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Abstract

In this thesis we will discuss results and ideas in probability theory from a categorical point
of view. One categorical concept in particular will be of interest to us, namely that of Kan
extensions. We will use Kan extensions of ‘ordinary ’ functors, enriched functors and lax natural
transformations to give categorical proofs of some fundamental results in probability theory and
measure theory. We use Kan extensions of ‘ordinary’ functors to represent probability monads as
codensity monads. We consider a functor representing probability measures on countable spaces.
By Kan extending this functor along itself, we obtain a codensity monad describing probability
measures on all spaces. In this way we represent probability monads such as the Giry monad,
the Radon monad and the Kantorovich monad.

Kan extensions of lax natural transformations are used to obtain a categorical proof of the
Carathéodorody extensions theorem. The Carathéodory extension theorem is a fundamental
theorem in measure theory that says that premeasures can be extended to measures. We first
develop a framework for Kan extensions of lax natural transformations. We then represent outer
and inner (pre)measures by certain lax and colax natural transformations. By applying the
results on extensions of transformations a categorical proof of Carathéodory’s extension theorem
is obtained.

We also give a categorical view on the Radon–Nikodym theorem and martingales. For this
we need Kan extensions of enriched functors. We start by observing that the finite version of
the Radon–Nikodym theorem is trivial and that it can be interpreted as a natural isomorphism
between certain functors, enriched over CMet, the category of complete metric spaces and
1-Lipschitz maps. We proceed by Kan extending these, to obtain the general version of the
Radon–Nikodym theorem. Concepts such as conditional expectation and martingales naturally
appear in this construction. By proving that these extended functors preserve certain cofiltered
limits, we obtain categorical proofs of a weaker version of a martingale convergence theorem and
the Kolmogorov extension theorem.
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Lay summary

Kan extensions are an important concept in category theory. This is an area in mathematics that
itself can be viewed as an abstraction of mathematics. It provides a universal language to study
different areas of mathematics. One of the advantages of doing this is that results in certain
areas of mathematics can be obtained from abstract categorical principles. Another advantage
is that results and concepts between different fields of mathematics can be compared to each
other. Many parts of mathematics have been investigated from this point of view. However,
probability theory has been studied less from a categorical perspective. The main objective of
this thesis is to describe probabilistic concepts using the language of category theory and prove
results in probability theory using categorical principles. One concept in particular will be used,
which is that of Kan extensions. These are extensions that are optimal in some sense.

We will show that knowing how probabilities work on finite sets, determines how probabil-
ities work on more general spaces; the Kan extension of finitely supported measures gives all
probability measures. Furthermore, a proof of the Carathéodory extension theorem is given
using Kan extensions of lax natural transformations. We will also give a categorical proof for
the Radon–Nikodym theorem. We first observe that for finite sets the result is trivial and then
proceed by Kan extending the trivial version of the theorem to the general version. Furthermore,
this leads to a new proof of the martingale convergence theorem and categorical descriptions of
several probabilistic concepts.
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Chapter 1

Introduction

In this section we will give some preliminaries on probability theory and category theory, in
particular on Kan extensions. In Section 1.1 we will give an overview of several basic concepts
and important results in probability theory. We do this from a categorical point of view. We
start from the very basics of probability theory and end with some more advanced results. We
do this from the perspective of a category theorist and spend plenty of time on discussing which
concepts have straightforward categorical interpretations and which ideas in probability theory
are more difficult to grasp using the language of category theory.

In Section 1.2, we give an overview of results of Kan extensions. We describe the classical
Kan extensions of ‘ordinary ’ functors and their main properties. We then proceed by looking at
Kan extensions of enriched functors and Kan extensions of lax natural transformations.

1.1 Probability theory

It is not obvious what the main objects of probability theory are. Several options come to mind:

1. Is probability theory about probability spaces?

2. Is probability theory about random variables?

3. Is probability theory about Markov kernels?

In Section 1.1.1, we discuss why probability spaces are important to describe stochastic events,
but we also discuss why they are not sufficiently powerful to describe everything we want to
model using probability theory. We will also describe some interesting categorical properties
and some categorical limitations about probability spaces. In Section 1.1.2 and Section 1.1.3,
we give an overview of the theory of random variables and the theory of Markov kernels. We
see that both of these offer a more complete framework to mathematically formalize probability
theory. However, we will also see that for certain situations the random variables approach is
more useful than that of Markov kernels and vice versa. We will also see that the framework
of Markov kernels has a more straightforward categorical interpretation than the one of random
variables.

1.1.1 Probability theory is about probability spaces

An important first step in probability theory is to find a way to mathematically model random-
ness. If we want to describe a stochastic event with only a countable number of outcomes, there
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is a very intuitive way to model this. Namely, let A be the countable set of outcomes and let
(pa)a∈A ∈ [0, 1]A be a collection of real numbers between 0 and 1 such that∑

a∈A
pa = 1.

For example to describe a fair coin mathematically, we just need to look at the set {H,T} together
with the probabilities pH := 1/2 and pT := 1/2. This model is the Bernoulli distribution with
parameter 1/2.

Another example can be given using whiteboard markers. Suppose there is an infinite supply
of used whiteboard markers, of which 25% still work. We arbitrarily choose a marker and test it.
If the marker does not write well, we throw it away and choose another one. We are interested in
how many attempts it takes to find a working marker. There is a countable collection of possible
outcomes, namely N \ {0}. The probability that we find a good marker on the nth attempt is
given by

pn :=

(
3

4

)n−1

· 1
4
.

This model is the geometric distribution with the parameter 1/4 and it will take an average of 4
attempts to find a marker that works.

However, if the set of possible outcomes of our stochastic event is uncountable this definition
does not work anymore. Indeed, if A is uncountable and we have a collection (pa)a∈A such that∑
a∈A pa = 1, then there can be at most a countable number of elements in A with a strictly

positive probability. This means that the model essentially reduces to the countable case, which
can not be used to describe every stochastic event.

Suppose we are throwing darts at a regulation dart board (which has a diameter of 173/4 inch).
We assume that every dart lands on the dartboard and that we are not aiming at a specific point
on the dartboard. There are an uncountable amount of points on the board the dart could land
in and the probability of landing in one specific point is 0. However, the probability of landing
in a region A of the board with area S square inch is given by

pA :=
S

(8.875)2π
.

In particular, the probability of landing the dart within a distance r inch of the center of the board

is equal to
(

r
8.875

)2
. From this example it follows that it is not enough to assign a probability to

every point of the dart board. We also need to assign a probability to every region (i.e. a subset
of points on the board) of which we can measure the surface area.

This idea is formalized by Kolmogorov’s axioms of probability, introduced in [41]. Let Ω
be a set and let F be a σ-algebra of subsets of Ω, i.e. a collection of subsets that is closed
under countable unions and complements, containing the subsets ∅ and Ω. The elements of F
are called measurable subsets and the pair (Ω,F) a measurable space. In the darts example,
Ω would be the collection of points on the board and F the collection of regions on the board,
whose surface area we can measure. Then Kolmogorov’s axioms of probability define a probability
measure as follows.

Definition 1.1.1 (Kolmogorov’s axioms of probability). A probability measure on (Ω,F) is
a map P : F → [0, 1] such that:

1. P(Ω) = 1.

11



2. For every countable collection (An)
∞
n=1 of pairwise disjoint measurable subsets,

∞∑
n=1

P(An) = P

( ∞⋃
n=1

An

)
.

A triple (Ω,F ,P) is called a probability space. In the case that Ω is countable, it is enough
to assign to every element ω ∈ Ω a number pω between 0 and 1 such that

∑
ω∈Ω pω = 1, since this

can be uniquely extended to a probability measure on (Ω,P(Ω)). Therefore the intuitive model
for stochastic events with countable possible outcomes is also captured by the probability spaces.
In Chapter 3, we will show that Kolmogorov’s generalization arises from a purely categorical
construction.

Measurable spaces often come from more structured spaces, such as topological spaces or
metric spaces. For example, let (X, T ) be a topological space. Then (X,σ(T )) is a measurable
space, where σ(T ) is the smallest σ-algebra containing T . This σ-algebra is called the Borel
σ-algebra. Many measurable spaces arise in the following way. Let E be a set and let B be an
algebra of subsets of E, i.e. a collection of subsets of E that is closed under finite unions and
complements, containing the subsets ∅ and E. Consider the smallest σ-algebra that contains
B, which is denoted as σ(B). Then (E, σ(B)) forms a measurable space. However, because a
σ-algebra is closed under operations that do not distribute over each other, it is usually not
possible to describe what a general element of σ(B) looks like in terms of elements of B. This
makes it difficult to define a probability measure on (E, σ(B)). A solution to this problem is
given by Carathéodory’s extension theorem, an important result in measure theory which we will
discuss in detail from a categorical point of view in Chapter 4. The classical proof for this result
can be found in [40] (Theorem 1.53).

Theorem 1.1.2 (Carathéodory extension theorem). Let E be a set and let B be an algebra of
subsets. Let p : B → [0, 1] be a map such that:

1. p(E) = 1,

2. For all countable collections (An)
∞
n=1 of pairwise disjoint subsets in B, such that their union

A :=
⋃∞
n=1An is also an element in B, we have

∞∑
n=1

p (An) = p(A).

Then there exists a unique probability measure P on (E, σ(B)) such that for all A ∈ B,

P(A) = p(A).

The obvious structure-preserving maps between probability spaces are measure-preserving
maps, i.e. for probability spacesΩ1 := (Ω1,F1,P1) andΩ2 := (Ω2,F2,P2), a measure-preserving
map is a function f : Ω1 → Ω2 such that f−1(F2) ⊆ F1 and such that P1(f

−1(A)) = P2(A)
for all A ∈ F2. In other words, a map is measure-preserving if the pushforward of P1 along f ,
denoted by P1 ◦ f−1 or f∗P1, is equal to P2. Clearly, composing measure-preserving maps gives
again a measure-preserving map. Therefore probability spaces together with measure-preserving
maps form a category, which we will denote by Prob.

A first attempt towards a categorical view on probability theory is to investigate this category
of probability spaces. We will do this by studying the limits and colimits in this category and
its canonical symmetric monoidal structure.
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In Proposition 1.1.5 we will show that Prob does not have products in general. However,
it does a have a natural tensor product. Consider two probability space Ω1 := (Ω1,F1,P1) and
Ω2 := (Ω2,F2,P2). Using the Carathéodory extension theorem, there exists a unique probability
measure P1 ⊗ P2 on (Ω1 × Ω2,F1 ⊗F2) such that

P1 ⊗ P2(E1 × E2) = P1(E1)P2(E2),

for all E1 ∈ F1 and E2 ∈ F2.
We obtain a probability space (Ω1×Ω2,F1⊗F2,P1⊗P2) which we denote by Ω1⊗Ω2. This

defines a functor
⊗ : Prob×Prob → Prob.

This functor together with the one-point probability space gives Prob a symmetric monoidal
structure.

More generally, given an indexed collection of probability spaces (Ωi := (Ωi,Fi,Pi))i∈I , we
can use the Carathéodory extension to prove that there exists a unique probability measure on(∏

i∈I Ωi,
⊗

i∈I Fi
)
such that

P

(∏
i∈I

Ai

)
=
∏
i∈I

P(Ai),

for (Ai)i∈I with Ai ∈ Fi and only a finite amount of the Ai’s different from Ωi. We denote
this probability measure by

⊗
i∈I Pi and the obtained probability space as

⊗
i∈I Ωi. This is

explained in Section 10.6 in [11].

Theorem 1.1.3. The category Prob has colimits of non-empty diagrams.

Proof. We will first show that Prob has coproducts. Let (Ωi := (Ωi,Fi,Pi))i∈I be a non-empty
collection of probability spaces. Define Ω :=

∐
i∈I Ωi and

F :=

{∐
i

Ai | Ai ∈ Fi for all i ∈ I,Pi1(Ai1) = Pi2(Ai2) for all i1, i2 ∈ I

}
.

The set F is closed under complements, countable increasing unions and finite disjoint unions,
therefore it is a σ-algebra. Define P : F → [0, 1] by sending

∐
i∈I Ai to Pi(Ai) for any i ∈ I.

This defines a probability measure on (Ω,F), which forms a probability space Ω := (Ω,F ,P).
For i ∈ I, there is a measure-preserving inclusion ιi : Ωi → Ω.

Suppose now that there is a probability space Ξ := (Ξ,G,Q) together with measure-preserving
maps fi : Ωi → Ξ for every i ∈ I. There is a map f : Ω → Ξ such that for every i ∈ I,

Ωi Ω

Ξ

ιi

fi
f

For E ∈ G, we find that for every i ∈ I,

P(f−1(E)) = Pi(f−1(E) ∩ Ωi) = Q(E).

It follows now that f−1(E) ∈ F and that f is measure-preserving. This shows that Ω together
with the maps (ιi)i is the coproduct of (Ωi)i∈I .

We will now show that Prob also has coequalizers. Consider probability spaces Ω1 :=
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(Ω1,F1,P1) and Ω2 := (Ω2,F2,P2) and measure-preserving maps f1, f2 : Ω1 → Ω2. Let (Ω,F)
be the coequalizer of the measurable maps f1, f2 : (Ω1,F1) → (Ω2,F2) and let e : (Ω2,F2) →
(Ω,F) be the coequalizer map. Define P as P2 ◦ e−1, i.e. the pushforward of P along e. Then
Ω := (Ω,F ,P) is a probability space and e becomes a measure-preserving map. This forms the
coequalizer of f1 and f2 in Prob.

Since Prob has coproducts and coequalizers, the claim follows.

From the proof of Theorem 1.1.3, we can see that the underlying measurable space of the
coproduct of probability spaces is, in general, not the same as the coproduct of the underlying
measurable spaces of the probability spaces. In other words, the forgetful functor U : Prob →
Mble does not preserve coproducts. It does however preserve coequalizers.

Proposition 1.1.4. The category Prob does not have an initial object.

Proof. Suppose there is an initial object Ω := (Ω,F ,P) in Prob, then there is a unique map
Ω → Ω⊗Ω. This has to be the diagonal map ∆ : Ω → Ω×Ω. It follows that P ◦∆−1 = P⊗ P.

Now consider any probability space Ξ := (Ξ,G,Q) such that there exists a measurable subset
B ∈ G such that 0 < Q(B) < 1. Because Ω is an initial object, there exists a unique measure-
preserving map f : Ω → Ξ. Therefore A := f−1(B) is a measurable subset such that 0 < P(A) <
1. We will write AC := Ω \A. It follows now that

0 < P(A)P(AC) = P⊗ P(A×AC) = P ◦∆−1(A×AC) = P(A ∩AC) = 0.

This is a contradiction. Therefore, no initial object can exist in Prob.

What Proposition 1.1.4 means probabilistically is that there is no upper bound on the ran-
domness that probability spaces can express. There is no ultimate probability distribution from
which every other probability distribution is the pushforward measure in a unique way.

We will now see that the situation for limits in Prob is more complicated.

Proposition 1.1.5. The category Prob does not have all products.

Proof. LetΩ := (Ω,F ,P) be a probability space, such that there exists A ∈ F with 0 < P(A) < 1.
Suppose Ξ := (Ξ,G,Q) is the product of Ω with itself with measure-preserving projection maps
p1, p2 : Ξ → Ω.

There is a measurable map (Ξ,G) → (Ω×Ω,F⊗F) such that the following diagram commutes:

(Ξ,G)

(Ω,F) (Ω× Ω,F ⊗ F) (Ω,F)

p1
p

π1 π2

p2

Furthermore, there is a measure-preserving map p : Ω → Ξ such that we have a commutative
diagram,

Ω

Ω Ξ Ω

1Ω f

p1 p2

1Ω

14



However, there is also a measure-preserving map g : Ω⊗Ω → Ξ such that

Ω⊗Ω

Ω Ξ Ω

π1 g

p1 p2

π2

From this we can conclude that π1pg = p1g = π1 and π2pg = p2g = π2 and therefore

pg = 1Ω×Ω.

Similarly, we have that π1pf = p1f = 1Ω and π2pf = p2f = 1Ω, which implies that

pf = ∆.

Here ∆ : Ω → Ω × Ω is the diagonal map. Since f and g are measure-preserving, we see that
P ◦ f−1 = Q = P⊗ P ◦ g−1. It follows that

P ◦∆−1 = P ◦ f−1 ◦ p−1 = P⊗ P ◦ g−1 ◦ p−1 = P⊗ P.

Let A be the measurable subset such that 0 < P(A) < 1, then

0 < P(A)P(AC) = P⊗ P(A×AC) = P ◦∆−1(A×AC) = P(A ∩AC) = 0.

This is a contradiction and therefore Ω has no product with itself in Prob.

A more probabilistic way of explaining the result in Proposition 1.1.5 is as follows. Given
two probability spaces Ω1 := (Ω1,F1,P1) and Ω2 := (Ω2,F2,P2), we can look for probability
measures P on (Ω1×Ω2,F⊗F) such that P◦π−1

1 = P1 and P◦π−1
2 = P2, where π1 : Ω1×Ω2 → Ω1

and π2 : Ω1×Ω2 → Ω2 are the projection maps. Such a probability measure is called a coupling
of Ω1 and Ω2. The product of the probability measures P1 ⊗ P2 always forms a coupling, but in
general there are many other couplings. In other words, the two probability spaces Ω1 and Ω2

do not determine a joint probability distribution on (Ω1 × Ω2,F1 ⊗ F2). This means that if we
model stochastic events by probability spaces, we do not have enough information to describe
the interactions between the stochastic events.

In general we also do not have equalizers in Prob. Indeed, consider the probability space
{H,T} associated to a fair coin. The identity map and the map that switches heads and tails are
both measure-preserving. If an equalizer existed, its underlying map should be the empty set,
but this cannot be a probability space. Since subspace constructions often arise as equalizers,
this indicates that we can not describe conditional probability measures using a categorical
construction in Prob. Given a probability space Ω := (Ω,F ,P) and a measurable subset A
with P(A) > 0, we can try to restrict P to A. However, since we want to end up with another
probability measure, we need to rescale. This gives us the conditional probability measure
defined by

P(B | A) := P(B ∩A)
P(A)

.

The category Prob does have a terminal object. This is the probability space, whose un-
derlying set is the set of one element. This is not the only limit that exists in Prob. Some
cofiltered limits also exist. This is described by the Kolmogorov extension theorem for which a
proof can be found in Theorem 10.6.2 in [11]. For this we need the concept of standard Borel
spaces. A standard Borel space is a measurable space that is induced by a Polish space, i.e.
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a separable completely metrizable topological space.

Theorem 1.1.6 (Kolmogorov extension theorem). Let I be a non-empty set and let (Ωi)i∈I be a
collection of standard Borel spaces. For every finite subset J of I, let PJ be a probability measure
on
∏
i∈J Ωi such that

PJ2 ◦ π−1
J1⊆J2 = PJ1 ,

for finite subsets J1 ⊆ J2, where πJ1⊆J2 :
∏
i∈J2 Ωi →

∏
i∈J1 Ωi is the projection map.

Then there exist a unique probability measure P on
∏
i∈I Ωi such that

P ◦ πJ = PJ ,

for all finite subsets J ⊆ I, where πJ :
∏
i∈I Ωi →

∏
i∈J Ωi is the projection map.

Kolmogorov’s extension theorem can be rephrased more categorically. Let I be a non-empty
set and let (Ωi)i∈I be a collection of standard measurable spaces. Let Pf (I) be the poset of finite
subsets of I ordered by inclusion. Consider a diagram

D : Pf (I)op → Prob

such that the underlying measurable space of D(J) is equal to
∏
i∈J Ωi and the underlying

measurable map of D(J1 ⊆ J2) is given by the projection map πJ1⊆J2 :
∏
i∈J2 Ωi →

∏
i∈J1 Ωi.

The Kolmogorov extension theorem then states that D has a limit.

The statement does not hold anymore for a collection of arbitrary probability spaces. A
counterexample is described in [2], which shows that Prob does not have all cofiltered limits.

Moreover, it follows that a joint distribution P on
∏
i∈I Ωi is completely determined by its

finite-dimensional distributions {P ◦ π−1
J | J ⊆ I finite}. In fact, this does hold for arbitrary

measurable spaces. For a collection of measurable space (Ωi)i∈I and probability measures P1

and P2 on
∏
i∈I Ωi such that

P1 ◦ π−1
J = P2 ◦ π−1

J ,

for all finite subsets J of I, we have that P1 = P2. This is a consequence of Corollary 1.6.3 in
[11] which follows from the π-λ-theorem

Example 1.1.7. Let I = [0,∞) and for t1 < . . . < tn in I define a probability measure on Rn
by

Pt1,...,tn(B) :=

ˆ
B

n∏
i=1

exp −(xi−xi−1)
2

2(ti−ti−1)√
2π(ti − ti−1)

d(x1, . . . , xn),

for all measurable subsets B of Rn.
By the Kolmogorov extension theorem, there exists a unique probability measure P on RI

such that its finite-dimensional distributions are precisely given by Pt1,...,tn . This is an important
first step in the proof that Brownian motion exists. The remaining part is about showing that
P can be restricted to a probability measure on C([0,∞),R). This is explained in Chapter 7 of
[16].

We can conclude that the category Prob has some nice structures, but is not expressive
enough to properly deal with interactions between stochastic events. The concept of probability
spaces on its own does not provide enough information to study (in)dependence and interaction
between different stochastic events.
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1.1.2 Probability theory is about random variables

In Section 1.1.1, we saw that the concept of probability spaces on its own is not sufficient to
describe interactions between stochastic events. A better way for modelling stochastic events is
given by random variables. This solves the problem of describing interactions between stochastic
events, but also allows us to talk about the (conditionally) expected outcome of a stochastic event.
Furthermore, random variables also form a very convenient tool to describe random events that
evolve over time, by using stochastic processes.

Suppose we want to model a stochastic event whose outcomes lie in a measurable space E.
A typical way to categorically describe the elements of an object A in a category C is to look at
the maps I → A, where I is the terminal object of the category. By changing I to an arbitrary
fixed object U in the category C, we can talk about generalized elements. The concept of
random variables follows a similar idea. Since we want to generate randomness in the space E,
we fix a probability space Ω := (Ω,F ,P). A random variable is then defined as a measurable
map X : (Ω,F) → E. We will often just write X : Ω → E.

Let us look again at the example of throwing darts. Consider the subset of R2 given by

Ω :=
{
(x, y) ∈ R2 | x2 + y2 ≤ 1/π

}
.

Let F be the restriction of the Borel σ-algebra on R2 to Ω. The Lebesgue measure λ on R2

restricted to the subset Ω, becomes a probability measure P. This gives us a probability space
Ω := (Ω,F ,P). Every area on the dart board corresponds to a different score between 1 and 60.
Therefore we can model the throw of a dart without aiming at a specific point on the board as
a random variable

X : Ω → {1, . . . , 60}.

Suppose we are throwing three darts without aiming to any specific point on the board. Then
these correspond to three independent random variables

X1 : Ω⊗3 → {1, . . . , 60}, X2 : Ω⊗3 → {1, . . . , 60} and X3 : Ω⊗3 → {1, . . . , 60}.

The total score of the game of darts is then given by a random variable S : Ω⊗3 → {1, . . . , 180}
defined by

S := X1 +X2 +X3.

We can now ask questions such as:

• What is the probability that S is equal to 180?

• Given that X1 is equal to 60, what is the probability that S equals 180?
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• What is the expected outcome of S?

• Give that X1 is equal to 60, what is the expected outcome of S?

From this, it is —at least intuitively— clear that the framework of random variables can describe
interactions and dependence between different stochastic events.

The first two questions can be answered by looking at the distribution of X. This is the
pushforward measure of P along X, i.e. the probability measure on E defined by

A 7→ P(X−1(A)).

Typical notation for this measure is given by X∗(P) or P ◦X−1. We will use the latter notation.
The probability that a random variable takes values in a measurable subset A of E is then given
by P◦X−1(A), which is also often denoted as P({X ∈ A}). So in the particular case of the game
of darts, the answer to the first question would be that the probability that S equals 180 is

P⊗3({S = 180}) = P⊗3({X1 = 60} ∩ {X2 = 60} ∩ {X3 = 60}) = P({X = 60})3.

To answer the second question, we need to condition the distribution of S with respect to the
event that X1 equals 60. Therefore we find that the answer is equal to

P⊗3({S = 180} | {X1 = 60}) = P⊗3({S = 180} ∩ {X1 = 60})
P⊗3({X1 = 60})

= P({X = 60})2.

Given two random variables X : Ω → E and Y : Ω → E, there is a random variable (X,Y ) :
Ω → E2. The distribution of (X,Y ) is called the joint distribution of X and Y . If the joint
distribution of X and Y is equal to the product of the distribution of X with the distribution of
Y , i.e. P ◦ (X,Y )−1 = P ◦X−1 ⊗ P ◦ Y −1, then we say that X and Y are independent random
variables. We see that X1, X2 and X3 are pairwise independent random variables, but X1 and
S are not independent.

To answers the last two questions of the darts example, we need to make sure that we are
working with random variables taking values in the real line (or a sufficiently nice Banach space).
For a random variable X : Ω → R, we define the expectation of X as

E[X] :=

ˆ
X(ω)P(dω),

whenever it exists. We will also use the notation
´
XdP. For the random variable S of the darts

game we find that E[S] = 3E[X]. To find the expectation of S given that X1 = 60 we calculate
as follows:

E[S | X1 = 60] =
1

P⊗3({X1 = 60})

ˆ
{X1=60}

SdP⊗3

= 60 + 2E[X].

We see that the conditional expectation of a random variable X with respect to an event A, such
that P(A) > 0, can therefore be defined as

E[X | A] := 1

P(A)

ˆ
A

XdP.

However, there is a more general concept of conditional expectation. Instead of conditioning with
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respect to one event, we will condition with respect to a whole σ-subalgebra of F . Let X : Ω → R
be an integrable, random variable and let G ⊆ F be a σ-subalgebra. Define the probability space
Ω |G := (Ω,G,P |G). Suppose there is a G-measurable random variable Y : Ω → R such that

ˆ
A

XdP =

ˆ
A

Y dP |G

for every A in G, then Y is called the conditional expectation of X with respect to G. It
follows immediately that if such a random variable exists, it has to be P |G-almost surely unique.
This means that if we have Y1 and Y2 satisfying the condition, we have that P |G (Y1 = Y2) = 1.
If such a random variable exists, we denote it as E[X | G].

To motivate this definition, consider the σ-subalgebra GA generated by one measurable subset
A of Ω, i.e.

GA := {∅, A,AC,Ω}.

Then define Y : Ω → R by the assignment

ω 7→

{
E[X | A] if ω ∈ A

E[X | AC] if ω ∈ AC.

Clearly, Y is measurable with respect to GA. Furthermore,

ˆ
A

Y dP |GA
= E[X | A]P(A) =

ˆ
A

XdP

and similar equalities for the other elements of GA. Therefore, we see that the concept of condi-
tioning with respect to an event can be recovered from the general conditional expectation with
respect to a σ-subalgebra.

Example 1.1.8. Let us look again at the darts example. A dartboard can be divided in five
areas: the area of single points S1, the double ring S2, the triple ring S3, the outer bullseye S4

and the inner bullseye S5. Let G be the σ-subalgebra of F generated by these areas. We can
then define

E[X | G](ω) = E[X | Si]

for ω ∈ Si. For a point ω in the triple ring we have

E[X | G](ω) = 1

λ(S3)

ˆ
S3

Xdλ

1

λ(S3)

20∑
k=1

λ(S3)

20
3k =

63

2

and for ω in the inner bullseye we have

E[X | G](ω) = 1

λ(S5)

ˆ
S5

Xdλ = 50.

Clearly, we also have for every i ∈ {1, . . . , 5} that

ˆ
Si

E[X | G]dλ |G= E[X | Si]λ(Si) =
ˆ
Si

Xdλ
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which shows that the defined random variable is indeed the conditional expectation of X with
respect to G.

The conditional expectation of a real-valued random variable that has finite expectation
exists. However, the proof for the existence of the conditional expectation is not obvious. One
way to prove the existence relies on the Radon–Nikodym theorem. This is Theorem 4.2.4 in [11].
One of the conditions of this theorem requires the notion of absolute continuity of a measure
with respect to another measure. A measure µ is abosulely continuous with respect to a
probability measure P if µ(A) = 0 for every A ∈ F with P(A) = 0.

Theorem 1.1.9 (Radon–Nikodym theorem). Let (Ω,F ,P) be a probability space and let µ be
a finite signed measure on (Ω,F) such that µ ≪ P. Then there exists a P-almost surely unique
random variable X : Ω → R with finite expectation such that

µ(A) =

ˆ
A

XdP

for all A ∈ F .

The random variable we obtain from the Radon–Nikodym theorem is called the Radon–
Nikodym derivative of µ with respect to P and is usually denoted as dµ

dP .

Proposition 1.1.10 (Existence of conditional expectation). Let X be a random variable with
finite expectation and let G be a σ-subalgebra of F . Then the conditional expectation of X with
respect to G exists.

Proof. We can define a measure µ on (Ω,G) by the assignment µ(A) :=
´
A
XdP for every A

in G. It is clear that µ is absolutely continuous with respect to P |G. It follows now from the
Radon–Nikodym theorem that there exists a PG-almost surely unique random variable Y (which
is G-measurable), such that for all A ∈ G

ˆ
A

XdP = µ(A) =

ˆ
A

Y dPG .

It follows that Y is the conditional expecation of X with respect to G.

Taking the conditional expectation with respect to σ-subalgebras has many nice properties,
as described in the following proposition. This is Proposition 10.4.3 in [11]. Here we use the
concept of independent σ-subalgebras. Two σ-subalgebras G1 and G2 are independent if

P(A ∩B) = P(A)P(B)

for every A ∈ G1 and B ∈ G2.

Proposition 1.1.11. Let X and Y be real random variables with finite expectation and let
H ⊆ G ⊆ F be σ-subalgebras. The following properties hold:

• E[X + Y | G] = E[X | G] + E[Y | G], P-almost surely.

• If X ≤ Y , then E[X | G] ≤ E[Y | G], P-almost surely.

• E[E[X | G] | H] = E[X | H], P-almost surely.

• E[E[X | G]] = E[X].
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• If X is G-measurable, then E[X | G] = X, P-almost surely.

• If σ(X), i.e. the smallest σ-algebra making X measurable, and G are independent, then
E[X | G] = E[X], P-almost surely.

So far we have seen that random variables form an ideal tool to describe dependence and
interaction between stochastic events. But there are more advantages to working with random
variables. They allow us to describe stochastic events that evolve over time, by considering
stochastic processes. One of the key interests in studying stochastic processes is their long-term
behaviour. We are interested in the convergence properties of stochastic processes when time
goes to infinity.

Let Ω := (Ω,F ,P) be a fixed probability space and let E be a measurable space. A collection
of random variables (Xt : Ω → E | t ∈ [0,∞)) is called a stochastic process. One of the
most important stochastic processes is Brownian motion, which is used to model the location
of particles suspended in a liquid or gas. Mathematically, Brownian motion is axiomatised in
the following way. It is a stochastic process (Bt : Ω → R)t such that:

1. For t1 < t2 and 0 < s, Bt2+s−Bt2 is a Gaussian random variable with mean 0 and variance
s and is independent from Bt1 .

2. The assignment t 7→ Bt is P-almost surely continuous, i.e.

P({ω ∈ Ω | t 7→ Bt(ω) is continuous}) = 1.

Proving that such a stochastic process exists is again not trivial. Part of the proof of the
existence is given in Example 1.1.7. To also prove the second axiom, saying that P-almost surely
every sample path is continuous requires Kolmogorov’s continuity criterion. This is explained in
Chapter 7 of [16].

For t ∈ [0,∞), let Ft be the smallest σ-algebra that makes Bs measurable for all s < t. Note
that Bt+s −Bt is independent from the σ-algebra Ft. By Proposition 1.1.11, it follows that

E[Bt+s | Ft] = E[Bt+s −Bt | Ft] + E[Bt | Ft] = 0 +Xt.

Stochastic process with a property like this form an important class of processes, namely mar-
tingales. These processes are usually defined in the context of filtered probability spaces.

Let Ω := (Ω,F ,P) be a probability space. Let I ∈ {N, [0,∞)}. An indexed collection (Ft |
t ∈ I) of σ-subalgebras of F such that Fs ⊆ Ft for s ≤ t and such that

σ

(⋃
t

Ft

)
= F

is called a filtration of Ω. A quadruple (Ω,F , (Ft)t,P) where (Ft)t is a filtration of (Ω,F ,P)
is called a filtered probability space. In more categorical terms, we have a functor D :
[0,∞)op → Prob with D(t) = (Ω,Ft,P |Ft

) such that the limit of D is precisely (Ω,F ,P).
If we fix a filtered probability space (Ω,F , (Ft)t,P), then we say that a stochastic process

(Xt : Ω → R)t is adapted (to (Ft)t) if Xt is Ft-measurable for every t ∈ [0,∞). Suppose now
that we have an adapted stochastic process (Xt)t such that every random variable has finite
expectation. Then we say that the process is a martingale if

E[Xt+s | Ft] = Xt P-almost surely,

for all t ∈ [0,∞) and 0 < s.
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We already saw that a Brownian motion is a martingale. However not every stochastic process
is a martingale as shown in the following example.

Example 1.1.12. Let (Bt)t be a Brownian motion on a filtered probability space (Ω,F , (F)t,P).
Consider the adapted stochastic process (B2

t )t. For s < t we find that

E[B2
t | Fs] = E[(Bt −Bs +Bs)

2 | Fs]
= E[(Bt −Bs)

2 | Fs] + E[B2
s | Fs] + E[2Bs(Bt −Bs) | Fs]

= E[(Bt −Bs)
2] +B2

s + 2BsE[Bt −Bs]

= (t− s) +B2
s

Here we used that B2
s is Fs-measurable and that Bt − Bs is a Gaussian random variable with

mean 0 and variance t− s which is independent from Fs together with Proposition 1.1.11.

We say that a martingale is continuous if

P({ω ∈ Ω | t 7→ Xt(ω) is continuous}) = 1.

In a similar way we can define cadlag1 martingales. An important reason to consider martingales
is because they have nice convergence properties, as described by Doob’s martingale convergence
theorems. Doob’s orginial proof can be found in Section XI.14 of [13].

Theorem 1.1.13 (Almost sure martingale convergence theorem). Let (Xt)t be a cadlag mar-
tingale such that

sup
t

E[|Xt|] <∞.

Then there exist a random variable X : Ω → R such that Xt → X P-almost surely as t→ ∞.

Theorem 1.1.14 (L1 martingale convergence theorem). Let (Xt)t be a cadlag martingale such
that

lim
λ→∞

sup
t

E
[
|Xt|1{|Xt|>λ})

]
= 0.

Then there exists a random variable X such that E[|X|] < ∞ and such that Xt → X in L1 and
P-almost surely as t→ ∞. Moreover, for all t ∈ [0,∞),

E[X | Ft] = Xt P-almost surely.

There are several variations on this. For example the Lp-martingale convergence theorem and
the backwards martingale convergence theorem.

Another main result about the convergence of stochastic processes is the strong law of large
numbers. Intuitively this result says that the average outcome of applying an experiment a large
number of times is close to the true expectation. This result can be proved using a variation of
the martingale convergence theorem (the backward martingale convergence theorem). This proof
can be found in Section XI.19 of [13].

Theorem 1.1.15 (Strong law of large numbers). Let (Xn : Ω → R)n be a sequence of identically
distributed, pairwise independent, integrable random variables. Then

1

N

N∑
n=1

Xn → E[X1] as N → ∞

1Continue à droite, limite à gauche, i.e. right continuous with left limits.
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P-almost surely and in L1.

Moreover, this is another result in probability theory, where finite approximations determine
the global result.

We can conclude that random variables provide a far better way to model stochastic events
than probability spaces. Not only can we describe dependence between stochastic events, we
can also say a lot about the expected outcome of a stochastic event. Moreover, the theory of
random variables leads to a theory of stochastic processes, which can be used to model complex
stochastic events that change over time.

On the other hand, the framework of random variables is harder to describe from a category
theory point of view. There are no obvious objects and morphisms between them, that could
be considered as a category. Furthermore, we are in the situation where we are looking at
maps where the domain and codomain seem to live in different worlds. A random variable has
a domain that is associated to a probability space and a codomain that is related to a more
structured space (such as a Banach space or metric space). Furthermore, the concept of random
variables requires us to fix a probability space. This gives a certain upper bound on the possible
randomness that can be modelled using random variables. For example, if one would consider a
probability space whose underlying probability measure is a Dirac delta, the random variables
on the probability space could only model (deterministic) elements in the space of outcomes.

1.1.3 Probability theory is about Markov kernels

We saw that probability spaces were not sufficient to model all aspects of stochastic events and
that random variables provide a framework that is powerful enough to solve this issue. One of
the main problems that random variables solve is the modelling of interactions and dependence
between stochastic events. Another approach to describe this is given by Markov kernels. The
idea of dependency between stochastic events is baked into definition of a Markov kernel.

A Markov kernel describes the transition from an experiment with outcomes in a measurable
space X to an experiment, with outcomes in a measurable space Y , that depends on the outcome
of the first experiment.

Let GY be the space of all probability measures on Y together with the σ-algebra generated
by the evaluation maps

evA : GY → [0, 1]
P 7→ P(A)

for all measurable subsets A of Y . AMarkov kernel fromX to Y is a measurable mapX → GY .
We will denote this as X ⇝ Y . Suppose we have three experiments in a row, where the second
one depends on the outcome of the first one and the third one depends on the outcome of the
second one. We could ask how the last experiment depends on the outcome of the first one. This
can be described mathematically by the composition of Markov kernels. For Markov kernels
f : X ⇝ Y and g : Y ⇝ Z, the composite of Markov kernels f and g is a Markov kernel
g ◦ f : X ⇝ Z that sends an element x to the probability measure on Z defined by

A 7→
ˆ

[g(y)](A)[f(x)](dy).

The following example is Example 1.1 in [46].

Example 1.1.16. Consider a frog that lives in a pond with two lily pads, east and west. Let
X := {e, w} be the space representing these lily pads. Every morning the frog tosses a coin. If
the coin lands heads up, the frog stays on the lily pad where he is. If the coin lands on tails, the
frog jumps to the other lily pad.
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Let p be the probability that the coin lands heads up. This stochastic event can be described
by a Markov kernel f : X ⇝ X, defined by

[f(e)]({e}) = p, [f(e)]({w}) = 1− p

[f(w)]({e}) = 1− p and [f(w)]({w}) = p.

We can also describe the transition over a period of two days by composing f with itself. This
gives us a Markov kernel f ◦ f : X ⇝ X.

[f ◦ f ](e)({e}) =
ˆ

[f(x)]({e})[f(e)](dx)

= ([f(e)]({e})) ([f(e)]({e})) + ([f(w)]({e})) ([f(e)]({w}))
= p2 + (1− p)2

The fact that we have a meaningful composition indicates that there might be a category
in which Markov kernels are morphisms. Since Markov kernels represent measurable maps of
the form X → GY , they remind us of Kleisli morphisms. In Chapter 2, we will see that this
is indeed the case. Markov kernels are precisely morphisms in the Kleisli category of the Giry
monad and the composition of Markov kernels corresponds to the Kleisli composition of these
morphisms. Categories of this form were generalized by Fritz in [20] to Markov categories, which
we will discuss in Chapter 2.

There are several connections between Markov kernels and random variables and probability
spaces. Consider for example a Markov kernel f : X ⇝ Y and a probability measure P on X.
Then we can define a joint probability distribution on X × Y as follows

A×B 7→
ˆ
A

[f(x)](B)P(dx)

for all measurable subsets A of X and B of Y . It is not clear if this also works in the other
direction. Suppose we have a joint probability distribution Q on X × Y . We are now wondering
if Q arises from a Markov kernel. Consider the projection map πX : X × Y → X and let FX be
the σ-algebra of X. We could attempt to define a Markov kernel f : X ⇝ Y by the assignment

[f(x)](B) := E[1X×B | π−1
X (FX)](x).

Here 1X×B is the indicator function X × Y → [0, 1] which is 1 on X × B and 0 otherwise. In
this case,

ˆ
A

[f(x)](B)[Q ◦ π−1
X ](dx) =

ˆ
π−1
X (A)

1X×BdQ

=

ˆ
1A×BdQ = Q(A×B).

However, since conditional expectation is only defined Q-almost surely, we need to choose a
representative for every conditional expectation if we actually want to evaluate it. The problem
now is that we need to choose these representatives in a way such that f(x) is σ-additive for every
x ∈ X (not just Q ◦ π−1

X -almost everywhere). This is very far from trivial, but under certain
conditions it is possible. This leads to a very powerful theorem, the disintegration theorem. This
is Corollary 452N in [18].
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Theorem 1.1.17 (Disintegration theorem). Suppose that X and Y are standard Borel spaces
and let Q be a joint probability distribution on X ×Y . Then there exists a Q ◦π−1

X -almost surely
unique Markov kernel f : X ⇝ Y such that

Q(A×B) =

ˆ
A

[f(x)](B)[Q ◦ π−1
X ](dx)

We just described the relation between Markov kernels and joint probability distributions.
There is also a connection between Markov kernels and a special class of stochastic processes,
namelyMarkov chains. These processes arememoryless in the sense that the future only depends
on the present and not on the past. More formally we can define a Markov process as follows.
Let E be the standard Borel space of outcomes of the stochastic process and (Ω,F , (Fn)n,P) be
a filtered probability space. A stochastic process (Xn : Ω → E | n ∈ N) is a Markov chain if

E [f(Xn+1) | Fn] = E[f(Xn+1) | σ(Xn)]

for all bounded measurable f : E → R. Here σ(Xn) is the smallest σ-algebra making Xn

measurable. In a similar style to the disintegration theorem, it can be shown that for every n
there exists a Markov kernel fn : E ⇝ GE such that

f(−)(A) = E[1X−1
n+1(A) | σ(Xn)] [P ◦X−1

n+1]-almost surely.

Such a Markov kernel is called a regular conditional probability

We can also go the other way around. Suppose we have a collection of Markov kernels
(fn : E ⇝ E)n and an initial probability distribution P0. Then by the Ionescu-Tulcea theorem
(Theorem 14.32 in [40]), there exists a probability distribution P on EN such that (πn : EN → E)n
is a Markov chain and its corresponding regular conditional probabilities are precisely (fn)n.

When studying stochastic processes, one is often interested in its behaviour when time tends
to infinity. This is one of the reasons why the class of Markov chains is important, since they
often have nice properties about convergence to the stationary distribution and about mixing
times.

We can conclude that Markov kernels are a powerful way to model stochastic events, their
interactions and dependence. Even when stochastic events change in time, Markov kernels often
can still be used. Furthermore, we already indicated that Markov kernels have an interesting
categorical interpretation, which we will discuss in detail in Chapter 2. We also do not need to fix
a probability space, causing us to not have to put an a priori bound on the possible randomness
of our model.

1.1.4 Conclusion

We conclude that probability theory is not about one central object. Different objects and con-
cepts are important and we require all of them to truly understand probability theory. Probabil-
ity spaces are the least complete model to describe randomness. Random variables and Markov
kernels offer more complete approaches, however each approach has its advantages and disad-
vantages depending on the type of stochastic event we want to model. Moreover, the concept of
random variables relies on the idea of probability spaces.

Furthermore, some of these concepts are easier to express categorically than others. Prob-
ability spaces and measure-preserving maps between them form a category in an obvious way
and Markov kernels can be recognized as the Kleisli category of a probability monad. Random
variables, however, are more difficult to treat categorically, since the domain and codomain seem
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to live in different categories.

1.2 Kan extensions

In this section we will give an overview of Kan extensions, an important concept in category
theory. Kan extensions are ubiquitous in category theory and mathematics. The original concept
of Kan extensions deals with the problem of extending ‘ordinary ’ functors between categories in
a universal way. We study these in Section 1.2.1. However, the concept of Kan extension has
been generalized to enriched functors between enriched categories, which we discuss in Section
1.2.2. A special case of this is given by enriching over Cat or Pos. In Section 1.2.3, we will
briefly discuss a particular example of this, that will be important in Chapter 4. In this example
we will focus on extensions of lax natural transformations.

1.2.1 Kan extensions of ordinary functors

In this section we will discuss the classical Kan extensions of functors between categories. Let
C,D and E be categories and let F : C → D and G : C → E be functors. We are interested
in functors D → E with a universal property, such that they can be interpreted as the extreme
possible extensions of G along F . These are referred to as Kan extensions. We will focus on the
right Kan extension. However, everything can be dualized to left Kan extensions.

Definition 1.2.1 (Local Kan extensions). A right Kan extension of G along F is a functor
R : D → E together with a natural isomorphism

[C, E ](− ◦ F,G) ∼= [D, E ](−, R).

Therefore, by the Yoneda lemma, a right Kan extension of G along F is a pair (R, ϵ), where
R : D → E is a functor and ϵ : R ◦ F ⇒ G is a natural transformation, such that for every
functor R̃ : D → E and natural transformation ϵ̃ : R̃ ◦ F ⇒ G, there exists a unique natural
transformation δ : R⇒ R̃ such that

C E C E

=

D D

G

F

R

G

F R̃
R̃

ϵ ϵ̃δ

This universal property determines the right Kan extension up to natural isomorphism, therefore
we will usually talk about the right Kan extension of G along F . The functor R : D → E is
denoted as RanFG.

Definition 1.2.2. Let F : C → D and G : C → E1 be functors and let (R, ϵ) be the right Kan
extension of G along F . A functor H : E1 → E2 preserves the right Kan extension of G along
F , if (HR,Hϵ) is a right Kan extension of HG along R.

Let G1, G2 : C → E be functors and let τ : G1 ⇒ G2 be a natural transformation. This
induces a natural transformation

[C, E ](− ◦ F,G1) ⇒ [C,D](− ◦ F,G2).
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If the right Kan extensions of G1 and G2 along F exist, we obtain a natural transformation
[D, E ](−,RanF , G1) ⇒ [D, E ](−,RanF , G2). Because the Yoneda embedding is full and faithful,
this correspond to a unique natural transformation RanFG1 ⇒ RanFG2, which is denoted by
RanF τ .

Using a similar argument, we see that RanF τ2 ◦ RanF τ1 = RanF (τ2 ◦ τ1) for natural trans-
formations τ1 : G1 ⇒ G2 and τ2 : G2 ⇒ G3 between functors G1, G2, G3 : C → E .

This indicates that, if the right Kan extension of every functor along F exists, it defines a
functor RanF− : [C, E ] → [D, E ] that is right adjoint to precomposition with F .

Proposition 1.2.3 (Global Kan extension). Suppose that the functor − ◦ F : [D, E ] → [C,D]
has a right adjoint R. Let G : C → E be a functor. Then R(G) together with the counit
ϵG : R(G) ◦ F ⇒ G is a right Kan extension of G along F .

Under certain assumptions on the categories D and E , we can give concrete constructions of
these Kan extensions. In this case, the Kan extensions are called pointwise.

The following result, which is Theorem X.3.1 in [49] (essentially verbatim), constructs the
right Kan extension of a functor G along F as a limit.

Theorem 1.2.4 (Right Kan extension as a pointwise limit). Given F : C → D, let G : C → E
be a functor such that the limit

Rd := lim
(
d ↓ F → C G−→ E

)
exists for all d ∈ D, with limiting cone (λf : Rd → Gc)f :d→Fc. Each morphism f : d1 → d2
induces a unique arrow

Rf : Rd1 → Rd2,

commuting with the limiting cones. These formulas define a functor R : D → E, and for each c ∈
C the components of the limiting cones λ1Fc

=: ϵc define a natural transformation ϵ : R ◦F ⇒ G,
and (R, ϵ) is a right Kan extension of G along F .

From this we have the following corollaries, which are Corollary X.3.2 and Corollary X.3.3
from [49].

Corollary 1.2.5. If C is small and E is complete, any functor G : C → E has a right Kan
extension along F .

Corollary 1.2.6. If the functor F is full and faithful, then the universal arrow ϵ : R ◦F ⇒ G is
a natural isomorphism.

The concept of Kan extensions is very useful. Every universal construction can be written in
terms of Kan extensions, or —in Mac Lane’s words—all concepts are Kan extensions”[49]. The
following examples are Theorem 1 and Theorem 2 and Exercise 3 in Chapter 7 of [49] respectively.

Example 1.2.7. A functor F : C → E has a left adjoint if and only if the right Kan extension
of 1C : C → C along F exists and is preserved by F .

Example 1.2.8. The right Kan extension of a functor D : C → E along ! : C → 1 is the limit of
D.

Example 1.2.9. A functor i : C → D is codense if and only if 1D is the right Kan extension of
i along itself.
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Let F : C → D, be a functor with a left adjoint L : D → C. Then the endofunctor FL : D → D
has a canonical monad structure induced by the unit η and counit ϵ of the adjunction. The unit
of the adjunction becomes the unit of the monad, and FϵG becomes the multiplication of the
monad.

This observation can be generalized to a functor F : C → D, without a left adjoint. Suppose
that the right Kan extension of F along itself exists. Then the endofunctor RanFF : D → D has
a canonical monad structure. Monads that arise like this are called codensity monads.

Let (TF , ϵ) be a right Kan extension of F along F . There is a natural transformation
1F : 1D ◦ F ⇒ F , and therefore by the universal property of right Kan extensions there is a
natural transformation η : 1D → TF such that

C D C D

=

D D

F

F

1D

F

F TF

1D

1F ϵ

η

Furthermore, there is a natural transformation

TFTF ◦ F TF ϵ
===⇒ TF ◦ F ϵ

=⇒ F.

This induces a natural transformation µ : TFTF ⇒ TF such that

C D C D

=

D D

F

F

TFTF

F

F TF

TFTF

ϵ

µ

The triple (TF , ν, µ) forms a monad on D, the codensity monad of F . More on this can be
found in Section 2 of [45].

1.2.2 Kan extensions in enriched category theory

The idea of Kan extensions of ‘ordinary ’ functors between categories can be generalized to Kan
extensions of enriched functors between enriched categories. This will be the topic of this section.

Let V be a closed monoidal category. For V-enriched categories C,D and E and V-enriched
functors F : C → D and G : C → E , we want to study V-enriched extensions of G along F . To
define right Kan extensions of V-enriched functors we can essentially copy Definition 1.2.1 from
the non-enriched case.

Definition 1.2.10 (Local Kan extensions). A right Kan extension of G along F is a V-
enriched functor R : D → E together with a V-enriched natural transformation

[C, E ](− ◦ F,G) ∼= [D, E ](−, R).

By the same argument as for non-enriched Kan extensions, a right Kan extension of G along
F is a pair (R, ϵ), where R : D → E is an enriched functor and ϵ : R ◦ F ⇒ G is an enriched
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natural transformation, satisfying a universal property. This is also explained in Theorem 4.43
in [37].

Similarly to Proposition 1.2.3, we obtain a right adjoint to the functor [D, E ] → [C, E ] defined
by precomposing with F , if the right Kan extension of any functor along F exists, generalizing
the concept of global right Kan extensions.

However, for V-enriched functors, we can not use the limit formula from Theorem 1.2.4
anymore. However, we can rewrite the limit formula in terms of weighted limits to make it make
sense in the V-enriched setting. Suppose that the weighted limit

Rd := {D(d, F−), G}

exists for all d ∈ D. The following canonical morphisms in V induce a V-enriched functor
R : D → E .

D(d1, d2) → [E ,V]
(
[C,V]

(
D(d1, F−), E(•, G−)

)
, [C,V]

(
D(d2, F−), E(•, G−)

))
∼= [E ,V]

(
E(•, Rd1), E(•, Rd2)

)
∼= E(Rd1, Rd2)

We can define a V-enriched natural transformation ϵ : R ◦ F → G by defining ϵc as follows, for
c ∈ C:

I → [C,V]
(
C(c,−),D(Fc,G−)

)
→ [E ,V]

(
[C,V]

(
D(Fc, F−), E(•, G−)

)
, [C,V]

(
C(c,−), E(•, G−)

))
∼= [E ,V]

(
E(•, R ◦ Fc), E(•, Gc)

)
∼= E(R ◦ Fc,Gc)

Then (R, ϵ) is a right Kan extension of G along F . Indeed, let R̃ : D → E be an enriched functor.
Then we have the following isomorphisms in V.

[C, E ](R̃ ◦ F,G) ∼=
ˆ
c∈C

E(R̃ ◦ Fc,Gc)

∼=
ˆ
c∈C

[D,V]
(
D(−, F c), E(R̃−, Gc)]

)
∼=
ˆ
c∈C

ˆ
d∈D

[
D(d, Fc), E(R̃d,Gc)

]
∼=
ˆ
d∈D

[C,V]
(
D(d, F−), E(R̃d,G−)

)
∼=
ˆ
d∈D

E(R̃d,Rd) ∼= [D, E ](R̃, R).

This is essentially Theorem 4.38 in [37]. Here we used the Fubini theorem for ends, which can
be found in Section 2.1 of [37]. This isomorphism is natural in R̃, which shows the claim. Right
Kan extensions that can be expressed using the weighted limit formula are called pointwise
right Kan extensions2.

2Note that Kelly uses this as the defintion of right Kan extensions and refers to our Definition 1.2.10 as weak
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Several results from the non-enriched setting still hold for the enriched context. In partic-
ular, the enriched analogues of Corollary 1.2.5, Corollary 1.2.6 and Example 1.2.7 are given by
Proposition 4.33, Proposition 4.23, Theorem 4.81 in [37] respectively.

Also the concept of codensity monads generalizes to the enriched context. By the exact same
argument as for non-enriched functors, the right Kan extensions of an enriched functor F has a
canonical (enriched) monad structure.

1.2.3 Kan extensions of lax natural transformations

The Kan extensions in Section 1.2.1 live in the 2-category Cat, while the Kan extensions from
Section 1.2.2 live in the 2-category V −Cat. This leads to the concept of Kan extensions in an
arbitrary strict 2-category. However, Kan extensions can be defined in an arbitrary 2-category.
We will look at a particular example of lax transformations between Pos-enriched functors.

Let C be a Pos-enriched category. Consider Pos-enriched functors F,G : C → Pos, i.e.
functors F,G : C0 → Pos such that Ff1 ≤ Ff2 and Gf1 ≤ Gf2 for f1,∈ f2 ∈ C(A,B) with
f1 ≤ f2.

A lax natural transformation λ : F ⇒ G is a collection of morphisms (λA : FA → GA)A∈C
such that

FA GA

FB GB

λA

λB

Ff Gf≤

for all morphisms f ∈ C(A,B).
Let [C,Pos]l be the category that has Pos-enriched functors as objects and lax natural

transformations as morphisms.
For lax natural transformations λ1, λ2 : F ⇒ G, we write λ1 ≤ λ2 if and only if

(λ1)A(x) ≤ (λ2)A(x)

for all objects A in C and all elements x in FA. This turns the set of lax natural transformations
from F to G into a poset. We can conclude that [C,Pos]l is naturally enriched over Pos.
Therefore, we can interpret [C,Pos]l as a 2-category.

This concept of Kan extensions in this particular 2-category leads to a definition of right Kan
extensions of lax natural transformations. Let F,G,H : C → Pos be Pos-enriched functors and
let λ : F ⇒ H and ι : F ⇒ G be lax natural transformations. Then a right Kan extension of λ
along ι is given by a lax natural transformation τ : G→ H such that τ ◦ ι ≤ λ and such that for
every other lax natural transformation τ̃ with τ̃ ◦ ι ≤ λ, we have that

τ̃ ≤ τ.

right Kan extensions [37].
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Chapter 2

Background in categorical
probability theory

In this chapter we will give an overview of some results in categorical probability theory. We
will start with an historical overview, where we discuss papers by Lawvere, Swirsczc, Semadeni
and Giry. In the rest of the chapter we will discuss some more recent work. We will describe
probability monads and the probabilistic interpretation of their Eilenberg-Moore algebras. In the
last section we will give a short overview of the theory of Markov categories. This an important
and useful approach to view probability theory categorically and has led to many results in recent
years.

2.1 Historical overview of categorical probability theory

In this section we will give a selection of some of the earliest research that looks at probability
theory from a categorical point of view. A lot of the ideas described in these works form the
basis of modern research in categorical probability theory. The earliest of these dates back to the
1960s by Lawvere [44]. We will discuss Lawvere’s notes in Section 2.1.1. In the 1970s, Swirszcz
and Semadeni published several papers on categorical constructions in functional analysis, in
particular on convexity. Their work describes certain probability monads and their algebras. We
will discuss two published works in Section 2.1.2. In the 1980s Giry wrote a paper discussing a
certain probability monad and its properties [28]. This monad is now known as the Giry monad
and we discuss this in Section 2.1.3.

In this section we will mostly use the same notation and terminology used by the authors in
the original papers. These might sometimes be different from the terminology and notation used
in the rest of this thesis.

2.1.1 Lawvere

One of the very first descriptions of probability theory from a categorical perspective can be found
in seminar notes from 1962 by Lawvere with the title ‘The category of probabilistic mappings’
[44]. In this note Lawvere defines a category of Markov kernels and uses this to describe Markov
chains and stochastic processes. Lawvere defines a category P as follows:

• Objects: measurable spaces,
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• Morphims: Markov kernels,

• Composition: composition of Markov kernels,

• Identities: for a measurable space X, the identity morphism X → X is given by the Markov
kernel X ⇝ X that sends x to the Dirac delta δx.

It is shown that these data indeed form a category and it is called the category of probabilistic
mappings. Lawvere proceeds by defining a functor D : P → Mble. The functor D sends a
measurable space Ω to the collection

DΩ := {probability measures on Ω},

together with the smallest σ-algebra that makes

evA : DΩ → [0, 1]
P 7→ P(A)

measurable for every measurable subset A of Ω. On morphisms the functor D is defined by
sending a Markov kernel T : Ω ⇝ Ω′ to the measurable map Df : DΩ → DΩ′ which maps a
probability measure P on Ω to the probability measure on Ω′ defined by

A 7→
ˆ

[T (x)](A)P(dx).

Furthermore, it is shown that this functor has a left adjoint.
In the last part of the note, Markov chains and stochastic processes are discussed using the

category of probabilistic mappings. The first step is done by defining a functor Φ : PN → PN.
The functor sends an indexed collection of measurable spaces (Ωn)n to(∏

k<m

Ωk

)
m∈N

.

A discrete stochastic process is now defined as an object Ω in PN together with a morphism
in PN,

P : Φ(Ω) → Ω.

This means it is an indexed collection of measurable spaces (Ωn)n together with a collection of
Markov kernels (

Pm :
∏
k<m

Ωk ⇝ Ωm

)
.

The Markov kernel Pm should be interpreted as follows: given the past and the present (ω1, . . . , ωm−1)
we find a probability distribution of what might happen in the future.

A morphism of discrete stochastic processes from (Ω, P ) to (Ω′, P ′) is a morphism
f : Ω → Ω′ in PN such that the following diagram commutes:

Φ(Ω)n Φ(Ω′)n

Ωn Ω′
n

Pn

Φ(f)n

P ′
n

fn
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These form a category Stoch with discrete stochastic processes as objects.
To define Markov chains, Lawvere uses the monoid N of natural numbers interpreted as a

category with one object. A discrete Markov process is then defined as a functor N → P.
This means that a discrete Markov process is determined by an object Ξ in P together with
a Markov kernel f : Ξ ⇝ Ξ. Moreover, every discrete Markov process is a discrete stochastic
process. Indeed, define for every n ∈ N, Ωn := Ξ. Then Ω := (Ωn)n is an object in PN. Define a
morphism P : Φ(Ω) → Ω in PN by

Pm(ξ1, . . . , ξm−1) := f(ξm−1).

We therefore see that a discrete Markov process is a discrete stochastic process where the future
only depends on the present and not the past. The full subcategory of Stoch of discrete Markov
processes is denoted by Mark.

Lawvere finishes the note with an open question: Does the inclusion Mark → Stoch have
an adjoint functor?

2.1.2 Swirszcz and Semadeni

In the paper ‘Monadic functors and convexity’ from 1973, Swirszcz studies a category of compact
convex spaces and shows that the inclusion in the category of all compact spaces is monadic [61].
The monad arising from this is a probability monad that is now known as the Radon monad.

A key result Swirszcz uses throughout the paper is a strengthened version of a monadicity
theorem by Linton (Theorem 3 in [47] and Theorem 1.2 in [9]).

Theorem 2.1.1 (Linton’s monadicity theorem). Let D be a category that has kernel pairs of
retractions, and let C be a category that has kernel pairs and coequalizers. Let F : C → D be a
functor. Suppose that

• F has a left adjoint,

• f is a regular epimorphism in C if and only if Ff is,

• (f, g) is a kernel pair in C if and only if (Ff, Fg) is.

Then F is monadic. In the case that D = Set, the conditions are also necessary.

Swirszcz starts the paper by defining a category of convex spaces. This category has convex
subsets of vector spaces as objects and affine maps between them, i.e. maps that preserve
convex combinations. This category is denoted by Conv. It is shown that the forgetful functor
Conv → Set is not monadic. Affine maps f, g : A → B between convex spaces are constructed
such that (Uf,Ug) is a kernel pair in Set, but (f, g) is not a kernel pair in Conv. By Linton’s
monadicity theorem it follows that the forgetful functor can not be monadic.

In the second part of the paper, Swirszcz focusses on the category CompConv of compact
convex spaces. The objects of this category are compact convex subsets of locally convex Haus-
dorff spaces and the morphisms are the affine continuous maps between them. Using Linton’s
monadicty theorem it is shown that the forgetful functors

CompConv → Comp and CompConv → Set

are monadic. Here Comp is the category of compact Hausdorff spaces and continuous maps
between them.
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Also in 1973, Semadeni writes a book with the title ‘Monads and their Eilenberg-Moore
algebras in functional analysis’, continuing the work of Swirszcz [56]. In Chapter 7 of this book
the monads associated with the monadic forgetful functors in Swirszcz’s paper are described.

A concrete description of the left adjoint of U : CompConv → Comp is given. The left
adjoint S : Comp → CompConv is defined on objects by sending a compact Hausdorff space
X to the set of Radon probability measures on X together with the topology that makes the
evaluation map evf : S(X) → R : µ 7→

´
fdµ continuous for every (bounded) continuous function

f : X → R. This is the topology of weak convergence of probability measures. A continuous map
f : X → Y is sent to a continuous map Sf : S(X) → S(Y ) that sends a Radon probability
measure µ to the pushforward of µ along f .

The unit of this adjunction is given by the continuous maps

ηX : X → US(X)
x 7→ δx.

The counit is defined by maps ϵK : SU(K) → K that sends a Radon probability measure on
a compact convex space to its centroid (center of gravity). By the Krein-Milman theorem the
collection of finitely supported probability measures is dense in SU(K). Because SU(K) and
K are compact Hausdorff spaces it is enough to define ϵK on finitely supported probability
measures. Using the convex structure of K, this can be done by the following assignment

N∑
n=1

λnδxn
7→

N∑
n=1

λnxn.

The induced monad has T := US : Comp → Comp as underlying endofunctor, which sends a
compact Hausdorff space to the compact Hausdorff space of Radon probability measures on X.
The unit of the monad is the same as the unit η of the adjunction. The multiplication is given
by µ := UηS : TT → T , which sends a Radon probability measure on US(X) to its centroid in
US(X). Concretely this means that for M ∈ TT (X) we have that

µX(M)(A) =

ˆ
λ(A)M(dλ)

for every Borel subset A of X. This monad is now usually referred to as the Radon monad [34].
It follows now from Swirszcz’s result that there is an equivalence CompT ≃ CompConv.

Semadeni also gives a description of this equivalence. A compact convex space K can be given
an algebra structure by the structure map ϵK . The proof that every T -algebra is isomorphic to
a compact convex subset of a locally convex Hausdorff space such that the algebra’s structure
map corresponds to taking the centroid operation is more involved and forms the largest part of
Chapter 7 of Semadeni’s book.

The monad induced by the forgetful functor CompConv → Set sends a set X to the set of
all Radon probability measures on the Stone-Čech compactification of X.

2.1.3 Giry

In 1984 Giry wrote the paper ‘A categorical approach to probability theory’ [28]. In this paper
Giry describes two probability monads, which are now both known as the Giry monad.

One of the monads that are introduced by Giry is a monad onMes, the category of measurable
spaces and measurable maps between them. The underlying endofunctor Π : Mes → Mes sends
a measurable space Ω to the set of all probability measures on Ω together with the smallest
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σ-algebra that makes every evaluation map

evA : Π(Ω) → [0, 1]
P 7→ P(A)

measurable for every measurable subset A of Ω. The functor sends a measurable map f : Ω → Ω′

to the measurable map Π(f) : Π(Ω) → Π(Ω′) which sends a probability measure P to P ◦ f−1,
the pushforward of P along f .

For a measurable space Ω, there is a measurable map ηΩ : Ω → Π(Ω) that sends an element
ω ∈ Ω to the Dirac delta δω. For a measurable map f : Ω → Ω′, we have that for every ω ∈ Ω,

δω ◦ f−1 = δf(ω).

This means that the following diagram commutes:

Ω Ω′

Π(Ω) Π(Ω′)

f

Π(f)

ηΩ ηΩ′

It follows that we have a natural transformation η : 1Mes → Π.

Furthermore, we also have a measurable map µΩ : Π2(Ω) → Π(Ω) which sends a probability
measure P on Π(Ω) to the probability measure on Ω defined by

A 7→
ˆ

evAdP.

The fact that µΩ(P) is σ-additive follows from the linearity of integrals and the monotone
convergence theorem. For a measurable map f : Ω → Ω′ we have that

ˆ
evAd[P ◦Π(f)−1] =

ˆ
evA ◦Π(f)dP =

ˆ
evf−1(A)dP

for every P ∈ Π2(Ω) and measurable subset A of Ω′. It follows that the diagram

Π2(Ω) Π2(Ω′)

Π(Ω) Π(Ω′)

Π2(f)

Π(f)

µΩ µΩ′

commutes. Therefore we a natural transformation µ : Π2 → Π. Giry proceeds by proving that
this is a monad. This is Theorem 1 in [28].

Theorem 2.1.2 (Giry). The triple (Π, η, µ) forms a monad.

Proof. Let Ω be measurable space and let B be a measurable subset of Π(Ω). For a probability
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measure P ∈ Π3(Ω) we have that

ˆ
1Bd

[
µΠ(Ω)(P)

]
=
[
µΠ(Ω)(P)

]
(B) =

ˆ
evBdP =

ˆ [ˆ
1BdP

]
P(dP).

By the usual argument, it follows that we that for every measurable map f : Π(Ω) → R
ˆ
fdµΠ(Ω)(P) =

ˆ [ˆ
fdP

]
P(dP).

In particular for evA : Π(Ω) → R, where A is a measurable subset of Ω, we find that

[(
µ ◦ µΠ(Ω)

)
(P)
]
(A) =

ˆ
evAd

[
µΠ(Ω)(P)

]
=

ˆ [ˆ
evAdP

]
P(dP)

=

ˆ
evA ◦ µΩdP

=

ˆ
evAdP ◦ µ−1

Ω

= µΩ

(
P ◦ µ−1

Ω

)
= [(µΩ ◦Π(µΩ)) (P)] (A)

Since this holds for any P ∈ Π3(Ω) and measurable subset A of Ω, we have the following
commutative diagram:

Π3(Ω) Π2(Ω)

Π2(Ω) Π(Ω)

Π(µΩ)

µΠ(Ω) µΩ

µΩ

Furthermore, for a probability measure P ∈ Π(Ω) and a measurable subset A of Ω, we see that

ˆ
evAd[P ◦ η−1

Ω ] =

ˆ
evA ◦ ηΩdP = P(A)

and ˆ
evAdδP = evA(P) = P(A).

We can therefore conclude that the following diagram commutes:

Π(Ω) Π2(Ω) Π(Ω)

Π(Ω)

Π(ηΩ) ηΠ(Ω)

1Π(Ω)

µΩ
1Π(Ω)

.

This shows that the triple (Π, η, µ) forms a monad.

Giry constructs a similar monad on Pol, the category of Polish spaces and continuous maps.
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Moreover, Giry notes that the Kleisli category MesΠ of (Π, η, µ) is precisely Lawvere’s category
of probabilistic mappings from [44]. Indeed, the objects of MesΠ are measurable spaces and
a Kleisli morphism Ω → Π(Ω′) is precisely a Markov kernel Ω ⇝ Ω′. Furthermore, for Kleisli
morphisms f : Ω → Π(Ω′) and g : Ω′ → Π(Ω′′) the Kleisli composite is given by

Ω
f−→ Π(Ω′)

Π(g)−−−→ Π2(Ω′′)
µΩ′′−−−→ Π(Ω′′).

This means that an element ω ∈ Ω is send to a probability measure that sends a measurable
subset A of Ω′′ toˆ

evAd
[
f(ω) ◦ g−1

]
=

ˆ
(evA ◦ g)(ω′′)[f(ω)](dω′′) =

ˆ
[g(ω′′)](A)[f(ω)](dω′′).

We can see now that the Kleisli composition of Kleisli morphisms corresponds precisely to the
composition of Markov kernels.

In the second part of the paper different properties of the monad are studied. In particular
properties related to cofiltered limits (‘projective limits’) are described. Several technical condi-
tions are given on cofiltered diagrams such that the monad preserves the limits of these diagrams.
Giry uses these results to give a categorical proof of the Ionescu-Tulcea theorem.

In the last part of the paper Giry gives a generalization of Lawvere’s representation of discrete
stochastic processes in [44]. For this Giry introduces random topological actions to represent
continuous stochastic processes using the introduced monad.

2.2 Probability monads

It is clear that the monads introduced by Semadeni in [56] and the ones introduced by Giry in [28]
follow the same pattern. Monads similar to these are today commonly referred to as probability
monads. This is an informal term to mean monads that are similar to the Giry monad or the
Radon monad.

Over the years many new monads have been introduced that follow Giry’s and Semadeni’s
constructions. These include monads of Radon probability measures on spaces of complete or
compact metric spaces [25, 34, 62], but also monads of continuous valuations on ordered spaces
[1, 29], monads of Radon probability measures on ordered topological spaces [1, 27, 36] and
monads of probability measures on quasi-Borel spaces [32]. Later in the section we will focus on
one particular example, the Kantorovich monad on the category of complete metric spaces [25].

A more rudimentary example of probability monads is given by the distribution monad on
Set. The underlying endofunctor D : Set → Set sends a set A to the set{

(pa)a∈A ∈ [0, 1]A |
∑
a∈A

pa = 1, pa > 0 for only a finite amount of elements a ∈ A

}
.

The unit of the monad η : 1Set → D consists of maps ηA : A→ DA for every set A, defined by

ηA(a)b :=

{
1 if a = b,

0 otherwise
,

for every b ∈ A. The monad’s multiplication is defined by maps µA : DDA → DA for every set
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A. This map sends (pλ)λ∈D(A) ∈ DD(A) to ∑
λ∈D(A)

λapλ


a∈A

.

The reason this monads deserves to be called a probability monad, is because (pa)a∈A can be
identified as a finitely supported probability measure on the measurable space (A,P(A)). Under
this identification, the unit and multiplication of the distribution monad behave in the same way
as those of the Giry monad.

Another example of a probability monad is the Kantorovich monad introduced in [25] on the
category CMet of complete metric spaces and 1-Lipschitz maps between them. A probability
measure P on a metric space (X, d) is called a Radon probability measure if

P(A) = sup{P(K) | K ⊆ A, compact},

for every open subset A of X. A probability measure is said to have finite first moment if

ˆ
d(·, x0)dP <∞

for some (and therefore for every) x0 ∈ X. Let K(A) be the set of all Radon probability measures
that have finite first moment. For elements P1 and P2 in K(A), define

dK(P1,P2) := sup

{∣∣∣∣ˆ fdP1 −
ˆ
fdP2

∣∣∣∣ | f : X → R 1-Lipschitz

}
.

Because P1 and P2 have finite first moment, dK(P1,P2) ∈ [0,∞). It is now not difficult to see
that dK defines a metric on K(X), this is the Kantorovich metric. The obtained metric space
(K(X), dK) is called the Kantorovich space. In the case that (X, d) is a complete metric space,
then so is the corresponding Kantorovich space.

Proposition 2.2.1. The pushforward measure of a Radon probability measure of finite first
moment on a metric space X along a 1-Lipschitz map f : X → Y is a Radon probability measure
that has finite first moment on the metric space Y .

Proof. Let A be a measurable subset of Y and let ϵ > 0. There is a compact subset K ⊆ f−1(A)
such that

P(f−1(A)) ≤ P(K) + ϵ

≤ P(f−1f(K)) + ϵ

≤ sup{[P ◦ f−1](C) | C ⊆ A compact}+ ϵ.

Taking ϵ→ 0 gives us that

[P ◦ f−1](A) ≤ sup{[P ◦ f−1](C) | C ⊆ A compact}.

Clearly we also always have the other inequality, proving that P ◦ f−1 is a Radon probability
measure.
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Moreover, we know that there exists an x0 ∈ X such that

∞ >

ˆ
dX(·, x0)dP ≥

ˆ
dY (f(·), f(x0)dP =

ˆ
d(·, f(x0))d[P ◦ f−1].

It follows that P ◦ f−1 has finite first moment.

By the previous proposition, we know that for every 1-Lipschitz map f : X → Y there is
a map K(f) : K(X) → K(Y ). This map sends a Radon probability measure P of finite first
moment to its pushforward measure along f . Moreover, for elements P1 and P2 in K(X) we see
that

dK(P1 ◦ f−1,P2 ◦ f−1) = sup

{∣∣∣∣ˆ gd[P1 ◦ f−1]−
ˆ
gd[P2 ◦ f−1]

∣∣∣∣ | g : Y → R 1-Lipschitz

}
= sup

{∣∣∣∣ˆ g ◦ fdP1 −
ˆ
g ◦ fdP2

∣∣∣∣ | g : Y → R 1-Lipschitz

}
≤ sup

{∣∣∣∣ˆ gdP1 −
ˆ
gdP2

∣∣∣∣ | g : X → R 1-Lipschitz

}
This shows that the map K(f) is 1-Lipschitz. The above induces an endofunctor K : CMet →
CMet.

For a complete metric space X, the assignment x 7→ δx defines a map ηX : X → K(X). This
map is also 1-Lipschitz, indeed for x1 and x2 in X, we find that

dK(δx1
, δx2

) = sup{|f(x1)− f(x2)| | f : X → R 1-Lipschitz} ≤ dX(x1, x2).

There is also a map µX : KK(X) → K(X) sending P to the probability measure on X defined
by µX(P)(A) :=

´
evAdP.

Proposition 2.2.2. Let P ∈ K(X), then µX(P) is a Radon measure.

Proof. Let ϵ > 0. There exists a compact subset K ⊆ K(X) such that P(KC) < ϵ.

Let A be an open subset of X. There exists an increasing sequence of continuous maps
(fn : X → [0, 1])n that converge pointwise to the indicator function 1A. It follows that the maps(

evfn : K(X) → [0, 1] : P 7→
ˆ
fndP

)
n

form an increasing sequence of maps that converge to evA. By the Portmanteau theorem, we
know that evfn is continuous for every n, and therefore it follows by Dini’s theorem that evA is
uniformly continuous on the compact subset K. This means that there exists a δ > 0 such that
for every P1,P2 ∈ K such that dK(P1,P2) < ϵ,

|P1(A)− P2(A)| < ϵ.

Since K is compact, there exist P1, . . . ,Pn in K such that

K ⊆
n⋃
k=1

B(Pn, δ).
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Moreover, since Pk is Radon for every 1 ≤ k ≤ n, there exists a compact subset K ⊆ A such that

Pk(A)− Pk(K) < ϵ

for every 1 ≤ k ≤ n. This means that

P(A)− P(K) < 2ϵ

for every P ∈ K. We conclude that

µX(P)(A) ≤
ˆ
K

P(A)P(dP) + ϵ

≤
ˆ
K

P(K)P(dP) + 3ϵ

≤ µX(P)(K) + 3ϵ

≤ sup{µX(P)(K) | K ⊆ A}+ 3ϵ.

Taking ϵ→ 0 proves the claim.

The map µX is 1-Lipschitz, as can be seen from the following inequalities for every P1 and
P2 in KK(X).

dK(µX(P1), µX(P2) = sup

{∣∣∣∣ˆ fdµX(P1)−
ˆ
fdµX(P2)

∣∣∣∣ | f : X → R 1-Lipschitz

}
= sup

{∣∣∣∣ˆ [ˆ fdP
]
P1(dP)−

ˆ [ˆ
fdP

]
P2(dP)

∣∣∣∣ | f : X → R 1-Lipschitz

}
≤ sup

{∣∣∣∣ˆ gdP1 −
ˆ
gdP2

∣∣∣∣ | g : K(X) → R 1-Lipschitz

}
Similar to Giry’s proof of Theorem 2.1.2 it can be shown that the triple (K, η, µ) is a monad.
This monad is called the Kantorovich monad. It is clear that this monad belongs to the class
of probability monads.

Another monad that could be considered as a probability monad is the ultrafilter monad on
Set [45]. The monad’s endofunctor sends a set A to the set of all ultrafilters on A. An ultrafilter
U on A has the property that for every subset B of A, either B or BC belongs to U . We can
think of the elements of B as the subsets of A with probability 1 and all the other subsets as those
with probability 0. In this way we can interpret an ultrafilter as a finitely additive probability
measure taking values in {0, 1}.

Interestingly, the ultrafilter monad can be constructed as the codensity monad of the inclusion
functor Setf → Set, as shown in [38]. In Chapter 3 we will prove that many other probability
monads arise in a similar way.

2.2.1 Strength

A property that many probability monads seem to have in common is that they are commutative
monads. Intuitively, a commutative monad is a monad on symmetric monoidal category that
interacts well with its monoidal structure.
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Let (C,⊗, I) be a symmetric monoidal category and let (T, η, µ) be a monad on C. There is a
functor ⊗(1C , T ) : C × C → C sending (A,B) to A⊗ TB and there is a functor T ◦⊗ : C × C → C
that sends a pair of objects (A,B) to T (A⊗B).

A strength is a natural transformation

τ : ⊗(1C , T ) → T ◦ ⊗

that behaves appropriately with respect to the unitor, associator and braiding of the symmetric
monoidal category and also commutes appropriately with respect to the unit and multiplication
of the monad. A monad on a symmetric monoidal category together with a strength forms a
strong monad.

In the case that C is a symmetric closed monoidal category, for objects X and Y the strength
morphisms τ[X,Y ],Y : [X,Y ]⊗ TY → T ([X,Y ]⊗ Y ) induces a morphism

[X,Y ]⊗ TY
τ[X,Y ],Y−−−−−→ T ([X,Y ]⊗ Y )

T ev−−→ TX,

which correspond to a morphism
[X,Y ] → [TX, TY ].

Using the strength axioms it can be shown that this provides an enrichment of the monad T ,
where C is viewed as enriched over itself.

The category Mble is a Cartesian monoidal category. A strength for the Giry monad can be
given by the maps

X × GY → G(X × Y ) : (x,P) 7→ δx ⊗ P,

for all measurable spaces X and Y . The category Mble is not Cartesian closed and therefore
the strength of the Giry monad does not make it an enriched monad. To avoid this, one can
consider the Cartesian closed category of quasi-Borel spaces, introduced in [32]. The category
Mble can be given a canonical symmetric closed monoidal structure, however it is shown in [55]
that the Giry monad is not strong with respect to this monoidal structure.

The category of complete metric spaces is a symmetric closed monoidal category for the tensor
product (X × Y, dX⊗Y ) of complete metric spaces (X, dX) and (Y, dY ) defined by

dX⊗Y ((x1, y1), (x2, y2)) := dX(x1, x2) + dY (y1, y2)

for all x1, x2 ∈ X and y1, y2 ∈ Y .

A strength for the Kantorovich monad can be defined in a similar way as for the Giry monad,
namely by the assignment (x,P) 7→ δx ⊗ P. This is Corollary 5.8 in [24]. Since CMet is closed
monoidal, we can interpret the Kantorovich monad as a CMet-enriched monad.

2.2.2 Eilenberg-Moore algebras

An interesting category related to a monad is its category of (Eilenberg-Moore) algebras. The
work of Swirszcz and Semadeni shows that the category of algebras of the Radon monad is
equivalent to the category CompConv of compact convex spaces. This is the category of
compact convex subsets of locally convex Hausdorff vector spaces with affine continuous maps
between them. Moreover, Semadeni gave a concrete description of this equivalence. Indeed,
Semadeni showed that every algebra for the Radon monad is isomorphic to a compact convex
subset in such a way that the algebra’s structure map —under the identification— corresponds
to a barycenter operation.
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Example 2.2.3. Consider the compact Hausdorff space [0, 1] and let (R, η, µ) be the Radon
monad as described by Semadeni in [56]. We can define a map α : R([0, 1]) → [0, 1] by the
assignment

P 7→
ˆ

Id[0,1]dP,

where Id[0,1] is the identity map on [0, 1]. By definition of the topology on R([0, 1]), this map is
continuous. For every x ∈ [0, 1],

α(δx) =

ˆ
Id[0,1]dδx = x.

Furthermore, for P ∈ RR([0, 1]) we see that

α(µ(P)) =

ˆ
Id[0,1]dµ(P)

=

ˆ [ˆ
Id[0,1]dλ

]
P(dλ)

=

ˆ
α(λ)P(dλ)

=

ˆ
Id[0,1]d[P ◦ α−1]

= α(P ◦ α−1)

From this it follows that ([0, 1], α) is an algebra for the Radon monad and indeed it is also a
compact convex subset of the locally convex Hausdorff vector space R.

Today, the algebras of several other probability monads have been characterized and it should
not come as a surprise that all these descriptions involve some type of convexity structure.

Abstract convex spaces were first studied by Stone in [59] and later by several others such as
Fritz, Gudder and Swirszcz [19, 30, 60]. Fritz defines a convex space as follows.

Definition 2.2.4 (Definition 3.1 in [19]). A convex space is a set X together with an indexed
collection of maps (αλ : X ×X → X | λ ∈ [0, 1]) such that

• α0(x, y) = x for all x, y ∈ X,

• αλ(x, x) = x for all x ∈ X and λ ∈ [0, 1],

• αλ(x, y) = α1−λ(y, x) for all x, y ∈ X and λ ∈ [0, 1],

• for all x, y, z ∈ X and λ, µ ∈ [0, 1),

αλ(αµ(x, y), z) = αλµ

(
x, αλ(1−µ)

1−λµ
(y, z)

)
.

An affine map between convex spaces (X, (αλ)λ) and (Y, (βλ)λ) is a map f : X → Y such
that βλ(f(x), f(y)) = f(αλ(x, y)) for all x, y ∈ X and λ ∈ [0, 1].

The category of convex spaces and affine maps between them is denoted as Conv. The
following result tells us that this category arises as the category of algebras of the distribution
monad. This is Theorem 4 in [33].

Theorem 2.2.5. The category Conv of convex spaces is isomorphic to the category of algebras
of the distribution monad.
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The set R has a canonical convex space structure. Indeed, define for λ ∈ [0, 1] a map
αλ : R× R → R by the assignment

(x, y) 7→ λx+ (1− λ)y.

However, there also exist less intuitive examples of convex spaces. Take for example the set
X := {0,∞} and define for λ ∈ (0, 1) a map αλ : X ×X → X by

(x, y) 7→

{
0 if x = y = 0

∞ otherwise

and maps α1 and α0 by α1(x, y) := x and α0(x, y) := y for all x, y ∈ X. Then this also forms a
convex space.

One of the main differences between these two examples is that R satisfies the cancellation
property, while {0,∞} does not. A convex space (X, (αλ)λ) is said to satisfy the cancellation
property if for x, y ∈ X such that there exists a z ∈ X and a λ ∈ (0, 1) such that αλ(x, z) =
αλ(y, z), then x = y.

A convex space that satisfies the cancellation property is how Stone defines an abstract
convex set [59]. Moreover, Stone gives a characterization of these abstract convex sets as the
convex subsets of vector spaces. The following theorem is Theorem 2 in [59] and Theorem 4 in
[10].

Theorem 2.2.6 (Stone). An abstract convex set is isomorphic to a convex subset of a vector
space.

In [10] and [25], a characterization of the category of algebras of the Kantorovich monad is
given. It is shown that this category is isomorphic to the category of closed convex subsets of
Banach spaces and the affine 1-Lipschitz maps between them. This is Theorem 5.3.1 in [25] and
Theorem 9 in [10]. A quite technical characterization of the algebras of the Giry monad on Polish
spaces is given by Doberkat in [12]. However, a description of the algebras of the Giry monad
on measurable spaces remains unknown.

It is clear from the above that algebras of probability monads have something to do with
integration. We could loosely interpret this as follows: ‘algebras of probability monads are pre-
cisely the spaces where integration and expectation makes sense’. Consider a probability space
(Ω,F ,P) and an algebra (A,α) for the Giry monad on measurable spaces. Let X : (Ω,F) → A
be a measurable map. Then we define the expectation of X as

α(P ◦X−1).

For the particular case that A = [0, 1] and α : G([0, 1]) → [0, 1] is given by integrating the identity
map Id[0,1], this gives

α(P ◦X−1) =

ˆ
Id[0,1]d[P ◦X−1] =

ˆ
XdP.

It follows that the generalized definition of random variables taking values in an algebra (A,α)
reduces to the usual definition of expectation of real-valued random variables.

A next natural step is to ask if we can also interpret conditional expectation in the framework
of algebras of probability monads. This question is answered by Fritz and Perrone in [26, 51]
using partial evaluations.
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Definition 2.2.7 (Definition 2.1 in [26]). Let (T, η, µ) be a monad on a category C and let
(A,α) be an algebra for this monad and let S be an object of C. Consider maps p, q : S → T (A).
A partial evaluation of p into q is a map k : S → TT (A) such that the following diagram
commutes

S

TA TTA TA

k
p q

µA Tα

The following result says that partial evaluation relation for the Kantorovich monad is pre-
cisely the conditional expectation in distribution relation for Radon probability measures on an
agebra of the Kantorovich monad. This is Theorem 4.2.14 in [51].

Theorem 2.2.8 (Perrone). Let (A,α) be an algebra for the Kantorovich monad and let p, q ∈ KA
(i.e. maps p, q : 1 → KA). The following are equivalent.

• There exists a partial evaluation of p into q.

• There exists a probability space (Ω,F ,P) and a σ-subalgebra G of F together with an F-
measurable map f : Ω → A and a G-measurable map g : Ω → A such that

P ◦ f−1 = p and P ◦ g−1 = q

and
α
(
P(− | G) ◦ f−1

)
= α

(
P(− | G) ◦ g−1

)
,

for all G ∈ G with P(G) > 0.

2.3 Markov categories

Another important category related to monads is the Kleisli category, the category of free al-
gebras. In the work of Giry and Lawvere, we already saw that the Kleisli category of the Giry
monad has a nice probabilistic interpretation. Indeed, Kleisli maps and Kleisli composition pre-
cisely correspond to Markov kernels and their composition in probability theory. Similarly, we
can give a probabilistic interpretation to the maps and composition in Kleisli categories of other
probability monads.

We already saw that many probability monads are commutative. The strength morphisms
(σA,B : A⊗ TB → T (A⊗B) of a commutative monad (T, µ, η) induce morphisms

TA⊗ TB → T (A⊗ TB) → TT (A⊗B)
µA⊗B−−−−→ T (A⊗B)

for all objects A and B in the symmetric monoidal category C. Using this, a tensor product can
be defined on the Kleisli category CT . Indeed, a functor ⊗ : CT × CT → CT can be defined by
sending a pair objects (A,B) to A⊗ B and by sending a pair of morphisms f : A1 → TA2 and
g : B1 → TB2 to the morphism

A1 ⊗B1
f⊗g−−−→ TA2 ⊗ TB2 → T (A2 ⊗B2).

Together with the object I, this induces a symmetric monoidal structure on CT . We see that
most probability monads are defined on a semicartesian monoidal category, i.e. a monoidal
category whose unit is the terminal object. Furthermore, because all our examples of probability
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monads are affine, i.e. the terminal object is preserved, the induced monoidal structure on the
Kleisli category CT also becomes semicartesian.

The semicartesian monoidal categories of interest have also another interesting property:
every object has a canonical comonoid structure.

Example 2.3.1. Consider the Cartesian monoidal category Mble. Then for every measurable
space, there are maps

X → X ×X X → 1
x 7→ (x, x) x 7→ ∗

These structure maps make X a comonoid in Mble.

Consider an affine monad (T, µ, η) on a monoidal category C, where every object comes with
a comonoid structure. Then also in the induced monoidal Kleisli category CT , every object has a
comonoid structure. These comonoids are induced by the ones in the category C. Indeed, for an
object X, we have an induced comultiplication X → X ⊗X

ηX⊗X−−−−→ T (X ⊗X) and an induced

counit X → 1
η1−→ T1.

Fritz observed in [20] that the above described structures on a Kleisli category of a probability
monad suffice to describe several probabilistic concepts in these Kleisli categories. Fritz uses these
as axioms for an abstraction of such a Kleisli category, a Markov category.

Definition 2.3.2. AMarkov category is a symmetric semicartesian monoidal category (C,⊗, I)
in which every object X is equipped with a commutative comonoid structure

copyX : X → X ⊗X and delX : X → I,

such that the following diagrams commute for every morphism f : X → Y .

(X ⊗ Y )⊗ (X ⊗ Y )

X ⊗ Y

(X ⊗X)⊗ (Y ⊗ Y )

∼=

copyX⊗copyy

copyX⊗Y

The definition of a Markov category does not require that the copy maps (copyX : X →
X ⊗X)X∈C form a natural transformation. Therefore, there might be morphisms f : X → Y in
the Markov category such that the following diagram does not commute.

X X ⊗X

Y Y ⊗ Y

copyX

copyY

f f⊗f

A morphism in a Markov category for which the above diagram does commute is called a de-
terministic morphism.

Example 2.3.3. The Kleisli category of the Giry monad forms a Markov category, as described
above. A deterministic morphism f : X → GY in MbleG is a morphism such that

[f(x)](A)[f(x)](B) = [f(x)](A ∩B)
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for every x ∈ X and measurable subsets A and B in Y . We can now conclude that f(x)
is a probability measure that can only takes values 0 or 1, or in other words a deterministic
probability measure.

The composite of two deterministic morphisms is again deterministic. Objects of C together
with the deterministic morphisms form a subcategory of C, which is denoted by Cdet. In the case
that every morphism in a Markov category is deterministic, i.e. Cdet = C, it follows by Fox’s
theorem [17] that the Markov category is Cartesian.

We have already discussed that probability monads give rise to Markov categories. However,
not every Markov category arises as the Kleisli category of a probability monad. The following
example is Example 2.5 in [20].

Example 2.3.4. The category FinStoch has finite sets as objects. A morphism from A to B
is a matrix (pab)a,b such that ∑

b∈B

pab = 1

for every a ∈ A. The composition is defined by matrix multiplication. A monoidal structure
is defined by taking the Cartesian product of finite sets and the Kronecker product of matrices.
For every finite set A, there is a matrix defined by pa1a2a3 = 1 if and only if a1 = a2 = a3. This
defines a morphism

copyA : A→ A×A.

A morphism delA : A→ 1 is defined by pa∗ = 1 for every a ∈ A.

This defines a Markov category that does not arise as the Kleisli category of a (probability)
monad on Setf . This is shown in [22]. The argument goes as follows. If there would be such a
monad T, then there would be a bijection

FinStoch(A,B) ∼= Setf (A,B),

for all finite sets A and B. However, for non-empty finite sets A and B, FinStoch(A,B) is
infinite, while Setf (A,B) is finite.

Example 2.3.4 gives rise to the following question: ‘When is a Markov category the Kleisli
category of a monad? ’. This problem has been discussed in [22]. In this paper conditions are
given for when a Markov category C is isomorphic to the Kleisli category of a monad on Cdet.

Another important property that Markov categories can have is the existence of conditionals.
In Section 1.1.3, we saw that a Markov kernel f : X ⇝ Y between measurable spaces together
with a probability measure P on X always induce a joint probability distribution on X × Y ,
defined by

A×B 7→
ˆ
A

[f(x)](B)P(dx).

However, it is not always the case that every joint probability distribution on X × Y is induced
by a Markov kernel. We can rewrite this problem in the following way. Given a joint probability
distribution on X×Y , i.e. a Markov kernel I ⇝ X×Y , can we find a Markov kernel f : X ⇝ Y
such that following diagram commutes?

I X × Y X X ×X

X × Y

1X×delX copyX

1X×f
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This would mean that

P(A×B) =

ˆ
[δx ⊗ f(x)](A×B)[P ◦ π−1

1 ](dx) =

ˆ
A

[f(x)](B)[P ◦ π−1
1 ](dx).

This motivates the following definition.

Definition 2.3.5. A Markov categories has conditionals if for every morphism I → X ⊗ Y
there exists a morphism f : X → Y such that the following diagram commutes.

I X ⊗ Y X X ⊗X

X ⊗ Y

1X⊗delX copyX

1X⊗f

Remark 2.3.6. Definition 2.3.5 is not the most general way to describe conditionals in Markov
categories. Some results require the stronger notion of conditionals with parameters which is
introduced in [20].

Example 2.3.7. By the disintegration theorem (Theorem 1.1.17) it follows that the Markov
category of standard Borel spaces and Markov kernels between them has conditionals.

The axiom of existence of conditionals is an important condition for several important results
in the theory of Markov categories. The applications of these results in the particular example
of Kleisli categories of probability monads has led to categorical proof of several probabilistic
results. In [21] a categorical proof for the de Finetti theorem is given using Markov categories
that have conditionals. Other examples of applications of Markov categories are the d-separation
criterion and categorical proofs for 0-1 laws [53, 23]. Moreover, Markov categories have also been
used to study other areas in mathematics, such as ergodic theory [50].

Another remarkable advantage obtained from using Markov categories is that morphisms can
be represented as string diagrams. This allows for a very intuitive visual way to think about the
morphisms and properties in an abstract Markov category.
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Chapter 3

Probability monads as codensity
monads

3.1 Introduction

A probability distribution on a countable set A is defined as a function p : A→ [0, 1] such that∑
a∈A

p(a) = 1.

For uncountable sets however, this definition is not good any more. Indeed, let p : A→ [0, 1] be
a function on an uncountable set A such that

∑
a∈A p(a) = 1; then the support of p is countable.

But this means that p is essentially a probability distribution on a countable set. Therefore, to
express probability distributions on sets such as R or C([0,∞),R) we need a different definition.
Using measure theory a definition of a probability measure can be given by Kolmogorov’s axioms.

An endofunctor G on the category of measurable spaces Mble can be defined by sending
a measurable space X to the measurable space of all probability measures on X. Using Dirac
delta probability measures and integration, this endofunctor can be given a monad structure.
This monad is called the Giry monad [28]. Monads on categories of measurable and topological
spaces that are similar to the Giry monad are referred to as probability monads [34].

The right Kan extension of a functor along itself, assuming that it exists, can be given a
natural monad structure. The obtained monad is called the codensity monad of that functor
[45]. We will show that certain probability monads can be constructed as the codensity monads
of functors that send a countable set A to the space of all probability measures on A. This
shows that probability measures arise naturally as the categorical extension of the more intuitive
probability measures on countable sets. We will discuss this construction for several monads of
different kinds of probability measures on different kinds of measurable and topological spaces.

We begin this chapter by recalling the definition of a codensity monad (Section 3.2). The rest
of the chapter can be divided in two parts. In the first part we will discuss probability monads
on categories of measurable spaces. For completeness we start in Section 3.3 with a detailed
overview of probability measures and integration, which will lead to an integral representation
theorem for probability measures. After this we will construct the Giry monad and variations of
this monad as codensity monads in Section 3.4. Here the integral representation theorem from
before will play a key role. The second part is similar to the first part, only here we will talk
about probability monads on categories of topological spaces. Again we start with an overview
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of probability measures and integration on topological spaces in Section 3.5 and give a slightly
more general version of the Daniell–Stone representation theorem in Section 3.5.2. This result
will allow us to construct the Radon monad, bounded Lipschitz monad and Baire monad as
codensity monads in Section 3.6. In this section we will also briefly discuss another probability
monad and the problems that arose in the attempt to construct this monad as a codensity monad.

An overview of the results in this paper is given in the following table.

Category Probability monad Theorem
measurable spaces Giry monad 3.4.1
measurable spaces Giry monad of fin. add. probability measures 3.4.4

premeasurable spaces Giry monad of probability premeasures 3.4.6
compact Hausdorff spaces Radon monad 3.6.4
compact metric spaces Bounded Lipschitz monad 3.6.10

Hausdorff spaces Baire monad 3.6.13

Related work: The Giry monad was introduced by Giry in [28]. This monad and the finitely
additive variation of it already have been constructed as codensity monads of inclusion functors
of certain convex spaces in the category of measurable spaces by Avery in [3]. The constructions
we will present are different but related to Avery’s constructions. Avery uses powers of the unit
interval and affine maps, while we will use finite and countable simplices. The Radon monad
originates from work by Semadeni [56] and Swirszcz [61] and is further discussed in [36] and [34].
The bounded Lipschitz monad is similar to the Kantorovich monad on the category of compact
metric spaces, which was introduced by van Breugel in [62]. This monad was extended to a
monad on complete metric spaces by Perrone and Fritz [25, 27].

3.2 Codensity monads

We start this section by recalling the definition of a codensity monad.
Every functor G : D → C that has a left adjoint F : C → D induces a monad on C, namely

the endofunctor GF : C → C together with the unit of the adjunction as unit of the monad
and GϵF as the multiplication of the monad. Suppose now that we have a functor G : D → C
such that the right Kan extension of G along G exists; then G still induces a monad on C. Let
(TG : C → C, γ : TG ◦G→ G) be the right Kan extension of G along G.

There is a natural transformation 1G : 1C ◦ G → G and therefore by the universal property
of right Kan extensions, there exists a unique η : 1C → G such that the following diagrams are
equal:

D C

C
G 1C

G

1G =

D C

C
G

G

TG

1C

γ
η

There is a natural transformation TGTG◦G TGγ−−−→ TG◦G γ−→ G and therefore by the universal
property of right Kan extensions there exists a unique natural transformation µ : TGTG → TG

such that the following diagrams are equal:

D C

C
G TGTG

G

=

D C

C
G

G

TG

TGTG

µ
γ
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Proposition 3.2.1. The triple (TG, η, µ) is a monad.

A proof for this result can be found in Section 2 of [45]. The monad in Proposition 3.2.1 is
called the codensity monad of G.

Example 3.2.2. The codensity monad of a right adjoint functor G : D → C is the monad
induced by the adjunction. This follows from the fact that RanGG = GF , where F is the left
adjoint of G.

Example 3.2.3 (Kennison and Gildenhuys). Let Setf be the category of finite sets and maps.
The codensity monad of the inclusion functor Setf → Set is the ultrafilter monad. This is a
result from [38].

The following result, which follows from Theorem 3.7.2 in [8], will be useful to find codensity
monads of certain functors.

Proposition 3.2.4. Let G : D → C be a functor, where D is an essentially small category and
C is a complete category. Then the codensity monad of G exists and

TG(X) = lim(X ↓ G U−→ D G−→ C)

for every object X in C. Here U : X ↓ G→ D is the forgetful functor.

3.3 Premeasurable spaces

In this section we will discuss probability premeasures and their finitely additive analogues on
premeasurable spaces. We will give an overview of results on integration with respect to a
probability premeasure and end the section with an integral representation theorem. In the case
of probability measures, these correspond to standard results in measure theory. Premeasures
play an important role in extension theorems such as the Carathéodory extension theorem, which
will be discussed from a categorical point of view in Chapter 4. Because integration with respect
to a premeasure is far less common than the usual Lebesgue integral, we will give detailed proofs
for all results.

We will call a set X together with an algebra of subsets BX (i.e. a collection of subsets of X
that is closed under complements and finite intersections that contain ∅ and X) a premeasur-
able space. We say that a map f : X → Y between premeasurable spaces is premeasurable
if f−1(BY ) ⊆ BX .

Let P : BX → [0, 1] be a function such that P(X) = 1. The function P is called a probability
premeasure if P (

⋃∞
n=1An) =

∑∞
n=1 P(An) for every pairwise disjoint collection (An)

∞
n=1 of

subsets in BX such that
⋃∞
n=1An is also in BX . If BX is a σ-algebra, P is just a probability

measure. If we only have that P(A ∪ B) = P(A) + P(B) for disjoint subsets A and B in BX ,
then we call P a finitely additive probability premeasure. This is also known as a charge.
If BX is a σ-algebra we say that P is a finitely additive probability measure. Note that
every probability (pre)measure is a finitely additive probability (pre)measure. Let (X,BX) be a
premeasurable space. We will call a function s : X → [0, 1] a simple function on X if there
exists a natural number n ≥ 1 and a1, a2, . . . , an ∈ [0, 1] and A1, A2, . . . , An ∈ BX such that

s =

n∑
k=1

ak1Ak
.
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Note that a simple function is always premeasurable. The collection of simple functions on X is
denoted by Simp(X, [0, 1]). Given a finitely additive probability premeasure P, we can define a
map JP : Simp(X, [0, 1]) → [0, 1] by the assignment

n∑
k=1

ak1Ak
7→

n∑
k=1

akP(Ak).

Because BX is closed under complements and finite unions, we can use a common refinement
argument to show that the assignment is independent of the representation of the simple function.

Again using a common refinement argument, we obtain the following proposition.

Proposition 3.3.1. For simple functions s, t : X → [0, 1] such that s+ t ≤ 1 and r ∈ [0, 1], we
have that also s + t and rs are simple functions. Furthermore, JP(s + t) = JP(s) + JP(t) and
JP(rs) = rJP(s). If s ≤ t, then also t− s is a simple function and JP(s) ≤ JP(t).

The following useful lemma follows from the construction described in the proof of Corollary
4.5.9 in [4].

Lemma 3.3.2. Let f : X → [0, 1] be a premeasurable map. There exists an increasing sequence
(sn)n of simple functions that converges uniformly to f and there exists a decreasing sequence
(tn)n of simple functions that converges uniformly to f .

Let PreMble(X, [0, 1]) be the set of premeasurable maps from X to [0, 1]. We define a map
IP : PreMble(X, [0, 1]) → [0, 1] by the assignment

f 7→ sup {JP(s) | s ≤ f and s ∈ Simp(X, [0, 1])} .

This map is well-defined because JP is order-preserving by Proposition 3.3.1.
The following proposition summarizes results about the additivity and continuity of IP. In the

case of probability measures, these are classical results in measure theory. For finitely additive
probability premeasures these are lesser-known. Similar results have been discussed in [63].

Proposition 3.3.3. Let X be a premeasurable space and let P be a finitely additive probability
premeasure on X. We have the following properties:

(i) For a simple function s : X → [0, 1], we have IP(s) = JP(s). In particular IP(1) = 1.

(ii) For premeasurable functions f, g : X → [0, 1] such that f ≤ g, we have IP(f) ≤ IP(g).

(iii) For a premeasurable map f : X → [0, 1],

IP(f) = inf {JP(s) | s ≥ f and s ∈ Simp(X, [0, 1])} .

(iv) For premeasurable maps f, g : X → [0, 1] such that also f + g ∈ PreMble(X, [0, 1]), we
have IP(f + g) = IP(f) + IP(g).

1

(v) Suppose that P is a probability premeasure. For an increasing sequence of premeasurable
maps (fn : X → [0, 1])∞n=1 such that f := limn→∞ fn is also premeasurable, limn→∞ IP(fn) =
IP(f).

1Note that the finite sum of premeasurable maps X → [0, 1] is not necessarily premeasurable. Consider for
example the set [0, 1/2]2 endowed with the Boolean algebra generated by open rectangles. The two projection
maps π1, π2 : [0, 1/2]2 → [0, 1] are premeasurable, but their sum is not.
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(vi) Let (fn : X → [0, 1])∞n=1 be a collection of premeasurable maps such that f :=
∑∞
n=1 fn is

also an element of PreMble(X, [0, 1]). If P is a probability premeasure, then

IP(f) =

∞∑
n=1

IP(fn).

Proof. (i) Since s ≤ s it follows by the definition of I that JP(s) ≤ IP(s). For every simple
function t such that t ≤ s we have by Proposition 3.3.1 that JP(t) ≤ JP(s) and therefore
IP(s) ≤ JP(s).

(ii) This follows from the fact that for a simple function s such that s ≤ f we also have s ≤ g.

(iii) The ‘≤’ inequality is clear. Now consider an ϵ ∈ (0, 1] and simple functions s and t such
that s ≤ f ≤ t and such that ∥t − s∥∞ ≤ ϵ, which exist by Lemma 3.3.2. We find the
following inequalities:

JP(t) = JP(t− s+ s) = JP(t− s) + JP(s) ≤ JP(ϵ) + JP(s) ≤ ϵ+ IP(f).

Here we used Proposition 3.3.1 and the definition of IP. The other inequality now follows.

(iv) Let ϵ > 0. By the definition of JP and (iii), there exist simple functions sf , tf , sg and tg
such that sf ≤ f ≤ tf and sg ≤ g ≤ tg and such that

JP(tf )− ϵ ≤ IP(f) ≤ JP(sf ) + ϵ

and
JP(tg)− ϵ ≤ IP(g) ≤ JP(sg) + ϵ.

Since sf + sg and (tf + tg) ∧ 1 are simple functions by Proposition 3.3.1 and sf + sg ≤
f + g ≤ (tf + tg) ∧ 1, we find that

IP(f + g)− 2ϵ ≤ JP((tf + tg) ∧ 1)− 2ϵ ≤ JP(tf ) + JP(tg)− 2ϵ ≤ IP(f) + IP(g)

and

IP(f) + IP(g) ≤ JP(sf ) + JP(sg) + 2ϵ = JP(sf + sg) + 2ϵ ≤ IP(f + g) + 2ϵ.

Here we again used Proposition 3.3.1 and (iii) and the definition of IP. The result follows
by letting ϵ→ 0.

(v) Since fn ≤ f we have by (ii) that IP(fn) ≤ IP(f) and therefore limn→∞ IP(fn) ≤ IP(f).
Now consider a simple function s =

∑m
k=1 ak1Ak

such that s ≤ f . For r ∈ [0, 1) and a
natural number n define the set

En,r := {x ∈ X | fn(x) ≥ rs(x)} .

Note that En,r =
⋃m
k=1(f

−1
n ([rak, 1]) ∩Ak) and therefore it is a subset in BX .

The function rs1En,r
is simple and satisfies rs1En,r

≤ fn. It follows now that

IP(fn) ≥ JP(rs1En,r
) =

m∑
k=1

rakP(Ak ∩ En,r).
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Taking the limit n→ ∞ on both sides of the inequality gives us that

lim
n
IP(fn) ≥

m∑
k=1

rak

(
lim
n→∞

P(Ak ∩ En,r)
)
. (3.1)

It is easy to verify that (En,r)n∈N increases to X. Now define F1,r := E1,r and Fn,r :=
En,r \Fn−1,r and note that (Fn,r ∩Ak)n∈N is a collection of pairwise disjoint subsets in BX
such that their union is Ak. Using that P is a probability premeasure we find that

P(Ak) =
∞∑
n=1

P(Fn,r ∩Ak) = lim
n→∞

P

(
n⋃
l=1

Fl,r ∩Ak

)
= lim
n→∞

P(En,r ∩Ak) (3.2)

Combining (3.1) and (3.2) gives us limn→∞ IP(fn) ≥ rJ(s) for all r ∈ [0, 1), which implies
that

lim
n→∞

IP(fn) ≥ JP(s).

Since this holds for any simple function s such that s ≤ f , we can conclude that limn→∞ IP(fn) ≥
IP(f).

(vi) We first show the result for the case that every fn is simple. Because the finite sum of
simple functions is again a simple function we can use (iv) and (v) to show the following
equalities:

IP(f) = IP

(
lim
n→∞

n∑
k=1

fk

)
= lim
n→∞

IP

(
n∑
k=1

fk

)
= lim
n→∞

n∑
k=1

IP(fk) =

∞∑
n=1

IP(fk).

For the general case we use Lemma 3.3.2 to write fn as
∑∞
k=1 sk,n, where sk,n is a simple

function for every k and n. This gives us that

f =
∞∑
n=1

∞∑
k=1

sk,n.

Let ψ : N \ {0} → N \ {0} × N \ {0} be a bijection. We can now rewrite f as follows:

f =
∞∑
m=1

sψ(m).

By the above it follows now that

IP(f) =

∞∑
m=1

IP(sψ(m)) =

∞∑
n=1

∞∑
k=1

IP(sk,n) =

∞∑
n=1

IP(fn).

Remark 3.3.4. In the case that BX is a σ-algebra, IP becomes the usual integration operation
and Proposition 3.3.3(v) and (vi) become the usual Monotone Convergence Theorems. Therefore
we will also for the other cases write

´
X
fdP or

´
X
f(x)P(dx) for IP(f).
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Proposition 3.3.5. Let I : PreMble(X, [0, 1]) → [0, 1] be a map such that I(1) = 1. If
I(f + g) = I(f) + I(g) for all premeasurable maps f, g : X → [0, 1] such that also f + g ∈
PreMble(X, [0, 1]), then there exists a unique finitely additive probability premeasure P such
that

I = IP.

Proof. Define P(A) := I(1A) for all A in ΣX . Clearly, P is a finitely additive probability pre-
measure.

We have I(qf) = qI(f) for all q ∈ [0, 1]∩Q and for all premeasurable functions f : X → [0, 1].
For a simple function s such that s ≤ f we have that f − s is a premeasurable function and it
follows that I(s) ≤ I(f).

For a premeasurable function f : X → [0, 1] and for ϵ > 0 there exists a simple function
s =

∑m
k=1 ak1Ak

≤ f such that IP(f) ≤
∑m
k=1 akP(Ak)+ ϵ. We can assume that ak is an element

of [0, 1] ∩Q for every k. We now see that

IP(f) ≤
m∑
k=1

akI(1Ak
) + ϵ = I(s) + ϵ ≤ I(f) + ϵ.

Letting ϵ → 0 gives us that IP(f) ≤ I(f). Using Proposition 3.3.3(iii) we obtain the other
inequality in a similar way.

Let P′ be another finitely additive probability premeasure with this property; then

P′(A) = IP′(1A) = I(1A) = IP(1A) = P(A)

for every A in BX . This implies P′ = P.

Proposition 3.3.6. Let I : PreMble(X, [0, 1]) → [0, 1] be a map such that I(1) = 1. If
I (
∑∞
n=1 fn) =

∑∞
n=1 I(fn) for every collection of premeasurable maps (fn : X → [0, 1])∞n=1 such

that f :=
∑
n∈A fn is also an element of PreMble(X, [0, 1]) for every finite or cofinite subset A

of N \ {0}, then there exists a unique probability premeasure P such that

I = IP.

Proof. By Proposition 3.3.5 there exists a unique finitely additive probability measure P such
that I = IP. For a pairwise disjoint collection (An)

∞
n=1 in BX such that

⋃∞
n=1An is also an

element of BX , we see that
∑
n∈A 1An

is premeasurable for every finite or cofinite subset A of
N \ {0}. It follows now that

P

( ∞⋃
n=1

An

)
= IP

( ∞∑
n=1

1An

)
=

∞∑
n=1

IP(1An) =

∞∑
n=1

P(An)

Corollary 3.3.7. Let X be a measurable space and let I : Mble(X, [0, 1]) → [0, 1] be a map
such that I(1) = 1. If I (

∑∞
n=1 fn) =

∑∞
n=1 I(fn) for every collection of measurable maps

(fn : X → [0, 1])∞n=1 such that
∑∞
n=1 fn ≤ 1, then there exists a unique probability measure P

such that
I = IP.
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3.4 Probability monads on categories of premeasurable spaces

In this section we will present several monads of (finitely additive) probability (pre)measures on
categories of (pre)measurable spaces. We explain how each of these monads can be constructed
as a codensity monad.

We will denote the category of measurable spaces and measurable maps by Mble. We write
Setc for the category of countable sets and functions.

3.4.1 Giry monad of probability measures

Here we will discuss the monad of probability measures on the category of measurable spaces,
which is known as the Giry monad. We show how this monad arises as the codensity monad of
a functor G : Setc → Mble.

Let (X,ΣX) be a measurable space and let GX be the set of all probability measures on
X. For a measurable subset A of X let evA : GX → [0, 1] denote the function defined by the
assignment P 7→ P(A). The set GX becomes a measurable space by endowing it with the smallest
σ-algebra that makes evA measurable for all A in ΣX . We will denote this measurable space also
by GX.

Let f : X → Y be a measurable map between measurable spaces X and Y . Every probability
measure P induces a probability measure P ◦ f−1 on Y which is defined by

P ◦ f−1(B) := P(f−1(B))

for all B in ΣY . The assignment P 7→ P ◦ f−1 defines a map GX → GY , which we will denote by
Gf . It can be checked that Gf is measurable.

The assignments X 7→ GX and f 7→ Gf define a functor G : Mble → Mble.

For every measurable space X we have a measurable map ηX : X → GX that sends an
element x ∈ X to the probability measure δx that is defined by

δx(A) :=

{
1 if x ∈ A

0 otherwise.
(3.3)

Moreover, these maps form a natural transformation η : 1Mble → G.
We also have a measurable map µX : GGX → GX that sends a probability measure P on GX

to the probability measure µX(P) on X that is defined by

µX(P)(A) :=

ˆ
GX

P(A)P(dP) (3.4)

for all A ∈ ΣX . Also these maps form a natural transformation µ : GG → G. As discussed in
Theorem 2.1.2 and Theorem 1 in [28], the triple (G, η, µ) is a monad, the Giry monad.

Every countable set A can be turned into a measurable space, namely the set A endowed
with the whole powerset of A as σ-algebra. Every function of countable sets becomes measurable
with respect to these σ-algebras. This leads to a functor j : Setc → Mble. Define the functor
G as

Setc
j−→ Mble

G−→ Mble
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This means that for a countable set A the underlying set of GA is equal to{
(pa)a ∈ [0, 1]A |

∑
a∈A

pa = 1

}
.

For a map f : X → GA we will use the notation fa to mean ev{a} ◦ f . Note that a map
f : X → GA is measurable if and only if fa is measurable for every a. For a map of countable
sets f : A→ B the measurable map Gf : GA→ GB is given by the assignment

(pa)a∈A 7→

 ∑
a∈f−1(b)

pa


b∈B

.

Theorem 3.4.1. The Giry monad is the codensity monad of G.

Proof. Proposition 3.2.4 tells us that the codensity monad of G exists. We will now show that
for all measurable spaces X,

G(X) = lim(X ↓ G U−→ Setc
G−→ Mble),

which is natural in X. Proposition 3.2.4 then implies that TG ∼= G for all measurable spaces X.
For a measurable map f : X → GA define a map pf as

GX Gf−−→ GGjA µjA−−→ GjA = GA.

This means that for P ∈ GX,

pf (P) =
(ˆ

X

fadP
)
a∈A

.

Consider a commutative triangle

X

GA GB.

f

Gs

g

We have the following equalities:

Gs ◦ pf = Gs ◦ µjA ◦ Gf
= Gjs ◦ µjA ◦ Gf
= µjB ◦ GGjs ◦ Gf
= µjB ◦ Gg = pg

In more measure theoretic terms this means that for a probability measure P on X and an
element b in B we have the following:

(Gs ◦ pf )(P)b =
∑

a∈s−1(b)

ˆ
X

fadP =

ˆ
X

∑
a∈s−1(b)

fadP =

ˆ
X

(Gs ◦ f)bdP =

ˆ
X

gbdP = pg(P)b.

We can conclude that (GX, (pf )f ) forms a cone over the diagram X ↓ G U−→ Setc
G−→ Mble.
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For a measurable map g : X → Y and a measurable map f : X → GA, we have the following
commutative diagram.

GX GY

GA

Gg

pf◦g pf

It follows now that there is a natural transformation φ : G → TG.

We will now show that (GX, (pf )f ) is the limiting cone of the diagram X ↓ G U
=⇒ Setc

G−→
Mble. This will imply that φ is in fact a natural isomorphism. To do this let us consider
some cone (Y, (qf )f ) over the diagram. Let 2 := {0, 1} and 1 := {0}. For a measurable map

f : X → [0, 1] let f̂ : X → G2 be the measurable map that sends an element x in X to
(1− f(x), f(x)).

For an element y ∈ Y define a map Iy : Mble(X, [0, 1]) → [0, 1] by

Iy(f) := qf̂ (y)1.

Let t : 1 → 2 be the map that sends 0 to 1 and let e be the unique measurable map X → G1.
We find the following commutative triangle:

X

G2 G1.

1̂

Gt

e

Because (Y, (qf )f ) is a cone over the diagram we also have that the following triangle commutes:

Y

G2 G1.

q1̂

Gt

qe

It now follows that Iy(1) = q1̂(y)1 = 1.

For a collection (fn : X → [0, 1])∞n=1 of measurable maps such that f :=
∑∞
n=1 fn is also an

element of Mble(X, [0, 1]), let h : X → GN be the measurable map defined by h(x)n := fn(x)
for n ≥ 1 and h(x)0 := 1 − f(x). For n ≥ 1 let sn : N → 2 be the map that sends n to 1 and
every other element to 0. Let s : N → 2 be the map that sends 0 to 0 and every other element
to 1. We have the following commutative diagrams:

X X

GN G2 GN G2

h f̂n

Gsn

h

Gs

f̂0

Therefore also the following triangles commute:

Y Y

GN G2 GN G2

qh q
f̂n

Gsn

qh

Gs

q
f̂
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It follows now that
Iy(f0) = qf̂ (y)1 = (Gs ◦ qh(y))1 =

∑
n∈N

qh(y)n (3.5)

and that for every n ≥ 1,

Iy(fn) = q
f̂n
(y)1 = (Gsn ◦ qh(y))1 = qh(y)n. (3.6)

Combining (3.5) and (3.6) gives us that Iy(f) =
∑
n∈N Iy(fn). By Corollary 3.3.7 it follows that

there exists a unique probability measure Py such that Iy = IPy
. The assignment y 7→ Py defines

a map q : Y → GX. We have that evA ◦ q = (q1̂A)1 for all A ∈ ΣX and therefore q is measurable.
Let f : X → GA be a measurable map and let a be an element of A. Let sa : A → 2 be the

map that sends a to 1 and every other element to 0. Since we have that Gsa ◦ f = f̂a we also
have that Gsa ◦ qf = q

f̂a
. In particular we find for every y ∈ Y that

Iy(fa) = q
f̂a
(y)1 = (Gsa ◦ qf (y))1 = qf (y)a.

Using this we obtain for every y ∈ Y and for every a ∈ A that

[pf ◦ q(y)]a = IPy (fa) = Iy(f)a = qf (y)a.

This shows that q is a morphism of cones from (GX, (pf )f ) to (Y, (qf )f ).
Let q̃ : Y → GX be another morphism of cones. Then for every measurable subset A of X

and for every y in Y we have that

q̃(y)(A) = (p1̂A ◦ q̃(y))1 = q1̂A(y)1 = q(y)(A).

This shows that q̃ = q and therefore (GX, (pf )f ) is the limiting cone over the diagram. This
implies that G(X) ∼= TG(X) for all measurable spaces X. Moreover this induces a natural
isomorphism G ∼= TG.

The counit ϵ of the codensity monad is given

ϵA : GGA
p1GA−−−→ GA : P 7→

(ˆ
GA

paP(dp)
)
a

.

It follows now that the multiplication of the Giry monad satisfies the universal property of
the multiplication of the codensity monad, namely that it is the unique natural transformation
GG → G such that

Setc Mble Setc Mble

=

Mble Mble

G

G GG G

G

G

GG

ϵ◦Gϵ

µ

ϵ

In a similar way it can be shown that the unit of the codensity monad of G is equal to the
unit of the Giry monad.

Remark 3.4.2. While Theorem 3.4.1 states that RanGG = G, it is also true that RanjG = G.
This construction immediately gives probability measures as set functions, without using an
integral representation theorem.
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Remark 3.4.3. A different construction for the Giry monad as a codensity monad is given in
[3]. Avery shows that the codensity monad of the inclusion of the category of powers of the unit
interval and affine maps in Mble is isomorphic to the Giry monad.

3.4.2 Giry monad of finitely additive probability measures

In the same way as the Giry monad of probability measures was defined, we can define a monad
(Gf , η, µ) of finitely additive probability measures on Mble. We call this monad the Giry
monad of finitely additive probability measures.

Let Setf be the category of finite sets and maps and let i : Setf → Setc be the inclusion
functor. Let G : Setc → Mble be as in the previous subsection and define Gf := G ◦ i.

Theorem 3.4.4. The Giry monad of finitely additive probability measures is the codensity monad
of Gf .

The proof for Theorem 3.4.4 is similar to the proof of Theorem 3.4.1. There are two places
where the proof is slightly different. First, instead of using a countable index set N, it is now
enough to use a finite index set. Second, for this proof we use the integral representation result
Proposition 3.3.5 instead of Corollary 3.3.7.

3.4.3 Giry monad of probability premeasures

In this section we will discuss how the monad of probability premeasures on the category of
premeasurable spaces arises as the codensity monad of a functor Gp. This functor Gp is similar
to the functor G in Section 3.4.1, however here the domain needs to be restricted to finite maps,
because we are working with premeasurable maps.

Let (X,BX) be a premeasurable space and let GpX be the set of all probability premeasures
on X. For A ∈ BX , let evA : Gp(X) → [0, 1] be the map that sends a probability premeasure P
to P(A). The set GpX becomes a premeasurable space by endowing it with the smallest algebra
that makes evA premeasurable for all A ∈ BX . We will denote this premeasurable space also by
GpX.

Every premeasurable map f : X → Y induces a premeasurable map Gp : GpX → GpY by
pushing forward probability premeasures along f . This defines a functor Gf : PreMble →
PreMble.

We can define natural transformations ηp : 1PreMble → Gp and µp : GpGp → Gp in a similar
way as we defined the unit (3.3) and the multiplication (3.4) for the Giry monad of probability
measures. Similarly to Giry monad this construction gives us a monad. This can be seen by
combining the proof of Theorem 2.1.2 together with Proposition 3.3.3.

Proposition 3.4.5. The triple (Gp, ηp, µp) is a monad.

We call the monad in Proposition 3.4.5 the Giry monad of probability premeasures.
For a countable set A let Pf (A) be the set of all finite and cofinite subsets of A. A map

f : A→ B between countable sets is called a finite map if f−1(Pf (B)) ⊆ Pf (A). Note that the

composite of finite maps is a finite map. Let Setfc be the category of countable sets and finite
maps. Every countable set A can be turned into a premeasurable space, namely the set A together
with the algebra Pf (A). Every finite map between countable sets becomes premeasurable with

respect to these algebras. We obtain a functor jp : Set
f
c → PreMble.

Now define the functor Gp as

Setfc
jp−→ PreMble

Gp−→ PreMble.
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For a countable set A the space GpA is the set {(pa)a ∈ [0, 1]A |
∑
a∈A pa = 1} together with

the smallest algebra that makes evA′ premeasurable for every finite or cofinite subset A′ of A. A
map f : X → GpA is premeasurable if and only if evA′ ◦ f is premeasurable for every A′ ∈ FA.

For a finite map of countable sets f : A → B the premeasurable map Gpf : GpA → GpB is
given by the assignment

(pa)a∈A 7→

 ∑
a∈f−1(b)

pa


b∈B

Theorem 3.4.6. The Giry monad of probability premeasures is the codensity monad of G.

Because all the maps between countable sets in the proof of Theorem 3.4.1 were finite, we
can use a similar argument to prove Theorem 3.4.6. However now we need to use Proposition
3.3.6 instead of its corollary (Corollary 3.3.7).

Remark 3.4.7. Let i : Setfc → Setc be the inclusion functor. We have that the codensity
monad of Gi is the Giry monad of probability measures, since in the proof of Theorem 3.4.1 we
only used finite maps.

3.5 Hausdorff spaces

In Section 3.3 we presented several results about probability measures on measurable spaces. If
we assume that the measurable space has more structure, we can say more about the probability
measures on that space. This will be the topic of the current section. We will assume extra
topological structure on the space and study the consequences for the probability measures on
that space. We end the section with a generalized Daniell–Stone theorem.

3.5.1 Probability measures on Hausdorff spaces

Let X be a Hausdorff space. Recall that the smallest σ-algebra that contains all the open sets of
X is called the Borel σ-algebra and is denoted by BoX . The smallest σ-algebra that makes all
the continuous functions f : X → [0, 1] measurable is called the Baire σ-algbera and is denoted
by BaX . The following result, which is Theorem 7.1.1 in [14], states that for metric spaces these
σ-algebras are the same.

Proposition 3.5.1. For every Hausdorff space X we have that BaX ⊆ BoX . For a metric space
X we have that BaX = BoX .

A probability measure on (X,BoX) is called aBorel probability measure and a probability
measure on (X,BaX) a Baire probability measure. Recall that a Borel probability measure
P is called a Radon probability measure if

P(A) = sup{P(K) | K ⊆ A and K is compact}

for all A in BoX . The next result tells us that on compact Hausdorff spaces, Baire probability
measures correspond to Radon probability measures.

Proposition 3.5.2. Every Baire probability measure on a compact Hausdorff space can be ex-
tended uniquely to a Radon probability measure.

A proof for Proposition 3.5.2 can be found in [14] (Theorem 7.1.5).
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3.5.2 Representations of probability measures on Hausdorff spaces

For a collection L of real-valued functions on a set X let σ(L) denote the smallest σ-algebra on
X such that every f ∈ L is measurable. Note that this σ-algebra is generated by sets of the form
{f > r} := {x ∈ X | f(x) > r} for f ∈ L and r ∈ R.

Definition 3.5.3. Let X be a set and let L ⊆ [0,∞)X be a subset of non-negative valued
functions on X together with the pointwise ordering. Let NL := {nf | f ∈ L}. We call L a
weak integration lattice2 if:

• 1 ∈ L,

• for all f, g ∈ L we have f ∨ g, f ∧ g, f ∨ g − f ∧ g ∈ NL,

• for all f ∈ L and for all n ∈ N, nf ∧ 1 ∈ NL and

• for all f ∈ L and for all r ∈ [0, 1], rf ∈ L.

Definition 3.5.4. We call a map I : L → [0,∞) a weak integration operator if I(1) = 1
and for every collection (fn)n∈N in L such that f :=

∑
n∈N fn ∈ L, we have I(f) =

∑
n∈N I(fn).

The following result is the Daniell–Stone representation theorem with weaker conditions. A
proof, based on [39], is given in Appendix A.

Theorem 3.5.5. Let I be a weak integration operator on a weak integration lattice L on a set
X. There exists a unique probability measure P on (X,σ(L)) such that

IP(f) = I(f)

for all f ∈ L.

Proposition 3.5.6. Let X be a compact Hausdorff space and let L be a weak integration lattice
such that every f ∈ L is continuous and such that f+g ∈ NL for all f, g ∈ L. Let I : L→ [0,∞)
be a function such that I(f + g) = I(f) + I(g) for f, g ∈ L with f + g ∈ L. Suppose also that
I(1) = 1. Then there exists a unique probability measure P on (X,σ(L)) such that IP(f) = I(f)
for f ∈ L.

The proof of Proposition 3.5.6 of this is given in Appendix A. The proof relies on Dini’s the-
orem. These results can be used to prove several integral representation theorems of probability
measures on certain topological spaces.

Example 3.5.7. Let X be a metric space and let L be the set of all 1-Lipschitz functions on
X taking values in [0, 1]. Then L is a weak integration lattice and σ(L) = BaX = BoX . To see
this, observe that for every closed set A, the function fA := d(·, A)∧ 1 : X → [0, 1] is 1-Lipschitz
and A = f−1

A (0) ∈ σ(L). Therefore BoX ⊆ σ(L) and clearly σ(L) ⊆ BaX .
It follows now by Theorem 3.5.5 that every weak integration operator I on L induces a unique

Borel probability measure on X such that IP = I.

Example 3.5.8. Let (X, d) be a metric space. A Borel probability measure P on X is said to
have finite moment if for all x ∈ X we have

ˆ
X

d(x, y)P(dy) <∞.

2We use the term weak to indicate that this is the weaker version of the integration lattices discussed in
Appendix A. For example, the subset of all 1-Lipschitz functions on a metric space form a weak integration
lattice, but not an integration lattice.
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Let X be a metric space and let L be the set of all 1-Lipschitz functions on X taking values in
[0,∞). Then L is a weak integration lattice and σ(L) = BaX = BoX . Theorem 3.5.5 now tells us
that there exists a unique Borel probability measure P such that IP = I. Since for every x ∈ X
the function d(x, ·) : X → [0,∞) is a 1-Lipschitz function, we find

ˆ
X

d(x, y)P(dy) = IP(d(x, ·)) = I(d(x, ·)) <∞

and therefore P has finite moment.

Example 3.5.9. In Example 3.5.7 and 3.5.8 we can also use all Lipschitz maps instead of only
the 1-Lipschitz maps.

Example 3.5.10 (Riesz–Markov representation theorem). Let X be a compact Hausdorff space
and let L be the set of all continuous functions on X taking values in [0, 1]. Then L is a weak
integration lattice and σ(L) = BaX .

Let I : L → [0, 1] be a function such that I(1) = 1 and such that I preserves binary sums
that exist in L. Then Proposition 3.5.6 gives us a unique Baire probability measure P on X such
that IP(f) = I(f) for all f ∈ L. Note that by Proposition 3.5.2 the Baire probability measure P
can be uniquely extended to a Radon probability measure.

Example 3.5.11. Let X be a compact metric space and let L be the set of all 1-Lipschitz
functions on X taking values in [0, 1]. Then L is a weak integration lattice that satisfies the
conditions of Proposition 3.5.6.

Therefore for a function I : L → [0, 1] such that I(f + g) = I(f) + I(g) for all f, g ∈ L with
f + g also in L and such that I(1) = 1, there exists a unique Radon probability measure P on X
such that IP = I.

Example 3.5.12. Let X be a Hausdorff space and let L be the set of continuous functions
X → [0, 1]. We see that L is a weak integration lattice and σ(L) = BaX . Using Theorem
3.5.5 we see that for every weak integration operator I on L there is a unique Baire probability
measure P such that IP = I.

3.6 Probability monads on categories of Hausdorff spaces

In this section we will present monads of Radon probability measures and Baire probability
measures and explain how they arise as codensity monads. We will introduce two new probability
monads: the bounded Lipschitz monad and the Baire monad.

We write Haus for the category of Hausdorff spaces and continuous maps. The full subcat-
egory of compact Hausdorff spaces is denoted by CH. The category of compact metric spaces
and 1-Lipschitz maps is denoted by KMet1. For the category of finite sets and functions we
write Setf .

3.6.1 Radon monad

We will discuss a monad of Radon probability measures on the category of compact Hausdorff
spaces, known as the Radon monad. This monad was first introduced in [56] and [61] and further
discussed in [34] and [36]. We explain how this monad can be constructed as the codensity
monad of a functor R : Setf → CH. Although Radon probability measures are σ-additive, the
domain of R is the category of finite sets and maps. Note that compact Hausdorff spaces arise
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as the algebras of the codensity monad of the inclusion Setf → Set (i.e. the ultrafilter monad)
as discussed in [38] and [45].

Let X be a topological space and let RX be the set of all Radon probability measures on X.
Endow RX with the smallest topology such that the evaluation map evf : RX → [0, 1], that
sends P to

´
X
fdP, becomes continuous for every continuous function f : X → [0, 1]. This is the

topology of weak convergence of probability measures. We will denote the obtained topological
space also by RX.

The following result follows from the Banach-Alaoglu theorem (Section 3.15 in [54]).

Proposition 3.6.1. The topological space RX is a compact Hausdorff space.

Lemma 3.6.2. Let f : X → Y be a continuous function between compact Hausdorff spaces and
let P be a Radon probability measure on X. Then also P ◦ f−1 is a Radon probability measure.
Furtermore, the assignment P 7→ P ◦ f−1 defines a continuous function Rf : RX → RY .

The proof of Lemma 3.6.2 is elementary.
Using Proposition 3.6.1 and Lemma 3.6.2 we can define a functor R : CH → CH.
For a compact Hausdorff X we can define maps ηX : X → RX and µX : RRX → RX in

the same way as we did for the Giry monad. These maps are well-defined and continuous and
they induce natural transformations η : 1CH → R and µ : RR → R.

As has often been observed [34, 36, 56, 61]:

Proposition 3.6.3. The triple (R, η, µ) is a monad.

As discussed before in Section 2.1.2, the monad in Proposition 3.6.3 is called the Radon
monad.

Every finite set A endowed with the whole powerset as topology, forms a compact Hausdorff
space. Every map of finite sets is continuous with respect to these topologies. This gives a
functor k : Setf → CH.

We will now consider the functor R which is defined as

Setf
k−→ CH

R−→ CH

This means that for a finite set A, the space RA is the subspace of [0, 1]A of all families (pa)a such
that

∑
a∈A pa = 1. A map of finite sets f : A → B induces a continuous map Rf : RA → RB

that sends an element (pa)a∈A to  ∑
a∈f−1(b)

pa


b∈B

.

Theorem 3.6.4. The Radon monad is the codensity monad of R.

Proof. By Proposition 3.2.4 it follows that the codensity monad of R exists. Let X be a compact
Hausdorff space. We will now show that

R(X) = lim(X ↓ R U−→ Setf
R−→ CH).

Proposition 3.2.4 then implies that TR(X) ∼= R(X) for all compact Hausdorff spaces X.
For a continuous function f : X → RA, define a map pf : RX → RA by

RX Rf−−→ RRkA µkA−−→ RkA = RA.
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That means that

pf (P) :=
(ˆ

X

fadP
)
a∈A

.

In the same way as in the proof of Theorem 3.4.1 we can show that (RX, (pf )f ) is a cone over

the diagram X ↓ R U−→ Setf
R−→ CH. Let (Y, (qf )f ) be a cone over the diagram. In the same

way as in the proof of Theorem 3.4.1, we can define a map Iy : CH(X, [0, 1]) → [0, 1] and
show that this map sends 1 to 1 and preserves binary sums that exist in CH(X, [0, 1]). Now by
Example 3.5.10, we know that there exists a unique Radon probability measure Py on X such
that Iy(f) =

´
X
fdPy for all continuous functions f : X → [0, 1]. The map q : Y → RX defined

by the assignment y 7→ Py is continuous and is the only morphism of cones from (Y, (qf )f ) to
(RX, (pf )f ). This shows that R(X) ∼= TR(X) for all compact Hausdorff spaces X. Moreover,
this induces a natural isomorphism R ∼= TR. It can be shown in the same way as in the proof
of Theorem 3.4.1 that the unit and multiplication of the Radon monad are the same as those of
the codensity monad of R.

Remark 3.6.5. The domain of R is the category of finite sets and maps. We would expect
that this would only yield finitely additive measures. However Theorem 3.6.4 tells us that the
codensity construction gives us Radon probability measures, which are σ-additive.

Remark 3.6.6. Instead of using the category of all finite sets as the domain of R it is enough
to use the category of sets A with |A| ≤ 3.

3.6.2 Bounded Lipschitz monad

In this section we will consider the metric version of Section 3.6.1. We introduce a new monad
of Radon probability measures on the category of compact metric spaces with 1-Lipschitz maps.
We show that this monad is the codensity monad of a functor L. This functor is similar to the
functor R from Section 3.6.1.

Let X be a compact metric space and define LX to be the metric space of all Radon proba-
bility measures on X together with the metric dLX defined by

dLX(P1,P2) := sup

{∣∣∣∣ˆ
X

fdP1 −
ˆ
X

fdP2

∣∣∣∣ | f : X → [0, 1] is a 1-Lipschitz function

}
for all Radon probability measures P1 and P2 onX. This metric is called the bounded Lipschitz
metric3.

By Theorem 8.3.2 in [7] Using that the composite of 1-Lipschitz functions is a 1-Lipschitz
function we can show that pushing forward along a 1-Lipschitz function f defines a 1-Lipschitz
function Lf .

Let KMet1 be the category of compact metric spaces and 1-Lipschitz maps. The above
defines a functor L : KMet1 → KMet1.

For a compact metric space (X, d) let ηX and µX be the maps as defined for the Radon
monad. For x and y in X we find

dLX(ηX(x), ηX(y)) = sup{|f(x)− f(y)| | f : X → [0, 1]is a 1-Lipschitz function} ≤ d(x, y),

because |f(x) − f(y)| ≤ d(x, y) for every 1-Lipschitz function f : X → [0, 1]. Therefore ηX is
1-Lipschitz with respect to the bounded Lipschitz metric.

3The Kantorovich distance is the metric obtained by taking the supremum over all 1-Lipschitz function on X
taking values in R instead of [0, 1]. The obtained metric space is called the Kantorovich space of X.
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For Radon probability measures P1 and P2 on LX we find for every 1-Lipschitz function
f : X → [0, 1] the following inequality:∣∣∣∣ˆ

LX
fdµX(P1)−

ˆ
LX

fdµX(P2)

∣∣∣∣ = ∣∣∣∣ˆ
LX

evfdP1 −
ˆ
LX

evfdP2

∣∣∣∣
≤ dLLX(P1,P2)

In the last step we used the fact that the map evf : LX → [0, 1], which sends a Radon probability
measure P to

´
X
fdP, is 1-Lipschitz. Since f was arbitrary we conclude that µX is 1-Lipschitz.

It follows now that we have natural transformations 1KMet1 → L and LL → L which we will
also denote by η and µ.

Similar to the Giry monad and Proposition 3.6.3 we can prove the following result.

Proposition 3.6.7. The triple (L, η, µ) is a monad.

We call the monad from Proposition 3.6.7 the bounded Lipschitz monad. This monad is
similar to the Kantorovich monad, which is dicussed in [25, 27, 62].

Let A be a finite set. Define a metric on A by

dA(a1, a2) :=

{
1 if a1 ̸= a2

0 if a1 = a2

for all a1 and a2 in A. This makes A a compact metric space. Every function of finite sets
becomes 1-Lipschitz with respect to these metrics. This gives a functor l : Setf → KMet1.

We will now consider the functor L which we define as

Setf
l−→ KMet1

L−→ KMet1.

Let A be a finite set. The space LA is the subset of [0, 1]A of families (pa)a such that
∑
a∈A pa = 1

together with the bounded Lipschitz metric dLA. The following proposition tells us that dLA is
in fact the total variation distance.

Proposition 3.6.8. Let A be a finite set. For p and q in LA,

dLA(p, q) = sup

{∣∣∣∣∣∑
a∈A′

pa −
∑
a∈A′

qa

∣∣∣∣∣ | A′ ⊆ A

}
.

Proof. We view A as a metric space by endowing it with the metric dA. For a subset A′ of A,
the function 1A′ : A→ [0, 1] is a 1-Lipschitz function. We find∣∣∣∣∣∑

a∈A′

pa −
∑
a∈A′

qa

∣∣∣∣∣ =
∣∣∣∣ˆ
A

1A′dp−
ˆ
A

1A′dq

∣∣∣∣ ≤ dLA(p, q).

This shows one inequality.

Define the sets A+ = {a ∈ A | pa ≥ qa} and A− = {a ∈ A | pa < qa}. For a 1-Lipschitz
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function f : A→ [0, 1], we find

ˆ
A

fdp−
ˆ
A

fdq =
∑
a∈A

f(a)(pa − qa)

≤
∑
a∈A+

f(a)(pa − qa)

≤
∑
a∈A+

pa − qa

=

∣∣∣∣∣ ∑
a∈A+

pa −
∑
a∈A+

qa

∣∣∣∣∣
Similarly we find

−
(ˆ

A

fdp−
ˆ
A

fdq

)
≤

∣∣∣∣∣ ∑
a∈A−

pa −
∑
a∈A−

qa

∣∣∣∣∣ .
We can conclude that∣∣∣∣ˆ

A

fdp−
ˆ
A

fdq

∣∣∣∣ ≤ sup

{∣∣∣∣∣∑
a∈A′

pa −
∑
a∈A′

qa

∣∣∣∣∣ | A′ ⊆ A

}
,

which proves the other inequality.

This gives us the following useful corollary.

Corollary 3.6.9. Let X be a compact metric space and let A be a finite set. A map f : X → LA
is 1-Lipschitz if and only if

x 7→
∑
a∈A′

f(x)a

defines a 1-Lipschitz map X → [0, 1] for every A′ ⊆ A.

This leads to the main result of this section.

Theorem 3.6.10. The bounded Lipschitz monad is the codensity monad of L.

Proof. We will again use Proposition 3.2.4. Let (X, d) be a compact metric space and let DX

denote the diagram

X ↓ L U−→ Setf
L−→ KMet1.

For a 1-Lipschitz function f : X → LA define the map pf : LX → LA by

LX Lf−−→ LLlA µlA−−→ LlA = LA

This means that for every P ∈ LX,

pf (P) =
(ˆ

X

fadP
)
a∈A

.

In the same way as in the proof of Theorem 3.4.1, it can be shown that (LX, (pf )f ) forms a cone
over the diagram DX .
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We will now show that this is the limiting cone over the diagram. Let (Y, (qf )f ) be a cone

over the diagram DX . For a 1-Lipschitz function f : X → [0, 1] let f̂ : X → L2 be the function

defined by f̂(x) := (1− f(x), f(x)). Note that this function is 1-Lipschitz.

For an element y ∈ Y define the map Iy : KMet1(X, [0, 1]) → [0, 1] by

Iy(f) := qf̂ (y)1.

For n ≥ 1, let n := {0, . . . , n− 1}. Let t : 1 → 2 be the map that sends 0 to 1 and let e be the
unique 1-Lipschitz map X → L1. We have that Lt ◦ e = 1̂, i.e. t is a morphism 1̂ → e in the
arrow category X ↓ L. Since (Y, (qf )f ) is a cone over the diagram DX it follows that Lt◦qe = q1̂.
This implies that Iy(1) = 1.

Consider 1-Lipschitz functions f1, f2 : X → [0, 1] such that also f := f1 + f2 is a 1-Lipschitz
function that takes values in [0, 1]. Define the map h : X → L2 that sends an element x to
(1− f(x), f1(x), f2(x)). Because 1, f1, f2, 1− f2, 1− f1, 1− f and f are all 1-Lipschitz, so is h by
Corollary 3.6.9. Let s : 3 → 2 be the map that sends 0 to 0 and the other elements to 1. For an
element k ∈ 3, let sk : 3 → 2 be the map that sends k to 1 and the other elements to 0.

We have that
Ls ◦ h = f̂

and for every k ∈ 3 that
Lsk ◦ h = f̂k.

Because (Y, (qf )f ) is a cone over the diagram DX , these equalities imply that

Ls ◦ qh = qf̂

and for every k ∈ 3 that
Lsk ◦ qh = q

f̂k
.

Using this we obtain the following equalities:

Iy(f) = (Ls ◦ qh(y))1 = qh(y)1 + qh(y)2 = Ls1 ◦ qh(y))1 + Ls2 ◦ qh(y))2+ = Iy(f1) + Iy(f2).

By Example 3.5.11 there exists a unique Radon probability measure Py such that Iy(f) = IPy
(f).

The assignment y 7→ Py defines a map q : Y → LX. For y1 and y2 in Y and for a 1-Lipschitz
function f : X → [0, 1], we find that∣∣∣∣ˆ

X

fdPy1 −
ˆ
X

fdPy2

∣∣∣∣ = |Iy1(f)− Iy2(f)| = |qf̂ (y1)1 − qf̂ (y2)1|≤ dY (y1, y2).

It follows now that q is 1-Lipschitz.

Let f : X → LA be a 1-Lipschitz map and let a be an element of A. Let sa : A → 2 be the
map that sends a to 1 and every other element to 0. Since we have that Lsa ◦ f = f̂a we also
have that Lsa ◦ qf = q

f̂a
. In particular we find for every y ∈ Y that

Iy(fa) = q
f̂a
(y)1 = (Lsa ◦ qf (y))1 = qf (y)a.

Using this we obtain for every y ∈ Y and for every a ∈ A that

[pf ◦ q(y)]a = IPy (fa) = Iy(f)a = qf (y)a.

This shows that q is a morphism of cones from (LX, (pf )f ) to (Y, (qf )f ).
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Let q̃ : Y → LX be another morphism of cones. Then for every 1-Lipschitz function f : X →
[0, 1] we have that ˆ

X

fdq̃(y) = (pf̂ ◦ q̃(y))1 = qf̂ (y)1 = Iy(f).

This show that q̃(y) = q(y) for all y ∈ Y and therefore (LX, (pf )f ) is the limiting cone over the
diagram DX . This implies that L(X) ∼= TL(X) for all compact metric spaces. This induces a
natural isomorphism L ∼= TL.

It can be checked that the unit and multiplication of the codensity monad of L are equal to
the unit and multiplication of the bounded Lipschitz monad.

Remark 3.6.11. Note that the bounded Lipschitz monad can be extended to a monad on the
category KMet of compact metric spaces and all Lipschitz maps. The compact metric space
LX is isomorphic to the Kantorovich space in this category. This monad can also be obtained
as a codensity monad in a similar way. The proof of this is a simple adaptation of the proof
Theorem 3.6.10.

Remark 3.6.12. The Kantorovich monad on compact metric spaces introduced by van Breugel
in [62] was extended to a monad on complete metric spaces by Fritz and Perrone [25, 27]. The
underlying endofunctor of this monad sends a complete metric space (X, d) to the Kantorovich
space of (X, d). This is the space of all Radon probability measure of finite moment together
with the Kantorovich distance.

We would like to use the integral representation theorem from Example 3.5.8 to construct
this monad as a codensity monad, but we have been unable to find a way to do so.

3.6.3 Baire monad

In this section we will introduce a new monad of probability measures, which we will call the
Baire monad and we explain how this monad arises as a codensity monad. We write Haus to
mean the category of Hausdorff spaces and continuous maps.

For a Hausdorff space X let BX be the space of Baire probability measures on X with
the smallest topology such that evf : BX → [0, 1] is continuous for every continuous function
f : X → [0, 1]. Much as in the previous sections this induces a functor B : Haus → Haus
where Haus is the category of Hausdorff spaces and continuous maps. We can define a monad
structure on this endofunctor and we call this monad the Baire monad.

For a countable set A let BA be the subspace of [0, 1]A of families (pa)a∈A such that∑
a∈A pa = 1. Every finite map4 f : A → C of countable sets induces a continuous map

Bf : BA → BC. Let Setfc be the category of countable sets and finite maps. We obtain a
functor B : Setfc → Haus.

Theorem 3.6.13. The Baire monad is the codensity monad of B.

The proof of this result is similar to the proof of Theorem 3.4.6 and Theorem 3.4.1. Therefore
we will only give a short sketch of the proof. We will again use Proposition 3.2.4 and show that
BX is the limit of the diagram

X ↓ B → Setfc
B−→ Haus.

Every continuous map f : X → BA induces a map pf : BX → BA by sending P to
´
X
fdP.

Because we use finite maps and the finite sum of continuous functions is continuous, these maps
form a cone over the diagram.

4Finite maps were introduced in Section 3.4.3

68



To show that this cone is universal we can use a similar argument as in the proof of Theorem
3.4.1, since all the maps introduced here were finite maps. Only now we use the representation
theorem from Example 3.5.12 instead of Proposition 3.3.6.

Remark 3.6.14. The results in this section would also work for arbitrary topological spaces.
Because it is not common in probability theory to study probability measures on non-Hausdorff
spaces we chose to restrict everything to Hausdorff spaces.

Remark 3.6.15. The construction of the Baire monad as a codensity monad is slightly different
from the other probability monads. Here the functor is not of the form

Setfc
i−→ Haus

B−→ Haus.

Therefore it does not completely follow the pattern of the constructions in the previous monads.
We tried to construct this monad as the codensity monad of a functor of the of form Bi for some
(inclusion) functor i : Setfc → Haus, but we have not been able to do this so far.
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Chapter 4

A categorical proof of the
Carathéodory extension theorem

4.1 Introduction

The Carathéodory extension theorem is an important result in measure theory. It guarantees
the existence of the Lebesgue measure (or more generally the Lebesgue–Stieltjes measure) and of
product measures. But it also is a key result in the proof of the Kolmogorov extension theorem,
which guarantees the existence of Brownian motion and which is closely related to martingale
convergence results.

If we want to define a measure on a measurable space (X,Σ), we need to assign to every
subset A ∈ Σ an element of [0,∞]. However, we often work with σ-algebras of the form σ(B),
where B is an algebra of subsets of X, i.e. closed under finite unions and complements. In
this case it can be very difficult to know what a general measurable subset looks like and to
assign real numbers to them in a σ-additive way. This problem is solved by the Carathéodory
extension theorem. It states that a σ-additive map B → [0,∞] can be extended to a σ-additive
map σ(B) → [0,∞]. Here, σ-additive should be interpreted as ‘σ-additive whenever unions of
countable pairwise disjoint collections exist’. Moreover, this extension is very often, but not
always, unique.

B [0,∞]

σ(B)

The classical proof for this result is relatively long and technical (see for example Theorem 1.41
in [40]). It consists of different steps of extending and restricting back and requires several smart
‘tricks’ and constructions. In this paper we will give a categorical proof for the Carathéodory
extension theorem using results on extensions of lax, colax and strict transformations between
functors. Several parts of this proof look similar to steps in the classical proof. However, in
our proof all constructions follow from the Kan extension formulas. Moreover, viewing the
Carathéodory extension theorem in this categorical framework, allows us to compare it to ex-
tension results in other areas of mathematics. Furthermore, this technique allows us to easily
generalize Carathéodory’s result to measures taking values in other posets or spaces.

To do this we start by studying categories of certain transformations between functors and
extensions of transformations along transformations. In Section 4.2 and Section 4.3 we do this
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on a fairly abstract level. We discuss (co)laxification (co)monads and are in particular interested
in the case that their (co)algebras are strict transformations. We give several abstract conditions
for extensions of certain transformations to exist.

In Section 4.4 and Section 4.5, we give concrete constructions for the operations and extensions
discussed in Section 4.2 and Section 4.3. In this part (co)lax coends and (co)lax morphism
classifiers play an important role.

In the last two sections of this chapter we apply the previous sections to measure theory. We
start by representing inner and outer premeasures by certain transformations between certain
functors. By applying the extension results to these functors, we obtain our categorical proof
for Carathédory’s extension result. We furthermore make a distinction between left and right
Carathédory extensions. The right one always exists and is the same as the extension in the
classical proof, the left one however does not always exist. This is also related to the fact that
inner measures and outer measures can behave surprisingly different from each other. Moreover,
we immediately obtain a way to characterize these extensions by a universal property, namely
as a maximal or minimal extension. This is interesting when uniqueness is not guaranteed.

Posets of transformations Extensions of transformations
Abstract theory 4.2 4.3

Concrete constructions 4.4 4.5
Applications to measures 4.6 4.7

4.2 Posets of (co)lax transformations

In this section we will introduce and discuss posets of Σ-natural (co)lax transformations and
strict transformations. In particular we will be interested in the embeddings between these and
when these are (co)reflective. Furthermore, we will look at the (co)monads these adjunctions
induce and study their (co)algebras.

This section focuses on abstract existence results of (co)reflection operations; in Section 4.4 we
will give concrete constructions of these operations. In Section 4.6, we will represent inner (outer)
premeasures as Σ-natural (co)lax transformations and strict transformations. The (co)reflection
operations described in this section will then correspond to operations that turn inner (outer)
premeasures into premeasures.

Let C be a small poset-enriched category. Let Pos be the category of posets and order-
preserving maps, viewed as enriched over itself. Let F and G be enriched functors C → Pos. Let
Σ be a collection of morphisms in C.

We will study several generalizations of natural transformations. In the first variation we
only have naturality squares for morphisms in the fixed collection Σ.

Definition 4.2.1. A Σ-natural (general) transformation τ : F → G is a collection of
order-preserving maps (τA : FA→ GA)A∈obC such that

FA GA

FB GB

Ff Gf

τA

τB

commutes for all f ∈ Σ.

In the other variations we will also allow weaker naturality squares.
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Definition 4.2.2. A Σ-natural lax transformation τ : F → G is a collection of order-
preserving maps (τA : FA→ GA)A∈obC such that

FA GA

FB GB

Ff Gf

τA

τB

≤

for all morphisms f : A→ B in C and such that this is an equality whenever f ∈ Σ.

Dually, we can define Σ-natural colax transformations, by reversing the inequality sign
in the above definition.

Definition 4.2.3. A strict transformation τ : F → G is a collection of order-preserving maps
(τA : FA→ GA)A∈obC such that

FA GA

FB GB

Ff Gf

τA

τB

commutes for all morphisms f : A→ B in C.

Note that a strict transformation is the same as a general Mor(C)-natural transformation. In
the case that Σ = ∅, we will omit ‘Σ’ in the terminology and notation.

The set of Σ-natural transformations is partially ordered. The order is defined by

τ1 ≤ τ2 :⇔ τ1A(x) ≤ τ2A(x)

for all A ∈ ob C and x ∈ FA and for Σ-natural transformations τ1 and τ2.
The poset of Σ-natural transformations is denoted by [F,G]Σ; the subposets of Σ-natural

lax transformations, Σ-natural colax transformations and strict transformations are denoted
by [F,G]Σl , [F,G]

Σ
c and [F,G]s respectively. We clearly have the following pullback square of

inclusions.
[F,G]s

[F,G]Σc [F,G]Σl

[F,G]Σ
Uc Ul

⌟

We will now give conditions on the functors F and G such that the inclusions in the above
diagram are (co)reflective and such that these posets of transformations are complete.

Proposition 4.2.4. Suppose GA is cocomplete1 for all A ∈ obC and suppose Gf preserves all
joins for all f ∈ Σ. Then [F,G]Σl and [F,G]Σ are cocomplete and the inclusion Ul : [F,G]

Σ
l →

[F,G]Σ preserves all joins.

Proof. Let (λi)i∈I be a collection of Σ-natural transformations. Define for all A ∈ ob C and
x ∈ FA,

λA(x) :=
∨
i∈I

λiA(x).

1Since GA is a poset for every object A in C, GA is also complete.
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For f : A→ B ∈ Σ and x ∈ FA,

Gf(λA(x)) = Gf

(∨
i∈I

λiA(x)

)
=
∨
i∈I

Gf(λiA(x)) =
∨
i∈I

λiB(Ff(x)) = λB(Ff(x)).

Therefore λ is a Σ-natural transformation and it straightforward to verify that this is the join of
(λi)i∈I in [F,G]. If λi is lax for every i ∈ I, then for a map f : A→ B in C and x ∈ FA,

Gf(λA(x)) = Gf

(∨
i∈I

λiA(x)

)
≤
∨
i∈I

Gf(λiA(x)) ≤
∨
i∈I

λiB(Ff(x)) = λB(Ff(x)).

Here we used that Gf is order-preserving and that λi is lax for all i ∈ I. It follows that λ is a
Σ-natural lax transformation. This is the join of (λi)i∈I and clearly Ul preserves this join.

Using Proposition 4.2.4 and the Adjoint Functor theorem for posets, we immediately obtain
the following corollary.

Corollary 4.2.5. If GA is cocomplete for all A ∈ ob C and if Gf preserves joins for all f ∈ Σ,
then Ul : [F,G]

Σ
l → [F,G]Σ has a right adjoint Rl : [F,G]

Σ → [F,G]Σl .

Since Ul is full and faithful, the unit is an equality, i.e. λ = RlUlλ for a Σ-natural lax
transformation λ. Clearly, we also have dual results for Proposition 4.2.4 and Corollary 4.2.5.
In particular, if GA is complete for all A ∈ ob C and Gf preserves meets for all f ∈ Σ, then
Uc : [F,G]

Σ
c → [F,G]Σ has a left adjoint Lc : [F,G]

Σ → [F,G]Σc and σ = LcUcσ for a Σ-natural
colax transformation σ.

Assume from now on that GA is (co)complete and that Gf preserves all joins and meets for
f ∈ Σ. Using these adjunctions we obtain operations that turn lax transformations into colax
transformations and vice versa. For a Σ-natural lax transformation λ, we denote

λ := LcUl(λ),

and we call λ the colaxification ofλ. For a Σ-natural colax transformation σ, we write

σ := RlUc(σ),

and we call σ the laxification of σ.
In what follows we will often omit the forgetful functors. Using this convention we find that

for a strict transformation τ ,
τ = τ = τ .

The map (−) : [F,G]Σl → [F,G]Σc is left adjoint to (−) : [F,G]Σc → [F,G]Σl . The following
diagram summarizes this:

[F,G]
Σ
l [F,G]Σ [F,G]Σc

Ul Lc

UcRl

(−)

(−)

⊣ ⊣

The monad or closure operator on [F,G]Σl induced by this adjunction is denoted by T and is
called the colaxification monad. The induced comonad or interior operator on [F,G]Σc is
denoted by S and is called the laxification monad.

73



The following proposition discusses the situation where (co)laxifications of Σ-natural co(lax)
transformations are strict.

Proposition 4.2.6. The following are equivalent:

1. λ is strict for all λ ∈ [F,G]Σl ,

2. ([F,G]Σl )
T = [F,G]s,

3. σ is strict for all σ ∈ [F,G]Σc

4. ([F,G]Σc )
S = [F,G]s

Proof. 1 ⇒ 2: For a strict transformation τ , we have that Tτ = (τ) = τ = τ , making it a
T -algebra (or T -closed element). For a T -algebra (or T -closed element) λ, we have that Tλ = λ.
By the hypothesis, we also have that the laxifcation of λ is again λ, i.e. Tλ = λ. Combining this
gives that λ = λ, showing that λ is strict.

2 ⇒ 3: Because σ = Tσ, it follows that σ is a T -algebra and therefore strict, by the hypothesis.

3 ⇒ 4: This is similar to the proof of the implication 1 ⇒ 2. Every strict transformation τ
is a coalgebra since Sτ = τ . For an S-coalgebra (or S-open element) σ, we have σ = Sσ = σ.
Therefore σ is lax and thus strict.

4 ⇒ 1: Similarly to the proof of the implication 2 ⇒ 3, it follows from the fact that λ =
Sλ.

We say that the triple (F,G,Σ) satisfies the strictness condition if it satisfies the con-
ditions in Proposition 4.2.6. In this case the inclusion [F,G]s → [F,G]Σl has a left adjoint
L : [F,G]Σl → [F,G]s and the inclusion [F,G]s → [F,G]Σc has a right adjointR : [F,G]Σc → [F,G]s.
These operations turn Σ-natural (co)lax transformations into strict transformations in a universal
way.

If the strictness condition is satisfied, then the poset of strict transformations is also complete
and we can describe what joins and meets look like. This is explained in the following corollary.

Corollary 4.2.7. Suppose that GA is complete for all A ∈ ob C and that Gf preserves joins for
all f ∈ Σ. Suppose that (F,G,Σ) satisfies the strictness condition. Let (τ i)i∈I be a collection in
[F,G]Σs . Then their join exists and is given by∨

i∈I
τ i = λ,

where λA(x) :=
∨
i∈I τ

i
A(x) for all A ∈ ob C and x ∈ FA.

In the case that (F,G,Σ) satisfies the strictness condition, we can summarize this section by
the following diagram.

[F,G]s

[F,G]Σc [F,G]Σl

[F,G]Σ
Ul

Uc

⌟

Rl

Lc

L

R

⊣ ⊣
⊣⊣
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4.3 Extensions of transformations

In this section, we will focus on extensions of (co)lax and strict Σ-natural transformations. We
will give results on their existence and their properties. In Section 4.5, we will give concrete
constructions of these extensions in particular cases. We will apply this to extend premeasures
to measures in Section 4.7, using the representation of inner and outer premeasures as Σ-natural
transformations from Section 4.6.

Let C be a small poset-enriched category and fix a collection Σ of morphisms in C. Let F,G,H
be enriched functors C → Pos and assume that GA is complete for all A ∈ ob C and that Gf
preserves joins and meets for all f ∈ Σ. Furthermore, let ι : F → H be a strict transformation.

We will recall the definition of extensions of lax transformations from Section 1.2.3. Let
λ : F → G be a Σ-natural general transformation (resp. lax, colax, strict). The left extension
of λ along ι is a Σ-natural general transformation (resp. lax, colax, strict) Lanιλ : H → G such
that Lanιλ◦ ι ≥ λ and such that for every other λ′ : H → G with λ′ ◦ ι ≥ λ, we have λ′ ≥ Lanιλ.
We will sometimes use the notations Langenι ,Lanlaxι ,Lancolaxι and Lanstrictι to emphasize that we
are working with left extensions along ι of general, lax, colax and strict Σ-natural transformations
respectively. 2

F G

H

λ

ι Lanιλ

λ′

≥ ≤

We say that the extension is proper if Lanιλ ◦ ι = λ and we call the extension objectwise if
for all A ∈ ob C,

(Lanιλ)A = LanιAλA.

Dually, we can define the right extension of λ along ι.

If an extension is objectwise, then we can reduce everything to Kan extensions of order-
preserving maps. This gives us for example the following lemma.

Lemma 4.3.1. If the left extension of λ along ι is objectwise and if ιA is full and faithful for
every A ∈ ob C, then the extension is proper.

Proof. Because ιA is full and faithful for all A ∈ ob C, we know by Corollary 6.3.9 in [52] that
(LanιAλA) ◦ ιA = λA for all A ∈ ob C. Because the extension of λ along ι is objectwise, we
conclude that

(Lanιλ) ◦ ι = λ.

Therefore the extension is proper.

Just as for Kan extensions of functors, extending transformations is adjoint to restricting
transformations. The proof is essentially the same as the result for Kan extensions of functors
(see for example Proposition 6.1.5 in [52]).

Lemma 4.3.2. If the restriction map − ◦ ι : [H,G]• → [F,G]• has a right (resp. left) adjoint,
then the right (resp. left) extension of λ along ι exists for all λ ∈ [F,G]•. Moreover, the right
(resp. left) adjoint is given by Ranι− (resp. Lanι−).

2The universal property determines the transformation, therefore we can talk about the left extension.
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In the rest of this section we will look at conditions for extensions to exist and for them to
be proper or objectwise. Extensions of Σ-natural general transformations always exist and are
the best behaved.

Proposition 4.3.3. The right and left extension of τ along ι exists for every Σ-natural general
transformation τ ∈ [F,G]Σ.

Proof. It is clear by the proof of Proposition 4.2.4 and its dual, that [F,G]Σ and [H,G]Σ are
complete and that − ◦ ι preserves all joins and meets. It follows now that the restriction map
− ◦ ι has a left and a right adjoint. The claim now follows from Lemma 4.3.2.

For Σ-natural lax transformations things become more difficult. However, we still have that
right extensions exist.

Proposition 4.3.4. The right extension of λ along ι exists for all λ ∈ [F,G]Σl . Moreover,

Rl(Ran
gen
ι λ) = Ranlaxι

Proof. Because [F,G]Σl is cocomplete by Proposition 4.2.4 and because − ◦ ι preserves all joins,
the restriction map has a right adjoint by the Adjoint Functor Theorem for complete posets.

The left adjoints in the following diagram commute

[Fσ(B), G]
Σ
l [FB, G]

Σ
l

[Fσ(B), G]
Σ [FB, G]

Σ

Ul Ul

−◦ι

−◦ι

Therefore their right adjoints also commute, i.e.

[Fσ(B), G]
Σ
l [FB, G]

Σ
l

[Fσ(B), G]
Σ [FB, G]

Σ

Rl Rl

Ranlax
ι

Rangen
ι

Therefore we have,
Ranlaxι λ = Rl(Ran

gen
ι λ).

Remark 4.3.5. We have the following inequality

[H,G]Σl [F,G]Σl

[H,G]Σ [F,G]ΣRanι−

Ranι−

Ul Ul≤
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If this is an equality and right extensions of Σ-general transformations are objectwise and proper,
then so are right extensions of Σ-lax transformations.

We have the following useful property about the existence of extensions of Σ-natural lax
transformations and when they inherit properties from extensions of Σ-natural general transfor-
mations.

Proposition 4.3.6. We have the following inequality

[H,G]Σl [F,G]Σl

[H,G]Σ [F,G]Σ

≤

−◦ι

Rl Rl

−◦ι

If this is an equality, i.e. if
Rl(− ◦ ι) = (Rl−) ◦ ι,

then left extensions of Σ-natural lax transformations along ι exist and inherit objectwiseness and
properness from left extensions of Σ-natural general transformations.

Moreover, right extensions of Σ-natural lax transformations inherit properness from right
extensions of Σ-natural general transformations.

Proof. The map [H,G]Σ
−◦ι−−→ [F,G]Σ has a left adjoint by Proposition 4.3.3 and the following

diagram commutes

[H,G]Σl [F,G]Σl

[H,G]Σ [F,G]Σ

Ul Ul

−◦ι

−◦ι

Since Ul is full and faithful, it follows from the Adjoint Lifting Theorem (Theorem 4 in [35]) that

[H,G]Σl
−◦ι−−→ [F,G]Σl has a left adjoint. By the hypothesis we have that Rl(− ◦ ι) = (Rl−) ◦ ι.

These are all right adjoint, so therefore their left adjoints commute as well, this means that the
following diagram commutes

[H,G]Σl [F,G]Σl

[H,G]Σ [F,G]Σ

Lanι−

Lanι−

Ul Ul

It follows now easily that properness and objectwiseness are inherited from left extensions of
Σ-natural general transformations.

Suppose now that right extensions of Σ-natural general transformations along ι are proper.
Because Ul(−◦ι) = (Ul−)◦ι, their right adjoints commute as well. Together with the hypothesis,
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this leads to the following commutative square.

[F,G]Σl [H,G]Σl [F,G]Σl

[F,G]Σ [H,G]Σ [F,G]Σ

Ranι−

Ranι− −◦ι

◦ι

Rl Rl Rl

1[F,G]

We now have for a Σ-natural lax transformation λ : F → G,

Ranιλ ◦ ι = Ranι(RlUlλ) ◦ ι = RlUlλ = λ.

We have dual results for Proposition 4.3.4 and Proposition 4.3.6 for Σ-natural colax trans-
formations.

Under even more conditions, we can guarantee the existence of extensions of strict transfor-
mations. Let T1 be the colaxification monad on [H,G]Σl as described before Proposition 4.2.6
and let T2 be the colaxification monad on [F,G]Σl .

Proposition 4.3.7. Suppose that the following diagram commutes

[H,G]Σl [F,G]Σl

[H,G]Σl [F,G]Σl

−◦ι

−◦ι

T1 T2

Then − ◦ ι induces an order-preserving map ([H,G]Σl )
T1 → ([F,G]Σl )

T2 and this map has a right

adjoint Ranalgι .

Moreover, Ranalgι λ = Ranlaxι λ for all algebras λ ∈
(
[F,G]Σl

)T2
.

Proof. It follows from the hypothesis that the following square commutes.

([H,G]Σl )
T1 ([F,G]Σl )

T2

[H,G]Σl [F,G]Σl−◦ι

−◦ι

For a Σ-natural lax transformation λ such that T1λ = λ, we have that

T2(λ ◦ ι) = T1λ ◦ ι = λ ◦ ι.

Therefore the assignment λ 7→ λ ◦ ι induces an order-preserving map ([H,G]Σl )
T1 → ([F,G]Σl )

T2
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and we have the following commuting square:

([H,G]Σl )
T1 ([F,G]Σl )

T1

[H,G]Σl [F,G]Σl

–◦ι

−◦ι

By the Adjoint Lifting Theorem (Theorem 4 in [35]), the right adjoint of −◦ι : [H,G]Σl → [F,G]Σl
can be lifted to a right adjoint of the algebras. Because the left adjoints commute, so do the
right adjoints. It follows that properness and objectwiseness are inherited from the extensions
of Σ-natural lax transformations.

Applying this to the case that the strictness condition holds, immediately gives us the fol-
lowing corollary.

Corollary 4.3.8. Suppose that (H,G,Σ) satisfies the strictness condition and that λ ◦ ι = λ ◦ ι
for all λ ∈ [H,G]l. Then, [H,G]s

−◦ι−−→ [F,G]s has a right adjoint. Moreover,

Ranstrictι λ = Ranlaxι λ

for all λ ∈ [F,G]s.

Proof. For λ ∈ [H,G]Σl , we have that

T2(λ ◦ ι) = (λ ◦ ι) = (λ ◦ ι) = λ ◦ ι = (T1λ) ◦ ι.

Here we used that λ is a strict transformation, and therefore so is λ ◦ ι.
It follows now from Proposition 4.3.7, that [H,G]s

−◦ι−−→
(
[F,G]Σl

)T2
has a right adjoint Ranalgι .

We have that

[F,G]s →
(
[F,G]Σl

)T2 Ranalg
ι−−−−→ [H,G]s

is right adjoint to [H,G]s
−◦ι−−→ [F,G]s. The last claim now also follows from Proposition 4.3.7.

Again, there are dual results of Proposition 4.3.7 and Corollary 4.3.8 for left extensions of
strict transformations.

In general, the existence and properties of left and right extensions are not connected. We
can for example have that right extensions do not exist, but left extensions do and are well-
behaved. However, we do have the following connection between left and right extensions of
strict transformations.

Proposition 4.3.9. Suppose that [H,G]s
−◦ι−−→ [F,G]s has a left and a right adjoint. Then, left

extensions along ι are proper if and only if right extensions along ι are proper.

Proof. Let τ ∈ [F,G]s. By the universal property of extensions, we have (Ranιτ)A ≤ RanιAτA
and LanιAτA ≤ (Lanιτ)A for all A ∈ ob C. We have the following inequalities for all A ∈ ob C:

(Ranιτ ◦ ι)A ≤ RanιAτA ◦ ιA ≤ τA ≤ LanιAτA ◦ ιA ≤ (Lanιτ ◦ ι)A

Suppose that left extensions along ι are proper, i.e. Lanιτ ◦ ι = τ . By the universal property of
right extensions, it follows that

Lanιτ ≤ Ranιτ.
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Therefore τ = Lanιτ ◦ ι = Ranιτ ◦ ι.
Similarly, if right extensions along ι are proper, we find by the universal property of left

extensions that Lanιτ ≤ Ranιτ and we can conclude that Lanιτ ◦ ι = Ranιτ ◦ ι = τ .

An overview of the maps we always have is given by the following diagram. We assume that
(F,G,Σ) and (H,G,Σ) satisfy the strictness condition. In the diagram, squares of the same
colour commute and the dashed arrows indicate that these form the back of the parallelepiped.

[H,G]s [F,G]s

[H,G]Σl [F,G]Σl

[H,G]Σc [F,G]Σc

[H,G]Σ [F,G]Σ−◦ι

−◦ι

−◦ι

−◦ι

Lanι−

Ranι−Lc

Rl
Lc Rl

Lanι−

Ranι−

4.4 The (co)laxification formula

In this section we will give concrete constructions for the operations (−) and (−) discussed in
Section 4.2, in the case that the functors are well-behaved. Using these we can give explicit
constructions of joins and meets in posets of Σ-natural transformations. These constructions
will be used to construct (pre)measures from inner and outer (pre)measures and to describe
joins and meets in posets of (pre)measures in Section 4.6.

Let C be a small poset-enriched category and let Σ be a collection of morphisms in C. Let F
and G be enriched functors C → Pos such that GA is a complete for all A ∈ ob C and such that
Gf preserves meets and joins for all f ∈ Σ.

Intuitively it is clear that (F,G, ∅) satisfying the strictness condition is stronger than (F,G,Σ)
satisfying the strictness condition. This is the content of the following technical result. This
proposition motivates that it is enough to give constructions of these operations in the case that
Σ = ∅.

Proposition 4.4.1. If (F,G, ∅) satisfies the strictness condition, then λ
Σ

= λ
∅
for all λ ∈

[F,G]Σl . In particular, (F,G,Σ) satisfies the strictness condition.3

Proof. The inclusions [F,G]Σc → [F,G]∅c and [F,G]Σ → [F,G]∅ are meet-preserving maps between
complete posets. Therefore, they have left adjoints FΣ

c : [F,G]∅c → [F,G]Σc and FΣ : [F,G]∅ → [F,G]Σ

and we have that
FΣ
c (σ) = σ,

for every general Σ-natural colax transformation σ : F → G. Moreover, the following square

3Here (−)Σ : [F,G]Σl → [F,G]Σc and (−)∅ : [F,G]∅l → [F,G]∅c refer to the operations described in Section 4.2.
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commutes, since their right adjoints do

[F,G]Σ [F,G]∅

[F,G]Σc [F,G]∅c

LΣ
c L∅

c

FΣ
c

FΣ

This gives the following commutative diagram

[F,G]Σl [F,G]∅l

[F,G]Σ [F,G]∅

[F,G]Σc [F,G]∅c

FΣ

FΣ
c

UΣ
l

LΣ
c

(−)
Σ

U∅
l

L∅
c

(−)
∅

For a Σ-natural lax transformation λ : F → G, we know by the hypothesis that λ
∅
is strict and

therefore it is a Σ-natural transformation. Therefore λ
Σ
= FΣ

c λ
∅
= λ

∅
.

For the rest of this section, let Σ := ∅. We will write [F,G]• to mean [F,G]∅• and we will refer
to ∅-natural general, lax and colax transformations as just general, lax and colax transformations
respectively.

To obtain the constructions for (−) and (−), we will define new functors F#, F
#
# and F#

and strict transformations
F

F# F#

F#
#

c l

c′ l′

such that [F#, G]s ∼= [F,G]c; [F
#
# , G]s

∼= [F,G] and [F#, G]s ∼= [F,G]l.

Using these isomorphisms, we can rewrite (−) : [F,G]l → [F,G]c as

[F,G]l ∼= [F#, G]s
−◦l−−→ [F#

# , G]s
Lanc−−−−−→ [F#, G]s ∼= [F,G]c

and similarly, we can write (−) : [F,G]c → [F,G]l as

[F,G]c ∼= [F#, G]s
−◦c−−→ [F#

# , G]s
Ranl−−−−−→ [F#, G]s ∼= [F,G]c.

If the extensions in these compositions are objectwise, we can give an explicit expression for (−)
and (−). In this section we will discuss conditions for when this is the case.

The enriched functor F# : C → Pos is defined on objects by sending every object A in C to
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the lax coend4

F#A :=

ȷ B∈ob C
C(B,A)× FB.

The functor F# is called the lax morphism classifier and has been discussed in [5, 42, 48].
The following proposition gives a concrete description of F#A for A ∈ ob C. For this, first define
the following preorder PA, for an object A in C:

• The elements of PA are pairs (B
g−→ A, y), where g is a morphism in C and y is an element

of FB,

• We write (B1
g1−→ A, y1) ⪯ (B2

g2−→ A, y2) if there exists a morphism s : B2 → B1 in C such
that g1s ≤ g2 and y1 ≤ Fs(y2).

Proposition 4.4.2. Let A be an object of C. Then F#A is the poset induced5 by the preorder
PA.

Proof. Let P̂A denote the poset induced by the preorder PA. We will now show that P̂A satisfies
the universal property of lax coends.

For B ∈ ob C, there clearly is an order-preserving map eB : C(B,A) × FB → P̂A. A map
s : B2 → B1 induces

C(B1, A)× FB2 C(B2, A)× FB2

C(B1, A)× FB1 P̂A

Id×Fs

C(s,A)×Id

eB1

eB2⪯

Indeed, for f : B1 → A and y ∈ FB2, we have that

(f, Fs(y)) ⪯ (fs, y).

This means that the poset P̂A together with the maps (eB)B∈obC form a cowedge. We will now
show that they form a universal cowedge. To do this, consider another cowedge, i.e. a poset
R toghether with order-preserving maps (ẽB : C(B,A) × FB → R)B∈ob C such that for every
morphism s : B2 → B1,

C(B1, A)× FB2 C(B2, A)× FB2

C(B1, A)× FB1 R

Id×Fs

C(s,A)×Id

ẽB1

ẽB2⪯

Let e : PA → R be the map that sends (B
g−→ A, y) to ẽB(g, y). For (g1, y1) ⪯ (g2, y2) in PA,

there exists a morphism s : B2 → B1 such that g1s ≤ g2 and y1 ≤ Fs(y2). Because ẽB1
and

ẽB2
are order-preserving and because the maps (ẽB)B∈obC form a cowedge, we find the following

relations in R:

4Lax coends are explained in the Appendix B
5A preorder P induces a poset by identifying elements a and b in P with each other if a ≤ b and b ≤ a.
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ẽB1(g1, y1) ≤ ẽB1(g1, Fs(y2)) ≤ ẽB2(g1s, y2) ≤ ẽB2(g2, y2).

This shows that e is order-preserving, and therefore it induces an order-preserving map ê : P̂A →
R. This is the unique order-preserving map such that e ◦ eB = ẽB for all B ∈ ob C. This shows
the universal property.

Let [C,Pos]l be the category of enriched functors C → Pos and lax transformations and let
[C,Pos]s be the subcategory of enriched functors and strict transformations. The following result
is Theorem 3.16 in [5] together with Section 7.1.2 in [48]. In [5] the result follows from a more
general theorem. Here we will also give a direct proof.

Proposition 4.4.3. The inclusion [C,Pos]s → [C,Pos]l has a left adjoint, which is given by the
assignment F 7→ F#.

Proof. It is enough to show that [F#, G]s ∼= [F,G]l for all functors F and G naturally in G.

Given a strict transformation τ : F# → G, we can define for every A ∈ ob C a functor
λA : FA→ GA by sending x to τA(1A, x). These form a lax transformation.

Given a lax transformation λ : F → G, we can define a strict transformation τ : F# → G, by
the assignment

τA(g : B → A, y) := λB(Fg(y)).

These define an isomorphism of posets.

The counit of the adjunction in Proposition 4.4.3 is a strict transformation

l′ : F# → F

and is defined by
l′A : F#A→ FA : (g : B → A, y) 7→ Fg(y),

for all objects A in C.
Dually, we define the functor F# : C → Pos by sending every object A in C to the colax

coend

F#A :=

‰ B:C
C(B,A)× FB.

A construction dual to the one from Proposition 4.4.2 can be given for this poset. We also have
a dual version of Proposition 4.4.3, namely that the assignment F 7→ F# defines a left adjoint to
the inclusion [C,Pos]s → [C,Pos]c. The functor F# is called the colax morphism classifier
and has been studied in [5, 42, 48].

The counit is a strict transformation

c′ : F# → F

defined by
c′A : F#A→ FA : (g, y) 7→ Fg(y),

for all objects A in C.
Finally, consider the functor F#

# : C → Pos that is defined by sending every object A in C to

F#
#A :=

∑
B∈ob C

C(B,A)× FB.

83



Similarly to Proposition 4.4.3, it can be shown that the assignment

F 7→ F#
#

defines a left adjoint to the inclusion [C,Pos]s → [C,Pos]. Here [C,Pos] is the category of
poset-enriched functors and general transformations between them.

The unit F → F# is an element of [F, F#]l ⊆ [F, F#] and therefore it corresponds to a strict
transformation

l : F#
# → F#.

We have that
lA(g, y) = (g, y)

for all A ∈ ob C and (g, y) ∈ F#
#A.

Similarly, the unit F → F# is an element of [F, F#]c ⊆ [F, F#] and also corresponds to a
strict transformation

c : F#
# → F#

such that
cA(g : B → A, y) = (g, y)

for all A in C and (g, y) in F#
#A.

This gives us the strict transformations that we will need in the rest of this section:

F

F# F#

F#
#

c l

c′ l′

As explained above, writing the general, lax and colax transformations in terms of F# and F#
#

allows us to describe the operation (−) as a left extension. For a lax transformation λ : F → G,
let λ̃ : F# → G be the corresponding strict transformation. For A ∈ ob C and x ∈ FA, assuming
that the left Kan extension exists, we can write

λA(x) = Lanc(λ̃ ◦ l)A(1A, x).

This follows from the following commutative diagram:

[F,G]l [F,G] [F,G]c

[F#, G]l [F#
# , G] [F#, G]−◦l Lanc−

Ul Lc

∼= ∼= ∼=

Suppose now that this left extension is objectwise. Because GA is cocomplete and F#
#A is small
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for every A, we then would have that λA(x) is equal to

colim(cA ↓ (1A, x) → F#
#A

lA−→ F#A
λ̃A−−→ GA)

=
∨{

λ̃A(g, y) | g : C → A; y ∈ FC such that Fg(y) ≤ x
}

=
∨

{Gg(λC(y)) | g : C → A; y ∈ FC such that Fg(y) ≤ x}

In the following two results (Proposition 4.4.4 and Theorem 4.4.5), we will give conditions for
when this is indeed the case. More specifically, we will give conditions on the functors F and G
such that the colaxification formula,

λA(x) =
∨

{Gg(λC(y)) | g : C → A; y ∈ FC such that Fg(y) ≤ x} ,

holds for every lax transformation λ : F → G , object A in C and x ∈ FA.

Proposition 4.4.4. For λ ∈ [F,G]Σ and A ∈ ob C, define τA : FA→ GA by

τA(x) :=
∨

{Gg(λC(y)) | g : C → A; y ∈ FC such that Fg(y) ≤ x} ,

for x ∈ FA. If τ is colax, then τ = Lcλ. If moreover, λ is lax, then τ = λ.

Proof. Let λ̃ be the strict transformation F#
# → G, corresponding to λ and let τ̃ be the strict

transformation F# → G corresponding to τ . We want to show that τ̃ is the left extension of λ̃

along c. We first show that τ̃ ◦ c ≥ λ̃, i.e.

F#
# G

F#

c
τ̃

λ̃

≥

For (f : C → A, y) ∈ F#
#A,

(τ̃ ◦ c)A(f, y) = Gf(τC(y)) = Gf
∨

{Gg(λC′(y′)) | g : C ′ → C; y′ ∈ FC ′ such that Fg(y′) ≤ y}

≥
∨

{Gf(Gg(λC′(y′))) | g : C ′ → C; y′ ∈ FC ′ such that Fg(y′) ≤ y}

≥ Gf(λC(y)) = λ̃A(f, y),

which means that τ̃ ◦ c ≥ λ̃.

Suppose now that ν : F# → G is a strict transformation such that ν ◦ c ≥ λ̃, i.e.

F#
# G

F#

c ν

λ̃

≥

We will now show that τ̃ ≤ ν. Let (f : C → A, y) ∈ F#A. Consider g : C ′ → C and y′ ∈ FC ′
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such that Fg(y′) ≤ y, then (g, y′) ∈ F#
#C and cC(g, y

′) ≤ (1C , y) in F#C and therefore

νC(1C , y) ≥ (ν ◦ c)C(g, y′) ≥ λ̃C(g, y
′) = GgλC′(y′).

Taking the supremum over all such (g, y′), we have

νC(1C , y) ≥ τC(y)

and by applying Gf to both sides,

νA(f, y) = GfνA(1C , y) ≥ GfτC(y) = τ̃A(f, y).

Here we used that ν is strict and the definition of τ̃ . This shows that τ̃ is the left extension of
λ̃ ◦ l along c.

Let A ∈ ob C and x ∈ FA. Consider the subposets of F#A:

l′A ↓ x := {(g : C → A, y) | Fg(y) ≤ x}

and

(l′A ↓ x)= := {(g : C → A, y) | Fg(y) = x}.

Theorem 4.4.5 (Colaxification formula). Let κ be a regular cardinal. Suppose that

(G1) Gf preserves κ-directed joins for all morphisms f in C,

(F1) (l′A ↓ x)= ⊆ l′A ↓ x is cofinal 6,

(F2) C has and F preserves κ-wide pullbacks.

Then λ is a strict transformation for every lax transformation λ : F → G, i.e. (F,G, ∅) satisfies
the strictness condition.

Furthermore, the colaxification formula holds, i.e. for A ∈ ob C and x ∈ FA,

λA(x) =
∨

{Gg(λC(y)) | g : C → A; y ∈ FC such that Fg(y) ≤ x} .

Proof. For A ∈ ob C and x ∈ FA denote

SA,x := {GgλC(y) | g : C → A; y ∈ FC such that Fg(y) ≤ x}

and write τA(x) :=
∨
SA,x. We will now show that SA,x is κ-directed.

Let I be a set such that |I| < κ. And consider a collection (gi : Ci → A, yi)i∈I in l′A ↓ x.
From (F1) it follows that for every i ∈ I, there exists a (g̃i : C̃i → A, ỹi) ∈ (l′A ↓ x)= such that

(gi, yi) ⪯ (g̃i, ỹi),

i.e. for every i ∈ I there is a map si : C̃i → Ci such that gisi ≤ g̃i and such that yi ≤ Fsi(ỹi).
7

6A subset S of a poset P is cofinal if for every p ∈ P there exists an s ∈ S such that p ≤ s.
7Note that we need the axiom of choice here for κ > ℵ0.
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The maps (g̃i)i∈I form a κ-wide pullback diagram. Let C be the pullback of this diagram
and let (pi : C → C̃i)i∈I be the collection of projections.

...

C̃i

C
... A

C̃j

...

g̃j

g̃ipi

pj

⌟

Because F g̃i(ỹi) = x for all i ∈ I, we have that (ỹi)i∈I ∈×FA
FCi. Since F preserves this limit,

there exists a unique y ∈ FC such that Fpi(y) = ỹi. Let g : C → A be the morphism that is
equal to g̃ipi for all i ∈ I. We find for all i ∈ I that

Ggi(λCi
(yi)) ≤ Ggi(λCi

(Fsi(ỹi)))

= Ggi(λCi
(FsiFpi(y)))

≤ (Ggisipi)(λC(y))

≤ (Gg̃ipi)(λC(y)) = GgλC(y)

We conclude that SA,x is κ-directed. Using (G1), for a morphism f : A→ B, we see that

GfτA(x) =
∨

{Gf(Gg(λC(y))) | g : C → A; y ∈ FC such that Fg(y) ≤ x}

≤
∨
SB,Ff(x) = τB(Ff(x))).

This shows that τ is a colax transformation. It follows from Proposition 4.4.4 that λ = τ . This
shows the second claim.

To prove the first claim we need to show that for f : A→ B

L :=
∨

{Gf(Gg(λC(y))) | g : C → A; y ∈ FC such that Fg(y) ≤ x} ≥
∨
SB,Ff(x)

Consider (g : C → B, y) in l′B ↓ Ff(x). Then by (F1) there exist (g̃ : C̃ → B, ỹ) ∈ (l′B ↓ Ff(x))=
such that (g, y) ⪯ (g̃, ỹ), i.e. there is a map s : C̃ → C such that gs ≤ g̃ and y ≤ Fs(ỹ).

Let P be the pullback of f and g̃ and let p1 : P → A and p2 : P → C̃ be the projection maps.

P A

C̃ B

f

g̃

p2

p1

⌟
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Clearly (x, ỹ) is an element of FA×FB FC̃. Because F preserves pullbacks, there exists a unique
z ∈ F (A×B C̃) such that Fp1(z) = x and Fp2(z) = ỹ. We now have

Gg(λC(y)) ≤ Gg(λC(Fs(ỹ)))

= Gg(λC(FsFp2(z)))

≤ (Ggsp2)(λP (z))

≤ (Gg̃p2)(λP (z))

= Gf(Gp1(λP (z))) ≤ L.

Since (g, y) was arbitrary, this shows that
∨
SB,Ff(x) ≤ L. This proves that λ is a strict

transformation.

Remark 4.4.6. In the case of Theorem 4.4.5, (F,G, ∅) satisfies the strictness conditions. There-
fore, Proposition 4.4.1 can be applied.

4.5 The extension formula

In this section we will give sufficient conditions for extensions to be objectwise. This will allow
us to give concrete formulas for the extensions of Σ-natural (co)lax transformations that were
discussed in Section 4.3. In Section 4.7 we will use these constructions and results to extend
premeasures to measures, using the representation of (pre)measures as strict transformations
described in Section 4.6.

Let C be a small poset-enriched category and let Σ be a collection of morphisms in C. Let
F,G,H be enriched functors C → Pos. Suppose that GA is a complete for all A ∈ ob C and that
Gf preserves meets and joins for all f ∈ Σ and let ι : F → H be a strict transformation.

We will start with a result on the objectwiseness of extensions of Σ-natural general transfor-
mations, this is the content of Theorem 4.5.1. In Theorem 4.5.2, we will give sufficient conditions
for extensions of Σ-natural colax transformations to be objectwise.

Theorem 4.5.1. Suppose that Ff and Hf have left adjoints (Ff)∗ and (Hf)∗ for all f : A→ B
in Σ, such that the following square commutes

FA FB

HA HB

ιA ιB

(Ff)∗

(Hf)∗

Then left extensions of Σ-natural transformations along ι are objectwise.

Proof. Let τ : F → G be a Σ-natural transformation. It is enough to show that (LanιAτA)A∈ob C
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is a Σ-natural general transformation. Let f : A→ B be in Σ and let x ∈ HA,

GfLanιAτA(x) = Gfcolim(ιA ↓ x→ FA
τA−−→ GA)

= colim(ιA ↓ x→ FA
τA−−→ GA

Gf−−→ GB)

= colim(ιA ↓ x→ FA
Ff−−→ FB

τB−−→ GB)

= colim(ιA ↓ x→ ιB ↓ Hf(x) → FB
τB−−→ GB)

= colim(ιB ↓ Hf(x) → FB
τB−−→ GB) = LanιBτB(Hf(x))

The second equality follows from the fact that Gf preserves joins, since f ∈ Σ. Because
GfτA = τBFf , we have the third equality. Equality four, follows from the fact that ι is a
strict transformation.

Using the hypothesis, it can be shown that

ιA ↓ x→ ιB ↓ Hf(x) ∼= ιA(Ff)∗ ↓ x

is right adjoint and therefore final. The last equality now follows.

Theorem 4.5.2. Let κ be a regular cardinal.

(G1) Suppose that Gf preserves κ-directed joins for all morphisms f in C.

(ι1) Suppose that ιA is κ-flat for all A ∈ obC, i.e. ιA ↓ x is κ-directed for all x ∈ FA.

(ι1) Ff and Hf have left adjoints (Ff)∗ and (Hf)∗ for all f : A → B in Σ, such that the
following square commutes

FA FB

HA HB

ιA ιB

(Ff)∗

(Hf)∗

Then left extensions of Σ-natural colax transformations along ι are objectwise.

Proof. Let σ : F → G be a Σ-natural colax transformation. It is enough to show that (LanιAσA)A∈ob C
is a Σ-natural colax transformation. Let f : A→ B be a morphism in ob C and let x ∈ HA,

GfLanιAσA(x) = Gfcolim(ιA ↓ x→ FA
σA−−→ GA)

= colim(ιA ↓ x→ FA
σA−−→ GA

Gf−−→ GB)

≤ colim(ιA ↓ x→ ιB ↓ Hf(x) → FB
σB−−→ GB)

≤ colim(ιB ↓ Hf(x) → FB
σB−−→ GB) = LanιBσB(Hf(x))

In the second equality we use (G1). The inequality in the third line follows from the fact that
σ is colax and the last inequality is induced by the inclusion ιA ↓ x → ιB ↓ Hf(x). This shows
that it is a colax transformation.

To show that the colax transformation is a Σ-natural, suppose that f ∈ Σ. In this case
the first inequality becomes an equality because σ is a Σ-natural transformation and therefore
GfσA = σBFf . From (ι2) it is straightforward to check that

ιA ↓ x→ ιB ↓ Hf(x) ∼= ιA(Ff)∗ ↓ x
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is right adjoint and therefore final. It follows that the second inequality is an equality in this
case.

4.6 Premeasures as transformations

In this section we will represent certain premeasures by certain transformations between functors.
Roughly speaking, colax and lax transformation correspond to inner and outer premeasures and
strict transformations correspond to measures. Using these representations, we can apply the
results from Section 4.2 and Section 4.5 to obtain results and formulas for joins and meets of
certain premeasures and for operations to turn a certain kind of premeasure in a different kind
in a universal way.

In this section we will use the notation
⋃· and ∪· to emphasize that we are working with

disjoint unions of subsets.

4.6.1 Premeasures on B

We will discuss a representation theorem for premeasures on a collection of subsets B as trans-
formations from a functor FB, describing collections of subsets of a premeasurable space (X,B),
to a functor G describing real values (Theorem 4.6.6). This representation result is related to the
ideas in Section 3 of [57]. The rest of this section is focused on proving that (FB, G, ∅) satisfies
the strictness condition and that the colaxification formula holds. For this we use Theorem 4.4.5.

We will use the poset-enriched category Partc whose objects are countable sets and whose
morphisms are partial maps between them. For partial maps f, g : A → B between countable
sets A and B, we write f ≤ g if domf ⊆ domg and f(a) = g(a) for all a ∈ domf . This defines a
partial order on the set of partial maps from A to B, making Partc a poset-enriched category.

For a countable set A and an element a ∈ A, let sa : A → 1 be the partial map that is only
defined on the singleton {a}. Let Σ be the collection of all partial maps with codomain 1 that
are defined on at most one element.

Let (X,B) be a premeasurable space. Define the collection of subsets

B :=

{ ∞⋃·
n=1

Bn | Bn ∈ B for all n ≥ 1

}
.

For a countable set A, define FB(A) as the poset{
(Ea)a∈A ∈ B

A | (Ea)a∈A is a pairwise disjoint collection
}
,

where the order is defined pointwise. For a partial map f : A → B of countable sets, define a
map FBf : FBA→ FBB by the assignment

(Ea)a∈A 7→

 ⋃·
f(a)=b

Ea


b∈B

.

This defines an enriched functor FB : Partc → Pos.

Let A be a countable set. The set [0,∞]A together with the pointwise order, is a poset which
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we will denote by GA. For a partial map f : A→ B of countable sets, the assignment

(pa)a∈A 7→

 ∑
f(a)=b

pa


b∈B

defines an order-preserving map Gf : GA → GB. We obtain an enriched functor G : Partc →
Pos.

Proposition 4.6.1. For a countable set A, the poset GA is complete and for s : A → 1 in Σ,
Gs preserves all meets and joins.

Proof. It is clear that GA = [0,∞]A is complete.

Suppose that s is only defined on {a}. For a collection (xi)i∈I in GA, we find that

Gs

(∨
i∈I

xi

)
=

(∨
i∈I

xi

)
a

=

(∨
i∈I

(xi)a

)
=
∨
i∈I

Gs(xi).

In the case that s is nowhere defined, we have that

Gs

(∨
i∈I

xi

)
= 0 =

∨
i∈I

Gs(xi).

The same argument can be used to prove that Gs preserves meets.

Definition 4.6.2. Let µ : B → [0,∞] be an order-preserving map such that µ(∅) = 0.

• µ is called a outer premeasure if µ (
⋃·∞
n=1En) ≤

∑∞
n=1 µ(En) for every pairwise disjoint

collection (En)n in B.

• µ is called a inner premeasure if µ (
⋃·∞
n=1En) ≥

∑∞
n=1 µ(En) for every pairwise disjoint

collection (En)n in B.

In the case that B is a σ-algebra, these are called outer measures and inner measures
respectively.

Remark 4.6.3. Every premeasure on B can be uniquely extended to a σ-additive map µ : B →
[0,∞]. Indeed, define

µ

( ∞⋃·
n=1

Bn

)
:=

∞∑
n=1

µ(Bn).

To show that this map is well-defined, consider pairwise disjoint collections (Bn)n and (Cm)m in
B such that

∞⋃·
n=1

Bn =
∞⋃·
m=1

Cm.
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We find the following equations:

∞∑
n=1

µ(Bn) =

∞∑
n=1

µ

(
Bn ∩

∞⋃·
m=1

Cm

)

=
∞∑
n=1

∞∑
m=1

µ(Bn ∩ Cm)

=

∞∑
m=1

µ

( ∞⋃·
n=1

Bn ∩ Cm

)

=
∞∑
m=1

µ(Cm).

It is straightforward to see that this is the σ-additive map that uniquely extends µ. Therefore
premeasures can be identified with maps B → [0,∞] that are both an inner and an outer
premeasure.

The poset of order-preserving maps µ : B → [0,∞] such that µ(∅) = 0 with the pointwise order
is denoted by M0(X,B). The subposet of outer (inner) premeasures is denoted by M≤(X,B)
(M≥(X,B). We will write M=(X,B) for the subposet of premeasures, i.e.

M=(X,B) =M≤(X,B) ∩M≥(X,B).

For µ ∈M0(X,B) and a countable set A, define τµA : FBA→ GA by the assignment

(Ea)a 7→ (µ(Ea))a.

Theorem 4.6.4. Let µ ∈M0(X,B), then τµ := (τµA)A is a Σ-natural transformation. Moreover,

• if µ ∈M≤(X,B), then τ is a Σ-natural lax transformation;

• if µ ∈M≥(X,B), then τ is a Σ-natural colax transformation;

• if µ ∈M=(X,B), then τ is a strict transformation.

Proof. Let A be a countable set and let a0 ∈ A. For x := (Ea)a∈A ∈ FBA, we have that

Gsa0(τ
µ
A(x))0 = τµA(x)a0 = µ(Ea0) = τµ1 (FBsa(x)).

For a map s : A→ 1 that is nowhere defined, we see that

Gs(τµA(x))0 = 0 = µ(∅) = τµ1 (FBs(x))0.

This shows that τµ is Σ-natural. Suppose now that µ is an outer premeasure. Consider a partial
map f : A→ B of countable sets. For x := (Ea)a ∈ FBA and b ∈ B, we find that

Gf(τµA(x))b =
∑
f(a)=b

µ(Ea) ≥ µ

 ⋃·
f(a)=b

Ea

 = τµB(FBf(x))b.

It follows that µ is a Σ-natural lax transformation. The other claims follow in a similar way.
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The assignment µ 7→ τµ defines order-preserving maps φ0, φl, φc, φs which form the following
commutative diagram.

M0(X,B) [FB, G]
Σ

M≥(X,B) [FB, G]
Σ
c

M≤(X,B) [FB, G]
Σ
l

M=(X,B) [FB, G]s

φ0

⌟

φs

φl

φc

⌟

For a Σ-natural transformation τ : FB → G, denote the order-preserving map τ1 : B → [0,∞] by
µτ .

Theorem 4.6.5. Let τ ∈ [FB, G]
Σ, then µτ ∈M0(X,B). Moreover,

• if τ ∈ [FB, G]
Σ
l , then µτ ∈M≤(X,B);

• if τ ∈ [FB, G]
Σ
c , then µτ ∈M≥(X,B);

• if τ ∈ [FB, G]s, then µτ ∈M=(X,B).

Proof. Consider the map s : ∅ → 1 and let ∗ be the unique element in FB(∅). Since s ∈ Σ, it
follows that

µτ (∅) = τ1(FBs(∗)) = Gs(τ∅(∗)) = 0.

This shows that µτ ∈ M0(X,B). Suppose now that µ is a Σ-natural lax transformation. A
pairwise disjoint collection (En)n in B is an element in FB(N) which we will denote by x. Consider
the map s : N → 1 which is defined everywhere and for every n ≥ 1, let sn : N → 1 be the map
that is only defined on {n}. Since sn is an element of Σ, we find that for every n ∈ N that

τN(x)n = Gsn(τN(x)) = τ1(FB(x)) = τ1(En) = µτ (En).

Because τ is lax, we also have that

µτ

( ∞⋃·
n=1

En

)
= τ1(FBs(x)) ≤ Gs(τN(x)) =

∞∑
n=1

τN(x)n.

Combining the above gives us that

µτ

( ∞⋃·
n=1

En

)
≤

∞∑
n=1

µτ (En)

and therefore µτ is an outer premeasure. The other claims follow in a similar way.

The assignment τ 7→ µτ defines order-preserving maps ψ0, ψl, ψc, ψs which form the following
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commutative diagram.

M0(X,B) [FB, G]
Σ

M≥(X,B) [FB, G]
Σ
c

M≤(X,B) [FB, G]
Σ
l

M=(X,B) [FB, G]s

ψ0

⌟

ψs

ψl

ψc

⌟

Theorem 4.6.6. The maps ψ0, ψl, ψc and ψs are the inverses of the maps φ0, φl, φc and φs
respectively.

Proof. It is enough to show that ψ0 is the inverse of φ0, since the other maps are restrictions of
these maps. For an order-preserving map µ : B → [0,∞] such that µ(∅) = 0, we find that

ψ0(φ0(µ))(E) = φ0(µ)1(E) = µ(E)

for every E ∈ B. It follows that ψ0(φ0(µ)) = µ.
Let τ : FB → G be a Σ-lax transformation. Let A be a countable set and let x := (Ea)a∈A

be an element of FBA. For a0 ∈ A, let sa0 : A → 1 be the partial map that is only defined on
{a0}. Note that this map is an element of Σ. We find the following equalities:

[φ0(ψ0(τ))]A(x)a0 = [ψ0(τ)](Ea0)

= τ1(Ea0)

= τ1(FBsa0(x))

= Gsa0(τA(x)) = τA(x)a0

Since this hold for every such A, x and a0, we can conclude that φ0(ψ0(τ)) = τ .

4.6.2 The operation (−)

The operation (−) : [FB, G]
Σ
l → [FB, G]

Σ
c induces an operation

M≤(X,B)
φl−→ [FB, G]

Σ
l

(−)−−→ [FB, G]
Σ
c

ψc−→M≥(X,B)

which turns an outer premeasure into an inner premeasure. We will denote this operation also
by (−), this means that for an outer premeasure λ we obtain the inner premeasure

λ := ψc(φl(λ)).

More specifically, we have that for every E ∈ B that

λ(E) := φl(λ)1(E).

We want to apply Theorem 4.4.5 to the transformations that represent premeasures. The fol-
lowing two results (Proposition 4.6.7 and Proposition 4.6.8) will help us to verify the conditions
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of Theorem 4.4.5. This will lead to the proof of Proposition 4.6.9 that describes how to turn a
lax transformation FB → G into a premeasure.

In a similar way we obtain an operation (−) that send outer premeasures to inner premeasures.

Proposition 4.6.7. The category Partc has pullbacks and FB : Partc → Pos preserves them.

Proof. Consider a pullback square in Partc,

A×C B A

B Cg

f

pA

pB .

Let (Ea)a ∈ FBA and (Fb)b ∈ FBB such that⋃·
f(a)=c

Ea =
⋃·

g(b)=c

Fb

for every c ∈ C. For all a ∈ A and b ∈ B, we can write Ea =
⋃·∞
n=1B

a
n and Fb =

⋃·∞
n=1B

b
n, where

Ban and Bbn are elements of B for all n ≥ 1. For (a, b) ∈ A×C B define

G(a,b) :=
⋃·

n≥1,m≥1

Ban ∩Bbm = Ea ∩ Fb.

Then
(
G(a,b)

)
(a,b)

is an element of FB(A×C B). This defines a map

φ : FBA×FBC FBB → FB(A×C B).

For a0 ∈ A, we find that ⋃·
pA((a,b))=a0

G(a,b) =
⋃·

g(b)=f(a0)

G(a0,b)

=
⋃·

g(b)=f(a0)

Ea0 ∩ Fb

= Ea0 ∩
⋃·

g(b)=f(a0)

Fb = Ea0

Similarly for b0 ∈ B, we have that
⋃· pB((a,b))=b0

G(a,b) = Fb0 . Therefore it follows that φ is the

inverse to the canonical map FB(A×C B) → FBA×FBC FBB.

Proposition 4.6.8. For f : A→ B in Partc, Gf preserves directed joins.

Proof. Let (pi)i∈I be a directed collection of elements in GA. For a ∈ A, define pa := supi∈I p
i
a.

For b ∈ B, we always have that

Gf((pa)a)b =
∑
f(a)=b

pa ≥ sup
i∈I

∑
f(a)=b

pia = sup
i∈I

Gf(pi).

To prove the other inequality, consider an element b ∈ B. Suppose first that there exists a ∈
f−1({b}) such that pa = ∞. In that case, for every N ≥ 1, there exists iN ∈ I such that N ≤ piNa .
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In that case
N ≤ piNa ≤

∑
f(a)=b

piNa ≤ sup
i∈I

∑
f(a)=b

pia.

By taking N → ∞, we conclude that supi∈I
∑
f(a)=b p

i
a = ∞, which shows the equality.

Suppose now that pa < ∞ for all a ∈ f−1({b}) and consider a finite set A′ ⊆ f−1({b}) and
ϵ > 0. For every a ∈ A′ there exists ia ∈ I such that

pa −
ϵ

|A′|
≤ piaa .

Because (pi)i∈I is directed and A′ is finite, there exists an i0 ∈ I such that pia ≤ pi0 for all
a ∈ A′. Summing over A′ leads to∑

a∈A′

pa − ϵ ≤
∑
a∈A′

piaa ≤
∑
a∈A′

pi0a ≤
∑
f(a)=b

pi0a ≤ sup
i∈I

∑
f(a)=b

pia.

The claim now follows by first taking ϵ→ 0 and then taking the supremum over all finite subsets
of f−1({b}).

Using the previous results (Proposition 4.6.7 and Proposition 4.6.8) we can now obtain a
formula to turn an outer measure into a measure in a universal way, by applying Theorem 4.4.5.

Proposition 4.6.9. The triple (Fσ(B), G,Σ) satisfies the strictness condition. Moreover, the
map M≤(X,σ(B)) ∼= [Fσ(B), G]

Σ
l → [Fσ(B), G]s ∼= M(X,σ(B)), sends an outer measure µ to a

measure µ, which is defined as

µ(E) := sup

{ ∞∑
n=1

µ(En) |
∞⋃·
n=1

En ⊆ E

}
,

for all E ∈ σ(B).

Proof. By Proposition 4.6.8, we know that Gf preserves directed joins for f : A → B in Partc
From Proposition 4.6.7 we know that FB preserves pullbacks.

We will now prove that condition (F1) from Theorem 4.4.5 holds. Let A be a countable
set and let (Xa)a∈A ∈ Fσ(B)A. Consider g : C → A and (Yc)c∈C ∈ Fσ(B)C such that Za :=⋃· g(c)=a Yc ⊆ Xa for all a ∈ A. In other words

(g : C → A, (Yc)c∈C)

is an element of l′A ↓ (Xa)a∈A.

For d ∈ C ⨿A =: D, define

Ỹd :=

{
Yc if d = c

Xa \ Za if d = a
.

It is clear that (Ỹ )d∈D is an element of FBD. Consider the partial map g + 1 : D → A, which is
the same as g on C and the identity on A. Let s : D → C be the finite partial map that is the
identity on C and is not defined on A.
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We have the following inequality

C A

D

g

g+1
s

≤

and we have that
⋃· s(d)=c Ỹd = Yc for all c ∈ C and⋃·

(g+1)(d)=a

Ỹd = Za ∪· (Xa \ Za) = Xa.

for all a ∈ A. This means that
(g + 1 : D → A, (Ỹd)d∈D)

is an element of (l′A ↓ (Xa)a∈A)= and that

(g, (Yc)c∈C) ⪯ (g + 1, (Ỹd)d∈D).

Therefore it follows that (l′A ↓ (Xa)a∈A)= ⊆ (l′A ↓ (Xa)a∈A) is cofinal. Theorem 4.4.5 now says
that (Fσ(B), G,Σ) satisfies the strictness condition and that for λ ∈ [Fσ(B), G]

Σ
l and x ∈ Fσ(B)A

λA(x) =
∨

{GgλC(y) | g : C → A; y ∈ FBC;FBg ≤ x} .

Let µ be an outer premeasure, then by definition µ := µλµ . For E ∈ σ(B) this means,

µ(E) = λµ1(E)

= sup

Ggλµ((Ec)c) | g : C → 1;
⋃·

c∈domg

Ec ⊆ E


= sup

{ ∞∑
n=1

µ(En) |
∞⋃·
n=1

En ⊆ E

}
.

The following proposition now immediately follows from Corollary 4.2.7, giving us a formula
for the joins of premeasures.

Proposition 4.6.10. The poset M=(X,σ(B)) has all joins and for (µi)i in M=(X,σ(B)),(∨
i∈I

µi

)
(E) = sup

{ ∞∑
n=1

sup
i∈I

µi(En) |
∞⋃·
n=1

En ⊆ E

}

for E ∈ σ(B).

4.6.3 The operation Rl and (−)

The operation Rl : [FB, G]
Σ → [FB, G]

Σ
l induces an operation

M0(X,B)
φ0−→ [FB, G]

Σ Rl−→ [FB, G]
Σ
l

ψl−→M≤(X,B)
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which turns an order-preserving map µ : B → [0,∞] such that µ(∅) = 0 into an outer premeasure.

We will denote this operation also by Rl, the means that for an order-preserving map µ :
B → [0,∞] such that µ(∅) = 0 we obtain an outer premeasure

Rl(µ) := ψl(Rl(φ0(µ)).

Therefore, for every E ∈ B we have that Rl(µ)(E) = Rl(φ0(µ))1(E).

Proposition 4.6.11. For µ ∈M0(X,B) and for E ∈ B, we have that

Rlµ(E) = inf

{ ∞∑
n=1

µ(En) | E ⊆
∞⋃·
n=1

En

}
.

Proof. By the dual of Proposition 4.4.4 it is enough to show that

E 7→ inf

{ ∞∑
n=1

µ(En) | E ⊆
∞⋃·
n=1

En

}
=: µ̃(E)

is an outer premeasure for every order-preserving µ : B → [0,∞] such that µ(∅) = 0.

Consider pairwise disjoint (En)n in B and let ϵ > 0. For every n ≥ 1, there exists pairwise
disjoint (Enm)m in B such that En ⊆

⋃·∞
m=1E

n
m and such that

µ̃(En) ≥
∞∑
n=1

µ(Enm)− ϵ

2n
≥

∞∑
n=1

µ(Enm ∩ En)−
ϵ

2n
.

Summing over all n ≥ 1 gives us that

∞∑
n=1

µ̃(En) ≥
∑

n≥1,m≥1

µ(Enm ∩ En)− ϵ ≥ µ̃

( ∞⋃·
n=1

En

)
− ϵ.

Taking ϵ→ 0 gives us the result.

Since (−) is defined as the restriction of Rl to inner premeasures, we have the following
corollary.

Corollary 4.6.12. Let σ ∈M≥(X,B) then for E ∈ B,

σ(E) = inf

{ ∞∑
n=1

σ(En) | E ⊆
∞⋃·
n=1

En

}
.

Moreover, the poset M=(X,B) has all meets and for (σi)i ∈M+(X,B),(∧
i∈I

σi

)
(E) = inf

{ ∞∑
n=1

inf
i∈I

σi(En) | E ⊆
∞⋃·
n=1

En

}

for every E ∈ B.
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4.7 The Carathéodory extension theorem

In this last section, we will apply the results of extensions of transformations from Section 4.3
and Section 4.5 to the transformations that represent measures and premeasures, as described
in Section 4.6. This will lead to a proof of the Carathéodory extension theorem.

Let (X,B) be a premeasurable space. Let σ(B) be the σ-algebra generated by B. Let
Σ, FB, Fσ(B) and G as in Section 4.6. For a countable set A, we have an inclusion ιA : FBA →
Fσ(B)A. These define a strict transformation ι : FB → Fσ(B). Our goal is to prove that we can
extend strict transformations FB → G along ι and that these extensions are proper.

We will show that right extensions of strict transformations always exist, which will imply the
Carathéodory extension theorem. We will refer to this extension as the right Carathéodory ex-
tension. Moreover, this characterizes the right Carathéodory extension by a universal property.
We will also briefly discuss left extensions. However, we will show that the left Carathéodory
extension does not exist in general.

The operation Ranlaxι : [FB, G]
Σ
l → [Fσ(B), G]

Σ
l induces an operation

M≤(X,B)
ψl−→ [FB, G]

Σ
l

Ranlax
ι−−−−→ [Fσ(B), G]

Σ
l

φl−→M≤(X,σ(B)),

which turns an outer premeasure into an outer measure. We will denote this operation also by
Ranlaxι , i.e. for an outer premeasure λ we obtain an outer measure

Ranlaxι λ := φl(Ran
lax
ι (ψl(λ))).

We use similar notational conventions for Kan extensions of premeasures, inner premeasures and
order-preserving set functions that send ∅ to 0.

4.7.1 The right Carathéodory extension

Lemma 4.7.1. For µ ∈M0(X,B), the right extension of µ along ι exists and for every E ∈ σ(B),

(Rangenι µ)(E) = inf
{
µ(B) | E ⊆ B,B ∈ B

}
.

Proof. It follows by Proposition 4.3.3 that the right extension of µ along ι exists. Observe that
the following diagram commutes.

M0(X,B) M0(X,σ(B))

[FB, G]
Σ [Fσ(B), G]

Σ−◦ι

(−)|B

∼= ∼=

Hence the right Kan extensions corresponds to the usual right Kan extension of order-preserving
maps. We only need to verify that inf{µ(E) | ∅ ⊆ E,E ∈ B} = 0, but this is trivial.

We will now describe what right extensions of outer premeasures look like.

Proposition 4.7.2. Let λ ∈ M≤(X,B). The right extension of λ along ι exists. If λ is a
premeasure, the extension is proper.

Proof. The existence follows from Proposition 4.3.4. Let E ∈ σ(B). By Proposition 4.6.11 and
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Lemma 4.7.1 we find that

[Ranlaxι λ](E) = inf

{ ∞∑
n=1

(Rangenι λ)(En) | E ⊆
∞⋃·
n=1

En, En ∈ σ(B)

}

For B ∈ B, we always have that
[Ranlaxι λ](B) ≤ λ(B).

We will now show that the other inequality also holds in the case that λ is a premeasure. For
ϵ > 0, there exists a collection (En)n of pairwise disjoint element in σ(B) such that B ⊆

⋃·∞
n=1En

and such that

[Ranlaxι ](B) ≥
∞∑
n=1

[Rangenι λ](En)−
ϵ

2
.

Using Lemma 4.7.1, it follows that for every n ≥ 1, there exists Bn ∈ B such that En ⊆ Bn and

[Rangenι λ](En) ≥ λ(Bn)−
ϵ

2n+1
.

It follows now that

[Ranlaxι λ](B) ≥
∞∑
n=1

λ(Bn)− ϵ.

In the case that λ is a measure, then

[Ranlaxι λ](B) ≥ λ(B)− ϵ,

because B ⊆
⋃∞
n=1Bn. By letting ϵ→ 0, we can conclude that

[Ranlaxι λ](B) = λ(B).

Because the following diagram commutes, it follows that the extension is proper in the case that
λ is a premeasure.

M≤(X,B) M≤(X,σ(B))

[FB, G]
Σ
l [Fσ(B), G]

Σ
l

−◦ι

(−)|B

∼= ∼=

Theorem 4.7.3. For µ ∈M≤(X,σ(B)), we have that

µ |B= µ |B.

Proof. Since µ ≤ µ, we have that µ |B≤ µ |B and therefore µ |B ≤ µ |B.
Let C ∈ B. If µ |B(C) = ∞, then we have that ∞ = µ |B(C) = µ(C). Suppose now that

µ |B (C) is finite. Define the set

SC := {A ∈ σ(B) | ∀ϵ > 0 ∃B ∈ B : µ(A∆CB) < ϵ and A ∪B ⊆ C}

Here we use the notation A∆CB := ((C \A) ∩B) ∪ (A ∩ (C\)), i.e. the symmetric difference of
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subsets of C.

If A ∈ SC and ϵ > 0, then there exists B such that µ(A∆B) < ϵ. Therefore µ((C\A−∆CB) =
µ(A∆C(C \ B)) < ϵ. We conclude that C \ A ∈ SA and therefore SA is closed under relative
complements within C.

Let ϵ > 0. For A1, A2 ∈ SC , there exists B1, B2 ∈ B such that µ(A1∆CB1) <
ϵ
3 and

µ(A2∆CB2) <
ϵ
3 . Since (A1 ∪ A2)∆C(B1 ∪ B2) ⊆ (A1∆CB1) ∪ (A2∆CB2), it follows that

µ((A1 ∪A2)∆C(B1 ∪B2)) ≤ ϵ. Therefore SC is closed under finite unions.

Let ϵ > 0 and let (An)
∞
n=1 pairwise disjoint in SC . For N ≥ 1, there exist (Bn)

N
n=1 such that

µ(An∆CBn) ≤ ϵ
2N+1 for all n ∈ {1, . . . , N}. These can be refined to 2N − 1 disjoint (B̃n)

2N−1
n=1

elements in B of which 2N − 1−N are contained in the intersection of two distinct elements of
(Bn)

N
n=1. Let B̃1, . . . , B̃N be those subsets that are not contained in an intersection of any two

distinct elements of (Bn)
N
n=1. For distinct n1, n2 ≤ N , we find that

µ(Bn1 ∩Bn2) ≤ µ(Bn1 ∩Bn2 ∩An1) + µ(Bn1 ∩Bn2 ∩ C \An1)

≤ µ(Bn2 ∩ C \An2) + µ(Bn1 ∩ C \An1)

≤ 2
ϵ

2N+1
=

ϵ

2N

It follows that for k ∈ N + 1, . . . , 2N−1 we have that µ(B̃k) ≤ ϵ
2N

. It follows now that

N∑
n=1

µ(An) ≤
N∑
n=1

(µ(An ∩Bn) + µ(An∆CBn))

≤
N∑
n=1

(
µ(Bn) +

ϵ

2N+1

)

≤
2N−1∑
n=1

µ(B̃n) + ϵ

≤
N∑
n=1

µ(B̃n) +
2N−1∑
n=N+1

µ(B̃n) + ϵ

≤
N∑
n=1

µ(B̃n) + 2ϵ ≤ µ |B(C) + 2ϵ

By letting N → ∞ and then letting ϵ→ 0, we find for pairwise disjoint (An)
∞
n=1 in SC , that

∞∑
n=1

µ(An) ≤ µ |B(C) <∞ (4.1)

It follows that there exists N ≥ 1 such that
∑∞
n=N+1 µ(An) <

ϵ
2 . Because( ∞⋃·

n=1

An

)
∆C

(
N⋃·
n=1

Bn

)
⊆

(
N⋃
n=1

An∆CBn

)
∪

∞⋃·
n=N+1

An,
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we have that

µ

( ∞⋃·
n=1

An∆

N⋃
n=1

Bn

)
≤

N∑
n=1

µ(An∆CBn) +

∞∑
n=N+1

µ(An) ≤ ϵ.

We conclude that SC is closed under countable disjoint unions. This means that S is a σ-algebra
of subset of C that contains all elements in B that are contained in C. By Proposition 4.6.9 and
(4.1) it follows that µ(C) ≤ µB(C).

Theorem 4.7.4. Right extensions along ι of strict transformations exist and are proper.

Proof. Theorem 4.7.3 states that µ |B = µ |B for all outer measures µ. This shows that λ◦ι = λ ◦ ι
for all λ ∈ [Fσ(B), G]

Σ
l . Because (Fσ(B), G,Σ) satisfy the strictness condition, the result now

follows from Corollary 4.3.8 and Proposition 4.7.2.

Theorem 4.7.5 (Carathéodory). Let ρ be a premeasure on a premeasurable space (X,B). There
exists a measure µ on (X,σ(B)), such that µ(B) = ρ(B) for all B ∈ B.

Proof. Let µ be the measure corresponding to the right extension along ι of the strict trans-
formation τρ : FB → G. Since the extension is proper, it follows that µ(B) = ρ(B) for all
B ∈ B.

4.7.2 The left Carathéodory extension

We start by showing that extensions of Σ-natural colax transformations along ι are objectwise
and proper. This is an application of Theorem 4.5.2.

Proposition 4.7.6. Let σ ∈M≥(X,B), then Lancolaxι σ exists and is proper.

Proof. For s : A → 1 in Σ that is defined on {a0}. We have that FBs : FBA → FB1 is defined
by the assignment

(Ea)a∈A 7→ Ea0 .

Now define (FBs)∗ : FB1 → FBA by

(FBs)∗(B)a :=

{
B if a = a0

∅ otherwise
,

for all B ∈ FB1 and a ∈ A.
It is straightforward to verify that (FBsa0)∗ is left adjoint to FBsa0 and these left adjoints

satisfy condition (ι2) in Theorem 4.5.1.
It follows now from Theorem 4.5.1 that σ̃ := Langenι σ exists and is objectwise, i.e.

[Langenι σ](E) = sup {σ(B) | B ⊆ E} .

Since ιA is full and faithful for all countable sets A, we know by Lemma 4.3.1 that the extension
is proper.

We will now show that σ̃ is an inner measure. Let (En)n be a pairwise disjoint collection in
B and let ϵ > 0. For every n ≥ 1, there exists a Bn ∈ B such that Bn ⊆ En and such that

σ̃(En) ≤ σ(Bn) +
ϵ

2n
.
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Summing over all n ≥ 1, gives us that

∞∑
n=1

σ̃(En)− ϵ ≤
∑
n=1

σ(Bn) ≤ σ

( ∞⋃·
n=1

Bn

)
≤ σ̃.

By letting ϵ→ 0, we can see that Langenι σ is an inner measure.
We know by Proposition 4.3.4 that LcLan

gen
ι σ = Lancolaxι σ. But since Langenι is already

colax, it follows that [Lancolaxι ](E) = sup{σ(B) | B ⊆ E} for all E ∈ σ(E) and that Lancolaxι σ is
proper.

However, left extensions along ι of strict transformations might not exist in general. In other
words, the left Carathéodory extension of a premeasure does not always exist, as can be seen
from the following counterexample, based on Example 4.20 in [64].

Example 4.7.7. Let B be the algebra of subsets of Q, generated by {(a, b] ∩Q | a, b ∈ Q}. Let
ρ : B → [0,∞] be the premeasure that takes the value ∞ for all non-empty subsets in B. Suppose
that this premeasure has a left Carathéodory extension µ. Note that since right Caratheodory
extensions exist and are proper, we know by Proposition 4.3.9 that the left Carathédoroy exten-
sion has to be proper. For r > 0, there is a measure µr on Q that is defined by µr({q}) = r for
all q ∈ Q. We clearly have that µr(B) = ρ(B) for all B ∈ B. By the universal property of left
extensions it follows that µ ≤ µr, i.e. for all r > 0 and q ∈ Q, we have

µ({q}) ≤ r.

This implies that µ = 0, which is clearly a contradiction.

Remark 4.7.8. It follows from the π-λ theorem (Theorem 1.19 in [40]), that a finite measure
is determined by its values on a generating algebra of subsets. This means that if there exist a
proper extension, it has to be unique. By the Carathéodory extension theorem (Theorem 4.7.5),
we know that such an extension exist.

It follows now that for finite premeasures, if the left Caratheéodory extension exist it is
necessarily proper by Proposition 4.3.9 and therefore it has to be equal to the right extension.
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Chapter 5

A categorical treatment of the
Radon–Nikodym theorem and
martingales

5.1 Introduction

The Radon–Nikodym theorem gives a correspondence between random variables and measures,
two important concepts in probability theory and measure theory. If we fix a probability space
(Ω,F ,P), then we can look at the random variables on this probability space and the measures
that are absolutely continuous with respect to P. The Radon–Nikodym theorem tells us that
there is a canonical correspondence between these two. The random variable associated to a
measure µ that is absolutely continuous with respect to P is called the Radon–Nikodym derivative
with respect to P. The classical proof gives a concrete construction of these Radon–Nikodym
derivatives and relies on the Hahn decomposition theorem, e.g. Theorem 31.B in [31], Theorem
4.2.2 in [11] and Theorem 3.2.2 in [6]. Important applications of this result are the existence of
conditional expectations and the Girsanov theorem in stochastic calculus.

In Section 5.2 of this chapter, we will give a categorical proof for this result. Moreover,
we will not only prove that there is a bijection between random variables and measures, but
also that this bijection is an isometry. We will do this by starting with the trivial case, when
Ω is finite. We translate this categorically as a natural isomorphism between certain functors.
We will then proceed by Kan extending the trivial, finite version of the result to the general
result. This happens in two parts. The first part (Section 5.2.2) is straightforward and purely
categorical, not relying on any results in measure theory. The second part of the proof (Section
5.2.3) does require some measure theory, in particular it relies on the Riesz–Fischer theorem
(Theorem 5.2.1). Furthermore, the concept of conditional expectation naturally arises from the
Kan extension construction in Section 5.2.3.

In Section 5.3, we will focus on martingales, a special class of stochastic processes. Important
examples of martingales are Brownian motion and unbiased random walks. Furthermore, mar-
tingales have nice convergence properties, which are described by Doob’s martingale convergence
theorem. The proof of this result relies on stopping times, the optional stopping theorem and
several lemmas about upcrossings by stochastic processes. The original proof can be found in
Section XI.14 in [13]. We will give a categorical proof of a weaker version of this result. We
do this by showing that a certain class of functors preserve certain cofiltered limits (Theorem
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5.3.15). By applying this to the functors representing random variables from Section 5.3.3, we
immediately obtain a proof for a weaker martingale convergence theorem. Moreover, if we apply
the same result to the functor representing measures from Section 5.3.3, we find a Kolmogorov
extension-type theorem. In this section we use the results from Section 5.2. However, we first
lift everything to the enriched setting. We consider everything to be enriched over the category
of complete metric spaces. This part is crucial to obtain the main result in this section (Theorem
5.3.15).

In this chapter we will consider every distance function to be an extended pseudometric,
i.e. a function d : X×X → [0,∞] on a set X such that for all x, y ∈ X, d(x, x) = 0 and d(x, y) =
d(y, x), satisfying the triangle-inequality. However,we will refer to an extended pseudometric d
as just metric and to the pair (X, d) as just metric space. The category of these metric spaces
with the 1-Lipschitz maps between them is denoted by Met and the full subcategory of complete
metric spaces by CMet.

For a measurable map f : X → Y and a measure µ on X, we write µ ◦ f−1 to mean the
pushforward measure of µ along f , i.e. for every measurable subset E of Y ,(

µ ◦ f−1
)
(E) := µ(f−1(E)).

5.2 The Radon–Nikodym theorem

The Radon–Nikodym theorem is an important result in measure theory and probability theory.
The goal of this section is to give a categorical proof of this result. We will start this section by
recalling the result and explaining its applications in probability theory. We will then discuss the
trivial finite version of the Radon–Nikodym theorem and explain how this translates categorically.
After that, we focus on ‘Kan extending ’ the trivial finite result to the general result.

The Radon-Nikodym gives a connection between measures and integrable functions.
Let Ω := (Ω,F ,P) be a probability space. We say that two measurable functions f, g :

Ω → [0,∞) are P-almost surely equal if P(f = g) = 1 and we write f =P g. This defines
an equivalence relation on the set {f ∈ Mble(Ω, [0,∞)) | E(f) < ∞} of measurable functions
X → [0,∞). The set

{f ∈ Mble(Ω, [0,∞)) | E(f) <∞}/ =P

becomes a metric space, by endowing it with the L1-metric defined by

dL1(f, g) :=

ˆ
|f − g|dP,

for all f, g ∈ Mble(Ω, [0,∞))/ =P. We will denote this space of random variables by RV(Ω). For
a real number r > 0, let RVr(Ω) be the subspace of random variables f such that P(f ≤ r) = 1.

An important result about the space of random variables that we will need later is the Riesz–
Fischer theorem.

Theorem 5.2.1 (Riesz–Fischer). Let Ω := (Ω,F ,P) be a probability space and let r > 0 be a
real number. The metric spaces RV(Ω) and RVr(Ω) are complete.

Proof. This is Theorem 2.2 in [58].

For a measure µ on a measurable space (Ω,F), we say that µ is absolutely continuous
with respect to P if µ(A) = 0 for all measurable subsets A ⊆ Ω such that P(A) = 0. This is
denoted as µ≪ P. The set of measures on (Ω,F) that are absolutely continuous with respect to
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P becomes a metric space, by endowing it with the total variation metric defined by

dTV(µ, ν) := |µ− ν|(Ω)

= sup

{ ∞∑
n=1

|µ(An)− ν(An)|
∞⋃·
n=1

An = Ω

}
,

for all µ, ν ≪ P. We denote this space of measures by M(Ω). For a real number r > 0, we write
Mr(Ω) for the subspace of measures µ on (Ω,F) such that µ ≤ rP, i.e. µ(A) ≤ rP(A) for all
A ∈ F .

Remark 5.2.2. Using the Hahn decomposition of the signed measure µ− ν, we can see that

dTV(µ, ν) = sup{|µ(A)− ν(A)|+ |µ(AC)− ν(AC)| | A ∈ F}.

In the case that µ(Ω) = ν(Ω), we have that dTV(µ, ν) = 2 sup {|µ(A)− ν(A)| | A ∈ F} .

We have the following well-known result, for which we will give a short proof. A proof can
also be found in Section III.7.4 in [15].

Proposition 5.2.3. Let Ω := (Ω,F ,P) be a probability space and let r > 0 be a real number.
The metric spaces M(Ω) and Mr(Ω) are complete.

Proof. Let (µn)n be a Cauchy sequence in M(Ω). Since |µp(A) − µq(A)| ≤ dTV(µp, µq) for all
A ∈ F , it follows that (µn(A))n is a Cauchy sequence in [0,∞). Define a map µ : F → [0,∞) by

A 7→ lim
n→∞

µn(A).

It is clear that µ is finitely additive. Let (An)
∞
n=1 be a decreasing sequence of measurable subsets

such that An ↓ ∅.
For ϵ > 0, there is an N such that dTV(µp, µq) <

ϵ
2 for all p, q ≥ N . Since µN is σ-additive,

there is an M such that for m ≥M , µN (Am) < ϵ
2 . Therefore, for n ≥ N and m ≥M , we have

µn(Am) ≤ µN (Am) + dTV(µn, µN ) ≤ ϵ.

Taking n → ∞, shows that µ(Am) < ϵ and therefore limm→∞ µ(Am) = 0. We conclude that µ
is σ-additive.

We finish the proof by showing that (µn)n converges to µ in M(Ω). Let K ≥ 1 be a natural
number. Then for every countable partition (Ak)

∞
k=1 and p, q ≥ N ,

K∑
k=1

|µp(Ak)− µq(Ak)| ≤ dTV(µp, µq) <
ϵ

2
.

Taking p→ ∞ first and then K → ∞ gives that

∞∑
k=1

|µ(Ak)− µq(Ak)| <
ϵ

2
,

for every countable partition (Ak)
∞
k=1 and q ≥ N .

By taking the supremum over all countable partitions, we find that

dTV(µ, µq) <
ϵ

2
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for all q ≥ N . This shows that µn → µ in M(Ω).

The space of random variables and the space of measures on Ω are connected in the following
way. For a random variable f ∈ RV(Ω), define a measure φ(f) on (Ω,F) by the assignment

A 7→
ˆ
A

fdP.

If P(A) = 0, then φ(f)(A) = 0 and therefore φ(f) ∈ M(Ω). Moreover for f, g ∈ RV(Ω) and a
measurable partition (An)

∞
n=1 of Ω,

∞∑
n=1

∣∣∣∣ˆ
An

fdP−
ˆ
An

gdP
∣∣∣∣ ≤ ∞∑

n=1

ˆ
An

|f − g|dP =

ˆ
|f − g|dP.

Taking the supremum over all such partitions gives that dTV(φ(f), φ(g)) ≤ dL1(f, g). Therefore
the map φ : RV(Ω) → M(Ω) is 1-Lipschitz.

Theorem 5.2.4 (Radon–Nikodym). The map φ is an isomorphism of metric spaces. In partic-
ular, for every measure µ such that µ≪ P there exists a P-almost surely unique measurable map
f : Ω → [0,∞) such that for all A ∈ F ,

µ(A) =

ˆ
A

fdP.

The f in Theorem 5.2.4 is called the Radon–Nikodym derivative of µ with respect to
P and is denoted as dµ

dP .
The following example is an application of the Radon–Nikodym theorem in probability the-

ory. The existence of conditional expectation can be proven using this result. The concept of
conditional expectation is important in martingale theory, which we will discuss further in Sec-
tion 5.3. This is a slight generalization from the concept of conditional expectation with respect
to a σ-algebra discussed in Section 1.1.2.

Example 5.2.5 (Conditional expectation). Consider two probability spaces Ω1 := (Ω1,F1,P1)
and Ω2 := (Ω2,F2,P2) and let g : Ω1 → Ω2 be a measure-preserving map, i.e. P1 ◦ g−1 = P2.

For a random variable f ∈ RV(Ω1), we can define a measure µ on Ω2 as

µ(B) =

ˆ
g−1(B)

fdP1

for all B ∈ F2. If P2(B) = 0, then P1(g
−1(B)) = 0 and therefore µ ∈ M(Ω2).

By the Radon–Nikodym theorem (Theorem 5.2.4), there exists a unique f̃ ∈ RV(Ω2) such
that ˆ

g−1(B)

fdP1 = µ(B) =

ˆ
B

f̃dP2. (5.1)

The random variable f̃ is called the conditional expectation of f with respect to g and is
denoted as E[f | g]. Because of the uniqueness in the Radon–Nikodym theorem, equation (5.1)
is the defining property for the random variable E[f | g].

5.2.1 The finite Radon–Nikodym theorem

In the case that we are working with a finite probability space, the Radon–Nikodym theorem
becomes trivial. We will discuss this trivial version in this section and explain how this can be ex-
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pressed categorically. To do this we will define two functors, one expressing random variables and
one expressing measures. The finite version of the Radon–Nikodym theorem then corresponds
to saying that these functors are isomorphic.

A finite probability space is a probability space whose underlying set A is finite and
whose σ-algebra is the whole powerset P(A). We will write (A, p) instead of (A,P(A), p). For
an element a ∈ A, we write pa or p(a) to mean p({a}).

We denote the category of probability spaces and measure-preserving maps by Prob and the
full subcategory of finite probability spaces by Probf . The inclusion functor Probf → Prob is
denoted by i.

We start by defining a functor of measures Mf : Probf → CMet. This functor sends a finite
probability space (A, p) to M(A, p) and a measure-preserving map s : (A, p) → (B, q) of finite
probability spaces to the 1-Lipschitz map Mf (s) : M(A, p) → M(B, q), which is defined by the
assignment

m 7→ m ◦ s−1.

Similarly we can define a functor Mf
r : Probf → CMet for every positive real number r.

We can also define a functor of random variables RVf : Probf → CMet in the following way.
On objects this functor is defined by sending a finite probability space (A, p) to the metric space
RV(A, p). On morphisms this functor sends a measure-preserving map s : (A, p) → (B, q) of
finite probability spaces to the 1-Lipschitz map RVf (s) : RV(A, p) → RV(B, q) which is defined
for g ∈ RV(A, p) by

RVf (s)(g) : (B, q) → [0,∞) : b 7→

{
1
qb

∑
s(a)=b pqg(a) if qb ̸= 0

0 otherwise.

The map RVf (s)(g) does not depend on the representation of g and therefore it is well-defined.
In a similar way we define functors RVfr : Probf → CMet for real numbers r > 0.

For a finite probability space (A, p), we define the 1-Lipschitz map

(ρfr )A : RVfr (A, p) → Mf
r (A, p)

g 7→ (g(a)pa)a∈A.

The finite version of the Radon–Nikodym theorem can now be expressed in the following way.

Proposition 5.2.6 (Finite bounded Radon–Nikodym). The maps ((ρfr )A)(A,p) form a natural

isomorphism ρfr : RVfr → Mf
r .

Proof. It is easy to see that (ρfr )A is well-defined and invertible for every finite probability space
(A, p). If follows now by Proposition 4.2 in [46] that this is an isomorphism of metric spaces. It
is straightforward to check the naturality of ρfr .

Since RVfr and Mf
r are isomorphic by Proposition 5.2.6, so are their right Kan extensions

along the inclusion i : Probf → Prob.

Probf CMet

Prob

Mf
r

RVf
r

i

∼=

∼=
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In the following two sections, we will study the right Kan extensions of these functors. In Section
5.2.2 we will describe what the right Kan extension of the finite measures functor Mf

r : Probf →
CMet along i : Probf → Prob looks like and in Section 5.2.3 we will do the same for the finite

random variables functor RVfr .

This will lead to a categorical proof for the bounded Radon–Nikodym theorem in Section
5.2.4.

5.2.2 The measures functor M

In this section we will study the right Kan extension of the functor Mf
r : Probf → CMet along

the inclusion functor i : Probf → Prob.

Probf CMet

Prob

i

Mf
r

RaniM
f
r

We will first describe how RaniM
f
r acts on objects in Theorem 5.2.7 and then how it acts on

morphisms in Proposition 5.2.8. It will turn out that this right Kan extension expresses certain
measures on arbitrary probability spaces. This will then motivate the notation Mr := RaniM

f
r .

We will then show that these functors form a diagram DM:

. . . M1 . . . M2 . . . Mr . . .

In the second part of this section we will describe the colimit of this diagram. The obtained
colimiting functor will express measures and therefore this will motivate the notation M : Prob →
CMet for the colimit of DM.

Theorem 5.2.7. Let Ω := (Ω,F ,P) be a probability space. Then

RaniM
f
r (Ω) = Mr(Ω).

Proof. Let U : Ω ↓ i→ Probf be the forgetful functor and let DΩ denote the diagram

Ω ↓ i U−→ Probf
Mf

r−−→ CMet.

We will now show that Mr(Ω) = limDΩ.

For a measure-preserving map g : Ω → A, where A := (A, p) is some finite probability space,
define a map pg : Mr(Ω) → Mf

r (A) by

pg(µ) := µ ◦ g−1.

It can be checked that this map is well-defined and 1-Lipschitz. It is also straightforward to
check that the metric space Mr(Ω) together with the maps (pf )f form a cone over the diagram
DΩ.

We will now show that this cone is universal. To do that, consider another cone (Y, (qf )f ))
over the diagram DΩ.

Let E be a measurable subset of Ω. Let 2 := {0, 1} and let pE be the probability measure
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on 2 defined by
pE(1) := P(E).

The assignment

ω 7→

{
1 if ω ∈ E

0 otherwise,

defines a measure-preserving map 1E : Ω → (2, pE).

For y ∈ Y , define a map µy : F → [0,∞) by

µy(A) := q1A(y)(1).

since q1E (y) is an element of Mf
r (2, pE),

µy(E) = q1E (y)(1) ≤ rpE(1) = rP(E)

and therefore µy ≤ rP.

We will now show that µy is a measure. Consider disjoint measurable subsets E1 and E2 of
Ω. Let 3 := {0, 1, 2} and let pE1,E2 be the probability measure on 3, defined by

pE1,E2
(1) := P(E1) and pE1,E2

(2) := P(E2).

The assignment

ω 7→


1 if ω ∈ E1

2 if ω ∈ E2

0 otherwise,

defines a measure preserving map 1E1,E2
: Ω → (3, pE1,E2

). Let s : 3 → 2 be the map that fixes
0. The map 3 → 2 that sends 1 to 1 and the other elements to 0 is denoted by s1. The map
s2 : 3 → 2 is defined in a similar way.

We have the following commutative triangles:

(Ω,F ,P) (Ω,F ,P)

(2, pE2) (3, pE1,E2) (2, pE1) (2, pE1∪E2) (3, pE1,E2)

1E1,E2
1E1

s1

1E2

s2

1E1,E2
1E1∪E2

s

Because (Y, (qf )f ) is a cone over the diagram DΩ, we also have the following commutative
triangles:

Y Y

Mf
r (2, pE2

) Mf
r (3, pE1,E2

) Mf
r (2, pE1

) Mf
r (2, pE1∪E2

) Mf
r (3, pE1,E2

)

q1E1,E2
q1E1

Mf
r (s1)

q1E2

Mf
r (s2)

q1E1,E2
q1E1∪E2

Mf
r (s)
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Using the above diagrams we find

µy(E1 ∪E2) = q1E1∪E2
(y)1 = q1E1,E2

(y)1 + q1E1,E2
(y)2 = q1E1

(y)1 + q1E2
(y)1 = µy(E1)+µy(E2),

which shows that µy is finitely additive.

Let (En)n be a sequence of measurable subsets of Ω that decreases to ∅. Because 0 ≤
µy(En) ≤ rP(En), also

0 ≤ lim
n
µy(En) ≤ r lim

n
P(En) = 0.

We can conclude that µy is an element of Mr(Ω). The assignment y 7→ µy defines a map
q : Y → Mr(Ω). For y1, y2 in Y , we find for every measurable subset A that

|µy1(A)− µy2(A)|+ |µy1(AC)− µy2(A
C)| = |q1A(y1)(1)− q1A(y2)(1)|+ |q1AC (y1)(0)− q1AC (y2)(0)|

≤ dTV(q1A(y1), q1A(y2)) ≤ dY (y1, y2).

Taking the supremum over all A ∈ F , shows us that q is 1-Lipschitz. Let (A, p) be a finite
probability space and let g : Ω → (A, p) be a measure-preserving map. It follows that

pg(µy)(a) = µy ◦ g−1(a) = q1({a}◦g)(y)(1) = qg(y) ◦ 1−1
{a}(1) = qg(y)(a)

for all a ∈ A and y ∈ Y . This means that q is a morphism of cones. Furthermore, this morphism
of cones is unique. We can now conclude that Mr(Ω) = RaniMr(Ω).

We have just described how the functor RaniM
f
r behaves on objects. In the following propo-

sition we will study how it acts on morphisms.

Proposition 5.2.8. For a measure-preserving map of probability spaces f : Ω1 → Ω2,

Mr(f)(µ) = µ ◦ f−1,

for all µ ∈ Mr(Ω1).

Proof. By the universal property of right Kan extensions, we know that Mr(f) : Mr(Ω1) →
Mr(Ω2) is the unique morphism such that

Mr(Ω1) Mr(Ω2)

Mf
r (A, p)

Mr(f)

p1hf p2f

commutes for every measure-preserving map h : Ω2 → (A, p), where (A, p) is some finite proba-
bility space. Here p1hf and p2f are the projection maps defined in the proof of Theorem 5.2.7. It

is clear that the map Mr(Ω1) → Mr(Ω2) defined by the assignment µ 7→ µ ◦ f−1 satisfies this
property and therefore the claim follows.

Theorem 5.2.7 and Proposition 5.2.8 tell us that the functor RaniM
f
r : Prob → CMet

expresses measures. We will therefore use the notation Mr := RaniM
f
r from now on.

Furthermore, note that in the proofs of Theorem 5.2.7 and Proposition 5.2.8 we have not
used any non-trivial measure-theoretic results. The proofs in this section are straightforward
categorical proofs.
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For r ≤ s, there is a natural transformation Mf
r → Mf

s and therefore a natural transformation
Mr → Ms. This natural transformation is given by the inclusion maps

Mr(Ω) → Ms(Ω),

for all probability spaces Ω. This gives us a diagram

DM : (0,∞) → [Prob,CMet]

of functors and natural transformations

. . . M1 . . . M2 . . . Mr . . . .

In the rest of this section, we will study what the colimit of this diagram looks like. The next
proposition tells us how the colimiting functor acts on objects.

Proposition 5.2.9. Let Ω be a probability space, then colimDM(Ω) = M(Ω).

Proof. Consider the subset

S := {µ ∈ M(Ω) | ∃r > 0 : µ ≤ rP}.

It is enough to show that S is dense in M(Ω). For µ ∈ M(Ω), define

µn := µ ∧ nP,

For every n, let (Pn, Nn) be the Hahn decomposition of the signed measure µ−nP. It is clear
that (Pn)n decreases and let P :=

⋂∞
n=1 Pn. We have that

µn(Nn) = inf

{ ∞∑
m=1

µ(Em) ∧ nP(Em) |
∞⋃·
m=1

Em = Nn

}
= µ(Nn).

It follows that for every n ≥ 1

dTV(µ, µn) = µ(Ω)− µn(Ω) = µ(Pn)− µn(Pn) ≤ µ(Pn).

Furthermore, for every n ≥ 1, we have that

∞ > µ(P ) ≥ lim
n→∞

nP(Pn) ≥ lim
n→∞

nP(P ).

This is only possible when P(P ) = 0. Since µ≪ P, it follows that µ(P ) = 0. Therefore,

lim
m→∞

dTV(µ, µn) = lim
n→∞

µ(Pn) = µ(P ) = 0.

Since µn ∈ S for every S and µn → µ as n→ ∞, the claim follows.

We will now discuss what the colimit of DM does on morphisms.

Proposition 5.2.10. Let Ω1 := (Ω1,F1,P1) and Ω2 := (Ω2,F2,P2) be probability spaces and
let f : Ω1 → Ω2 be a measure-preserving map. Then (colimDM)(f) is the 1-Lipschitz map
M(Ω1) → M(Ω2) defined by

µ 7→ µ ◦ f−1.
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Proof. The map (colimDM)(f) is the unique map M(Ω1) → M(Ω2) such that the following
diagram commutes for every natural number r > 0

M(Ω1) M(Ω2)

Mr(Ω1) Mr(Ω2)
Mr(f)

(colimDM)(f)

The 1-Lipschitz map M(Ω1) → M(Ω2) : µ 7→ µ ◦ f−1 satisfies this condition and therefore it has
to be equal to (colimDM)(f).

Proposition 5.2.9 and Proposition 5.2.10 tell us that the functor colimDM describes measures.
Therefore we will from now on use the notation

M := colimDM.

5.2.3 The random variables functor RV

We will start this section by describing what the right Kan extension of the functor RVfr :
Probf → CMet along the functor i : Probf → Prob looks like.

Probf CMet

Prob

RVf
r

i
RaniRV

f
r

We will do this by first showing how RaniRV
f
r acts on objects in Theorem 5.2.11 and then how

it acts on morphisms in Proposition 5.2.13. The conclusion will be that this right Kan extension
describes bounded random variables on arbitrary probability spaces. We will therefore introduce
the notation RVr to mean the functor RaniRV

f
r : Prob → CMet.

We will proceed the section by showing that these functors form a diagram DRV:

. . . RV1 . . . RV2 . . . RVn . . .

In the remaining part of the section we will study the colimit of DRV. We will show that this
colimiting functor describes random variables and we will therefore denote this functor as RV.

Theorem 5.2.11. Let Ω := (Ω,F ,P) be a probability space. Then

RaniRV
f
r (Ω) = RVr(Ω).

Proof. Let U : Ω ↓ i→ Probf be the forgetful functor and let DΩ denote the diagram

Ω ↓ i U−→ Probf
RVf

r−−−→ CMet.

We will now show that RVr(Ω) = limDΩ.

For a measure-preserving map f : Ω → (A, p) where (A, p) is some finite probability space,
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define a map pf : RVr(Ω) → RVfr (A, p) by

pf (g)(a) :=

{
1
pa

´
f−1(a)

gdP if pa ̸= 0

0 otherwise,

for every g in RVr(Ω) and a in A. It is straightforward to check that the definition of pf
is independent of the choice of representative. It can also be checked that pf is 1-Lipschitz.
Consider a commutative diagram

Ω (A, p)

(B, q)

f1

f2
s

Let g in RVr(Ω) and b in B, we have[(
RVfr (s) ◦ pf1(g)

)
(b)
]
qb =

∑
a∈s−1(b)

pa ([pf1(g)](a))

=
∑

a∈s−1(b)

ˆ
f−1(a)

gdP

=

ˆ
f−1
2 (b)

gdP.

It now follows that (RVr(Ω), (pf )f ) is a cone over the diagram DΩ. We will now show that this
cone is universal. To do that, we consider another cone (Y, (qf )f ) over the diagram DΩ.

For y ∈ Y and measure-preserving map Ω
f−→ (A, p), we define a simple function Ω → [0,∞)

as follows:
syf =

∑
a∈A

([qf (y)](a))1f−1(a).

Consider a commutative diagram

Ω (A, p)

(B, r)

f

g s

We find for every b ∈ B that

ˆ
g−1(b)

syfdP =
∑
s(a)=b

([qf (y)](a))pa = qg(y)(b)rb

It follows that pg(s
y
f ) = qg(y). Note that Ω ↓ i is cofiltered and therefore (syf )f forms a net

in RVr(Ω). Suppose now that (syf )f has a limit sy in RVr(Ω). Then it is easy to see that
pg(s

y) = qg(y) for all g ∈ Ω ↓ i. By the Riesz–Fischer theorem (Theorem 5.2.1) we only need to
show that (syf )f is a Cauchy net.

For this we will use the following two inequalities, which we will prove in Appendix C. For a
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commutative diagram

Ω (A, p)

(B, r)

f

g s

we have
E[
(
syg
)2
] ≤ E[(syf )

2]. (5.2)

and
0 ≤ dL1(syf , s

y
g)

2 ≤ E[(syf − syg)
2] = E[(syf )

2]− E[(syg)2] (5.3)

Now by inequality (5.2) we conclude that
(
E
[
(syf )

2
])

f
is a bounded, monotone net and therefore

it converges. Using (5.3) we can now conclude that (syf )f is a Cauchy net. The Riesz–Fischer

theorem (Theorem 5.2.1) tells us that the net (syf )f converges to some sy in RVr(Ω). This defines
a map Y → RVr(Ω). It can be checked that this is a 1-Lipschitz map. Because pg(s

y) = qg(y)
for every g in Ω ↓ i it follows that this map is in fact a morphism of cones. Finally, it is
straightforward to check that this is the unique morphism of cones. We can now conclude that
RVr(Ω) = RaniRV

f
r (Ω).

Remark 5.2.12. Note that the net (syf )f in the proof of Theorem 5.2.11 could be interpreted as
a martingale. The argument we used to show that this net convergences is similar to the proof
of the martingale convergence theorem in [43].

We now know what the right Kan extension RaniRV
f
r does on objects, but not yet how it

acts on morphisms. This is described in the following proposition.

Proposition 5.2.13. Let f : Ω1 → Ω2 be a measure-preserving map of probability spaces. Let
g ∈ RVr(Ω1). Then

RVr(f)(g) = E[g | f ].

Proof. By the defining property of conditional expectation it is enough to show that

EΩ1
[g1f−1(B)] = EΩ2

[RVr(f)(g)1B ].

for all measurable subsets B of Ω2. Since RVr is defined as RaniRV
f
r , RVr(f) is the unique map

RVr(X) → RVr(Y ) such that the following diagram commutes for every measure-preserving map
h : Ω2 → (A, p), where (A, p) is some finite probability space.

RVr(Ω1) RVr(Ω2)

RVfr (A, p)

RVr(f)

p1hf p2h

Here p1hf and p2f are the projection maps defined in the proof of Theorem 5.2.11. Let 2 := {0, 1}
and let q be the probability measure on 2 defined by q1 := PY (B). Consider the measure-
preserving map

h : Ω2 → (2, q)
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defined by the assignment

h(ω) :=

{
1 if ω ∈ B

0 otherwise.

We now find

EΩ1
[g1f−1(B)] = q1[p

1
hf (g)](1) = q1[p

2
h(RVr(f)(g))](1) = EΩ2

[RVr(f)(g)1B ].

This proves the claim.

For positive real numbers r ≤ s, there is a natural transformation RVfr → RVfs and therefore
a natural transformation RVr → RVs. This natural transformation is given by the inclusion
maps

RVr(Ω) → RVs(Ω),

for all probability spaces Ω. This gives a diagram DRV : (0,∞) → [Prob,CMet] of functors
and natural transformations

. . . RV1 . . . RV2 . . . RVr . . . .

In the rest of this section, we will describe what the colimit of this diagram looks like. We
will describe the colimiting functor’s behaviour on objects and morphisms in the following two
propositions.

Proposition 5.2.14. Let Ω be a probability space. Then (colimDRV)(Ω) = RV(Ω).

Proof. Consider the subset

S := {f ∈ RV(Ω) | ∃r > 0 : P(f ≤ r) = 1}.

We will show that S is dense in RV(Ω). For f ∈ RV(Ω), define

fn := f ∧ n.

Clearly, fn ∈ S and by the Monotone Convergence Theorem, we have that fn → f in RV(Ω).
It follows now that for any complete metric space Y and 1-Lipschitz map f : S → Y , there

is a unique 1-Lipschitz map f̃ : RV(Ω) → Y . From this it follows that colim(DRV(Ω)) = RV(Ω)
and thus (colimDRV)(Ω) = RV(Ω).

We will end this section by showing how colimDRV acts on morphisms.

Proposition 5.2.15. Let Ω1 := (Ω1,F1,P1) and Ω2 := (Ω2,F2,P2) be probability spaces and
let g : Ω1 → Ω2 be a measure-preserving map. Then (colimDRV)(g) is the 1-Lipschitz map
RV(Ω1) → RV(Ω2) defined by

f 7→ E[f | g].

Proof. The map (colimDRV)(g) is the unique map RV(Ω1) → RV(Ω2) such that the following
diagram commutes for every natural number r > 0:

RV(Ω1) RV(Ω1)

RVr(Ω1) RVr(Ω1)
RVr(g)

(colimDRV)(g)
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From Proposition 5.2.13 it follows that the 1-Lipschitz map RV(Ω1) → RV(Ω2) : f 7→ E[f | g]
satisfies this condition and therefore it has to be equal to (colimDRV)(g).

Proposition 5.2.14 and Proposition 5.2.15 tell us that the functor colimDRV describes random
variables. Therefore we will from now on use the notation

RV := colimDRV.

5.2.4 The Radon–Nikodym theorem

We will now conclude Section 5.2 by giving a categorical proof of the Radon–Nikodym theorem.
We will first look at a weaker bounded version (Theorem 5.2.17) and then extend this to the
general version (Theorem 5.2.19). In Proposition 5.2.16 and Proposition 5.2.18, we give the
concrete construction of the correspondence between random variables and measures that we
obtain from the categorical proofs.

For the weaker bounded version of the Radon–Nikodym theorem, we will use the functors
Mr and RVr as defined in Section 5.2.2 and Section 5.2.3.

Recall that we have a natural transformation ρfr : RVfr → Mf
r . This induces a natural trans-

formation Raniρ
f
r : RaniRV

f
r → RaniM

f
r . This is a natural transformation RVr → Mr, which

we will denote by ρr. In the following proposition, we will describe this natural transformation.

Proposition 5.2.16. Let Ω be a probability space. For g ∈ RVr(Ω) and B a measurable subset
of Ω, then (ρr)Ω is the map RVr(Ω) → Mr(Ω) defined by the assignment

g 7→
ˆ
(−)

gdP.

Proof. Since ρr is defined as Raniρ
f
r , the map (ρr)Ω is the unique map RVr(Ω) → Mr(Ω) such

that the following diagram commutes for every measure-preserving map h : Ω → (A, p), where
(A, p) is some finite probability space.

RVr(Ω) Mr(Ω)

RVfr (A, p) Mf
r (A, p)

(ρr)Ω

pRV
h pMh

(ρfr)A

Here pRVh and pMh are the projection maps defined in the proofs of Theorem 5.2.7 and Theorem
5.2.11.

Let 2 := {0, 1} and let p be the probability measure on 2 defined by p1 := P(B). We have a
measure preserving map

h : Ω → (2, p)

defined by the assignment

h(x) :=

{
1 if x ∈ B

0 otherwise.

The commutative diagram for this measure preserving map gives us

[(ρr)Ω(g)](B) = [pMh ◦ (ρr)Ω(g)]1 = [(ρfr )2 ◦ pRVh (g)]1 = E[g1h−1(1)] = E[g1B ],

for all g ∈ RVr(Ω) and B ∈ F .
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Because ρfr is an isomorphism, so is ρr. This gives us the bounded Radon–Nikodym theorem.

Theorem 5.2.17 (Bounded Radon–Nikodym). The natural transformation ρr : RVr → Mr is
an isomorphism.

Proof. By Proposition 5.2.6, we know that RVfr
ρfr−→ Mf

r is an isomorphism. Using Theorem 5.2.7
and Theorem 5.2.11 and the fact that the Kan extension is functorial, we conclude that

RVr
Raniρ

f
r−−−−−→ Mr

is a natural isomorphism.

Probf CMet

Prob

Mf
r

RVf
r

i

Mr

RVr

∼=

∼=

The natural transformations ρr : RVr → Mr for every r > 0, induce a morphism of diagrams
ρ̃ : DRV → DM. Therefore we obtain a natural transformation colimρ̃ : colimDRV → colimDM.
This is a natural transformation RV → M, which we will denote by ρ. The following proposition
describes this natural transformation.

Proposition 5.2.18. Let Ω be a probability space, then ρΩ is the map RV(Ω) → M(Ω) defined
by the assignment

f 7→
ˆ
(−)

fdP.

Proof. The map ρΩ is the unique map that makes the following diagram commute for every
r > 0.

RV(Ω) M(Ω)

RVr(Ω) Mr(Ω)
(ρr)Ω

ρΩ

ir,Ω jr,Ω

Where ir,Ω and jr,Ω are the inclusion maps. We have that for all r > 0,

ˆ
(−)

ir,Ω(f)dP = jr,Ωρr(f)

for all f ∈ RVr(Ω). The claim now follows.

We are now ready to complete the categorical proof for the Radon–Nikodym theorem.

Theorem 5.2.19 (Radon–Nikodym). The natural transformation ρ : RV → M is an isomor-
phism.

Proof. Because ρr : RVr → Mr is an isomorphism for every r > 0, so is ρ̃ : DRV → DM. We find
that ρ := colimρ̃ : RV → M is a natural isomorphism.
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. . . RV1 . . . RVr · · · RV

. . . M1 . . . Mr · · · M

∼= ∼= ∼=

5.3 The martingale convergence theorem

In this section we will focus on a special class of stochastic processes, namely martingales. These
stochastic processes have nice convergence properties, of which we will prove one categorically
later in this section. Important examples of martingales are Brownian motion and unbiased
random walks.

Let Ω := (Ω,F ,P) be a probability space and let I be a directed poset. A filtration is an
indexed collection (Fi)i∈I of σ-subalgebras of F such that Fi ⊆ Fj for i ≤ j and such that

σ

(⋃
i∈I

Fi

)
= F .

We say that (Ω,F , (Fi)i∈I ,P) is a filtered probability space. The probability space (Ω,Fi,P |Fi

) is denoted by Ωi. For i ≤ j in I, there is a measure-preserving map fij : Ωj → Ωj and for
every i ∈ I there is a measure-preserving map fi : Ω → Ωi.

An indexed collection (Xi)i∈I of random variables such that Xi ∈ RV(Ωi) is called a mar-
tingale if

E[Xj | fij ] = Xi

for all i ≤ j in I.
Martingales often have nice convergence properties. We will categorically prove a weaker

version of the following martingale convergence theorems in Section 5.3.4. The proofs can be
found in Section XI.14 in[13].

Theorem 5.3.1 (Doob’s L1 martingale convergence theorem). Let (Xn)
∞
n=1 be a martingale

such that
lim
λ→∞

sup
n

E[Xn1{Xn>λ}] = 0,

then (Xn)n converges to a random variable X in L1-norm and for all n ≥ 1,

E[X | fn] = Xn.

Theorem 5.3.2 (Doob’s Lp martingale convergence theorem). Let p > 1 and let (Xn)
∞
n=1 be a

martingale such that
sup
n

E[Xp
n] <∞,

then (Xn)n converges to a random variable X in Lp-norm and for all n ≥ 1,

E[X | fn] = Xn.

To give a categorical proof, the setting from Section 5.2 does not quite work. We need to
change everything from Section 5.2 to the enriched setting. We will enrich everything over the
closed monoidal category CMet, which we will discuss in Section 5.3.1. We then show in Section
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5.3.2 and Section 5.3.3 that the results from Section 5.2 still work when everything is enriched
over CMet. We then conclude Section 5.3 by giving a categorical proof for a weaker version of
the martingale convergence theorems in Section 5.3.4.

5.3.1 The closed monoidal category CMet

In this section we will give an overview of well-known results about metric spaces. For complete-
ness, we give proofs for all the results.

Let i : CMet → Met be the inclusion functor of the full subcategory of complete metric
spaces in the category of metric spaces.

Proposition 5.3.3. The category CMet is complete and i : CMet → Met preserves these
limits.

Proof. For a collection of complete metric spaces (Xi, di)i∈I let X :=
∏
i∈I Xi and define d :

X ×X → [0,∞] by
d((xi)i, (yi)i) := sup

i∈I
di(xi, yi).

It is clear that d defines a metric1 and that the projection maps πi : X → Xi are 1-Lipschitz.
Let (xn)n be a Cauchy sequence in (X, d). Clearly, (xni )n is a Cauchy sequence in (Xi, di) for all
i ∈ I. It follows that (xni )n converges to an element xi in (Xi, di). Denote x := (xi)i. For ϵ > 0,
there exists an N ≥ 1 such that for n1, n2 ≥ N ,

d((xn1
i )i, (x

n2
i )i) ≤ ϵ.

For i ∈ I, there exists Mi ≥ N such that di(x
Mi
i , xi) ≤ ϵ. It follows now that

di(x
N
i , xi) ≤ di(x

N
i , x

Mi
i ) + di(x

Mi
i , xi) ≤ 2ϵ.

Since N does not depend on i, we can take the supremum over all i ∈ I and conclude that

d(xN , x) ≤ 2ϵ.

Therefore, (xn)n converges to x in (X, d) and thus it is a complete metric space. The complete
metric space (X, d) is the product of (Xi, di)i∈I .

For morphisms f, g : (X, dX) → (Y, dY ) in CMet. Let

E := {x ∈ X | f(x) = g(x)}

and let dE be the restriction of dX to E × E. This forms a metric space (E, dE). For a Cauchy
sequence (en)n in (E, dE) we know that (en)n converges to some x in (X, dX). Because f and g
are 1-Lipschitz, we see that

f(x) = lim
n
f(en) = lim

n
g(en) = g(x).

Therefore, x ∈ E and (E, d) is complete. The complete metric space (E, d) is the equalizer of f
and g in CMet.

It is clear that i : CMet → Met preserves these limits.

1Recall that all our metrics are really extended pseudometrics. Here, d can take the value ∞ even when di is
finite for every i in I.
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Proposition 5.3.4 (Completion). The inclusion i : CMet → Met has a left adjoint.

Proof. The completion functor (−) : Met → CMet that sends a metric space (X, d) to its
completion (X, d) is left adjoint to the inclusion functor i : CMet → Met.

Proposition 5.3.4 tells us that CMet is a reflective subcategory of Met. We will use this in
the following result about colimits in Met and CMet.

Proposition 5.3.5. The categories CMet and Met are cocomplete.

Proof. For a collection of metric spaces (Xi, di)i∈I , let X :=
∐
i∈I Xi and define d : X ×X →

[0,∞] by

d(x, y) :=

{
di(x, y) if x, y ∈ Xi

∞ otherwise.

Then (X, d) forms a metric spaces and the inclusion maps ιi : Xi → X are 1-Lipschitz maps.
The metric space (X, d) is the coproduct of (Xi, di)i.

For morphisms f, g : (X, dX) → (Y, dY ) in Met, let ∼ be the smallest equivalence relation
such that y1 ∼ y2 if there exist an x ∈ X such that f(x) = y1 and g(x) = y2. Denote F := Y/ ∼.
Define a map d : F × F → [0,∞] by

d(y1, y2) := inf{
n∑
k=1

dY (xk, zk) | y1 ∼ x1, y2 ∼ zn and zk ∼ xk+1}.

This map is well-defined and is a metric. The quotient map Y → F is 1-Lipschitz and it is easy
to verify that F is the coequalizer of f and g in Met.

By Proposition 5.3.4, CMet is reflective in Met1 and therefore it is cocomplete. Colimits in
CMet are constructed by reflecting colimits in Met.

For (complete) metric spaces (X1, d1) and (X2, d2) let (X1, d1)⊗ (X2, d2) be the (complete)
metric space formed by the set X1 ×X2 with the metric

d((x1, x2), (y1, y2)) := d1(x1, y1) + d(x2, y2).

For 1-Lipschitz maps f1 : (X1, dX1
) → (Y1, dY1

) and f2 : (X2, dX2
) → (Y2, dY2

), there is a
1-Lipschitz map

f1 ⊗ f2 : (X1, dX1
)⊗ (X2, dX2

) → (Y1, dY1
)⊗ d(Y2, dY2

)

defined by
(x1, x2) 7→ (f1(x1), f2(x2)).

This obtained functor ⊗ : CMet×CMet → CMet together with the metric space 1 consisting
of one element form a symmetric monoidal structure on CMet.

For metric spaces (X, dX) and (Y, dY ), let [(X, dX), (Y, dY )] be the set of 1-Lipschitz maps
(X, dX) → (Y, dY ) together with the metric defined by

d(f, g) := sup{dY (f(x), g(x)) | x ∈ X}.

Proposition 5.3.6. If (Y, dY ) is complete, then so is [(X, dX), (Y, dY )].

Proof. Let (fn)n be a Cauchy sequence in [(X, dX), (Y, dY )], then it is clear that (fn(x))n is a
Cauchy sequence for every x. Therefore (fn(x))n converges to an element fx ∈ Y .
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Define a map f : X → Y by sending x to fx. Consider x1 and x2 in X and let ϵ > 0. There
exists an n ≥ 1 such that

dY (f(x1), f(x2)) ≤ dY (fx1 , fn(x1)) + dY (fn(x1), fn(x2)) + dY (fn(x2), fx2)

≤ dY (fn(x1), fn(x2) + ϵ ≤ dX(x1, x2) + ϵ.

Taking ϵ→ 0 shows that f is 1-Lipschitz.

For ϵ > 0, there is an N ≥ 1 such that for n1, n2 ≥ N ,

d(fn1 , fn2) ≤ ϵ.

Let n ≥ N . For x ∈ X, there exists Mx ≥ n such that dY (fx, fMx(x)) ≤ ϵ and therefore

dY (fx, fn(x)) ≤ dY (fx, fMx
(x)) + dY (fMx

(x), fn(x)) ≤ 2ϵ.

Since n is independent from x, we can conclude that d(f, fn) ≤ 2ϵ for all n ≥ N , which means
that (fn)n converges to f in [(X, dX), (Y, dY )].

Proposition 5.3.7. The monoidal category CMet is closed.

Proof. Let (X, dX), (Y, dY ) and (Z, dZ) be complete metric spaces. It is easy to verify that there
is a natural bijection

CMet(X ⊗ Y, Z) ∼= CMet(X, [Y, Z]).

Proposition 5.3.8. For metric spaces X and Y , X ⊗ Y ∼= X ⊗ Y

Proof. Let Z be a complete metric space. We have the following natural bijections:

X ⊗ Y → Z
X → [Y,Z]

X → [Y,Z]

X ⊗ Y → Z

Y → [X,Z]

Y → [X,Z]

X ⊗ Y → Z

Here we used that by Proposition 5.3.6, [Y,Z] and [X,Z] are complete, since Z is. Since Z was
chosen arbitrarily, the claim now follows.

Proposition 5.3.7 says that CMet is a closed monoidal category. In what follows we will
look at categories that are enriched over this closed monoidal category. The 2-category of
CMet-enriched categories, enriched functors and enriched natural transformations is denoted as
CMet-Cat.

The forgetful functor U : CMet → Set induces a 2-functor U∗ : CMet-Cat → Cat.
Therefore, for CMet-enriched categories C and D, there is a functor

CMet-Cat[C,D] → Cat[U∗C, U∗D].

The following lemmas will be used later to lift the results from Section 5.2 to the enriched setting.
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Lemma 5.3.9. For a CMet-enriched categories C, the functor

CMet−Cat[C,CMet] → Cat[U∗C, U∗CMet]

is full and faithful.

Proof. Let F and G be enriched functors C → CMet. There is a one-to-one correspondence
between 1-Lipschitz maps Fc → Gc and 1 → [Fc,Gc] for all objects c in C. It follows now
that every natural transformation U∗F → U∗G can be uniquely lifted to an enriched natural
transformation F → G.

The following corollary states that if the non-enriched right Kan extension of enriched functors
is an enriched functor, then it is also the enriched right Kan extension.

Corollary 5.3.10. Let C,D be CMet-enriched categories. Let F : C → CMet, G : C → D and
H : D → CMet be enriched functors and let ϵ : U∗H ◦ U∗G→ U∗F be a (non-enriched) natural
transformation such that

U∗C U∗CMet

U∗D

U∗F

U∗G
U∗H

ϵ

ϵ exhibits U∗H as the right Kan extension of U∗F along U∗G, then there exists a unique enriched
natural transformation ϵ̃ : HG→ F such that U∗ϵ̃ = ϵ and ϵ̃ exhibits H as the right Kan extension
of F along G.

5.3.2 Prob is enriched over CMet

Let Ω1 := (Ω1,F1,P1) and Ω2 := (Ω2,F2,P2) be probability spaces and s ≥ 1. Let probs[Ω1,Ω2]
be the set of measurable maps Ω1 → Ω2 such that P1 ◦ f−1 < sP2 in the case that s > 1 and
the set of measure-preserving maps in the case that s = 1 . For f1, f2 ∈ prob[Ω1,Ω2], define

dΩ1,Ω2
(f1, f2) := 2 sup{P(f−1

1 (A)△f−1
2 (A)) | A measurable subset of Ω2}.

This turns probs[Ω1,Ω2] into a metric space.
For probability spaces Ω1 and Ω2 let Probsr[Ω1,Ω2] be the metric space we obtain by scaling

the metric of probs[Ω1,Ω2] by a factor r > 0. Moreover, let Probsr[Ω1,Ω2] be the completion
of Probsr[Ω1,Ω1].

For now, we will focus on the case that s = 1 and we will omit the index s in this case. This
means that Probr[Ω1,Ω2] consists of the measure-preserving maps. Later, in Corollary 5.3.14
we will have to use the case that s > 1.

Note that the limit of the diagram

Prob1[Ω1,Ω2] . . . Probr[Ω1,Ω2] . . .

is the discrete pseudometric space of measure-preserving maps f : Ω1 → Ω2.
Consider probability spaces Ω1,Ω2 and Ω3. Sending a pair of measure-preserving maps

f : Ω1 → Ω2 and g : Ω2 → Ω3, to g ◦ f : Ω1 → Ω3, defines a 1-Lipschitz map

− ◦ − : prob[Ω1,Ω2]⊗ prob[Ω2,Ω3] → prob[Ω1,Ω3]
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Indeed, this follows from the fact that

2P1

(
(g1f1)

−1(A)△(g2f2)
−1(A)

)
≤ 2P1

(
(g1f1)

−1(A)△(g2f1)
−1(A)

)
+ 2P1

(
(g2f1)

−1(A)△(g2f2)
−1(A)

)
= 2P2(g

−1
1 (A)△g−1

2 (A)) + 2P1(f
−1
1 (g−1

2 (A))△f−1
2 (g−1

2 (A)))

≤ dΩ2,Ω3
(g1, g2) + dΩ1,Ω2

(f1, f2)

for all measurable subsets of Ω3. Using Proposition 5.3.8, this induces a 1-Lipschitz map

Probr[Ω1,Ω2]⊗Probr[Ω2,Ω3] → Probr[Ω1,Ω3]

The above describes a category enriched over CMet, whose objects are probability spaces and
whose hom-objects are given by Probr[Ω1,Ω2] for probability spaces Ω1 and Ω2. We denote
this category by Probr. The subcategory of finite probability spaces is denoted as Probfr and
clearly there is an enriched inclusion functor ir : Probfr → Probr. Furthermore, note that
U∗Probr is the (non-enriched) category Prob for all r > 0.

5.3.3 The enriched functors Mr and RVr

In this section we will show that everything proved in Section 5.2 still works in the enriched
context.

The (non-enriched) functor Mr : Prob → CMet from Section 5.3 induces a CMet-enriched
functor Probr → CMet. Indeed, the assignment f 7→ Mr(f), induces a 1-Lipschitz map

probr[Ω1,Ω2] → [Mr(Ω1),Mr(Ω2)].

To see this, consider two measure-preserving maps f1, f2 : Ω1 → Ω2. For µ ∈ Mr(Ω1) and a
measurable subset A of Ω2, we find that

|Mr(f1)(µ)(A)−Mr(f2)(µ)(A)| = |µ(f−1
1 (A))− µ(f−1

2 (A)))|

=

∣∣∣∣ˆ 1f−1
1 (A) − 1f−1

2 (A)dµ

∣∣∣∣
≤ µ

(
f−1
1 (A)△f−1

2 (A)
)

≤ rP1(f
−1
1 (A)△f−1

2 (A))

Therefore, we have that

|Mr(f1)(µ)(A)−Mr(f2)(µ)(A)|+ |Mr(f1)(µ)(A
C)−Mr(f2)(µ)(A

C)| ≤ rdΩ1,Ω2
(f1, f2).

Taking the supremum over all measurable subsets A of Ω2, gives us that

dMr(Ω2)(Mr(f1)(µ),Mr(f2)(µ)) ≤ rdΩ1,Ω2(f1, f2).

Finally, by taking the supremum of over all µ ∈ Mr(Ω1), we see that the assignment f 7→ Mr(f)
defines a 1-Lipschitz map. This gives a 1-Lipschitz map Probr[Ω1,Ω2] → [Mr(Ω1),Mr(Ω2)].
The obtained enriched functor Probr → CMet is also denoted by Mr.

The restriction to finite probability spaces is denoted by Mf
r and is an enriched functor since

it is the composite of the enriched functors Mr : Probr → CMet and ir : Probfr → Probr.
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Proposition 5.3.11. The commutative triangle of enriched functors

Probfr CMet

Probr

Mf
r

ir Mr

exhibits Mr as the right Kan extension of Mf
r along ir.

Proof. This follows from Theorem 5.2.7 together with Corollary 5.3.10.

The (non-enriched) functor RVr : Prob → CMet from Section 5.2 induces a CMet-enriched
functor Probr → CMet. Indeed, the assignment f 7→ RVr(f) induces a 1-Lipschitz map

prob(Ω1,Ω2) → [RVr(Ω1),RVr(Ω2)].

To see this, consider two measure-preserving maps f1, f2 : Ω1 → Ω2. For X ∈ RVr(Ω1), consider
the measurable subset A+ := {E[X | f1] ≥ E[X | f2]} and let A− be its complement.2 We now
find that

dRVr(Ω2)(RVr(f1)(X),RVr(f2)(X)) = E[|E[X | f1]− E[X | f2]|]
= E[(E[X | f1]− E[X | f2])1A+ ] + E[(E[X | f2]− E[X | f1])1A− ]

= E[X(1f−1
1 (A+) − 1f−1

2 (A+) + 1f−1
2 (A−) − 1f−1

1 (A−))]

≤ r(E[|1f−1
1 (A+) − 1f−1

2 (A+)|] + E[|1f−1
1 (A−) − 1f−1

2 (A−)|])

= r(P(f−1
1 (A+)△f−1

2 (A+)) + P(f−1
1 (A−)△f−1

2 (A−)))

≤ rdΩ1,Ω2
(f1, f2)

By taking the supremum over all X ∈ RVr(Ω1), we see that the assignment f 7→ RVr(f) de-
fines a 1-Lipschitz maps. This induces a 1-Lipschitz map Probr[Ω1,Ω2] → [RVr(Ω1,RVr(Ω2)].
The enriched functor Probr → CMet that we obtain will also be denoted by RVr.

The restriction to finite probability spaces is also denoted by RVfr and is an enriched functor
since it is the composite of the enriched functors RVr : Probr → CMet and ir : Probfr →
Probr.

Proposition 5.3.12. The commutative triangle of enriched functors

Probfr CMet

Probr

RVf
r

ir RVr

exhibits RVr as the right Kan extension of RVfr along ir.

Proof. This follows from Theorem 5.2.11 together with Corollary 5.3.10.

2The subset A+ should actually be defined as {g1 ≥ g2} for some measurable maps g1 : Ω2 → [0, r] and
g2 : Ω2 → [0, r] representing E[X | f1] and E[X | f2] respectively. However, everything that follows is independent
from the choice of g1 and g2 and therefore we just write {E[X | f1] ≥ E[X | f2]}.
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5.3.4 The martingale convergence theorem

Let (Ω, (Fi)i∈I ,F ,P) be a filtered probability space. For i ∈ I, we write Ωi for (Ω,Fi,P |Fi
) and

Ω for (Ω,F ,P). For i ≤ j in I there is a measure-preserving map fij : Ωj → Ωi and for i ∈ I
there is a measure-preserving map fi : Ω → Ωi. This induces a diagram DΩ in the underlying
category of Probr of which Ω is the conical limit.

In the case where I = N, we have the following diagram.

Ω1 Ω2 Ω3 . . . Ω

Lemma 5.3.13. Let (Ω, (Fi)i∈I ,F ,P) be a filtered probability space. Then for E ∈ F , there
exists a sequence (En)n in

⋃
i∈I Fi such that

P(E△En) → 0.

Proof. Note that
⋃
i∈I Fi is closed under complements and finite intersections and unions, be-

cause I is directed. The claim now immediately follows from Theorem D in Section 13 in [31].

Corollary 5.3.14. Let A be a finite probability space and let s > 1. The enriched functor
Probsr(−,A) : Probr → CMetop preserves the limit of DΩ.

Proof. We will first show that ⋃
i∈I

Probsr(Ωi,A) ⊆ Probsr(Ω,A)

is a dense subset. Let f : Ω → A be a map such that P◦f−1 < sp, then there exists an 0 < r < s
such that P ◦ f−1 ≤ (s − r)p. We can assume without loss of generality that A = {1, 2, . . . , n}
and that pi > 0 for 1 ≤ i ≤ m and pi = 0 for m < i ≤ n. Let pmin := min{p1, . . . , pm}. For
0 < ϵ < r

2pmin, it follows from Proposition 5.3.13 that there exists an i ∈ I and (Ek)
n
k=1 in Fi

such that
n

sup
k=1

P(Ek△f−1(k)) <
ϵ

4n2
.

Now define the following subsets in Σi:

F1 := E1

F2 := E2 \ F1

...

Fm−1 := Em−1 \ Fm−2

Fm := Ω \

(
m−1⋃·
k=1

Fk

)
Fm+1 := ∅

...

Fn := ∅

These define a map fi : Ωi → A such that f−1(k) = Fk for every 1 ≤ k ≤ n. We also have
that
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• P(F1△f−1(1)) < ϵ
4n2 <

ϵ
2n ,

• For 2 ≤ l ≤ m− 1:

P(Fk△f−1(k)) ≤ P(Ek△f−1(k)) + P(Fk−1 ∩ f−1(k))

< P(Ek△f−1(k)) + P(Ek−1△f−1(k − 1)) < 2
ϵ

4n2
≤ ϵ

2n

• P(Fm△f−1(m)) = P
(⋃·m−1

k=1 Fk△
⋃m−1
k=1 f

−1(k)
)
≤
∑m−1
k=1 P(Fk△f−1(k)) < (2m−3) ϵ

4n2 ≤
ϵ
2n

• For m < k ≤ n: P(Fk△f−1(k)) = P(f−1(k)) = 0.

It follows that for every 1 ≤ k ≤ n, that

P ◦ f−1
i (k) = P(Fk) ≤ P ◦ f−1(k) + ϵ ≤ (s− r)pk +

r

2
pk < spk.

It follows that fi ∈ Probsr[Ω,A]. We also see that

dΩ,A(fi, f) < ϵ.

It follows
⋃
i∈I Prob

s
r(Ωi,A) is dense in Probsr(Ω,A) and therefore it is dense in Probsr(Ω,A).

From this we can conclude that⋃
i∈I

Probsr(Ωi,A) ⊆ Probsr(Ω,A)

is a dense subset, which completes the proof.

Theorem 5.3.15. The functor RVr : Probr → CMet preserves the limit of DΩ : I → Prob.

Proof. Since RVr is the right Kan extension of RVr ◦ ir along ir, it can be represented as a
weighted limit, as explained in Section 4.1 in [37].

RVr(Ω) ∼= {Probr(Ω, ir−),RVr ◦ ir} .

Let 1 < s. We will first show that there is a map

RVr(Ω) → {Probsr(Ω, ir−),RVfsr}.

Let Y be a complete metric space and let f : Y → RVr(Ω) be a 1-Lipschitz map. We will now
define a natural transformation

Probsr(Ω, ir−) → CMet[Y,RVfsr(−)].

Let A := (A, p) be a finite probability space and define a map

φA : Probsr(Ω,A) → CMet[Y,RVfsr(A)]
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by defining φA(g)(y) ∈ RVfsr(A) by the assignment

a 7→

{
1
pa

´
g−1(a)

f(y)dP if pa ̸= 0

0 otherwise.

for every y ∈ Y and g ∈ Probsr(Ω,A). Since f ≤ r almost surely and P◦g−1(a) ≤ spa, it follows
that this map is well-defined. Furthermore, since f is 1-Lipschitz, so is φA(g).

By the same argument that was used to prove that RVr is an enriched functor in Section
5.3.3, it follows that φA itself is 1-Lipschitz.

To prove naturality in A, consider a measure-preserving map s : A → B between finite
probability spaces A := (A, p) and B := (B, q).

Since
1

qb

∑
s(a)=b

ˆ
g−1(a)

f(y)dP =
1

qb

ˆ
(sg)−1(a)

f(y)dP

for every b ∈ B, we conclude that (φA)A forms a natural transformation. This leads to a
1-Lipschitz map

CMet(Y,RVr(Ω)) → [Probfr ,CMet](Probsr(Ω, ir−),CMet(Y,RVfsr(−)))

= CMet(Y,
{
Probsr(Ω, ir−),RVfsr

}
).

This induces a map ψs : RVr(Ω) →
{
Probsr(Ω, ir−),RVfsr

}
, which is natural in Ω. This leads

to to following morphisms:

lim
j

RVr(Ωj) → lim
j
{Probsr(Ωj , ir−),RVfsr}

= {colimjProbsr(Ωj , ir−),RVfsr}
= {Probsr(Ω, ir−),RVfsr}
→ {Probr(Ω, ir−),RVfsr} = RVsr(Ω).

Here we used Corollary 5.3.14 for the second equality. Taking the limit for s → 1, we obtain a
map

ψ : lim
j

RVr(Ωj) → RVr(Ω).

For a finite probability space A, we have the outer diagram commutes.

RVr(Ω)

limj RVr(Ωj) RVsr(Ω)

[colimjProbsr(Ωj,A),RVsr(Ω)] [Probsr(Ω,A),RVsr(Ω)]

ψs

Hence the top triangle commutes, by the universal property of RVrs(Ω) as a weighted limit.
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Moreover, for every j ∈ I, we see that the following diagram commutes.

limj RVr(Ω) RVsr(Ω)

RVsr(Ωj)

RVsr(fi)

ψs

πj

Therefore, the map

lim
j

RVr(Ωj)
ψs−→ RVsr(Ω) → lim

j
RVsr(Ωj)

is the inclusion map. By taking limit for s→ 1 in both cases, we can conclude that the canonical
map RVr(Ω) → limj RV(Ωj) is an isomorphism.

By the previous theorem, the functor RVr preserves the limit of DΩ. The limit of RVrDΩ

can be constructed in the usual way we construct cofiltered limits in CMet.

The underlying set of the limit of RVrDΩ is given by{
(Xi)i∈I ∈

∏
i∈I

RVr(Ωi) | RVr(fij)(Xj) = Xi for all i ≤ j

}

which is equal to {
(Xi)i∈I ∈

∏
i∈I

RVr(Ωi) | E[Xj | fij ] = Xi

}
.

This means that the underlying set of limRVrDΩ is precisely the collection of martingales,
uniformly bounded by r, on the filtered probability space (Ω, (Fi)i∈I ,F ,P). Theorem 5.3.15
now says that the map

RVr(Ω) → lim
i

RVr(Ωi)

defined by the assignment

X 7→ (RVr(fi)(X))i∈I = (E[X | fi])i∈I

is an isomorphism. In other words, for every martingale (Xi)i there is a P-almost surely unique
random variable X ∈ RVr(Ω) such that

E[X | fi] = Xi.

This proves, categorically, the following weaker martingale convergence theorem.

Theorem 5.3.16. Let (Xi)i∈I be a martingale such that for all i ∈ I,

P(Xi ≤ r) = 1.

Then there exists a unique X ∈ RVr(Ω) such that for all i ∈ I,

E[X | fi] = Xi.

Theorem 5.3.15 also implies that the functor Mr preserves the limit of DΩ. Also for this
functor we can construct the cofiltered limit limMrDΩ in the usual way; its underlying set is
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given by {
(µi)i∈I ∈

∏
i∈I

Mr(Ωi) | Mr(fij)(µj) = µi for all i ≤ j

}
which is equal to {

(µi)i∈I ∈
∏
i∈I

Mr(Ωi) | µj |Fi
= µi for all i ≤ j

}
Theorem 5.3.15 says that the map

Mr(Ω) → lim
i

Mr(Ωi)

defined by the assignment
µ 7→ (Mr(fi)(µ))i∈I = (µ |Fi

)i∈I

is an isomorphism. Therefore, for every family (µi)i∈I of measures, where µi ∈ Mr(Ωi) such that
for all i ≤ j,

µi |Fj
= µj ,

there exists a unique µ ∈ Mr(Ω) such that

µ |Fi
= µi.

This gives a categorical proof for the following version of the Kolmogorov extension theorem.

Theorem 5.3.17. Consider a family (µi)i∈I such that µi is a measure on Ωi and µi ≤ rP.
Suppose that for all i ≤ j,

µj |Fi
= µi.

Then there exists a unique measure µ on Ω with µ ≤ rP such that for all i ∈ I,

µ |Fi
= µi.

Remark 5.3.18. Theorem 5.3.15 implies an even stronger result than Theorem 5.3.16 and
5.3.17. It not only says that for every martingale (Xi)i there exists a random variable X such
that E[X | fi] = Xi, but it says that this happens in an isometric way. In other words,
supi d(Xi, Yi) = d(X,Y ) for martingales (Xi)i and (Yi)i and their corresponding limiting random
variables X and Y . In a similar way, we have that the Kolmogorov extension from Theorem
5.3.17 is isometric too.

Furthermore, for a consistent family of measures (µi)i and its limiting measure µ such as in

Theorem 5.3.16, the collection of Radon–Nikodym derivates
(

dµi

dP

)
i
form a martingale and the

limiting random variable of this martingale is the Radon–Nikodym derivative of µ with respect
to P.

Remark 5.3.19. An alternative approach we could have taken is to define the category Prob
as the category of probability spaces and equivalence classes of almost surely equal measure-
preserving maps. Using this approach, we would not have to deal with the pseudometric spaces.
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Appendix A

Integral representation theorems

A.1 Carathéodory extension theorem

Let X be a set.

Definition A.1.1. A family S of subsets of X is called a semi-ring if it contains ∅ and is closed
under finite intersections and such that the relative complement of a set in S can be written as
a finite union of sets in S.

Let σ(S) denote the smallest σ-algebra on X that contains S.

Theorem A.1.2 (Carathéodory). Let µ : S → [0,∞) be a map such that P(∅) = 0. Suppose
that for every collections (An)n∈N of pairwise disjoint elements in S such that their union A is
also in S we have µ (A) =

∑
n∈N µ(An). Then µ extends uniquely to a σ-finite measure ρ on

(X,σ(S)).

A proof of this result can be found in [14] (Proposition 3.2.4).

A.2 Integration lattices

Let X be a set and let f and g be real-valued functions on X. We use the notation f ∨ g (f ∧ g)
to mean the pointwise maximum (minimum) of the two functions.

Let L ⊆ [0,∞)X be a subset of non-negative valued functions on X. A subset L is called
an integration lattice if 1 ∈ L and for all f, g ∈ L and r ∈ [0,∞) also f ∧ g, f ∨ g, rf and
f ∨ g − f ∧ g are elements of L.

A map I : L→ [0,∞) is called an integration operator if I(1) = 1 and for every collection
(fn)n in L such that f :=

∑
n∈N fn is also in L we have I(f) =

∑
n∈N I(fn).

Lemma A.2.1. Let I be a integration operator on a integration lattice L and let r ∈ [0,∞).
Then I(rf) = rI(f).

Proof. For n,m ≥ 1 and f ∈ L we find the following:

I
(m
n
f
)
= mI

(
1

n
f

)
=
m

n
nI

(
1

n
f

)
=
m

n
I(f).
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It follows that the statement holds for r ∈ [0,∞) ∩ Q. Now take any r ∈ [0,∞) and let (qn)n
be an increasing sequence of rational non-negative numbers that converges to r. We find that
rf = q1f +

∑
n∈N(qn+1 − qn)f and therefore we have that

I(rf) = I(q1f) +
∑
n∈N

I((qn+1 − qn)f) = q1 +
∑
n∈N

(qn+1 − qn)I(f) = rI(f).

Remark A.2.2. Lemma A.2.1 is also true in the case that I is a weak integration operator on
a weak integration lattice L and r is an element of [0, 1].

The following result is a variant of the Daniell–Stone representation theorem and the proof
follows Kindler’s proof in [39] closely.

Theorem A.2.3. Let I be an integration operator on an integration lattice L. There exists a
unique probability measure P on (X,σ(L)) such that

IP(f) = I(f)

for all f ∈ L.

Proof. For f, g ∈ L such that f ≤ g define

[f, g) := {(x, t) ∈ X × [0,∞) | f(x) ≤ t < g(x)}

and let S be the family of all subsets of X × [0,∞) of this form.

For f1 ≤ g1 and f2 ≤ g2 in L we have:

[f1, g1) ∩ [f2, g2) = [f1 ∨ f2, g1 ∧ g2)

and
[f1, g1) \ [f2, g2) = [f1, g1 ∧ f2) ∪ [f1 ∨ g2, g1).

Since we also clearly have that ∅ ∈ S and L is closed under taking finite minima and maxima,
we conclude that S is a semi-ring.

Now define µ : S → [0,∞) by
µ([f, g)) := I(g − f)

for all f ≤ g. Note that this is well-defined since g − f = g ∨ f − g ∧ f , which is an element of
L. We clearly have that µ(∅) = µ([f, f)) = I(0) = 0. For a collection ([fn, gn))n∈N of pairwise
disjoint subsets in S such that

⋃
n∈N[fn, gn) = [f, g) for some f ≤ g in L we can show that

g − f =
∑
n∈N

(gn − fn).

It follows that
µ([f, g)) = I(g − f) =

∑
n∈N

I(gn − fn) =
∑
n∈N

µ([fn, gn)).

It follows now from Theorem A.1.2 that µ can be extended uniquely to a σ-finite measure ρ on
(X × [0,∞), σ(S)).

We will now show that σ(L) ⊗ Bo[0,∞) ⊆ σ(S). For f ∈ L and r ∈ [0,∞) define fn :=
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n(f ∨ r − f) ∧ 1 and note that this an element of L. For s ∈ [0,∞) we have

∞⋃
n=1

[0, sfn) = {f < r} × [0, s).

Therefore every subset of the form {f < r}× [0, s) is in σ(S). This shows that σ(L)⊗Bo[0,∞) ⊆
σ(S).

Now define P : σ(L) → [0, 1] by P(A) := ρ(A× [0, 1)). Note that for r and s in [0,∞) we have

ρ({f < r} × [0, s)) = ρ

( ∞⋃
n=1

[0, sfn)

)
= lim
n→∞

ρ([0, sfn))

= lim
n→∞

I(sfn)

= lim
n→∞

sI(fn)

= s lim
n→∞

ρ([0, fn))

= sρ({f < r} × [0, 1)) = sP({f < r})

Here we used that [0, sfn) ⊆ [0, sfn+1) and Lemma A.2.1. It follows that

ρ({r1 ≤ f < r2} × [0, s)) = sP({r1 ≤ f < r2}).

We have
P(X) = ρ(X × [0, 1)) = ρ([0, 1)) = I(1) = 1

and the σ-additivity of P is inherited from ρ. Therefore P is a probability measure on (X,σ(L)).

For a measurable map f : X → [0,∞) there is an increasing sequence of non-negative simple
functions (sn :=

∑mn

k=1 a
n
k1An

k
)n, with A

n
k of the form {r1 ≤ f < r2}, that converges to f . Define

Bn :=

mn⋃
k=1

Ank × [0, ank )

and note that
⋃∞
n=1Bn = [0, f) and that Bn ⊆ Bn+1 for all n. We have the following equalities:

I(f) = ρ([0, f)) = lim
n→∞

ρ(Bn) (A.1)

and

ρ(Bn) =

mn∑
k=1

ρ(Ank × [0, ank )) =

mn∑
k=1

ankP(Ank ) = IP(sn) (A.2)

Combining (A.1) and (A.2) with the monotone convergence theorem we conclude that I(f) =
IP(f).

Let P′ be another probability measure with this property. Then we have for all f ∈ L and
r ∈ [0,∞) that

P′({f < r}) = lim
n→∞

I ′P(fn) = lim
n→∞

IP(fn) = P({f < r}).

Since the sets {f < r} form a π-system that generates σ(L) we can conclude that P = P′.
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A.3 Proofs of the results in section 3.5.2

Proof of Theorem 3.5.5. It is easy to verify that NL is an integration lattice. For an element
mf ∈ NL define I ′(mf) := mI(f). Suppose mf = ng for f, g ∈ L. Then we have by Remark
A.2.2 that

mI(f) = (m ∨ n) m

m ∨ n
I(f) = (m ∨ n)I

( m

m ∨ n
f
)
= (m ∨ n)I

( n

m ∨ n
g
)
= nI(g).

This shows that I ′ is well-defined and that I ′(f) = I(f) for all f ∈ L.

It is clear that I ′(1) = 1. Let (mnfn)n∈N be a collection of elements in NL such that
mf :=

∑
n∈Nmnfn is also an element of NL. We observe that f =

∑
n∈N

∑
k∈N a(k, n)

fn
m where

a(k, n) = 1 if k ≤ mn and 0 otherwise. Note that a(k, n) fnm is an element of L and therefore

I(f) =
∑
n∈N

∑
k∈N

I

(
a(k, n)

m
f

)
=

1

m

∑
n∈N

∑
k∈N

a(k, n)I (f) =
1

m

∑
n∈N

mnI(fn).

We can conclude that I ′ is an integration operator on the integration lattice NL and therefore by
Theorem A.2.3 there is a unique probability measure on (X,σ(NL)) such that

´
X
fdP = I ′(f).

It is clear that σ(L) ⊆ σ(NL). For mf ∈ NL and r ∈ [0,∞) we find that {mf < r} = {f <
r
m} ∈ σ(L) and therefore also σ(NL) ⊆ σ(L).

Let P′ be another probability measure on (X,σ(L)) such that
´
X
fdP′ = I(f) for all f ∈ L,

then we have that

I ′(mf) = mI(f) = m

ˆ
X

fdP′ =

ˆ
X

mfdP′.

This implies that P′ = P.

Lemma A.3.1. Let I : L→ [0,∞) be an additive operator on a weak integration lattice L. For
f, g ∈ L such that f ≤ g we have I(f) ≤ I(g), and if g − f ∈ L then I(g − f) = I(g)− I(f).

Proof. There exists an n such that g−f
n ∈ L. We find

1

n
I(g) = I

( g
n

)
= I

(
g − f

n
+
f

n

)
= I

(
g − f

n

)
+

1

n
I(f) ≥ 1

n
I(f).

Here we use Remark A.2.2. The first part of the statement now follows. The second part can be
proven in a similar way.

Proof of Proposition 3.5.6. First note that for f ∈ L and n ≥ 1, then

I(f) = I

(
(n− 1)f

n
+
f

n

)
= I

(
(n− 1)f

n

)
+ I

(
f

n

)
= I

(
(n− 2)f

n

)
+ I

(
f

n

)
+ I

(
f

n

)
= . . .

= nI

(
f

n

)
.
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By Theorem 3.5.5 it is enough to show that I is a weak integration operator. Let (fn)n∈N be a
collection of elements in L such that also f :=

∑
n∈N fn is an element of L. Define for every n

the function gn :=
∑
k≤n fk. For every n there exists an mn such that gk

mn
∈ L for all k ≤ n.

Indeed, for n = 1 this is clear. Suppose the claim holds for a natural number n, then gn
mn

and
fn+1

mn
are element of L. Because

gn+1

mn
=

gn
mn

+
fn+1

mn

is an element of NL, there exists an m′ such that 1
m′

gn+1

mn
∈ L. Since gk

mn
∈ L for k ≤ n, we also

have that gk
m′mn

∈ L. It follows that for mn+1 := m′mn we have that gk
mn+1

∈ L for all k ≤ n+1.

The claim now follows by induction. The functions (gn)n form a sequence of continuous functions
that increases pointwise to the continuous function f . Because X is a compact Hausdorff space,
Dini’s theorem tells us that (gn)n converges uniformly to f . Let ϵ > 0. There exists an n such
that

∥f − gn∥ ≤ ϵ. (A.3)

By the above there exists an mn such that 1
mn

gk ∈ L for all k ≤ n. Because L is a weak
integration lattice, there exists an m such that

hn :=
1

m

(
f

mn
− gn
mn

)
is also an element of L. By (A.3) and the first part of Lemma A.3.1 we find that

I(hn) ≤ I

(
ϵ

mnm

)
=

ϵ

mnm
. (A.4)

By the second part of Lemma A.3.1 we have

I

(
f

mnm

)
− I

(
gn
mnm

)
= I(hn). (A.5)

Using (A.4) and (A.5) and the hypothesis we find the following:

I(f)−
∑
k≤n

I(fk) = I (f)−
∑
k≤n

mnI

(
fk
mn

)

= I(f)−mn

(
I

(
f1
mn

)
+ I

(
f2
mn

)
+ I

(
f3
mn

)
+ . . .+ I

(
fn
mn

))
= I(f)−mn

(
I

(
g2
mn

)
+ I

(
f3
mn

)
+ . . .+ I

(
fn
mn

))
= I(f)−mn

(
I

(
g3
mn

)
+ . . .+ I

(
fn
mn

))
= . . .

= I(f)−mnI

(
gn
mn

)
= mnm

(
I

(
f

mnm

)
− I

(
gn
mnm

))
= mnmI(hn) < ϵ
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Because (I(f) −
∑
k≤m I(fk))m is a decreasing sequence of positive numbers, we can conclude

that I(f) =
∑
n∈N I(fn).
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Appendix B

Lax coends

In this section we will give the definition of lax coends. More details about lax coends can be
found in Chapter 7 of [48].

Let A and B be poset-enriched categories and let S : Aop ×A → B be an enriched functor.

Definition B.0.1. A lax cowedge ω consists of

• an object B in B,

• a morphism ωA : S(A,A) → B for every object A in A and

• for every morphism f : A1 → A2,

S(A1, A2) S(A2, A2)

S(A1, A1) BωA1

ωA2S(1A1
×f)

S(f×1A2
)

≤ .

Definition B.0.2. Let ω1 := (B1, (ω1
A)A, (ω

1
f )f ) and ω

2 := (B2, (ω2
A)A, (ω

2
f )f ) be lax cowedges

of S. A morphism of cowedges from ω1 to ω2 is a morphism s : B1 → B2 such that

S(A1, A2) S(A2, A2) S(A1, A2) S(A2, A2)

=

S(A1, A1) B1 S(A1, A1) B2

B2

ωA1

ωA2S(1A1
×f)

S(f×1A2
)

≤

s

ω2
A1

ω2
A2

S(f×1A2
)

S(1A1
×f)

ω2
A1

ω2
A2

≤

=

=

for all morphism f : A1 → A2.

The category of lax cowedges of S and their morphims is denoted by Cowedgel(S).
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Definition B.0.3. The lax coend of S is an initial object in Cowedgel(S).

If (B, (ωA)A, (ωf )f ) is the lax coend of S, i.e. the initial object in Cowedgel(S), then we
also write

B =:

ȷ A∈obA
S(A,A).

Dually, we can define a category of colax cowedges of S, Cowedgec(S) and define colax co-
ends as initial objects in this category. The notation we will use for the colax coend of S is A∈obA

S(A,A).
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Appendix C

Inequalities in the proof of
Theorem 5.2.11

Lemma C.0.1. Let (Ω,F ,P) be a probability space and let (A, p) and (B, q) be finite probability
spaces. Let f : (Ω,F ,P) → (A, p) and g : (Ω,F ,P) → (B, q) be measure-preserving maps. Let
s : (A, p) → (B, q) be a measure-preserving map such that sf = g. Let syg and syf be such as in
Theorem 5.2.11. The following equalities hold.

(i) sygs
y
f =

∑
b∈B [qg(y)](b)

∑
a∈s−1(b)[qf (y)](a)1f−1(a).

(ii) E[syfsyg ] =
∑
b∈B [qg(y)](b)

2qb.

(iii) (syg)
2 =

∑
b∈B [qg(y)](b)

21g−1(b) and (syf )
2 =

∑
a∈A[qf (y)](a)

21g−1(a).

(iv) E[(syg)2] =
∑
b∈B [qg(y)](b)

2qb and E[(syf )2] =
∑
a∈A[qf (y)](a)

2pa.

(v) E[(syg)2] ≤ E[(syf )2].

(vi) E[(syf )2]− E[(syg)2] = E[(syf − syg)
2].

Proof. For (i),

sygs
y
f =

∑
a∈A,b∈B

[qf (y)](a)[qg(y)](b)1f−1(a)∩g−1(b)

=
∑

a∈A,b∈B

[qf (y)](a)[qg(y)](b)1f−1(s−1(b)∩{a})

=
∑
b∈B

∑
a∈s−1(b)

[qf (y)](a)[qg(y)](b)1f−1(a)

=
∑
b∈B

[qg(y)](b)
∑

a∈s−1(b)

[qf (y)](a)1f−1(a)

Integration (i) gives us

E[syfs
y
g ] =

∑
b∈B

[qg(y)](b)
∑

a∈s−1(b)

[qf (y)](a)pa =
∑
b∈B

[qg(y)](b)qg(y)(b)qb
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This implies (ii). The results (iii) and (iv) follow from (i) an (ii). For qb ̸= 0,

[qg(y)](b)
2 =

 ∑
a∈s−1(b)

[qf (y)](a)
pa
qb

2

≤
∑

a∈s−1(b)

[qf (y)](a)
2 pa
qb
.

Here we used that x 7→ x2 defines a convex function. Multiplying both sides by qb and summing
over b ∈ B, gives us (v). For (vi)

E[(syf )
2] = E[(syf − syg + syg)

2] (C.1)

= E[(syf − syg)
2] + E[(sfg )2] + 2(E[syfs

2
g]− E[(syg)2]) = E[(syf − syg)

2] + E[(sfg )2]. (C.2)

In the fourth equality we used that E[syfs2g]− E[(syg)2] = 0 by (ii) and (iv).

The first inequality in the proof Theorem 5.2.11 that we needed to show is exactly Lemma
C.0.1(v). For the second inequality, we combine Lemma C.0.1(vi) with Jensen’s inequality.

140



Bibliography

[1] M. Alvarez-Manilla, A. Jung, and K. Keimel. The probabilistic powerdomain for stably
compact spaces. Theoret. Comput. Sci., 328(3):221–244, 2004.

[2] E. S. Andersen and B. Jessen. On the introduction of measures in infinite product sets.
Danske Vid. Selsk. Mat.-Fys. Medd., 25(4):1–8, 1948.

[3] T. Avery. Codensity and the Giry monad. J. Pure Appl. Algebra, 220(3):1229–1251, 2016.

[4] K. P. S. Bhaskara Rao and M. Bhaskara Rao. Theory of Charges, A Study of Finitely
Additive Measures, volume 109 of Pure and Applied Mathematics. Academic Press, 1983.

[5] R. Blackwell, G. M. Kelly, and A. J. Power. Two-dimensional monad theory. J. Pure Appl.
Algebra, 59(1):1–41, 1989.

[6] V. I. Bogachev. Measure Theory. Vol. I. Springer-Verlag, Berlin, 2007.

[7] V. I. Bogachev. Measure Theory. Vol. II. Springer-Verlag, Berlin, 2007.

[8] F. Borceux. Handbook of Categorical Algebra. 1: Basic Category Theory, volume 50 of
Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge,
1994.

[9] F. Borceux and B. J. Day. A monadicity theorem. Bull. Austral. Math. Soc., 17(2):291–296,
1977.

[10] V. Capraro and T. Fritz. On the axiomatization of convex subsets of Banach spaces. Proc.
Amer. Math. Soc., 141(6):2127–2135, 2013.
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