examples to logic programs. In my

Master’s thesis and the publication based on it [Bartha and Cheney, 2020], we used

inductive logic programming to reverse engineer the semantics of a simple interpreter.

In particular, we used meta-interpretive learning [Muggleton et al., 2014] and its im-

plementation, the METAGOL framework [Cropper and Muggleton, 2016].

We extended the METAGOL framework, adding the ability to learn new rules for

unobserved and partially specified predicates, relaxing the strict separation between

specified and learnt predicates and the need for examples of the learnt predicate. Un-

observed predicates do not have direct input-output examples; rather, the examples are

transformed by predicates already specified by the user. My extensions were added to

the official METAGOL implementation.

Based on these extensions, we incrementally learnt the SOS rules of a simple lan-

guage from input-output examples. In SOS, the operational semantics of a language

24 Chapter 2. Problem analysis

is defined as a state transition system, where the states are composed of the program

term and a configuration. The translation rules, that is, the SOS rules, syntactically

transform the program term and move from configuration to configuration. In the sim-

plified language we did not use any configuration, and the syntactic transformations

were elementary.

The user intent of meta-interpretive learning is inductive examples and meta-rules.

Meta-rules are templates for logic rules (Horn clauses), in which we can replace certain

predicate or function symbols with template variables, which are filled by the synthesis

algorithm. The main limitation of this approach was that it did not generalise well. It

was not clear how to obtain templates without knowing the exact translation rules in

advance for general SOS rules, i.e. how to set up a generic search space for SOS rules.

Note that this problem has two sides. One is connected to the algorithm itself,

which expects user defined meta-rules, requiring the user to specify the high level

structure of the logic program. This only allows for learning which individual predi-

cates we use in this structure. This problem has been alleviated since: recent advances

show a way to set up more general search spaces in meta-interpretive learning [Pat-

santzis and Muggleton, 2022]. The flip side of this problem, however, is connected

to the task rather than the method: I never found a balanced search space that would

cover a wide variety of SOS rules while still being efficient. This problem remains

unsolved, and prevented me from extending my work to a wider range of languages.

Future research could build on Patsantzis’ work and try to answer this problem.

My own past work did not address the desugaring problem, instead focusing on the

related task of learning SOS rules directly for the source language. We can summarise

the advantages and disadvantages of the two approaches as follows. KLE’s challenge,

the desugaring problem, contains the idea of learning shallow translation rules, pro-

viding the basis for a balanced search space. The desugaring problem also nicely

divides the work between human and computer by tasking the human engineer with

the creation of the core language. Furthermore, in KLE’s formulation the semantics is

compositional, which may have benefits for the learning process. Learning SOS rules

lack these advantages. However, learning SOS rules is an inductive learning problem,

allowing us to rely on the generated input-output examples directly, which may open

the path to classic inductive learning algorithms. In the present thesis, we follow KLE’s

approach, focusing solely on the desugaring problem.

The next section is an analysis of the challenging aspects of the desugaring problem

in light of KLE’s report, followed by putting forth my own approach in Section 2.2.2.

2.2. Critical analysis of the challenge 25

2.2 Critical analysis of the challenge

2.2.1 Challenges

Following the critical analysis of KLE, we can pinpoint two challenging aspects of the

problem, around which all four solution attempts revolve: the unusual learning frame-

work and the vast search space. Due to the unusual learning framework, three of the

four attempts required assumptions that made them unlikely to be a viable improve-

ment over manually writing the desugaring rules. In addition, the enormous search

space resulted in all four attempts failing, even for a simplified example.

Unusual learning framework Let us look once again at Figure 2.1, quoted from

KLE, that specifies the search task at a high level. It depicts a rather unusual learning

framework, where most kinds of synthesis algorithms are not straightforward to apply.

One way to analyse the situation is to consider what kind of user intent is available,

since it can narrow down the list of usable search methods. The setup is similar to an

active inductive synthesis problem [Jha et al., 2010; Gulwani et al., 2017]: no logical

specification is given, but we can produce input/output examples from evaluations of

programs by the interpreters. But there is one crucial difference: the function we are

trying to learn is not one we can directly test. Following KLE, in our problem statement

we also assumed the existence of two languages, the source language and the core

language, and their respective interpreters. We can evaluate the source programs with

the source interpreter, and the core programs with the core interpreter — but we can

only relate them to each other through the very translation we aim to learn. Writing

input-output examples for the desugaring by hand will likely take more work than

writing the desugaring itself. This rules out the direct application of inductive program

synthesis methods, like the PROSE framework or inductive logic programming. KLE’s

first and second attempts encountered this very problem. The present thesis, on the

other hand, does not assume the availability of any such examples. This, of course,

also excludes traces from potential user intents.

Many program synthesis methods rely on formal constraints and derive solutions

from a logical specification. We know from KLE’s analysis of SYNTREC that encoding

the desugaring problem as a logical constraint requires a deep embedding of the core

interpreter into the constraint-generator framework. For example, for SYNTREC, we

would need to implement the core interpreter in the programming language of the

SKETCH framework. This highlights that there are two slightly different problems at

26 Chapter 2. Problem analysis

hand, depending on whether the core interpreter is treated as opaque (similarly to the

source), or whether it is required to have an implementation accessible to the synthesis

algorithm. Since we assumed that the semantic engineer produces a formal semantics

of the core language, using it in the learning process sounds reasonable. But we have

seen that producing the embedding is not trivial in the first place, and a deep embedding

could lead to huge constraints.

In the present thesis, we assume that the core interpreter is opaque. On one hand,

this makes the challenge harder: for example, it excludes constraint based methods.

On the other hand, it simplifies the open problem considerably. The question of how

to make use of an arbitrary core interpreter in the learning process, e.g. how to turn it

into solvable constraints, is a hard problem in itself. I believe that the results presented

in the thesis can be useful for synthesis methods that do make use of a transparent core

interpreter, but in the present thesis, we will simply not rely on any such information.

When looking at the rest of the user intents listed in Section 2.1.3, we can see that a

specification as a program or a natural language specification is not relevant for our use

case. This leaves us with templates, hints, and types. The synthesis methods employed

in the present thesis will make use all of these.

We may also consider what class of algorithms we can expect to work well. We

can exclude inductive synthesis or constraint based synthesis, based on the lack of

appropriate user intent. This still leaves us with two large group of synthesis algo-

rithms that can be applied to diverse specification: stochastic search based synthesis

and enumerative synthesis.

Two of the past solution attempts analysed by KLE are based on stochastic search:

one is based on Gibbs sampling, and the other on genetic programming. KLE high-

lighted a common problem in stochastic search applied to program synthesis: the score

function is too discrete. In my own opinion, while stochastic methods could play a ma-

jor role in defeating the enormous search space, they are easier to apply to problems

where we have a working non-stochastic approach to build on. In the present thesis, we

do not work on stochastic methods. Instead, we look for a good search space, which

may serve as a foundation for future research in stochastic search for the desugaring

problem.

Enumerative synthesis techniques are simple, but should not be underestimated:

they can be quite fast with clever pruning techniques. However, applying the usual

pruning techniques to the desugaring problem is also not straightforward. The reason

is that most common pruning techniques depend on the specific properties of the search

2.2. Critical analysis of the challenge 27

space, such as program equivalence (in bottom-up methods) or symmetries of operators

(e.g. commutativity of addition, in top-down methods). Our expressions are parametric

in the core language, therefore we do not have universal equivalences or symmetries.

But even if we equip the core language with a computable equivalence relation or

some similar information that can be used in pruning, equivalences or symmetries on

the core language often do not translate to equivalences or symmetries of translation

rules. When synthesising arithmetic expressions, we can treat addition as commutative,

and prune the search space accordingly. However, when synthesising translation rules,

addition is usually no longer commutative, as the core language most likely has some

side effect which makes evaluation order matter.

Vast search space The second problem is shared with program synthesis in general:

the astronomical size of the search space. In addition, the challenge extends the search

space of the already notoriously hard program synthesis problem along a new dimen-

sion: the number of source term constructors, with which we intend to scale. For a

compositional translation, we need to synthesise a separate “program” for each such

constructor. This results in a high number of program synthesis problems, some of

which are interdependent while others can be solved independently. Not only does

the search space grow exponentially by the number of term constructors, but the term

constructors’ translation rules may depend on each other, which makes it difficult to

test translation rules independently. The main point of the translation is to reduce the

number of source term constructors, by translating the complex source language into

a simple core language. Thus, we need an approach that scales well along this dimen-

sion.

The first two methods KLE analysed are based on a reduced notion of composi-

tional translations: tree transducers. Their third and fourth attempts, based on genetic

programming and constraint-based program synthesis, avoid this restriction and can,

in principle, express arbitrary computable translation rules. But the application of gen-

eral program synthesis methods such as these seems even harder: the search space for

arbitrary computable translations is much larger than for tree transducers.

None of the methods succeeded in scaling up to the full Pidgin language (which,

notably, is still not the size of a real world language). KLE highlighted the need for

a reduced search space, but as they point out, tree transducers are too limiting. The

partial progress reported by KLE highlights that this problem is very difficult. To make

progress, we therefore make additional assumptions and reformulate the problem in a

28 Chapter 2. Problem analysis

way that hopefully helps with both challenging aspects: the learning framework and

the extra dimension of the search space.

2.2.2 My approach

My approach rests on two ideas. One is a simplifying assumption for the problem:

that incremental learning is possible. The other idea is to first focus on finding a good

search space as a necessary step towards better solutions, leaving the other aspects

of the synthesis algorithm (e.g. the search technique) for later. Thus, we limit our

investigations to enumerative synthesis, whose success directly depends on the search

space, and allows us to empirically test and compare search spaces.

Incremental learning When teaching students how to program, we typically do not

immediately burden them with all of the language features at once, as this would most

likely overwhelm or confuse them. Instead, our first lecture might start with “hello

world”, followed by gradually introducing related features in small groups. Indeed,

Felleisen et al. [2001] explicitly adopted this approach by providing language “levels”:

self-contained sublanguages that intentionally exclude complex features for pedagogi-

cal purposes.

We follow KLE in their rational reconstruction of the problem, while exploring a

simplifying assumption. I hypothesise that the compositional translation can be learned

incrementally, only learning the translation rules of a few term constructors at a time.

For this strategy to work, we must assume that starting from the rules of a few term

constructors given initially, we can iteratively find small groups of term constructors

(i.e. language “levels”) whose translation rules can be found by testing them only on

that part of the language where the translation has already been established. This idea

originated in my Master’s thesis, reviewed in Section 2.1.4.

An interesting question in incremental learning is whether sequential decomposi-

tion could be automated. In this thesis, we assume that the semantic engineer provides

the sequential decomposition of the learning problem.

Search space The design of every successful program synthesis algorithm has three

separate aspects: the search space, the search technique, and the user intent (see Gul-

wani et al. [2017] p. 7). KLE proposed a search space (tree transducers), but also proved

that it was insufficiently expressive – so the choice of search space remains open. They

also investigated four search techniques, among them two stochastic algorithms (Gibbs

2.2. Critical analysis of the challenge 29

sampling and genetic programming) and one constraint-based method (SYNTREC),

but neither showed much promise. They also introduced the testing framework to (par-

tially) specify the user intent, but three of the investigated algorithms made further

assumptions not contained in the framework.

To limit the scope of the present thesis, let us focus our attention on the first as-

pect: the search space. Looking for a good search technique seems premature, and the

search space is a necessary first step, a building block towards a successful synthesis

algorithm.

We can test the search space by limiting ourselves to the brute force method of

enumerative synthesis, as the success of an enumerative synthesis algorithm directly

depends on the search space. Our primary objective is to find a good search space

(crucial for any successful program synthesis algorithm); we can leave finding a good

search method over that search space or the integration of the synthesis algorithm into a

semantic engineering framework (that is, deciding how best to provide user guidance)

to future research. This does not mean that we do not try to optimise our enumerative

algorithm, or that we do not experiment with additional user guidance: these are re-

quired for beating even the simplest benchmarks. But we do commit ourselves to an

enumerative synthesis algorithm, and let this choice dictate the rest of the investiga-

tions.

It is necessary to limit the scope of the investigated synthesis algorithms, as there

are a wide variety of possible candidates (for a recent survey, once again see Gulwani

et al. [2017]), and testing all of them is beyond the scope of the present research. Be-

yond the ease of comparing search spaces, there are a number of additional arguments

favouring enumerative synthesis:

• Enumerative synthesis, being conceptually simple, is straightforward to apply

to quite general sub-tasks, so the unusual learning framework does not pose a

problem.

• It is not necessarily slow compared to other synthesis methods: enumerative

synthesis has proven to be a very efficient technique in domains where the search

space is rich and complex, but the size of programs is small (see Alur et al.

[2013]). This description somewhat fits our sub-tasks, giving us reason to believe

that it will serve as a good baseline.

• Enumerative synthesis serves as the building block for more sophisticated syn-

thesis algorithms, some of which have fared well in competitions. See e.g. Alur

30 Chapter 2. Problem analysis

et al. [2017] or Reynolds et al. [2019] for recent competition-winning synthesis

algorithms using an enumerative method as part of the algorithm.

For defining the search space, we focus on the meta-language in which we express

the translation rules. We need to find a good balance between expressiveness and ef-

ficiency (see again Gulwani et al. [2017], p. 9), but we do not know how to exploit

program equivalence on translation rules or symmetries like commutativity, which are

the most common source of pruning. Instead, we employ a typed meta-language with a

simple type system. These ideas will be elaborated in Chapter 4, which gives the con-

ditions for incremental learning and provides a high level definition for search spaces,

and Chapters 6 and 7 which explore search spaces defined as a fragment of a typed

meta-language. But first, let us begin by introducing benchmarks, which will allow us

to measure our progress, as well as to illustrate our definitions and methods.

Chapter 3

Benchmarks

Program synthesis is hard. When attempting to apply program synthesis to a new field,

it is often not possible to immediately test the algorithms on real-world problems, as

they are simply too complex. To measure progress, program synthesis research re-

lies on benchmarks suites, collections of simple problems, often drawn from exercises

for humans learning programming. We need such a benchmark suite for synthesising

translation rules.

The current chapter presents a set of source and core languages, connected by shal-

low transformations. We can check whether a given algorithm can solve the problem

in theory, and whether it can solve it within a reasonable time. The benchmarks will

be used to demonstrate the problems and solutions (algorithms) presented, as well as

to compare various implementations.

3.1 Pidgin languages

KLE presented a case study highlighting the challenge of learning desugarings from

examples. They introduced two languages, a source and a core, and intended transla-

tions between them. Their main goal was to demonstrate translations that they would

like to treat as shallow, but which cannot be expressed by tree transducers (they are not

macro expansions). I will use their languages as my first benchmark: although they

did not intend their example as a benchmark, these languages are useful for the com-

parison of search spaces because the special translation rules cover many features. For

convenience, let us give a name to the languages they proposed: Pidgin. Figure 3.1 re-

capitulates the syntax of Pidgin’s source and core languages, and quotes the intended

translation of Pidgin source (red) to pidgin core (blue). Except for minor notational

31

32 Chapter 3. Benchmarks

differences, we repeat their definitions verbatim; some features, such as list “cons”,

are omitted but easy to add.

The syntax of the languages (as shown by Figure 3.1a) and their respective inter-

preters are used as the input of the learning process. The intended output is the set of

translation rules described in Figure 3.1b.

KLE did not explicitly define the semantics of the core language. I wrote an imple-

mentation in Haskell, and choose a precise meaning of the languages. The following

is a brief list of examples where clarification was needed:

• KLE did not specify evaluation order. We assume the core language to be a

standard call-by-value lambda-calculus with arguments evaluated left-to-right.

• KLE did not specify which variables can appear on the left side of an assign-

ment. We treat all variables, whether introduced by CLam, SLet or CLetRec, as

assignable references, and we do not allow assignment for undeclared variables,

which result in an error.

• KLE used multiple parameters in CLam, but did not specify whether an empty

parameter list is allowed. We assume that CLam can have zero parameters (empty

identifier list) and an application can have zero arguments (empty list).

KLE also relied on an informal notation for the desugaring rules. The desugar-

ing rules used are intuitive—but not formally defined—notations for fresh names and

list parameters, paraphrased in Figure 3.1b. In the rule for SBetween, the notations

%i1,%i2,%i3 stand for freshly generated identifiers. In rules such as SLam, SApp, and

SList, notations [t, . . .] and [JtK, . . .] stand for the (possibly empty) lists of sub-terms

t and their translations. Finally, in the rule for SFor, the notation [SFBind(i, t3), . . .]

stands for a (possibly empty) list of bindings of identifiers i to expressions t3, and on

the right-hand side the notations [i, . . .] and [Jt3K, . . .] stand for the lists of the first and

(translated) second components of the bindings, respectively (that is, the results of

unzipping the list considering the bindings as pairs).

We describe reference implementations of the core language and the desugaring

rules in Appendix A.

KLE introduced the Pidgin source and core languages to illustrate several potential

complications in the modelling of translations: the presence of primitive types and op-

erations, the unrestricted number of children, and the special role of names. Handling

argument lists may require expressive translation rules that can re-arrange them (SFor)

3.1. Pidgin languages 33

b ∈ Bool ::= {TRUE, FALSE} i ∈ Id n ∈ Number s ∈ String

o ∈ Op ::= {0−,not,+,−,∧,∨,<,>}
t, t1, t2, t3 ∈ STerm ::= STrue | SFalse | SNum(n) | SVar(i) | SStr(s) | SBetween(t1, t2, t3)

| SPrim(o, [t, . . .]) | SIf(t1, t2, t3) | SLam([i, . . .], t) | SApp(t1, [t2, . . .]) |
| SLet(i, t1, t2) | SLetRec(i, t1, t2) | SAssign(i, t) | SList([t, . . .]) |
| SListCase(t1, t2, t3) | SFor(t1, [f , . . .], t2)

f ∈ SForBind ::= SFBind(i, t)

e,e1,e2,e3 ∈ CTerm ::= CBool(b) | CNum(n) | CVar(i) | CStr(s) | CPrim1(o,e) | CPrim2(o,e1,e2)

| CIf(e1,e2,e3) | CLam([i, . . .],e) | CApp(e1, [e2, . . .]) | CLet(i,e1,e2)

| CLetRec(i,e1,e2) | CAssign(i,e) | CList([e, . . .]) | CListCase(e1,e2,e3)

(a) Syntax of Pidgin source (red) and core (blue) languages

JSTrueK = CBool(TRUE)

JSFalseK = CBool(FALSE)

JSNum(n)K = CNum(n)

JSVar(i)K = CVar(i)

JSStr(s)K = CStr(s)

JSBetween(t1, t2, t3)K = CLet(%i1,Jt1K,CLet(%i2,Jt2K,CLet(%i3,Jt3K,

CPrim2(∧,CPrim2(<,%i1,%i2),CPrim2(<,%i2,%i3)))))

JSPrim(o, [t1])K = CPrim1(o,JtK)

JSPrim(o, [t1, t2])K = CPrim2(o,Jt1K,Jt2K)

JSIf(t1, t2, t3)K = CIf(Jt1K,Jt2K,Jt3K)

JSLam([i, . . .], t)K = CLam([i, . . .],JtK)

JSApp(t1, [t2, . . .])K = CApp(Jt1K, [Jt2K, . . .])

JSLet(i, t1, t2)K = CLet(i,Jt1K,Jt2K)

JSLetRec(i, t1, t2)K = CLetRec(i,Jt1K,Jt2K)

JSAssign(i, t)K = CAssign(i,JtK)

JSList([t, . . .])K = CList([JtK, . . .])

JSListCase(t1, t2, t3)K = CListCase(Jt1K,Jt2K,Jt3K)

JSFor(t1, [SFBind(i, t3), . . .], t2)K = CApp(Jt1K, [CLam([i, . . .],Jt2K),CList([Jt3K, . . .])])

(b) Intended translation of the Pidgin source language into the core language

Figure 3.1: Pidgin source language, core language, and desugaring

34 Chapter 3. Benchmarks

or can pattern match on the list (SPrim). Fresh name generation may be needed to

control the order of evaluation of arguments (SBetween). KLE also highlighted that

their proposed model, tree transducers, is unable to express the re-arrangement of ar-

guments, or to generate fresh names.

The basic Pidgin languages will be the primary example used to illustrate our meth-

ods, as they conveniently contain all of these complications. We will also use them for

evaluation. In more realistic examples, the source language could be much larger than

the core language, since the point of the translation is to reduce the size of the language.

3.2 Pidgin extensions

We present our next benchmarks as extensions of the Pidgin languages (both source

and core) with some common constructs.

3.2.1 Basic list comprehensions

For our first extension of the Pidgin languages we consider basic list comprehensions

a la Wadler [1992] with the following syntax:

t ::= · · · | [t | q] q ::= ε | x← t,q | t,q | let x = t,q

This is a simplification over standard Haskell list comprehensions, which support

patterns in bindings and more general definitions in let. They can be expressed by

desugaring qualifiers to functions JqK mapping core terms to core terms, and desugar-

ing a comprehension by applying the function to JtK. The functions are expressed with

λ-abstraction and application (substitution) over the core terms, both implemented in

the meta-language. We use the familiar syntax λx.T for a λ-abstraction in the meta-

language, and app(T1,T1) for application in the meta-language. We will use %u as a

meta-variable, and implement application with substitution.

Figure 3.2a shows the extensions of the syntax of the Pidgin languages required

for this case study, while Figure 3.2b shows the intended translation of the new source

constructs into the extended core language.

The Return and Bind primitives correspond to the following standard Haskell

functions:

return :: a -> [a] (>>=) :: [a] -> (a -> [b]) -> [b]

3.2. Pidgin extensions 35

t ∈ STerm ::= . . . | SListComp(t,q)
q ∈ SQual ::= QEmpty | QBind(i, t,q) | QGuard(t,q) | QLet(i, t,q)

e,e1,e2 ∈ CTerm ::= . . . | Return(e) | Bind(e1,e2)

(a) Extending Pidgin with basic list comprehensions – syntax

JSListComp(t,q)K = app(JqK,JtK)

JQEmptyK = λ%u. %u

JQBind(x, t,q)K = λ%u. Bind(JtK,CLam([x],app(JqK,%u)))

JQGuard(t,q)K = λ%u. CIf(JtK,app(JqK,%u),CList([]))

JQLet(x, t,q)K = λ%u. CLet(x,JtK,app(JqK,%u))

(b) Extending Pidgin with basic list comprehensions – intended translation

Figure 3.2: Extending Pidgin with basic list comprehensions

The desugaring of comprehensions is described as a two-argument function D[t|q] in

the GHC documentation1.

The generic comprehension desugaring rules used in GHC actually allow for ar-

bitrary monads, not just lists. In contrast, the new core language primitives Return

and Bind are monomorphic, only operating on lists. Return wraps an element into

a one-element list, Bind can be expressed as the composition of a map operation and

concatenation. We kept the generic names to highlight the correspondence with the

Haskell desugarings. Also note that a desugaring relying on mapping and concate-

nation is much larger in our core language, where there is no function composition

operator.

In GHC, guards are desugared to sequential compositions (>>) and a guard oper-

ation for the monad. We omitted these constructs from the core language extension,

since for lists, they are directly definable.

3.2.2 Try-catch-finally

Our third benchmark extends the Pidgin languages with exceptions. The source Pidgin

is extended with try/catch/finally, which desugars to the core language extended with

just try/catch.

1https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/monad_comprehensions.
html

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/monad_comprehensions.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/monad_comprehensions.html

36 Chapter 3. Benchmarks

t, t1, t2, t3 ∈ STerm ::= . . . | STryCatchFinally(t1, i, t2, t3) | SThrow(t)
e,e1,e2,e3 ∈ CTerm ::= . . . | CTryCatch(e1, i,e2) | CThrow(e)

Figure 3.3: Extending Pidgin with try-catch-finally – syntax

In a CTryCatchFinally(t1, i, t2, t3) expression, first t1 is executed. If it terminates

normally with value v, then t3 is executed with default outcome v. If it raises an excep-

tion ex, then t2 is executed with i bound to ex. If executing t2 terminates normally with

value v, then t3 is executed with default outcome v. Otherwise, if t2 also raises an ex-

ception ex’, then t3 is executed with default outcome of raising ex’. (In particular, the

absence of an exception handler can be emulated by having the handler be Throw(i).)

When the finally expression t3 is executed, if it terminates normally with some result

value, that value is ignored, and the default outcome is performed instead. If t3 also

raises an exception, then this exception shall be the result, and the default outcome is

ignored.

To express this expected semantics in the core language we need to rely on thunk-

ing, otherwise the finally block would be inserted twice, resulting in code bloat. Thunk-

ing means that we can save an expression without evaluating it into a λ expression, and

trigger evaluation by application.

Our intended desugaring is the following:

JSTryCatchFinally(t1, i, t2, t3)K = CLet(%f ,CLam([],Jt3K),

CLet(%v,CTryCatch(CTryCatch(Jt1K, i,Jt2K),

%e,CLet(%_,CApp(%f , []),CThrow(CVar(%e)))),

CLet(%_,CApp(%f , []),CVar(%v))))

JCThrow(t)K = CThrow(JtK)

Figure 3.4: Extending Pidgin with try-catch-finally – intended translation

As usual, %f , %v, %e stands for fresh identifiers, while %_ stands for a fresh iden-

tifier that is never used anywhere (a dummy variable). We also give a more readable

version of the intended desugaring of STryCatchFinally, in pseudo-code instead of

the core language constructs:

3.2. Pidgin extensions 37

let f = λ_.t3
in let v =

try
try t1 catch(i) t2 end

catch(e)
f () ; throw e

end
in f () ; return v

However, in the core language there are no observable difference between the thun-

ked version or a version which inserts the finally block twice. This means that learning

the thunked version is not always possible.

Chapter 4

Formal framework

This chapter formalises the desugaring learning problem of KLE, and reformulates

it as the desugaring extension problem, the central problem of my investigations. I

define what it means to structure a full desugaring as a series of extension learning

problems. While it is not clear whether partitioning into a sequence of desugaring

extension problems is always possible, in later chapters I present empirical results

showing that it is possible at least for the case studies.

I also focus on the necessity to find a good search space. My definitions aim to clar-

ify the notion of “shallow compositional syntactic translation” (which I call a desugar-

ing, following KLE).

The purpose of this chapter is thus twofold. On the one hand, it introduces the back-

ground, listing notations and concepts used in the rest of the thesis. On the other hand,

it also presents a contribution of its own: a first attempt at formalising this new task.

The definitions are the result of the rational reconstruction of the informal challenge,

and I will elaborate on the motivation behind them. My hope is that these definitions,

together with the search spaces presented in Chapter 6 and Chapter 7, will serve as a

foundation for future research.

My definitions can be summarised as follows:

1. Modelling the abstract syntax, using multi-sorted term languages.

2. Using a resource limit in interpreters to ensure decidable termination.

3. Limiting the side-effects of interpreters to errors and non-termination.

4. Modelling interpreters and translations with the error monad (also called the

exception monad).

39

40 Chapter 4. Formal framework

5. Defining the compositional translations as structurally recursive functions.

6. Using monads to allow side effects in the translation rules.

7. Defining typed translation rules w.r.t. a user-defined sort-mapping from source

sorts to core sorts.

8. Defining the correctness of translations by requiring that the mappings in the

testing framework (Figure 2.1) commute.

9. Defining adequacy of translation rules by requiring that the translation is injec-

tive on values.

10. Defining sublanguages as subsets generated by a subset of term constructors

that are closed w.r.t. the evaluation function, and extensions in terms of sublan-

guages.

11. Finally, defining the desugaring extension problem, and sequential learning as a

series of desugaring extension problems.

I conclude the chapter with a series of questions raised by the framework.

4.1 Background - monads

Within our framework, we regard the interpreters of the source and core languages

as opaque computations, and the translations as structurally recursive computations.

Computations differ from mathematical functions; these differences are usually called

effects.

Moggi [1991] described a uniform way to model computations with effects (he

called these “notions of computations”), using category theory and monads. Wadler

[1992] showed how Moggi’s monads can be used to systematically structure pure func-

tional programs that have effects, such that the structure provides modularity. Mod-

elling computations as monads is commonplace, and I will be relying on them occa-

sionally in my own definitions.

The two notions of monad, one in category theory and one in functional program-

ming, are slightly different. The thesis does not require an understanding of category

theory, and we refer interested readers to standard textbooks on the subject such as the

classic from MacLane [1971], as well as Awodey [2006], which is more accessible to

non-mathematicians.

4.1. Background - monads 41

Note that the effects that we rely on are very limited. We need to model errors

(exception monad) and local effects in the translation, such as fresh name generation

(which can be implemented with a state monad, for example). Both of these are easy to

understand without the notion of monads. The bulk of our thesis will not rely on a for-

mal treatment of these effects. As the present chapter serves as formal background, for

completeness, we include the definition of a monad used by functional programmers,

in the “Kleisli triple” form (see also Moggi [1991], Def. 1.2).

Definition 4.1.1 (Monad). A monad is a triple:

1. A type constructor with a single polymorphic argument M (i.e. for any type τ

the type constructor M creates a new type M τ). The type M τ can be thought

of as “computations of type τ with effects from M ”.

2. A function return : τ→M τ, polymorphic in τ, that embeds any computation of

type τ into the effectful computations of type M τ, equipped with trivial effects.

3. A function bind : M τ1× (τ1→M τ2)→M τ2, polymorphic in τ1 and τ2, that

can compose effectful computations.

Such a triple is a monad iff it satisfies the three monad-laws:

1. The return function is left identity for bind:

∀x : τ1, f : τ1→M τ2. bind(return(x), f) = f (x)

2. The return function is right identity for bind:

∀m : M τ1. bind(m,return) = m

3. The bind function is “associative”:

∀m : M τ1, f : τ1→M τ2, g : τ2→M τ3.

bind(m, λx.bind(f (x),g)) = bind(bind(m, f),g)

Writing out monadic computations in terms of the bind function can be fiddly. A

syntactic sugar used by the Haskell language is the do notation, which we will use

on one occasion, where the do notation is not only much more readable, but will also

provide a syntax more familiar to programmers less versed in functional languages.

Note that the do notation is a generalisation of the list comprehension desugaring from

Section 3.2.1.

42 Chapter 4. Formal framework

Definition 4.1.2 (Do notation). Let m1 : M τ1,m2 : M τ2, . . . ,mn : M τn be computa-

tions, and f : τ1× τ2×·· ·× τn→M τ be a parametric computation.

Then

do x1← m1

x2← m2

. . .

xn← mn

f (x1,x2, . . . ,xn)

is notational shorthand for

bind(m1,λx1.bind(m2,λx2. . . .λxn.bind(mn, f (x1,x2, . . . ,xn)) . . .))

Note that in Haskell the notation covers many more cases, but we will only use it

in this limited form.

4.2 Syntax

We employ multi-sorted term languages (see Meinke and Tucker [1993], section 2.1.4,

page 201) as a standard model of syntax. The definition of the problem would work

with single-sorted languages as well, but I chose multi-sorted terms for the following

reasons:

• It is reasonable to assume the existence of a multi-sorted representation. We have

assumed that the source and core languages have formal abstract syntax, which

most likely employ multiple syntactic classes. The sorts correspond to these

syntactic classes, with additional auxiliary sorts for lists and tuples if needed.

• This multi-sorted representation contains useful information. It allows us to limit

translations to sort-preserving (typed) ones, which automatically excludes many

ill-formed translation rules from the search.

• The usage of multi-sorted terms also highlights that in practice, we might not

evaluate every term, only those that belong to the sort (syntactic class) of pro-

grams. There could be multiple syntactic categories that can be evaluated (like

expressions, programs, modules, etc.). We ignore this potential complication,

assuming that there is one distinct set of terms, called programs, that can be

evaluated.

4.2. Syntax 43

Definition 4.2.1 (Signature). A signature Σ consists of

• A non-empty finite set of sorts SΣ, with a designated sort σ
p
Σ
∈ Σ for programs.

• A finite set of term constructors (or function symbols) FΣ.

• The signature function sig : FΣ → S∗× S, where S∗ is a (possibly empty) fi-

nite sequence of sorts. We will write f : σ1×·· ·×σn→ σ (where f ∈ FΣ and

σ1, . . . ,σn,σ ∈ SΣ) when sigΣ(f) = (σ1, . . . ,σn;σ). The number n can be 0, in

which case we will write f : σ, and will call f a constant (or nullary symbol).

For a term constructor f : σ1×·· ·×σn→ σ we will call σ1×·· ·×σn the domain,

and σ the codomain of the term constructor. Note that term constructors are not func-

tions and these domains and codomains are not sets, merely a shorthand reference to

sorts in the signature.

Σ and Ω will stand for signatures (SΣ,σ
p
Σ
,FΣ,sigΣ) and (SΩ,σ

p
Ω
,FΩ,sigΩ), respec-

tively. We will use Σ for the signature of the source language and Ω for the signature

of the core language. We will also omit the Σ or Ω subscripts if they are unambiguous

from the context.

Remark 1. Note that for simplicity, we do not use term constructors with an arbitrary

number of arguments, therefore we need to model lists of arguments with an additional

sort for the list and additional term constructors NIL and CONS. We do not have sort

polymorphism, so we need to add a separate sort for each type of list, and add separate

term constructors as well.

Remark 2. Also for simplicity, our model does not include an infinite number of con-

stants. Literals such as numbers and strings therefore have their own term constructors.

In our benchmarks in Chapter 3, we left out literals in the simplified grammar pre-

sented. For example, the simplified grammar of the Pidgin languages in Figure 3.1a

does not contain the grammar rules of numbers or strings.

We could have distinguished between sorts that have literals and those that do not,

with the possible intention that literals are shared between the source and target lan-

guages, and are preserved by translations. However, this makes no practical difference

in our framework, as it does not matter whether the translation preserves literals or the

term constructors of the literals. Therefore, we can omit this complication from the

definition of signatures and languages.

Example 4.2.1. In the Pidgin source language (see Figure 3.1a) the sorts are Id, Num-

ber, String, Op, STerm, SForBind, ListId, ListSTerm and ListSForBind. The sorts of

44 Chapter 4. Formal framework

the core language are Bool, Id, Number, String, Op, CTerm, ListId, and ListCTerm.

We also consider each list sort to be automatically equipped with the suitable term con-

structors nils : Lists and conss : s×Lists→ Lists, with the sorts of identifiers,

numbers and strings all having their own term constructors.

Definition 4.2.2 (Abstract language). An abstract language (or language for short)

over signature Σ is the set of terms defined inductively with the term constructors in the

signature. We extend the signature function sig to terms, (ab)using the same notation

for the extended function, and we will use T σ
Σ

for terms that belong to the sort σ.

The sets T σ
Σ

for all σ ∈ SΣ are defined inductively with the following rules:

1. If c ∈ FΣ is a constant with signature c : σ, then c ∈ T σ
Σ

.

2. If f ∈ FΣ is a term constructor with signature f : σ1×·· ·×σn→ σ, and

t1 ∈ T σ1
Σ

, . . . , tn ∈ T σn
Σ

are terms, then f (t1, . . . , tn) ∈ T σ
Σ

.

We write TΣ =
⋃

σ∈SΣ
T σ

Σ
for all of the terms belonging to any sort. The size of a

term is the number of term constructors in it.

We call T σp

Σ
the set of program terms, or programs for short, and will abbreviate it

as T p
Σ

.

In functional programming, the terms of a language can be represented using a

finite family of mutually recursive algebraic data types (defining a separate type for

each sort in the signature). We will call such a set of types a data system. Note that

we only allow finite structures, not infinite trees. In other words, we use well-founded

semantics for algebraic data types.

In universal algebra terminology, an abstract language is the free multi-sorted al-

gebra over the signature Σ.

4.3 Semantics

As explained earlier, we view both the source and core languages as opaque inter-

preters, which might seem natural to model as mathematical functions from terms to

result values. However, as well-known, this approach is too simplistic, since there are

several complications that may arise:

1. Some computations may not terminate. We may model the output of diverg-

ing computations with a special value (⊥), and model the interpreter as a total

4.3. Semantics 45

function. But for Turing-complete languages this evaluation function is not

computable.

2. The output space may not be part of the (input) language: it may contain opaque

functions, locations, or other non-observable values.

3. Similarly, we may get errors because the source language is not defined on all

terms. Some terms may be allowed by the abstract grammar, but still result in

a syntax error or type error. For example, the abstract grammar of the Pidgin

source language permits nonsensical expressions like SPrim(<, []).

4. The observable behaviour may not be reduced to an input-output pair: there

could be other side effects like I/O operations.

5. The interpreter may not be deterministic.

We rely on monads modelling the interpreters. Looking at our learning setting (see

Figure 2.1), we can see that we need to be able to compose the source interpreter, the

core interpreter, the translation between them, and a comparison operation: that is, we

want all of them to live in the same monad. Note that this monad, being our model

in the learning framework, is limited to observable effects. We do not need to model

internal effects like state, which only reside in one of the interpreters. We only deal

with effects where the program interacts with its context, the learning framework.

Modelling with an abstract monad is not enough, as we need to make sense of

the comparison of outputs in the learning framework (see Figure 2.1), and the learn-

ing algorithm may depend on this comparison. For example, if the interpreters are

not deterministic this comparison can only be approximated. Right now, I can only

offer individual solutions for the different complications, leaving generalisations for

later. In this section, I list the simplifications that I employed to deal with each of

the aforementioned complications in turn, finally arriving at modelling with the error

monad.

Non-termination Modelling non-termination is a central problem in denotational se-

mantics. The classic solution uses domain theory, which models how non-terminating

behaviour arises as a fixpoint of recursive equations. For an introduction of the sub-

ject and a summary of its history, see Abramsky et al. [1995]. In our model, we do not

need to consider how non-termination arises; it is enough for us to simply acknowledge

46 Chapter 4. Formal framework

that the source and core languages could be Turing-complete, and may not terminate.

Therefore it suffices to treat non-termination as an error that can not be handled.

All of our languages in our case studies have non-terminating constructs. Due to the

halting problem, it is impossible to decide whether a program in these languages ter-

minates or not, or whether two such programs (the source and the core program) agree

on termination. The comparison of the source and core behaviour can only be approx-

imated. Our model assumes that the interpreter can be run with bounded resources

(including time, CPU cycles, and memory), the evaluation function is computable, and

all programs where evaluation exhausts resources evaluate to a specific error (⊥).

This means that the evaluation function has a parameter r (the resource limit) con-

trolling the bounds on resources (the maximum time/memory available). The paramet-

ric evaluation function is only an approximation of the interpreter’s behaviour, and all

that we can guarantee is that for any particular program there exists a sufficiently large

r such that the evaluation function behaves correctly on that program if the bound is

at least r. For smaller values, the comparison of the source and core behaviour of the

program may be incorrect.

This error could be in either direction. The comparison operation determines

whether the source interpreter agrees with the composition of the translation and the

core interpreter for a particular input. With a small resource limit, it is possible that the

comparison operation reports that the two compared computations agree (or disagree),

while the reality is the opposite. For a given bound, it could be that both the source and

the core evaluation function returns ⊥ (therefore agreeing), when with a larger bound

they would return two different values, or one of them returns a value while the other

diverges. For a given bound, it is also possible that one of the evaluation functions re-

turns ⊥ and the other does not (therefore disagreeing), while with a larger bound they

would return the same value.

Remark 3. While this approximation makes the evaluation function computable, it may

result in non-determinism. Even in a deterministic language, resource usage (such as

time) may not be deterministic, and replacing the output with⊥ when the computation

takes too much time reflects the running time in the observable output. However,

we ignore this source of non-determinism. In our case studies, we implemented the

“opaque” source interpreters ourselves, and allowed for limiting the number of steps

in the evaluation. With a realistic interpreter, deterministic resource limitation may not

be easy to implement.

4.3. Semantics 47

Output space The output of a program could be opaque. For example, it can be

an opaque closure, in which case we can only approximately compare such outputs

by testing. We simplify our setting by assuming that output values (of a successfully

terminating program) are part of the input language, such that we can apply translations

on the outputs as well, and compare the resulting core terms.

Errors Interpreters may return errors. We extend the co-domain of evaluation func-

tions with a set of errors, and require that the set of errors is shared between the source

and core languages to allow for comparing the outputs.

Side effects We simplify our setting by not allowing any other observable behaviour

but the output (which can be a value, an error, or ⊥ when the computation does not

terminate).

Non-determinism If the interpreter is not deterministic, then again the comparison

of outputs can only be approximated. Not only are we unable to prove whether a

candidate desugaring is correct on all possible inputs (this limitation is there for any

inductive learning without a full specification, as we can merely test on a finite set), we

may also not refute a candidate reliably, since a disagreement may be due to the non-

determinism. The given opaque source- and core implementations would likely not

provide any reliable way to explore the search space, making enumerative synthesis

problematic. While the non-deterministic interpreters could be modelled in various

ways, but specifically in the learning process we most likely need to employ statistical

methods. As far as I know, all approaches to tested semantics rely on repeatable (i.e.

deterministic) tests.

The present thesis assumes deterministic interpreters.

What we get through these simplifications is an interpreter that maps terms to either

values (i.e. fully-evaluated terms) or errors. In other words, our computations take

place in the error monad over the category of total computable functions. We give a

simplified definition that suffices for our purposes:

Definition 4.3.1 (Error monad). Let E be a fixed, finite set of errors that contains ⊥
and any errors the interpreter may return (that are not part of the input language), such

as syntax_error. We assume that E is disjoint from any set of terms in any languages,

and let ⊎ mean the disjoint union of two disjoint sets. Our interpreters and translations

48 Chapter 4. Formal framework

will be functions of the form f : A→ B⊎E. We abuse notation by defining a notion

of composition for such functions, propagating the error as follows: Let f : A→ B⊎E

and g : B→C⊎E. Then

∀a ∈ A,g(f (a)) =

g(b) if f (a) = b ∈ B

e if f (a) = e ∈ E

Definition 4.3.2 (Semantics). Let R be a totally ordered set, the set of possible resource

limits, and E the set of errors with at least one element⊥∈ E. A (bounded) evaluation

function (or interpreter) of a language TΣ is a total computable function Φ : R→ T p
Σ
→

T p
Σ
⊎E. We treat the first argument as a parameter and we will use the notation Φ[r](t),

visually distinguishing the resource limit parameter from the program term argument.

1. ∀r ∈ R,∀t ∈ T p
Σ
,Φ[r](Φ[r](t)) = Φ[r](t) (idempotence)

2. ∀r1,r2 ∈ R,r1 < r2,∀t ∈ T p
Σ
,Φ[r2](t) =⊥ =⇒ Φ[r1](t) =⊥ (monotonicity)

3. ∀r1,r2 ∈ R,r1 < r2,∀t ∈ T p
Σ
,Φ[r1](t) ̸=⊥ =⇒ Φ[r2](t) = Φ[r1](t)

The elements of the set

{
t ∈ T p

Σ

∣∣ ∃t ′ ∈ T p
Σ
, ∃r ∈ R, Φ[r](t ′) = t

}
(the image of Φ apart from the errors E) are called the values of the language,

denoted by V (TΣ).

If Φ is a bounded evaluation function, we will call the unbounded evaluation func-

tion Φ∞ which maps from T p
Σ

to T p
Σ
⊎E. The unbounded evaluation function is not

computable in general, but can be defined as the limit of the bounded evaluation func-

tions:

Φ
∞(t) =

⊥ if ∀r ∈ R,Φ[r] =⊥

v if ∃r ∈ R,Φ[r] = v,v ̸=⊥

Note that Φ∞(t) is the limit which always exists: in the second case, where there

is a resource limit r where Φ[r] terminates (does not return ⊥), due to condition 3, the

bounded evaluation function can not change its return value for higher resource limits.

This means that the value v is unique, and it is the limit of the bounded evaluation

functions.

Remark 4. A value evaluates to itself (cf. Remark 7), that is: ∀v ∈V (TΣ),Φ
∞(v) = v.

4.4. Translations 49

4.4 Translations

The definition of permissible translations is the basis for defining search spaces. The

requirements are partially identified by KLE, namely: 1) that the translation needs to

be compositional and 2) it needs to be able to express the re-arrangement of children

and 3) it needs to be able to generate fresh names. I also added two new requirements:

4) the translation needs to be able to return errors, and 5) the translation must be a

typed translation between two sets of mutually recursive algebraic data types. In the

present section, I proceed step-by-step to refine definitions to incorporate all of these

requirements.

Typed translation By a typed translation, we mean one that conforms to the abstract

grammars of the source and core languages. We restrict the potential translations to

ones that preserves syntactic categories, which in our model are represented by the

sorts.

In general, the sorts of the source and the core language are different, and indeed,

in the Pidgin language the core language has Booleans but the source does not, while

the source language has a sort for SForBind and the added ListSForBind, and neither

has a corresponding sort in the core language. Preserving the sorts can be defined w.r.t.

a mapping from the source sorts to the core sorts.

Definition 4.4.1 (Sort mapping). Let Σ and Ω be two signatures. A sort mapping

from signature Σ to signature Ω is a partial function s : SΣ ⇀ SΩ from Σ-sorts to Ω-

sorts which preserves the sort of programs: s(σp
Σ
) = σ

p
Ω

. We will write dom(s) for the

domain of the sort mapping, which at least contains σ
p
Σ
. A total sort mapping is a sort

mapping where dom(s) = SΣ.

Errors Translations take place in the same error monad as interpreters: this lets us

compose them together with the interpreters. Translations can naturally return errors.

If evaluating a source term returns a syntax error, then we may not want to map it

onto the core language, we may simply want to translate it directly into the syntax

error. For example, our intended translation of the Pidgin source language in Figure

3.1 does not give a mapping for a term with constructor SPrim and zero arguments.

We may imagine the source interpreter raising a syntax error in this case, and it is

more natural for the translation to raise the same syntax error directly, since the core

language contains no corresponding constructs that result in a syntax error in the core

50 Chapter 4. Formal framework

interpreter.

Definition 4.4.2 (Translations). Let Σ and Ω be two signatures and s a sort mapping

from signature Σ to signature Ω. Let E be the set of errors.

We will refer to a (total) computable function δ : TΣ→ TΩ⊎E as a translation w.r.t.

sort mapping s : SΣ ⇀ SΩ if it conforms to the sort mapping:

∀σ ∈ dom(s), t ∈ T σ
Σ =⇒ δ(t) ∈ T s(σ)

Ω

We treat the sort mapping as a fixed part of the entire desugaring learning problem,

thus we often talk about translations without explicitly mentioning the sort mapping,

and the sort mapping should be understood from the context. Note that we interpret

translations on the whole source language, not just on programs, because our aim is to

define a special kind of translations, compositional translations.

Compositionality A straightforward way to define compositional translations is to

treat them as structurally recursive functions. While this definition is too simple, we

can use this as a starting point to introduce compositional translations, and extend it

later as needed.

Definition 4.4.3 (Interpretation). Let Σ be the source and Ω the core signature, and s

be a total sort mapping from Σ to Ω. Let f ∈ FΣ be a term constructor with signature

f : σ1× ·· · ×σn → σ. Then, we will call members of the function space (of com-

putable functions) T s(σ1)
Ω

×·· ·×T s(σn)
Ω

→ T s(σ)
Ω

interpretations of f over the signature

Ω. When the signature of the term constructor is f : σ (that is, f is constant), then an

interpretation is simply an element of T s(σ)
Ω

.

Remark 5. We limit interpretations to total sort mappings, as the definition of a struc-

turally recursive translation requires interpretation for all term constructors of the

source language. We will extend the definition to partial sort mappings later.

Definition 4.4.4 (Structurally recursive functions). Let Σ be the source signature and

Ω be the core signature, and s be a total sort mapping from Σ to Ω.

An interpretation of the source signature Σ into the target language TΩ is a (com-

putable) function π assigning an interpretation to every term constructor f ∈ FΣ over

the signature Ω. That is,

• The domain of π is FΣ, and

4.4. Translations 51

• for every term constructor f ∈ FΣ with signature f : σ1×·· ·×σn→ σ,

π[f] : T s(σ1)
Ω

×·· ·×T s(σn)
Ω

→ T s(σ)
Ω

Note that since π is a function that returns functions, we use square brackets to vi-

sually distinguish the two function applications when π is applied to a term constructor

f , and plain parentheses when the resulting interpretation is applied to terms.

We refer to π[f] as the translation rule for f in π.

An interpretation of the source signature defines a sort-preserving function δ : TΣ→ TΩ

from source to core terms using structural recursion.

That is,

• For every t ∈ TΣ which is a constant, δ returns the same term as π:

∃c ∈ FΣ,c : σ, t = c =⇒ δ(t) = π[c]

• For every t ∈ TΣ that is a composite term, we apply δ recursively on the sub-

terms, and use them as arguments of the interpretation returned by π:

∃ f ∈ FΣ, f : σ1×·· ·×σn→ σ,∃t1 ∈ T σ1
Σ

, . . . , tn ∈ T σn
Σ

, t = f (t1, . . . , tn) =⇒
δ(t) = π[f](δ(t1), . . . ,δ(tn))

We will call such translations structurally recursive functions. In functional pro-

gramming terms, these are “folds” over the datatype defined by Σ. In universal algebra

terms, these are just multi-sorted Σ-algebras with signature Σ, where every σ ∈ Sσ

source sort has the set T s(σ)
Ω

as its carrier set.

Effects The translation rules of structurally recursive translations can not return er-

rors or generate fresh names. For this, we need to extend the definitions from pure

computable functions to computations. We will model computations as functions in a

general functional programming language.

The capability to return errors is reflected in the type of translations, that is, errors

are an observable, outside effect. Generating fresh names is purely internal: we only

need to treat it as an effect because we want to decompose the translation into separate

translation rules. The output of translation rules capable of generating fresh names

depends not only on the arguments but also on the context (the other names generated).

To the best of my knowledge, no standard mathematical model currently exists for

52 Chapter 4. Formal framework

generating fresh names, but we can surely implement fresh name generation with other

effects, for example via a state monad.

In general, translation rules may use any effects as long as they can be handled in-

ternally, so that the whole translation only has errors as observable effects. We need an

internal monad for translations, with a specific run operation that handles the internal

effects and takes us back to the error monad of the learning framework.

To change the definition of a structurally recursive function into one which allows

us to work with effectful computations, we need to sequence the operations. For a

composite term, we need to fix the order of evaluation of the recursive calls on the

sub-terms: we evaluate arguments from the left.

Next, I will provide an informal definition relying on the familiar do-notation as

the modelling language for computations over a monad.

Definition 4.4.5 (Compositional translation). Let Σ be the source signature and Ω be

the core signature, and s be a total sort mapping from Σ to Ω. Let M be the monad for

our translation rules , with an operation

run :: M a→ E ⊎a

That is, run handles any effect that translation rules may use, except errors.

An interpretation of a term constructor f ∈ FΣ with signature f : σ1×·· ·×σn→ σ

is a computation with type

T s(σ1)
Ω

×·· ·×T s(σn)
Ω

→M T s(σ)
Ω

An interpretation of the signature Σ into computations over M TΩ is a computable

function π that assigns an interpretation to every term constructor in FΣ. We call π(f)

the translation rule for f in π.

A compositional translation is a translation δ : TΣ→ TΩ⊎E that can be defined in

terms of a computation δ′ : TΣ→M TΩ:

δ(t) = run δ′(t)

where δ′ is defined on the terms of TΣ by pattern matching on the term constructors,

using the following scheme (for every term constructor f ∈ FΣ with signature f : σ1×

4.4. Translations 53

· · ·×σn→ σ):

δ(f (t1, . . . , tn)) = do x1← δ(t1)

. . .

xn← δ(tn)

π[f](x1, . . . ,xn)

Note that here π[f] is merely notation expressing which function is called. π should

not be mistaken for a function in the programming language.

Re-arranging children Compositional translations can express certain re-arrangings

of children, because translation rules can access the translated arguments and re-arrange

the children after the recursive call.

Example 4.4.1. Let the source and core languages both be a simple language of unla-

belled trees, with arbitrary numbers of ordered children.

SΣ = {SNode,ListSNode}
FΣ = {node : ListSNode→ SNode,nilSNode : ListSNode,

consSNode : ListSNode×SNode→ ListSNode}

SΩ = { CNode,ListCNode}
FΩ = { node : ListCNode→ CNode,nilCNode : ListCNode,

consCNode : ListCNode×CNode→ ListCNode}

The translation that reverses the order of the children can be expressed as a struc-

turally recursive function with the following interpretation of the source term construc-

tors:

π(nilSNode) = nilCNode

π(consSNode) = consCNode

π(node)(children : ListCNode) = node(reverse(children))

This translation can re-arrange the children because the translation rules of nilSNode

and consSNode preserve the list structure; thus, the translation rule can re-arrange them

after the recursive call. Compositional translations are limited in their ability to re-

arrange children: the ability to re-arrange depends on whether the recursive call on the

arguments preserves the children in the first place.

54 Chapter 4. Formal framework

Partial sort maps In general, the sort map is not total. We extend compositional

translations to partial sort maps as follows:

Definition 4.4.6 (Extension to partial sort maps). Let Σ and Ω be the source and core

signatures. Let s : SΣ ⇀ SΩ be a partial sort mapping.

We create an extended language Ω′ in the following way. The sorts of Ω′ are:

SΩ′ = SΩ ∪̇(SΣ \dom(s))

We extend the s partial sort mapping into an s̄ total sort mapping from SΣ to S′
Ω

:

s̄(σ) =

s(σ), if σ ∈ dom(s)

σ, if σ /∈ dom(s)

We also “copy” the term constructors belonging to the new sorts. For any f ∈
FΣ, f : σ1× . . .σn → σ,σ /∈ dom(s), let f̄ be a new term constructor with signature

f̄ : s̄(σ1)× . . . s̄(σn)→ σ̄. We extend FΩ with these new term constructors:

FΩ′ = FΩ ∪̇
{

f̄ : s̄(σ1)× . . . s̄(σn)→ s̄(σ)|∀ f ∈ FΣ, f : σ1× . . .σn→ σ,σ /∈ dom(s)
}

We will call δ a compositional translation from Σ to Ω w.r.t. the partial sort mapping

s if

• It is a compositional translation from Σ to Ω′ w.r.t total sort mapping s̄.

• It maps every term constructor f ∈FΣ, f : σ1× . . .σn→σ,σ /∈ dom(s) to its copy

f̄ . (In other words, it preserves the term constructors with which we extended

the original target signature Ω)

Note that such a δ preserves the (partial) sort mapping s, making it a translation

from Σ to Ω according to our definitions. In particular, it maps source programs into

core programs.

Remark 6. Partial sort mappings allow some re-arrangements without the aforemen-

tioned limitations, when the arguments that we want to re-arrange belong to sorts that

are not in the domain of the sort mapping.

4.5. Correctness 55

Shallow translations In our intended translation of the Pidgin languages, SPrim has

two rules. This poses no problem in the tree transducer model originally proposed

by KLE, provided that the tree transducer is not deterministic. But in a compositional

translation, we always assume one translation rule per term constructor, and the rule

for SPrim can only be expressed by case analysis on lists.

Translation rules can analyse their arguments: this allows for case analysis or re-

arranging children. But this can also be too expressive: translations that can not be

considered shallow in any sense can be expressed with deep analysis. We can limit this

analysis by restricting the depth of analysis for arguments.

We will call a compositional translation shallow w.r.t. a (partial) sort mapping s if it

never analyses terms belonging to sorts in SΩ, that is, if it only performs case analysis

on the “extra” sorts not in dom(s).

This approach divides syntactic categories into two sets: one which contains ele-

ments we think about as “structures”, such as lists or tuples, and the other we think

about as “content”. A shallow translation is one which can look into the structure, but

not the content.

4.5 Correctness

Definition 4.5.1 (Soundness). Let TΣ and TΩ be two languages, with two evaluation

functions ΦΣ and ΦΩ, respectively. A translation δ : TΣ → TΩ ⊎E is sound iff (cf.

Figure 2.1)

∀t ∈ T p
Σ
,Φ∞

Ω(δ(t)) = δ(Φ∞
Σ (t))

In other words, a translation is sound iff the following diagram (drawn based on

the testing framework shown in Figure 2.1) commutes:

T p
Σ

T p
Ω
⊎E

T p
Σ
⊎E T p

Ω
⊎E

δ

Φ∞
Σ

Φ∞
Ω

δ

Remark 7. A sound translation maps values to values or errors: if v ∈ V (TΣ), then

Φ∞
Σ
(v) = v, and since δ is sound, Φ∞

Ω
(δ(v)) = δ(Φ∞

Σ
(v)) = δ(v), which means that δ(v)

is either a value or an error.

56 Chapter 4. Formal framework

Note that soundness is not enough: a sound translation can still map everything to

an error, or collapse all values into a single value. We would like that:

• Values are mapped to values and not errors.

• The translation is injective on values: different source values should not be

mapped to the same target value.

We call these additional requirements adequacy:

Definition 4.5.2 (Adequacy). Let TΣ and TΩ be two languages, with two evaluation

functions ΦΣ and ΦΩ, respectively. A translation δ : TΣ→ TΩ⊎E is adequate iff

∀v ∈V (TΣ),δ(v) ∈V (TΩ) and ∀v1,v2 ∈V (TΣ),v1 ̸= v2 =⇒ δ(v1) ̸= δ(v2)

that is, δ maps values to values and is injective when restricted to values.

Remark 8. For lack of better names we borrowed the terminology “soundness” and

“adequacy” from denotational semantics. While our semantics is operational, it is de-

fined compositionally through a translation, and we may think of the translation of the

source program into the core language as its denotation. This gives further motivation

for the adequacy condition, which, in denotational semantics, means that observably

different programs should have distinct denotations. In our setting the observable part

of a program is its output, so we interpret adequacy as the requirement that values need

to have distinct translations. Note that together with soundness, this condition ensures

that source programs with different outputs have different translation (“denotation”).

Definition 4.5.3 (Correctness). We will call a sound and adequate translation correct.

However, these conditions are not testable in practice, for two reasons:

1. The unbounded evaluation functions may not be computable; we can only ap-

proximate the conditions with a resource limit r.

2. The set of source programs can be infinite. We never restricted the evaluation

functions in any way, so they can return anything on programs we did not test.

We can only test the conditions on a selected test set of inputs.

Note that even if we fix the resource limit and assume that both evaluation func-

tions are non-opaque, correctness is still undecidable by Rice’s theorem, since it is a

nontrivial semantic property of the program.

4.6. Sublanguages 57

We define notions approximating correctness with a fixed resource limit and a set

of source programs: a test set. In a general setting, we may assume that—putting non-

termination aside—we can choose to evaluate arbitrary source language terms during

the search. The following definition expresses a condition that is directly testable by

synthesis algorithms.

Definition 4.5.4 (Correctness with respect to a test set). Let TΣ and TΩ be two lan-

guages with evaluation functions ΦΣ and ΦΩ, respectively. Let r ∈ R be a resource

limit and let I ⊂ T p
Σ

be a subset of programs of the source language. A translation

δ : TΣ→ TΩ is sound with respect to the resource limit r and the test set I iff

∀t ∈ I ,ΦΩ[r](δ(t)) = δ(ΦΣ[r](t))

A translation is adequate with respect to the resource limit r and the test set I iff

∀t ∈ I ,ΦΣ[r](t) /∈ E =⇒ δ(ΦΣ[r](t)) /∈ E and

∀t1, t2 ∈ I ,ΦΣ[r](t1) ̸= ΦΣ[r](t2) =⇒ δ(ΦΩ[r](t1)) ̸= δ(ΦΩ[r](t2))

A translation is correct with respect to the resource limit r and test set I iff it is

sound and adequate with respect to r and I .

Remark 9. Although we assumed above that all values are representable, that is, the

output space is a subset of the input language, languages with non-representable values

could be handled by requiring that the example programs (members of the test set) do

return a representable value.

4.6 Sublanguages

Our main idea is that compositional translations can naturally be partitioned along with

the language. First, we define the notion of sublanguage and language extensions,

followed by the extension of compositional translations.

Definition 4.6.1. (Sublanguage) A signature Σ′= (SΣ′,σ
p
Σ′,FΣ′,sigΣ′) is a subsignature

of signature Σ = (S,σp
Σ
,FΣ,sigΣ), denoted as Σ′ ⊆ Σ, if

1. SΣ′ = SΣ,

2. FΣ′ ⊆ FΣ, and

58 Chapter 4. Formal framework

3. ∀ f ∈ FΣ′,sigΣ′(f) = sigΣ(f) .

Let ΦΣ be the evaluation function of the language TΣ. We will call TΣ′ the sublan-

guage of TΣ, if it is closed with respect to the evaluation function, that is:

1. Σ′ ⊆ Σ, and

2. ∀r ∈ R, t ∈ T σp
Σ′ ,ΦΣ[r](t) ∈ TΣ′ ⊎E

We will also call Σ an extension of Σ′ and similarly TΣ an extension of TΣ′ . We will

also use ΦΣ as the evaluation function of the sub-language TΣ′ (which is a restriction

of the evaluation function of the full language).

Remark 10. If Σ′ is a subsignature of Σ and s is a sort mapping from Σ to Ω then s is

trivially a sort mapping from Σ′ to Ω as well, since a subsignature has the same set of

sorts.

Definition 4.6.2 (Extension of a compositional translation). Let TΣ′ be a sublanguage

of TΣ, and let TΩ be our target language. Let s be a sort mapping from Σ to Ω. Let π′

be an interpretation of Σ′ into TΩ w.r.t. s.

We will call an interpretation π of Σ into TΩ an extension of π′ if it assigns the same

interpretation to every term constructor in the sub-signature:

∀ f ∈ FΣ′,π
′(f) = π(f)

We will also call the compositional translation δ defined by π an extension of δ′

defined by π′.

We intend to consider different search spaces or hypothesis spaces (i.e. sets of

possible desugaring rules to consider). We also might want to consider different search

spaces for different language extensions.

Definition 4.6.3 (Search space). Let us fix TΣ as our source language and TΩ as our

target language. Let TΣ′ be a sublanguage of TΣ. The search space corresponding to the

signatures Σ, Σ′ and Ω is an enumerable set of interpretations (into TΩ) for each term

constructor f ∈ FΣ \F ′
Σ
.

We will use H to stand for our chosen search space, and H f for the set of inter-

pretations assigned by the search space to the term constructor f ∈ FΣ \F ′
Σ
.

We will call a compositional translation that is an extension of the translation of

the sublanguage and whose interpretations belong to the search space a desugaring

4.7. The desugaring extension problem 59

(when the source language, its sublanguage, the target language, the interpretation of

the sublanguage into the target language and the search space is determined by the

context).

4.7 The desugaring extension problem

We can finally define our main problem, a sub-task of the desugaring problem: extend-

ing a desugaring from a sublanguage to a larger portion of the language.

Definition 4.7.1 (Desugaring extension problem). The desugaring extension problem

is defined as follows:

Inputs:

1. A signature Σ of the source language.

2. A signature Ω of the target language.

3. A sort mapping s from Σ to Ω.

4. A resource limit r.

5. A finite test set consisting of input programs of the source language: I ⊂ T σp
Σ

,

and their corresponding outputs according to an evaluation function ΦΣ with

resource limit r.

6. An opaque evaluation function ΦΩ for the target language TΩ.

7. A subset signature Σ′ ⊂ Σ, that defines a sublanguage TΣ′

8. A search space H for the language TΣ, sublanguage T ′
Σ
, and target language TΩ.

9. A correct translation defined on the sublanguage: δ′ : TΣ′ → TΩ.

Output: A desugaring δ : TΣ→ TΩ, such that:

1. δ is an extension of δ′

2. ∀ f ∈ FΣ \FΣ′ , the translation rule of f in δ belongs to the search space H f

3. δ is correct with respect to the resource limit r and test set I .

60 Chapter 4. Formal framework

This is the central problem of the present work, and we will referring to it as DEP.

The active version of the desugaring extension problem differs in that instead of a

test set, we have access to the opaque source evaluation function.

Definition 4.7.2 (Active desugaring extension problem).

Inputs: The same as for the desugaring extension problem, except for the test set:

...

5. An opaque evaluation function ΦΣ for the source language TΣ.

...

Output: A desugaring δ : TΣ→ TΩ, such that the requirements are the same as in the

desugaring extension problem, except that we want a correct desugaring, not merely

one that is correct w.r.t. the test set.

...

3. δ is correct.

In the case of the active DEP, the output condition is undecidable. We have different

aims with the two problems: for the non-active problem, we aim for an algorithm that

only returns outputs that strictly conform to the post condition, although it may or may

not find a result. In the case of the active problem, the post condition is interpreted

loosely, and we aim for algorithms that return desugarings fulfilling it in most practical

cases.

Remark 11. The main differences between the DEP and the task informally described

by KLE are:

• We assume that the desugaring rules may be partially known.

• We explicitly use multi-sorted terms, a sort-mapping between the source and

core languages, and sort-preserving translations.

• We assume that the test set of source programs is given as input, and the source

language interpreter may not be called on inputs outside of this set.

4.8. Sequential learning 61

For the active DEP, only the first two conditions hold. The first two conditions

restrict the search space, allowing us to define feasible tasks, and the last one highlights

the separation of synthesis and testing.

The benchmarks defined in Chapter 3 can be seen as a DEP. The sublanguage TΣ′

is restricted to literals (numbers, strings), identifiers and operation symbols that are

not included in the intended translation, as their translation is fixed in advance; the

extended language is the full source language. However, the solution to this problem

is currently unknown, as the search space is too large. Therefore, we divide each

benchmark into a series of DEPs.

4.8 Sequential learning

Let us assume that we are looking for the full desugaring of a source language TΣ into

a target language TΩ. The user should divide the language into an expanding series of

sublanguages:

Σ0 ⊂ Σ1 ⊂ ·· · ⊂ Σn = Σ

where, for every n ∈ [1 . . .n] , TΣn−1 is a sublanguage of TΣn . Assume that we know the

translation for Σ0 (which typically contains literals and operations for primitive types).

The user also needs to provide a search space Hi and a test set Ii for each sub-task.

For now, we will not be investigating how to obtain a suitable partitioning of the

language, or suitable test sets; we assume they are part of the user input.

Definition 4.8.1 (Sequential desugaring learning problem). The definition of the full

learning task is as follows:

Inputs:

1. A signature Σ of the source language.

2. A signature Ω of the target language.

3. A sort mapping s from Σ to Ω.

4. A resource limit r.

5. A series of sub-signatures: Σ0 ⊂ Σ1 ⊂ ·· · ⊂ Σn = Σ where, for every k ∈ [1 . . .n],
TΣk−1 is a sublanguage of TΣk .

62 Chapter 4. Formal framework

6. A series of finite test sets Ik ⊂ TΣk for every k ∈ [1 . . .n], and their corresponding

outputs according to an evaluation function ΦΣ.

7. A black-box evaluation function ΦΩ for the core language TΩ.

8. search spaces H1, . . . ,Hn.

9. A desugaring δ0 : TΣ0 → TΩ defined on the minimal sublanguage, that is correct

on TΣ0 .

Output: A desugaring δ : TΣ→ TΩ, such that

1. δ is an extension of δ0

2. ∀k ∈ [1 . . .n],∀ f ∈ FΣk \FΣk−1 , the translation rule of f in δ belongs to the search

space H f
k

3. δ is correct with respect to the full test set
⋃

k∈[1...n] Ik.

Note that the sequential desugaring learning problem is almost the same as the orig-

inal desugaring extension problem, we merely added some additional inputs dividing

the search space, so we partition one desugaring extension problem into a series. An

active version of the sequential DEP can be defined as well.

4.9 Conditions of a solution

I conclude this chapter with a short discussion of additional research questions entailed

by my approach.

Do solutions exist? Can we solve sequential problems by composing solutions one
extension at a time? Some desugaring extension problems may not have a solution,

since the chosen search space may not contain the intended desugaring. But even if a

correct desugaring exists, it is possible that the given partial desugaring (while being

correct on the sublanguage) can not be extended to a correct full desugaring. The

reason is that some state or value may not be accessible in the sublanguage, which

makes some globally bad translations correct when only tested on the sublanguage.

For example, desugaring a conditional if X then Y else Z expression into Y could be

correct in the sublanguage, if in the sublanguage all Boolean expressions evaluate to

true. Further examples are desugaring a try A catch E in H expression simply to A in a

4.9. Conditions of a solution 63

sublanguage without exceptions, or desugaring a fst selector of a pair to an error value

in a sublanguage without pairs. This means that a naive, greedy strategy for solving

a sequential problem might not work: we might commit to the wrong semantics for a

sublanguage too early, making later extensions impossible. These examples may seem

trivial, but in practice, it seems likely that a work-in-progress semantics will be in such

a “stuck” state most of the time, so understanding and finding ways of mitigating this

situation is a major challenge.

Are solutions unique? In program synthesis, especially in inductive (example-based)

synthesis, a common problem is having multiple programs that satisfy the specification

(see Gulwani et al. [2017], chapter 7.4). Our task is similar: not only could seman-

tically different translations be correct with respect to the finite test set, but even cor-

rect translation rules can often be expressed in multiple, semantically equivalent ways.

These equivalent programs can often be transformed into each other by semantics-

preserving transformations, such as swapping the two branches of a conditional expres-

sion and negating the condition, etc. Our task has a special ambiguity of this kind, that

not only concerns the individual translation rules but the entire translation as a whole.

The reason is that languages often have (many) symmetries: correct, invertible transla-

tions into themselves. A composition of two correct translations is still correct, so such

symmetries induce many equivalent but syntactically different desugarings. Swapping

two branches of the conditional is just the special case of the well-known symmetry of

the Boolean language that exchanges TRUE and FALSE. It is possible to map Boolean

constants to the opposite values, switch the and and or logical operations, and switch

the order of the branches of the if conditional, extending the transformation from an

individual translation rule to the whole translation. While such symmetries sometimes

break in the full language (for example, the symmetry of TRUE and FALSE may disap-

pear if we have a way to convert Boolean values to strings), they could still easily lead

to the aforementioned stuck state. It may be necessary to redefine the DEPs, and fix

the meaning of some term constructors manually.

Can we devise test sets that ensure correctness? It is also possible that there are

multiple, semantically inequivalent solutions that are correct with respect to the given

test set, but with not all of them being correct with respect to the whole source lan-

guage. A question that arises is whether there is a finite test set I such that if a trans-

lation is correct with respect to I then it is correct with respect to the whole source

64 Chapter 4. Formal framework

language. Assuming opaque evaluation functions, such a test set may not exist. What

reasonable assumptions can we make about the evaluation functions to ensure the ex-

istence of such test sets? Moreover, when do small test sets exist (where the size of

a test set is the sum of the size of its elements), so that we can find a correct desug-

aring not just in theory, but in practice with extensive testing? In particular, since

our approach currently places the burden of designing a good test set on the user, it

is an interesting question whether (and how) we could also automate the process of

synthesising such test sets, perhaps using counterexample-guided inductive synthesis

(CEGIS) loop Solar-Lezama et al. [2005]; Jha et al. [2010].

Can desugaring learning problems be decomposed into feasible sequential exten-
sion problems? The final, and perhaps most important, question is the following:

what is the exact semantic condition for the existence of a partitioning of the source

language into a series of sublanguages such that each DEP (induced by the sublan-

guages) is feasible and collectively they lead to a solution of the full problem? For

example, what condition could guarantee the existence of a partitioning with the fol-

lowing properties:

1. Each extension is small (contains fewer than n term constructors for some small n).

2. Extensions of the partially correct translations exist in each step.

3. Extensions can be found with a small test set.

This seems like an inherently empirical and language-dependent question. In this

thesis, I present experimental results investigating this question for the benchmarks

introduced in Chapter 3.

Can we decompose a desugaring learning problem in advance? Our sequential

framework could be used to define multiple DEPs in advance. But as we have showed,

for a single DEP step the solution may not exist: it is possible that the partial solution

for the previous steps can not be extended to a correct translation. This “stuck” state

might mean not only that we need to backtrack and find new solutions during the

earlier steps, but also that the decomposition itself may need to be revised. Our formal

framework does not model this backtracking process, but it could describe the current

state of a possibly stuck tested semantics learning problem.

4.10. Concluding remarks 65

4.10 Concluding remarks

This Chapter has presented a formalisation of the task that we will deal with in the

rest of the thesis. The definitions are not the only possible ones, and they certainly

can be extended in various directions. We may handle effects other than errors in the

interpreters, we may want a more precise characterisation of shallow translations, or

we could include in the model the backtracking process we talked about in the previous

passage. The many possible directions for extensions highlight the open-ended nature

of the problem space again. I hope that my definitions clarify the complex scenario

and will serve as a foundation for future research.

Chapter 5

Enumerating typed program
fragments

In the previous chapter, we defined the desugaring extension problem, which poses

the task of finding translation rules conforming to a non-standard learning framework.

In the next two chapters, we will be looking for a good search space for translation

rules, comparing them by enumerative synthesis as proposed in Chapter 2. We will

define search spaces by inductive rules, achieving feasible synthesis by restricting the

search space to well-typed and well-scoped translation rules. The present chapter de-

scribes a reasonable enumeration algorithm based on typing rules, which I have found

to perform well in practice, and which could be useful for both synthesis and testing.

In this chapter, I will be discussing the enumeration algorithm independently of the

specific problem (the desugaring extension problem) and the specific type systems that

I am using it for later, as it can be useful in a more general context. The type systems

we will consider later are relatively simple: they are modest extensions of algebraic

data types with a context for the variables. In the present chapter, our characteristic

example is a type system for β normal form terms in the simply typed λ-calculus.

It is important to note that all of these systems usually have many type derivations

for a given typing context and type, and our aim is not just to find one, but rather to

efficiently enumerate all type derivations.

At a high level, our enumeration of typed programs is based on proof enumeration.

Given a proof system (a set of inference rules), proof enumeration means to enumerate

all proofs of a given judgement. By applying a proof enumeration algorithm to a type

system, we can enumerate all type derivations for a given typing context and type.

Finally, we can turn type derivations into program terms, resulting in an enumeration

67

68 Chapter 5. Enumerating typed program fragments

of typed programs.

The enumeration algorithm expects an opaque, functional representation of the

inference rules: the user is expected to write a function which, given a judgement,

generates all possible sets of premise sets from which that judgement can be derived.

The algorithm can enumerate the proofs of a finitely branching proof system, as we

expect the set of these premise sets to be finite. Encoding inference rules as functions

requires modest programming effort, and allows us to quickly prototype enumeration

algorithms for various type systems.

Our implementation of proof enumeration is based on algebraic enumerations. Al-

gebraic enumerations allow us to define the enumeration of structures in a generic way,

following the inductive definition of the structures. An important property of algebraic

enumerations is that they exploit the highly recursive search space, and provide a bal-

anced caching mechanism.

Enumerative synthesis based on proof enumeration is a standard technique, as is the

algebraic enumeration of recursive structures. The novel contribution of this chapter

is the combination of the two: I show that the algebraic approach to defining enumer-

ations, previously only applied to enumerating algebraic data types and indexed type

families, can also be applied to the more generic task of proof enumeration for finitely

branching proof systems, and thus to the enumeration of well-typed programs. Al-

gebraic enumerations yield an efficient indexing function for the enumeration, which

could be useful for various purposes. We observed that it actually provides a reason-

ably fast iteration over the enumeration as well, but further research is needed for an

accurate comparison with other methods.

The chapter is structured as follows. Section 5.2 contains a review of algebraic

enumerations and describes a general algorithm to turn the definition of algebraic data

types into an enumeration of terms. Section 5.3 investigates what properties are re-

quired from structures to be efficiently enumerable by algebraic methods, and shows

that finitely branching proof systems can be enumerated the same way as algebraic

data types.

Apart from an efficient caching mechanism to exploit the recursive search space,

another important aspect of an efficient enumerative synthesis algorithm is the elim-

ination of symmetries. This applies to synthesis through proof enumeration as well,

and Section 5.4 contains a review of symmetry-eliminating techniques in proof enu-

meration, based on the related and more common task of proof search. The design of

the search spaces presented in the next two chapters relies on these considerations.

5.1. Introduction 69

5.1 Introduction

The enumeration of program fragments is the main building block of testing and syn-

thesis frameworks. The present chapter describes an enumeration algorithm for finitely

branching search spaces defined by inductive rules.

We expect a good enumeration algorithm to have the following two properties:

1. Automatic caching of meta-information on the recursive structure. Extensive

caching is essential for good performance when enumerating recursive struc-

tures, but simply caching small program terms makes the enumeration memory-

bound, which in my experience can too easily hit memory limits in a highly

branching search space.

2. Easy prototyping. The programmer should be able to turn typing rules into an

enumeration of well-typed programs with only moderate effort.

While there is an abundance of enumeration algorithms discussed in the literature,

implementation techniques with both of the above properties are not easy to find. Many

high-speed enumerative synthesis frameworks like CVC4SY [Reynolds et al., 2019]

use context-free grammar as input. In other words, they can enumerate the terms of

an algebraic data type (ADT). This does not allow for limiting the enumerated set to

program fragments that are well-typed with respect to a type system, a typing context

and a type. Well-typed programs are usually only a sparse subset of all programs cor-

responding to an abstract grammar [David et al., 2009], therefore limiting the testing

space or search space to typed programs could be highly beneficial for both validation

and synthesis. Since the reduction can be very large, generating the well-typed subset

directly is preferable to a generate-and-test approach, as the latter would spend most

of its time generating a lot of programs, only to later reject them after testing whether

they are well-typed.

Algebraic enumerations allow for separating the declarative definition of an enu-

meration from the implementation. Through an algebra of enumeration combinators,

we can define enumerations following the inductive structure of the data type in a

generic way. Algebraic enumerations focus on the index operation: an efficiently cal-

culable bijection from the natural numbers to the set we enumerate. Iterating through

the structures based on indexing may seem counter-intuitive at first, but it allows a

caching mechanism that in my experience offers a good trade-off between speed and

70 Chapter 5. Enumerating typed program fragments

memory usage. Naive, generic enumeration methods, such as graph-search-based enu-

merations, are slow due to not exploiting the recursive structure of the search space and

recalculating structures multiple times, while simply caching small programs makes

the algorithm memory-bound, and in my experience ends up performing worse even

before hitting the memory limit. Our enumeration algorithm delegates memoisation to

the algebraic enumeration library. A further benefit of algebraic enumerations is that

an efficient indexing into the enumeration could be useful for implementing uniform

sampling or testing.

We rely on the well-known analogy between proofs and typed programs. Type

systems and proof systems are closely related; their relationship is referred to as the

Curry-Howard correspondence, which states that there is a close analogy between the

following series of concepts:

Proof system ←→ Type system

Formula, Proposition ←→ Type

Proof ←→ Program

These analogies hold across many concepts in the two areas, such as between proof

normalisation and program evaluation. In our enumeration algorithm, we enumerate

proofs (type derivations) and extract programs from the proof objects.

When talking about synthesising well-typed programs, we may want to distinguish

between two different kinds of specifications, based on type systems. The first kind

is based on rich (e.g. polymorphic) type systems, which are frequently used in pro-

gram synthesis as part of the specification [Osera and Zdancewic, 2015; Frankle et al.,

2016; Polikarpova et al., 2016]. In these systems, the types correspond to (a subset of)

first-order logical formulas, and finding even one program that corresponds to the given

type can be challenging. Synthesis problems with a rich type system are closely related

to proof search and are characterised as deductive. In enumerative synthesis, we are

interested in a second kind of specification, which are typically simple systems extend-

ing the context-free rules of the abstract syntax with a context of variables. The typical

type systems employed to speed up enumerative synthesis are sort systems (i.e. type

systems with a finite number of types, without type constructors), or have types cor-

responding to formulas in propositional calculus. While the type system significantly

narrows the search space, there are usually still a large number of program terms cor-

responding to a given type and context within a small size limit. Our aim is not just to

find one, but rather to quickly enumerate every such term. The corresponding problem

we solve is proof enumeration, and the synthesis is enumerative.

5.2. Algebraic enumerations 71

Still, proof search and proof enumeration are related tasks. Not every proof system

can be efficiently searched or efficiently enumerated. The requirements are similar for

both tasks. The literature on proof search is the basis of the design of proof and type

systems that can be efficiently enumerated. I will discuss the design of such formal

systems in Section 5.4.

Note that this chapter is based mainly on personal observations, and contains no

systematic evaluation of performance. Some algebraic enumeration libraries do have

favourable reports on empirical comparison to other enumeration methods, but not in

the context of program synthesis. For empirical evaluation, we refer to the synthesis

benchmarks presented in the following chapters. The enumeration method presented

here serves as the basis of Chapter 6, which will introduce a simple sort system for

the metalanguage used for the translation rules, and Chapter 7, which will use linear

variables as heuristics for further pruning the search space. All reports on empirical

evaluation in those chapters will be based on the enumeration algorithm presented here.

This work will not include comparisons of the algorithm to other candidates. As

a smoke test, I implemented some simple enumerations in Prolog and executed them

using various execution methods (breadth-first search, iterative deepening and SLD

resolution). I observed that the logic program matches the formal description of type

inference rules much more closely, but the performance of the Prolog-based imple-

mentations was much worse: they did not scale to the size of my benchmarks.

The enumeration algorithm is implemented in Haskell and relies on the FEAT

library [Duregård et al., 2012].

5.2 Algebraic enumerations

Algebraic enumerations are based on two ideas. One is to represent enumerations

functionally, as an efficiently computable bijective function from the natural numbers

to the set of values. The second idea is to build functions that index the values of the

data type in a datatype-generic manner. We can define enumerations for all algebraic

data types at once, in terms of enumeration combinators that match the algebra of data

types.

We based our implementation of proof enumeration on the FEAT Haskell library

(Functional Enumeration of Algebraic Types, Duregård et al. [2012]), which origi-

nally popularised the algebraic approach to defining enumerations. As implied by its

name, FEAT focuses on defining an exhaustive enumeration of all values belonging

72 Chapter 5. Enumerating typed program fragments

to an algebraic data type (ADT). FEAT provides fast streaming with efficient caching,

and efficient indexing into the enumeration, which is useful for implementing uniform

sampling in random testing. The main target of the FEAT library is property-based

testing.

5.2.1 Combinators for enumerations

An enumeration is an ordered collection of values of a set S, where S can be finite or

infinite. Enumerations typically provide two main operations:

1. indexing, an efficiently computable bijective function from (an initial segment

of) the natural numbers to S, and

2. an efficient iteration over the values, in other words, a stream of all values of the

enumeration.

The specification of the enumeration requires the indexing function to be a bijection,

but usually only one direction needs to be efficiently computable: indexing into the

enumeration. There are algebraic enumeration libraries that provide other operations,

such as the efficient inverse of the indexing function. As we use enumerations for

synthesis, our main goal is efficient iteration, but for algebraic enumerations, the focus

is on the indexing function, as iteration is defined in terms of indexing. For a type a,

we use E a as the enumeration of all values belonging to the type.

Specification The main idea is to construct all enumerations from combinators match-

ing the algebra of data types. Enumerations are recursively built up from four combi-

nators. The four combinators are the following:

empty :: Ea

singleton :: a→ Ea

(⊗) :: Ea→ Eb→ E(a⊗b)

(⊕) :: Ea→ Ea→ Ea

The combinators of enumerations match the combinators of algebraic data types,

and we overload the⊗ and⊕ symbols accordingly. For types, a⊗b means the product

of the two types (pairs). For enumerations, the constant empty represents an empty

enumeration, which contains no value. The singleton function creates an enumeration

with only one element from a value. The ⊕ combinator on enumerations is disjoint

5.2. Algebraic enumerations 73

union: it contains the elements of both enumerations, but it requires the enumerations

to be disjoint, otherwise the elements in the intersection of the two enumerations will

appear twice in the resulting enumeration. The ⊗ combinator is the Cartesian product

on enumerations: it returns an enumeration of pairs containing every combination of

the values from the arguments.

FEAT also contains two additional operations for building enumerations. Since

FEAT is implemented as a Haskell library, general recursion in the definition of enu-

merations is provided by the host language, and FEAT itself provides a guard function

for recursive references: pay. FEAT also defines a map operation: biMap, which is

necessary for adding the labels to sums when building an enumeration of an ADT. The

name indicates that the function argument is expected to be bijective (otherwise the

resulting enumeration would not be a bijection), which trivially holds for data con-

structors.

pay :: Ea→ Ea

biMap :: (a→ b)→ Ea→ Eb

Equipped with the combinators, we can define enumerations with (potentially re-

cursive) algebraic definitions:

EBool = singleton TRUE⊕ singleton FALSE

E(ListBool) = singleton NIL⊕biMap CONS EBool⊗pay (E(ListBool)))

These definitions are declarative, separating the specification and the implementa-

tion of enumerations, allowing for different implementations and implementing differ-

ent operations on enumerations.

Implementation The implementation of the combinators is straightforward, once we

consider the enumeration as an indexing function. For example, the sum combinator

(⊕) simply maps even indexes to the left enumeration and odd indexes to the right.

The product combinator (⊗) is somewhat more tricky, and various implementations

correspond to pairing functions, that is, bijections π : N×N→ N, such as the Cantor

pairing function. Pairing functions are known to have efficient implementations and

are used in many algorithms [Regan, 1992; Rosenberg, 2002].

However, this simple view does not take into account that some enumerations are

finite and some are infinite. We also need to be careful with recursive definitions.

But the biggest problem is that iterating based on this simple view of the indexing

function may not be efficient. Strangely enough, enumeration libraries still define it-

74 Chapter 5. Enumerating typed program fragments

eration in terms of the indexing function. The reason is that, as the indexing function

itself is defined recursively, this recursive structure allows an efficient, balanced mem-

oisation strategy. Efficient memoisation and re-using already computed structures are

very beneficial and greatly speed up the enumeration of recursively defined structures,

at the expense of memory usage. We must find a good balance, however, as excessive

memory usage hits the memory limit too soon: this is why we wouldn’t want to simply

cache all small structures.

There are various implementations of a more efficient indexing function. FEAT

itself divides the enumeration into finite partitions. This ensures efficient indexing (by

storing the sizes of the partitions), simplifies the implementation (as we only com-

bine the finite partitions) and helps with efficient memoisation. The creators of FEAT

reported that memoising parts of the indexing function, carefully controlling what to

memoise and what not to, leads to fast and efficient enumerations that perform better

than caching all small terms (which hits the memory limit early) or no memoisation at

all. The authors of SCIFE [Kuraj et al., 2015] also compared iteration over algebraic

enumerations to different enumeration libraries, presenting experiments and empirical

evidence, and found performance to be excellent. SCIFE also includes a variety of

other operations, like the inverse of indexing, finding the index of a given structure.

5.2.2 Datatype-generic enumerations

Besides the algebraic combinators that work on arbitrary enumerations, FEAT can also

derive enumerations for ADTs automatically. It can turn a finite family of mutually

recursive ADTs (which we call a data system) given by a finite set of type declarations

into an enumeration for each data type. FEAT can use declarative input (the definition

of the data system) and implements datatype-generic enumerations. This is an example

of datatype-generic programming [Gibbons, 2006].

The implementation is simply based on structural recursion: the type constructors

used to build a data system (sum and product) correspond to the combinators used

to build enumerations, and the algorithm simply transforms the definition of a data

system into a set of enumerations by replacing type constructors with enumeration

combinators. The entire purpose of defining an algebra of enumerations analogously

to the algebra of data types is to automatically derive enumerations for ADTs.

FEAT itself targets the ADTs in the host language, Haskell. Our purpose is not to

interact with definitions in the host language, but rather to extend the generic defini-

5.3. Enumerating proofs 75

tion of enumerations from data systems to more generic structures. In the following

section, we analyse the precondition of this structural recursive algorithm in a func-

tional language, showing that it actually works for more general structures than just

data systems.

5.3 Enumerating proofs

In this section, we create enumerations of sets of trees. By a tree, we always mean a

finite, node-labelled, ordered tree. By a subtree of a tree T , we mean a tree formed by

a node in T and all of its descendants.

In programming, we can represent such trees with a Rose tree. In Haskell notation:

data Tree label = NODE label [Tree label]

Note that in Haskell the lists can be infinite (generated on-the-fly by some com-

putation), and in some systems, proofs could be represented as infinite mathematical

objects. In proof theory, there is a tradition of infinitary proof systems going back to

Tarski and Hilbert, where a judgement can have an infinite number of premises. The

common example is an axiom of “transfinite induction”, also called the ω-rule, which

allows deriving a universal statement from infinitely many individual statements (for

an overview of its use in various proof theories, see [Sundholm, 1983]). But these are

not common in our use case, as we are interested in proof systems where the proofs

themselves are finite objects. Among type systems, finitary systems are standard. We

will only consider finitary proof systems, and will only enumerate (potentially infinite)

sets of finite trees.

5.3.1 Enumerating data systems

The simplest sets of trees we consider are those defined by a data system.

Definition 5.3.1 (Data system). We call a finite family of mutually recursive algebraic

data types a data system. Formally, they can be defined by a set of polynomial equa-

tions between the data types, where each data type is defined as a sum of product of

other types.

Let {T1, . . . ,Tn} be a finite set of names of the data types. For each type name Tk,

let {C1
k , . . . ,C

mk
k } be a finite set of (data) constructors. Let t range over the type names

T1, . . . ,Tn. Then, a data system is a set of n equations of the following form:

76 Chapter 5. Enumerating typed program fragments

T1 = (C1
1 t⊗·· ·⊗ t)⊕·· ·⊕ (Cm1

1 t⊗·· ·⊗ t)
...

Tn = (C1
n t⊗·· ·⊗ t)⊕·· ·⊕ (Cmn

n t⊗·· ·⊗ t)

Every type name Tk has one equation where it appears on the left side, and we call

this equation the type’s definition.

Note that the set of constructors {C1
k , . . . ,C

mk
k } can be empty (mk = 0), in which

case the type is empty. The set of types in the product can also be empty, in which case

the constructor C j
k corresponds to a single value.

For each type Tk we can assign a set of trees labelled with the constructors and

built up according to the inductive definitions. The data types are interpreted with

well-founded semantics: we only consider finite trees.

FEAT can be seen as a generic algorithm constructing enumerations for any data

system: the input is the set of equations (a data system), and the output is a set of enu-

merations for each data type (E T1, . . . ,E Tn). We will call this algorithm the algebraic

enumeration algorithm.

The algorithm is structural recursion on the inductive definition. For each type

name Tk we build the enumeration E Tk by enumeration combinators as follows. First,

we define enumerations for each constructor (each product appearing in the defini-

tions):

• If the product C j
k t⊗ ·· ·⊗ t is empty, then the constructor C j

k is a single value:

singleton C j
k .

• Otherwise, we build the product of the enumerations corresponding to the type

names in the product with the product combinator, map the constructor with

biMap, and wrap the whole enumeration with pay to ensure any recursive refer-

ence is guarded.

Based on the enumerations corresponding to products, we can define enumerations for

the sums:

1. If the sum is empty, then the enumeration is also empty (constructed by the

empty combinator).

2. Otherwise, we calculate the enumeration for each product as above, and build

the sum of the enumerations with the sum combinator.

5.3. Enumerating proofs 77

We can now slightly generalise this algorithm, by giving a functional representation

of a data system. The representation is based on the type required by the algorithm,

but it allows for more general input.

The following is a brief description of our representation, using Haskell’s notation.

We represent the data system by a function that assigns the type definition to the type

name.

We represent our polynomial type expressions with sum and product combinators

of an arbitrary number of arguments, generalising the binary type constructors ⊗ and

⊕. This better matches the definition of data systems, as we can uniquely represent

them. Combinators with an arbitrary number of arguments also allow us to implement

similar combinators of enumerations with multiple arguments. When we combine

three or more enumerations with a binary sum combinator, the resulting enumeration

is necessarily biased: the binary sum combinator on enumerations is not associative.

Combinators with an arbitrary number of arguments can be fair, however, and without

bias. For a definition of fairness of enumeration combinators and possible implemen-

tation, see New et al. [2017]. Using multiple arguments also allows us to only use

two combinators, as empty types are represented as a sum with zero arguments, and

singleton types are represented as a product with zero arguments.

To make the algorithm generic, we abstract away from the set of types, and we

simply use a type parameter typeName for the type names {T1, . . . ,Tn}, and another

type parameter constr for all constructors
⋃n

k=1{C1
k , . . . ,C

mk
k } for any type.

data ProdType typeName constr = PROD constr [typeName]

data TypeDef typeName constr = SUM [ProdType typeName constr]

type DataSystem typeName constr = typeName−→ TypeDef typeName constr

We have an invariant restricting the use of constructors. Let ds : DataSystem typeName constr

be a data system, and t : typeName. The expression ds t returns a list of prod-

ucts. In every product PROD c [t1, . . . , tn] in this list, the constructor c must have a

type c : t1×, . . . ,×tn→ t.

The functional representation is more general than data systems. This generality is

the basis of extending the enumeration of ADTs to the enumeration of proofs, and we

examine the relationship in Section 5.3.4.

In order to have a generic enumeration algorithm, we need a generic representation

of terms. We can represent terms by a Rose tree:

78 Chapter 5. Enumerating typed program fragments

data Tree label = NODE label [Tree label]

instantiated with the type of data constructors: Tree constr.

The type of a data type generic enumeration is:

enumerateTerms :: DataSystem typeName constr→ typeName→ E (Tree constr)

Given a finite set of type declarations (a data system), enumerateTerms returns an

enumeration of terms (represented as Rose trees) for any type in the data system. The

implementation follows the same structurally recursive pattern as previously described:

we merely generalised the type of inputs.

5.3.2 Data systems and type systems

We want to enumerate proofs and type derivations, which, similarly to data systems,

can also be represented as trees, where the labels are the judgements. We will illustrate

this relationship between type systems and data systems with a very simple example.

Example 5.3.1 (Odd-Even type system). We define a type system that sorts the Peano

numbers into two types. The terms are the Peano numbers, and the types are called

Odd and Even (Figure 5.1).

n ∈ N ::= Z | S(n)
T ::= Odd | Even

AXIOM
Z : Even

n : Even
ODD INTRO

S(n) : Odd

n : Odd
EVEN INTRO

S(n) : Even

Figure 5.1: Odd-Even: Simple type system partitioning natural numbers

Note that this type system is a sort system. In fact, it can also be represented as

a data system: we can write two mutually recursive data types representing the type

derivations:

data Even = Z | S Odd

data Odd = S Even

The values of the data type Even in the data system correspond to the type deriva-

tions for the type Even in the Odd_Even type system.

5.3. Enumerating proofs 79

Data systems can be considered special type systems in two regards: first, they

only have a finite number of types, and second, they do not have context. We call type

systems with a finite number of types (with or without context) sort systems, and call

the types sorts, so data systems are context-free sort systems.

5.3.3 Abstract proof systems

When enumerating proofs, we use an abstract notion of proofs and proof systems,

abstracting over the set of judgements. For our purpose, proofs are trees labelled with

judgements. We are interested in sets of proofs where we can enumerate all proofs of

a given judgement.

Definition 5.3.2 (Inductive proof set). Let J be an arbitrary computably enumerable

set: the set of judgements. We will use J∗ for the set of finite sequences of judgements

(which also contains the empty sequence).

Let T (J) be the set of trees with nodes labelled with elements of J. We call any

subset P ⊂ T (J) a proof set. When P is unambiguous from the context, we call any

t ∈ P member a proof, the label of the root node the conclusion of the proof, a label

of a child of the root node a premise, and the list of labels of the children of the root

node the premise list. It is possible for the tree to only have only one node, when the

premise list is empty. If t ∈ P is a one-node tree with label j, we call j an axiom.

Let I be a relation between judgements and premise lists defined as follows:

∀ j ∈ J, p̄ ∈ J∗, I(j, p̄) = ∃t ∈ P, j is the conclusion of t, p̄ is the premise list of t

We call I the inference relation of P.

Any proof set P is an inductive proof set if it satisfies the following four properties:

1. For every t ∈ P all of its subtrees are also in P.

2. Let t ′ ∈ P be any proof with the conclusion j ∈ J. Let t ∈ P be any proof which

has a node n labelled with j. If we replace the subtree having root n in t with t ′,

the result will also be an element of P. (proof irrelevance)

3. The inference relation of P is computable (that is, given a premise list and

a judgement, we can compute whether the judgement is a conclusion of the

premise list).

80 Chapter 5. Enumerating typed program fragments

Remark 12. Note that the inference relation uniquely determines the proof set. Let

t ∈ T (J) be any tree, with conclusion j and premise list p̄. We can check whether

t ∈ P by checking if I(j, p̄) holds and recursively checking whether the subtrees are

proofs. This also means that inductive proof sets are computable.

Definition 5.3.3 (Rule based proof system). We call a computable partial function r

from a premise list to a judgement a rule: r : J∗ ⇀ J. Let P be an inductive proof

system with inference relation I. We say that P is a rule based proof system iff there is

a countable set of rules r1,r2, . . . , where

∀ j ∈ J,∀p̄ ∈ J∗, I(j, p̄)⇐⇒∃n ∈ N, p̄ ∈ dom(rn) and rn(p̄) = j

Remark 13. Note that what is usually called an inference rule in a proof system is

something we would rather call a rule scheme. Given a list of premises, a rule scheme

can yield multiple different consequences, as it frequently ranges over some parameters

(like a formula) that are left open in the rule scheme, or it may need to select part of

the judgement in a premise, which may happen multiple ways.

In the following, we give a functional representation of the inference relation for a

rule based proof system:

Definition 5.3.4 (Abstract proof system). Let Judgement be the type of judgements.

Let the type Rule represent a rule:

type Rule= [Judgement]→ Maybe Judgement

By an abstract proof system, we mean a functional representation of the inference

relation, with the following type:

type InferenceRules = Judgement→
[(

Rule, [Judgement]
)]

For a given judgement j, the function call InferenceRules(j) returns a list where

each element is a rule paired with a list of premises, with the condition that the rule

can be applied to the premises, returning JUST j as the conclusion.

We can view the InferenceRules function as the interface for a backward chain-

ing search. Backward chaining suits our needs, as our goal is to start from a judgement

and enumerate all proofs of that judgement.

Remark 14. Note that an abstract proof system is finitary: there are only a finite number

of premises in every inference, meaning that in any proof, the premise list is finite. This

means that the inner lists returned by the InferenceRules function are finite.

5.3. Enumerating proofs 81

One important property of abstract proof systems is that we can easily define their

co-product in the following way:

(⊕) : InferenceRules→ InferenceRules→ InferenceRules

(i1⊕ i2) j = i1 j ++ i2 j

where ++ is list concatenation. We can independently encode inference rules like

modus ponens (which, as we noted, is a scheme for rules in our terminology) as abstract

proof systems, and compositionally define the proof or type system as the co-product

of a set of inference rules.

Note that we used an ordered representation of premises, that is, the premises are

a list rather than a set, which corresponds to our proofs being represented as ordered

trees. In addition, the set of premise lists is also represented as a list. The order in this

second list is not unique for a given inductive proof set, but is instead the property of

the enumeration. We generate an enumeration from the abstract proof system, which

imposes an order on the proofs. The order of proofs in turn depends on the order of the

premise lists. We include the order of the premise lists in our representation, giving the

user control over the order of the enumeration. This means that the InferenceRules

function contains more information than the inductive proof set generated by it.

Proofs can be represented by Rose trees, the judgements being the labels: Tree Judgement.

By a proof enumeration algorithm, we mean a computation that is polymorphic

over the type of judgements, and, given an abstract proof system and a judgement,

returns an enumeration of all proofs of that judgement. It has the following type:

enumerateProofs :: InferenceRules→ Judgement→ E (Tree Judgement)

It is clear from the Odd-Even example, as well as from their type, that data sys-

tems are special kinds of abstract proof systems, where the proofs are terms. We will

elaborate on their relationship in the next section.

5.3.4 Enumerating finitely branching proof systems

We show that the algebraic enumeration algorithm presented in Section 5.3.1 for data

systems can be applied to a restricted class of abstract proof systems without any

changes, making it a proof enumeration algorithm (for this restricted class), provided

that it is implemented lazily (with call-by-need semantics).

We start from the observation that the type InferenceRules is an instantiation

of the type DataSystem, with Judgement as the typeName and RuleName as the type

82 Chapter 5. Enumerating typed program fragments

representing data constructors constr. Therefore, the input of a proof enumeration

algorithm has the same type as our data system enumeration algorithm.

The output is also an enumeration of Rose trees in both cases. Here, however, the

correspondence is not perfect. On the one hand, the proofs are labelled by judgements,

and the judgements correspond to type names in data systems. The terms of a data

system, on the other hand, are labelled by data constructors, which instead correspond

to rules in proof systems. This difference is not substantial, however, as given a tree

labelled by rules, we can recursively produce a tree labelled by judgements: the rules

are the very functions that do this. Therefore an enumeration of trees labelled by rules

can directly be turned into an enumeration of proofs.

The remaining differences between the algebraic enumeration algorithm enumer-

ating data systems and proof enumeration algorithms are as follows:

1. In data systems, the lists in the type DataSystem are assumed to be finite. While

we are only interested in finite proofs (where the premise lists themselves are

finite), the set of premise lists can still be infinite.

2. In data systems, the type typeName is assumed to have a finite number of values.

In abstract proof systems, the set of judgements can be infinite.

3. In data systems, we assumed that the type names are atomic. In the case of

proofs, we generally assume that judgements are themselves inductively defined.

Similarly, in data systems, the function representing a data system is supposed

to be given by a fixed finite map with a finite domain (the set of type names).

An abstract proof system representing an inductive proof set can be an arbitrary

computable function over an infinite domain (the set of judgements), where this

domain has its own inductive structure.

Which of these differences is a prerequisite of the algebraic enumeration algo-

rithm? Note that whether the type names are atomic or replaced by inductively defined

judgements does not matter, since the algorithm is polymorphic over this type. Regard-

ing the third condition (an abstract proof system being an arbitrary total computable

function), note that the algebraic enumeration algorithm only uses it as an opaque

function, so it does not matter whether it is a simple map or some more complex com-

putation, as long as it terminates. But the first condition is necessary, as we iterate over

these lists inside the algorithm, and these loops need to terminate.

5.3. Enumerating proofs 83

Definition 5.3.5 (Finitely branching proof system). We will call an abstract proof sys-

tem a finitely branching proof system if the proof space is finitely branching, that is, for

any given judgement j there are only finitely many premise lists p̄ occuring in proofs

of that judgement. This means that the outer lists returned by the InferenceRules

function must be finite (similarly to the inner lists).

This condition considerably limits proof systems, as we will show in Section 5.4.1.

We will discuss what kind of proof systems are finitely branching in Section 5.4.1.

For now, we will show that the algebraic enumeration algorithm can be applied to

them.

The main insight behind applying the algebraic enumeration algorithm as a proof

enumeration algorithm is that starting from a fixed judgement and bounding the size of

proofs, a finitely branching proof system can only visit a finite set of other judgements.

From this, it follows that if we implement the data system enumeration algorithm lazily

(using call-by-need semantics), it will work for finitely branching proof systems as

well. The reason lies in the implementation of the enumerations themselves in FEAT.

Every enumeration in FEAT is partitioned into sets by the size (number of con-

structors) of the terms, or in other words, the number of nodes of the enumerated trees.

In the case of data systems, these partitions are all finite. As we have said, starting from

a fixed judgement and bounding the size of proofs, a finitely branching proof system

can only visit a finite set of other judgements. This means that the partitions—sets of

proofs with a fixed size—are finite for finitely branching proof systems as well. When

we calculate a partition of an enumeration, we can ignore the rest of the judgements:

the part of the algorithm that computes the partition can be exactly the same as for

data systems. Enumerating all proofs of a fixed size for a given judgement (a partition

of the enumeration) is exactly the same as enumerating all of an ADT’s terms of a

fixed size. This means that for limited sizes, the finitely branching proof system can

be represented as a data system. This is precisely what the enumeration achieves when

using call-by-need evaluation, only adding new judgements (and new enumerations

corresponding to those judgements) as necessary.

Having said that, some differences still remain. The biggest difference between

data systems and proof systems is that for a proof system, it can be undecidable

whether a given judgement has any proof at all, that is, whether an enumeration (speci-

fied by a proof system and a judgement) is empty. Therefore, indexing or iterating over

the enumeration may not terminate when the enumeration is generated from a proof

system and not from a data system. But for finitely branching proof systems, and for

84 Chapter 5. Enumerating typed program fragments

a finite size, it is decidable whether there is a proof of that size or not. This means

that for any partition, we can decide whether it is empty or not, and consequently, if a

judgement does have a proof, the enumeration will produce it. The algorithm may of

course diverge after reaching the last proof (or immediately, if there are no proofs at

all).

Another difference is that encoding a data system in our functional representation

is straightforward, while some programmer effort is needed to encode a proof system

as a function generating the set of premise lists for a given judgement.

The algebraic enumeration algorithm enumerates proofs in the same order as a

breadth-first search (BFS). The main difference compared to a naive BFS algorithm is

that an algebraic enumeration algorithm is aware of the recursive nature of the search

space, and will employ an efficient memoisation scheme to help revisit the same parts,

i.e proofs proving the same judgement. This highlights that the efficiency gained by al-

gebraic enumerations depends on the recursive references, and the algorithm performs

better if we revisit the same judgement multiple times, rather than always reaching new

judgements.

5.3.5 Finitely branching type systems

We want to enumerate typed programs by a correspondence between proofs (type

derivations) and programs. This correspondence does not automatically mean that

programs and proofs are the same, however. What we can expect is the ability to build

up a program term following the structure of the proof. An abstract type system is a

variant of an abstract proof system which, instead of rules, is labelled by program term

constructors:

type TypingRules = Judgement→
[(

TermConstructor, [Judgement]
)]

type TermConstructor = [Program]→ Maybe Program

Similarly to how we built proofs (trees labelled by judgements) from trees labelled

by rules, we can build program terms from trees labelled by term constructors. In this

case, we do not need to build an entire tree, just the program that would be the label of

the root node.

In the case of a type system, the type Judgement should not contain the programs.

For example, a typical typing judgement is written like this: Γ ⊢ p : τ, where Γ is a typ-

ing context, a function mapping a finite set of variables to types, p is the program and

5.4. Symmetries in proof and type systems 85

τ is the type of the program under the typing context. In this case, the type Judgement

is a pair of the form (Γ,τ).

Finitely branching type systems are abstract type systems where the proof space is

finitely branching. Given a finitely branching type system, the algebraic enumeration

algorithm can enumerate all programs with a given type.

5.4 Symmetries in proof and type systems

In the present section, we show what kind of proof and type systems are finitely branch-

ing, and discuss techniques for eliminating potential symmetries in these systems that

make the enumeration inefficient. We will rely on these techniques in the following

chapters. The material presented here is a standard part of structural proof theory [Ne-

gri et al., 2001], but we review these from the viewpoint of enumerating proofs.

5.4.1 Finitely branching proof systems

We could automatically turn an infinitely branching system into a finitely branching

one, or handle infinitely many branches in a different way. However, even if we did

extend the algorithm to handle an infinitely branching proof space, the resulting enu-

meration would not be very efficient.

Infinitely branching inference rules usually have some premises that can not be

generated from the conclusion, but can be arbitrary in part, making proof search and

proof enumeration difficult. The characteristic example is the MODUS PONENS rule

in natural deduction, or the corresponding CUT rule in sequent calculus:

A A→ B
MODUS PONENS

B

Γ ⊢ A;∆ Γ
′;A ⊢ ∆

′
Cut

Γ,Γ′ ⊢ ∆,∆′

The A formula in the premise of the MODUS PONENS or the CUT rule cannot

be guessed from the conclusion, and proof systems with these rules are not finitely

branching. Most type systems have typing rules analogous to the MODUS PONENS

rule: one such example is the APPLICATION rule in the simply typed lambda calculus

(STLC):

Γ ⊢ f : τ1→ τ2 Γ ⊢ a : τ1
APPLICATION

Γ ⊢ f a : τ2

86 Chapter 5. Enumerating typed program fragments

In the APPLICATION rule, we cannot guess the type τ1 from the conclusion, which

can be arbitrary.

Proof systems designed for proof search go to great lengths to avoid such rules. In

proof search algorithms, it is standard to use proof systems without the cut rule, exactly

for the reason we mentioned: certain parts of the premises could be anything, making

them difficult to guess.

Remark 15 (Subformula property). In proof theory, it is common to aim for a proof

system that has the subformula property, which means that in any inference rule, all

formulas in the premises are subformulas of the formulas in the conclusion. The cut

rule violates this condition, therefore a common technique is cut-elimination, to show

that the cut rule is admissible (redundant) and the same judgements can be derived

without it.

The subformula property and cut-elimination were introduced by Gentzen in his

landmark paper [Gentzen, 1935, 1969], and its main usage is to establish meta-theoretic

results, such as consistency, for proof systems. Indeed, the consistency of first-order

logic immediately follows from Gentzen’s Hauptsatz, the cut-elimination theorem for

the first-order sequent calculus. Gentzen introduced two sequent calculi, the classical

LK and the intuitionistic LJ, to show that the cut rule is admissible in these systems,

and the cut-free fragments do have the subformula property.

The subformula property, the cut rule and cut-elimination all play a central role not

just in the metatheory of proof systems, but in proof search as well.

Finitary proof systems with the subformula property are usually finitely branching.

Note that in our abstract notion of proof systems, we only referred to judgements, not

to formulas or propositions, therefore we cannot state the subformula property as a

requirement without additional assumptions. Moreover, from the subformula property,

it does not strictly follow that a proof system is finitely branching, and the finitely

branching condition brings proof systems closer to (similarly finitely branching) data

systems. In my own use case—setting up search spaces for the DEP—I use sort systems

(type systems with a finite number of types, without type constructors), where the

subformula property is not applicable anyway.

The STLC type system or the corresponding natural deduction proof system (the

ones Howard [1980] originally noticed the equivalence of) are not finitely branching

and do not have the subformula property, while the cut-free fragments of the sequent

calculi LK and LJ are finitely branching, and do have the subformula property. A well-

known finitely branching type system is based on the cut-free fragment of Gentzen’s

5.4. Symmetries in proof and type systems 87

LJ calculus.

Example 5.4.1 (Normal form lambda terms and the LJ calculus). The following exam-

ple is standard, based on Gentzen’s original LJ sequent calculus. I quote the variant

from Herbelin [1994]. Compared to the original LJ calculus, he uses an unordered

context Γ, in order to avoid the need for the EXCHANGE rule, and allows irrelevant

formulas in the AXIOM rule to avoid the need for the WEAKENING rule. Also, as a

fragment of LJ, it is limited to implication as the sole logical connective.

AXIOM
Γ,x : τ ⊢ x : τ

Γ,x : τ1,y : τ1 ⊢ t : τ2
CONTRACTION

Γ,x : τ1 ⊢ t{y := x} : τ2

Γ,x : τ1 ⊢ t : τ2
ABSTRACTION

Γ ⊢ λx. t : τ1→ τ2

Γ ⊢ t1 : τ1 Γ,x : τ2 ⊢ t : τ
APPLICATION

Γ, f : τ1→ τ2 ⊢: t{x := f t1} : τ

The identification of proofs in LJ and simply typed λ-terms, explicit in our system,

is also standard. Note that the context is unordered (as in every other system in this

thesis), which means that contraction can be applied to any variable in the context (not

just the last one). The rules as presented here omit CUT, making it a finitely branching

system. Accordingly, this variant only generates β-normal form λ-terms.

In practice, we should aim for a proof system with not only a finite but a low

branching factor, because otherwise the search space grows too quickly. But we

should highlight that there are proof systems with a high branching factor where most

branches are empty because they lead to judgements with no proof. It is worth noting

that the algebraic enumeration method will perform poorly on these proof systems.

The reason is that we approximate the set of size-bounded proofs with a data system.

If we can reach a large number of different judgements within a certain size, then the

data system will be large even if most of these judgements have no proof.

5.4.2 Adequate representation of judgements

The algebraic enumeration method is (relatively) efficient if the memoisation mecha-

nism can kick in, meaning that if we have already built an enumeration for a judge-

ment we do not need to recalculate most of its structure. We should aim for a proof

system which gives the algorithm the most opportunity for memoisation to help. If two

88 Chapter 5. Enumerating typed program fragments

judgements are isomorphic in the sense that there is a simple structural one-to-one cor-

respondence between their proofs, then we should only build an enumeration of their

proofs once (and use it to derive the other enumeration).

Definition 5.4.1 (Adequate proof system). We call a finitely branching proof system

adequate if the isomorphic judgements have the same representation. The adequacy of

a proof system depends on what judgements we consider isomorphic.

A common example is the elimination of the EXCHANGE rule, which normally

allows permuting elements of a sequent or context, by using unordered contexts. A

key requirement in our implementation is thus to define the widest equivalence class

of judgements possible, and to use a canonical representation of each class, eliminating

most symmetries in judgements. In the following chapters, all contexts used will be

unordered.

5.4.3 Curry-Howard property

Type systems have a different kind of redundancy: the correspondence between proofs

and programs. Even if enumerating type derivations is efficient, to ensure that our

program enumeration is efficient as well, we need to require an additional property on

the translation from type derivations to programs:

Definition 5.4.2 (Curry-Howard property). A type system has the Curry-Howard prop-

erty if there is a natural (syntax-based) 1-1 correspondence between proofs (type deriva-

tions) and the programs we wish to enumerate. This means that the function that con-

verts proof trees to programs is a bijection: we get a different program for each proof

tree in the enumeration, and every program we wish to enumerate can be generated

from a proof in the enumeration.

This property follows the similarly named, well-known correspondence between

proof and type systems. Howard’s important observation was a syntax-based corre-

spondence between these system, but in the case of turning an enumeration of type

derivations into an enumeration of programs we merely need a 1-1 correspondence

which is efficiently computable. But all easily computable bijections I know of are

syntax-based, and it is natural to aim for a syntax-based correspondence in the design

of type systems aimed for enumerating programs.

An efficiently computable bijection is important: a program with multiple type

derivations is enumerated multiple times. A program that has no type derivations is

5.4. Symmetries in proof and type systems 89

omitted from the enumeration.

Obviously, the Curry-Howard property depends not merely on the type system, but

also on which class of programs we want to enumerate.

To highlight the importance of the Curry-Howard property, let us revisit Exam-

ple 5.4.1, the type system based on the LJ calculus, which generates β-normal form

terms of STLC.

The correspondence between natural deduction and STLC means that there is a

one-to-one syntactic relationship between proofs of natural deduction and (α-equivalent

classes of) λ-terms of STLC (essentially, we can consider them identical). These sys-

tems are not finitely branching, however, while the LJ system shown in Example 5.4.1

is finitely branching. The one-to-one relationship is lost with sequent calculus: the LJ

system does not have the Curry-Howard property.

In the LJ system, multiple proofs correspond to the same λ-term, as proof rules can

be permuted. The following example is taken once again from Herbelin [1994]:

Example 5.4.2 (Permutation of proof rules). In the (cut-free) LJ system, the following

two derivations:

AXIOM
y : τ,z : τ1 ⊢ y : τ

AXIOM
y : τ,z : τ1,w : τ2 ⊢ w : τ2

APPLICATION
x : τ→ τ2,y : τ,z : τ1 ⊢ (x y) : τ2

ABSTRACTION
x : τ→ τ2,y : τ ⊢ λz.(x y) : τ1→ τ2

and

AXIOM
y : τ ⊢ y : τ

AXIOM
y : τ,z : τ1,w : τ2 ⊢ w : τ2

ABSTRACTION
y : τ,w : τ2 ⊢ λz.w : τ1→ τ2

APPLICATION
x : τ→ τ2,y : τ ⊢ λz.(x y) : τ1→ τ2

are both associated to the same typed λ-term λz.(x y) : τ1 → τ2 for a context in

which x : τ→ τ2 and y : τ.

Therefore, the typing of β-normal form λ-terms with the cut-free LJ system does

not have the Curry-Howard property.

The standard solution is focusing, the idea being to limit the availability of formu-

las/types in the context to a special element, called the focus or stoup.

Example 5.4.3 (LJT based type system for normal form STLC terms). The LJ system

has a standard focused variant, called LJT. The following version is again taken from

90 Chapter 5. Enumerating typed program fragments

Herbelin [1994]. In this variant, the left side of the judgement has a special element,

the focus, which can also be empty. In the notation, a semicolon separated the focus

from the context. A dot means an empty focus. It can be proven that the two type

systems are equivalent, in that they type the same set of λ-terms, but in LJT there is

exactly one proof for each such term.

AXIOM
Γ;x : τ ⊢ x : τ

Γ,x : τ1;x : τ1 ⊢ t : τ2
CONTRACTION

Γ,x : τ1; · ⊢ t : τ2

Γ,x : τ1; · ⊢ t : τ2
ABSTRACTION

Γ; · ⊢ λx. t : τ1→ τ2

Γ; · ⊢ t1 : τ1 Γ;x : τ2 ⊢ t : τ
APPLICATION

Γ; f : τ1→ τ2 ⊢: t{x := f t1} : τ

The type system based on the LJ calculus only generated β normal form λ-terms,

and this remains true for LJT. By changing the proof system to be finitely branching

(removing the CUT rule), we also changed the set of enumerated objects from all λ-

terms to β-normal form λ-terms. Unlike the finitary conditions, the Curry-Howard

property is not a property of a proof system, as it depends on what objects we wish to

enumerate – in our case, which programs we consider equivalent.

In program synthesis, it is common to consider λ-terms equivalent to their β normal

forms, thus we may argue that limiting the system to generate only terms in β normal

form is appropriate. Note that STLC is strongly normalising, meaning that every term

has a unique β normal form. But LJT may still lack the Curry-Howard property if we

consider η-reduction as well. The term (λ f : τ→ τ. λx : τ. f x) : (τ→ τ)→ (τ→ τ)

can be η-reduced to (λ f : τ→ τ. f) : (τ→ τ)→ (τ→ τ), so we may consider them

equivalent, yet they have two different type derivations in LJT. Such terms may or

may not be equivalent in a particular language, and the exact set of programs that we

wish to enumerate depends on the domain of application: our equivalence relation on

programs.

5.5 Related work

Enumerating programs and program fragments for testing and synthesis purposes is

a very general task, with a vast number of implementations. I did not compare how

algebraic enumerations perform in this domain compared to other methods. Instead,

I will only provide a glimpse into various research areas, in order to give a general

overview.

5.5. Related work 91

Compiler testing Chen et al. [2020] provides a recent survey of test case generation

for compilers. Many of the solutions they discuss can generate tests specified by a two-

level grammar or an attribute grammar. The capabilities of these specifications surpass

context-free grammars: they are known to be Turing-complete, and can express various

type systems. Attribute grammars specifically are considered to be closely related to

functional programming. But the focus of automatic test generation for compilers is

test coverage (generating a smaller set of programs covering a specific set of features)

rather than fast exhaustive enumeration. To the best of my knowledge, these techniques

provide neither automatic caching, nor efficient indexing into the enumerations.

Program synthesis In the research literature, the most widely used specification

format for program synthesis is syntax-guided synthesis (SyGuS) [Alur et al., 2013],

which uses context-free grammars. SyGuS does not allow static semantics to be used

in the specification. Consequently, many generic enumeration algorithms in program

synthesis, like CVC4SY [Reynolds et al., 2019], are limited to context-free grammars

as the input. Typing rules cannot be represented with context-free grammars, and no

matter how fast they are, generate-and-test approaches cannot match the speed of enu-

merating programs directly corresponding to a particular type.

Proof search and proof enumeration The subformula property and the Curry-Howard

property are standard requirements in proof search, see for example the survey by Dy-

ckhoff and Pinto [1999]. Proof search and proof enumeration are related tasks, but

with different emphases. In proof search, we assume a rich proof system, where find-

ing even a single derivation of a judgement can be challenging. By contrast, proof

enumeration assumes a simpler proof system, where the proofs of a judgement are

abundant, but we want to enumerate all of them. We introduce a fast enumeration

technique that can generate millions of programs very quickly. We will not be dis-

cussing higher-order type systems where the type limits the program so strictly that

we would need search rather than enumeration. Rather, our targets are sort systems

and first-order type systems, where the number of programs with a small size limit

belonging to a type is still very large (although still a small fraction of all well-formed

programs).

Some synthesis methods, like MYTH [Osera and Zdancewic, 2015], are based on

proof search. Their solution is not enumerative: they use a rich type system as a logical

specification, from which they derive the solution using input-output examples.

92 Chapter 5. Enumerating typed program fragments

Wells and Yakobowski [2005] designed an enumeration algorithm specific to a

concrete proof system with applications to program synthesis, a variation of the LJT

system discussed earlier. Their solution is hand-crafted for this specific proof system,

and thus cannot be adapted out-of-the-box to other proof systems. We showed a gen-

eral programming technique that is relatively easy to adapt to various type and proof

systems, requiring only moderate programmer effort.

Logic programming Inference rules can easily be encoded as logic programs. To

ensure termination, we can use breadth-first search or iterative deepening, but without

caching, we have found both methods to be far too slow for enumerating proofs. SLG

resolution (tabled execution) [Chen and Warren, 1993] is an execution model for logic

programs based on well-founded semantics that provides memoization (caching) and

avoids looping by left recursion. However, it is designed to find all solutions of a prob-

lem, and we usually have infinitely many solutions. This means that we need to limit

the search depth in advance. In my preliminary experiments, all attempts were orders

of magnitude slower than the implementation presented here. SLG resolution does not

provide efficient indexing into the enumeration. The benefit of logic programming is

that encoding the inference rules as Prolog rules is more straightforward and requires

less programmer effort than encoding them as functions, especially for type systems

using unification, which is built into Prolog.

Algebraic enumerations We build directly on the FEAT library [Duregård et al.,

2012]. The FEAT library has only been applied to algebraic data types, i.e. context-

free structures. FEAT can automatically generate an enumeration for Haskell data

types, a special case of datatype-generic programming [Gibbons, 2006]. The imple-

mentation relies on type classes and generalised deriving [Magalhães et al., 2010].

Recent work by Van Der Rest and Swierstra [2022] extended the datatype-generic

generation of enumerations from ADTs to indexed type families, also called type-

indexed data types [Hinze et al., 2004]. Type-indexed data types are more expressive

than ADTs and allow for an infinite family of mutually recursive types, somewhat

similarly to finitely branching proof systems, with the judgements playing the role of

the indices. But indices in an indexed family are inductively defined, and the types

of the family are generated through structural recursion. In abstract proof systems,

we allowed an arbitrary computable function to generate the inference relation. The

authors developed enumerations in a dependently typed setting, and they were able to

5.5. Related work 93

prove that their enumeration is exhaustive (contains all values) and unique (contains

any value at most once). In the more general case of finitely branching proof systems,

it is undecidable whether a judgement is provable (or whether a type is inhabited, in

the case of type systems), and our algorithm to enumerate proofs may not terminate

for particular proof systems and judgements.

The SCIFE Scala library [Kuraj et al., 2015] extended the algebra of enumerations

to dependent enumerations, that is, enumerations parameterised by a value. This al-

lows SCIFE to surpass the expressive power of ADTs and enumerate structures with

complex invariants, such as search trees. Our enumeration of proofs is much like a de-

pendent enumeration in SCIFE, in that it is parametrised by the judgement. However,

SCIFE is only designed as a combinator library, allowing the user to build enumera-

tions with algebraic combinators on dependent enumerations: unlike other works on

algebraic enumerations, the focus of SCIFE is not datatype-generic programming. We

found that turning inference rules of a proof system into dependent enumerations by

combinators can be cumbersome. We built on the idea of dependent enumerations,

but we showed that the basic datatype-generic algorithm of FEAT that generates enu-

merations from data systems can be extended to the class of finitely branching proof

systems. It is worth noting that SCIFE was empirically compared to other enumeration

methods, and found to perform very well.

Indexing function Algebraic enumerations are based on indexing, i.e. a bijective

map from the natural numbers to the set of structures. The main building block of

such functions are pairing functions, that is, bijections π : N×N→ N, such as the

Cantor pairing function. More precisely, the enumerations rely on the inverse of the

pairing functions. Pairing functions are known to have efficient implementations, and

are used in many algorithms. Pairing functions and their inverses can be implemented

in linear time and constant space. This limit is only reached for non-monotone pair-

ing functions, as the best result for monotone pairing functions is linear time and log

space [Regan, 1992]. Pairing functions are a building block of many algorithms and

theoretical results [Rosenberg, 2002]. FEAT uses the most straightforward pairing

function, the Cantor pairing function, and I did not experiment with other versions.

94 Chapter 5. Enumerating typed program fragments

5.6 Summary

This chapter showed how a functional representation of type inference rules can be

turned into an enumeration of type derivations and hence the enumeration of typed

program fragments, given a type and a typing context. The implementation is based

on two areas: algebraic enumerations and proof enumerations. We reviewed results

showing that algebraic enumeration, a datatype-generic method, can turn the defini-

tion of a data system into an enumeration of each type. We highlighted that a finitely

branching proof space ensures that proofs can be enumerated the same way as data

systems. We also discussed techniques to eliminate symmetries and make the enumer-

ations efficient.

I did not experimentally compare our enumeration algorithms to other alternatives,

beyond making sure that the implementation is reasonable. The techniques presented

here complement the description of our solutions of the desugaring extension problem

and describe a straightforward generic technique for proof enumerations.

Chapter 6

Searching for desugarings

In Chapter 4, we defined the desugaring extension problem (DEP). Chapter 5 then

described an implementation technique for enumerative synthesis, which we will now

apply to the DEP, yielding a baseline solution for the benchmarks introduced in Chap-

ter 3.

From the overall task of finding a desugaring translation from the source language

to the core language, we have delineated the DEP by requiring three prerequisites:

1. A decomposition of the full desugaring task into a series of DEPs.

2. A test set for each desugaring extension problem.

3. A search space for each desugaring extension problem.

For our baseline solution, we assume that the user provides the first two—the de-

composition and the test sets—while we focus on the third: defining the search space.

The search space is as crucial as it is difficult for any program synthesis task, as it

should “strike a good balance between expressiveness and efficiency” (Gulwani et al.

[2017], section 1.3.2). Expressiveness and efficiency are contradictory: we want the

search space to be large, so that it can express a wide variety of translation rules, while

at the same time narrow, so that the search is still feasible. As this is at the heart of this

chapter, we will be referring back to this challenge as the balancing challenge.

Defining the search space allows us to differentiate between the shallow translation

rules (desugarings) targeted with automatic synthesis methods and the more complex

translation rules, which we judge to be out of reach. This is a moving target: we expect

research to progress along this dimension of the problem.

In the baseline solution, we do not construct a fixed search space to give a definitive

answer to the balancing challenge. Rather, we construct an extensible search space,

95

96 Chapter 6. Searching for desugarings

assigning further responsibility to the user: domain knowledge can be used to fine-

tune the search space for a particular DEP. This is a limitation of the current approach,

admitting that the balancing challenge is hard. But it also gives us the opportunity to

progress gradually, exploring the design space for a synthesis algorithm.

In Section 6.1 we follow KLE’s work when defining search spaces. They proposed

a basic model for compositional translations, and constructed the Pidgin benchmark

to list the limitations of this model. The main contribution of the current chapter is

a search space that is close to the model proposed by KLE, but is defined by typing

rules. Defining the search space by typing rules fits our formal framework, makes the

search space easily extensible by adding new typing rules for program templates, and

allows us to apply our enumerative synthesis method, which expects the specification

in the form of typing rules. We show that this search space can gradually be extended

with templates to cover all problematic cases identified by KLE: one of our judgement

criteria of search spaces is based on how many intended translations they contain from

the Pidgin benchmark.

Since search space extensions are motivated by the Pidgin languages and the Pidgin

languages also serve as our first benchmark, there is some inevitable overlap between

motivation and evaluation, and a danger of overfitting the search space to the Pidgin

benchmark. While acknowledging this point is necessary, we should still note that

the main contribution of the present Chapter is the base search space, based on typing

rules, that makes the extensions possible in the first place, rather than the individual

extensions themselves, which only illustrate this possibility. We design an extensible

search space and illustrate its flexibility with concrete extensions. The double role

of the Pidgin languages in the design of the extensions can also be justified: they

are specifically designed by renowned researchers to cover a range of problematic

features. Accepting that the Pidgin languages have a double role, we illustrate search

space extensions with the language constructs from the Pidgin benchmark but separate

these illustrations from the main discussion of the design.

Defining a search space with typing rules is the final building block necessary for

achieving a testable sub-task, allowing us to evaluate our ideas empirically for the first

time. We evaluate our method empirically on the benchmarks in Section 6.2. We

demonstrate that the benchmarks can be decomposed into a series of DEPs, that these

desugaring expression problems are solvable by our baseline algorithm, and that the

solution of their composition—the sequential learning problem—yields a full solution

for the benchmarks. The search space is not fixed: it allows and indeed requires user

6.1. Search spaces for translation rules 97

guidance. As the amount of user guidance needed is our main criterion to evaluate the

solutions, we carefully list every type of user guidance needed in the baseline solution,

so that future solutions can be compared along this aspect.

6.1 Search spaces for translation rules

In this section, we will examine search spaces of increasing expressiveness, the ex-

pressive power of each to be demonstrated on the Pidgin benchmark. After briefly

examining a simple search space to justify our choice of leaving test generation to the

user, we look at a search space that is close to tree transducers (the model proposed by

KLE), but fits our framework. We show that it can be reformulated as a type system for

a meta-language, and this type system can be extended by additional typing rules for

program templates. We then proceed to show a series of extensions covering all cases

identified as problematic by KLE.

We define search spaces for a single source constructor: following our formal def-

inition, the search spaces are parametrised by a given signature σ1× ·· · × σn → σ

derived from the signature of the source constructor. The full search space for a

DEP, which may need to find translation rules for multiple source term constructors, is

formed by a tuple of translation rules for each source term constructor in the extension,

where each translation rule can be chosen independently. The full search space for the

DEP is simply the Cartesian product of the search spaces for the individual source term

constructors.

6.1.1 Relabelling

The simplest search space we consider, Hrelabel, is formed by the term constructors

of the core language. With Hrelabel we can express desugarings which map each con-

structor of the source language to a term constructor of the core language of the same

signature: a relabelling. Note that any arguments of the source term constructor are

translated recursively, and the order of arguments cannot be changed. We call the

desugaring extension problem specialised to Hrelabel the relabelling problem.

Example 6.1.1. In the Pidgin benchmark, many intended translation rules can be ex-

pressed as relabellings. In fact, all of them can, except for STrue, SFalse, SPrim,

98 Chapter 6. Searching for desugarings

SBetween and SFor:

JSNum(n)K = CNum(n)

JSVar(i)K = CVar(i)

JSStr(s)K = CStr(s)

JSIf(t1, t2, t3)K = CIf(Jt1K,Jt2K,Jt3K)

JSLam(̄i, t)K = CLam(̄i,JtK)

JSApp(t1, t2)K = CApp(Jt1K,Jt2K)

JSLet(i, t1, t2)K = CLet(i,Jt1K,Jt2K)

JSLetRec(i, t1, t2)K = CLetRec(i,Jt1K,Jt2K)

JSAssign(i, t)K = CAssign(i,JtK)

JSList(t̄)K = CList(Jt̄K)

JSListCase(t1, t2, t3)K = CListCase(Jt1K,Jt2K,Jt3K)

This is not surprising, since the core language is supposed to be close to a subset

of the source language.

Relabelling can be a natural search space for a DEP when the source language

itself is an extension of the core language, and we want to find the rules that form this

extension.

This search space is simplified to triviality: for many source signatures in the Pidgin

benchmark (like SNum) it contains only one translation rule, and in some cases (like

SFor) it is empty. But even this very limited search space may contain translation

rules that are incorrect (and therefore not our intended translation):

Example 6.1.2. In the Pidgin benchmark, the relabelling search space contains an

incorrect translation rule:

JSLetRec(i, t1, t2)K
∗
= CLet(i,Jt1K,Jt2K)

The previous example shows that even if we assume that the intended translation is

a relabelling, we still may need appropriate test cases to rule out incorrect translations,

which are not always trivial to find. To distinguish between recursive and non-recursive

let constructs, we need an example that actually behaves recursively when interpreted

as letrec. The example of distinguishing let and letrec demonstrates that generating

test cases can be a hard problem even for a severely restricted search space. Here, in

our baseline solution, we assume an appropriate user-written test set, i.e., one that is

part of the expected user guidance.

6.1. Search spaces for translation rules 99

6.1.2 Substitutions

We now consider a search space that is close to the original tree transducer [Comon

et al., 2007] model suggested by KLE. We define the search space Hsubst using substi-

tution on terms with variables.

Definition 6.1.1 (Terms with variables). Let TΩ be an abstract language over signature

Ω(SΩ,FΩ,sigΩ), where SΩ = {σ1, . . . ,σn}. Let a function ρ : S→ N assign a natural

number to every sort in the signature. Let Xρ be a finite set of variables, containing

ρ(σ) variables for every sort σ:

Xρ = {xσ1
1 , . . . ,xσ1

ρ(σ1)
, · · · ,xσn

1 , . . . ,xσn
ρ(σn)
}

and disjoint from FΩ. Extend the signature function to the new variables as

∀σ ∈ SΩ,∀i ∈ [1 . . .ρ(σ)],sig(xσ
i) = σ

.

Let Ωρ be the signature with the same set of sorts as Ω, the term constructors

extended with the variables of Xρ, and the signature function extended to the variables.

We denote the set of terms with signature Ωρ as TΩ(Xρ), and we call these terms terms

with variables over the language TΩ.

The signature function sig is extended to terms with variables as well (similarly as

it is extended to terms). Terms with variables with sort σ is denoted as T σ

Ω
(Xρ).

Definition 6.1.2 (Substitutions). Let Ω be the core signature and ρ a function deter-

mining the number of variables. For a sort σ∈ SΩ a term t ∈ T σ

Ω
(X ρ) defines a function

by substituting the arguments into the variables. We will refer to translations (and in-

terpretations) that can be expressed by terms with variables as substitutions.

Let Σ be our source signature, and let f ∈ FΣ, f : σ1× ·· ·×σn → σ be a source

term constructor. Let s : SΣ ⇀ SΩ be the sort mapping from source sorts to core sorts.

For any sort σ′ ∈ SΩ, let ρ f (σ
′) be the number of times s−1(σ′) occurs in the domain

of the signature of f (among the sorts σ1, . . . ,σn). (As the mapping is not necessarily

injective, s−1(σ′) could be a set, and we sum the occurrences of each element.) The

search space for f is defined as H f
subst = T σ

Ω
(X ρ f), the set of substitutions for f .

Every relabelling is a substitution.

The translations defined by translation rules in Hsubst are also definable by a deter-

ministic top-down tree transducer (DTOP). But Hsubst is more restricted:

100 Chapter 6. Searching for desugarings

• It guarantees that the output of a translation is well-typed according to the core

language’s signature (the output corresponds to the abstract syntax)

• It guarantees that the translation preserves the sort mapping from source sorts to

core sorts.

We do not want translation rules that violate these restrictions, so substitutions

are a better search space than DTOPs: more efficient, and similarly expressive in our

domain. Unlike the finite set of states of a DTOP, the set of typing contexts in Hsubst is

infinite.

In Hsubst and DTOPs a term constructor determines the translation rule.

Example 6.1.3. To demonstrate the limitations of this determinism, let us look at the

two translation rules for SPrim in the Pidgin benchmark. They cannot be expressed

in either of these search spaces, as they require a different behaviour based on the

number of arguments:

JSPrim(o, [t1])K = CPrim1(o,JtK)

JSPrim(o, [t1, t2])K = CPrim2(o,Jt1K,Jt2K)

The translation rules covered by Hsubst (along with DTOPs) is not only determin-

istic (requiring at most one translation rule for every source term constructor), but are

also total.

Example 6.1.4. The rules for SPrim, as shown in the previous example, also demon-

strate non-total rules. They do not cover every case: they do not cover cases when

the argument list is empty or contains more than two elements. Expressing the two

rules for SPrim is possible with a bottom-up tree transducer or a non-deterministic

top-down tree transducer (both of which are more expressive than DTOPs) but requires

additional states that do not correspond to the sorts given by the abstract syntax.

It is clear that Hsubst is much more expressive than relabellings, but the Pidgin

benchmark does not demonstrate this expressiveness.

Example 6.1.5. In the Pidgin benchmark, only two additional rules can be covered by

Hsubst:

JSTrueK = CBool(TRUE) JSFalseK = CBool(FALSE)

The reason is that the Pidgin source and core languages were specifically chosen

by KLE to demonstrate potential problems with modelling the translation with a tree

transducer; therefore, all of the more complex translation rules are designed to fall

outside of this search space.

6.1. Search spaces for translation rules 101

6.1.3 Substitutions as a type system

So far we remained very close to KLE’s original model, tree transducers. We now

begin our endeavour to gradually extend our model, to cover the features that KLE

found problematic: analysing arguments, re-arranging children, throwing errors, and

generating fresh names. To achieve this, we reformulate Hsubst to have an extensible

search space.

We present Hsubst as a subset of a general purpose meta-language—a simplified

ML-like functional language with algebraic data types—where the subset is defined by

typing rules. This subset can be extended with additional program templates written

in the meta-language by providing their typing rules, lifting the main limitation of the

tree transducer model. Moreover, presenting the meta-language through the typing

rules allows us to directly apply the enumeration method introduced in Chapter 5.

The generic method to define the subsets via typing rules is the following. Let

σ1, . . . ,σn and σ be core sorts. A translation rule is a computation with type σ1×
·· ·×σn→ σ. We uniformly represent isomorphic types that differ in the order of the

arguments by introducing an environment: Γ = {x1 : σ1, . . . ,xn : σn}, where Γ is a

function from a set of variables to core sorts, usually given as a set of pairs in the form

of x : σ, where x is a meta-variable (not an identifier in the source or core languages),

and σ is a core sort. We represent translation rules as judgements of the form

Γ ⊢ T : σ

where T is a meta-program corresponding to a translation rule typed

σ1 × . . . × σn → σ. This uniform representation is necessary for an adequate

representation of judgements, as defined in Section 5.1.

To avoid confusing the typing rules (defining various ways to build meta-programs,

programs that define translation rules) and the translation rules (building blocks of

compositional translations), we will refer to the former as meta-rules. A set of meta-

rules define a meta-language for translation rules.

Let us now apply this to defining the base meta-language, equivalent to Hsubst.

There are many ways to write the rules of a simple type system to achieve this goal.

Our version was carefully designed such that it has the Curry-Howard property (see

Section 5.1): we require every type derivation to uniquely correspond to a translation

rule in Hsubst. The meta-language is shown in Figure 6.1.

102 Chapter 6. Searching for desugarings

σ1, . . . ,σn,σ ∈ S

f ∈ F
t ::= x | c | f (t1, . . . , tn)

AXIOM
Γ;x : σ ⊢ x : σ

c : σ
C-RULE

Γ ⊢ c : σ

Γ ⊢ t1 : σ1 · · · Γ ⊢ tn : σn f : σ1×·· ·×σn→ σ
F-RULE

Γ ⊢ f (t1, . . . , tn) : σ

Figure 6.1: Terms with variables as proofs

6.1.4 Analysing arguments

The first feature that cannot be expressed with Hsubst is when we have multiple rules

for the same source term constructor. In our first extension we allow differentiating be-

tween cases based on the structure of the arguments. We introduce a rule that conforms

to the fold model: it cannot access the original source arguments, only their translation

to the core language, and we branch based on the structure of the core arguments. We

introduce case separation for core sorts, as follows:

Let σ ∈ SΩ be a core sort. Let ∀i ∈ [1 . . .n]. fi : σ1
i × ·· · × σ

ki
i → σ be the core

term constructors with co-domain σ, where ki is the number of arguments of fi and

σ1
i ×·· ·×σ

ki
i is the domain of fi. If a translation rule has an argument of sort σ, then

that argument could be constructed in n ways (by one of the core term constructors

with co-domain σ). We introduce a template for meta-rules that allows us to separate

these n cases:

Γ;x1
1 : σ

1
1, . . . ,x

k1
1 : σ

k1
1 ⊢M1 : σ

′ . . . Γ;x1
n : σ

1
n, . . . ,x

kn
n : σ

kn
n ⊢Mn : σ

′

CASE σ

Γ;y : σ ⊢ caseyof f1(x1
1, . . . ,x

k1
1)→M1 . . . fn(x1

n, . . . ,x
kn
n)→Mn : σ

′

This template for meta-rules is parametrised by the core sort σ.

Example 6.1.6. As a concrete example, let us use the ListCTerm sort from the Pidgin

core language as σ, as this is needed to express the two rules for SPrim:

Γ ⊢M : σ
′

Γ;x : σ,y : [σ] ⊢ N : σ
′

CASE LISTCTerm
Γ;y : [σ] ⊢ caseyof []→M;(x : y)→ N : σ

′

As we have already discussed in Section 4.4, compositional translations have a

limited ability to analyse the structure of children, as any such analysis is only possible

6.1. Search spaces for translation rules 103

after the recursive call. In the above example, this means that in order to faithfully

represent the SPrim rules, we must rely on translating a list of source terms into a list

of core terms. In general, in order for the case separation to be what we expect, the

translation rules for the term constructors of the source sort must keep the structure

of the arguments we branch on. This is an inherent limitation of the fold model: in

this respect, this model is more limited in expressiveness than a non-deterministic tree

transducer.

Note that the CASE rule is the first rule to change the environment. In Hsubst the

environment Γ is never changed by any meta-rule, therefore it remains fixed for the

search space H f
subst for a given source term constructor f . H f

subst can be described with

a context-free grammar (it can be represented by an ADT), while the extended meta-

language that contains the CASE rule cannot. The CASE rule is the first rule relying on

a more general implementation of enumerations, as introduced in Chapter 5.

6.1.5 Errors

While the CASE meta-rule allows multiple translation rules for the same term con-

structor, we are still limited to total translation rules in the resulting meta-language.

To cover non-totality, we need a way to raise syntax errors for the cases not covered

by the intended translation:

THROW
Γ ⊢ syntax_error : σ

Example 6.1.7. With CASE and THROW the intended translation rule for SPrim can

be expressed as a single rule:

JSPrim(o, ts)K = case JtsK of

[]→ syntax_error

(t1 : ts1)→ case ts1 of

[]→ CPrim1(o, t1);

(t2 : ts2)→ case ts2 of

[]→ CPrim2(o, t1, t2);

(_ : _)→ syntax_error

6.1.6 Transforming arguments

The next feature not covered by tree transducers is re-arranging the children. We do

not define a search space for re-arrangements, but we allow extending the search space

104 Chapter 6. Searching for desugarings

with fixed, user defined re-arrangements.

Let σ1,σ2 ∈ SΩ be two core sorts and tr : σ1→ σ2 a function in the meta-language

that transforms between them, which re-arranges the structure contained in σ1:

Γ;x : σ2 ⊢M : σ
TRANSFORM

Γ;y : σ1 ⊢ letx = tr(y) inM : σ

Example 6.1.8. In the Pidgin benchmark we have an intended translation rule that

requires re-arranging the children: the rule for the SFor source constructor. However,

simply adding a user-defined translation rule is not enough to express the intended

translation rule. The argument we need to re-arrange belongs to the ListSForBind

source sort, which has no corresponding pair in the Pidgin core language; not even

SForBind has a corresponding sort. In Section 4.4, we extended the notion of sort-

preserving compositional translations to partial sort mappings by extending the core

language with new sorts (data types) that are essentially copies of the source sorts.

We may notice that the sort (data type) SForBind is isomorphic to pairs, and treat

its copy as such in the meta-language: Id×CTerm. Furthermore, as ListSForBind

is isomorphic to a list of pairs, we can represent its copy in the meta-language as

List(Id×CTerm). The user-defined transformation needed for extending the meta-

language is unzip: we want to re-arrange the list of pairs into two separate lists:

unzip : List(Id×CTerm)→ (List Id)× (ListCTerm)

The result of unzipping this list is a pair of lists, which is yet another datatype (sort)

that is not part of the core language. We need to once again extend the core language

with a new sort, a list of identifiers and core terms, as well as its sole term constructor.

With these extensions, we can then express the UNZIP rule as the specialised version

of the TRANSFORM rule, where the tr transformation is specialised to the unzip

meta-language function:

Γ;x : (List Id)× (ListCTerm) ⊢M : σ
UNZIP

Γ;y : List(Id×CTerm) ⊢ letx = unzip(y) inM : σ

The new sort, (List Id)× (ListCTerm) does not appear in any core term con-

structor, so adding the UNZIP meta-rule alone leads us nowhere: we can not use the

resulting value in any other meta-rules. We need to add the corresponding CASE rule

to the set of meta-rules, since otherwise this sort could not appear in any program

terms.

6.1. Search spaces for translation rules 105

As demonstrated by the previous example, sometimes a transformation may result

in a datatype that is not part of the core language (just the meta-language), so we

know in advance that we need to analyse the result with a CASE rule. In these cases,

we can combine the two meta-rules (the TRANSFORM rule and the CASE RULE) into

one, significantly reducing the search space:

Γ;x1
1 : σ

1
1, . . . ,x

k1
1 : σ

k1
1 ⊢M1 : σ

′ . . . Γ;x1
n : σ

1
n, . . . ,x

kn
n : σ

kn
n ⊢Mn : σ

′

TRANSFORM-CASE
Γ;y : σ1 ⊢ case tr(y)of f1(x1

1, . . . ,x
k1
1)→M1 . . . fn(x1

n, . . . ,x
kn
n)→Mn : σ

′

Example 6.1.9. The required meta-rule to express the translation rule of SFor can be

obtained by specialising the TRANSFORM-CASE rule scheme to unzip. The CASE rule

for the output of the unzip function has only one branch, as pairs have only one term

constructor. In the meta-language we can replace general case pattern matching with

let pattern matching:

Γ;x1 : Listσ1,x2 : Listσ2 ⊢M : σ
UNZIP’

Γ;x : List(σ1×σ2) ⊢ let(x1,x2) = unzip(x) inM : σ

Just as in the case of translating SPrim, faithfully translating SFor depends on

the translation of its arguments. In this case the argument belongs to the SForBind sort:

we rely on translating a list of pairs of identifiers and source terms to a corresponding

list of pairs of identifiers and core terms.

The TRANSFORM and CASE rules, as well as their combined TRANSFORM-CASE

version, all rely on analysing the argument of the translation rule. This analysis is

limited, as it happens after the recursive call, and they all share this limitation. Faitfhul

representation of certain translation rules, as shown by the previous example, requires

that the structure of the arguments is preserved. Note that this is exactly the condition

that we set up in Section 4.4 when a source sort has no corresponding core sorts, and

the sort-mapping is partial: we simply ’copy’ these term constructors in the meta-

language.

6.1.7 Layering

With the introduction of the CASE, TRANSFORM, TRANSFORM-CASE and ERROR

rules, we have successfully extended the search space. However, we have also lost

the Curry-Howard property of having exactly one type derivation for every translation

106 Chapter 6. Searching for desugarings

rule. There are two reasons for this: the new meta-rules can be permuted with the

F-RULE, and the new meta-rules can be permuted with each other.

The former can be solved with layering. We introduce a new judgement type: ⊢E ,

and change the new rules (CASE,TRANSFORM, TRANSFORM-CASE and ERROR) to

use it. We connect the new rules with the basic rules through a one-way conversion

from the basic judgement type to the extended judgement type ⊢E :

Γ ⊢M : σ
EXTEND

Γ ⊢E M : σ

The latter can be solved with focusing (see Section 5.4.3): only allow applica-

tion of the CASE and TRANSFORM rules in a controlled way (in a fixed order). We

will ignore this complication for now. Transforming our type system to an equivalent

one with the Curry-Howard property is challenging, and we do not have benchmarks

where the CASE or TRANSFORM rules are applicable to more than one variable in

the environment, thus we currently lack the method to evaluate any attempts to solve

this problem. To a certain extent, the combined TRANSFORM-CASE rule reduces this

problem, as it fixes the order of the TRANSFORM and CASE rules applied to the same

variable.

6.1.8 Fresh name generation

The last feature noted by KLE as problematic is fresh name generation. Generating

fresh names depends on the context of the translation rule (depending specifically on

the other names occurring in the entire generated program), not merely on the argu-

ments of the translation rule, hence it is not a mathematical function from terms to a

term. Fresh name generation is internal to the translation itself, and needs to be handled

by our meta-language.

Extending our meta-language with a name-generating effect is standard and straight-

forward.

Γ;y : Id ⊢M : σ
FRESH’

Γ ⊢ let y = gensym() in M : σ

Unfortunately, adding the FRESH’ rule blows up the search space, making synthe-

sis unfeasible. We would like to take the binding structure of the core language into

account, and use fresh name generation to introduce new identifiers only where the

6.1. Search spaces for translation rules 107

core language allows it, limiting the scope of the introduced identifier. A straightfor-

ward solution is to add a separate meta-rule for every binding construct in the core

language.

Example 6.1.10. The following meta-rule is specific to the CLet construct in the

Pidgin core language, taking its binding structure into account:

Γ ⊢M1 : CTerm Γ;x : CTerm ⊢M2 : CTerm
FRESH

Γ ⊢ let i = gensym() in CLet(i,M1,M2[CVar(i)/x]) : CTerm

Similar rules can be added for CLetRec or CLam as well.

6.1.9 Summary: the complete meta-language for translation rules

We now collate all the extensions in a parametric search space Hmeta that is based on

all the meta-rules introduced so far. Our new feature is restriction: we control the exact

set of meta-rules by parameters, allowing for user assistance.

We introduce four new parameters:

1. The set B of base cases: core term constructors that we allow to appear in the

C-RULE or F-RULE.

2. The set T of transformations that we can apply to arguments.

3. The set A of case analyses, which contains the core sorts that can appear in the

CASE rule, and the translation functions between core sorts that can appear in

the TRANSFORM-CASE rule. Since using the identity function on sort σ as a

translation in a TRANSFORM-CASE rule is equivalent to a CASE rule on σ, we

handle them in a single parameter. (We can think of the TRANSFORM-CASE

rule as a user-defined view of the data that we can analyse, and the CASE is a

special case where this view is defined by the identity.)

4. The set V of binding constructs in the target language that we specify the FRESH

rule for.

The search space Hmeta(B,T ,A ,V) is generated by the following set of meta-

rules:

1. The AXIOM, EXTEND and ERROR rules are the fixed part of the search space.

108 Chapter 6. Searching for desugarings

2. The C-RULE and the F-RULE are restricted to term constructors in B .

3. The TRANSFORM rule with the condition tr ∈ T , using the extended judgement

⊢E .

4. The CASE and TRANSFORM-CASE rules with the condition tr ∈ A , using the

extended judgement ⊢E .

5. The FRESH rule, specified for binding constructs in V .

6.2 Evaluation

6.2.1 Hypothesis and methodology

Our hypothesis is that for all of the benchmarks:

1. We can set up a sequential learning task, decomposing the full desugaring prob-

lem into a series of desugaring extension problems.

2. Each individual desugaring extension problem can be solved with our enumer-

ative synthesis algorithm, using a search space based on Hmeta as defined in

Subsection 6.1.9.

3. The individual desugaring extension problems can be combined to solve the

overall problem.

As noted earlier, our search space needs to meet several contradictory requirements.

We do not expect to solve the balancing challenge, but this is one of the main dimen-

sions along which we expect research to progress. This situation places us in a tight

spot: it is hard to measure how well results generalise. As we set up a search space

for our specific benchmarks, the balancing challenge manifests itself in the following

way: a successful search in an overly strict search space would not carry any general-

isable result. On the other hand, a search space that is too expansive would preclude

any feasible enumerative search, making our endeavour completely hopeless.

We attempt to address this problem as follows. We rely on the parametric search

space Hmeta, which allows user guidance in a controlled manner. We set up an ini-

tial search space for all benchmarks, based on assumptions we find intuitive. Next,

we proceed in an incremental manner, repeating any failed tests with additional user

6.2. Evaluation 109

guidance: the parametric setup of Hmeta allows us to construct new search spaces that

are strictly contained in the previous ones. Although we report a number of different

metrics from our tests, we believe that the amount of user assistance needed for each

step to successfully complete is the most useful metric. We evaluate Hmeta and the

enumeration synthesis library on all benchmarks we introduced in Chapter 3 in this

way.

The setup of each benchmark will consist of:

1. The syntax of the source and core languages.

2. The intended translation between them.

3. The sort mapping from source sorts to core sorts.

4. The initial sublanguage Σ0 and its initial translation.

5. The initial search space.

When presenting the sort mapping (3), we also include the extra sorts we extended

the original core language with, as they are represented as meta-language data types.

Thus the mapping we show is total, but the codomain is an extension of the origi-

nal core language. The partial sort mapping from source sorts to core sorts excludes

sorts whose image is not a core sort; the extra part of the mapping is supposed to be

generated automatically.

The test itself consist of a series of steps. We first attempt to decompose the rest

of the source language into a series of increasing sublanguages, defining a sequence

of individual desugaring extension problems. We write test sets for each desugaring

extension problem, then check if they can be solved by the initial search space. If any

step fails within our time and memory limits, we add additional user guidance, either

by fixing some part of the translation, or by restricting the initial search space for the

failed step.

The search times reported were obtained on an Intel E3-1245v5 @ 3.50GHz with

8 cores and 32 GB RAM, running Debian Linux 11.5 and GHC 9.0.2. We set up a

one hour time limit and a 8GB memory limit for each individual desugaring extension

problem.

110 Chapter 6. Searching for desugarings

6.2.2 Pidgin languages

The first test was conducted on the Pidgin benchmark, specifically designed by KLE to

demonstrate the challenging aspects of defining a search space. While the Pidgin lan-

guages were not intended to serve as a benchmark for program synthesis, it is perfect

for illustrating our notation, the steps required to set up a sequential learning problem,

and the way we display and analyse the results.

Setup

Syntax and intended translation The syntax of the Pidgin source and core lan-

guages is shown in Figure 3.1a, and the intended translation from the Pidgin source to

the Pidgin core language is shown in Figure 3.1.

Sort mapping As we do not have a core sort corresponding to the SForBind sort, we

extended the core language with a new sort (Id,CTerm), a pair of identifiers and core

terms. Note that since we do not have any core term constructors that have parameters

of this new sort, no terms with this sort can appear in core programs. This sort can only

occur together with the CASE or TRANSFORM-CASE rules. The sort mapping was the

following:

Bool→ CTerm Id→ Id Number→ Number

String→ String Op→ Op STerm→ CTerm

ListId→ ListId ListSTerm→ ListCTerm SForBind→ (Id,CTerm)

ListSForBind→ List(Id,CTerm)

Σ0 sublanguage and its translation The sublanguage Σ0 contained numbers, strings,

identifiers, the constructors for lists, and the SFBind term constructor. We defined the

translation of Σ0 as follows:

• We preserve numbers, strings, identifiers and lists of identifiers.

• Lists of source terms are translated to lists of core terms by individually translat-

ing the elements and preserving their order.

• A term with SFBind as the head is translated to a pair of an identifier (from the

first argument) and a core term (by translating the second argument, a source

term).

6.2. Evaluation 111

• Terms with sort ListSForBind are translated into a list of pairs by translating the

individual elements into pairs, preserving the order.

Initial search space For the initial search space H 1
Pidgin = Hmeta(B,T ,A ,V) we set

the four parameters as follows:

• The set of base rules B contained all core term constructors, including list con-

structors for term and identifier lists. It did not contain number, string or identi-

fier constants. In general, we do not want to allow such constants in the search

space: they rarely occur in desugaring rules, and they blow up the search space.

However, we needed the Boolean constants TRUE and FALSE, since the Boolean

sort is not part of the source language. We also included all operator symbols,

which required some domain knowledge about their role: while operator sym-

bols are constants, they correspond to various operations.

• The set of translations T is empty.

• The set of case analyses contains two functions: A =
{

idListCTerm, unzipList(Id,CTerm)

}
.

The two rules are CASELISTCTerm and TRANSFORM-CASE unzipList(Id,CTerm).

• The set of binding construct V contained only CLet. Our sole rule in this group

is FRESHCLET .

Results

We ran the first test with H 1
Pidgin, and found all but one of the intended translation

rules within the time limit: this test did not find the intended desugaring for SBetween.

This is the largest translation rule, with an AST size of 14, and no subsequent steps

depended on it, so this failure did not affect any other steps. We constructed a second,

specialised search space H 2
Pidgin specifically for SBetween:

• The base rules retained operators from among the constants and the core term

constructors CVar and CPrim2, but no other term constructors or constants.

• We did not include any transformations or case analysis rules.

• We kept the FRESHCLET binding rule.

112 Chapter 6. Searching for desugarings

Table 6.1: Benchmark – Pidgin languages

Task New constructors Hyp. space AST size Index #test set Time

Σ1 SNum H 1 2 1 2 0s

Σ2 SStr H 1 2 1 2 0s

Σ3 SPrim H 1 12 16,567,096 5 2min 27s

Σ4 SVar,SLet H 1 6 1,298 2 0s

Σ5 STrue,SFalse H 1 4 10 4 0s

Σ6 SAssign H 1 3 18 1 0s

Σ7 SBetween H 2 14 157,160,392 9 28min 20s

Σ8 SIf H 1 4 171 2 0s

Σ9 SLam,SApp H 1 6 1,813 2 0s

Σ10 SLetRec H 1 4 132 1 0s

Σ11 SList H 1 2 3 2 0s

Σ12 SListCase H 1 4 207 2 0s

Σ13 SFor H 1 11 57,334,664 3 9min 44s

Σ total 37 40min 32s

The modified sequential learning task yielded a full solution of the Pidgin bench-

mark. The results are summarised in Table 6.1.

The rows of the table correspond to desugaring extension problems. In each prob-

lem Σn the translations of the sublanguages Σ0, . . . ,Σn−1 are assumed to be known. We

work our way downwards: the test sets cannot use term constructors from below. To

get some rough measurement of the complexity of each task, we noted the size of the

intended desugaring (AST size), as well as the index of the translation found in the

enumeration for each desugaring extension problem, that is, the number of attempts

tried before a solution was found. We also show the number of handwritten tests we

used in order to find the solution.

Translation rules found The solution found was identical to the intended translation

in Figure 3.1 in all but three cases. In the case of SPrim and SFor, the difference

was merely the syntax: the found translation rules were expressed with the syntax

of our meta-language, as we have already shown when we introduced the CASE and

TRANSFORM rules.

6.2. Evaluation 113

The SPrim rule:

JSPrim(o, ts)K = case JtsK of

[]→ syntax_error

(t1 : ts1)→ case ts1 of

[]→ CPrim1(o, t1);

(t2 : ts2)→ case ts2 of

[]→ CPrim2(o, t1, t2);

(_ : _)→ syntax_error

The SFor rule:

JSFor(t1, t2, t3)K = let (is, ts) = unzip(Jt2K) in CApp(Jt1K, [CLam(is,Jt3K),CList(ts)])

In the case of SBetween, the algorithm found an expression semantically equivalent

to our intended translation but smaller:

JSBetween(t1, t2, t3)K = let i1 = gensym() in CLet(i1,Jt1K,

let i2 = gensym() in CLet(i2,Jt2K,

CPrim2(∧,CPrim2(<,CVar(i2),Jt3K),CPrim2(<,CVar(i1),CVar(i2)))))

Decomposition The test sets of the desugaring extension problems cannot contain

source term constructors from later extensions, but a test set still needs to exclude non-

intended translations. Sometimes the translations of term constructors depend on each

other and cannot be learnt separately. The Pidgin benchmark has three such cases:

1. We cannot learn SLam and SApp separately, as they only show their behaviour

together.

2. KLE did not specify the exact semantics of the source and core languages —

this gave us some freedom in implementing them. Our implementation does not

allow for executing open programs containing non-declared variables; in other

words, all variables must be declared in a SLam, SLet or SLetRec expression

before use, otherwise an exception is raised. This means that we could not use

SVar on its own without one of these term constructors: we grouped it together

with SLet in task Σ4.

3. The last case where we needed to group multiple term constructors together was

the STrue, SFalse group. The symmetry of the Boolean constants means that

we need to learn them together, relying on the already fixed translations of the ∧
and ∨ operations to rule out translations that map to the opposite Boolean value

in the core language.

114 Chapter 6. Searching for desugarings

Since all other groups only contain one term constructor, this decomposition is in

line with our assumption that we often do not need to learn more than one rule at a

time. This, in turn, supports our hypothesis that the language can be partitioned into

small groups of term constructors.

Test programs The majority of test programs are very small and simple: in most

cases, we do not need large test programs, and they could plausibly be generated by

automatic testing. There are three exceptions:

1. To learn the full semantics of SBetween, we needed test programs where the

evaluation order of arguments matters.

2. To distinguish SLetRec from SLet, we needed recursive examples.

3. The source term constructor SFor assumes a combinator function as its first argu-

ment, which leads to an example that dwarfs the rest. This last case is somewhat

artificial, though.

In many cases, our algorithm found a desugaring equivalent to the intended se-

mantics on pure terms, but changed the evaluation order of the arguments. The Pidgin

source language has side effects, induced by the SAssign operator. We utilised it to

add test cases that depend on the evaluation order.

Sometimes the order of the test programs in a test set is important. The majority

of the time is spent evaluating various core programs that we get via the tested trans-

lations, especially when we need recursive test programs, such as in the case of SFor.

Recursive test programs easily lead to non-terminating core programs, thus the time

spent checking prospective translations on these test programs greatly depends on the

resource limit. If the resource limit is too low, we may get an incorrect desugaring, if

too high, the search may take a long time. It is possible to learn the intended semantics

of SFor with only a single test program, but since it would need to be recursive and

large, the search time would suffer and would depend on the resource limit, making the

learning process impractical. As currently we can only tune the resource limit manu-

ally (automatic tuning is left to future research), it is important for performance to use

simple, non-recursive source programs first in a test suite. We added such a test pro-

gram to our test set, before the full example, and we found that in this case a reasonably

high resource limit did not significantly impact the time of the search. Thus, no manual

tuning was needed, while the search time was reduced by around 90% (compared to

using only a single recursive test program).

6.2. Evaluation 115

t ∈ STerm ::= . . . | SListComp(t,q)
q ∈ SQual ::= QEmpty | QBind(i, t,q) | QGuard(t,q) | QLet(i, t,q)

e,e1,e2 ∈ CTerm ::= . . . | MVar(i) | MLam(i,e) | MApp(e1,e2) | Return(e) | Bind(e1,e2)

(a) Adjusted extension of Pidgin with basic list comprehensions – syntax

JSListComp(t,q)K = MApp(JqK,JtK)

JQEmptyK = MLam(%u,Return(MVar(%u)))

JQBind(x, t,q)K = MLam(%u,Bind(JtK,CLam([x],MApp(JqK,MVar(%u)))))

JQGuard(t,q)K = MLam(%u,CIf(JtK,MApp(JqK,MVar(%u)),CList([])))

JQLet(x, t,q)K = MLam(%u,Let(x,JtK,MApp(JqK,MVar(%u))))

(b) Adjusted extension of Pidgin with basic list comprehensions – intended translation

Figure 6.2: Adjusted extension of Pidgin with basic list comprehensions

6.2.3 Basic list comprehensions

Our second benchmark is list comprehensions: we extended the Pidgin source and

core languages with new constructs, mimicking the expected process of incremental

learning.

This benchmark is special, as the intended translations express the desugarings of

qualifiers with meta-level lambdas. This means the meta-language of the benchmark

contains λ-abstraction and application, which our search space does not. Extending the

search space with those is not completely trivial, as we have showed in Section 5.4.1:

the application rule is not finitely branching. Certainly it would be possible to set up

a search space based on the LJT calculus (Example 5.4.3), but we will leave this for

future research.

Instead, we adjusted the benchmark. We extended the core language with macros:

MVar, MLam and MApp, that provide textual substitution. Core language macros allow us

to approximate a higher-order meta-language. The Figure 6.2a shows the new extended

syntax of the source and core languages. The extension for the source language is not

changed from the original formulation of the benchmark, but the extension of the core

language is. Figure 6.2b contain the expected translation rules, in this case expressed

with core language macros, where %u is a freshly chosen name that is guaranteed to

be unique and not used elsewhere in the term.

116 Chapter 6. Searching for desugarings

Setup

Syntax and intended translation The syntax of the extended source and core lan-

guages is shown in Figure 3.2a, and the intended translation from the Pidgin source to

the Pidgin core language is shown in Figure 3.2b.

Sort mapping The benchmark extended the source language with a new sort for

qualifiers in the list comprehension expression. As we do not have function types,

we map qualifiers to core terms, expecting a macro expression defined with MLam,

representing a function on core terms implemented with substitution.

Σ0 sublanguage and its translation As this benchmark is the continuation of the

Pidgin benchmark, the initial language Σ0 in this case is simply the whole Pidgin source

language, and its translation is the intended translation shown in Figure 3.1.

Initial search space. Our search space Hlc is similar to H 1
Pidgin.

• The set of base rules B contained all core term constructors from Pidgin, in-

cluding list constructors for term and identifier lists, the new constructors MLam,

MVar, MApp for macros, and the new Return and Bind operations based on the

definition of monads. It did not contain number, string or identifier constants, but

contained the Boolean constants TRUE and FALSE, and all operators as constants.

• The are no translations T or case analysis rules A .

• In addition to FRESHCLet we added a new binding construct in V for macros,

called the FRESHMLam:

Γ; i : Id ⊢M : CTerm
META-LAMBDA

Γ ⊢ let i = gensym() in MLam(i,M) : CTerm

Results

Decomposition This benchmark demonstrates that sometimes “large” (>2) construc-

tor groups are necessary, and our enumerative method does not scale up to large groups.

The smallest constructor group required for any test program is SListComp and

QEmpty, so they need to be included in the first step. But any list comprehension test

program that does not use the other qualifiers simply reduces to Return, therefore

we can not learn the intended semantics of this group without the others. Adding the

6.2. Evaluation 117

Table 6.2: Benchmark – List comprehensions

Constructor group AST size Index #tests time

QEmpty 3 6 1 0s

QBind 10 97,632,734 1 25min 27s

QLet 7 116,747 1 2s

QGuard 6 31,307 1 1s

total 4 25min 30s

simplest qualifier, QGuard, is still not enough: without bound variables, we cannot

write test programs that exclude similarly erroneous desugarings. Setting up the first

step of the sequential learning task with just SListComp and QEmpty or possibly even

adding QGuard would commit to a wrong translation rule early, and would not be

able to continue the learning process. This demonstrates the “stuck” state discussed in

Section 4.9.

The first step needs to contain at least three source constructors, and one of them

should be QBind or QLet. But this group is too large, with a combined AST size of 14,

causing our search to time out.

As a second test, we used a hint from the user: we provided the semantics (desug-

aring rule) of SListComp. This allowed for learning the semantics of the qualifiers

one-by-one.

Results The results we obtained after the user hint are presented in Table 6.2.

Translation rules found We found the intended translation rules in all but one case,

QGuard, where the semantics found was equivalent to the intended one, but shorter:

JQGuard(t,q)K = CIf(JtK,JqK, let _ = gensym() in MLam(_,CList([])))

Test programs We only needed a single test program for each individual learning

task: one test program suffices per source constructor. These test programs are non-

trivial: we needed to embed them, in order to demonstrate the non-trivial scoping be-

haviour of qualifiers. To hypothetically auto-generate such test programs, the binding

and scoping rules of the source language must be taken into account.

118 Chapter 6. Searching for desugarings

6.2.4 Try/Catch/Finally

Setup

Initial search space To express the intended desugaring, we extended the set of

binding constructs with CTryCatch. The new FRESHCTry rule is the following:

Γ ⊢M : CTerm Γ;x : CTerm ⊢ N : CTerm
FRESH-TRYCATCH

Γ ⊢ let i = gensym() inCTryCatch(M, i,N[Var(i)/x]) : CTerm

Our initial search space H 1
tcf was otherwise identical with H 1

Pidgin.

Results

The Try/Catch/Finally benchmark marks the limits of our current, enumerative ap-

proach.

Additional user guidance We found that the size of the intended desugaring of

STryCatchFinally, with an AST size of 13, is too large for the general search space.

We therefore created a second, severely restricted search space H 2
tcf.

• The set of base rules B are restricted to two core term constructors, the new

CThrow and CTryCatch.

• The are no translations T or case analysis rules A .

• We kept the set of V binding constructs: the FRESHCLET and new the FRESHCTRY

binding rules.

Decomposition The relabelling of SThrow can easily be learned on its own, because

it has a unique behaviour. This allows us to learn the two new term constructors in two

steps.

Results

The desugaring rule for STryCatchFinally is very large (even without thunking), and

we reached the timeout even with the very restricted search space H tc f . To see how

much we missed the mark, we ran the search to completion. The results are shown in

Table 6.3.

6.2. Evaluation 119

Translation rules found The translation rule synthesised for SThrow is identical

with the intended one: this is a relabelling.

The synthesised translation rule for STryCatchFinally does not use thunking.

One reason is that we did not even included the core constructs necessary for thunking

(like CLam). But even if we were included it, the algorithm would not had found the

thunked version. As we have already explained in the benchmark (Section 3.2.2), we

have no effect in the core language that would differentiate between the two: they are

observationally equivalent, but the non-thunked version is smaller.

The translation rule found is otherwise identical with the intended one:

JSTryCatchFinally(t1, i, t2, t3)K =

let v = gensym() in CLet
(

v,

let e = gensym() in CTryCatch
(
CTryCatch(Jt1K, i,Jt2K),e,

let _ = gensym() in CLet(_,Jt3K,CThrow(CVar(e)))
)
,

let _ = gensym() in CLet(_,Jt3K,CVar(v))
)

JCThrow(t)K = CThrow(JtK)

Test programs Learning the desugaring rule of STryCatchFinally needs many

complex test programs. First, try-catch-finally can branch: the main block may or

may not throw, and the catch block also may or may not throw. This means that we

already need 3 test programs to cover all cases. We also need to ensure the evaluation

order. In general, branching constructs needs at least as many test programs as poten-

tial paths of execution. To fix the evaluation order, we need examples that exclude all

other permutations. The number of potential evaluation orders grows with the number

of parameters: STryCatchFinally has 4 parameters, the most among all of our term

constructors.

Table 6.3: Benchmark – Try-catch-finally

Constructor group AST size Index #tests time

SThrow 2 18 1 0s

STryCatchFinally 13 774,161,305 8 2h 5m 49s

total 9 2h 5m 49s

120 Chapter 6. Searching for desugarings

6.2.5 Human overhead

This Chapter has presented the first solution to KLE’s challenge, which can hopefully

serve as the baseline for future research. We must highlight that it is not ready for

practical use due to the significant human overhead of the synthesis process.

This overhead can be divided into two categories. First, the user must set up the

synthesis process, providing the decomposition of the language, the initial translation,

the search space parameters, and the test set. Second, we may frequently need to deal

with an unsuccessful synthesis, where the process times out or returns a rule that is not

the intended one. In these cases more input is needed, either in the form of additional

user guidance like new test cases or changed search space. In some cases there could

be a need to backtrack to earlier synthesis steps and correct rules that turned out to be

erroneous.

I do not view this as a fatal flaw of the approach. Rather, automating or semi-

automating many of the current human overhead is the direction future research should

aim in, therefore there is value in highlighting these tasks.

Chapter 7

A linear type system for the efficient
enumeration of translation rules

In the desugaring extension problem, our task is to synthesise translation rules. A

natural heuristic restriction on the search space for translation rules is to require that

each meta-variable is used exactly once: all intended translation rules in Chapter 3 are

such, and using a meta-variable multiple times would lead to code bloat. We will call

variables that are enforced to be used exactly once linear (following the terminology

of logic and type theory), and those that can be used an arbitrary number of times un-

restricted. We will call a search space linear if all variables are linear, and unrestricted

if all variables are unrestricted.

In this chapter we justify the usage of linear variables via a comparison of lin-

ear and unrestricted search spaces: we argue that for most target languages, the linear

search space grows much slower than an unrestricted search space. We introduce a type

system for efficiently enumerating terms with linear variables, to enforce the heuris-

tics. We empirically evaluate the type system on the Pidgin benchmarks and the list

comprehension benchmarks, demonstrating that using linear types to restrict the search

space can lead to around 15x faster synthesis for our benchmarks.

7.1 Background

When Girard introduced linear logic as a refinement of classical and intuitionistic

logic [Girard, 1987], he anticipated its widespread applications in computer science.

Linear types are frequently used in many areas, from concurrency to artificial intel-

ligence, and are most commonly associated with resource control (see for example

121

122 Chapter 7. A linear type system for the efficient enumeration of translation rules

Pierce [2004]).

Linear logic has since been classified as a kind of substructural logic. In clas-

sical (and intuitionistic) logic, formulas can be freely used. This property is most

pronounced in the sequent calculus presentation of classical (or intuitionistic) logic,

as there are specific inference rules ensuring the free usage of formulas: the structural

rules. If we have two copies of a formula in our condition, they do not accomplish

anything more than one copy, so one of them can safely be omitted (CONTRACTION

rule). Any formula added to the condition will not change the validity of an entailment

(WEAKENING rule). There are other structural rules like the EXCHANGE rule, which

allows us to freely permute the order of the conditions, but these are not changed in

linear logic, so we will not be discussing them. The two rules associated with the free

usage of formulas are the following:

Γ,A,A ⊢ ∆
CONTRACTION

Γ,A ⊢ ∆

Γ,A ⊢ ∆
WEAKENING

Γ,A,B ⊢ ∆

Linear logic is dubbed as the logic of resources, because it omits these two rules.

This means that every formula in the condition of the entailment needs to be used

exactly once when deriving the conclusion. Similarly, in a linear type system, where

type derivation rules are based on the inference rules of linear logic, variables must be

used exactly once in every execution of the program. Note that by this we do not mean

that every formula needs to appear exactly once syntactically in the proof, or that every

variable needs to appear exactly once in the program! If case analysis is used in the

proof or program, we need to use every formula or variable in every branch.

Linear logic changed a lot in comparison to classical logic, introducing new log-

ical connectives and modalities. But we do not need its complex apparatus, as our

type system is based on a multi-sorted system for terms with variables, without logical

connectives, as we do not have product or sum types. (Note that we relied on product

and sum types in the meta-language to represent “copies” of sorts of the source lan-

guage that has no corresponding sort in the core language, see Section 4.4. But we

do not allow products or sums of arbitrary types.) We change the basic (structural)

rules, inspired by linear type systems, to keep track of the usage of meta-variables in

the terms.

7.2. Motivation 123

7.2 Motivation

In language translation rules we would naturally like to avoid any double usage of

the meta-variables, as this could lead to code bloat. In our model of compositional

translations, the meta-variables in the translation rules stand for the already translated

sub-programs. These sub-programs themselves were translated by the structurally re-

cursive translation, and may have used the same translation rule. If we use a meta-

variable twice, it could lead to code bloat: the output (the translated code) can become

exponentially larger than the input (the source code).

Example 7.2.1 (Code bloat). As a simple example let us consider a desugaring of a

square function in arithmetic expressions. Let us have a source and core language of

arithmetic, where the source language has some additional functions. Let x be a meta-

variable ranging over source terms, and let SQUARE be a one-argument function of

the source language that we wish to desugar. Consider the following desugaring rule:

JSQUARE(x)K = JxK∗JxK

While this simple translation seems natural, it has a serious drawback. The meta-

variable x does not stand for a number: it is a source expression. If the term denoted by

x contains an expression that uses the SQUARE construct itself, the translation could

lead to an exponential growth of core expressions. For example, chaining the SQUARE

function twice results in its argument inserted four times into the core expression:

JSQUARE(SQUARE(x))K = (JxK∗JxK)∗(JxK∗JxK)

We also expect to use each meta-variable at least once: we expect comments and

other source elements that the semantics do not depend on to be removed from the

source abstract syntax tree (AST) at an earlier step.

Nevertheless, we cannot totally exclude cases where either duplication or omission

is necessary. When a translation rule needs to use a meta-variable multiple times,

a common technique to avoid code bloat is thunking. Thunking in general refers to

explicitly delaying the evaluation of an expression by wrapping it into an anonymous

function with zero arguments (or a single dummy argument), with an operation called

“force” triggering the evaluation. In the context of translations, we use thunking to save

the expression denoted by the meta-variable into a target expression without evaluating

it, and bind this target expression to a target variable. The force operation evaluates this

124 Chapter 7. A linear type system for the efficient enumeration of translation rules

variable later, where the original expression would appear, to avoid code bloat: even if

it appears multiple times, we only refer to the target variable, not the whole expression.

This technique was used in the intended translation of STryCatchFinally, as shown

in Section 3.2.2, to avoid generating the finally block in two places.

Thunking is only available if the target language has facilities for the type of the

meta-variable. For example, if the type of the meta-variable is a program expression,

we may be able to wrap it into an anonymous function and evaluate it later, but if the

type of the meta-variable is e.g. a list of parameter names or a variable declaration,

we most likely cannot do this. Thunking is only available if the target language has

appropriate thunk/force operations.

Another possibility to gain back expressiveness is to add structural rules for the du-

plication or omission of a (linear) meta-variable. While this allows for the unrestricted

usage of linear variables, the resulting system still keeps track of meta-variable use.

Thunking only depends on the target language, so it does not directly affect the

setup of a linear search space. Depending on the presence of structural rules, we can

distinguish between two kinds of desugaring extension problems utilising linear typing

rules. The first kind is a strict restriction, where we do not have structural rules to

duplicate/omit linear variables, and so the search space may not contain useful intended

translation rules. The second kind does have these structural rules, so it covers the

same (semantic) set of translation rules as the unrestricted search space, but this set

is ordered differently. Any terms violating linear usage are larger in this linear search

space than in the unrestricted search space, as they require additional structural rules

to derive. In the present chapter, we will focus solely on the first problem, and will not

assume structural rules to ease the strict enforcing of linear usage of the meta-variables.

7.3 The effect of pruning non-linear terms

Let us assume that for a given problem, the intended rule is linear. In this case, the ef-

ficiency of the usage of linear meta-variables compared to unrestricted meta-variables

relies on two properties. First, the asymptotic growth of the linear search space com-

pared to the unrestricted one: how many terms we need to test for a given size. Second,

how efficiently can we enumerate the linear rules, as compared to enumerating the un-

restricted rules: in other words, the overhead of enforcing the heuristics.

In the present section, we obtain an estimate of the first property: the effect of

linear usage on the asymptotic growth of the search space. Comparing the growth of

7.3. The effect of pruning non-linear terms 125

the search spaces in general is not easy, because the number of translation rules of a

given size (for both linear and unrestricted terms) depends on the target language in a

non-trivial way. We simplify the problem by focusing on the restricted search space

Hsubst, substitutions, which contains terms with variables: we compare the asymptotic

growth of terms with linear variables and terms with unrestricted variables. Moreover,

we only calculate exactly the asymptotic growth for a concrete example, relying on

informal arguments for generalising the result to other target languages. The bench-

marks in Section 7.5 will give further empirical evidence for the efficiency of linear

search spaces in some of our benchmarks.

Example 7.3.1. Let the target language have only one sort σ, a binary term construc-

tor f : σ×σ→ σ, and a sole constant c : σ.

In this simple case, the terms with variables are binary trees, with the leaves la-

belled with the variables and the constant. A binary tree with n leaves has 2n−1 nodes,

which is the size of our term. Thus, there is a simple linear relationship between the

number of leaves and the size of the term, but it is easier to base our calculations on

the number of leaves.

The number of differently shaped trees (with a given number of leaves) is given

by the Catalan numbers: there are Cn different binary trees with n+ 1 leaves, where

Cn =
1

n+1

(2n
n

)
is the nth Catalan number.

If we have k linear variables, then for a given shape with n leaves we can have(n
k

)
k! = n!

(n−k)! ≈ nk different terms. If the variables are unrestricted, we get (k+ 1)n

terms. Thus, changing the variables from unrestricted to linear changes the asymp-

totic growth function from exponential (regarding the size of the terms) to polynomial.

(Regarding the number of variables, the position is switched: the unrestricted terms

grow polynomially, with the linear terms growing exponentially. But the number of

meta-variables for a given problem is fixed and usually small, and we are interested

in the dependence on the size of the term.) Note that the growth of the search space

regarding the size of the terms is still roughly exponential in both cases, since Catalan

numbers grow approximately exponentially.

As an example, the number of terms with a fixed shape for a context with 3 variables

is shown in Table 7.1. In order to get the number of terms for the given size, these

numbers should be multiplied by the number of shapes, i.e. Cn−1, but this multiplier is

the same for both linear and unrestricted terms, and thus does not change the ratio.

While the actual numbers for a more complex target language could be quite dif-

126 Chapter 7. A linear type system for the efficient enumeration of translation rules

size 1 3 5 7 9 11 13 15 17 19

#linear terms 0 0 6 24 60 120 210 336 504 720

#unrestricted terms 4 16 64 256 1,024 4,096 16,384 65,536 262,144 1,048,576

Table 7.1: The number of linear and unrestricted terms for one binary term constructor,

one constant, and 3 variables in the context, for a fixed shape

ferent (especially if it has more constants), this simple example shows that the gain can

be enormous.

The more exact calculations of the concrete example can be informally generalised

in the following way. For a given target language, we can count the number of terms

with (linear or unrestricted) variables by multiplying 1) the number of “shapes” b,

terms (labelled trees) without leaves filled, and 2) the possible way we can assign vari-

ables and constants as leaves. For linear variables, we must choose one leaf for every

variable in the context, which is a factor that grows polynomially with the number of

leaves to choose from. Unrestricted variables act the same as constants, increasing

the base of the exponential factor of the potential ways we can fill up the leaves with

constants. While the asymptotic growth of both search spaces is generally exponential,

changing a factor from exponential to polynomial still can result in a huge gain.

Linear variables may also have other effects on the search space. If the target

language lacks constants for a sort σ, then only those shapes are allowed in a linear

search space that have exactly the same number of leaves with sort σ as the number

of linear variables with sort σ in the context. In other words, a linear search space

may exclude certain shapes if there are no constants in the language to fill up the

corresponding leaves, so for certain target languages and certain contexts of linear

variables, the gain could be much larger.

So a linear search space can be very efficient. But there is a trade-off: efficiently

enumerating only the linear terms is harder than enumerating the unrestricted terms. A

generate-and-test approach is not feasible for such large scale pruning. In the following

sections, we introduce a linear type system that enables us to efficiently enumerate the

linear typed translation rules.

7.4. A linear search space 127

AXIOM
x : σ ⊢ x : σ

c : σ
C-RULE

/0 ⊢ c : σ

Γ1 ⊢ N1 : σ1 . . . Γn ⊢ Nn : σn f : σ1×·· ·×σn→ σ Γ = ⊔n
k=1Γk

F-RULE
Γ ⊢ f (N1, . . . ,Nn) : σ

Figure 7.1: Terms with linear variables as proofs – top-down version

7.4 A linear search space

We transform the search spaces defined in Chapter 6 into linear ones, following the

incremental way search spaces were presented there.

7.4.1 Type system for terms with linear variables

We begin with the search space Hsubst, terms with (unrestricted) variables. The con-

tribution of the present section is a type system that facilitates efficient search for its

linear counterpart, H lin
subst, terms with linear variables.

Simply enforcing linear usage is quite standard, but we have another requirement

for our typing rules: we want an efficient enumeration. To show why this is difficult,

we introduce two standard versions of a linear type system for terms with variables,

demonstrating that they are not efficient for enumerating linear terms.

We call the first version top-down, because the proof generates the term starting

from the topmost term constructor. The top-down linear calculus rules are shown in

Figure 7.1. They are very similar to the classic rules, but we need to split the context

Γ in the F-RULE. While the new F-RULE is still finitely branching, the number of

branches can be very high. This step is not easy to implement efficiently in a backward

chaining search: we need to create a choice with every possible split, and the number

of splits grows exponentially with the size of the context. This results in a highly

branching search space for terms.

One standard idea to avoid this context splitting is to build the terms from the

bottom, starting from the smaller terms. The bottom-up version of the rules for the

linear terms are shown in Figure 7.2. These rules generate the same set of terms (with

the help of a meta-level let construct), but all rules have at most one premise.

But these rules also have a severe problem with regard to searching: we lost the

Curry-Howard property. Various applications of the F-rule can be permuted, resulting

in a blow-up of the search space. To demonstrate the problem, let us see the following

128 Chapter 7. A linear type system for the efficient enumeration of translation rules

AXIOM
x : σ ⊢ x : σ

c : σ
C-RULE

/0 ⊢ c : σ

Γ,x : σ ⊢ N : σ
′ f : σ1×·· ·×σn→ σ

F-RULE
Γ,x1 : σ1, . . . ,xn : σn ⊢ letx = f (x1, . . . ,xn) inN : σ

′

Figure 7.2: Terms with linear variables as proofs – bottom-up version

example.

Example 7.4.1. Let us have three sorts S = {σ1,σ2,σ3}. Let us have three term con-

structors: F = { f : σ1×σ2 → σ3,g : σ1 → σ1,h : σ2 → σ2}. And let us have two

variables in the context: x : σ1 and y : σ2.

With the bottom-up linear rules, the term f (g(x),h(y)) can be derived in two ways:

AXIOM
z : σ3 ⊢ z : σ3

F-RULE (F)
x′ : σ1,y′ : σ2 ⊢ letz = f (x′,y′) inz : σ3

F-RULE (H)
x′ : σ1,y : σ2 ⊢ lety′ = h(y) in letz = f (x′,y′) inz : σ3

F-RULE (G)
x : σ1,y : σ2 ⊢ letx′ = g(x) in lety′ = h(y) in letz = f (x′,y′) inz : σ3

and

AXIOM
z : σ3 ⊢ z : σ3

F-RULE (F)
x′ : σ1,y′ : σ2 ⊢ letz = f (x′,y′) inz : σ3

F-RULE (G)
x : σ1,y′ : σ2 ⊢ letx′ = g(x) in letz = f (x′,y′) inz : σ3

F-RULE (H)
x : σ1,y : σ2 ⊢ lety′ = h(y) in letx′ = g(x) in letz = f (x′,y′) inz : σ3

This example is very similar to Example 5.4.2.

In other words, we can permute applications of the F-RULE, with many different

type derivations resulting in the same term. This is a serious inefficiency, which pre-

vents us from enumerating linear terms effectively with this type system.

To make the search feasible, we use a third style of linear rules, combining the

benefits of the two styles. We will not split the linear context, using only one premise

for the F-RULE. But we will still build the term top-down. To achieve this, we share

the linear context amongst multiple terms: instead of multiple premises in the proof

rule, we will use multiple outputs (term-type pairs on the right side of the turnstile) in

7.4. A linear search space 129

AXIOM
/0 ⊢ /0

Γ ⊢ ∆ ∆ = /0⇒ Γ = /0
VAR-LIN

Γ,x : σ ⊢ x : σ , ∆

Γ ⊢ ∆ ∆ = /0⇒ Γ = /0 c : σ
C-RULE

Γ ⊢ c : σ , ∆

Γ ⊢ sort
(
N1 : σ1, . . . ,Nn : σn , ∆

)
f : σ1×·· ·×σn→ σ

F-RULE
Γ ⊢ f (N1, . . . ,Nn) : σ , ∆

Figure 7.3: Terms with linear variables as proofs – multiple outputs with focusing

our judgements. To avoid permutations, however, we only work on one of the outputs

at a time. To achieve this, we use ordered outputs. Note that this makes the two sides of

the turnstile different: the linear context on the left side is unordered, while the output

terms in the right side is ordered.

We need to be careful with introducing order: the order may distinguish otherwise

equivalent judgements, which, as we have highlighted in Section 5.4.2, violates the

adequacy requirement. We need to fix the order, based on the types of the outputs.

The outputs on the right side of the turnstile are always ordered according to a total

ordering on their types. We achieve this by the sort function, which sorts the outputs

based on the types. We only need to call sort in the F-RULE, since that’s the only rule

which introduces new outputs.

The new rules are shown in Figure 7.3.

With our last version, terms are easily enumerable: we have exactly one derivation

for every linear term, and we can directly calculate the context of the premise. This

is the version that serves as the basis for extended linear search spaces, we will call it

H lin
subst, or linear substitutions.

7.4.2 The CASE, ERROR and TRANSFORM rules

Extending H lin
subst with the CASE, ERROR and TRANSFORM rules is fairly straightfor-

ward. These rules remain similar to their unrestricted versions. Due to our layer-

ing, they belong to a different kind of judgement, and this layer contains no F-RULE.

Therefore, for this layer (the extension judgement with the notation ⊢E), we do not

need multiple outputs. This means that the rules can stay exactly the same.

We will now give a brief overview of these rules in a linear context, and we will be

130 Chapter 7. A linear type system for the efficient enumeration of translation rules

evaluating the extended search spaces empirically on some selected benchmarks later.

The CASE rule is the main reason why keeping track of linear variables is more

complicated than simply counting their number of occurrences: we want to use linear

variables exactly once for any input, and in the CASE rule, only one branch is executed

for a given input. Therefore, we want to use every linear variable exactly once in every

branch. Fortunately, this requirement is very easy to add, as it means that the linear

and the unrestricted versions of the CASE rule are essentially identical:

Γ,x1
1 : σ

1
1, . . . ,x

k1
1 : σ

k1
1 ⊢E M1 : σ

′ . . . Γ,x1
n : σ

1
n, . . . ,x

kn
n : σ

kn
n ⊢E Mn : σ

′

CASE
Γ,y : σ ⊢E caseyof f1(x1

1, . . . ,x
k1
1)→M1 . . . fn(x1

n, . . . ,x
kn
n)→Mn : σ

′

The TRANSFORM rule relies on user-defined transformations. We have already

used these transformations in a linear manner: the transformed argument was removed

from the context. This can be seen as a heuristic in the unrestricted search space,

as defined: if we re-arrange the arguments, we do not need the original arrangement

anymore. We also expect the user-defined transformations to not duplicate (or omit)

parts of the arguments, but this is not required or enforced: whether the user-defined

transformation function is linear is up to the user. We also derived a combined version

of the TRANSFORM and CASE rules, called TRANSFORM-CASE; this, too, can remain

unchanged.

Γ,x : σ2 ⊢M : σ
TRANSFORM

Γ,y : σ1 ⊢ letx = tr(y) inM : σ

Γ,x1
1 : σ

1
1, . . . ,x

k1
1 : σ

k1
1 ⊢M1 : σ

′ . . . Γ,x1
n : σ

1
n, . . . ,x

kn
n : σ

kn
n ⊢Mn : σ

′

TRANSFORM-CASE
Γ,y : σ1 ⊢ case tr(y)of f1(x1

1, . . . ,x
k1
1)→M1 . . . fn(x1

n, . . . ,x
kn
n)→Mn : σ

′

The ERROR rule is also straightforward. In the case of syntax error we do not want

the (linear) variables to be used at all, which is the same behaviour as in the unrestricted

version.

THROW
Γ ⊢ syntax_error : σ

7.4.3 Bound linear variables

The FRESH meta-rule and its variants introduce new variables into the context for

modelling binding constructs in the target language. These variables do not represent

7.4. A linear search space 131

an argument of the translation rule: they do not stand for already translated parts of

the whole program, but instead are bound target language variables with a restricted

scope. We used meta-variables to represent local target language variables.

In general, we do not assume target language variables to be linear. To model

bound target language variables as unrestricted, we need two separate environments:

one for linear and one for unrestricted variables.

The problem with the FRESH meta-rule is that the unrestricted context behaves

very differently from the linear context. While the linear context is shared between all

outputs, the unrestricted context is not shared, since some variables are only available

in certain output terms (they have a scope).

We change our judgements once again. They will be of the form:

Γ⊢(Θ1 ⊢u M1 : σ1); . . . ;(Θn ⊢u Mn : σn)

Here Γ is a context of linear variables, shared between all output terms M1, . . . ,Mn.

Every output term has a separate context of unrestricted variables: Θi, which is writ-

ten in front of the term separated by ⊢u. The additional unrestricted contexts do not

significantly change the already introduced rules: the unrestricted context is simply

copied to all introduced outputs in the premise of the F-RULE. The arguments of a

term constructor have the same unrestricted context.

With a new context, we need a new rule to introduce variables. The rule of unre-

stricted variables is analogous to using constants, just the variable needs to be present

in the unrestricted context:

Γ⊢∆ ∆ = /0⇒ Γ = /0

VAR-UNR
Γ⊢(Θ,x : σ ⊢u x : σ) , ∆

With the double contexts, we can introduce the variants of the FRESH rule. We

show an example for the CLet target binding construct in the Core Pidgin language:

Γ⊢sort
(
(Θ ⊢int t1 : CTerm),(Θ,x : CTerm ⊢int t2 : CTerm),∆

)
FRESH

Γ⊢(Θ ⊢int let i = gensym() inCLet(i, t1, t2[CVar(i)/x]) : CTerm) , ∆

The rule is similar to its unrestricted counterpart, as the introduced variables are

unrestricted: instead of multiple premises, we introduce new outputs, similarly to the

F-RULE. However, the unrestricted contexts are not the same for the FRESH rule case.

132 Chapter 7. A linear type system for the efficient enumeration of translation rules

Note that the FRESH rule is in the basic layer, meaning that it has multiple outputs,

and it does introduce new outputs. Therefore, we need to call the sort function as well

to ensure adequacy of the representation. When we extended the type of the outputs

(including unrestricted context for all output), we also changed the order: the sort

function takes into account the unrestricted contexts as well as the types (but not the

terms) in the output.

7.4.4 Summary - a linear search space for desugarings

Table 7.4 gives a summary of all introduced rules forming the linear search space

H lin
meta, the linear counterpart of Hmeta.

The final search space has some unique characteristic dictated by our task at hand.

It is common to have two contexts, a linear and an unrestricted one. But we treat them

completely differently. The linear context is shared between multiple terms, as the con-

dition that every variable is used exactly once applies to all of them. The unrestricted

context, however, allows introducing new variables with a scope. This means that we

need to split them to different contexts when a term is being split into subterms.

It is an interesting research question whether it is possible to combine the two: that

is, whether there is a system that:

1. Allows constraints on variable usage, like allowing linear variables that can only

be used once.

2. Allows introducing variables with a scope (e.g. linear λ terms).

3. Efficiently enumerable: do not use context splitting and has the Curry-Howard

property.

I do not know the answer for this, and leave it to future research. Fortunately,

we do not need to introduce linear variables with a scope, as we did not assumed the

core language to be linear, merely the meta-language, where we do not introduce new

variables. The system presented here suffices for our use case.

7.5. Empirical evaluation 133

AXIOM
/0⊢ /0

Γ⊢∆ ∆ = /0⇒ Γ = /0

VAR-LIN
Γ,x : σ⊢(Θ ⊢u x : σ) , ∆

Γ⊢∆ ∆ = /0⇒ Γ = /0

VAR-UNR
Γ⊢(Θ,x : σ ⊢u x : σ) , ∆

Γ⊢∆ ∆ = /0⇒ Γ = /0 c : σ

C-RULE
Γ⊢(Θ ⊢u c : σ) , ∆

Γ⊢sort
(
(Θ ⊢u N1 : σ1), . . . ,(Θ ⊢u Nn : σn) , ∆

)
f : σ1×·· ·×σn→ σ

F-RULE
Γ⊢(Θ ⊢u f (N1, . . . ,Nn) : σ) , ∆

(a) Linear substitutions
˜

Γ,x1
1 : σ

1
1, . . . ,x

k1
1 : σ

k1
1 ⊢E M1 : σ

′ . . . Γ,x1
n : σ

1
n, . . . ,x

kn
n : σ

kn
n ⊢E Mn : σ

′

CASE
Γ,y : σ ⊢E caseyof f1(x1

1, . . . ,x
k1
1)→M1 . . . fn(x1

n, . . . ,x
kn
n)→Mn : σ

′

Γ,x : σ2 ⊢E M : σ
TRANSFORM

Γ,y : σ1 ⊢E letx = tr(y) inM : σ

Γ⊢(/0 ⊢u M : σ)
EXTEND

Γ ⊢E M : σ

Γ,x1
1 : σ

1
1, . . . ,x

k1
1 : σ

k1
1 ⊢E M1 : σ

′ . . . Γ,x1
n : σ

1
n, . . . ,x

kn
n : σ

kn
n ⊢E Mn : σ

′

TRANSFORM-CASE
Γ,y : σ1 ⊢E case tr(y)of f1(x1

1, . . . ,x
k1
1)→M1 . . . fn(x1

n, . . . ,x
kn
n)→Mn : σ

′

(b) Extended rules
˜

Γ⊢sort
(
(Θ ⊢u t1 : CTerm),(Θ,x : CTerm ⊢u t2 : CTerm),∆

)
FRESH

Γ⊢(Θ ⊢u let i = gensym() inCLet(i, t1, t2[CVar(i)/x]) : CTerm) , ∆

(c) An example of introducing fresh variables

Figure 7.4: A linear search space for desugarings

7.5 Empirical evaluation

7.5.1 Pidgin benchmark and list comprehensions benchmark

Our linear search space is parallel to the unrestricted one, with the same parameters, so

we can directly compare the linear heuristic with the baseline (unrestricted) solution.

I repeated all benchmarks of the Pidgin language and the list comprehension exten-

sion, but this time with a linear search space. All intended translation rules in these

benchmarks are linear.

We display the result of the comparison for the Pidgin benchmark (Table 7.2) and

134 Chapter 7. A linear type system for the efficient enumeration of translation rules

Table 7.2: Comparing linear and unrestricted search spaces – Pidgin languages

Constructor

group
AST size

Index

(unrestricted)

Index

(linear)

Time

(unrestricted)

Time

(linear)

SNum 2 1 1 0s 0s

SStr 2 1 1 0s 0s

SPrim 12 16,567,096 1,073,578 2min 27s 33s

SVar,SLet 6 1,298 38 0s 0s

STrue,SFalse 4 10 10 0s 0s

SAssign 3 18 18 0s 0s

SBetween 14 157,160,392 3,618,042 28min 20s 1min 45s

SI f 4 171 1 0s 0s

SLam,SApp 6 1,813 60 0s 0s

SLetRec 4 132 3 0s 0s

SList 2 3 1 0s 0s

SListCase 4 207 7 0s 0s

SFor 11 57,334,664 24,428 9min 44s 4s

Full 40min 32s 2min 25s

for the list comprehension benchmark (Table 7.3). The tables show the index of the

translation(s) found in the respective search spaces and the time of the search for both

the unrestricted (original) and linear search spaces; the original results are displayed

in columns with grey backgrounds. The corresponding benchmarks are identical in

all other respects: the user-defined restrictions on the individual search spaces, the

user provided examples, etc.. We omit some columns that do not differ between the

unrestricted and linear search spaces, such as the size of the test set (see Table 6.1 for

the original benchmarks for these). In all cases, the respective benchmarks always find

the same semantic translation rules.

As we expected, using the linear search space greatly sped up the synthesis. The

empirical evaluation shows 15−17 times faster search times for the linear search space,

and this multiplier can potentially grow even larger for larger translation rules.

7.5.2 Try/catch/finally benchmark

In the Try/Catch/Finally benchmark, the intended translation rule for STryCatchFinally

is also linear: it uses thunking to evaluate the finally block twice without inserting it

twice in the translation. We wrap the twice-used meta-variable in an anonymous func-

7.5. Empirical evaluation 135

Table 7.3: Comparing linear and unrestricted search spaces – List comprehensions

Constructor

group
AST size

Index

(unrestricted)

Index

(linear)

Time

(unrestricted)

Time

(linear)

QEmpty 3 6 6 0s 0s

QBind 10 97,632,734 3,853,408 25min 27s 1min 47s

QLet 7 116,747 2,553 2s 1s

QGuard 6 31,307 5,819 1s 0s

Full 25min 30s 1m 49s

tion to delay evaluation, saving it in a target variable. But this version has a very large

AST size (20), which is outside of the scope of our search method even when using a

linear search space; note that the size is increased not only through creating the thunk,

but also by using it, as it requires the application of a function.

We can also set up different search spaces, in order to provide additional user guid-

ance. We run two preliminary tests on the Try/Catch/Finally benchmark as well, to

assess directions in which the linear search space can be extended. In the first, we used

a fixed, user-provided high-level template. The template wrapped the meta-variable

standing for the finally block in a thunk, thus effectively changing the last argument

of the translation rule from linear to unrestricted. In the second test, we instead dupli-

cated this meta-variable, enforcing that it be used exactly twice. For this second test,

we needed to change the implementation slightly, changing the context of linear vari-

ables from sets to multisets, keeping track of the number of times each variable can be

used.

Table 7.4 contains the comparison of the three search spaces:

1. the unrestricted search space, already presented in Chapter 6,

2. the search space which wraps the finally block in a thunk, turning this variable

from linear to unrestricted, and

3. the search space which duplicated the variable for the finally block, forcing it to

be used exactly twice.

We can see that both heuristics result in an impressive speed-up. The second test,

relying on the number of times each variable is used, ran approximately 47 times faster.

This result is encouraging, suggesting that the linear search space could be useful out-

side of a strictly linear context, where the user is allowed to specify some variables as

136 Chapter 7. A linear type system for the efficient enumeration of translation rules

Table 7.4: Comparing search spaces for the Try/catch/finally benchmark

Search space Index Time

Unrestricted 774,161,305 2h 5m 49s

Linear with unrestricted finally block (thunked) 23,727,106 12m 31s

Linear with duplicated finally block 6,483,105 2m 40s

unrestricted, or specify their number of usage.

Chapter 8

Conclusion and future work

8.1 Summary

Developing correct semantics rules for real-world languages is a necessary but arduous

prerequisite to formal analysis. Semi-automatically inferring the semantic rules of

a programming language based on observing an implementation is a new research

area. Krishnamurthi et al. [2019] posed the research challenge, and apart from my own

Master’s thesis [Bartha and Cheney, 2020]—which was based on an early case study—

the present work is the first to address this challenge, to the best of my knowledge.

Having ascertained the high degree of difficulty of the problem, I anticipated grad-

ual, piecemeal successes, and introduced a series of benchmarks to measure progress

in Chapter 3. I have carefully analysed the problem in Chapter 2 and highlighted two

key aspects: the decomposability of language feature learning into a sequence of easier

desugaring extension problems, and the need to carefully select the search space and

the meta-language in which the desugaring rules are expressed. Based on these ideas,

I gave a formal definition of the problem in Chapter 4.

The design of a program synthesis algorithm can be divided into three aspects: the

search space, the search technique and the user intent [Gulwani et al., 2017]. I delib-

erately focused on the first, and employed an enumerative synthesis algorithm, as the

success of enumerative synthesis directly depends on the search space. While con-

ceptually simple, the implementation of an enumeration algorithm with the purpose of

comparing hypothesis spaces based on complex invariants is surprisingly challenging.

I describe the technical background of an enumeration algorithm for typed program

fragments based on proof enumeration in Chapter 5. I applied well-known algebraic

techniques of defining enumerations to a new task: proof enumeration.

137

138 Chapter 8. Conclusion and future work

I developed and evaluated a baseline search space for the desugaring extension

problem in Chapter 6.

A natural heuristic for translation rules is enforcing that every variable be used

exactly once: i.e. using a meta-language with linear variables. In Chapter 7 I carefully

designed a linear type system aimed at fast term enumeration, and demonstrated that a

search space based on linear variables can increase the speed of synthesis by over an

order of magnitude.

8.2 Weak points

As the research area is quite new, we cannot compare our results to previous works.

We cannot yet evaluate our methods on real-world programming languages, because

real desugarings are too large. Therefore, our evaluation relied on hand-crafted bench-

marks, where we set up the goals ourselves. Thus, there is a danger of overestimating

the results. Possible objections and potential weak points are the following:

• The benchmarks were fairly small, and enumerative synthesis does not scale well

to larger examples.

• There were a limited number of benchmarks (since each required the implemen-

tation of two languages). The method may not generalise well.

• The benchmarks were hand-written. Pre-defined examples always carry the dan-

ger of inadvertently cherry-picking the results.

• Since I knew the intended desugarings in advance, extensive experimentation

with user guidance, such as restrictions on the hypothesis space, was not re-

quired. Thus, there is a risk of inadvertently underestimating the amount of user

guidance needed.

I do not regard these limitations as fatal flaws. Instead, they may illustrate that

my approach aims to produce a “desugaring synthesis assistant”, rather than a fully

automatic synthesis tool. I view the present research as a necessary step towards future

algorithms that scale and generalise better.

8.3. Future work 139

8.3 Future work

The premise of the present work was an open-ended problem, and one of my contri-

butions was to delineate a sub-task that could be solved. In order to achieve this, we

deliberately ignored many aspects of the problem domain. These simplifications led

us to new avenues of research.

Search technique We only explored enumerative synthesis. In other words, we fo-

cused on the definition of the search space, not the search technique. An obvious task

would be to explore state-of-art search techniques. As program synthesis is a rapidly

expanding area with new results appearing every year, summarising potential algo-

rithms is beyond the scope of this work. Two examples of recent synthesis algorithms

are Duet [Lee, 2021] which combines an enumerative algorithm with top-down propa-

gation for inductive program synthesis, and Prose [Barke et al., 2020], which augments

enumerative synthesis with a probabilistic model learnt during the synthesis from par-

tial successes. Both promise much faster synthesis over diverse domains, and while

they are not directly applicable to our unusual testing framework, the general ideas

could be useful for the desugaring extension problem as well.

User intent The current benchmarks used hand-written Haskell code. One important

future task would be to integrate the search methods to existing frameworks for seman-

tic engineering. For this, a prerequisite is finding a good user interface: a language in

which the user can easily express the user guidance needed for the search.

Automatic decomposition of the language An interesting task is whether the as-

sumed decomposition of the language, which is a burden we placed on the user, could

be automated or semi-automated.

In any new area of research, answering a question opens up a thousand new ones.

While this thesis is but a single step toward the distant goal of learning the next 700

language semantics, our results provide grounds for optimism, and hopefully can be

built upon.

Appendix A

Reference implementation of Pidgin

For concreteness, we describe our reference implementation of the Pidgin source lan-

guage, core language, the core language interpreter, and the intended desugaring trans-

lation in a Haskell-like pseudocode. The source language behaviour is defined as the

composition of the desugaring and core language interpreter (though in our imple-

mentation we give a direct definition). Our implementation shows the full details as

runnable Haskell code.

141

142 Appendix A. Reference implementation of Pidgin

newtype Id = Id String

data Op = UMin | Not | Plus | Minus | And | Or | LT | GT

data STerm = SVar String

| SPrim Op [STerm]

| SBetween STerm STerm STerm

| SNum Int

| SStr String

| STrue

| SFalse

| SIf STerm STerm STerm

| SLet Id STerm STerm

| SLetRec Id STerm STerm

| SLam [Id] STerm

| SApp STerm [STerm]

| SAssign [Id] STerm

| SList [STerm]

| SListCase STerm STerm STerm

| SFor STerm [(Id,STerm)] STerm

data CTerm = CVar Id

| CPrim1 Op CExp

| CPrim2 Op CExp

| CNum Int

| CStr String

| CBool Bool

| CIf CTerm CTerm CTerm

| CLet Id CTerm CTerm

| CLetRec Id CTerm CTerm

| CLam [Id] CTerm

| CApp CTerm [CTerm]

| CAssign Id CTerm

| CList [CTerm]

| CListCase CTerm CTerm CTerm

rename :: Id -> Id -> CTerm -> CTerm

Figure A.1: Source and target term languages

143

type Env = Map Id CTerm

type Result a = ... -- error and state monad

raise :: Error -> Result a

fresh :: Result Id

read :: Id -> Result CTerm

write :: Id -> CTerm -> Result ()

doUnop :: Op -> CTerm -> Result CTerm

doBinop :: Op -> CTerm -> CTerm -> Result CTerm

run : Result a -> Env -> Either a Error

Figure A.2: Helper functions for evaluation and desugaring

eval :: CTerm -> Either CTerm Error

eval t = run (eval’ t) emptyEnv

eval’ :: Map Id CTerm -> CTerm -> Result CTerm

eval’ (CVar x) = do

e <- read x -- might be an expression bound by letrec

eval’ e

eval’ (CPrim1 op e) = do

v <- eval’ e

case op of

UMin -> doUnOp (negate @Int) v

Not -> doUnOp not v

_ -> raise TypeError

eval’ (CPrim2 op e1 e2) = do

v1 <- eval’ e1

v2 <- eval’ e2

case op of

Plus ->

case v1 of

(CNum _) -> doBinOp ((+) @Int) v1 v2

(CList l1) -> case v2 of

CList l2 -> return (CList (l1 ++ l2))

_ -> raise TypeError

_ -> raise TypeError

Minus -> doBinOp ((-) @Int) v1 v2

And -> doBinOp (&&) v1 v2

Or -> doBinOp (||) v1 v2

LT -> doBinOp ((<) @Int) v1 v2

GT -> doBinOp ((>) @Int) v1 v2

_ -> raise TypeError

eval’ ex@(CNum _) = return ex

eval’ ex@(CStr _) = return ex

eval’ ex@(CBool _) = return ex

Figure A.3: Reference interpreter for Core Pidgin, part 1

144 Appendix A. Reference implementation of Pidgin

eval’ (CIf ex1 ex2 ex3) = do

c <- eval’ ex1

case c of

CBool b -> if b then eval’ ex2 else eval’ ex3

_ -> raise TypeError

eval’ (CLet i ex1 ex2) = do

v <- eval’ ex1 -- let is eager

i2 <- fresh

write i2 v

eval’ (rename i id ex2)

eval’ (CLetRec i ex1 ex2) = do

i2 <- fresh

write i2 (rename i id ex1) -- any recursive references will be expanded later

eval’ (rename i id ex2)

eval’ ex@(CLam _ _) = return ex

eval’ (CApp ex es) = do

f <- eval’ ex

case f of

CLam is body -> do

vs <- mapM eval’ es

case length is == length vs of

True -> do iterM write (zip is vs)

eval’ body

False -> case vs of

[CLang’ (CList vs’)] ->

case length is == length vs’ of

True -> do iterM write (zip is vs’)

eval’ body

False -> raise ArgumentNumberMismatchError

_ -> raise ArgumentNumberMismatchError

_ -> raise TypeError

eval’ (CAssign x ex) = do

v <- eval’ ex

write x v

return v

eval’ (CList es) = do

vs <- mapM eval’ es

return (CList vs)

eval’ (CListCase e1 e2 e3) = do

l <- eval’ e1

case l of

CList [] -> eval’ e2

CList (e:es) -> do

f <- eval’ e3

eval’ (CApp f [e,(CList es)])

_ -> raise TypeError

Figure A.4: Reference interpreter for Core Pidgin, part 2

145

ds :: STerm -> Either CTerm Error

ds t = run (ds’ t) emptyEnv

ds’ :: STerm -> Result STerm

ds’ (SVar i) = return (CVar i)

ds’ (SNum n) = return (CNum n)

ds’ (SStr s) = return (CStr s)

ds’ (SIf x y z) = do

x’ <- ds’ x

y’ <- ds’ y

z’ <- ds’ z

return (CIf x’ y’ z’)

ds’ (SLet i x y) = do

x’ <- ds’ x

y’ <- ds’ y

return (CLet i x’ y’)

ds’ (SLetRec i x y) = do

x’ <- ds’ x

y’ <- ds’ y

return (CLetRec i x’ y’)

ds’ (SLam ids x) = do

x’ <- ds’ x

return (CLam ids x’)

ds’ (SApp x xs)) = do

x’ <- ds’ x

xs’ <- mapM ds’ xs

return (CApp x’ xs’)

ds’ (SAssign i x)) = do

x’ <- ds’ x

return (CAssign i x’)

ds’ (SList xs) = do

xs’ <- mapM ds’ xs

return (CList xs’)

ds’ (SListCase x y z) = do

x’ <- ds’ x

y’ <- ds’ y

z’ <- ds’ z

return (CListCase x’ y’ z’)

Figure A.5: Desugaring reference implementation, part 1: straightforward cases.

146 Appendix A. Reference implementation of Pidgin

ds’ STrue = return (CBool True)

ds’ SFalse = return (CBool False)

ds’ (SPrim o [s]) = do

s’ <- ds’ s

CPrim1(o,s’)

ds’ (SPrim o [s1,s2]) = do

s1’ <- ds’ s1

s2’ <- ds’ s2

CPrim2(o,s1’,s2’)

ds’ (SPrim (_,_)) = errorResult (syntaxError)

ds’ (SBetween x y z) = do

x’ <- ds’ x

y’ <- ds’ y

z’ <- ds’ z

v1 <- freshVar

v2 <- freshVar

v2 <- freshVar

return (CLet(v1,x’,CLet(v2,y’,CLet(v3,z’,

CAnd (CPrim2(LT, CVar v1, CVar v2),

CPrim2(LT, CVar v2, CVar v3))))))

ds’ (SFor x bs y) = do

x’ <- ds’ x

bs’ <- mapM dsBind bs

y’ <- ds’ y

(ids, zs) <- unzip bs’

return (CApp (x’, [CLam(ids, y’), CList(zs)]))

dsBind :: (Id,STerm) -> Result (Id,CTerm)

dsBind (i,x) = do

x’ <- ds’ x

return (i,x’)

Figure A.6: Desugaring reference implementation, part 2: nontrivial cases.

Bibliography

Abelson, H., Dybvig, R. K., Haynes, C. T., Rozas, G. J., Adams, N. I., Friedman, D. P.,

Kohlbecker, E., Steele, G. L., Bartley, D. H., Halstead, R., Oxley, D., Sussman,

G. J., Brooks, G., Hanson, C., Pitman, K. M., Wand, M., Clinger, W., and Rees,

J. (1991). Revised4 report on the algorithmic language Scheme. SIGPLAN Lisp

Pointers, IV(3):1–55.

Abramsky, S., Gabbay, D. M., and Maibaum, T. S. E., editors (1995). Handbook of

Logic in Computer Science (Vol. 3): Semantic Structures. Oxford University Press,

Inc., USA.

Akiba, T., Imajo, K., Iwami, H., Iwata, Y., Kataoka, T., Takahashi, N., Moskal, M., and

Swamy, N. (2013). Calibrating research in program synthesis using 72,000 hours of

programmer time. Technical report, Microsoft Research.

Alur, R., Bodik, R., Juniwal, G., Martin, M. M. K., Raghothaman, M., Seshia, S. A.,

Singh, R., Solar-Lezama, A., Torlak, E., and Udupa, A. (2013). Syntax-guided

synthesis. In Formal Methods in Computer-Aided Design, FMCAD, pages 1–8.

IEEE.

Alur, R., Radhakrishna, A., and Udupa, A. (2017). Scaling enumerative program syn-

thesis via divide and conquer. In Legay, A. and Margaria, T., editors, Tools and

Algorithms for the Construction and Analysis of Systems, pages 319–336, Berlin,

Heidelberg. Springer.

Amin, N. and Tate, R. (2016). Java and Scala’s type systems are unsound: The ex-

istential crisis of null pointers. In Proceedings of the 2016 ACM SIGPLAN Inter-

national Conference on Object-Oriented Programming, Systems, Languages, and

Applications, OOPSLA 2016, pages 838–848, New York, NY, USA. Association

for Computing Machinery.

147

148 Bibliography

Awodey, S. (2006). Category Theory. Oxford University Press.

Barke, S., Peleg, H., and Polikarpova, N. (2020). Just-in-time learning for bottom-

up enumerative synthesis. Proceedings of the ACM on Programming Languages,

4(OOPSLA).

Bartha, S. and Cheney, J. (2020). Towards meta-interpretive learning of programming

language semantics. In Proceedings of the 29th International Conference on Induc-

tive Logic Programming (ILP 2019), number 11770 in LNCS, pages 16–25.

Bartha, S., Cheney, J., and Belle, V. (2021). One down, 699 to go: Or, synthesising

compositional desugarings. Proceedings of the ACM on Programming Languages,

5(OOPSLA).

Bodin, M., Chargueraud, A., Filaretti, D., Gardner, P., Maffeis, S., Naudziuniene, D.,

Schmitt, A., and Smith, G. (2014). A trusted mechanised JavaScript specification. In

Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL ’14, pages 87–100, New York, NY, USA. Association

for Computing Machinery.

Bodin, M., Diaz, T., and Tanter, E. (2018). A trustworthy mechanized formalization

of r. In Proceedings of the 14th ACM SIGPLAN International Symposium on Dy-

namic Languages, DLS 2018, pages 13–24, New York, NY, USA. Association for

Computing Machinery.

Bogdanas, D. and Roşu, G. (2015). K-java: A complete semantics of java. In Pro-

ceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’15, pages 445–456, New York, NY, USA. Asso-

ciation for Computing Machinery.

Burstall, R. M. (1969). Proving properties of programs by structural induction. The

Computer Journal, 12(1):41–48.

Charguéraud, A., Schmitt, A., and Wood, T. (2018). JSExplain: A double debugger

for JavaScript. In Companion Proceedings of the The Web Conference 2018, WWW

’18, pages 691–699, Republic and Canton of Geneva, CHE. International World

Wide Web Conferences Steering Committee.

Chen, J., Patra, J., Pradel, M., Xiong, Y., Zhang, H., Hao, D., and Zhang, L. (2020). A

survey of compiler testing. ACM Computing Surveys, 53(1).

Bibliography 149

Chen, W. and Warren, D. S. (1993). Query evaluation under the well-founded seman-

tics. In Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, PODS ’93, pages 168–179, New York, NY, USA.

Association for Computing Machinery.

Clark, A. and Lappin, S. (2010). Unsupervised learning and grammar induction. In The

Handbook of Computational Linguistics and Natural Language Processing, pages

197–220.

Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison,

S., and Tommasi, M. (2007). Tree automata techniques and applications. Available

on: http://www.grappa.univ-lille3.fr/tata. release October, 12th 2007.

Cropper, A. and Muggleton, S. H. (2016). Metagol system. https://github.com/

metagol/metagol.

Dasgupta, S., Park, D., Kasampalis, T., Adve, V. S., and Roşu, G. (2019). A complete

formal semantics of x86-64 user-level instruction set architecture. In Proceedings

of the 40th ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, PLDI 2019, pages 1133–1148, New York, NY, USA. Association for

Computing Machinery.

David, R., Raffalli, C., Theyssier, G., Grygiel, K., Kozik, J., and Zaionc, M. (2009).

Some properties of random lambda terms. Logical Methods in Computer Science,

9(1).

Duregård, J., Jansson, P., and Wang, M. (2012). Feat: Functional enumeration of

algebraic types. In Proceedings of the 2012 Haskell Symposium, Haskell ’12, page

61–72, New York, NY, USA. Association for Computing Machinery.

Dyckhoff, R. and Pinto, L. (1999). Proof search in constructive logics. In Sets and

Proofs: invited papers from Logic Colloquium’97, pages 53–65.

Ellison, C. and Roşu, G. (2012). An executable formal semantics of C with applica-

tions. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’12, pages 533–544, New York, NY,

USA. Association for Computing Machinery.

Felleisen, M. (1991). On the expressive power of programming languages. Science of

Computer Programming, 17(1):35–75.

http://www.grappa.univ-lille3.fr/tata
https://github.com/metagol/metagol
https://github.com/metagol/metagol

150 Bibliography

Felleisen, M., Findler, R. B., Flatt, M., and Krishnamurthi, S. (2001). How to Design

Programs. MIT Press.

Filaretti, D. and Maffeis, S. (2014). An executable formal semantics of PHP. In

Jones, R., editor, Proceedings of the 28th European Conference on Object Oriented

Programming (ECOOP 2014), pages 567–592, Berlin, Heidelberg. Springer-Verlag.

Frankle, J., Osera, P.-M., Walker, D., and Zdancewic, S. (2016). Example-directed

synthesis: A type-theoretic interpretation. In Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’16, page 802–815, New York, NY, USA. Association for Computing Machinery.

Gentzen, G. (1935). Untersuchungen über das logische Schließen. Mathematische

Zeitschrift, 39(1):176–210.

Gentzen, G. (1969). Investigations into logical deduction. In Szabo, M., editor, The

Collected Papers of Gerhard Gentzen, chapter 3, pages 68–131. North-Holland Pub-

lishing Company, Amsterdam.

Gibbons, J. (2006). Datatype-generic programming. In Proceedings of the 2006 Inter-

national Conference on Datatype-Generic Programming, SSDGP’06, pages 1–71,

Berlin, Heidelberg. Springer-Verlag.

Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50(1):1–102.

Guha, A., Saftoiu, C., and Krishnamurthi, S. (2010). The essence of JavaScript. In

Proceedings of the 24th European Conference on Object Oriented Programming

(ECOOP 2010), pages 126–150.

Gulwani, S., Polozov, O., and Singh, R. (2017). Program synthesis. Foundations and

Trends in Programming Languages, 4(1-2):1–119.

Hathhorn, C., Ellison, C., and Roşu, G. (2015). Defining the undefinedness of C.

In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’15, pages 336–345, New York, NY, USA. As-

sociation for Computing Machinery.

Herbelin, H. (1994). A lambda-calculus structure isomorphic to Gentzen-style sequent

calculus structure. In Selected Papers from the 8th International Workshop on Com-

puter Science Logic, CSL ’94, pages 61–75, Berlin, Heidelberg. Springer-Verlag.

Bibliography 151

Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D., Moore,

B., Park, D., Zhang, Y., Stefanescu, A., and Roşu, G. (2018). KEVM: A complete

formal semantics of the Ethereum virtual machine. In 2018 IEEE 31st Computer

Security Foundations Symposium (CSF), pages 204–217.

Hinze, R., Jeuring, J., and Löh, A. (2004). Type-indexed data types. Science of Com-

puter Programming, 51(1):117–151. Mathematics of Program Construction (MPC

2002).

Howard, W. A. (1980). The formulae-as-types notion of construction. In Curry, H., B.,

H., Roger, S. J., and Jonathan, P., editors, To H. B. Curry: Essays on Combinatory

Logic, Lambda Calculus, and Formalism. Academic Press.

Inala, J. P., Polikarpova, N., Qiu, X., Lerner, B. S., and Solar-Lezama, A. (2017).

Synthesis of recursive ADT transformations from reusable templates. In Legay, A.

and Margaria, T., editors, Tools and Algorithms for the Construction and Analysis

of Systems, pages 247–263, Berlin, Heidelberg. Springer.

Jha, S., Gulwani, S., Seshia, S. A., and Tiwari, A. (2010). Oracle-guided component-

based program synthesis. In Proceedings of the 32nd ACM/IEEE International Con-

ference on Software Engineering - Volume 1, ICSE 2010, Cape Town, South Africa,

1-8 May 2010, pages 215–224.

Jung, R., Jourdan, J.-H., Krebbers, R., and Dreyer, D. (2017). RustBelt: Securing

the foundations of the Rust programming language. Proceedings of the ACM on

Programming Languages, 2(POPL).

Katayama, S. (2013). MagicHaskeller on the web: Automated programming as a

service. In Haskell Symposium.

Kern, C. and Greenstreet, M. R. (1999). Formal verification in hardware design: A

survey. ACM Transactions on Design Automation of Electronic Systems, 4(2):123–

193.

Kheradmand, A. and Roşu, G. (2018). P4K: A formal semantics of p4 and applications.

Technical report, University of Illinois at Urbana-Champaign. https://arxiv.

org/abs/1804.01468.

Kohlbecker, E. (1986). Syntactic Extensions in the Programming Language LISP. PhD

thesis, USA. UMI Order No. GAX86-27998.

https://arxiv.org/abs/1804.01468
https://arxiv.org/abs/1804.01468

152 Bibliography

Krishnamurthi, S., Lerner, B. S., and Elberty, L. (2019). The next 700 semantics:

A research challenge. In Lerner, B. S., Bodík, R., and Krishnamurthi, S., edi-

tors, 3rd Summit on Advances in Programming Languages (SNAPL 2019), volume

136 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:14,

Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

Kuraj, I., Kuncak, V., and Jackson, D. (2015). Programming with enumerable sets of

structures. In Proceedings of the 2015 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA

2015, pages 37–56, New York, NY, USA. Association for Computing Machinery.

Landin, P. J. (1964). The mechanical evaluation of expressions. Computer Journal,

6:308–320.

Landin, P. J. (1966). The next 700 programming languages. Communications of the

ACM, 9(3):157–166.

Lee, W. (2021). Combining the top-down propagation and bottom-up enumeration for

inductive program synthesis. Proceedings of the ACM on Programming Languages,

5.

MacLane, S. (1971). Categories for the Working Mathematician. Springer-Verlag,

New York. Graduate Texts in Mathematics, Vol. 5.

Maffeis, S., Mitchell, J. C., and Taly, A. (2008). An operational semantics for

JavaScript. In Ramalingam, G., editor, Programming Languages and Systems,

APLAS 2008, volume 5356 of Lecture Notes in Computer Science, pages 307–325,

Berlin, Heidelberg. Springer.

Magalhães, J. P., Dijkstra, A., Jeuring, J., and Löh, A. (2010). A generic deriving

mechanism for Haskell. In Proceedings of the Third ACM Haskell Symposium on

Haskell, Haskell ’10, pages 37–48, New York, NY, USA. Association for Computing

Machinery.

McCarthy, J. (1966). A formal definition of a subset of Algol. Formal Language

Description Languages for Computer Programming, pages 1–12.

Meinke, K. and Tucker, J. V. (1993). Universal algebra. In Handbook of Logic in

Computer Science (Vol. 1): Background: Mathematical Structures, pages 189–368.

Oxford University Press, Inc., USA.

Bibliography 153

Menon, A., Tamuz, O., Gulwani, S., Lampson, B., and Kalai, A. (2013). A machine

learning framework for programming by example. In Dasgupta, S. and McAllester,

D., editors, Proceedings of the 30th International Conference on Machine Learning,

volume 28 of Proceedings of Machine Learning Research, pages 187–195, Atlanta,

Georgia, USA. PMLR.

Milner, R., Tofte, M., and Macqueen, D. (1997). The Definition of Standard ML. MIT

Press, Cambridge, MA, USA.

Moggi, E. (1991). Notions of computation and monads. Inf. Comput., 93(1):55–92.

Morandat, F., Hill, B., Osvald, L., and Vitek, J. (2012). Evaluating the design of the

R language: Objects and functions for data analysis. In Proceedings of the 26th

European Conference on Object-Oriented Programming, pages 104–131, Berlin,

Heidelberg. Springer-Verlag.

Muggleton, S. and de Raedt, L. (1994). Inductive logic programming: Theory and

methods. The Journal of Logic Programming, 19-20:629–679. Special Issue: Ten

Years of Logic Programming.

Muggleton, S. H., Lin, D., Pahlavi, N., and Tamaddoni-Nezhad, A. (2014). Meta-

interpretive learning: Application to grammatical inference. Mach. Learn.,

94(1):25–49.

Muralidaran, V., Spasić, I., and Knight, D. (2021). A systematic review of unsuper-

vised approaches to grammar induction. Natural Language Engineering, 27(6):647–

689.

Negri, S., von Plato, J., and Ranta, A. (2001). Structural Proof Theory. Cambridge

University Press.

New, M. S., Fetscher, B., Findler, R. B., and McCarthy, J. (2017). Fair enumeration

combinators. Journal of Functional Programming, 27:e19.

Nienhuis, K., Memarian, K., and Sewell, P. (2016). An operational semantics for

C/C++11 concurrency. In Proceedings of the 2016 ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Languages, and Applica-

tions, OOPSLA 2016, pages 111–128, New York, NY, USA. Association for Com-

puting Machinery.

154 Bibliography

Osera, P. and Zdancewic, S. (2015). Type-and-example-directed program synthesis.

In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language

Design and Implementation, Portland, OR, USA, June 15-17, 2015, pages 619–630.

Park, D., Stefănescu, A., and Roşu, G. (2015). KJS: A complete formal semantics of

JavaScript. In Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’15, pages 346–356, New York, NY,

USA. Association for Computing Machinery.

Patsantzis, S. and Muggleton, S. H. (2022). Meta-interpretive learning as metarule

specialisation. Machine Learning, 111(10):3703–3731.

Pierce, B. C. (2004). Advanced Topics in Types and Programming Languages. The

MIT Press.

Plotkin, G. D. (1981). A structural approach to operational semantics. Technical

Report DAIMI FN-19, Computer Science Department, Aarhus university, Aarhus,

Denmark.

Also published in: Journal of Logic and Algebraic Programming 60–61:17–140,

2004.

Polikarpova, N., Kuraj, I., and Solar-Lezama, A. (2016). Program synthesis from poly-

morphic refinement types. In Proceedings of the 37th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’16, pages 522–538,

New York, NY, USA. Association for Computing Machinery.

Politz, J. G., Carroll, M. J., Lerner, B. S., Pombrio, J., and Krishnamurthi, S. (2012). A

tested semantics for getters, setters, and eval in javascript. In Proceedings of the 8th

Symposium on Dynamic Languages, DLS ’12, pages 1–16, New York, NY, USA.

Association for Computing Machinery.

Politz, J. G., Martinez, A., Milano, M., Warren, S., Patterson, D., Li, J., Chitipothu,

A., and Krishnamurthi, S. (2013). Python: The full monty. In Proceedings of the

2013 ACM SIGPLAN International Conference on Object Oriented Programming,

Systems, Languages, and Applications, OOPSLA ’13, pages 217–232, New York,

NY, USA. Association for Computing Machinery.

Polozov, O. and Gulwani, S. (2015). FlashMeta: A framework for inductive program

synthesis. In Proceedings of the 2015 ACM SIGPLAN International Conference on

Bibliography 155

Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA

2015, pages 107–126, New York, NY, USA. Association for Computing Machinery.

Regan, K. W. (1992). Minimum-complexity pairing functions. Journal of Computer

and System Sciences, 45(3):285–295.

Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C., and Tinelli, C. (2019). cvc4sy:

Smart and fast term enumeration for syntax-guided synthesis. In Dillig, I. and

Tasiran, S., editors, Computer Aided Verification, pages 74–83, Cham. Springer In-

ternational Publishing.

Reynolds, J. C. (1997). The essence of Algol. In O’Hearn, P. W. and Tennent, R. D.,

editors, Algol-like Languages, pages 67–88. Birkhäuser Boston, Boston, MA.

Rosenberg, A. L. (2002). Efficient pairing functions - and why you should care. In Pro-

ceedings of the 16th International Parallel and Distributed Processing Symposium,

IPDPS ’02, page 134, USA. IEEE Computer Society.

Solar-Lezama, A., Jones, C. G., and Bodík, R. (2008). Sketching concurrent data

structures. In Proceedings of the ACM SIGPLAN 2008 Conference on Programming

Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, pages

136–148.

Solar-Lezama, A., Rabbah, R. M., Bodík, R., and Ebcioglu, K. (2005). Programming

by sketching for bit-streaming programs. In Proceedings of the ACM SIGPLAN

2005 Conference on Programming Language Design and Implementation, Chicago,

IL, USA, June 12-15, 2005, pages 281–294.

Sundholm, G. (1983). Proof Theory: a survey of the omega-rule. PhD thesis, Univer-

sity of Oxford.

Van Der Rest, C. and Swierstra, W. (2022). A completely unique account of enumera-

tion. Proceedings of the ACM on Programming Languages, 6(ICFP).

Wadler, P. (1992). Comprehending monads. Mathematical Structures in Computer

Science, 2(4):461–493.

Wells, J. B. and Yakobowski, B. (2005). Graph-based proof counting and enumera-

tion with applications for program fragment synthesis. In Etalle, S., editor, Logic

Based Program Synthesis and Transformation, pages 262–277, Berlin, Heidelberg.

Springer.

	Introduction
	Motivation
	Overview of the problem
	Contributions of this thesis
	Thesis structure

	Problem analysis
	The challenge and its research context
	KLE's challenge
	The challenge's background in formal semantics
	A brief and high-level overview of program synthesis
	Past solution attempts

	Critical analysis of the challenge
	Challenges
	My approach

	Benchmarks
	Pidgin languages
	Pidgin extensions
	Basic list comprehensions
	Try-catch-finally

	Formal framework
	Background - monads
	Syntax
	Semantics
	Translations
	Correctness
	Sublanguages
	The desugaring extension problem
	Sequential learning
	Conditions of a solution
	Concluding remarks

	Enumerating typed program fragments
	Introduction
	Algebraic enumerations
	Combinators for enumerations
	Datatype-generic enumerations

	Enumerating proofs
	Enumerating data systems
	Data systems and type systems
	Abstract proof systems
	Enumerating finitely branching proof systems
	Finitely branching type systems

	Symmetries in proof and type systems
	Finitely branching proof systems
	Adequate representation of judgements
	Curry-Howard property

	Related work
	Summary

	Searching for desugarings
	Search spaces for translation rules
	Relabelling
	Substitutions
	Substitutions as a type system
	Analysing arguments
	Errors
	Transforming arguments
	Layering
	Fresh name generation
	Summary: the complete meta-language for translation rules

	Evaluation
	Hypothesis and methodology
	Pidgin languages
	Basic list comprehensions
	Try/Catch/Finally
	Human overhead

	A linear type system for the efficient enumeration of translation rules
	Background
	Motivation
	The effect of pruning non-linear terms
	A linear search space
	Type system for terms with linear variables
	The Case, Error and Transform rules
	Bound linear variables
	Summary - a linear search space for desugarings

	Empirical evaluation
	Pidgin benchmark and list comprehensions benchmark
	Try/catch/finally benchmark

	Conclusion and future work
	Summary
	Weak points
	Future work

	Reference implementation of Pidgin
	Bibliography

