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Abstract

This thesis discusses the benefits and limitations of using molecular studies

to understand Type 2 diabetes (T2D). As a complex disease, T2D is caused by a

combination of multiple genetic and environmental factors. Its consequences on

the  glucose  homeostasis  often  trigger  a  variety  of  co-morbidities,  including

cardiovascular  diseases,  stroke,  and  neuropathies,  generating  a  major  health

burden.  In  the  first  chapter,  we  looked  for  genes  which  were  differentially

expressed with T2D across 49 tissues using data created by the GTEx consortium.

In twelve of those tissues, we found between 1 and 5174 genes to be significantly

differentially expressed (FDR=0.05). The relevance of the tissue was not a major

factor  in  the  number  of  genes  discovered.  In  fact,  in  some  cases  the  tissue

suggested that the differential expression was due to comorbidities with T2D rather

than the disease itself. For example, the most differentially expressed genes were

found in the tibial nerve, likely due to comorbidities with neuropathy.  We also found

a larger number of differentially expressed genes with biological factors such as

sex or age (a maximum of 14319 and 12897 respectively, FDR=0.05), though this

could  be  due  to  the  limited  number  of  individuals  with  T2D in  the  dataset.  In

chapter two we looked to discover genes responsible for T2D development using a

class  of  methods called  transcriptome wide association  studies  (TWAS),  which

combine  information  from  genetic  studies  into  disease  with  information  from

reference molecular datasets. One question we wanted to answer was about the

choice of the molecular reference: was it better to collect data from a tissue that

was directly relevant for the tissue, or could a well powered study in a non-relevant

accessible tissue also be informative? For this we used expression data from 49

tissues  previously  mentioned,  a  mix  of  relevant  and  non  relevant  tissues,

expression data from the directly relevant pancreatic islets produced by the Inspire

consortium, and data from whole blood produced by the DIRECT consortium, non

relevant but with a sample size more than three times larger than the others. We

found that the relevance of the underlying molecular data had no effect on the

number of T2D causal genes we discovered, instead observing a strong correlation

with sample size.  More genes found using DIRECT data were confirmed using
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multiple  instrument  Mendelian  randomisation  than  with  any  other  molecular

dataset.  (31  genes  confirmed  through  MR  compared  to  1  to  9  for  the  other

molecular datasets). However, important GWAS loci were missed when using non

relevant tissues; for example, the well known TCF7L2 locus was only found using

pancreatic  islets.  Finally,  our  last  chapter  focused on the  observable effects  of

metformin, a commonly used medication for T2D. We took three approaches to

discover  genes  which  interacted  with  the  drug.  Firstly,  using  GWAS  summary

statistics from a study into  metformin  efficacy,  we applied two methods to  find

genes associated with drug efficacy: MAGMA, which is based on purely genetic

information, and the TWAS methods from the previous chapter. Using MAGMA we

discovered 880 associated genes (FDR=0.05) compared to only 38 using TWAS

(though TWAS associations contained important  information on tissue of action

and direction of effect). Finally, we used longitudinal data to look for genes whose

expression changed after taking metformin and discovered 348 genes at a less

stringent threshold of FDR=0.2. Comparing our differentially expressed genes to

TWAS associated genes for efficacy and for causing T2D, we found that metformin

tended to produce changes in expression which would promote drug efficacy, a

treatment virtuous circle, and counteracted expression patterns predicted to cause

the disease, explaining the treatment benefits. However, neither of these properties

was  statistically  significant,  due  to  the  small  numbers  of  genes  involved.  In

summary,  this  thesis  has explored the  molecular  causes and consequences of

T2D, as well as the genes and pathways involved in treating it.
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Introduction

A brief history of genetics

The origin of modern genetic studies can be traced back to the first works of

Gregor  Mendel  on  plant  hybridization  published  in  his  memoir  (Mendel,  n.d.).

Mendel  showed by mating together different varieties of peas that the resulting

offspring  consistently  displayed  one  of  the  two  traits.  He  observed  that  the

proportions of these traits in the offspring were approximately 3:1 and classed the

more common as a dominant trait and the other as recessive. The term ‘genetics’

was  first  used  by  Wiliam  Bateson  (1906)  who  connected  Mendel’s  work  with

heredity and later expanded the concept not only to plants but also animals. From

this  time,  several  important  terms were  introduced  to  the  scientific  vocabulary,

which are still used today but in many cases with an altered meaning. In 1909, the

word  ‘gene’  was  suggested  by  Wilhelm  Johannsen,  who  used  it  to  describe

Mendel’s discrete units of inheritance inherited from one generation to the next. He

also introduced the term ‘phenotype’ to describe the observable characteristics of

an individual, ‘dominant’ and ‘recessive’ gene , respectively a gene where one or

two alleles are required to observe the phenotype. Even without understanding

how information is passed from parent to child, much of the work of these early

geneticists is still relevant today (Gayon 2016) (Figure 1). 
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Figure 1: Early history of genetics. Figure made in Biorender.

Understanding how information was passed from parent to child came more

slowly. Herman Muller working on drosophila in the 1920s identified alterations to

the chromosomes of the flies, but did not know exactly where these alterations

were happening. The big breakthrough came in the 1950s, when work by Rosalind

Franklin, Francis Crick and James Watson revealed the structure of the molecule

by which information is passed down through generations, the double helix of DNA

(Watson  and  Crick  1953).  DNA was  seen  to  be  made  up  to  four  molecules,

Adenine,  Cytosine,  Guanine  and  Thymine,  and  the  order  of  these  molecules

defines the genetic code. Each human inherits 23 chromosomes of DNA from their

parents, and some mitocrondial DNA from their mother, and this is known as the

human genome. This helped to understand some concept exposed earlier such as

‘alleles’ which we define as the specific amino acid base of the DNA sequence at a

given location, and ‘heterozygote’ and ‘homozygote’, having either two different or

two identical copies of a specific allele.

First attempts for DNA sequencing

Since then, scientists have been actively working to read this genetic code,

first for increasingly large regions of the human genome, more recently for larger

numbers of individuals. Starting from the 1970s, methods based on the chemical
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cleavage of the DNA strands such as the Maxam-Gilbert method emerged as a

technique to sequence the DNA. At the same time, techniques such as Southern

blot (suggested by Edwin Southern (Southern 1975)) allowed researchers to target

specific  DNA sequences  using  complementary  probes.  Of  course,  all  of  these

technologies  were  expensive,  labour-intensive  and  limited  in  the  ability  to

sequence  long  sections  of  the  DNA.  It  is  only  in  the  late  1970s  that  these

technologies  were  developed  enough  to  push  towards  the  expansion  of  the

sequencing  era,  with  Frederick  Sanger  proposing  the  first  DNA  sequencing

technique, known as the Sanger sequencing method. This revolutionary method

allowed scientists to read the sequence of nucleotide bases in DNA and became

the gold standard for sequencing for several  decades.  Then in the 1990s, The

Human Genome Project started globally with the goal to fully sequence the human

genome over the next decade  (Collins and Fink 1995). Completed in 2003, they

provided the first draft of the human genome, which was then used as a basis for

many  studies  on genetics  and disease.  During  that  time,  sequencing methods

shifted  from  the  initial Sanger  method  to  what  is  now  called  Next-Generation

Sequencing, which significantly increased the amounts of DNA that could be read

and reduced costs  (Schuster 2008). With this technology, it  became feasible to

read an individual’s entire DNA for the cost of around $400, compared to the $3

billion cost of the human genome project. The technology to read the code allowed

researchers to  investigate  the  function  of  the  human genome,  one  of  the  first

information  we  learned  was  that  DNA has  coding  sequences  and  non-coding

sequences. The first contain instructions on how to produce mRNA molecules later

to  be converted into  proteins and the second is  responsible  for  tasks such as

regulation of the gene expression or chromosomal strucure and represents the

majority of the genome.

Linkage and candidate gene studies to investigate human
traits

Mendel and the early geneticists had shown that offspring inherit traits from

their parents, one important trait is risk of disease. Now, with knowledge of the

genetic code, researchers moved on to investigate whether these inherited risks
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could be linked to particular parts of the human genome. Linkages studies were

one of the first attempts to do this. These looked at families and were based on the

fact that within such families some individuals would get a particular disease while

others  would  not.  Researchers  were  interested  in  finding  out  whether  all  the

patients within a family would inherit the same sequence of DNA from their parents,

while all the controls would inherit a different sequence. One of the most commonly

used genetic marker for these studies were microsatellites repeats, short repeated

DNA sequences  displaying  a  high  level  of  polymorphism,  therefore  easier  to

characterize and replicate. An early success of linkage studies was the discovery

of a strong association between risk of T2D and a region on the chromosome 10q,

which turned out later to be the TCF7L2 risk locus, since validated several times by

multiple different approaches (Duggirala et al. 1999; Grant et al. 2006). Doing that,

researchers started to step into the complexity of diseases such as T2D which are

complex, polygenic traits by opposition to Mendelian traits controlled by a single

gene.  Therefore  understanding  each  of  these  individual  effects  and  their

inheritance is crucial to rightfully characterize patients with the disease.

Candidate gene studies were another way researchers tried to tie regions of

DNA with disease. Often, researchers would have defined hypotheses of which

genes and regions of DNA they thought were responsible for disease. By collecting

a cohort of healthy individuals and individuals with the disease, they could compare

the DNA around and in this gene for all these individuals. Then, at each position

they had read, they could ask the question: is one allele more common in cases

than controls? The advantage of such studies was that the sample size required

was quite  low,  since  they  were  concentrating  on  a  limited  part  of  the  human

genome and already had an idea of the mechanisms underlying this particular trait

(Kwon 2000).  For example, a candidate gene study for Type 2 Diabetes (T2D)

could focus on the region around the gene encoding for the insulin receptor or

genes involved in insulin secretion and sensitivity. Several candidate gene studies

in T2D identified genetic variants associated with the disease, including variants in

the PPARG and KCNJ11 genes. A study by (Barroso et al. 2003) investigated the

association between 35 genes known to have an influence on insulin action and
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showed significant association with diabetes for many of them, including KCNJ11,

HNF4A and INSR. Flaws of these candidate genes studies later became apparent.

Results  from  these  studies  were  based  on  small  sample  size  studies,  and

frequently failed to replicate in other studies. It became apparent that frequently the

original  hypothesis  of  which  gene  was  involved  was  not  as  strong  as  the

researcher had thought.

The GWAS era

To address this, research became focused on Genome Wide Association

Studies (GWAS). Rather than examining a handful of variants in one region of the

genome, in a GWAS, researchers looked at millions of genetic variants throughout

the  entire  human  genome.  They  compared  the  frequencies  of  these  variants

between individuals  who had the  disease and those without  (Bush and Moore

2012).  Because  they were  testing  millions  of  statistical  hypotheses,  it  was  not

sufficient to use standard P value criteria for rejecting null hypotheses, accepting

the standard P < 0.05 would mean concluding one in 20 of the millions of variants

were related to the disease, even if none truly were. To address this they came up

with  the  concept  of  genome-wide  significance  :  to  conclude  a  variant  was

associated  with  disease  required  very  strong  statistical  evidence,  typically  a  P

value < 5e-8. This was estimated by correcting the traditional 0.05 pvalue by the

estimated  number  of  independent  common  SNPs  (Single  -  Nucleotid

Polymorphisms) across  the  human  genome   (Dudbridge  and  Gusnanto  2008;

Jannot, Ehret, and Perneger 2015) (Figure 2).
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Figure 2: Differences between GWAS and candidate gene studies. Although both based 
on the detection of changes at a global omic scale within a population of individuals, they 
present differences in term of target, power, hypothesis and requirements. Figure made in 
Biorender.

Several  large-scale  GWAS have  been  conducted,  involving  hundreds of

thousands of individuals with T2D and control subjects in order to identify genetic

variants associated with the disease  (Visscher et al. 2012). These studies have

identified multiple genetic loci associated with T2D, including the confirmation of

the importance of TCF7L2 discovered previously in genome-wide linkage study (ref

of the grant 2006 paper), but also new genes such as CDKAL1 or KCNQ1, among

many  others  (Mahajan  et  al.  2018;  Spracklen  et  al.  2020).  The  latest  study

identified 318 novel regions of the genome associated with the disease and these

associations have provided insight into the biological mechanisms underlying type

2 diabetes, such as beta-cell  dysfunction and insulin resistance  (Vujkovic et  al.
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2019). GWAS have greatly expanded our understanding of the genetic basis of

type 2 diabetes and have opened up new avenues for personalised treatment and

prevention strategies.

Because most of the genetic effects were small, the ability of researchers to

capture  significant associations was limited and often required very large sample

sizes, logistically and financially demanding. To address this, many groups worked

together in large international consortia, and more recently national biobanks have

emerged, allowing many diseases and traits to be investigated in the same study.

But even with these massive sample sizes, GWAS studies have mostly only been

able  to  capture  common variants  with  low effect  sizes  and account  only  for  a

fraction  of  the  observed  heritability  (Manolio  et  al.  2009).  Since  GWAS  only

identifies regions of the genome associated with a trait, it can be difficult to know

how the DNA change is related to disease. Almost 90% of GWAS results fall in

non-coding regions of the genomes, regions of the DNA which are not transcribed

and then translated into proteins but rather control gene expression via regulatory

elements such as silencers or enhancers. For example, enhancers, in response to

binding  with  transcription  factors,  can  interact  with  promoters  and  initiate  the

transcription  mechanisms.  Given  that  these  GWAS  hits  lie  outside  the  coding

region of proteins and do not affect their sequence, it can be difficult to know which

genes they affect, and how they affect them.

Technologies evolved to solve the missing link issue

To better understand how GWAS hits affect risk of disease, we can go back

to  the  Central  Dogma  of  Molecular  Biology.  This  states  that  information  is

transferred in the cell from DNA to RNA to proteins and then used or converted in

other macromolecules. In the case of a GWAS variant, this means that the first

consequence of a genetic variant  should be on the process of transcription, from

DNA to RNA. Therefore, the assumption must be that the initial consequence of

non coding GWAS associations should be found by observing gene expression

changes. Undestanding these GWAS variants and how they affect risk of disease

can start by investigating their impact on gene expression. But to do this, it was
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necessary to produce a quantification for gene expression, a way of measuring

how much DNA was being converted to mRNA.

Many technologies were developed for this purpose and are still nowadays

used  to  generate  large  scale  data.  For  expression,  microarrays  and  RNA

sequencing are two methods which vary in term of scale, speed and cost. Although

both  are  used  to  provide  gene  expression  quantification,  they  are  based  on

different  techniques. Microarrays use hybridization between probes and labeled

RNA as well as fluorescence to derive expression levels (Baldi and Hatfield 2002).

RNA-Seq uses fragmented RNA molecules collected from tissues and converted

into  cDNA,  which  are  then  sequenced  and  aligned  to  a  reference  genome  to

quantify the expression (Wang, Gerstein, and Snyder 2009). Their use depends on

the scope of the study,  the objectives and also the cost  available.  Small  scale

studies  with  a  very  well  defined  hypothesis  may  prefer  microarray  for  their

efficiency at a lower cost, while larger studies with large cohorts could make a use

of  the  bulk  power  of  RNA-Seq  to  allow  the  discovery  of  novel  signals  at  a

transcriptome wide level. In general, RNA-Seq is preferred as it avoids technical

issues  in  microarray  studies  related  to  probe  performance,  such  as  cross-

hybridization, limited detection range of individual probes, as well as non-specific

hybridization.  Nonetheless,  RNA-Seq  can  still  present  flaws  such  as  cross-

hybridization, especially in the case of short-read sequencing which is the best

cost-efficiency  technology.  Mismapping  of  the  reads  on  the  wrong  gene  when

sequences are highly similar and reading length short can happen. In these cases,

usually  reads  mapping  to  multiple  location  are  filtered  out  and  only  uniquely

mapped  reads  are  kept  for  downstream  analyses.  Moving  to  long  read

technologies  also  allow  to  solve  these  issues  by  reducing  the  ambiguities  of

mapping. All  these technologies are constantly  evolving,  and new methods are

being  developed  to  improve  the  sensitivity,  accuracy,  and  speed  of  molecular

phenotyping. 

Instead of looking at gene expression changes, another approach is to try to

identify proteins mediating GWAS disease risk by quantifying protein levels. The
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most common method to measure protein levels is mass spectrometry. Proteins

are  first  digested  using  enzymes  (usually  trypsin)  and  isolated  using  a  mass

analyser separating them based on their weights. Then, after ionization, the mass-

to-charge ratio for the resulting molecules is quantified and compared to known

profiles to estimate protein levels. Another method is to use affinity-based methods

and immunoassays based on antibodies targeting specific proteins. One example

is the Olink method, which uses a pair of antibodies to tag a target protein which,

after  hybridization,  can  be  extended  into  quantifiable  DNA polymerase.  Unlike

expression  quantification,  these  are  not  proteome  wide  methods  but  rather

targeted for specific sets of proteins or panels  (Suhre, McCarthy, and Schwenk

2021).

And  finally,  another  molecular  phenotype  often  measured  is  metabolites

levels.  These small  molecules are closer  to  certain  disease traits  than RNA or

proteins and give insights into the different biochemical pathways or therapeutic

responses.  To  measure  metabolites,  the  main  method  is  a  combination  of

chromatography  to  separate  the  macromolecules  and  mass  spectrometry  to

quantify these molecules based on their concentrations. These can be done either

in  a  targeted  context,  focused  on  pre-defined  specific  set  of  metabolites,  or

untargeted for  a  more  comprehensive,  but  also  less  accurate,  overview of  the

whole metabolome (Clish 2015). 

Molecular studies expanding GWAS results

Once  we  have  our  quantifications  we  can  test  genetic  variants  for

association,  where individuals with one allele produce more mRNA, proteins or

metabolites than someone with a different one. These are called Quantitative Trait

Locus or QTLs. For example, we call an eQTL (expression QTL) a region of the

genome where an individual’s expression of the gene depends on their genotype at

a particular locus; the eQTL is referred to as a cis eQTL if the locus is within 1MB

of the gene, a trans eQTL if it is more distant (Figure 3).
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The identification of QTLs is referred to as QTL mapping. In cis, this is done

looking  at  each  genetic  variant  in  within  1MB of  a  gene and testing  to  see if

expression is associated with genotype using a linear model. Then, after correction

of p-values for multiple testing with methods such as FDR, betas representing the

effect  of  each variant  on the phenotype are extracted.  In  addition,  permutation

steps can be included in the analysis by randomly shuffling the phenotype data a

defined number of times in order to estimate p values adjusted for multiple testing.

The advantage here is the ability to identify causal variants for a specific  trait in

addition  to  regulatory  variants  such  as  enhancers  or  silencers  affecting  gene

expression (respectively, sequences increasing or decreasing the expression of a

gene) (Khetan et al. 2018). 

Similarily to GWAS, QTL studies have their own limitations. First, the sample

size requirements are relatively high in order to reach enough statistical  power.

Figure 3: Representation of an eQTL. Distribution of individuals' expression for a specific 
gene separated by genotypes. Either homozygotes for the reference allele (0), heterozygotes
(1) or homozygotes for the alternative allele (2).
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Without reasonable sample size, signals with low effect sizes can be missed. It is

also highly dependent on the population composition and the interpretation for one

study might not apply and be replicable in another study, if the other study is based

on a population with different characteristics or uses a different tissue. In addition,

when  studying  complex  traits,  environment  usually  plays  a  major  role  on  the

phenotype  and  QTL studies  rarely  take  in  consideration  the  gene-environment

interactions. Efforts are being made to solve this by studying interactions QTLs and

context-specific  QTLs  with  traits  such  as  age,  cell  type  or  other  phenotypes

(Kasela et al. 2023).

To  combine  GWAS  results  and  gene  expression  information  to  identify

genes  causal  at  a  GWAS  loci  for  a  disease  or  a  trait,  methods  such  as

Transcriptome-Wide Association  Studies (TWAS) were developed.  TWAS  are a

class  of  methods that  leverage  reference  expression  datasets  to  construct

predictive models of gene expression using genetic information  (Gamazon et al.

2015).  These models  are  subsequently  applied  to  data  from GWAS studies  to

Figure 4: Molecular studies. Top left is a schematic representation of an eQTL. Below, 
comparison of GWAS, eQTL and TWAS in terms of phenotypes. On the right, effects observed 
in molecular studies. Figure made in Biorender.
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generate cis-predicted expression phenotypes for thousands of genes and all the

individuals in the study, which include typically hundreds of thousands participants.

Using  this  individual  level  predicted  expression  phenotypes,  researchers  can

identify differentially expressed genes between cases and controls. In situations

where individual-level genotype data is not available, approximations can be made

using summary statistics from the disease-genetics associations. This approach

shifts the variant-level analysis of a GWAS to a gene-level analysis. By doing so, it

reduces the multiple testing burden from millions of  tests (SNPs) to  just  a few

thousands  (genes).  Because  the  expression  phenotypes  are  derived  from

genotypes, a reverse causality where the disease effects the expression of the

gene can be excluded, and identified genes are more likely to be on the causal

pathway to disease, which is important when developing new therapies (Wainberg

et al. 2019). 

Since the emergence of TWAS, additional methods have been developed to

conduct  this  type  of  study.  Initially,  PrediXcan  was  widely  adopted  to  perform

TWAS, followed by FUSION. More recently UTMOST has been released as an

alternative method,  in  particular  for  cross-tissue analyses  (Figure  5).  The main

differences between these methods lies in the input data, the method used to build

predictive  models  and  the  statistical  methods  to  calculate  gene-trait  scores

(Gamazon et al. 2015; Mancuso et al. 2018; Rodriguez-Fontenla and Carracedo

Figure 5: Summary table of the different existing methods for TWAS.
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2021). Depending on the data available, either individual-level data or summary

statistics from GWAS can be used, and analyses conducted in a single tissue or a

cross-tissue context. Using summary statistics is usually computational less heavy

but can introduce noise because of the need to calculate LD matrices separately to

account for the LD structure, which can be different from the actual structure of the

cohort. LD, or linkage disequilibrium, is used when alleles at different positions on

a  chromosome  are  observed  together  more  often  than  by  random  chance

representing  physical  proximity.These  regions  of  the  genome  where  genetic

markers are in high LD with each other are called haplotype blocks and need to be

taken in consideration when studying any genetic associations with a trait. On the

other hand, individual-level data is harder to access and takes more time but can

provide  more  accurate  estimates.  Cross-tissue  methods  (MultiXcan,  UTMOST)

were developed to compensate for some of the single tissue caveats,  such as

shared eQTL effects across tissues and sample size limitations.  However,  with

cross tissue studies, we lose the ability to identify the tissue-specific effects and

increase the computational burden.

Although TWAS implicated genes are likely  to  be on the causal  path to

disease,  some  researchers  argue  certain  assumptions  of  the  methodology

preclude TWAS from identifying true causal genes. In addition, even though TWAS

methods use covariance tables to correct for the LD structure, results provided by

TWAS are still subject to issues that affect the assumption of causality, such as

colocalization and pleiotropy  (Ndungu et al. 2020). Colocalization addresses that

locally variants in the genome are often highly correlated: a GWAS variant and an

eQTL in close proximity could be observed as a single effect, when actually they

relate to distinct processes. Pleiotropy, in particular horizontal pleiotropy, relates to

when genetic variants have multiple consequences and in this case the GWAS

variant and the eQTL could lie on distinct causal paths, in particular when the eQTL

affects multiple genes. The ability of TWAS methods to build predictive models of

expression is also limited,  in particular  by the heritability of  the molecular  trait.

Finally, predictive models are often based on cis-expression which only represent a
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fraction  of  the  total  expression,  ignoring  rare  cis-eQTLs  and  trans-eQTLs  and

therefore miss an opportunity to increase the overall power to discover signals. 

Mechanisms and causes of T2D 

Type  2  diabetes  (T2D),  also  known  as  non-insulin  dependent  diabetes

mellitus, is a chronic metabolic disorder which affects populations worldwide.  It  is

the most common form of diabetes, with almost 462 million individuals affected by

the disease in 2017 (Khan et al. 2020), and this number increases every year. Due

to the multiple  complications that present with T2D,  the disease carries a large

burden, both in terms of death (1.37M in 2017) as well as an economic cost (1.32

trillion  dollars  in  2015  worldwide)  (Bommer  et  al.  2018).  The  disease  is

characterized  by  elevated  levels  of  glucose  in  blood,  and  is  responsible  for

comorbidities  such  as hypertension,  retinopathy,  neuropathy,  coronary  heart

disease, and kidney disease. T2D tends to develop later in life, and is strongly

associated to genetic, lifestyle and environmental  factors such as body fat. The

combination of these factors may cause both impaired insulin secretion from the

pancreas and failure of insulin to properly stimulate glucose intake in other tissues,

known as insulin resistance (Cerf 2013). 

Insulin is a peptide hormone secreted  exclusively in the beta cells of the

pancreatic islets in the pancreas. Pancreatic islets are around 2% of the raw tissue

volume of the pancreas, and is  composed by hormone producing cells such as

beta cells, gamma cells, and others  (Da Silva Xavier 2018).  Translated from the

INS gene,  a  preproinsulin  protein  is  synthesized first  and then modified  into  a

proinsulin protein, before being packaged into vesicle for the last post translational

modifications which result in a mature insulin protein. Insulin is then released in the

blood, either oscillating over a long period of time, or released faster following an

increase of blood glucose levels. Circulating insulin can have multiple effects on

the overall metabolism, but its main role is to increase the glucose intake in organs

such as adipose tissue and muscle  (Rahman et  al.  2021).  In  order  to  do this,

insulin proteins bind to specific receptors on the cell membrane (insulin receptors),

promoting cellular  processes that  transform glucose such as  glycogenesis  (the
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process  converting  glucose  into  glycogen),  inhibition  of  gluconeogenesis  and

glycogenolysis (production of glucose in the liver) or stimulation of esterification

and fat synthesis (conversion of glucose into triglycerides for nutrition). Because

insulin plays such a major role in the glucose homeostasis, any disturbance in the

synthesis or release process could lead to failures in reducing glucose blood levels

and have consequences for the metabolism of the whole body.

In  addition  to  impaired  secretion  of  insulin,  insulin  resistance  also

contributes to  the  disruption of  the glucose homeostasis  in  tissues targeted by

insulin  (skeletal  muscles,  adipose  tissue  and  liver)  and  responsible  for the

management  of  blood  glucose.  The  glucose  transporter  gene  (SLC2A4)  is

responsible  for  producing  the  intracellular  glucose  transporter  (GLUT4) that

captures glucose from intercellular spaces in adipose and skeletal muscle tissues.

Other transporters such as GLUT1 and 2 have similar functions but in different

tissues  (liver,  pancreas,  etc...). Mutations in  this  gene  can  affect  the  glucose

transport and lead to consequences on metabolic processes such as glycogen and

lipid  synthesis,  resulting  in  hyperglycaemia  or  hyperlipidemia  (higher  levels  of

glucose and lipids in the blood) (Czech 2017; Pearson et al. 2016).

Although traditionally T2D is thought to be the consequence of poor glucose

homeostasis,  the  complex  genetic  and  environmental factors  known  to  define

disease risk suggest T2D is a consequence of multiple factors interacting together.

For example, T2D can be caused by a combination of  high BMI due to a high

caloric  diet  together  with  a  sedentary lifestyle  behaviour,  which causes  insulin

resistance.  These  factors  cause  the  development  of  inflammation  and

stress/oxidative stress in response, triggering the slow degradation of pancreatic

islets  (Galicia-Garcia  et  al.  2020;  Cerf  2013).  This  is  usually  a  slow  process

involving many biological pathways in multiple organs and tissues separate from

the pancreas. After the development of insulin resistance (IR), beta cells first try to

compensate for the reduced glucose intake by increasing insulin production and

release in  pancreatic  islets,  inducing cellular  stress and triggering  inflammation

processes. This state, after a long period of time, can lead to the exhaustion of the
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beta cells, also called glucolipotoxicity, and ultimately cell death (Christensen and

Gannon 2019; Halban et al. 2014). Therefore, impaired secretion of insulin can be

directly associated with increased insulin resistance. This process, by which the

pancreas compensates for the high blood glucose level caused by the disruption of

insulin absorption by secreting insulin in excess is called hyperinsulinemia, and it

affects  insulin  sensitivity  in  other  tissues.  IR  itself  is  considered  highly

environmentally  dependent  as  it  is  strongly correlated  with  high  fat  diets  and

lifestyle.  But  many  genetic  factors  are  also  involved  in causing  IR,  including

mutations of the GLUT4 transporter in muscle, and Foxo1 and Akt protein kinase

pathways in liver (Galicia-Garcia et al. 2020; Pearson et al. 2016; Czech 2017). 

As a result of the impact of IR , T2D can be described as a multi-tissue

disease, with its pathogenesis involving various organs. From a causal point  of

view,  due  to  its  role  in  insulin  secretion,  pancreas,  and  more  specifically  the

pancreatic islets, may be considered the main tissue in the development of T2D.

However, insulin resistance, and more generally blood glucose management, can

be attributed to a wide range of tissues. For example, adipose tissue, through the

release of inflammatory molecules and adipokines, can disrupt insulin sensitivity. In

addition  to  adipose  tissue,  liver  and  skeletal  muscle  are  key  components  of

glucose release and consumption; when insulin receptors are inhibited in these

tissues the whole body glucose homeostasis is disturbed. This is the reason why

these tissues are often studied in T2D studies, to explore the different mechanisms

responsible for the disease pathogenesis.

Diagnosis and medication

T2D  is  often  diagnosed  by  measuring  the  levels  of  glucose  in  fasting

individuals’ (usually 6 to 8 hours after the last meal) plasma blood and the levels of

glycosylated haemoglobin A1c (HbA1c).  Levels of glucose greater than 126 and

200 mg/dL or HbA1c levels greater than  42mmol/mol are indicators of diabetes.

Oral  Glucose  Tolerance  Test  (OGTT),  another  test,  measures  the  metabolic

response  before  and  after  a  glucose  intake.  This  test  also  can  identify both

impaired  glucose  tolerance  (IGT)  and  impaired  fasting  hyperglycaemia  (IFG),
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indicators of a prediabetes status, where blood glucose levels are still lower than

what would be observed for a patient with diabetes but potentially in  the path of

disease. Additionally, other clinical metrics can be used to more precisely define a

patient’s condition, in terms of disease severity and subtypes. For example, insulin

c-peptide test can be used to measure the ability of the body to produce insulin by

quantifying the amount of c-peptide, a cleaved section of the proinsulin, secreted to

blood by pancreatic islets  (Leighton,  Sainsbury,  and Jones 2017).  Lower levels

would suggest  treatment supplementing insulin  using injections.  Glucose clamp

methods measure glucose continuously over a period of time in a hyperglycaemic

context to establish an individual’s ability to secrete insulin and absorb glucose

(DeFronzo,  Tobin,  and Andres 1979).  Similarly,  homeostasis  model  assessment

(HOMA) methods can be used to measure insulin resistance (HOMA-IR) or beta

cell  dysfunction  (HOMA-B)  using  measurements  of  insulin  levels  and  fasting

glucose (Song et al. 2007).

Environmental and genetic factors define the risk of developing T2D. BMI

and  sex  are  among  the  most  influential  environmental  factors  on  T2D  risk.

Physiological differences between males and females, such as body fat distribution

and sex hormones, have been associated with disease risk. Obesity, defined as a

high  BMI,  is  a  strong  risk  factor  associated  with  the  development  of  insulin

resistance  by  increasing  the  deposition  of  adipose  tissue  and  visceral  fat,

promoting inflammation processes and modifying the metabolic micro-environment

of cells with consequences for insulin signalling pathways. In addition, high caloric

diet,  sedentary lifestyle,  regular  stress  and  low  physical  activity  are  other  risk

factors,  influencing  in  particular  the  age  of  onset  of  T2D.  These  factors  are

confounded with  ethnicity  and the specific  frequency of  alleles in  a  population,

which may influence how a particular diet or lifestyle defines the risk of disease.

For  example,  in  Western  populations  the  peak  incidence  of  newly  diagnosed

diabetes  is  between 55 and  59  years  old,  but  in  Indian  populations  this  peak

happens around 40 years old, even in those individuals with Western diets and life

styles  (Lin et al. 2020; Khan et al. 2020). Similarly, although higher BMI is a risk

factor for  T2D, women show a higher  tolerance for BMI than men, with  Indian
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populations also developing T2D with lower BMIs than European populations. The

combination of these factors is one reason why T2D is such a heterogeneous and

complex disease and also stresses the importance of building a patient profile to

have a more adapted prevention system and treatment.

The complexity  of  disease mechanisms and aetiology make it  difficult  to

consider all patients with T2D equally in terms of diagnosis and treatments. More

recent studies have sought to characterize individuals diagnosed with T2D using

clinical variables to define new subtypes of T2D. One suggested classification was

first introduced in Ahlqvist et al (Ahlqvist et al. 2018; Ahlqvist, Prasad, and Groop

2020; Mansour Aly et al. 2021) and proposed five subgroups of T2D patients using

a model  based on six clinical  parameters (glutamate decarboxylase antibodies,

age at diagnosis, BMI, HbA1c, and homoeostatic model assessment 2 estimates of

β-cell  function  and  insulin  resistance).  They  defined  five  distinct  subtypes  with

specific disease progression and risk of  complications :  1)  Severe autoimmune

diabetes (SAID), which includes patients with early-onset diabetes, low BMI, insulin

deficiency  and  presence  of  GADA (glutamic  acid  decarboxylase  antibody,  an

antibody acting against the pancreatic cells, this subtype has a large overlap with

Type I  diabetes) ;  2)  Severe insulin-deficient diabetes (SIDD), includes patients

similar  to  the  previous  group  but  without  GADA antibodies;  3)  Severe  insulin-

resistant  diabetes  (SIRD)  with  individuals presenting high  BMI  and high insulin

resistance ; 4) Mild obesity-related diabetes (MOD), patients with obesity but no

insulin deficiency ; 5) Mild age-related diabetes (MARD), similar to MOD except a

higher overall age distribution.

Treatment of T2D is often based a combination of glucose lowering drugs,

behavioural interventions,  such  as  diet  management  and  increased  physical

activity,  and  medication for comorbidities such as retinopathy and cardiovascular

diseases.  Among  the  glucose  lowering  medications,  the  most  widely  used  is

metformin (Inzucchi et al. 2012). Its main mechanism of action consists of reducing

hepatic glucose production which leads to weight loss without hypoglycaemia. Side

effects of the drug including gastrointestinal troubles, and it is contraindicated for
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patients  with  CKD  or  acidosis.  Other  commonly  used  drugs  include  the

sulfonylureas,  a  class  of  drugs  that  stimulate  insulin  secretion  by  acting  on

potassium channels in beta cells. A common side effect of these type of drugs is

hypoglycaemia and weight gain. Similar to sulfonylureas, drugs based on GLP-1

receptor agonists stimulate the pancreas to increase the insulin secretion and also

slow  down  the  absorption  of  glucose  in  the  intestine.  One  of  the  main

consequences of this drug is weight loss caused by the decrease of appetite as

well  as slowing the gastric  emptying, and these drugs are also currently being

explored as a general weight loss medication (Nauck et al. 2020).

Thesis aims

The aim  of  this  thesis  is  to  use  the  different  computational  methods  to

explore the variety of causes and also the consequences of T2D as a complex

disease. In the first  chapter we will  explore the consequences of T2D on gene

expression  using  a  multi-tissue  expression  dataset.  The  second  chapter  will

explore  TWAS  methods  as  applied  to  T2D,  to  propose  causal  genes  for  the

disease. Finally, we will look in more detail at metformin, using gene expression

and genetic studies into the drug to explore the genes which affect its efficacy, and

the direct molecular consequences of the medication.
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The data

This  thesis  is  a  computational  project  which  relies  heavily  on  different

datasets  to  conduct  various  analyses.  We  used  data  from  two  consortia,  the

Genotype Tissue Expression (GTEx) consortium and the DIabetes REsearCh on

patient straTification (DIRECT) project (Aguet et al. 2017; Koivula et al. 2014). The

first  is  a  multi-tissue  American  cohort,  created  to  investigate  the  relationship

between genetic variation, gene expression, and phenotypic traits. The second is a

European consortium focused on T2D and using whole blood samples to identify

biomarkers of the disease in order to improve the understanding and treatment of

T2D.

GTEx

The GTEx project was first unveiled in 2013  (Lonsdale et al.  2013) as a

collaboration between multiple  human biology and health  centres in  the United

states (NCI, NCBI, LDACC). The aim was to produce a comprehensive resource to

understand  how  genetic  variation  influences  gene  expression  across  multiple

tissues in the human body. For this, they produced a multi-tissue cohort aiming to

detect  tissue-specific  QTLs  which  could  be  associated  with  multiple  traits  and

diseases. Data was released in several stages, starting with a pilot release after

~2.5 years built  from 9 tissues and 175 donors.  The final  release included 49

tissues and more than 800 individuals (Figure 6).

After the selection of the donors based on specific criteria (aged between 21

and  70,  with  exclusion  criteria  for  HIV,  viral  hepatitis,  metastatic  cancer,

chemotherapy and radiation therapy for any condition within the past 2 years or a

BMI > 35 or < 18.5), organs were sampled and prepared for the next steps, and

questionnaires were given to family members to collect phenotype and disease

information.  Then,  after  quality  control,  they  extracted  DNA  and  RNA  and

proceeded to genotyping and producing expression quantifications using Illumina

technologies.
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Their first major publication in 2015  (GTEx Consortium 2015) provided an

overview of the project's goals, methodology, and initial findings. They reported the

eQTLs they discovered, describing how these eQTLs were shared across tissues,

reported patterns of  allele-specific  expression as well  as relating the eQTLs to

functional  annotations of the genome produced by ChIP-seq experiments.  After

this,  there  were  two  other  main  releases  of  data,  accompanied  by  major

publications. One in 2017 was based on the v6p version of the data (Aguet et al.

2017), and described in more detail the sharing of eQTL signals and the functional

characterization of these QTLs.

Figure 6: Tissues and numbers of samples per tissue 
included in the GTEx v8 release. Figure from GTEx , 2020
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Finally, in 2020, the full v8 dataset was released, with a full discussion on

tissue specificity and sex differences for regulatory effects (The GTEx Consortium

2020).  This  final  release includes expression quantified in  49 tissues from 838

donors, released together with whole genome sequencing of  the individuals.  In

total, mRNA was sequenced from 15,201 tissue samples. The number of samples

ranges from 73 for kidney cortex samples up to 706 for skeletal muscle. In total

they found 4,278,636 genetic variants were significantly associated with at least

one gene in at least one tissue, 23,268 protein coding or lincRNA genes had at

least one cis-eQTL and mapped a total of 695,981 independent cis-eQTLs across

all genes and tissues (Figure 7).

From GTEx, we used publicly available independent eQTLs to build models

that predict expression from genotype data, to associate predicted expression with

phenotypes from other cohorts. We also used the gene expression data and the

fact that around 160 of the GTEx donors had been diagnosed with T2D to look for

genes whose expression was associated with the disease.

Figure 7: Panels from the final release of the GTEx v8 data describing the major 
findings and reproduced from ref. A Number of genes with a cis eQTL per tissue vs 
sample size. B Proportion of eGenes with one or more independent cis-eQTLs and mean 
number of cis-eQTLs per gene. Tissues ranked by sample size. Figure from GTEx, 2020.
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DIRECT

The  DIRECT consortium was  created  in  2012  to  better  understand  the

development and progression of T2D in patients.  In order to shape prevention and

treatments for patients with T2D and those at risk of developing the disease, the

project had two main goals: 1) observe and understand the variation of glycaemic

control in patient with T2D and in participants with a pre-diabetic status over time

and 2) quantify the effect of  treatment on the glucose homeostasis,  enabling a

more personalised approach to treatment.

In order to accomplish this, they recruited two cohorts of individuals, one

with newly diagnosed diabetes and the other with elevated HbA1c that did not

reach the level  of  a clinical  diagnosis of  diabetes (referred to as pre-diabetes).

These  cohorts  were  recruited  across  7  different  centres  in  Europe  (Kuopio,

Amsterdam, Copenhagen, Lund, Dundee, Exeter and Newcastle). They excluded

individuals with prior treatment with insulin or other drugs than metformin, patients

with pacemakers or any other significant medical  reason for exclusion, patients

with T2D, a BMI < 20 or > 50 kg/m2 and HbA1c level higher than 75 mmol/mol.

These cohorts, a total of 3029 individuals, were followed up over a period of three

to four years, with three clinical visits over this period. Whole blood was taken

during these visits,  and used to produce genetic,  transcriptomic, proteomic and

metabolite data (Figure 8). Genotyping was done using the Illumina HumanCore

array.  For  expression,  mRNA  samples  were  sequenced  using  the  Illumina

HiSeq2000 platform, mapped to the GRCh37 reference genome, and exon and

gene quantification were produced using a pipeline from  Delaneau et  al.  2017.

Splicing phenotypes were also generated using LeafCutter. Proteomics data was

produced  using  five  different  models  using  the  Olink®  platforms,  namely

Cardiometabolic,  Cardiovascular  II,  Cardiovascular  III,  Development  and

Metabolism panels.
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One recent  paper  published  by  this  consortium was  Brown et  al,  which

mapped  QTLs  across  all  omics  data  types  available  in  DIRECT.  They  found

extensive  allelic  heterogeneity,  where  a  molecular  trait  is  affected  by  multiple

genetic  variants,  and  also  pleiotropy,  where  a  genetic  variant  affects  multiple

molecular traits.  They also showed that many of the genetic signals across the

diverse tissues of GTEx were also active in whole blood (Figure 9); we will use this

fact in Chapter 2 to identify T2D genes using a non relevant tissue.

Figure 8: Visual representation of the study framework from collecting the data to the 
analyses of molecular phenotypes. Figure from Viñuela et al 2021

Figure 9: π1 values which represent the proportion of genetic 
effects in each of the GTEx tissues which are also found to be 
active in DIRECT whole blood. Figure from Brown et al 2023.
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Chapter 1 : Effect of T2D on gene
expression in a multi tissue context

Type 2 diabetes as a complex disease

Type 2 diabetes (T2D) is a complex and multifactorial  metabolic disorder

that  affects  millions  of  individuals  worldwide.  It  is  characterised  by  chronic

hyperglycaemia resulting from a combination of insulin resistance and impaired

insulin  secretion  (Roden  and  Shulman  2019).  The  rising  prevalence  of  T2D

presents a significant  global  health  challenge,  with  its  associated complications

contributing to increased morbidity and mortality rates. While environmental and

lifestyle factors play a crucial role in disease development, it is increasingly evident

that  genetic  factors  also  contribute  significantly  to  T2D  susceptibility  and

progression (Galicia-Garcia et al. 2020).

Over the years, significant progress has been made in understanding the

genetic  basis  of  T2D,  with  numerous genetic  loci  and variants  associated with

disease susceptibility identified through genome-wide association studies (GWAS)

(Mahajan et al.  2018;  Spracklen et al.  2020;  L.  Cai  et  al.  2020).  However,  the

functional  consequences  of  these  genetic  variants  and  their  impact  on  gene

expression patterns in relevant tissues remain incompletely understood because

the majority of genetic associations fall into non-coding regions of the genome. It is

therefore  difficult  to  link  the  disease-associated  variant  to  a  particular  gene  or

protein. Whole genome sequencing can help by producing high quality information

on  all  non-coding  variants,  but  fine  mapping  the  exact  causal  variant  and

determining its  consequences still  presents significant  challenges  (Brown et  al.

2017). One approach that has been used is to combine GWAS information with

epigenomic  information  collected  from  relevant  cells  or  tissues.  For  example,
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Weedon et al. used annotations on whole genomes extracted from patients with

isolated pancreatic agenesis to discover several mutations affecting the enhancer

activity of the PTF1A gene, a critical developmental gene and therefore associating

these  mutations  to  isolated  pancreatic  agenesis,  a  direct  cause  of  neonatal

diabetes. However, little is still  known about the causes and consequences of the

disease.

There are type of  diabetes where the pathogenesis scenario  follows the

example of a monogenic disease, where a single gene in a single tissue is directly

causal for the development of the disease. Neonatal diabetes and maturity onset

diabetes of the young (MODY) are examples of families of monogenic diabetes,

but even there, that specific gene may differ between individuals with the disease

(Fernandez-Zapico  et  al.  2009;  Thanabalasingham  and  Owen  2011).  T2D  in

contrast, is an example of a complex disease. It is the result of many genetic and

environmental  factors  affecting  processes such  as  gene expression,  in  several

tissues such as pancreas, adipose tissue, and skeletal muscle. In individuals with

the disease, we could expect to see differences in gene expression in individuals

with T2D, in these tissues.

Differential gene expression and T2D

Differential  gene expression  analysis  as  been used as  a  complement  to

genetic  studies  to  identify  genes  involved  in  diseases  and  its  consequences.

Discovering  genes  whose  expression  is  different  (up-  or  downregulated) in

individuals  with  the  disease  may  implicate  these  genes  in  the  development,

progression or consequences of the disease.  With the advent of high-throughput

technologies  to measure thousands of molecular phenotypes, such as RNA-seq,

we are now capable to quantify the expression of thousands of genes in cells and

tissues  (Wang,  Gerstein,  and  Snyder  2009).  It  is  also  possible  to  apply  these

technologies in a wide range of tissues, including those directly relevant to T2D,

and increasingly in single cells as well (allowing us to extract information specific to

a  cell  type).  By  utilising  these  large-scale  genomic  datasets,  researchers  can
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identify  and quantify  changes in  gene expression  with  increased accuracy and

sensitivity.

Discovering  differentially  expressed  genes  typically  involves  several  key

steps. First, biological samples from different conditions or experimental groups are

collected and processed to  generate sequence data from RNA from  expressed

genes. The output of the sequencing machine is mapped to the human genome,

and the expression of individual genes is quantified by counting reads that map to

that particular gene (Birney et al. 2007). Preprocessing steps are applied to filter

out low-quality or  badly mapped data and to normalise gene expression values

across samples to account for technical variations. Once gene quantification data

has  been  obtained,  statistical  techniques  can  be  applied  to  analyse  gene

expression differences between conditions. Given these analyses can look at tens

of thousands of genes in a single study, multiple testing corrections must be used

to control for false-positive results. Once a set of genes has been discovered to be

differentially expressed between conditions, functional enrichment analysis can be

performed to gain insights into the biological processes, molecular pathways, or

cellular components that are associated with these genes. These analyses can

help to understand the underlying biological mechanisms observed  by the  gene

expression changes.

There  are  a  number  of  methods  available  to  conduct  differential  gene

expression analyses and the choice of the methods is often bound to the type of

data used and which questions are asked. For RNA-Seq data, three main methods

are widely used in the field (S. Liu et al. 2021) :

• DESeq2: this utilises a negative binomial distribution model to estimate gene

expression  variation  between  conditions  and  perform statistical  tests  for

differential expression (Love, Huber, and Anders 2014).

• EdgeR:  Similar  to  DESeq2,  edgeR uses  a  negative  binomial  distribution

model to estimate gene expression variation. The differences will be in the
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normalization  procedures  (scalling  for  DESeq2  and  TMM  or  quantile

normalization  for  edgeR)  and the  test  to  calculate  differential  expression

(GLM for DESeq2 vs exact test for edgeR). Therefore edgeR is usually more

fitted to smaller sample sizes (McCarthy, Chen, and Smyth 2012).

• limma-voom. This method combines a voom transformation to normalize the

data with a linear modelling approach to analyse RNA-seq data. It provides

a  framework  for  handling  technical  variability  using  covariates  in  linear

models (Law et al. 2014).

We have chosen to follow the limma-voom framework and work with linear

regression  models  based on quantile  normalised gene expression counts.  This

approach  is being  widely used in  genetic associations analyses such as GWAS

and expression  quantitative trait  loci (eQTL), which can be viewed as a type of

differential expression analysis where the condition being research is the particular

SNP genotype.  The  reason  not  to  use  the  above  mentioned  packages  is  that

recent work has suggested they produce false positives, especially in datasets as

large as the ones we are analysing (Y. Li et al. 2022). Moreover, these methods are

often designed for small sample size studies, while population studies, as those

used through this thesis, tend to have larger datasets. 

In the context of T2D, RNA-Seq and differential gene expression analyses

have  been  used  to  better  understand  the  pathogenesis  of  T2D  by  exploring

different  mechanisms and potential  pathways particularly  affected in  individuals

with  T2D.  For  example,  studies  have  shown  reduced  expression  of  genes

responsible  for  fatty  acid  synthesis  and  mitochondrial  function,  along  with

increased expression of genes associated with innate immunity and transcriptional

regulation in the adipose tissue of obese diabetic individuals (Debard et al. 2004;

Lackey and Olefsky 2016). In addition to lipid metabolism, immune response and

inflammation  are  important  factors  altered  in  individuals with T2D  and  several

studies  have  identified  differentially  expressed  genes  involved  in  immune  cell
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signalling,  inflammatory  response,  and  T-cell  activation  in  individuals with the

disease. The NF-kB signalling pathway has also been found to be activated, and

the  expression  of  genes  associated  with  immune  response  and  antigen

presentation  was  found  to  be  altered  in  T2D  patients  showing  another

consequence of inflammation and oxidative stress (D. Cai et al. 2005). However, it

could be that  changes in  expression are a result  of  the disease rather  than a

cause. Indeed, we are observing correlations between changes in expression and

disease status and not necessarily causation (Porcu et al. 2021). In this case, the

gene  may  still  be  relevant  to  the  symptoms  produced  by  the  disease  or  its

progression, and thus still  would  be interesting drug targets for treatment rather

than prevention.

Hypothesis and aims
In this chapter we aim to identify differential gene expression in response to

T2D  in  multiple human  tissues  to  investigate  what  tissues  respond  to  the

development of T2D. The identification of specific tissues which genes respond to

the development of T2D would inform about the underlying molecular mechanisms

that  react  to  disease  such as insulin  resistance,  in  the case of  involvement of

adipose or skeletal muscle tissue, and beta cell dysfunction in the case of the liver

and  pancreas  involvement.  Moreover, by  looking  in  particular  tissues  we  can

explore the role of comorbidities  associated to the disease.  The risk of  T2D is

known to increase with age, BMI and for smokers. Therefore, the identification of

differentially expressed  genes must consider whether  changes in expression are

related to T2D, or  other  environmental factors such as  obesity  or older age. In

addition, integrating data across multiple tissues can enable the identification of

shared  and  tissue-specific  signals  to  understand  interactions  between  tissues.

Overall,  integrative  approaches  can  provide  a  comprehensive  view  of  disease

mechanisms, highlight tissue-specific contributions, and facilitate the identification

of potential therapeutic interventions.

Throughout this first chapter, we have two major questions : 
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• How does type 2 diabetes  alter  gene expression profiles  across various

tissues  and  how  do  these  changes  contribute  to  the  pathogenesis  and

progression of the disease?

• How  does  the  gene  expression  profile  differ  between  relevant  and  non

relevant tissues in individuals with type 2 diabetes compared to non-diabetic

individuals, and what are the key genes and pathways involved?

GTEx data and construction of the model

In order to conduct a differential gene expression analysis (DGEA), we used

expression  and  phenotyping  data  publicly  available  from  the  Genotype-Tissue

Expression (GTEx) consortium  (Lonsdale et al.  2013).  GTEx was a large-scale

research project initiated in the United States aimed to create a comprehensive

catalogue  of  gene  expression  and  the  effects  of  genetic  variation  on  gene

expression across multiple human tissues from cadaveric donors. In this study we

used  the  expression  and  phenotyping  data  from the  v8  version,  using  the  49

tissues selected for cis eQTL mapping, as these had reasonable sample sizes (N >

70) with sufficient power to discover T2D genes.

The  GTEx  cohort  included  individuals  between  20  and  70  years  old

(average age 53 years old)  and with  a BMI  between 17 kg/m2 and 40 kg/m2

(average of 27.22 kg/m2). The distribution of men and women is for most of the

tissues  2:1, except for sex-specific tissues (in total 653 males and 327 females).

There were a total of 218 individuals with T2D in the cohort, with significantly (p =

2.1e-07) higher BMI than controls (Figure 10).
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Main results

The  GTEx  study  performed  most  of  their  analyses  controlling  for  both

biological  and  technical  sources of  variation  in  expression  data  using  principal

component  analysis  (PCA).  However,  PCs  are  known  to  capture  important

biological sources of information as well, so using this approach risks removing

signals related to T2D. Therefore, we looked at the technical information provided

by GTEx, related to sample collection, processing, and experimental procedures,

to  evaluate which of  these explained a significant  proportion of  the expression

variation. By considering these technical covariates, we also increase our statistical

power to discover true associations as we reduce the noise in the data. Moreover,

we also evaluated the  effect of biological variables on genes expression  in the

Figure 10: Distribution of BMI for individuals in GTEx by T2D status. BMI was 
significantly higher in individuals with T2D. Mean BMI for controls = 26.9 and mean 
BMI for cases = 28.6.
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context of T2D by looking at the effect of age, BMI and sex. First, we used a linear

model to identify associated variables with the first 5 PCs of the expression data

using a Wald test. In cases where multiple variables were used to capture one

technical  source  of  variation  (for  example,  where  multiple  PCs  were  used  to

summarise genotype PCs or for categorical variables such as ethnicity, PCR and

platform) we used a likelihood ratio test applied to nested models. To decide which

covariates  to  include  in  the  final  DEGA regression  model,  we  constructed  a

heuristic score for importance, based on the p value for association between the

covariates, each of the 5 principal components, and the proportion of variance in

expression  explained  by  that  covariate.  This  score  was calculated  for  each

covariate  by  summing the  product  of  the  -log10  p  value  with  the  regression

coefficient from the five linear regressions between the PCs from gene expression

and each of the covariates. Based on these scores, we decided to use age, sex,

ethnicity  and  BMI  as  biological  covariates,  and  RIN  score,  ischaemic  time,

autolysis, platform and pcr as experimental covariates (Figure 11).

Figure 11: Scores calculated for each covariates to include in the regression model. 
Each dot is a GTEx tissue. Variables are ranked by increasing mean score.
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Using  a linear model  controlling for technical variables,  age, sex, ethnicity

and BMI, we  identified between 1 to 5174 differentially expressed genes (DEGs)

for T2D across 49 tissues after multiple testing correction per tissue (FDR 5%) (Fig

12).  Significant  DEGs  were  found  in  12  of  the  49  tissues,  but  there  was  no

particular relationship between the relevance of the tissue for T2D and the number

of significant DEGs  (Figure 13). The larger numbers of DEGs were found in the

tibial nerve and the basal ganglia of the brain (respectively 5174 and 4873 genes).

A recent study has highlighted the importance of this tissue for T2D (García-Pérez

et al. 2022). T2D can lead to damage to the nerves, a condition known as diabetic

neuropathy. Moreover, although the majority of these 12 tissues had a higher than

average sample size (n > 310), there was no significant correlation between the

sample size and the number of DEGs found (cf next section).

We also investigated DEGs for four other biological  and technical  factors,

namely BMI, sex, age and ischaemic time (the time from death to tissue collection)

for their high impact on T2D risk. We found more DEGs for these factors than we

did for T2D mainly because GTEx is not a T2D cohort and the number of cases

was not enough to detect more signals. With 15343 genes significantly associated

with ischaemic time in lung tissue and 14319 genes significantly associated with

sex in breast mammary tissue. About the number of tissues with significant DEGs,

in comparison to the 12 tissues with DEGs for T2D, we observed a maximum of 47

tissues with genes significantly associated with age, 44 with sex, 34 with ischemic

time and 31 with BMI. This gave us insights into the importance of these factors

considering the number of DEGs discovered for them but also the importance of

tissue  relevance  as  we  can  observe  different  ranking  of  tissues  in  terms  of

discovery power depending on the trait we are looking at.



Figure 12: Number of significant genes for each tissue and each trait. Colors are green for tissues non relevant for T2D and orange for 
relevant tissues.
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Correlation between discovery power and sample size

For all biological factors except T2D, the number of samples collected per

tissue was  an  important  determinant  of  the  number  of  significant associations

discovered. The linear relationship between sample size and power to discovered

DEG was stronger for sex and ischaemic time (Figure 13). However, across tissues

of similar samples sizes, such as the brain tissues (129  to 209),  we would still

observe variability in  power  to discover DEGs  (from  0  to 8,176 significant DEGs

across  all  traits).  This  linear relationship  between  sample  size  and  number  of

significant associations was also weaker than the relationship with numbers of cis-

eQTLs per tissue identified before (The GTEx Consortium 2020).

We hypothesised that the lack of relationship between sample size and T2D

DEGs may be driven by differences in the number of individuals with T2D for each

tissue. However, a linear regression between number of DEG and the number of

samples from individuals  with T2D  found no significant  associations (p value =

0.702). Moreover, the association analysis identify brain caudate ganglia and tibial

nerve  were outliers (Figure 14),  as both  show high numbers of associations  with

T2D with low population of cases  (respectively N = 47 and 105).  This raises the

possibility that many of these associations in the tissue could be driven by a few

Figure 13: Proportion of significant associations against the sample size for traits without BMI 
correction. Regression line in blue and coefficients above.
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outliers. All in all, larger tissues identified more DEG per trait with smaller sample

sizes showing high variability in the number of significant genes. 

Degree of sharing between tissues

We next investigated the extent to which the same genes were repeatedly

found  to  be  differentially  expressed  in  multiple  tissues.  Genes  found  to  be

differentially expressed in nerve tibial tissue were often found in one or more of 7

other tissues, with the highest degree of sharing between tibial nerve and adipose

subcutaneous, aorta artery and heart atrial appendage (respectively 53%, 52% and

50% of significant genes in common)  (Figure 15). Lower levels of sharing were

observed for other tissues, with no clear pattern of sharing in related tissues. We

also  observed  in  some cases  genes shared  between  multiple  tissues but  with

different  directions  of  effect.  For  example,  SLC13A3, previously  found  to  be

Figure 14: Correlation between number of individuals with T2D and number of significant 
associations. Blue line represent the regression line with the statistics indicated on the graph.
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involved in T2D,  showed lower expression in the tibial  nerve in individuals with

T2D, but higher expression in subcutaneous adipose tissue.

BMI effect on differential gene expression results

In the original  model  we included BMI as a biological covariate  because

obesity is  known to be one of the major risk factors for the development of T2D.

Controlling for BMI allows for the discovery of any T2D genes whose relationship

is  not  mediated by obesity,  just as  controlling for age identify T2D genes whose

relationship is independent of the age of the participants. Models not controlling for

BMI, are therefore expected to identify more genes associated to T2D, as these

would  include T2D genes  independent of  obesity  addition to those T2D genes

associated to obesity. However,  we found  that by removing BMI from the model

fewer  genes  were  significantly associated  with  T2D  in  six  tissues,  while  more

genes were significantly associated in other seven other tissues (Figure 17).  One

of the larger  changes was observed for the adipose subcutaneous tissue where

75% of DEGs were not  significant after controlling for BMI (from  1015  genes to

Figure 15: Heatmap of percentage of sharing between tissues with T2D signals. From 
blue indicating no sharing to red 100% of significant genes shared.
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254). We also observed an increase of 631% (666 to 4873) and 262% (340 to

1232) in the number of significant genes differentially expressed with T2D in brain

caudate ganglia and skeletal muscle when controlling for BMI.

Considering the relative importance of BMI as a factor in diseases related to

these tissues (coronary heart disease, heart failure, T2D and various myopathies),

controlling for this factor was expected to reduce the number of DEGs observed.

Instead, we observed a significant increase of the number of genes supposedly

acting  independently  of  the  BMI  environment.  In  the  case  of  skeletal  muscle,

although not well documented in the literature, there seems to be a consensus that

muscle, as one of the main energy consumers of the body, can show a reverse

relationship  with  diabetes  aetiology,  with  higher  muscle  mass  being  protective

against the disease.

Figure 16: Proportion of significant associations against the sample size for traits 
without BMI correction. Regression line in blue and coefficients above.
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For some tissues all DEGs were only identified when using one model. For

example,  for  adipose visceral  omentum,  16 DEGs were  significantly associated

with T2D only when not controlling for BMI effects. One of those significant genes

was  SPX,  a  gene  coding  for  the  spexin  peptide,  that  have  been  previously

associated with obesity and implicated in satiety and food intake  (Behrooz et al.

2020). This suggests that T2D genes identified in these tissues were differentially

expressed due to BMI. On the other hand, the RHOG gene was only significantly

associated to T2D in the artery aorta when controlling for BMI. This gene is coding

for  a  protein  regulating  insulin  secretion  pathway  in  the  pancreatic  islets,  and

suggest  that  genes  identified  in  models  controlling  for  BMI  could  be  genes

associated to beta-cell dysfunction. All in all, our results suggest that the influence

of obesity-mediated T2D on gene expression was not uniform across tissues.

Figure 17: Representation of the percentage of total gene loss (or gain) for each tissue when 
controlling for BMI.
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Distribution of the variance explained by covariates

Given the large change observed when evaluating the role of BMI in the

identification of T2D-genes, we investigated the proportion of variance explained

by 5 of our biological and technical covariates, namely T2D status, BMI, sex, age

and also ischaemic time as it is an important factor when studying post-mortem

samples. In this way we could address the relative importance of these covariates

for predicting expression, and assess whether this was dependent on the tissue

being studied. In some cases, one biological covariate was more important than

any of the others, for example the ischemic time was the most important technical

predictor  of  expression  in  testis,  while  age  was  the  most  important  biological

predictor of  expression in whole blood.  However,  these five variables explain a

relatively small proportion of variance in expression across all tissues especially

compared to heritability, the fraction explained by genetics which represents ~ 15-

20%. Previous findings have shown that an unmeasured environment, including

stochastic noise, is the most important contributor (Grundberg et al. 2012). In terms

of overall relative importance, age and ischemic time are seen as more important

than  T2D  status,  sex  and  BMI.  As  expected,  this  matches  the  number  of

Figure 18: Detail of the difference in significant gene sets when controlling for BMI. In red the genes 
significant when controlling for BMI, in green genes significant only when there is no BMI correction and in 
blue genes significant in both sets.



47

associations  found  with  these  covariates,  ischaemic  time  showed  the  highest

amount of significant associations (up to 15343 genes in lung), followed by sex and

age  (14319  in  breast  mammary  tissue  and  12897  genes  in  tibial  artery

respectively)  identifying more DEGs than BMI (7437 genes in whole blood) and

T2D status (5174 in tibial nerve).

Figure 19: Percentage of variance explained for each tissue and for 5 traits : T2D, BMI, Sex, 
Age and ischemic time. Tissues are ranked by sample size (lowest at the bottom).
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Although all  tissues seem to display a similar distribution of proportion of

variance explained by these variables, there are a few exceptions and outliers. For

example,  ischaemic time explains 27 times more variance in  the kidney cortex

compared to whole blood. The importance and impact of ischaemic time have been

shown  before  in  previous  studies.  The  cascade  of  events  resulting  from  the

organism’s  death  and  the  response  to  stress  such  as  hypoxia,  cell  death  and

autolysis is known to have an effect on the transcriptome.

Figure 20: Boxplots comparing the average percentage of variance explained per tissue for 
each o the 5 studied traits.
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All in all, we observed different proportions of variance explained by different

variables. One of the driver of such as variation would be the cellular composition

of tissues. GTEx generated bulk tissue expression profiles information, and tissues

can differ greatly in the degree of homogeneity and exposure to environments. In

particular, tissue cell composition is know to change with age which may explain

why it  was the more relevant  variable in  most  tissues.  However,  the biological

features  we  explore  were  limited  as  well,  as  other  factors  not  measured  such

smoking  status,  cause  of  death  and  disease  comorbidities,  may  explain  more

variance.  For  example,  the  fraction  explained  by  genetics  has  been  previous

shown to  explain  a higher  proportion of  gene expression variance than age in

multiple tissues (Viñuela et al. 2018).

Looking for insights into the causality of our signals

To  explore  whether  the  DEGs  identified  were  drivers  of  disease,

consequences  of  disease  or  consequences  of  co-morbidities  of  disease  ,  we

investigated the  proportion  of  DEGs genes  for  which  there  was  also  genetic

Figure 21: Proportion of ischemic time values in whole blood and kidney.
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evidence of a causal effect on T2D risk. We used a curated set of 403 significant

associations with T2D from a published GWAS study  (Mahajan et al. 2018) and

evaluated the enrichment of DEGs in a 1MB window around the significant GWAS

hits with a chi squared test from two by two contingency table.

We found no evidence of enrichment in any tissue (Figure 22). This would

be due to low power because of the low number of GWAS hits and DEGs in most

tissues, but others have also concluded that most DEGs are not causal for disease

(Porcu et al. 2019). However, even if not causal for disease, DEGs would still be

interesting from a treatment perspective, or to better understand how symptoms

develop.

Associations  for  brain  regions  identified  known  T2D
genes

The number of significant associations differed greatly across brain tissues,

despite similar sample sizes. In some cases this was in agreement with previous

experiments  that  have  shown  differences  in  blood  flow  in  the  ganglia  region

Figure 22: Odds ratio of genes found nearby a significant GWAS variant.
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between patients with and without T2D (Jansen et al. 2016); this was also the brain

region where we found most DEGs. This gene was detected in the caudate basal

ganglia  and  the  cerebellar  hemisphere.  A study  on  sex  differences  in  brain

connectivity, found a strong difference between men and women in the cerebellum

area  (Ingalhalikar  et  al.  2014),  which was  also  one  of  the  tissues  where  we

discovered the  largest numbers of  DEGs for sex  (N = 1281). These brain results

demonstrate that  even with small sample sizes, we would discover  hundreds of

DEGs,  as  long  as  the  tissues  were  somehow relevant  for  the  trait  or  disease

(Figure 23). 

The case of INS, the insulin gene

Since the INS gene, coding for the insulin protein,  is an  important gene in

the molecular processes associated to T2D, we wanted to investigate changes in

Figure 23: Comparison of regions of the brain found to be associated with a trait in the 
litterature vs in our results.
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its expression  across traits.  Out of  the 49 tissues  evaluated, 42  expressed this

genes, but only in the pancreas tissue  was  significantly associated with  T2D (p

value = 0.008, beta = - 0.41). The gene is only  marginally expressed in all  but

pancreas  tissues, since  pancreatic  islets  are  the  only  organ  producing  this

molecule.  Therefore,  after multiple testing correction, none of these tissues  were

significant for any associations (Figure 24).

Gene set enrichment analysis

Finally,  we  performed  a  gene  set  enrichment  analysis  to  look  into  the

possible shared  functions  and pathways  identified  by  the  DEGs  with  T2D.

Enrichment analyses evaluate if DEGs are overrepresented or enriched in specific

functional categories or biological pathways than would be expected by chance.

We used the GSEA (Gene Set Enrichment Analysis) tool (Mootha et al. 2003) as it

uses a combination of methods including ranking of genes and permutations to

make the results more robust. Rank-based approaches rank all genes based on

Figure 24: Distribution of pvalues for the INS DEG in all GTEx tissues.
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their differential expression or other statistics (in our case, correlation p values) and

have  been  shown to  improve  the  overall  pathway  analysis  results  (Zyla  et  al.

2017). Permutations for statistical testing are non-parametric tests generating null

distributions by randomising gene labels and then comparing actual test statistics

to this null distribution to obtain a non-parametric p value.

We found 4921 unique pathways enriched across the DEG with T2D in the

49  tissues (qvalue  <  0.01).  There  were  no  correlation  between the  number  of

pathways enriched and the total number of DEGs observed per tissue nor with the

relevance of the tissue for T2D. However, pituitary was the tissue with the larger

number of pathways enriched across its DEGs (1790), closely followed by stomach

(1446), both tissues not directly related to the disease (Figure 25). 

Figure 25: Number of total GSEA pathways against the total number of 
DEGs for each GTEx tissue. Colors are for relevance of the tissues for T2D.
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Among the significantly enriched pathways, we observed a large number of

mitochondrial  related  pathways,  whether  it  is  respiration  or  oxidative

phosphorylation,  were enriched across all  tissues, with high enrichments scores

(absolute  NES > 3).  These are  key processes for  cellular  survival  and energy

consumption.  A large  number  of  these  pathways  were  negatively  enriched  in

skeletal muscle, a tissue heavily relying on cellular respiration to balance between

exercise and normal state. To our surprise, we found no significant enrichment of

T2D DEGs for the insulin related pathways in the pancreas despite being the INS

genes DEG only in this tissue. We observed an enrichment on insulin receptors or

responses  to  insulin  pathways  in  some  tissues  such  as prostate  and vagina.

Moreover, we saw enrichment of insulin secretion or regulation of insulin secretion

pathways in brain regions, supporting a role of brain molecular processes in T2D

(Figure 26).



Figure 26: Insulin related significant pathways in GTEx tissues.
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Discussion

We conducted a DGEA on T2D using 49 tissues available from the GTEx

consortium  (Aguet  et  al.  2017).  Given T2D is  a disease involving a number of

different tissues, this allowed us to investigate multiple processes that could lead to

the disease. We identified between 1 and 5174 significant DEGs in  12 tissues

including both relevant and non relevant tissues for the disease and a sample size

between 175 and 581 individuals. However, we were surprised to find that neither

the relevance of the tissue for the disease, nor the number of available samples in

that tissue, influenced the number of  genes we discovered. In comparison, the

number of available samples was an important factor when looking for DEGs with

other biological covariates, namely age, BMI, sex and  also a technical variable

such as  ischaemic time. In general, these factors were much more influential on

gene expression; 15,343 DEGs were discovered with ischaemic time in the lung for

example. Relevance of tissue was also found to be an important factor for some of

the variable. For example, the larger number of DEGs for sex were found in breast

mammary tissue, which is known to have different cell compositions in men and

women (Howard and Gusterson 2000). 

A possible reason for the limited numbers of DEGs detected with T2D is that

GTEx was not designed as a T2D study, and the number of people with diabetes

was limited (from 42 to 148 , depending on tissue), limiting the power to discover

DEGs. Moreover, T2D can be related to failures in beta cells production of insulin.

These cells are contained in the pancreatic islets, but the corresponding tissue in

GTEx is pancreas for which islets make up less than 2% of the cells. A study that

used  gene  expression  from  pancreatic islets  found  that  using  these  samples

allowed them to  explain  more genetic  associations with  T2D and other  related

glycaemic  traits  than  whole  pancreas  (Viñuela  et  al.  2020).  In  addition,  GTEx

samples also come almost  exclusively  from post-mortem cadaveric  donors,  the

effect of this can be seen in the large numbers of associations discovered with
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conditions and as we have seen when looking at  the results  and analyses for

ischaemic time.

While  writing this chapter, a study very similar  to this ours was published

using the same data  (García-Pérez et al. 2022). Through their work, similarly to

what we found, they noticed that some demographic traits such as ancestry, age,

sex and BMI have a significant impact on differences of gene expression between

individuals. Although both results were not exactly the same (they used different

tools but also a slightly different model including PEER factors as well as exonic

rate),  we  both  found  interesting  results  regarding  tissues  such  as  tibial  nerve

displaying a high number of DEGs. Their analysis of variance explained by these

traits was also similar to ours, showing a relative heterogeneity among different

tissues  and  overall  small  numbers  compared  to  heritability.  One  additional

interesting point to mention is the absence of DEGs in the liver tissue similar to

what we observed in our analysis. Both our models are including a large amount of

covariates  which  could  lead  to  overfitting  scenarios  and  therefore  a  loss  of

significant true signals in some tissues with a model being too stringent. Among

solutions for these issues, we can cite regularization methods such as L1 or L2

penalty to compensate overfitting (ridge or lasso method) or removing some of the

least relevant parameters.  Even though their work was more focused on splicing

where we decided to discuss more causality and directionality of our DEGs, they

added another layer of comprehension, especially on diabetic neuropathy and how

this  type  of  analyses  can  help  investigate  the  multiple  demographic  and

environmental  contributors  to  gene  expression  and  how  it  impacts our

understanding of a disease.

One of  the  advantages of  genetic  studies  is  the promise that  significant

associations are causal in nature. Since T2D cannot mutate DNA, the direction of

causality is from genetics towards disease. In contrast, DEGs are often assumed to

be  the  consequence  of  disease  (Porcu  et  al.  2021).  In  the  case  of  T2D,  the

interpretation is even more complicated by the fact that the disease is often found

alongside  other  conditions.  These  include  obesity,  cardiovascular  disease,

dementia and other traits. Each could have their own effect on expression, with a

complicated causal network  relationship  between them.  We aimed to understand

the relationship between expression, obesity and T2D by looking at results with
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and without controlling for BMI and saw that when controlling for BMI, some tissues

reduce the number of DEGs. This was driven by the fact that  the effects of T2D

and BMI on the expression of  these genes  were not independent. The opposite

scenario  was also displayed in tissues such as skeletal  muscle or  artery aorta

meaning that these genes are independent from BMI and could be associated with

other factors or comorbidities.

In order to understand if our findings were causal or consequences of T2D

we also investigated the underlying genetic evidence of our signals. We found out

that the majority of  the DEGs were not overlapping with any  gene associated to

strong genetic variants from previous studies, therefore we shall consider changes

in expression for these genes a consequences of the disease instead of causing

factors. This is in line with the previous findings from Porcu et al, where the authors

employed similar methods for DEGs and evaluate reverse causality on the link

between gene expression and complex traits. The authors conclude that the trait

often has more impact on the gene expression than  gene expression on a trait,

implying  differentially  expressed genes  are  not  causal  of  the  trait  or  disease.  

However, although the majority of the signals might be a response to T2D,

exploring and interpreting these associations could help us understand the various

consequences  and  co-morbidities  of  T2D.  In  fact,  knowing  which  genes  are

impacted by T2D could give us information about the disease progression but also

the different symptoms. For example, identifying genes involved in glucose uptake

with a reduced expression could let us learn how insulin resistance is impacting the

glucose homeostasis.

Methods
The expression data from GTEx used for differential  expression analysis

was  first  filtered  on  protein  coding  and  lincRNA  using  the  corresponding

GENCODE reference file (release v26) (Frankish et al. 2019). Then, as mentioned

in the beginning of the results, multiple covariates where tested before including
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them in the regression model. First, principal component were calculated based on

individual gene expression data and using the prcomp function to then extract the 5

first PCs. To test the importance of the covariates, we then combined these PCs

with individual information on age, sex, BMI, ischaemic time, autolysis of the tissue,

RIN score, centre, ethnicity as well as the first 5 genotyping PCs as another proxy

for ethnicity. Then after extraction of the pvalue and variance explained by each of

these covariates, we calculated a score based on the sum for each covariates of (-

log10(pvalue) * variance explained). 

The final model was as follow :  Exprs ~ T2D_status + BMI + Age + Sex +

RIN_score + Autolysis + Center + Ischemic_time + Geno_PCs + pcr + platform  .

We ran this model on each of the 49 GTEx tissue and extracted estimates, betas

as well  as calculated variance for T2D, age, sex, BMI, ischaemic time and the

same without including BMI in the model. Pvalues were then adjusted using the

qvalue function and extracting corresponding qvalues.

π1 values to represent the proportion of significant results were calculated

using the pi0est function in R and subtracting π0 results to 1 for each of the tissues

and traits tested.

The variance explained by each of the five traits was calculated from the

regression  statistics  when  running  the  differential  gene  expression  analysis.  In

order to achieve this, we used this formula for each trait : variance = anova(sum of

squares) / sum(anova(sum of squares)) * 100

To look at genes nearby GWAS hits we used the localisation information

from GTEx data and significant SNPs from Mahajan et al 2018 with the bedtools

tool  to  test  for  overlaps  using  the  intersect function.  Then,  odds  ratio  were

calculated by using the odds.ratio function and contingency table with the number

of genes in common or not between the two sets. 

The pathway analysis was done using the GSEA software (Subramanian et

al. 2005). We run GSEAPreranked with every parameters by defaults and including

database from KEGG, reactome, GO Terms and wikipathways as well as gene sets

for each tissue.  The results were then extracted and filtered to look at specific

pathways using keywords.
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Chapter 2 : Discovery of Type 2
diabetes genes using an accessible

tissue 

The limitations of the GWAS approach

Genome wide association  studies  (GWAS) in  large cohorts  have greatly

expanded our knowledge on the genetic causes of complex diseases such as T2D,

implicating hundreds of novel loci  (Ali 2013; Visscher et al. 2012; Vujkovic et al.

2019). However, most of these genetic loci are located in non-coding regions of the

genome. To understand the immediate consequences and function of non-coding

variation,  molecular  studies  have  assayed  gene  expression  in  multiple  human

tissues and linked genetic variation to changes in gene expression. These studies

provide a path for discovering disease causing genes and the tissues in which they

are active by connecting GWAS loci to genes in a particular tissue (Viñuela et al.

2020;  Alonso  et  al.  2021;  Miguel-Escalada  et  al.  2019).  Transcriptome  wide

association methods are a type of method using reference expression datasets to

build predictive models of genetically regulated gene expression. These models

are then applied to GWAS studies to produce cis-predicted expression phenotypes

across thousands of genes, which can be tested for association with the disease.

Where individual  level  data is unavailable,  approximations exist  using summary

statistics. It has been argued that TWAS methods discover genes that are causal

of the disease, because these are based solely on genotype data that predates the

development of disease. However, this interpretation is complicated by issues such

as pleiotropy (SNPs associated to the expression of several genes) and linkage

contamination  (correlated  SNPs  where  one  affects  disease  risk  and  the  other

expression)(Wainberg et al.  2019). This means that while the methodology may

implicate  a  particular  gene,  the  true  causal  drivers  may  be  other  variants  and

genes nearby. For this reason we will  refer to TWAS significant associations as

causal loci rather than causal genes.
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The importance of reference tissues, sample size or 
relevance?

Reference datasets used to predict gene expression should be based on

tissues that are directly relevant for the disease, to ensure that the tissue specific

genetic  effects  that  alter  disease risk  are  captured(Sun et  al.  2021).  However,

many disease relevant tissues are difficult to collect, limiting the sample size of

such experiments and the ability of TWAS methods to produce accurate predictors

of gene expression (Figure 27A). Studies with small sample size are best powered

to discover expression quantitative trait loci (eQTLs) with the largest effect size,

these are typically located in promoter regions (The GTEx Consortium 2020) and

have  cross  tissue  effects,  reducing  the  identification  of  tissue  specific  genetic

effects. For example, T2D, a complex disease characterized by increased levels of

glucose  in  blood  (WHO 1999),  involves multiple  tissues  with  physiological  and

genetic factors influencing its pathogenesis, such as insulin resistance, obesity and

beta-cell dysfunction. For each mechanism of action, different tissues and organs

play greater and lesser roles. Insulin resistance related T2D is often associated

with  molecular  changes  in  skeletal  muscle,  adipose  and  liver,  while  beta-cell

dysfunction is almost exclusively associated with the pancreatic islets, where beta-

cells are localized (Galicia-Garcia et al. 2020). Many of these relevant tissues are

difficult  to  collect  pre-mortem, with consequences for  our ability  to discover the

genetic and molecular processes involved in the development of T2D. On the other

hand, gene expression studies with thousands of samples have shown that the

expression of most genes is affected by multiple eQTLs and many of these effects

are  shared  across  multiple  tissues  (Aguet  et  al.  2017;  Brown  et  al.  2023).

Therefore, it is possible that larger molecular studies using samples which from

tissues easy to collect such as blood, could identify disease relevant loci.
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Figure 27: A. Schematic overview of the tradeoff between tissue specificity and 
sample size and their impact on detection of effects on expression. The upper 
section shows the consequences of using different tissues on the effect captured with 
TWAS. The lower section shows the different scenarios when the sample size is small.
B. Study workflow. We developed prediction models for genetically regulated gene 
expression and protein levels in multiple datasets with different sample sizes. 
Predictive models were then associated to T2D using GWAS summary statistics to 
identify differentially expressed genes with T2D.
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Aims of the chapter

Here, we aim to identify T2D relevant genes using TWAS methods in a large

dataset from whole blood, an accessible tissue. We also assess the roles played

by sample size and tissue relevance when identifying disease genes using TWAS

methods. We compared the ability to find T2D related genes using a large whole

blood expression dataset produced by the DIRECT consortium (n=3029) to the

performance  using  relevant  tissues  but  with  smaller  sample  size  (GTEx

consortium, n < 706, and pancreatic islets from INSPIRE, n=420). We show that

sample size is the chief determinant of discovery power for associations between

gene  expression  and  disease  risk.  Furthermore,  we  explored  the  effect  of

considering environmental factors such as BMI on discovering T2D loci and the

use protein-QTL (pQTL) data to gain potential biological insights on the disease.

Finally, using GWAS data from T2D subtypes, we identify novel genes implicated in

Severe Insulin Deficient Diabetes.

Summary of the method

To identify  T2D causal  loci  we used gene expression reference datasets

produced by three consortia: DIRECT (whole blood, sample size 3,029), 49 tissues

from GTEx (sample size 70 to 706) and InsPIRE (pancreatic islets, 420). These

datasets were chosen to represent a full spectrum of modestly sized expression

references generated from tissues that  are directly  relevant  to  T2D (pancreatic

islets, subcutaneous and visceral adipose tissue, liver, skeletal muscle and kidney

cortex)  to  a  large  dataset  generated  from a  non-relevant  tissue  (whole  blood,

DIRECT)  (Viñuela et al. 2020; The GTEx Consortium 2020; Koivula et al. 2014)

(Methods).  Transcriptome  wide  association  studies  construct  models  of  gene

expression  from  reference  expression  datasets  and  use  these  to  predict

expression in GWAS studies, which can then be used to test for association with

disease. In this study, expression was modelled using conditionally independent

cis-eQTLs  released  by  each  consortium  and  then  associated  with  T2D  using

GWAS  summary  statistics  from  the  DIAGRAM  consortium  and  the  MetaXcan

method (Figure  27B)(Barbeira et al. 2016). By adopting this approach the results



65

were directly comparable across studies, as all studies used the same pipeline to

generate conditionally independent cis eQTLs.

Main results

Using a TWAS method,  we identified 404 T2D associated loci  using the

whole  blood  DIRECT  data  (n=3,029  samples).  This  is  the  largest  number  of

significant loci discovered across the reference panels, where 108 loci identified

using  the  pancreatic  islet  INSPIRE  dataset  (n=420)  and  from  3  to  299  loci

depending on tissue for GTEx (n<706) (1,568 in total; Figure 28A – C). We found a

strong linear correlation between the sample size of the dataset and the number of

significant  loci  discovered (Spearman correlation  0.95,  p=7.62e-27,  Figure  28B).

However, the DIRECT dataset did not follow the linear trend, identifying fewer loci

than would be predicted (Figure 28B). This could be due to limitations specific to

the  DIRECT  data,  such  as  lower  sequencing  depth  and  multi-centre  sample

collection, or due to a saturation of signals to discover disease loci (Koivula et al.

2014).  We also  tested  for  an  effect  of  tissue  relevance,  using  a  linear  model

excluding DIRECT of discovered loci against sample size and actually found that

fewer loci were discovered using relevant tissues than would be expected based

on sample size (estimate = -29.27, p-value = 0.019). In summary, we found a linear

relationship between sample size and discovery of disease relevant causal  loci

with little influence of the suspected relevance of the tissue for the disease.
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Figure 28: A. Distribution of the number of significant associations 
obtained with MetaXcan for each tissue tested. Tissues are ranked by 
sample size and colored by datasets or disease relevance, green is DIRECT, 
orange is InsPIRE, pink and purple GTEx with pink showing relevance for 
T2D. B. Scatter plot showing relationship between sample size and number
of significant associations. Colors use the GTEx official color palette plus 
DIRECT in green and InsPIRE in orange. C. MetaXcan results for three 
tissues and DIRECT proteins in a Manhattan style. The red line indicates 
the significance threshold at –log10 (0.05). The labelled genes or proteins, 
indicate highly significant associations (p < 5e-8 for genes and p< 0.05 for 
proteins).
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Tissue specific and shared associations

Large reference datasets identified more disease loci than smaller datasets,

but the proportion of already known T2D loci was larger for relevant tissues (figure

29A).  In  DIRECT we identified 88 out of 404 (21.8%) of significant  loci  that were

previously reported as related to T2D (Piñero et al. 2020). Across all GTEx tissues

there were 251 known T2D loci out of a total 1,568 (16%, from 0 to 56 per tissue,

Methods). In comparison, 30 out of 108 (28%) of the islets associated loci  had

previously  been  associated  with  T2D.  For  example,  UBA52 and  NAGLU were

among the DIRECT reported genes, which have previously observed to be over

expressed in pancreas of individuals with T2D (Sjöstedt et al. 2020). On the other

hand, only using pancreatic islets  data were we able to identify an association

between T2D and TCF7L2, a gene located near one of the strongest known T2D

GWAS signals  (del Bosque-Plata et al. 2021). Overall, this study identified 1,515

potentially novel T2D genes across all tissues.

We  next  investigated  the  degree  to  which  the  reported  genes  were

discovered in multiple tissues.  Comparing the genes reported in  significant  loci

across datasets, we observed that more than half of all significant genes were only

discovered  in  one  tissue:  196  were  identified  using  only  DIRECT (49% of  all

DIRECT significant associations) while 51 were found using only InsPIRE (47%).

Across tissues,  we observed that  similar  tissues did  not  show any patterns  of

sharing genes (Figure 29B). This is consistent with most associations being driven

by  cross  tissue  effects,  with  a  significant  “winner’s  curse”  contribution  to  the

discovery  set  in  each  tissue  (Figure  29B).  Moreover,  we  found  that  disease

relevant tissues such as islets, liver and muscle, display more unique well known

T2D  genes  compared  to  non-relevant  tissues  (Figure  29C).  However,  the

pancreatic islets dataset missed known T2D genes such as CDKN1C, involved in

beta-cell proliferation. This gene was only discovered using the increased power of

the DIRECT reference. Our results show that studies with larger sample sizes such

as DIRECT and the combined data of GTEx tissues, were able to identify more
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potentially  novel  genes  (respectively  316  and  1317)  compared  to  the  relevant

pancreatic islets tissue (78). Moreover, we show that processes in non-relevant

tissues may be informative of genetic effects relevant to disease, identifying novel

disease candidate genes that would be missed due to sample size limitations.



Figure 29: A. Heatmap of occurrences of 13 known T2D genes in all significant associations. Light blue tiles designate the presence of the
gene and dark blue the absence. B. Heatmap of the number of shared significant association between each pair of tissues. C. Barplots 
representing the distribution of number of occurrences of significant known T2D genes in all tissues separated by the relevance of the 
tissue. Red bars are for counts in relevant tissues and green bars are counts in non-relevant tissues.
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Looking for true causal effects

To  better  understand  the  nature  of  the  SNPs  underlying  significant

associations, we looked at the relationship between the causal loci and two sets of

significant  GWAS  signals,  to  assess  how  well  particular  reference  panels

corroborated the loci implicated by these GWAS studies and to investigate whether

loci  could  be  driven  by  individual,  highly  significant  signals.  We used  the  492

GWAS significant loci  reported by  Mahajan et al.  2018 (the GWAS used in the

TWAS analysis),  and the 186 signals reported by  Spracklen et al.  2020, which

used  an  East  Asian  population  different  from our  main  results. We found  that

DIRECT associated loci were more likely to be within 1MB of a significant GWAS

signal  than  all  loci  from  each  of  the  GTEx  tissues  (Figure  30A).  However,

compared to  islets  loci,  the DIRECT loci  were less likely to be  found near  the

GWAS signals  of both  studies  (ORMahajan =  1.16  and  ORSpracklen =  1.22).  This

enrichment of DIRECT and INSPIRE loci relative to GTEx may be a result of loss

of  information  when lifting  over  GWAS summary statistics to  GRCh38 genome

build, necessary to combine these statistics with GTEx reference panels. When

considering GTEx tissues alone, the relevance of the tissue for T2D did not predict

enrichment,  with tissues such as adipose subcutaneous and pancreas depleted

relative to the median tissue (Figure 30A). There was also no correlation between

sample size and the enrichment of significant genes around GWAS loci  (Figure

30B).
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We hypothesized that the increase in the number of discovered loci by the

DIRECT dataset, could be driven by loci involving multiple expression variants with

moderate effects on T2D risk that are hard to find in smaller datasets. The DIRECT

Figure 30: A. Proportion of significant genes located nearby significant GWAS hits from 
different studies. Odds ratio have been calculated relative to DIRECT findings allowing to 
display on the right side of the red line tissues getting better results than DIRECT and on 
the left side of the line the opposite. B. Barplot of tissues ranked relative to their number 
of eQTLs found to be significant in the two GWAS (P < 10e-3). Colors are green for
DIRECT, orange for InsPIRE, pink and purple GTEx with pink showing relevance for T2D. 
C. MR analysis results. We show the number of genes involved in causal pathways for each
tissue tested.
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study originally reported more than 60,000 independent cis-eQTLs, while in this

study we found that more DIRECT eQTL show suggestive association with T2D

risk GWAS results:  503 eQTLs for DIRECT had P<0.001 in the Mahajan GWAS,

compared to 105 eQTLs for islets (Figure  30B). To test more formally that more

DIRECT loci were identified due to multiple eQTL effects on T2D risk, we applied

multiple instrument Mendelian Randomization (MR). As proposed by the SMR and

HEIDI  methods  (Y.  Liu  et  al.  2021),  we  tested  whether  eQTL variants  have

consistent, non-zero effects on T2D risk. Using a Wald Ratio test, we looked for

evidence of genetic effects affecting both traits, and applied a test of heterogeneity

to evaluate the consistency of effects. In DIRECT, out of the 214 loci meeting the

requirements for this MR methods, 31 were significant  (corrected pvalue < 0.05

and a heterogeneity test pvalue > 0.05), compared to between 1 and 9 across the

other reference datasets.  We can notice that besides DIRECT, among the GTEx

tissues, the top tissue with 9 genes validated through MR is tibial  nerve, again

demonstrating  the  importance  of  this  tissue  as  observed  in  the  first  chapter.

Therefore, we conclude that well powered reference datasets  identified more loci

with multiple variants with consistent effects on T2D risk than smaller reference

panels  (Figure  30C).  These  loci  were  supported  by  a  larger  number  of  SNPs

located further away from the target genes, and therefore with moderate genetic

effects, compared to SNPs used from smaller studies.

Proteomics and T2D

While  genetic  effects  on  disease  risk  are  expected  to  be  mediated  by

transcription at some point, for many diseases protein levels have been shown to

be more informative biomarkers(Crutchfield et al. 2016; J. J. Li, Bickel, and Biggin

2014). We investigated if TWAS methods could identify T2D mediating protein loci

by constructing models based on cis plasma targeted protein-QTLs (pQTLs). Using

DIRECT  genetic  data  and  pQTLs  affecting  149  proteins,  we  identified  7  loci

associated with T2D: SEMA3F, IDUA, LRIG1, CASP3, IL27, ICAM1 and CRELD2

(Figure 28C). Among these, LRIG1, ICAM1 and CASP3 were coded by known T2D

genes: LRIG1 is part of a protein family which is involved in lipid homeostasis and

has been associated with T2D (Herdenberg et al. 2021), ICAM1 has been shown
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to be involved in diabetic retinopathy  (Gu et al. 2013) and expression of  CASP3

has been associated with islet apoptosis (Liadis et al. 2005; Tomita 2010). Of the

reported proteins,  only LRIG1 and ICAM1 reported significant associations also

with the genetically predicted gene expression for the coding gene, and for LRIG1

the reported associations showed opposite direction of effect (Zscoreexpression  = -

3.43, pvalueexpression = 0.013, Zscoreprotein = 3.85, pvalueprotein = 0.006). Despite the

smaller number of loci identified with protein data, the proportion of associated loci

vs. tested loci was approximately the same for proteins as it was for genes (4.6%

compared to 4.7%). This suggests that both assays had similar power to discover

mediating factors, though the genome-wide ability of RNA-seq to quantify mRNA

means that more loci were tested and therefore discovered. We looked to see if for

significantly  associated  proteins  we  were  also  more  likely  to  find  a  significant

association between disease and the corresponding gene, and we observe a large

odds ratio for enrichment, though this was not significant due to the small numbers

of proteins associated (odds ratio = 9.56, Fisher’s Exact test pvalue = 0.51). This

large  odds  ratio  is  consistent  with  other  studies,  that  have  found  that  genetic

effects on proteins replicate on expression (Brown et al. 2023).

Looking for gene with BMI mediated effects

Previous studies have shown that  processes occurring in  the pancreatic

islets are more likely related to T2D driven by beta-cell dysfunction, while obesity

related T2D or insulin resistance would be linked to expression patterns in adipose

or muscle tissue  (Viñuela et al. 2020; Dimas et al. 2014). However, T2D GWAS

studies have shown that most loci do not change their effect size when controlling

for  BMI  (Spracklen  et  al.  2020).  To  explore  disease  subtypes  causal  loci,  we

repeated  our  association  analysis  using  T2D GWAS summary  statistics  which

controlled for BMI. Our assumption was that controlling for BMI would reduce the

number of loci we discovered that relate to insulin resistance,  which is known to

correlate  to  BMI,  and boost  our  ability  to  discover  loci  relating  to  beta-cell

dysfunction by  removing  environmental  variation.  We found a  reduction of  732

genes  discovered  overall,  from 1,818  unique  genes  to  1086  and  a  fall  in  the

number of protein associations from 7 to 4 (Figure 31A). We found a subset of 46
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significant genes in pancreatic islets results detected only in the subset adjusted

for BMI. Among these we can cite for exemple the IGF2BP2 gene representing the

highest zscore in the adjusted set of result (zscore = -16.17, pvalue = 5.30e-56).

This gene, although being known for participating in the increase of T2D risk by

disrupting insulin secretion, is also related to other metabolic diseases such as

obesity, hence the potential presence of this gene in this subset (N. Dai et al. 2015;

Christiansen et al. 2009). The effective sample size of the GWAS study controlling

for  BMI  was ~30% smaller  than the  GWAS not  controlling  for  BMI,  explaining

partially this  reduction. However,  we observed that across tissues  the reduction

was independent of their sample size (Figure 31B). When looking at the number of

loci significantly associated with T2D only when using the GWAS controlling for

BMI,  we  also  saw no  difference  across  tissues.   From  this  we  conclude  that

accounting only for BMI in the identification of IR or beta-cell dysfunction genes

does not provide enough information to segregate genes from specific pathways. 

Genes specific to subtypes of T2D

T2D is a heterogeneous disease  beyond the IR or beta cells dysfunction

categories,  involving  different  presentations;  this  influence  choices  in  terms  of

study design and how cases should be defined. An inclusive definition of a case

can help with recruitment, facilitating larger studies, while a more specific definition

Figure 31: A. Comparison between results obtained with MetaXcan when adjusting for 
BMI or not. Are shown, Zscores for DIRECT and InsPIRE. The colors are blue for non-
significant associations in both outputs, orange for both, green for only unadjusted results 
and black for adjusted results only. B. Comparison of the overall number of significant 
associations for each tissue when controlling for BMI.  
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can allow the discovery of disease loci specific to particular aspects of disease.

Recently, Ahlqvist et al. 2018 suggested that diabetes could be considered as five

disease subtypes, namely severe autoimmune diabetes (SAID) also referred to as

type 1  diabetes  (T1D),  severe  insulin  deficient  (SIDD),  severe  insulin  resistant

diabetes  (SIRD),  mild  obesity  related  (MOD)  and  mild  age  related  diabetes

(MARD).  A GWAS  study,  found  genetic  signals  specific  to  the  particular  five

subtypes and not discovered using larger GWAS studies into  T2D, despite the

smaller sample size for the subtype GWAS (10,927 patients included compared to

~1 million)(Mansour Aly et al. 2021). Applying TWAS methods, we found that the

size of the GWAS study also had an impact on the number of loci that we discover

highlighting the importance not only of the size of the reference panel but also of

the GWAS study used to calculate these associations scores. Similarly to the main

analysis,  DIRECT  displayed  the  higher  number  of  overall  significant  loci  (42)

compared to pancreatic islets resulting in 15 loci and between 3 and 37 for GTEx.

When looking at the subtypes individually, we noticed that the SAID subtype TWAS

uncovered  the  highest  number  of  significant  loci  with  132  total  unique  genes,

followed by MOD (17),  SIDD (13),  SIRD (11) and MARD (8).  We  replicated all

significant loci reported in Mansour et al such HLA- loci in SAID, TCF7L2 in SIDD,

MOD and  MARD and  ZNF503 in MOD. Moreover, we found that genes  such as

TCF7L2  were only detected in disease related tissues such as pancreatic islets

related  to  beta  cell  dysfunction  mechanisms  and  associated  here  with  SIDD.

Among  the  new  discovered loci  we  found  SIK3,  associated  with  SIRD  using

DIRECT blood, a gene previously identified in relation to insulin resistance (Uebi et

al. 2012) or ABO, associated with MOD, a known T2D and obesity related genes

(Siddiqui, Soni, and Khan 2019). DIRECT, as the largest dataset discovered more

genes compared to  the  other  tissues individually.  However,  for  certain  disease

subtypes some tissues outperform the biggest reference dataset, such as SIDD,

MOD and MARD where tibial nerve or pancreatic islets found more loci. Overall,

the  limited  GWAS  sample  size  drastically  reduced  the  number  of  significant

associations, with TWAS methods showing larger power to find relevant loci, even

for disease subtypes. 
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Discussion

Our findings show that the relevance of the tissue does not play a large role

in the numbers of genes discovered by TWAS methods, instead the sample size of

the reference panels was the most important determinant. Not only did we find

more genes using the largest available gene expression reference dataset, we also

reported a  substantial  increase  in  associated  genes  by  using  a  larger  GWAS

dataset for T2D than previously published (from 873 to 1,818 genes) (Vujkovic et

al. 2019). However, we also saw some evidence that our power to discover causal

genes may be beginning to become saturated at around the size of the DIRECT

reference panel (~3000 samples). This sample size is feasible for less accessible

tissues  by  combining  datasets;  for  example  recently  a  consortia  has  mapped

eQTLs using a dataset of 2,970 brain cortex samples from individuals of European

ancestry (de Klein et al. 2023), while others have combined datasets of pancreatic

islets to obtain larger sample sizes (Alonso et al. 2021). It would be interesting to

investigate if tissue relevance is more important when using reference datasets of

this size, with increased ability to map tissue specific signals.

We built our predictive models using sets of curated independent eQTLs for

DIRECT,  GTEx  and  InsPIRE.  Since,  MetaXcan  is  calculating  scores  per  gene

based on overlaps between the models and the GWAS summary statistics, our

upper detection limit will be the number of eQTLs present in each reference panel

(DIRECT : 59972 , GTEx : 159236 for all tissues, InsPIRE : 4639). Therefore, we

based our results on non-coding variations since eQTLs are in most cases located

in non-coding regions of  the genome such as enhancers or  promoters.  Where

GWAS is focusing on coding variants by assigning these significant variants to

nearby genes, TWAS is focused on finding and linking regulatory regions of the

genome with changes in gene expression and downstream effects on the disease

risk.

Comparing the performance of different omics (in this case transcriptomics

and antibody based proteomics) to identify mediating molecular phenotypes, we

observe that proportionally these assays have comparable power. However, the

genome-wide nature of RNA-seq does mean that considerably more hypotheses

can be tested using a single assay, while the power of proteomics assays may be
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boosted by the pre-selection of proteins directly relevant for disease. Though it was

not  significant  due  to  small  numbers,  we  observed  a  large  odds  ratio  for

enrichment  when  looking  at  expression  and protein  associations.  This  may  be

partly due to TWAS methods only considering genetic effects in cis, or local to the

gene, and so excludes additional effects such as post transcriptional modifications

including  alternative  splicing  where  different  isoform of  an  mRNA can  lead  to

different translations. This also suggests that approaches which look to combine

eQTL and pQTL information when identifying gene targets could be reusing the

same information (Mountjoy et al. 2021), obtained using the two different assays,

which  could  lead  to  an  overestimation  of  a  gene’s  suitability  as  a  target.  An

alternative approach could focus on trans effects  on proteins,  less  likely  to  be

mediated by mRNA.

Type 2  diabetes  is  a  complex  disease involving  different  processes and

tissues. Among these processes, insulin resistance is related to obesity and tissues

such as skeletal muscle and adipose. By controlling for obesity/BMI we expected to

remove genetic signals related to these specific tissues, but instead we observed a

uniform decrease across all tissues, including pancreatic islets known to be related

to  beta-cell  dysfunction.  One  reason  could  be  that  the  original  GWAS  mainly

included individuals of European ancestry, as it is known that the development of

T2D in such cohorts is less driven by beta cell dysfunction than cohorts of other

ethnicities (Siddiqui et al. 2022). A consequence of this could be that the study had

greater power to discover insulin resistance related causes of T2D.  However, this

may also reflect the fact that beta-cell dysfunction is related to obesity as well, and

in particular to the accumulation of liver fat (Inaishi and Saisho 2020). To produce a

better  list  of  genes  understanding  particular  processes  which  drive  the

development of T2D, studying particular populations affected in greater proportion

by  these  forms  of  T2D  constitutes  another  approach,  alongside  expanding

reference datasets to reliably map tissue specific effects in inaccessible tissues.

This study has discovered a large number of genes across a large number

of tissues, in part due to the large sample size in both the original GWAS and the

reference panels used. Because T2D is a highly heterogeneous disease, involving
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many tissues and many genes, this means that many of the implicated loci will

have low effect size and be of unclear biological function. Studies of T2D have

addressed  this  heterogeneity  by  constructing  subtypes  based  on  clinical

phenotypes  (Ahlqvist et al. 2018), and shown that these subtypes have different

genetic associations (Mansour Aly et al. 2021). However, because of the necessity

of  collecting  extra  clinical  phenotypes on these individuals,  GWAS studies  into

subtypes are more limited in sample size, meaning our ability to find causal loci for

these subtypes was highly reduced. However,  we managed to find associations

with each of the subtypes in various tissues and DIRECT,  similarly to the main

results, found the biggest number of significant loci. We also identified both already

known but  also  potential  novel  loci  for  these subtypes. Indeed,  in  the  case of

insulin resistant diabetes (SIRD) we identify -  SIK3 – not previously reported in

T2D, which could be further investigated downstream as well a  ABO  associated

with  MOD.  This  suggests  that  a  strategy  of  using  carefully  defined  disease

phenotypes  with  expression  data  that  prioritizes  sample  size  over  tissue  of

relevance can identify candidate loci for specific disease processes.

In this paper we have demonstrated that eQTL information from current bulk

RNA-seq datasets are insufficient for answering questions on causal tissues for

disease and tissue specific processes, a fact that others have also noted (Finucane

et al. 2018). eQTL studies using single cell RNA-seq data from multiple individuals

are beginning to be produced, these may have the potential to identify cell  and

tissue specific effects and thus inform on tissue specific disease loci (van der Wijst

et  al.  2018;  Kang et al.  2018).  However,  these studies have lower power than

studies in bulk tissue, and so this potential may not be realized in the near future

(Cuomo et al. 2021). Concurrently, groups are producing omics data using tens of

thousands of participants, with the potential to identify even more disease related

loci, in particular in conjunction with smaller GWAS studies with carefully defined

phenotypes. Discovery of causal loci and thus gene targets is increasingly driven

by synthesizing multiple sources of evidence, functional, genetic and molecular,

and  we  have  shown  here  how  studies  in  accessible  but  not  directly  disease

relevant tissues can be a valuable source of such evidence.
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Methods

eQTLs from three studies were used develop models to identify genetically

predicted  gene  expression.  The  larger  study  DIRECT  (Diabetes  Research  on

Patient  Stratification),  with  3,029 samples,  included 59,972 independent  eQTLs

from  whole  blood  (https://doi.org/10.5281/zenodo.4475681).  This  cohort  is

composed of  both  pre-diabetics  and newly  diagnosed  T2D patients  with  blood

sample collected from venous blood. All characteristics and analyzed phenotypes

are described in a previous paper  (Koivula et al. 2014). The same study identify

1592 independent pQTLs that were used for protein models. For pancreatic islets

models  of  expression,  we  used  InsPIRE  (Integrated  Network  for  Systematic

analysis of Pancreatic Islet RNA Expression, n =420), which identify 7741 gene

level  independent  eQTLs  after  a  eQTL  analysis  using  fastQTL

(https://zenodo.org/record/3408356). Sample collection, analyses and description

of data produced by the consortium has been described in  (Viñuela et al. 2020).

For  other  tissues,  GTEx  (Genotype-Tissue  Expression)  v8  eQTLs  were

downloaded  form  the  GTEx  Portal  (https://www.gtexportal.org/home/datasets),

including  23,268 independent  eQTLs  from 49 tissues (73  to  706  samples).  All

methods from QTL studies to fine-mapping and functional analyses are described

in the main paper for this study (Aguet et al. 2017).

GWAS summary statistics for T2D from the DIAGRAM study, adjusted and

not  adjusted  for  BMI  were  downloaded

(https://diagram-consortium.org/downloads.html),  selecting  the  dataset  of

European background and the meta-analysis of 32 GWAS with 74,124 cases and

824,006 controls  (Mahajan et al. 2018). In addition, we used summary statistics

from (Spracklen et al. 2020) which performed a meta-analysis gathering 23 studies

in  the  1000  Genomes phase  3  from the  Asian  Genetic  Epidemiology  Network

(AGEN)  consortium  (https://blog.nus.edu.sg/agen/summary-statistics/t2d-2020/).

Summary statistics were also lifted over to the GRCh build 38 to be analysed in the

context of the GTEx reference panels.

The  TWAS main  analysis  was  performed  using  MetaXcan  as  described

here:  https://github.com/hakyimlab/MetaXcan. First, and using eQTL variants IDs

and  betas  as  weights  we  derived  the  MetaXcan  models  for  gene  expression

https://github.com/hakyimlab/MetaXcan
https://blog.nus.edu.sg/agen/summary-statistics/t2d-2020/
https://diagram-consortium.org/downloads.html
https://www.gtexportal.org/home/datasets
https://zenodo.org/record/3408356
https://doi.org/10.5281/zenodo.4475681


80

prediction. The covariance between each pair of variants included in each gene-

model was then calculated using R base  cov() function and stored in matrices.

Second, using as inputs the models, covariances and GWAS summary statistics

we derived associations between genetically predicted gene expression and T2D.

Pvalues for associations were corrected for multiple testing using the p.adjust()

function in R and the Benjamini-Hochberg method as well as for the rest of the

follow-up analyses.

In order to genes found nearby GWAS significant variants, we first selected

the list  of  significant genes for each tissue and extracted the chromosome and

positions for them. After doing the same for the GWAS significant variants,  we

applied the intersect command from the bedtools suite (Quinlan and Hall 2010) to

overlap the two source files in order to filters genes found in a 1MB window around

these selected GWAS variants. Then, in R, we used the base odds.ratio() function

to get the enrichment of each tissue compared to DIRECT which was selected as

the reference for this analysis.

To further investigate if genes identified were known T2D genes we used the

DisGeNET platform  (https://www.disgenet.org/home/).  This  online  resource  is  a

database of genes and variants associated to diseases publicly available which

includes  references  from  GWAS  analyses,  curated  repositories  and  scientific

literature.

We used the mr-egger function from the MendelianRandomization package

in  R  (https://CRAN.R-project.org/package=MendelianRandomization)  which  is

applying a MR method based on the Egger regression (Bowden, Davey Smith, and

Burgess 2015). This method requires for each tested gene the betas and standard

errors from the GWAS and the QTL analysis. We tested only significant genes with

three  or  more  variants  included  in  the  model  and  estimated  MR  pvalue  and

heterogeneity pvalue.

https://CRAN.R-project.org/package=MendelianRandomization
https://www.disgenet.org/home/
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Chapter 3 : Gene expression changes
after medication, effects and efficacy

of metformin

T2D symptoms and treatments

Type  2  Diabetes  (T2D)  is  a  metabolic  disorder  that  is  characterised  by

elevated blood sugar levels. This condition, primarily rooted in insulin resistance

and impaired glucose regulation,  can have profound consequences on affected

individuals  if  left  untreated.  The  main  consequence  of  T2D  is  the  persistent

elevation of blood glucose levels, as a result of the body's diminished ability to

respond effectively to insulin,  a hormone critical  for  glucose uptake.  Over time,

increasing  high  blood  sugar  levels  inflict  damage  on  various  organ  systems,

leading  to  severe  complications  such  as  cardiovascular  disease,  neuropathy,

retinopathy,  and  kidney  dysfunction  (Ekoru  et  al.  2019).  These  comorbidities

represent a major health burden and they raise the necessity of early detection and

intervention of T2D as its progression, if untreated, can have lethal consequences

for patients.

Following diagnosis  (usually  by blood tests  or  an  oral  glucose tolerance

test),  the  management  of  T2D  typically  involves  a  number  of  interventions,

including lifestyle modifications, with exercise and dietary adjustments assuming

pivotal roles. Regular physical activity not only enhances insulin sensitivity but also

aids in weight management, a crucial factor in T2D control (Wilding 2014). Coupled

with exercise, dietary changes focusing on balanced carbohydrate intake, fibre-rich

foods, and controlled portions contribute to stabilising blood sugar levels. However,

if T2D remains uncontrolled despite these primary measures, a secondary line of

treatment comes into play. This phase often entails medication, and various drugs

are available to regulate glucose metabolism. These medications span different
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classes, including oral antidiabetic drugs, insulin therapy, and newer innovations

like  glucagon-like  peptide-1  (GLP-1)  receptor  agonists  and  sodium-glucose

cotransporter-2 (SGLT-2) inhibitors. The second line of treatment is tailored to each

patient's specific needs and may involve a combination of medications to achieve

optimal  glycemic  control  (Inzucchi  et  al.  2012;  American  Diabetes  Association

2019).

Metformin, the most used medication for T2D

Metformin  is  a  widely  prescribed  medication  for  T2D,  which  operates

through multiple mechanisms to effectively manage blood glucose levels. Primarily,

metformin enhances insulin sensitivity by promoting glucose uptake in muscle cells

and adipose tissue (Zhou et al. 2001). It also restrains hepatic glucose production,

a key factor contributing to elevated blood sugar in T2D patients. This is achieved

by  inhibiting  gluconeogenesis,  the  process  through  which  the  liver  produces

glucose  from  non-carbohydrate  sources  (Madiraju  et  al.  2014).  Metformin's

influence on intestinal glucose absorption further contributes to its overall glucose-

lowering  effects  (Bailey,  Wilcock,  and  Scarpello  2008).  Despite  its  established

clinical efficacy, the precise molecular pathways by which metformin acts remain

unknown. One prevailing theory centres on its activation of AMP-activated protein

kinase (AMPK), an enzyme responsible for sensing cellular energy levels (Zhou et

al. 2001). It is proposed that activation of AMPK by metformin triggers a cascade of

events that regulate glucose metabolism and insulin sensitivity. However, the exact

interplay between metformin, AMPK, and other potential mediators is the subject of

ongoing investigation. A better understanding of how metformin works could result

in  more  targeted  prescribing  practices,  and  also  suggest  new  therapeutic

compounds.

One  tool  to  better  understand  the  molecule  processes  triggered  by  the

administering of metformin is to look at factors that affect the efficacy of the drug.

The efficacy of metformin is known to vary greatly across individuals. Factors such

as  genetics,  age,  underlying  metabolic  conditions,  and  other  medications

contribute to this heterogeneity  (Ilias, Rizzo, and Zabuliene 2022). Concentrating
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on genetics, GWAS studies have uncovered genetic regions that are associated

with  metformin  efficacy  (Zhou,  Pedersen,  et  al.  2016).  Understanding  which

molecules are affected by these regions can identify the molecules that interact

with the drug. Frequently with pharmacogenetics, this has been a simple process:

many  pharmacogenetic  variants  are  in  coding  regions  of  genes  with  known

function. For example, hundreds of pharmacogenetic coding variants have been

identified in the  CYP2D6  gene, which alter the enzyme’s ability to metabolise a

wide range of drugs  (Zhou et al. 2008). However, recent studies into metformin

efficacy  have  implicated  non-coding  regulatory  variants,  these  are  harder  to

interpret as there is usually uncertainty on which gene is affected  (Xie, Hanson,

and Sinha 2019).

Metformin  is  also  accompanied  by  a  spectrum  of  side  effects  that  can

influence patients' adherence to treatment. Among the most serious side effects

are  cardiovascular  effects,  gastrointestinal  disturbances,  including  nausea,

vomiting,  and  diarrhoea,  which  can  lead  some  individuals  to  discontinue  the

medication (Zhang et al. 2020). While many of these side effects can be managed,

they have an impact on the ability of metformin to control glucose levels. One way

to study how these side-effects are produced would be to look at the molecular

consequences  of  administering  metformin  in  a  differential  gene  expression

analysis.  Unlike  the  analysis  presented  in  chapter  one,  where  we  looked  at

differential  expression based on phenotypes inherent  to the sample population,

here  we  look  at  differential  expression  in  relation  to  an  intervention,  the

administering of metformin. By looking at the downstream consequences of this

intervention, it could be possible to identify the genes that are responsible for the

adverse effects.

Study aims

This  chapter  will  look  to  understand  the  molecular  consequences  of

metformin by taking these two approaches. Firstly, using genetic data on metformin

efficacy, we will attempt to learn the genes which are associated with this. We will

concentrate on looking at understanding regulatory variants which affect efficacy,
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and take two approaches, one based on only genetic information and one that

combines genetic  and transcriptomic information to  link genes to  drug efficacy.

After this, we will look at genes that are differentially expressed under medication.

These are more difficult to interpret, the consequences we observe could be how

the  drug  functions  to  control  glucose,  or  they  could  be  separate  from  the

therapeutic action, possibly driving side effects.

Comparison of three approaches : MAGMA, TWAS and 
DGEA

To do this we will use data from GTEx, DIRECT and  K. Zhou, Yee, et al.

2016, a GWAS study into the efficacy of metformin. This study was an extension of

a  previous  GWAS study  on  metformin  using  the  GoDARTS cohort  (n  =  1372

participants of European ancestry)  (Zhou et al. 2011). Efficacy of metformin was

estimated based on the percentage reduction in HbA1c levels over a period of 18

months after the medication was started. They found a SNP, rs8192675, near the

SLC2A2 gene which was associated with reduction in HbA1c, and showed that this

variant was an eQTL of SLC2A2 in the liver. After replication within other cohorts

(UKPDS and MetGen), the estimate of effect size for this gene was a reduction of

0.17% in HbA1c per allele [p=6.6×10−14]).

To link genes to metformin efficacy based on genetic information we will use

Multi-marker  Analysis  of  GenoMic  Annotation  (MAGMA),  a  tool  to  identify

associated  genes  based  on  GWAS  summary  statistics  (Leeuw  et  al.  2015).

MAGMA links genes to GWAS phenotypes based purely on genetic information.

Summary  statistics  from  GWAS  studies  are  mapped  to  genes  by  defining  a

genomic window around the gene (35kb upstream and 10 kb downstream for our

analysis). Then it aggregates all the SNPs within each gene to calculate a p value

based  on  the  GWAS  summary  statistics  in  the  region.  This  p  value  is  then

converted into an equivalent z score, which represents the strength of associations

between gene and the phenotype. Correcting for LD structure is also important to

avoid under- or overestimations of  P values. To solve that, MAGMA is  using an

external LD reference panel to calculate correlation matrices between genes to be

included in the main model to correct for this effect. A subsequent step of MAGMA
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is to use these z scores to estimate enrichment for sets of multiple genes, which

can be based on pathway information, tissue specific patterns of expression, or

other information. 

In contrast with MAGMA, TWAS combines both transcriptomic information

with genetic information to identify these genes. This methodology is particularly

relevant  in  the  context  of  drug  efficacy,  offering  insights  into  the  genes  that

determine how individuals respond to medications. TWAS looks for evidence that

the  same  genetic  variants  that  affect  medication  efficacy  also  affect  gene

expression in consistent ways. In doing so it gives information about the direction

of effect of the associations, proposing whether higher or lower quantities of the

gene would produce a greater or smaller drug response. Namba et al. 2022 used

TWAS to  study  multiple  common  and  rare  diseases  and  their  medication

categories and showed that this approach identified drug targets of  asthma. By

pinpointing specific genes whose expression patterns influence drug responses,

TWAS offers a promising avenue for advancing precision medicine and optimising

therapeutic interventions tailored to individual patients.

Finally, differential gene expression analysis (DGEA) provides another tool

to better understand the genes which are involved in treatment effects and side

effects. However, a differential gene expression analysis of medication has distinct

differences with that of disease explored in Chapter 1. For disease aetiology and

progression, the study is by definition observational in nature. Across the cohort,

individuals will differ by disease state, differences in expression can be related to

this state. But this means that these studies suffer from confounding, where it is

difficult  to  tell  if  the  change  in  expression  is  due  to  disease or  another  factor

correlated with disease (Assimon 2021). In contrast, when looking at the impact of

medications, the researcher has the ability to intervene on the population, meaning

that with the correct study design causality can be inferred. Randomised controlled

trials and crossover trials have revolutionised medicine, by providing researchers

the tools  to  conclusively  decide  if  a  medication  is  effective  at  treating  disease

(Spieth  et  al.  2016).  In  a  standard  randomised  controlled  trial  participants  are
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randomised  at  the  beginning  of  the  trial  to  either  receive  the  medication  or  a

placebo.  The  randomisation  is  to  ensure  that  other  factors  that  could  affect

treatment  outcome  are  as  likely  to  be  assigned  to  the  control  group  as  the

treatment group. The disadvantage of randomised controlled trials is the expense:

studies have to be designed and run to test a single hypothesis, limiting the ability

of the study to answer other research questions. In this chapter, the differential

expression  analysis  will  be  based  on  an  observational  study.  Individuals  were

followed up over a period of time, but the decision to start treatment was made on

clinical grounds. This means that we will need to take care when interpreting the

results: as treatment was started in response to a worsening of disease, either the

disease or the medication could be responsible for changes.

Summary of the results

To summarise, this chapter presents three analyses aimed at understanding

the  molecular  processes  involved  in  metformin  action.  Firstly,  using  GWAS

summary statistics,  we will  look  at  genes which  are  associated  with  metformin

efficacy. Secondly, we will investigate the same question but using methods which

combine GWAS summary statistics with transcriptomic information. The advantage

of this approach is that we can use it to learn about the tissue of action and the

direction of effect of the associated genes: whether an over-expresssion or under-

expression  of  the  gene  is  associated  with  an  increase  in  efficacy.  Finally,  we

present  the  results  of  a  longitudinal  analysis  of  differential  gene  expression  in

response to medication, to learn which genes are affected by the introduction of

medication.

MAGMA results, looking for metformin efficacy genes

We used MAGMA and GWAS summary statistics from K. Zhou, Yee, et al.

2016 to identify genes with strong genetic signals for association with metformin

efficacy in the nearby region. We found 893 significant genes (FDR < 0.05, Figure

32) associated with metformin efficacy. We compared this list of genes with two

different sets from two studies, one based on the original GWAS conclusions, the

other based on a text mining approach to identify metformin related genes.
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Surprisingly, the set of significant genes did not include the genes implicated

by the original GWAS study, or a follow up study from a few years later (ATM or

SLC2A2).  In the original study, among the variants significantly associated with

metformin  efficacy,  none  of  the  corresponding  genes  reached  the  significance

threshold in the MAGMA results. The second gene set was from Dawed et al. 2017

where they used a text-mining based method to prioritise and assign scores to

genes  related  to  the  pharmacokinetics  and  pharmacodynamics  of  metformin.

However, none of these genes were significant in our analysis. One of the possible

explanations for this outcome could be that we defined a window around the gene

to capture regulatory effects on metformin efficacy; it is possible that the size of the

window dilutes the effect of the promoter variants reported in this paper, meaning

that these genes are no longer found significant. It is also possible that methods

based on text mining around pharmacogenetic variants will focus on protein coding

changes to enzymes, which impact the ability to metabolise the drug, and will miss

regulatory effects we focus on here.

Figure 32: P value as calculated by MAGMA for association between 33053 
genes and metformin efficacy. The peak on the left represents the 893 genes 
that were found to be significantly associated (FDR=0.05).
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To understand better the genes that were implicated in this analysis, we

looked  into  the  tissues  in  which  they  were  expressed.  Finucane  et  al.  2018

proposed that genes specifically expressed in particular tissues were more likely to

be involved in disease development, and that by studying this specific expression it

was possible to infer the relevant tissue for the disease. Using the GTEx data, and

defining a gene to be specifically expressed if it was in the top 10% for the strength

of evidence of differential expression compared to all other tissues in GTEx, we

found  the  associated  genes  to  be  enriched  in  6  tissues  :  prostate,  colon,

oesophagus as well as brain basal ganglia, amygdala and anterior cortex (Figure

33).  These  tissues  do  not  include  those  commonly  thought  to  be  involved  in

metformin action, such as the liver and the gut.

Figure 33: Distribution of estimates of enrichment vs -log10 p values for 
GTEx tissues enriched for metformin efficacy genes using MAGMA. The 
significant tissues are coloured in red.
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TWAS results, sample size still playing an important role

Next, we applied the TWAS methodology presented in the previous chapter

to the same set of summary statistics analysed with MAGMA. In this way we are

looking  for  genes  where  there  is  evidence  that  genetic  effects  on  metformin

efficacy match with genetic effects on expression. Using the models created based

on DIRECT and GTEx, we identified 43 significant genes (FDR < 0.05). Among

these genes, 36 were found using DIRECT and 7 with GTEx (2 in breast mammary

tissue  and  1  in  uterus,  salivary  gland,  sigmoid  colon,  brain  hippocampus  and

coronary artery, Figure 34). As was seen in the previous chapter, there was no

relation between the relevance of the tissue and the number of  gene associations

discovered. Similarly with chapter 2, the associations were heavily driven by the

sample size, with the vast majority found using the DIRECT reference panel.

Figure 34: Number of significant gene associations with metformin efficacy 
found using MetaXcan in the tissues of GTEx and DIRECT.
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In the previous chapter, we produced a list of genes with a putative causal

role in the development of diabetes. We hypothesised that metformin could target

some of  the genes,  and that  these genes could also be involved in metformin

efficacy. Overall, three out of the 43 genes were also associated with T2D. Two of

them (BCL7A and  PDGFD) had the same direction of effect and one (MTMR11)

opposite direction of effect (over-expression was associated with an increase in

metformin efficacy and a decrease in the risk of T2D). 

DGEA results, direct effects of metformin on gene 
expression

Finally,  we  ran  a  differential  gene  expression  analysis  using  longitudinal

context to study the effect of metformin on gene expression. The model we used is

described in the methods and is based on comparing expression before and after

the initiation of metformin treatment, controlling for age, BMI, sex, and technical

covariates. Though we found no DEGs at a standard FDR threshold of 0.05, at a

weaker FDR of 0.2, 356 genes were differentially expressed (Figure 35).
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Of these 356 associated genes, 4 had previously been reported as showing

differences in protein levels in response to metformin: IDO1 and TAGLN had been

reported in Giusti et al. 2022 and IL5RA and MZB1 in Zhong et al. 2021. In each of

these 4 cases,  after metformin intake we saw significant reduction of the gene

expression between the two timepoints, similar to the reduction previously reported

for  protein  levels  (Figure  36).  Overall,  144 were overexpressed in  response to

metformin and 212 were underexpressed. In addition to results observed in the

literature on metformin effects, we also detected changes in genes known to be

related  to  metformin  such  as  the  Sirtuin  3  (SIRT3),  for  which  we  observed  a

decrease in expression (Figure 37).

Figure 35: Volcano plot of regression estimates vs -log10 pvalues from the 
differential gene expression analysis. Genes in red are significant DEGs at 
FDR 20%.
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Figure 36: Comparison of expression between two timepoints for the 4 genes 
replicated in the literature. Data is separated between individuals taking metformin 
(blue) or not (red). Black line is the regression line for controls and blue line for 
individuals on metformin. Differential expression statistics : IDO1 : Estimate -0.26 
Pvalue 0.156 ; IL5RA : Estimate -0.23 Pvalue 0.166 ; MZB1 Estimate -0.25 Pvalue 
0.168 ; TAGLN Estimate -0.24 Pvalue 0.168
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We also looked at the overlaps between these DEGs and our results in the

previous chapter on causal genes associated with T2D, as genes that cause T2D

are potential targets of treatments for the disease. Using the largest study in the

same tissue, we found 14 genes in common, with a total of 20 genes differentially

expressed  and  associated  with  T2D  across  all  tissues  (Figure  38).  When

investigating  direction  of  effect,  we  found  that  in  14  out  of  20  genes the  two

analyses produced opposite directions of effect. If overexpression increased risk of

disease,  then  initiation  of  metformin  would  reduce  expression,  consistent  with

these genes being involved in the processes by which metformin treats disease

severity. However, this result was not significant (p = 0.057, binomial test that same

and opposite directions of effect were equally likely),  possibly due to the small

numbers of genes significant in both analyses.

Figure 37: Expression of SIRT3 for individuals on metformin 
and controls between the two timepoints. Colours are the same as
in previous figure. The black line is the regression line for controls
and the blue line is for individuals on metformin. Estimate -0.34 
Pvalue 0.15
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Comparison between the three methods

When  comparing  the  overlaps  between  the  three  methods,  we  found  3

genes  in  common  between  DGEA and  MetaXcan results  (CD37,  ZNF600 and

FNDC3A), 1 between MAGMA and MetaXcan(SIK3) and 5 between MAGMA and

DGEA (ALOX15, SIRT3, SLC22A18, STON1-GTF2A1L, ZNF513)(Figure  39).  In

none of these cases was this  a significant  enrichment (odds ratios/p values of

3.05/0.08, 0.83/1, 0.61/0.36 respectively). While the lack of overlap of DGEA genes

with  the other  two methods can be explained by the fact  that  they are testing

different hypotheses, it is more surprising to observe the lack of correspondence

between the MAGMA and  MetaXcan  analysis (though there is some correlation

between  p  values  for  association,  Figure  40).  Not  only  are  both  of  these

approaches searching for genes associated with metformin efficacy, but they use

the same underlying GWAS data. However, MetaXcan has the further requirement

Figure 38: Effect sizes (beta estimates for DGEA and zscore for MetaXcan) of the genes 
in common between DGEA results and previous chapter’s associations with T2D. 
Colours are for tissues.
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that  GWAS effects  are  mediated  by  regulatory  processes:  the  lack  of  overlap

suggests that the significant GWAS hits in this case do not have regulatory effects. 

Comparing the direction of effect of differential expression with the direction

of increased metformin efficacy, we observe that for the three significant genes for

the two methods, the direction is the same for one of them (ZNF600) This would

promote a virtuous circle: we observe in these cases that metformin alters gene

expression in ways that are beneficial to its action. Across all DEGs this virtuous

circle  is  more  often  the  case  than  otherwise  (159/386  genes  share  the  same

direction of effect in the two analyses) but this is not significant when testing the

hypothesis that concordance is random using a one-sided binomial test (P=0.13).

Figure 39: Upset plot of the number of significant genes and their overlap in each of the 
three analyses on metformin.
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Figure 40: Comparison of -log10 raw p values for results in the three 
analyses composing this chapter. Colours are red for genes significant in 
both sets, and green/blue for genes with significant adjusted p values only in 
one database. Spearman correlation rho and p values indicated.
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Discussion
We present  in  this  chapter  three  analyses  that  investigate  the  effect  of

metformin at a molecular level. By using MAGMA and MetaXcan combined with a

GWAS  summary  statistics  for  metformin,  we  have  produced  a  list  of  genes

implicated in affecting metformin efficacy. The DGEA instead looks at changes of

gene expression in response to metformin, using longitudinal expression data and

correcting for multiple factors. We found 893 significant genes with MAGMA, 43

significant genes with MetaXcan and 356 significant genes with DGEA.

The gene SIRT3 was discovered by both the MAGMA and DGEA analyses.

SIRT3 has been linked to mitochondrial stress resistance and to longevity based

on energy efficiency on low calorie diets (Dhillon et al. 2022). Previous publications

have also discussed additional effects of metformin on patient's health and showed

that  not  only  it  had  therapeutic  benefits  on  diabetes  but  also  on  ageing  and

longevity  (S.  Chen et al.  2022),  and  SIRT3 is  a  possible explanation for  these

effects (H. Li and Cai 2023).

The  MAGMA analysis  identified  the  gene  SIK3  to  be  associated  with

metformin efficacy.  SIK3 codes for a salt-inducible kinase, which regulates AMP-

kinases, one of the major actors in energy homeostasis. Studies have shown a

decreased gene expression for this gene in obese and insulin-resistant individuals

and metformin is also known to be an AMPK activator, providing a potential path for

enhanced of glucose uptake through SIK3 regulation (Säll et al. 2017; Uebi et al.

2012).  One  interesting  point  of  discussion  regarding  MAGMA  results  is  the

significant  enrichment  of  the two top tissues in  the output,  prostate and colon.

Although not being tissues usually thought to be closely related to T2D such as

pancreas or adipose, previous studies have shown interaction between metformin

and risk of cancer in these regions of the body. These studies discussed a potential

protective role of metformin on the risk to develop colorectal or prostate cancer

(Ala 2022; Anwar et al. 2014). The fact that these two tissues are highlighted in our

study shows not only the complexity of the mechanisms of action for metformin but

also the potential for these two tissues in GTEx to be used to study more in depth

effect of metformin on these tissue-related diseases such as cancers.
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A number of the genes identified by the DGEA have previously been linked

to T2D, and could be potential targets of metformin for its effect on the regulation of

glucose  homeostasis.  For  example,  previous  studies  have  found  LIPC to  be

associated with regulation of cholesterol levels and an increased risk of diabetes

(Guerra-García et al. 2021). A number of the differentially expressed genes are

also involved in insulin signalling pathways, including  CD36, CPT1A,  and  GIPR,

key in insulin resistance and glucose absorption processes (Moon et al. 2020; Ren

et  al.  2021;  Gasbjerg  et  al.  2018).  Finally,  ATP and  NADP related  genes  are

important for energy management, we found  MAPK6, ATP13A3, NAGK with the

potential to be involved in glucose intake and regulation (Loza-Valdes et al. 2022;

ten Klooster et al. 2018). All of these genes are potential targets for the drug.

The DGEA was based on an observational study; individuals were placed on

the drug due to a deterioration of their condition. This makes it more difficult to infer

that  the changes in  expression are due to  the medication,  and not  due to  the

disease,  that  we  address  by  controlling  for  disease  variables  available  to  us.

However, as individuals are not randomised to treatment, we can also expect them

to  be  on  other  medication,  and  interactions  between  medications  are  not

considered  here.  Drug-drug  interactions  are  known  to  present  a  significant

challenge  when  assessing  the  efficacy  and  consequences  of  a  particular  drug

(Palleria  et  al.  2013).  It  would  be  interesting  to  compare  our  results  with

randomised studies into metformin, and we are in the process of reaching out to do

so.  Finally,  drug response can be to  particular  populations as well  (Burroughs,

Maxey, and Levy 2002). The DIRECT study is restricted to Europeans and we do

not know how these results will generalise to other populations.

Of our three analyses, MAGMA was clearly the most powerful, discovering

the highest number of associations. However, this approach does have drawbacks,

it produces only a link between the gene and the outcome, with no information on

what the relationship is. This means that it misses directionality,  and  we cannot

infer  whether  increasing  or  decreasing  expression  of  the  gene  would  have  a

beneficial  effect  on outcome. Tissue specific  information is  also unavailable for

individual  genes,  and  though  global  information  on  relevant  tissue  can  be

estimated using reference datasets, in our case the results of this were difficult to

interpret. Pleiotropy and linkage contamination are also issues for this approach,
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genes may be implicated because they are merely in linkage disequilibrium with

causal genes.

In  contrast,  MetaXcan  combines  GWAS  information  with  information  on

gene expression to provide information both on directionality and, in theory, the

relevant tissue. However, as we saw in the previous chapter, many genetic effects

on gene expression are shared among tissues, meaning that this approach will

frequently implicate the wrong tissue, especially if the wrong tissue has a greater

sample  size  and  is  thus  better  powered.  Finally,  differential  gene  expression

analyses  can  reveal  genes  directly  affected  by  medication,  but  it  is  difficult  to

understand what the consequences of this intervention are, in terms of drug action

and side  effects.  However,  we did  observe opposite  effects  of  metformin on a

number of  genes linked to the development of  T2D, suggesting that  metformin

targets many different genes or pathways in treating T2D.

One important  point  of  discussion when comparing results  from different

methods  such  as  MAGMA and  TWAS based  on  eQTLs  is  the  notion  of  gene

boundaries.  This  will  define  the  observational  window  for  the  analysis.  For

example,  for  MAGMA,  the  boundaries  were  35  kbp  upstream  and  10kbp

downstream the gene TSS where for eQTLs, the window was 1MB upstream and

downstream of  the  TSS.  This  already  changes  drastically  the  ability  to  detect

regulatory elements for a specific gene. For MAGMA, we will  be able to detect

mainly intragenic enhancers or promoters for example. With the much wider frame,

although  still  considered  in  cis- so  in  a  proximal  distance,  eQTLs  are  able  to

capture  in  addition  to  intragenic  effects,  intergenic  and  more  distal  regulatory

elements of gene expression.  Modulating the definition of these gene boundaries

could  also  change  the  output  of  individuals  methods  as  well  as  the  overlap

between results.

This  chapter  has  focused  on  gene  expression  when  trying  to  better

understand the molecular changes in response to metformin. We have combined

data  from a  number  of  different  study  designs:  GWAS studies,  linking  genetic

information  to  patient  data,  reference  transcriptomics  studies,  where  the

transcriptome  was  collected  from  subjects  without  a  particular  disease,  and  a

longitudinal omics study, where samples are collected as the disease progresses.

But these represent a small fraction of the work on better understanding T2D and
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its  treatment,  which  includes  studies  such  as  DIRECT,  InsPIRE,  MAGIC,

PROVALID and many others (Alonso et al. 2021; Viñuela et al. 2019; C.-T. Liu et

al. 2019; Eder et al. 2018). By adding further layers of curated clinical information

to  expanding  multi-omics  data  we  have  the  potential  to  better  understand  the

factors influencing the success of metformin and other drugs on managing and

treating T2D.

Methods

For the MAGMA analysis, summary GWAS statistics were provided from the

K. Zhou, Yee, et al. 2016 study. The location of the transcription start site (TSS) of

all annotated genes was extracted from the gencode version 19 annotation file and

a window for each gene was defined as 35kp upstream and 10kbp downstream of

the TSS. The dbSNP database of genetic variants was used to assign rs IDs to all

variants with available summary statistics and the MAGMA pipeline used these IDs

to annotate SNPs to  the gene regions and calculate gene based P values.  To

perform enrichment analysis, genes were identified as specific to a particular tissue

by  performing  a  differential  expression  analysis,  using  a  t  test  to  compare

expression in that tissue to all others in GTEx. Genes in the top 10% in terms of

significance of this test were defined as tissue specific. The MAGMA pipeline used

this annotation to calculate tissue based enrichment scores. Multiple testing was

corrected for using p.adjust and a Benjamini Hochberg method.

We used the gene expression predictive models generated from chapter 2

combined  with  the  GWAS summary  statistics  on  metformin  efficacy  mentioned

earlier  and  tested  for  association  using  the  MetaXcan  software(Barbeira  et  al.

2016).  These  models  are  based  on  independent  eQTLs  reported  by  the  two

consortia, using reported effect sizes as weights in the gene expression models. In

order to correct for LD between SNPs in the GWAS summary statistics, we used a

covariance matrix that was based on reference genotype data from GTEx v8 and

DIRECT. Similarly to chapter 2, the GWAS summary statistics was lifted over from
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build  37 of  the human genome to build  38 using the liftOver  tool  (‘The UCSC

Genome Browser Database: Update 2006 - PubMed’,  n.d.) to match the GTEx

predictive models variant IDs. P values from the raw results were then adjusted

using the p.adjust function and Benjamini Hochberg method.

The DIRECT study recruited 789 individuals who had recently received a

diagnosis of T2D. Study participants made three visits to the clinic, at the beginning

of the study, at 18 months and at 36 months. At each visit a blood sample was

taken.  This  blood  sample  was  sequenced  to  provide  quantifications  of  gene

expression  as  described  in  (Brown  et  al.  2023).  Data  at  each  time  point  was

mapped onto a normal distribution independently, so that the data from each time

point has the same distribution. We identified 151 individuals with T2D who were

put on metformin between visits, either between the first and the second time point

or the second and the third time point. For controls, we used 454 individuals not on

metformin, and randomly chose a pair of timepoints in the same proportion to the

time points available for starting metformin. We also extracted clinical and technical

variables  including  sex,  age,  HbA1c  levels,  BMI,  centre  where  the  data  was

sampled, RIN score of the sample, insert size and GC mean of the sequencing.

The model we then used for the linear regression was as follows : exprs T2 ~ exprs

T1 + medication + age T2 + BMI T2 + HbA1c T2 + sex + center + RIN score + GC

mean + insert size . After extraction of estimates and p values for each gene, we

adjusted  the  p  values  for  multiple  testing  using  the  qvalue package

(https://github.com/StoreyLab/qvalue). 
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Discussion

Summary of the thesis
Type 2 diabetes is a complex disease, involving many different risk factors

which all  interact with each other.  Two main processes are responsible for  the

development of the disease, beta cells dysfunction and insulin resistance, and both

are influenced by multiple environmental and genetic risk factors. The aim of this

thesis has been to explore the molecular factors that  drive the development of

disease, the molecular consequences of the disease, and the molecular processes

involved in treatment.

In the first chapter, we used gene expression data produced by GTEx from

49 tissues to look for genes that were differentially expressed according to T2D

status.  We  found  that  we  had  limited  power  to  discover  these  differentially

expressed genes,  likely  since GTEx was not  a  diabetes centred study.  This  is

complicated by the fact that T2D has many comorbidities that need to be taken into

account, and information on these for GTEx participants is not comprehensive. But

we  were  able  to  show  differential  expression  with  a  number  of  biological

covariates, such as sex, age, and BMI, demonstrating environmental factors can

influence gene expression.

In chapter two we focused on how genetic information from GWAS studies

can  be  combined  with  reference  transcriptome data  to  identify genes  likely  to

cause disease. We showed that the major determinant of our ability to find disease

genes was the  size  of  the  reference panel:  using  molecular  data  from directly

relevant tissues such as pancreatic islets brought no increase in power but was

necessary to discover some signals such as TCF7L2. We also showed that more

targeted GWAS studies, with more homogeneous definitions of T2D subtypes can

be useful in providing causal genes with a more obvious biological interpretation.

Finally, we looked at the effect of metformin treatment using three different

approaches:  using  genetic  evidence  on  factors  that  influence  drug  efficacy,

combining  this  evidence  with  reference  gene  expression  datasets  to  infer
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information on relevant tissues and effect directions, and by looking at genes which

changed expression in response to metformin. Surprisingly, all three approaches

produced different gene lists. 

All three methods used were quite different not only in their design but also

regarding  the  questions  they  were  trying  to  answer.  MAGMA and TWAS were

looking at metformin efficacy where DGEA was focused only on difference in gene

expression through time after medication therefore asking two separate questions.

In addition to this, within the methods focused on metformin efficacy, MAGMA and

TWAS are also relatively distinct. One is only gathering GWAS statistics to derive

zscores from mean pvalues, the other is combining genotype and transcriptomic

data with GWAS summary statistics to calculate gene – trait associations as well

as giving information about directionality. Finally, the choice of the data, as always,

is important as the low number of individuals selected for the DGEA in DIRECT

could also explain the small numbers and the lack of overlap with the other results.

The filtering step was relatively strict since we wanted individuals with two distinct

point  in time following each other and including a metformin intake in between

these  two  points.  Despite  all  this,  the  differential  gene  analysis  produced  two

pieces of evidence that metformin targets several different genes and pathways.

This  analysis  revealed  a  number  of  genes  in  different  T2D  related  pathways

showed differential expression is response to the treatment. We also observed that

for the genes linked to T2D in the previous chapter, the application of metformin

tended  to  have  the  opposite  effect  to  the  one  that  would  provoke  disease

development, suggesting a protective effect.

Main areas of discussion
One of the difficulties we encountered when studying T2D was the wide

range of confounders and comorbidities. For example, in chapter two we faced the

decision on whether or not to control for BMI when searching for genes causal for

T2D. Our concern was that controlling for BMI would remove signals where BMI

was  on  the  causal  pathway:  we  did  find  fewer  genes  but  believe  that  this  is

because  the  underlying  GWAS  studies  had  fewer  participants.  Accounting  for

confounders  was  particularly  difficult  in  the  differential  expression  analysis  of



104

chapter one. While information was available on other factors such as BMI, age

and  sex,  this  was  less  true  for  disease  comorbidities  such  as  cardiovascular

disease, neuropathy and retinopathy. We discovered a large number of genes to

be differentially expressed in the tibial nerve, we do not know if these individuals

suffered from neuropathy.

A focus of this thesis has been about which tissues are necessary to study

T2D. We saw in chapter two the benefits of a well powered study, even if the tissue

is not directly relevant for the disease : increasing sample size increases our ability

to find gene associations using TWAS and also means more genetic instruments

are  available  for  multiple  instrument  Mendelian  randomisation.  When  studying

complex  diseases  such  as  T2D  we  expect  multiple  tissues  to  be  involved  in

disease development, perhaps meaning that picking the “correct” relevant tissue is

less important.  For subtypes of T2D, which may be more linked to a particular

tissue or mechanism, it may be more important to collect the correct tissue. We

could also see from chapter three, even if the tissue being studied is not the tissue

the medication acts in, we still have the ability to discover differentially expressed

genes.

T2D is  a result  of  a complex interaction between a number of  genetics,

biological and environmental factors. Even with a simple hypothesis, for example

identifying genetic variants associated with T2D, it is important to consider which

biological factors should be considered in our analysis, and how they should be

accounted for. We saw that correcting for BMI for example removed some signals,

therefore we can hypothesise how this relates to specific biological processes such

as insulin  resistance  and beta  cell  dysfunction.  These  considerations  can  also

apply to  other  factors,  such as age,  ethnicity,  and lifestyle  behaviours such as

smoking,  alcohol  and exercise.  This  also relates to  how we view T2D, as one

disease or as many, with particular risk factors applying to particular subtypes. 

The concept of causality is also one which runs through this thesis. For all of

our analyses we can ask the question whether the effects we observe are causes

or consequences of the disease. Because transcriptome wide studies are based on

genetic associations, and the associations on expression are near to the gene,

there  is  an  assumption  that  causality  runs  from  variant  to  gene  to  disease.

However, there is still the potential for finding non causal genes, because of factors
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such as horizontal pleiotropy and gene co-regulation. This means that best practice

is to use methods such as colocalization or mendelian randomization to validate

these results.

In contrast, when considering differential  gene expression, in most cases

researchers have assumed that differentially expressed genes are a consequence

of disease and not a cause (Porcu et al. 2021). This is what we observed in the

first chapter with a large amount of signals detected in tibial nerve. Yes this tissue

was among the largest sample size in GTEx but we also know that neuropathy is

one of the main co-morbidities of T2D with almost 50% of individuals with T2D

developing  diabetic  neuropathy  (Feldman  et  al.  2019).  Although  still  rather

unknown,  it  is  hypothesized that  high  blood sugar  levels  can cause peripheral

nerve  damage  and  result  in  sensory  disturbance.  This  is  a  good  example  of

consequence of T2D captured with differential expression approaches. In addition

to this, we need to consider also study design. When considering an intervention,

such as application of a medicine within a randomised controlled trial, differentially

expressed genes  change  due to  the  medication,  implying  causality.  In  chapter

three  we  use  data  from  an  observational  study.  But  if  we  believe  that  the

medication is the major driver of change to the system, and confounders such as

disease state are likely to have more modest effects, then we can propose the

changes do result from the medication.

Our  approach  for  medication  looked  at  both  genes  which  affected  drug

efficacy, and genes which were affected by the medication. We expected to see

some agreement across these two sets of genes. When we observe that a gene is

differentially  expressed  after  treatment,  we  can  ask  the  question,  is  this  gene

responsible for the positive changes in the patient? Answering this question can

help  us  address  issues of  secondary  effects  and  optimise  existing  medication,

focusing on factors bringing improvements.

Potential for future studies
In this thesis, we have focused on genomics and transcriptomics. However,

a complete understanding of the disease needs to model the full causal path from
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variant to disease, encompassing interactions between expressed genes and also

introducing other  molecular  phenotypes such as proteomics and metabolomics.

Recent  studies  have  started  to  investigate  T2D  using  these  supplemental

molecular phenotypes in T2D  (Z.-Z. Chen and Gerszten 2020; Gou et al. 2022).

Evolving technologies will also produce better quantifications of these phenotypes

as well (X. Dai and Shen 2022). But we are already seeing the benefits of widening

the types of molecular phenotypes we use. For example, Zaghlool et al. 2022 have

identified clusters of proteins and metabolites specific to each of the five subtypes

of T2D, raising the possibility of using these as new subtype biomarkers.

On the topic of subtypes, we used in this thesis information about subtypes

of T2D to look at genes associated with specific subtypes. Another approach which

also works towards the understanding of GWAS signals could be GWAS clustering

in order to link genetic variants to pathways specific to mechanisms of the disease

such as insulin resistance or beta-cells dysfunction  (Kim et al. 2023; Udler et al.

2018). This approach uses a selected set of curated genome-wide significant loci

associated  with  T2D  and  information  about  diabetes  related  traits  such  as

glycaemic or insulin traits. Then using soft clustering methods such as Bayesian

non-negative matrix factorisation (bNMF) or k-means, we can aggregate clusters of

loci implicated in specific mechanisms (obesity related pathways, insulin production

or  secretion  pathways,  etc…).  This  adds  another  layer  of  information  about

subtypes of T2D in addition to clusters based on clinical data such as the one used

in this thesis, clusters based on genetic information could help refine the diagnosis

of patients with T2D or even optimize medication approaches.

The studies we used in this thesis were mainly or exclusively of European

ancestry. But it is known that T2D presents very differently in other populations, at

a  younger  age  and  with  a  lower  BMI  in  South  Asian  populations  for  example

(Siddiqui  et  al.  2022).  The  focus  on  European  populations  limits  our  ability  to

understand the subtypes of the disease which present  at  younger ages and at

lower  BMI,  more  common on  non-European  populations.  However,  there  is  a

concerted  effort  at  the  moment  to  expand  studies  into  other  populations,  both

genetic studies of T2D  (Mahajan et al. 2022; Suzuki et al. 2023), and molecular

studies as well (Vujkovic et al. 2020).
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Another factor in all the studies we used was that they were all based on

bulk tissue samples. We saw some evidence that this dilutes our ability to discover

effects that are specific to particular parts of the organ or particular cell types. For

example, an association with TCF7L2 was found using pancreatic islets but missed

using the whole pancreas data from GTEx. T2D involves many cell types, including

immune related cells for the inflammation and stress response, beta cells in the

production of insulin and myocytes and adipocytes involved in the insulin sensitivity

via GLUT4 receptors. Studying these cell types using single cell technologies could

bring another layer of information about the different causes and consequences of

T2D.

Finally, most of the analyses presented in this thesis have looked for main

effects, and ignored interactions. But one topic where interactions can be crucial is

in the field of polysubstance studies of medication. When studying the effect of

metformin, we used a single drug model, only focusing on metformin. In reality,

patients with T2D are often on combinations of drugs, which treat not only T2D but

also other comorbidities such as hypertension and cardiovascular disease. It would

be interesting to know how these medications interact, and what the consequences

are on molecular traits, but this may need studies far larger than those currently

available.
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