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Abstract 

This thesis focuses on metformin – a drug commonly used in type 2 diabetes. 

Despite being a sexagenarian, metformin continues to intrigue researchers. This 

is due, in part, to: the variability in response to and tolerance of metformin; the 

uncertainty regarding its mechanism of action; and the potential for re-purposing 

metformin out-with diabetes. While metformin is the common theme, this thesis 

details three distinct clinical studies, each intended to further the understanding 

of the variability in response to and tolerance of metformin.  

Firstly, an open label pharmacokinetic study of the potential mechanisms of 

metformin intolerance, including: altered uptake; increased lactate production; 

and alterations in serotonin uptake or bile acid pool, demonstrated that despite 

evidence of severe intolerance in our cohort, there was no significant difference 

in the pharmacokinetics of metformin, nor in systemic lactate, serotonin or bile 

acids. These results suggest that intolerance may be attributable to local factors 

within the lumen or enterocyte. 

Secondly, a recruit-by-genotype, double-blind, randomised, placebo-controlled, 

crossover study to determine the impact of OCT1 genotype and the use of OCT1 

inhibiting drugs on metformin intolerance, has identified a significant gene*drug 

interaction between OCT1, metformin and omeprazole. The study data show that 

individuals with OCT1 wild type have improved tolerance of metformin whilst 

taking omeprazole, compared to placebo. However, this benefit is lost in those 

with reduced OCT1 function. 

Finally, to further investigate a GWAS-identified SNP associated with metformin 

response, an open label, crossover study of individuals with Ataxia-

Telangiectasia (A-T) and healthy controls, employed dual-tracer mixed meal tests 

to assess their response to metformin and pioglitazone. Although unable to 

validate the GWAS result, the study data show that pioglitazone improves the 

insulin resistance and adipocyte dysfunction associated with A-T, and suggests 
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that pioglitazone, rather than metformin, should be considered in the 

management of diabetes associated with A-T. 
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Introduction 

Type 2 diabetes 

Type 2 diabetes is the most common form of diabetes worldwide. It accounts for 

approximately 90% of all cases of diabetes (1), and this proportion is increasing. 

There are currently approximately 400 million people with type 2 diabetes 

worldwide, and a further 352 million people at risk of developing type 2 (1). There 

is significant cost associated with the treatment of diabetes and its complications, 

both to the individual and the health economy – a worldwide total of approximately 

727 billion USD in 2017 (1).  

Type 2 diabetes is characterised by insulin resistance and relative insulin 

deficiency. Management of type 2 diabetes starts with lifestyle and dietary advice, 

before the addition of oral anti-hyperglycaemic drugs, injectable therapies and 

finally, insulin. The algorithm below is an excerpt taken from the NICE guidelines, 

last updated April 2017 (2).  

Metformin is the first-line oral anti-hyperglycaemic agent, recommended for use 

in all of those who can tolerate it or in whom it is not contraindicated. When 

transitioning to insulin therapy, guidelines advise the continued use of metformin 

Figure 1 Excerpt from the algorithm for blood glucose lowering therapy in adults with type 2 diabetes, 

as per the NICE guidelines   
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for people without contraindications or intolerance, whereas the need for other 

blood glucose lowering therapies should be reviewed (2). 

Metformin is a fascinating drug: with its roots in natural medicine; a tumultuous 

rise to fame; and continuing research into its potential applications, it continues 

to puzzle researchers due to its undefined mechanism of action, and the variability 

in response and tolerance seen in its clinical application. This thesis will examine 

some aspects of the variability in tolerance of and response to metformin. 

Metformin 

Metformin is the most commonly prescribed oral diabetes drug worldwide. It 

belongs to the biguanide class and is hailed as a benchmark for oral 

antihyperglycaemic agents. The ADA-EASD and NICE guidelines recommend 

metformin as first-line drug therapy in type 2 diabetes (3), based on decades of 

research which have repeatedly proven metformin’s efficacy, safety and 

tolerability. It is proven to: improve glycaemic control; be cardio-protective; help 

with weight loss; and have no associated hypoglycaemic effects (3). It is also 

inexpensive – a very attractive quality in a strained health economy. Due to these 

qualities, there is increasing interest in the use of metformin for the prevention of 

progression of pre-diabetes to type 2 diabetes (4-6).  

In fact, over the past 60 years of clinical use in type 2 diabetes, interest in 

metformin has come from many angles:  as a treatment for polycystic ovarian 

syndrome (PCOS), as an anti-cancer agent, as an anti-inflammatory agent, in 

cardiac re-modelling, and longevity to name a few. However, metformin’s rise to 

stardom was initially hindered by its association with the other biguanide drugs, 

and their causal relationship with lactic acidosis. 

History of metformin 

Metformin is manufactured from the galega officinalis plant (also known as French 

lilac, or goat’s rue) (7). Identification of the glucose-lowering guanidine compound, 
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and latterly, the less toxic galegine, spawned multiple studies into these 

compounds in animals and latterly humans (8). Dr Jean Sterne, studying in 

France in the 1950s, recognised that dimethylbiguanide or “Glucophage” (literally 

‘glucose eater’), was the most tolerable of the biguanides tested, with the best 

balance of potent activity and low toxicity in humans (9).  

Around the same time, other groups in America and Germany were concurrently 

researching phenformin and buformin, respectively, as their biguanides of choice 

(10, 11). However, due to increasing reports of biguanide-associated lactic 

acidosis, the biguanide class fell out of favour, with phenformin and buformin 

being withdrawn from clinical use (12). Metformin was still available for clinical 

use, but was tarnished by the reputation of other biguanide drugs. Although 

metformin continued to be prescribed in Europe, it did not gain worldwide 

recognition as a safe and effective anti-hyperglycaemic medication until the 

1990s, finally gaining FDA approval in 1994 (13), nearly 40 years after European 

approval. Since UKPDS published their UKPDS34 results in 1998 (14), showing 

a lower risk of premature death and fewer life-threatening complications, 

metformin has gone from strength to strength, and has been hailed as the 

benchmark for oral diabetes medications. The timeline of metformin’s botanical 

and commercial history is shown in Figure 1 (7, 13, 15). 

Despite its long history of clinical use, and being the first-line treatment for type 2 

diabetes as recommended by the ADA-EASD guidelines, many questions still 

exist around metformin’s mechanism of action, and the well documented 

variability in response and tolerance.
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Figure 2 Timeline of metformin's development 
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Pharmacokinetics of metformin 

Administration 

Metformin is administered orally as a hydrochloride salt, in either tablet or solution 

formulation. At physiological pH, metformin exists as a hydrophilic cationic 

species, with less than 0.01% un-ionised in the blood, resulting in low lipophilicity 

and inability to diffuse passively through cell membranes (16).  

Absorption 

Absorption of immediate-release formulations of metformin is largely confined to 

the small intestine, with negligible absorption in the stomach or large intestine 

(16-18). In humans, intravenous administration of metformin results in rapid renal 

elimination, with little or no metformin detectable in the faeces (17), consistent 

with negligible biliary or GI secretion of metformin. However, in a mouse model of 

diabetes, intravenous administration of metformin does lead to accumulation of 

metformin in the enterocytes—most notably in the small intestine (19). 

Oral bioavailability of metformin is approximately 70%, with approximately 30% 

dose recovery of unchanged metformin from faeces (20). Bioavailability is 

affected by gastric motility and may be reduced by high-fat meals (16). The 

metformin concentration in the jejunum peaks at 500 μg/g, 30–300 times greater 

than plasma concentrations (21), highlighting the small intestine as an important 

site of metformin uptake. 

Metformin uptake is saturable and dose-dependent (17, 22), consistent with the 

theory that it is mostly transporter dependent. Studies in Caco-2 cell monolayers 

(a cellular model of human intestinal epithelium) have shown that metformin is 

efficiently taken up across the apical (luminal-facing) surface of enterocytes via 

bidirectional transporters, but that efflux across the basolateral surface of 

enterocytes is limited, resulting in the accumulation of metformin in the epithelium 

(22), possibly accounting for the greatly increased metformin concentration 

measured in these cells. To account for the presence of metformin in the portal 
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circulation, some paracellular uptake was postulated, with metformin diffusing 

passively. 

Transporters 

Several transporters, for which metformin is a likely substrate, have been 

identified, including organic cation transporter (OCT) 1–3, plasma membrane 

monoamine transporter (PMAT), multidrug and toxin extrusion protein (MATE) 1-

2K, serotonin transporter (SERT) and high-affinity choline transporter (CHT).  

To investigate which transporters are involved in the transport of metformin 

across the apical surface of enterocytes, Han et al used pharmacological 

inhibitors and knockdown studies in single transporter-expressing CHO (Chinese 

hamster ovary) cells and Caco-2 cell monolayers (23). They concluded that the 

main transporters of metformin are OCT1, PMAT, SERT and CHT, accounting for 

approximately 25%, 20%, 20% and 15% of apical metformin transport, 

respectively. However, comparison of the expression of these transporters in 

Caco-2 cells vs human jejunum using western blot analysis revealed that the 

expression of all four proteins was significantly higher in Caco-2 cells, with the 

expression of CHT in human jejunum barely detectable (23). Therefore, direct 

evidence of the in vivo contribution of CHT to metformin uptake is still lacking, 

leaving only OCT1, PMAT and SERT as likely metformin transporters in the 

human intestine. 
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Organic Cation Transporters 

Organic Cation Transporters (OCTs) are members of solute carrier family 22 

(SLC22), initially described in 1994, and encoded on chromosome 6q26 (24). 

OCTs are expressed in several tissues, including the intestine, liver, kidney, brain, 

muscle and heart. OCT1 is predominantly expressed in the liver, but plays an 

important role in the transfer of cations, including metformin, from the gut lumen 

to the interstitium (25). Although initial reports localised OCT1 to the basolateral 

membrane (26), more recent reports place OCT1 on the apical surface of 

intestinal epithelial cells (23, 27). OCT2 is expressed mainly in the kidney and is 

Figure 3 Metformin transport into the enterocyte is transporter dependent, using OCT1, PMAT 

and SERT 
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partly responsible for the renal excretion of metformin (25). OCT3 is mainly 

expressed in the skeletal muscle, but is also expressed in the gastrointestinal 

tract. Interestingly, OCT3 is associated with metformin uptake and efflux in the 

salivary glands, which may account for the dysgeusia associated with metformin 

treatment (28).  

There are well-documented, relatively common loss-of function variants in human 

OCT1, and genetic variation in OCT1 has been investigated by a number of 

groups in relation to metformin pharmacokinetics, efficacy and GI intolerance (29-

33). There is also the potential for drug-drug interactions due to the polyspecific 

nature of the OCT family. 

As OCT1 is probably apically expressed (though this is still debated) it is most 

likely to influence local concentrations of metformin in the gut (lumen and 

enterocytes), rather than the transport of metformin into the systemic circulation. 

Consistent with this interpretation, a recent study concluded that OCT1 variants 

with loss of function do not alter metformin concentrations in healthy volunteers 

titrated to 1 g/day of metformin (31). However, Shu et al show that, following acute 

dosing with metformin the area under the plasma concentration–time curve (AUC) 

of metformin was significantly greater in those with OCT1 variants compared to 

those with wild type OCT1 (34). However, steady state pharmacokinetics of 

metformin appear to be independent of OCT1 genotype (31).  

Plasma Membrane Monoamine Transporter 

Plasma Membrane Monoamine Transporter (PMAT) was originally identified as a 

monoamine transporter from the equilibrative nucleoside transporter (ENT) 

family, found predominantly in the brain and central nervous system (35, 36). It 

was later recognised that PMAT was polyspecific and found in many tissues 

throughout the body, including the intestine, where it transports metformin with 

comparable affinity to the OCTs (37). PMAT is localised to the tips of the mucosal 

epithelial layer, suggesting that PMAT may have an integral role in metformin 

uptake (37).  
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To date, there are no established loss of function variants in PMAT. In one study 

by Christensen et al, a number of SNPs in PMAT, which were associated with 

reduced trough steady-state metformin concentrations, were significant to p <0.05 

level, however this result did not withstand multiple testing (32). 

Serotonin Transporter 

Serotonin Transporter (SERT, also known as 5-HTT), encoded by the SLC6A4 

gene, is a member of the sodium:neurotransmitter symporter family (38, 39). 

Serotonin is primarily synthesised in the gastrointestinal tract from tryptophan, 

and released from enterochromaffin cells (40). It has a number of roles in the 

intestine, including modulation of gut motility, permeability and electrolyte 

absorption (41). SERT is highly expressed in the small intestine, more so than in 

the colon, localised on the apical and basolateral membranes of the enterocytes 

(42). Here, it plays a critical role in the uptake of serotonin from the gastrointestinal 

lumen to the systemic circulation.  

Metformin has been identified as a substrate of SERT, implicating SERT in the 

uptake of metformin from gastrointestinal lumen, and its transport across the 

intestinal wall (23). 

There have been a number of genetic variants of SERT identified. Most of these 

are not SNPs but variable number tandem repeats (VNTRs), which result in 

insertion / deletion polymorphisms (“long” and “short” alleles) of SERT (38, 39, 

41, 43-46). One such polymorphism is the serotonin transporter-linked 

polymorphic region (5HTTLPR) variant, an insertion / deletion polymorphism in 

the promoter region, which modulates the expression of SERT. A recent 

observational cohort study (47) reported an increased odds ratio of metformin 

intolerance with low-expressing variants of 5HTTLPR. As yet, no in vivo studies 

have assessed the impact of genetic variation in SERT on the pharmacokinetics 

of metformin. 
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Multidrug and Toxin Extrusion Proteins 

Multidrug and toxin extrusion proteins MATE1 and MATE2-K, encoded by the 

SLC47A1 and SLC47A2 genes respectively, belong to the MATE family of 

transporters, which excrete endogenous and exogenous toxic substrates (48). 

MATEs are primarily expressed in the liver and kidney, located on the luminal 

membrane of the renal tubule and bile canaliculi, where they work in conjunction 

with OCTs to eliminate organic cations, via the exchange of protons (H+ or Na+) 

(49). There is also high expression of MATE1 in the skeletal muscle, and to a 

lesser extent, the adrenals, testes and heart. MATE1 and MATE2-K are co-

located on the apical (luminal) membrane of the proximal tubule and excrete 

metformin into the urine (16, 50). 

There are well documented genetic variants of both MATE1 and MATE2K (51). A 

meta-analysis of the known SNPs in these, and other, metformin transporters did 

not identify any significant association between genetic variants and glycaemic 

response to metformin. However, drug-drug interactions and polymorphisms in 

SLC47A genes may affect renal excretion of metformin, which could lead to the 

occurrence of toxic side-effects (49). For example, concurrent use of ondansetron 

– a known substrate for OCTs and MATEs – results in increased exposure and 

decreased clearance of metformin (52). 

Distribution and Metabolism 

After absorption into the systemic circulation, metformin travels unbound to 

plasma proteins (16, 17). It is absorbed into other tissues, including the kidneys, 

liver, erythrocytes and, to a lesser extent, muscle, by transporters OCT1, OCT2, 

OCT3, MATE 1 + 2K, PMAT as demonstrated by a high volume of distribution 

(see Methods: Pharmacokinetics) (16). Metformin does not undergo metabolism, 

but is excreted unchanged in the urine (53). No metabolites of metformin are 

found in the urine (16, 17, 53).  
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Excretion 

Metformin is excreted by the kidneys. In humans, negligible metformin has been 

found in the bowel or biliary tract after IV administration, indicating that metformin 

is almost exclusively excreted via the kidneys (16, 17). This is likely due to 

metformin’s small molecular size and unbound state, allowing easy filtration 

through the glomerulus, or using transporters into the tubule.  

OCT2 is found on the basolateral (blood) side of the renal tubule, while OCT1 is 

found on the apical (luminal) membrane of the tubules (25, 54-57). It is possible 

that metformin is taken up from the blood via OCT2, into the tubular cells, before 

secretion into urine via OCT1. MATE1 and 2K are found on the brush border (54, 

58), and could transport metformin from the tubular cells into the urine. PMAT is 

also found in the podocytes of the glomerulus (59-61), therefore it is possible that 

it may transport metformin from the blood into the urine. Due to its low lipophilicity, 

it is unlikely that metformin would be passively resorbed from the tubules, 

although the presence of OCT1 on the apical membranes has raised the 

possibility of transporter dependent resorption (57, 62). 

Pharmacokinetics of metformin intolerance 

While there has been significant research into the impact of pharmacokinetics on 

metformin response, no previous research into the pharmacokinetics of 

metformin intolerance has been completed. Chapter 3 of this thesis, details the 

first of the three clinical trials undertaken as part of this PhD. In this study, we 

compare the pharmacokinetics of metformin tolerant and intolerant individuals to 

assess if drug absorption or systemic exposure impact on an individual’s 

tolerance of metformin.  
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Pharmacodynamics of metformin 

Main evidence for clinical benefit  

Metformin has been the subject of research for over 60 years. Thousands of 

studies into the safety, mechanism of action, efficacy and tolerability of metformin 

have been performed. Table 1, below, lists some of the major studies and their 

conclusions regarding metformin, which have changed how the medical 

community view and use metformin. 
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Study Author Year Design Conclusion Glycaemia Cardio-
vascular 

Weight Hypo-
glycaemia 

Mortality 

UKPDS 

 

UK 

Prospective 

Diabetes 

Study Group 

1998 Multi-centre, randomised, 

controlled, open-label 

intervention clinical trial, 

comparing intensive 

treatment with diet 

control. 

 All-cause 

mortality with 

metformin. 

 Myocardial 

infarction with 

metformin. 

 Any diabetes-

related end point. 

Improvement 

in HbA1c. 

Protective – 

reduced MI in 

metformin 

treated 

participants. 

Reduction in 

weight when 

compared to 

insulin or SU 

therapy. 

Fewer 

hypoglycaemic 

events 

compared to 

insulin / SU. 

Reduced. 

DPP Diabetes 

Prevention 

Program 

Research 

Group 

2002 Multi-centre, randomised, 

placebo-controlled, 

intervention clinical trial 

comparing metformin 

therapy to lifestyle 

intervention for diabetes 

prevention.  

 Incidence of 

diabetes in 

metformin arm 

compared to 

placebo. 

 Incidence of 

diabetes in 

lifestyle 

intervention 

compared to 

metformin. 

Reduction in 

FPG and 

HbA1c. 

- Weight loss 

compared to 

placebo. 

- - 
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Saskatch
-ewan 
Health 

Johnson et al 2002 Retrospective, 

observational cohort 

study. 

 All-cause 

mortality with 

metformin 

monotherapy 

compared to SU 

monotherapy. 

 CV mortality 

with metformin 

compared to SU 

therapy. 

- - - - Reduced. 

PRESTO  Kao et al 2004 Retrospective analysis of 

large, randomised, 

interventional trial, to 

compare metformin with 

insulin +/- SU. 

 Any clinical 

event, including 

death and MI. 

- - - - Reduced. 

DPPOS Diabetes 

Prevention 

Program 

Research 

Group, 

Knowler et al 

2009 Multi-centre, randomised 

trial as above, extended 

to 10 years follow-up, with 

placebo group 

commenced on lifestyle 

intervention. 

 Incidence of 

diabetes with 

metformin 

therapy. 

Reduction in 

FPG and 

HbA1c. 

- Weight loss 

with 

metformin 

was 

maintained. 
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Table 1 Evidence base for the use of metformin as first-line drug therapy for type 2 diabetes. (14, 63-67) 

HOME Kooy et al 2009 Multi-centre, randomised, 

placebo-controlled trial of 

insulin with metformin / 

placebo. 

 Macrovascular 

clinical events.  

No effect on 

primary end-

points (aggregate 

of secondary 

macro and micro 

vascular). 

Reduced 

HbA1c with 

metformin 

therapy. 

No change in 

BP / lipids with 

metformin. 

Improved 

secondary 

macrovascular 

outcomes, but 

no effect on 

microvascular 

outcomes. 

Metformin 

prevented 

weight gain. 

As in 

combination 

with insulin, 

metformin had 

no effect on 

hypoglycaemia. 

- 
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Mechanism of action  

Metformin’s mechanism of action is still the subject of much debate, despite 

having been in use for over 60 years (20, 68-76). As metformin was developed 

from a natural product used in herbal medicine, its safety and efficacy had been 

established before modern mechanistic studies were available. Therefore, it has 

sided-stepped the now usual methods of drug development which target specific 

pathways or receptors (20). 

Effect on hepatic gluconeogenesis 

While it is widely agreed that metformin acts predominantly in the liver to reduce 

hepatic gluconeogenesis, there is increasing evidence that it has a multimodal 

mechanism of action, including effects on the gastrointestinal tract (77), which are 

discussed later in this chapter.  

Metformin is taken into the hepatocyte via OCT1, where its positive charge results 

in it being taken into the mitochondrion (20). Within mitochondria, metformin 

inhibits complex 1 of the respiratory chain, resulting in a reduced oxidative 

phosphorylation of adenosine diphosphate (ADP) to adenisine triphosphate 

(ATP) (20, 72, 78). The subsequent build up of ADP, and increase in ADP:ATP 

ratio, stimulates conversion of ADP to adenosine monophosphate (AMP) 

catalyzed by adenylate kinase: 

 2 ADP                ATP + AMP 

        

         adenylate 

   kinase 

This increases the AMP:ATP ratio. The relative increase in AMP and ADP in 

relation to ATP has numerous knock-on effects, many of which are dependent 

upon the activation of adenosine monophosphate-activated protein kinase 

(AMPK) (20, 79). AMPK can be activated directly, by the change in ATP to ADP / 
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AMP, or indrectly via activation of LKB1. AMPK-dependent and -independent 

effects are considered below. 

AMPK-dependent effects of metformin 

AMPK is made of three subunits – α (a catalytic unit responsible for AMPK 

enzymatic activity), and the β and γ subunits which are regulatory (79). AMP, ADP 

and ATP all bind to the γ subunit, with ATP conpetitively inhibiting the binding of 

AMP or ADP. Only AMP and ADP can cause conformatory change to expose the 

catalytic α subunit, and therfore activate the enzymatic activity of AMPK (79-81) . 

AMPK has numerous functions, controlling lipid metabolism, glucose metabolism, 

and protein synthesis. It also has a role in anti-aging, anti-inflammation and redox 

regulation. A summary of the many actions of AMPK is shown in the diagram 

below, reproduced with permission from Jeon et al (79):  

Figure 4 Actions of AMPK, Jeon et al 
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It has been reported for some time that metformin’s mechanism of action partly 

depends on the activation of AMPK. There are controversies around this, as at 

physiological concentrations of metformin, there is little or no acute effect on ATP 

production, and subsequent AMPK activation (20, 78, 82). Cell and animal 

experiments often employ supraphysiological doses of metformin to obtain the 

observed effects. Others have shown inhibition of complex 1 of the respiratory 

chain by phenformin, metformin’s predecessor (20, 72). However, lower 

concentrations of metformin do inhibit complex 1 in cell experiments, if left for a 

number of hours. 

Activation of AMPK would explain some of metformin’s clinical benefit (20, 72, 78, 

79, 83-88): 

1. AMPK stimulates the translocation and insertion of GLUT4 to the 
plasma membrane in skeletal muscle and adipocytes, which facilitates 

glucose uptake into the cytoplasm, thereby reducing systemic glucose 

concentrations.  

 

2. AMPK inhibits hepatic gluconeogenesis, and therefore lowers blood 

glucose, by inhibiting transcription factors hepatocyte nuclear factor 4 

(HNF4) and CREB- regulated transcription coactivator 2 (CRTC2). Both of 

these transcription factors promote the expression of gluconeogenic 

enzymes, phosphoenolpyruvate carboxykinase (PEP CK) and glucose-6-

phosphatase (G6Pase). These important gluconeogenic enzymes are 

involved in the irreversible step of converting oxaloacetate into 

phosphoenolpyruvate and carbon dioxide, and hydrolysis of glucose-6-

phosphate to free glucose, respectively. AMPK also indirecting inhibits the 

transcription factor FOXO, which is responsible for expression of 

gluconeogenic enzymes during fasting. 
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3. AMPK drives glycolysis by activating PFKFB enzymes, favouring 

production of fructose-2,6-bisphosphate which favours glycolysis to 

gluconeogenesis. 

  

4. AMPK lowers cAMP, by activating the cAMP-specific 3′,5′-cyclic 

phosphodiesterase 4B (PDE4B). The subsequent reduction in PKA 

switches off gluconeogenesis, by reducing gluconeogenic transcription 

factors, and increasing PFKFB1 as above. 

 

5. AMPK inhibits synthesis of fatty acids, triglycerides and cholesterol, by 

inhibition of: acetyl-coA carboxylase 1 (ACC1) and sterol regulatory 

element-binding protein 1c (SREBP1c); glycerol-3-phosphate 

acyltransferase; and HMG-CoA reductase respectively. AMPK also 

activates lipid catabolism, by increasing fatty acid uptake into cells, where 

AMPK increases the β-oxidation of fatty acids by carnitine 

palmitoyltransferase-1 in the mitochondria. AMPK-mediated decreases in 

hepatic lipid content may serve to sensitize the liver to insulin, with 

increased suppression of gluconeogenic transcription. 

 

AMPK-independent effects of metformin 

The metformin-associated increase in AMP:ATP not only activates AMPK, but 

has other AMPK-independent effects on hepatic gluconeogenesis (20, 72), 

including: 

1. Direct inhibition of fructose-1,6-bisphosphatase (FBPase) (89), which 

catalyses the conversion by dephosphorylation of fructose 1,6-

bisphosphate to fructose 6-phosphate – a key, rate-limiting step in 

gluconeogenesis. Therefore, an increase in AMP:ATP leads to acute 

inhibition of gluconeogenesis. 
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2. Indirect inhibition of fructose-1,6-bisphosphatase (FBPase) (90), as a 

result of reduced cAMP production, due to the inhibition of adenylate 

cyclase. The subsequent reduction in protein kinase A (PKA) favours 

dephosphorylation and activation of PFKFB1, causing an increase in 

fructose-2,6-bisphosphate (F2,6BP), which activates phosphofructokinase 

(PFK) and inhibits fructose-1,6-bisphosphatase (FBPase), resulting in a 

drive towards glycolysis and, therefore, reduced gluconeogenesis. 

 

3. Indirect inhibition of fructose-1,6-bisphosphatase by AMP (91), a key 

rate-controlling enzyme in the gluconeogenic pathway. AMP concentration 

is a function of the energy status of the tissue and is involved in the 

regulation of hepatic gluconeogenesis. Inhibition of FBPase will result in 

an increase in fructose-1,6-bisphosphate, which will encourage glycolysis. 

 

4. Reduced transcription of gluconeogenic genes PEPCK and G6Pase 
(90), which is secondary to the reduction in PKA as described above. PKA 

phosphorylates the transcription factor cAMP response element binding 

protein (CREB), which induces transcription of PEPCK and G6Pase. 

Out-with its effect on ATP production, metformin has recently been shown to 

inhibit endogenous glucose production by inhibition of mitochondrial 

glycerophosphate dehydrogenase (mGPD) – a redox shuttle enzyme, which 

modulates the cytosolic and mitochondrial redox state (82). Inhibition of mGPD 

limits the contribution of glycerol and lactate, but not alanine or pyruvate (92), to 

hepatic gluconeogenesis, by preventing conversion of glycerol to DHAP – 

necessary for gluconeogenesis, and by the accumulation of cytosolic NADH, 

which is unfavourable for conversion of lactate to pyruvate by lactate 

dehydrogenase (LDH) (82). 
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Some of the mechanisms by which metformin effects hepatic glucose metabolism 

as clearly summarised in the diagram below, reproduced with permission from 

Rena et al (20). 

  

Figure 5 Mechanisms by which metformin effects hepatic glucose metabolism are 

clearly summarised in this diagram from Rena et al 
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Other effects: Anti-cancer, anti-aging, anti-inflammatory 

Anti-cancer  

Type 2 diabetes is associated with an increased risk of certain cancers, including 

pancreatic, colorectal, hepatocellular and bladder cancers, as well as a worse 

prognosis (93, 94). Diabetes and cancer share common predisposing risk factors 

such as age, obesity and sedentary lifestyle, but the metabolic effects of type 2 

diabetes may contribute to the development of cancer (93, 94). 

Hyperinsulinaemia may act as a growth factor by directly stimulating insulin 

receptor on cancer cells, or indirectly via insulin-like growth factors (IGFs), to 

stimulate cell proliferation and protect from apoptotic stimuli (93). Cancer cells 

have a high energy requirement and an increased glucose uptake, hence the 

hyperglycaemia of type 2 diabetes is likely a hospitable environment for their 

progression.  

Metformin has been shown to exert an anti-cancer effect in both epidemiological, 

animal and cell studies (93-97). Observational research studies have reported a 

reduced cancer risk and improved mortality rates in people with type 2 diabetes 

on metformin (98, 99), however meta-analyses are less convincing. Metformin 

could impede cancer proliferation by reducing hyperglycaemia, and subsequently 

hyperinsulinaemia, or via insulin-independent pathways.  

Reduction of hyperglycaemia will reduce the energy availability for cancer 

proliferation and reduce the Warburg effect – the phenomenon of aerobic 

glycolysis in cancer cells, producing large amounts of lactate regardless of 

oxygen availability (93, 98). The subsequent reduction in hyperinsulinaemia will 

also remove the direct stimulation of insulin- and IGF1-receptors on the cell 

surface, reducing activation of PI3K, and downstream, mechanistic target of 

rapamycin (mTOR), which is a major regulator of cell growth and proliferation (93, 

94, 98). 
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Alternatively, the insulin-independent, metformin-associated activation of AMPK 

may reduce gluconeogenesis, lipogenesis, protein synthesis, and angiogenesis 

required for cell proliferation and tumour growth (94, 98). AMPK activation also 

inhibits the synthesis of pro-inflammatory cytokines, which are associated with 

cancer proliferation and progression (93). There is also potential insulin-

independent, AMPK-independent inhibition of cyclin D1 by metformin, resulting in 

an up-regulation of apoptosis and autophagy (100). 

 

Figure 6 Pathways via which metformin may exert anti-cancer effects, reproduced with 

permission from Morales et al (93) 

Anti-aging  

Metformin has been suggested to improve longevity and have anti-aging effects. 

Aging is thought to occur via two pathways – the accumulation of reactive oxygen 

species (ROS) with cumulative DNA damage, or by the mTOR pathway (101). 

The mTOR pathway is involved in protein and lipid biosynthesis, inhibition of 

autophagy, and regulation of mitochondrial function and glucose metabolism. 
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However, it also has a key role in geroconversion – the irreversible transition from 

cell cycle arrest to senescence – and is therefore involved in aging (102).  

Metformin is known to reduce ROS (103), and to inhibit the mTOR pathway 

through AMPK activation. In doing so, metformin reduces cumulative DNA 

damage, inhibits geroconversion, and increases autophagy, the induction of 

which may extend the lifespan (101). 

Anti-inflammatory  

Metformin has been reported to have numerous anti-inflammatory effects, both 

direct and indirect i.e. due to the improvement in insulin sensitivity and 

hyperglycaemia (104). Clinical studies have reported lower C-reactive protein 

(CRP) (105-107), fibrinogen (108), IL-1β, IL-2, IL-6, IL-8, monocyte 

chemoattractant protein-1 (MCP-1), interferon (IFN)-γ and TNF-α  in metformin 

treated patients (106, 107).  

The mechanisms by which metformin exerts its anti-inflammatory effects can be 

divided into AMPK-dependent and independent pathways (104). By activating 

AMPK, metformin can increase nitric oxide synthesis, inhibit poly [ADP ribose] 

polymerase 1 (PARP-1), inhibit the activation of NFKB, and suppress the 

expression of the advanced glycation end-products (AGE) receptor.  Independent 

of AMPK, metformin can reduce AGE formation, and also directly activate the 

PTEN pathway with subsequent inhibition of NFKB.  All of these mechanisms act 

to reduce the generation of reactive oxygen species (ROS) and inflammation 

(104). These potential anti-inflammatory actions of metformin are summarised in 

the diagram below.  
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Figure 7 Anti-inflammatory actions of metformin, reproduced with permission from Saisho (104)  

Anti-androgen 

Polycystic Ovarian Syndrome (PCOS) is characterised by: oligomenorrhea; 

excess androgen and resultant hirsutism; and polycystic ovaries. Diagnosis 

requires only two of the three above, by the Rotterdam criteria. PCOS is often 

associated with insulin resistance, resultant hyperinsulinaemia and 

hyperandrogenism. Obesity increases the prevalence and severity of insulin 

resistance, and should be considered during the management of the condition 

(109).  

In the ovary, the LH-stimulated thecal cells synthesise DHEA and 

androstenedione, most of which is converted to oestrogen by the granulosa cells, 

although the ovary does secrete androgens (testosterone and androstenedione) 

directly into the circulation (83). However, in PCOS, the androgen secretion from 

the ovary is increased, driven by the hyperinsulinaemia of insulin resistance. 

SHBG levels are negatively correlated with the circulating levels of insulin, which 

contributes to a high free testosterone level in women with PCOS (83).   
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By improving insulin sensitivity, metformin favours a reduction in thecal androgen 

production rate, a concurrent increase in SHBG and a resulting reduction in free 

androgen index (FAI) (83). Metformin’s potentially positive impact on weight can 

also reduce the severity of insulin resistance and subsequently the severity of 

PCOS (83, 110-112). 

Relationship with the gastrointestinal tract 

Although much of the research into metformin’s mechanism of action has centred 

on the hepatocyte and the pathways affecting hepatic gluconeogenesis, there is 

increasing interest in the relationship between metformin and the gastrointestinal 

tract. Buse et al demonstrated a dissociation of the glycaemic effect of metformin 

from systemic exposure, by comparing metformin DR (delayed release) to IR 

(immediate release) and XR (extended release) preparations (113). Despite a 

significant reduction in systemic exposure – measured as metformin AUC – with 

the DR preparation, the glucose-lowering efficacy was comparable to other 

preparations. This indicates that metformin exerts some of its glucose-lowering 

effects within the gut. The potential mechanisms via which metformin may act on 

the gastrointestinal tract are addressed below.
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Figure 8 Metformin's actions in the gastrointestinal tract 
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Glucose uptake and utilisation  

It has been known for some time that metformin increases glucose uptake and 

utilisation in the human intestine, resulting in an increase in lactate production in 

enterocytes (19, 21).  Interestingly, the effect of metformin on gut glucose 

utilisation is well known to radiologists, as metformin use will interfere with 

imaging by positron emission tomography–computed tomography (PET-CT).  

This functional imaging technique uses positron-emitting 18F-fluorodeoxyglucose 

(18F-FDG) as a non-metabolised glucose analogue. The uptake of 18F-FDG is a 

marker of glucose uptake and, therefore, glucose utilisation, which is a measure 

of the metabolic activity of tissue. PET-CT is commonly used for the diagnosis, 

staging and monitoring of the response to treatment, of certain cancers (114). 

However, patients taking metformin have diffusely increased 18F-FDG uptake in 

the colon and small intestine on PET-CT (115-117), as can be seen in Fig. 1.  This 

confirms that metformin causes increased glucose uptake in the gut. It also poses 

a significant risk of false-negative imaging results when assessing for colonic or 

genitourinary tumours. For this reason it is recommended that metformin be 

discontinued for at least 48 h prior to a PET-CT procedure/scan (115, 117).   

The mechanism whereby metformin increases gut glucose uptake and utilisation 

remains unclear (118-122). In one study, metformin reduced the activity of 

sodium–glucose transporter 1 (SGLT1), but increased the recruitment of GLUT2 

to the apical membrane of rat jejunum (120); a study assessing the response to 

5'-AMP-activated protein kinase (AMPK) activators (5-aminoimidazole-4-

carboxamide ribonucleotide [AICAR] and metformin) suggests GLUT2 

localisation to the apical membrane is mediated via rapid AMPK phosphorylation 

(120, 121).  The mechanism of glucose absorption and the role of GLUT2 in this 

process remains the subject of debate (122). However, in fasting lean rodents 

GLUT2 is located on the basolateral membrane and is only recruited to the apical 

membrane of the enterocyte following postprandial glucose stimulation of SGLT1 

(123), whereas insulin results in the internalisation of GLUT2. Interestingly, fasting 

obese humans, unlike fasting lean individuals, have persistent GLUT2 abundance 
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in the apical membrane, signifying dysregulation of glucose sensing and transfer 

(123).  

Lactate production 

As metformin treatment increases the uptake and utilisation of glucose, there is a 

subsequent increase in plasma lactate. Both the gut and liver are implicated as 

the main sources of metformin-related lactate production. In the gut, metformin 

increases the uptake and anaerobic metabolism of glucose, contributing to the 

rise in lactate associated with metformin treatment (19, 21, 70, 82, 124-129). In 

rat hepatocytes, metformin inhibits mitochondrial glycerophosphate 

dehydrogenase, reducing the conversion of cytosolic lactate into pyruvate (82). 

This build-up of intracellular lactate results in its release into the plasma. 

Observational data indicate that metformin causes a rise in fasting and average 

lactate levels (124), with an average increase (adjusted for plasma glucose and 

BMI) of 0.16 mmol/l compared with diet or sulfonylurea treatment. 

Several studies have attempted to localise the lactate production associated with 

metformin treatment (70, 125-129). Perhaps most convincingly, rat studies in 

which plasma glucose and lactate levels were measured in the inferior vena cava, 

hepatic vein, hepatic portal vein and the aorta demonstrated that the plasma 

lactate concentration peaks in the hepatic portal vein, with a corresponding drop 

in the plasma glucose concentration. This implicates the intestine as the main site 

of metformin-associated anaerobic glucose utilisation and lactate production 

(125). Ring biopsies taken from the jejunum and ileum of these rats after 

intrajejunal metformin infusion confirmed a 10% increase in intestinal lactate 

concentration (125). These findings were confirmed in humans by assessment of 

lactate concentrations in jejunal biopsies incubated with and without metformin 

(21). Cells incubated in solution with metformin had a higher lactate concentration 

(an increase of up to 35%) than those incubated in solution lacking metformin. 

These results provide corroborative evidence that metformin increases gut 

utilisation of glucose and subsequent lactate production. As a complementary 
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explanation, lactate production with metformin treatment may be due to its action 

on the gut microbiome (see later), by inhibition of glycerophosphate 

dehydrogenase, which is found in some colonic bacteria. This raises the question 

of local lactate concentrations contributing to the GI symptoms associated with 

metformin intolerance. As yet there is no clinical evidence to support this theory, 

but it warrants further investigation. 

Gut-related peptides 

Metformin and GLP-1 

Metformin treatment has been shown to increase the glucagon-like peptide 1 

(GLP-1) concentration in both mouse and human studies (130-143). GLP-1 is 

secreted from L cells, which are distributed throughout the intestine, but are highly 

concentrated in the ileum. GLP-1 is quickly degraded by dipeptidyl peptidase-4 

(DPP4) in the intestinal mucosa and portal system. Metformin could potentially 

increase the GLP-1 concentration by increasing its secretion from L cells, and/or 

by reducing its breakdown by DPP4.   

Several mouse and human in vivo studies have reported a metformin-associated 

reduction in DPP4 activity (130-137). However, in vitro studies have yet to find a 

direct effect of metformin on the activity of DPP4 (138), suggesting that any effect 

of metformin on DPP4 activity may be indirect, possibly by influencing hepatic 

production of DPP4 (136, 144). The results of a number of studies have 

suggested that any impact of metformin on DPP4 activity is likely to be small. 

First, metformin increases active GLP-1 levels in DPP4-deficient rats (139). 

Second, DPP4 degrades both GLP-1 and gastric inhibitory polypeptide (GIP), yet 

metformin treatment in humans only increases the GLP-1 concentration, whereas 

DPP4 inhibitors increase both GLP-1 and GIP concentrations (140, 141). Third, 

there is an additive effect on the GLP-1 concentration when metformin is added 

to the DPP4 inhibitor sitagliptin, suggesting a different mechanism of action of the 

two drugs (141).   
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Given that metformin is likely to have only a small impact on DPP4 activity, it is 

likely that the main impact of metformin on GLP-1 is to increase GLP-1 secretion. 

A study in mice reported that metformin increases the expression of precursor 

proteins such as preproglucagon and proglucagon in the large intestine, 

potentially increasing GLP-1 production and secretion (141).  Whilst one study on 

L cell-like lines did not support a direct effect of metformin on L cells to mediate 

this effect (140), a more recent study has reported a direct effect of metformin on 

these cells, where an increase in the expression of the gene encoding 

proglucagon by metformin is mediated via a β-catenin–TCF7L2-mediated 

mechanism (143, 145).   

Metformin could also act indirectly to stimulate GLP-1 secretion, via alterations in 

the bile acid pool. Metformin inhibits the farnesoid X receptor (FXR) via an AMPK-

mediated mechanism, resulting in reduced sensing and ileal absorption of bile 

acids (146). The increase in the bile acid pool may then stimulate TGR5 bile acid 

receptors on the L cell (142, 147), causing an increase in GLP-1 secretion via 

mitochondrial oxidative phosphorylation and calcium influx (147).   

Metformin, serotonin and histamine 

Metformin has some structural similarities with selective agonists of the 5-HT3 

receptor and, as outlined earlier, is in part transported by SERT. Serotonin (5-HT) 

release from the intestine is associated with nausea, vomiting and diarrhoea—

symptoms similar to those associated with metformin intolerance. Therefore, one 

possible mechanism for the GI intolerance associated with metformin may relate 

to altered transport of serotonin or to a direct serotonergic-like effect of metformin.  

Metformin stimulates the release of 5-HT from enterochromaffin cells collected by 

duodenal biopsy from metformin-naive individuals (148); however, this effect is 

not mediated via the 5-HT3 receptor, as inhibition of the receptor does not alter 

the response.  As an alternative explanation, it could be that metformin uptake via 

SERT or OCT1 results in reduced serotonin transport and resultant GI side-

effects (149).  Finally, a recent paper has identified a potential role for metformin 
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in inhibiting diamine oxidase, which is highly expressed in enterocytes and 

responsible for metabolism of histamine (149).  Histamine, like serotonin, is also 

associated with increased gut motility.  More studies are required to establish the 

likely mechanism for GI intolerance to metformin and, importantly, how this key 

side effect can be avoided or treated. 

The gut–brain axis 

A recent study in rats suggested that metformin influences the gut–brain axis 

(150). The effect of intraduodenal metformin infusion on duodenal mucosal AMPK 

production and subsequent hepatic glucose production was assessed. The rats 

required an increased rate of glucose infusion to maintain euglycaemia during 

clamp conditions within the first 60 min of intraduodenal metformin administration 

and had a lower hepatic glucose production. However, when metformin was 

infused into the hepatic portal vein, no increase in the glucose infusion rate was 

required, and there was no decrease in hepatic glucose production over the same 

timeframe (150). This indicates that duodenal metformin has a direct, pre-

absorptive effect on glucose homeostasis in the rat. Based on this finding, it was 

hypothesised that metformin activates GLP-1 receptors to increase protein kinase 

A (PKA) activity on intestinal vagal afferents. It was envisaged that the afferents 

transmit to N-methyl-D-aspartate (NMDA) receptors in the nucleus of the solitary 

tract (NTS), with onward signalling to the efferent fibres of the hepatic vagal nerve, 

resulting in a reduction in hepatic glucose production. The pre-absorptive effect 

of metformin was lost when each part of this neuronal pathway was blocked using 

GLP-1 receptor antagonists or PKA inhibitors, tetracaine, the NMDA receptor 

blocker MK-801 and hepatic vagotomy. Although these studies were carried out 

in rat models, they once again highlight the small intestine as a site of action of 

metformin, and suggest a novel pathway through which metformin may be acting.  

This mechanism requires further investigation in humans. 
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Bile acids 

Metformin increases the bile acid pool within the intestine (145, 151-155), 

predominantly through reduced ileal absorption (145, 152). This disruption of the 

enterohepatic circulation of bile salts has potential consequences for cholesterol 

homeostasis, entero-endocrine function and glucose homeostasis. It may also 

contribute to metformin intolerance through alterations in the microbiome and 

stool consistency.  In addition, as discussed previously, the alteration in bile acid 

absorption may result in increased GLP-1 secretion, in a similar way to that 

observed with bile acid sequestrants such as colesevelam (156, 157). 

Several studies have demonstrated reduced absorption of bile acids in patients 

receiving metformin treatment and shown this to be a direct effect of metformin 

on enterocytes (145, 152-155). Bile acid absorption in the jejunum is a passive, 

non-saturable and concentration-dependent process, whereas ileal absorption is 

mainly an active process (153).  FXR is a bile acid sensor involved in ileal 

absorption of bile acids, as well as the synthesis and secretion of bile acids from 

the liver. AMPK binds directly to FXR and represses the receptor via direct 

phosphorylation, resulting in reduced FXR transcriptional activity and, 

subsequently, reduced bile acid absorption (145). As an AMPK activator, 

metformin could potentially exert effects on the bile acid pool via FXR. 

A reduction in bile acid absorption has been suggested as a mechanism through 

which chronic metformin treatment can lower cholesterol (152, 153). It has also 

been suggested that an increased luminal bile salt concentration would have an 

osmotic effect, which could lead to the diarrhoea associated with metformin 

treatment (152). 

The microbiome 

The gut microbiome and the metagenome (the microbial genome) are areas 

receiving increasing research attention, and are now considered as 

environmental factors that contribute to the development of many diseases, 
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including obesity, the metabolic syndrome and type 2 diabetes (158-164). Large 

metagenome-wide studies in China and Europe have described gut microbial 

dysbiosis in association with obesity and type 2 diabetes. Although these two 

studies vary in the changes they identified, a common finding was a reduction in 

butyrate-producing bacteria and an increase in opportunistic pathogens (158, 

161).  More recently, data from these studies and the Danish MetaHIT project 

were analysed after controlling for metformin treatment (164). This identified the 

reduction in butyrate-producing taxa as a signature of gut microbiome shifts in 

type 2 diabetes.   

Metformin alters the microbiome in both mice and humans, causing an overall 

decrease in the bacterial diversity of the mouse microbiome, which contrasts with 

the effect of a high-fat diet (165, 166).  Studies in humans are more limited, but in 

a cross-sectional study of the microbiome in women with type 2 diabetes, those 

treated with metformin had a different microbiome compared with those not 

treated with the drug (see Fig. 8) (159).  In particular, metformin treatment was 

accompanied by a marked increase in the bacterium Akkermansia muciniphila 

and an associated increase in mucin-producing goblet cells. In mice, treatment 

with oligofructose (resulting in an increase in A. muciniphila) or direct treatment 

with A. muciniphila has been reported to improve metabolic disorders, possibly 

by increasing endocannabinoids, which reduce inflammation, modify gut peptide 

secretion and improve the thickness of the gut mucous barrier (162). 

Administration of A. muciniphila to mice receiving a high-fat diet improved glucose 

tolerance (166), suggesting that the effect of metformin on abundance of this 

species within in the microbiome may indirectly contribute to the glucose-lowering 

effect of metformin. It has been postulated that an increase in bacteria producing 

the short chain fatty acids butyrate and propionate may improve glycaemia (164). 

Butyrate and propionate increase intestinal gluconeogenesis. In rodents, 

increased intestinal gluconeogenesis results in a reduction in hepatic 

gluconeogenesis, appetite and weight, leading to improved glucose homeostasis.  
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An alteration in the microbiome by metformin may also be a potential cause of GI 

intolerance. Burton et al carried out a small open-label crossover study using a 

GI microbiome modulator (GIMM) or placebo in conjunction with metformin in 

metformin-intolerant patients with type 2 diabetes (167). They found that 

treatment with metformin in combination with GIMM resulted in lower fasting 

glucose levels, suggesting better tolerance of metformin therapy for longer or at 

a higher dosage. Therefore, metformin appears to affect the microbiome, and 

could potentially exert some of its chronic pharmacodynamic effects in this 

manner, and an individual’s metformin tolerance may be influenced by their 

microbiome. 

 

 

Figure 9 Relative abundance of microbiome species with and without metformin treatment, 

reproduced with permission from Karlsson et al (159). 
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Pharmacogenetics of metformin 

Intolerance  

Genetic studies have been employed to elucidate the cause of metformin 

intolerance as well as response. As already discussed, metformin intolerance 

affects up to 20% of those treated, with approximately 5% unable to take 

metformin. In an observational cohort study, Dujic et al used GoDARTS data to 

identify an increased odds ratio of metformin intolerance in the presence of two 

reduced function alleles of OCT1 (29). These individuals were more likely to 

develop intolerance. Concomitant use of OCT1 inhibiting drugs further increased 

the odds ratio of intolerance to >4 (29). 

 OR (95% CI) p 

One or no reduced-function allele carriers not treated 
with OCT1 inhibiting drugs 

1.00  

One or no reduced-function allele carriers treated with 
OCT1 inhibiting drugs 

1.62 (1.16-2.26) 0.005 

Two reduced-function alleles carriers not treated with 
OCT1 inhibiting drugs 

2.27 (1.13-4.58) 0.022 

Two reduced-function alleles carriers treated with 
OCT1 inhibiting drugs 

4.13 (2.09-8.16) <0.001 

Table 2 Joint effects of OCT1 genotype and OCT1 interacting drugs on intolerance, reproduced 

with permission from Dujic et al (29) 

Further investigation by Dujic et al into the effect of genetic variation in 

transporters on metformin tolerance, has also identified an increased risk of 

metformin intolerance in low-expressing SERT 5-HTTLPR variants (47). This 

study also highlighted a multiplicative interaction between OCT1 and SERT 

genotypes, but these results are yet to be replicated (47). 
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Impact of OCT1 on metformin tolerance 

The observational results from Dujic et al (29) implicate OCT1 genotype in 

metformin intolerance. These results had been replicated, but not confirmed in 

clinical studies. Chapter 4 details the second clinical study of this project – “Impact 

of OCT1 Genotype and OCT1 inhibiting drugs on an individual’s tolerance of 

metformin” - the ImpOCT study. This recruit-by-genotype study employed a 

double-blind, randomised, placebo-controlled, crossover design to assess if 

OCT1 genotype or concurrent use of OCT1 inhibiting drugs impact on metformin 

tolerance.  

Response  

Understanding the variability in metformin response is difficult in the context of 

uncertain molecular mechanisms of action. There may be multiple factors 

affecting variability, including both genetic and environmental. Pharmacogenetic 

studies can be used to understand how genetics influence drug response. They 

can be used for patient stratification e.g. responders and non-responders, target 

identification or to characterise how the drug functions (168). Candidate gene 

analysis uses current biological knowledge to assess the impact of variation in 

specific genes, for example those encoding transporters of metformin, on 

metformin response. These studies can help to stratify patients and potentially 

predict those unlikely to respond to or develop intolerance of metformin. However, 

they will not identify new targets or pathways of metformin action. On the other 

hand, genome-wide association studies (GWAS) employ an open-minded, 

unbiased approach, to identify genes associated with a phenotype of interest, 

such as HbA1c reduction in metformin treatment. GWAS can therefore identify 

novel drug targets or clarify a drug’s mechanism of action. 

The Genetics of Diabetes and Audit Research Tayside Study (GoDARTS) 

research group performed a GWAS study of metformin response, to assess the 

heritability of drug response. This demonstrated that between 20 and 34% of the 

variability in metformin response can be accounted for by genetic variation in 
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common variants (169). The heritability of response may be even greater if we 

were to consider less common variants. The extent of heritability of drug response 

confirms that pharmacogenetics studies of metformin response are worthwhile 

and may elucidate mechanism of action. 

The GoDARTS group also identified a SNP rs11212617, associated with 

metformin treatment success, at a locus containing ataxia telangiectasia mutated 

(ATM) gene (170). This result was replicated in an independent patient group 

within GoDARTS and in UKPDS. However, the DPP, which studies pre-diabetes, 

did not replicate this finding, indicating that there may be a three-way interaction 

between drug, genetics and disease stage. ATM encodes the ATM protein kinase, 

which plays an important role in DNA repair. Homozygous loss of function of the 

ATM gene results in the development of a neurodegenerative condition called 

Ataxia Telangiectasia (A-T). As part of this multi-system disorder, patients 

develop insulin resistance, fatty liver and diabetes, therefore the GWAS 

association between ATM and metformin response presents an opportunity for 

treatment guidance in these individuals, as well as identification of a metformin 

target / pathway.  A-T is discussed in greater detail later in this thesis. 

Another genome-wide statistically significant association with metformin 

response was identified by the MetGen Consortium in a meta-analysis of over 

10,000 individuals (171). SNP rs8192675 is an intronic SNP of SLC2A2 gene, 

which encodes the glucose transporter, GLUT2 (172), and is associated with an 

improved response to metformin, i.e. greater on treatment reduction in HbA1c, 

controlling for baseline HbA1c. GLUT2 is expressed in hepatocytes and is thought 

to mediate hepatic glucose output, making it an excellent candidate for metformin 

mechanism of action. Of note, homozygous mutation in the SLC2A2 gene causes 

the glycogen storage disease known as Fanconi Bickel syndrome, which is 

associated with hypoglycaemia between meals, and accumulation of glucose 

within the liver and kidneys. 
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Following on from candidate gene studies of metformin response, there has been 

significant research into the OCT1 transporter and its numerous coding missense 

SNPs. The four most common reduced-function variants are R61C, G401S, 

M420del and G465R. An initial report that OCT1 variants altered the glycaemic 

response to metformin in a clinical trial (32) was not confirmed in a recent re-

analysis that took account of the baseline HbA1c level (33). This is consistent with 

the Genetics of Diabetes Audit and Research Tayside Study (GoDARTS) data, 

where Zhou et al found no effect of OCT1 genotype on the glycaemic response 

to metformin in a large population of patients with type 2 diabetes (173). 

Other genetic variants associated with metformin response have been identified 

in the AMPK pathway, e.g. LKB/STK11 an upstream kinase, and in other 

transporters, e.g. MATE1-2 (51, 174). However, a recent meta-analysis of nine 

candidate polymorphisms in five transporter genes found no significant effect on 

the therapeutic response to metformin (51). 

Ataxia-Telangiectasia and metformin  

Using the GWAS results reported by Zhou et al (170), we developed the final 

study of this thesis. We hypothesised that individuals with A-T would demonstrate 

improved response to metformin compared to the general population. This could 

be of benefit in this patient population, due to their documented insulin resistance, 

chronic inflammatory state, and increased risk of cancer. Chapter 5 of this thesis 

details this open-label, recruit-by-genotype, crossover study, to compare the 

response to metformin and pioglitazone in individuals with A-T and healthy 

controls.  
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Thesis Aims 

 

This thesis reports the results of three clinical trials which studied the variability in 

response to and tolerance of metformin. 

 Prior to the results chapters, the methods chapter details the variety of methods 

used throughout the three studies 

Study 1: Pharmacokinetics of Metformin Intolerance (POMI) 

Study 2: Impact of OCT1 genotype and OCT1 inhibiting drugs on an individual’s 

tolerance of metformin (ImpOCT) 

Study 3: Response of individuals with Ataxia-Telangiectasia to metformin and 

pioglitazone (RAMP) 

Conclusions and ideas for future research are summarised in the final chapter, 

with additional or supplementary methods and data included in the appendices 

thereafter. 
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Methods: Bioinformatics resources 

Throughout this thesis, the clinical studies have used bioinformatics resources to 

identify and recruit participants. The four main resources used are described 

below: 

DIabetes REsearCh on patient sTratification (DIRECT) 

The DIRECT cohort was used for identification of metformin intolerant individuals 

for the “Pharmacokinetics of Metformin Intolerance” study. 

DIRECT is a pan-European consortium, including academic institutions and 

pharmaceutical companies, whose aim is to study areas of heterogeneity within 

diabetes, such as the rate of onset or progression of diabetes, and the variation 

in response to therapeutic intervention (175).  

This resource includes demographic, anthropometric, biochemical and 

prescribing data on individuals with diabetes. From this, we were able to identify 

individuals who had been exposed to, but were no longer taking metformin. 

Further inclusion criteria were applied (as per study protocol) to identify potential 

participants. These individuals were then individually matched for age, sex and 

BMI, to metformin tolerant individuals from the GoDARTS cohort. 

Genetics of Diabetes Audit and Research in Tayside Scotland 

(GoDARTS) 

Diabetes Audit and Research in Tayside Scotland (DARTS) began as a 

collaborative project between University of Dundee and Tayside Health Care 

Trusts. It is an electronic register which began in 1996, to identify patients with 

diabetes in the Tayside region of Scotland. From 1998, patients were invited to 

donate blood for DNA extraction and phenotypic data to the Genetics of DARTS 

(GoDARTS) study. From 2004 onwards, healthy controls have also been 

recruited. Currently, GoDARTS includes the genetic data from a total of 18306 

individuals, of whom 10149 have type 2 diabetes. Recruitment is ongoing (176). 
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GoDARTS links genetic data to electronic health records via the community 

health index (CHI) number, including prescribing, diagnostic, and laboratory data. 

This provides up-to-date, anonymised longitudinal data (176). 

Two of the clinical studies reported in this thesis used the GoDARTS cohort: 

1) The “Pharmacokinetics of Metformin Intolerance (POMI)” study used the 

linked prescribing and anthropometric data to identify individuals with 

diabetes who were metformin tolerant, and matched the already recruited 

intolerant participants according to age, sex and BMI.  

2) The “Impact of OCT1 genotype and OCT1 inhibiting drugs on an 

individual’s metformin tolerance (ImpOCT)” study used the linked genetic, 

prescribing, demographic and anthropometric data regarding the healthy 

controls of the GoDARTS cohort. Individuals with wild type or reduced 

function OCT1, who had never taken metformin, and were not using other 

OCT1 inhibiting medications were identified as potential participants, 

before considering the demographic data.   

Genetics of Scottish Health Research Register (GoSHARE) 

The Scottish Health Research Register (SHARE) was established as a register 

of people interested in participating in health research. Participants consent to 

SHARE accessing their electronic health record in an anonymised format, which 

can then be used in bioinformatics research, or to identify potential participants 

for upcoming clinical studies (177). 

Genetics of SHARE (GoSHARE) is an extension of SHARE, where participants 

give consent to excess blood from routine samples being stored and used for 

genetic research (178). 

The “Impact of OCT1 genotype and OCT1 inhibiting drugs on an individual’s 

metformin tolerance (ImpOCT)” study used the GoSHARE cohort, in conjunction 
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with GoDARTS, to identify non-diabetic people with specified OCT1 genotypes, 

who were metformin-naïve and not using other OCT1 inhibiting drugs. 

Generation Scotland: Scottish Family Health Study (GS:SFHS) 

The Scottish Family Health Study is a family-based genetic epidemiological study, 

linking DNA with demographic, clinical and lifestyle data (179). It includes almost 

24,000 people with a wide variety of medical conditions.  

The “Impact of OCT1 genotype and OCT1 inhibiting drugs on an individual’s 

metformin tolerance (ImpOCT)” study expanded recruitment to include the 

GS:SFHS. As with GoDARTS and GoSHARE, people with specified OCT1 

genotypes were assessed for suitability according to the inclusion criteria. 

Health Informatics Centre (HIC) 

The Health Informatics Centre (HIC) at the University of Dundee act as the 

gatekeepers of sensitive electronic health data. They maintain a clinical data 

repository for linkage of health data, which can be used in medical research (180). 

As the bioinformatics cohorts listed above anonymise data for analysis, HIC 

provide the link to the individual. Therefore, for identification of potential 

participants, HIC was utilised to search the database for those individuals meeting 

the inclusion criteria, before arranging mail-outs to appropriate individuals. The 

details of those who respond to the invitation letters are then uploaded to the HIC 

Recruitment Tracker, which provides researchers with a potential participant list 

for contacting.  
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Methods: Pharmacokinetics 

Pharmacokinetics – overview 

Pharmacokinetics (PK) is the study of the journey of a drug through the body, and 

can be considered in different stages (ADME) (181): 

1. Absorption 

2. Distribution 

3. Metabolism 

4. Excretion 

 

Each stage is affected by a number of factors which can be patient- or drug-

specific. Patient-specific factors include age, gender, BMI, renal function, liver 

function and genetics (e.g. genetic variants of transporters). Drug-specific factors 

include formulation, route of administration, molecular size and structure, pH (and 

pKa – the acid dissociation constant), lipid solubility, and binding. 

Absorption 

Absorption is determined by the physicochemical properties of the drug, 

formulation and route of administration. In IV administration the drug enters the 

systemic circulation directly, whereas in other administration routes e.g. oral, 

buccal, intramuscular or subcutaneous, the drug potentially has to cross a number 

of membranes before reaching the systemic circulation. In oral administration, as 

considered in this thesis, the drug can be absorbed by passive diffusion, 

facilitated passive diffusion, active transport or pinocytosis.  

Pharmacokinetic parameters pertaining to absorption include the maximum 

concentration of the drug achieved in the systemic circulation (Cmax), the time at 

which the maximum concentration is achieved (Tmax), and bioavailability (F). The 

bioavailability of a drug is the proportion of the drug dose which reaches the 

systemic circulation, and is determined by a number of factors including: the 
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chemical properties of the drug; its formulation; timing of administration e.g. with 

or without food; gastric emptying; gastrointestinal transporters; first-pass 

metabolism; and intestinal and hepatic health.  

Distribution 

On entering the systemic circulation, the drug is distributed to other tissues. 

Distribution is determined by blood flow and perfusion of the tissues, the extent 

of protein-binding of the drug in plasma, and lipid solubility.  

The apparent volume of distribution (Vd) quantifies the extent of the distribution 

of the drug. It is a theoretical volume into which the dose would be uniformly 

distributed to achieve the current drug concentration in the plasma (181). Drugs 

that are protein bound and remain in plasma will have a similar volume of 

distribution to the circulating volume. Drugs which are lipophilic and distributed to 

other tissues including fat will have a much higher apparent volume of distribution. 

Metabolism 

Drug metabolism usually occurs in the liver, where there is a high concentration 

of metabolising enzymes, and can be divided into two phases – phase one which 

involves the cleavage of the drug, and phase two which is a conjugation process 

to aid excretion. Drug metabolites may be inactive, or in some cases may be the 

active form of the drug e.g. prodrugs which need to be cleaved to become active. 

The rate of drug metabolism can depend on drug concentration and on liver 

function. Some drugs are not metabolised – such as metformin – and are excreted 

unchanged. 

Excretion 

While the kidneys are the main organ responsible for excretion of drugs and their 

metabolites, the biliary system, intestine (faeces), lungs, sweat and saliva can all 

contribute. Phase two metabolism increases with water solubility, making the 

drugs / metabolites more readily excreted via the kidneys. Most excretion is by 
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glomerular filtration, with limited diffusion back into circulation. Active tubular 

secretion is a transporter dependent mode of excretion, and resorption is limited 

as it too is transporter dependent. PK parameters representing excretion include 

the half-life and renal clearance.  

Pharmacokinetic modelling 

When analysing PK data, we can consider the body to have multiple 

compartments. A single compartment (or non-compartmental) model simplifies 

the whole body and its organs into a single space.  

 

Two- or multi-compartment models consider a central compartment, which refers 

to the plasma volume, connected to a peripheral compartment which represents 

other tissues / organs. The peripheral compartment can be further divided into 

multiple compartments e.g. fat, muscle, and specific organs. It is assumed that 

the drug must first enter the central compartment before entry into the peripheral 

compartment, and in most cases, must return to the central compartment for 

elimination.  
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Certain conditions are assumed: the rate of absorption into a specific 

compartment will have a rate constant (k) and the concentration within a 

compartment is homogenous. These compartments do not have an anatomical 

or physical size / shape – they are a theoretical construct for mathematical 

representation (also discussed in Methods: Glucose Tracer Modelling) (181).  

Pharmacokinetic study of metformin intolerance 

Chapter 3 of this thesis describes the “Pharmacokinetics of Metformin Intolerance 

(POMI)” study, which used non-compartmental analysis (NCA) of metformin 

pharmacokinetics. As our primary requirement was comparison of the degree of 

drug exposure and its associated PK parameters, NCA is generally the preferred 

method, as fewer assumptions are required than the model-based methods (182). 

Measurement of plasma and urinary metformin concentrations by LC-MS/MS 

(183) after a single 500mg dose of metformin allowed calculation of a number of 

pharmacokinetic parameters. The data were arranged in NONMEM format 

(acronym for non-linear mixed effects modelling, a software package developed 

for population pharmacokinetics), and analysis performed using the R package 

NCAPPC (184).  

The mathematical equations of the calculations performed for this study are 

discussed below.  
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Pharmacokinetic parameters and their calculation 

The figure below highlights some of the parameters measured in a PK study. 

 

 

Figure 10 An example of a concentration time curve, with some of the commonly measured PK 

parameters identified. Solid line represents measured data, dotted line is extrapolation. 

Bioavailability (F) 

To formally measure the oral bioavailability of metformin, either comparison with 

IV administration or quantification of the faecal recovery of the drug is necessary. 

However, estimated fractional drug availability (F, units = fraction or percentage) 

can by calculated by extrapolating the collected data to calculate area under the 

concentration time curve from 0 to infinity (AUC0-∞). Assuming that metformin is 

completely excreted by the kidneys, eventually clearance (CL) would equal renal 

clearance (CLR): 

CL  =        F x dose / AUC0-∞ 

CLR  =        Ae0-24 / AUC0-24 

 F x dose / AUC0-∞ =        Ae0-24 / AUC0-24 

 T 1/2 
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F  =         (AUC0-∞/ AUC0-24) * (Ae0-24 / dose) 

Where Ae is the cumulative amount of unchanged metformin excreted in the 

urine. 

Tmax 

The time (Tmax, units = time) at which the maximum concentration (Cmax) is 

achieved can be determined visually from the concentration time curve, as shown 

in Figure 1.  

Cmax 

The maximum concentration of the drug achieved in the systemic circulation 

(Cmax, units = weight per volume) can be determined from inspection of individual 

plots of the concentration over time, however this will only give the maximum 

measured concentration. 

AUC  

The area under the concentration – time curve (AUC, units = weight per volume 

x time) can be calculated from time zero to the last data collection time point, in 

POMI this was 24 hours. Alternatively the AUC from time zero to infinity can be 

calculated through extrapolation of the collected data, as per Figure 1.  

AUC can be calculated using either the trapezoidal method or, as with the 

metformin AUC in the POMI study, the “linear up logarithmic down” method, which 

gives a more accurate representation of the concentration time curve.  

AUC can be reported as total or incremental. Total AUC accounts for the full area 

under the curve, whereas incremental measures only the change from baseline. 
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Volume of distribution 

The volume of distribution (Vd, units = volume) is calculated as the clearance 

divided by the elimination rate constant (ke, units = time-1). 

   Vd = CL / ke 

   Vd = (F x dose / AUC0-∞) / ke 

 

 

T ½ life 

The half-life of a drug is the time required for the quantity to reduce to half to its 

maximum concentration. This can be calculated using the terminal slope of the 

log-transformed plasma drug concentration – time curve, using the equation: 

   t1/2 = ln (2)  /   ke 

 

Figure 11 Log-transformed drug concentration is plotted against time. The terminal slope of the 

curve can be used in the calculation of the t 1/2 life of the drug. 

e 
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Clearance  

The apparent total clearance from plasma after oral administration (CL/F, units = 

volume / time) of the drug from plasma is calculated as: 

   CL/F = dose / AUC0-∞ 

When using dose in the PK calculations it is important to consider the drug 

formulation used. For example, in the POMI study, metformin was administered 

orally as the hydrochloride salt, and therefore, of the 500mg tablet, only 390mg is 

the pure metformin base. Therefore, in PK calculations, dose should be 

considered as 390mg. 
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Methods: Recruit-by-Genotype (RBG) studies 

The ImpOCT study, discussed in Chapter 4 of this thesis, uses a recruit by 

genotype (RBG) study design to assess the impact of genetic variation in a cation 

transporter on the tolerance of metformin. Here, the rationale, benefits and 

limitations of the RBG design are discussed. 

Genetics and stratified medicine 

An individual’s genotype is dictated by the gene alleles inherited from their 

parents, as well as any incident germline mutations they may carry. Their 

phenotype depends not only on genetic variation, but also on environmental 

factors and the interaction between genetics and environment. 

The fall in genotyping and sequencing costs has driven an increase in genome-

wide association studies (GWAS) of large cohorts for genetic characterisation. 

The subsequent identification of genetic variants and the observation of 

associated traits has led to a need for prospective studies to prove these 

observations, to model and validate gene-treatment interactions. By elucidating 

the mechanism of the gene-treatment interaction and the subsequent impact on 

treatment efficacy, treatment can be optimised for genetic subgroups – known as 

stratified medicine. 

Traditional randomised control trials (RCTs) are not designed for this purpose 

and, therefore, often lack power to model such interactions, although in 

particularly large RCT populations it is still possible. 

Recruit-by-Genotype Study Design 

Recruit-by-genotype (RbG), also known as recall-by-genotype or genotype-driven 

recruitment (GDR), is a research strategy that recruits research participants from 

an existing study population based on genotype, as opposed to traditional study 

recruitment which focuses on the presence or absence of a medical condition, 
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clinical outcome or phenotype (185, 186). RbG studies identify potential 

participants via their genetic data, which has been obtained via a bioinformatics 

resource, such as a health registry, biobank or previous clinical trial. Participants 

will have previously consented to their genetic data being stored, with the option 

for researchers to contact them in future, based on this information. In RbG 

studies, “cases” and “controls” are identified on the presence or absence of a 

specific genotype or genetic risk score (GRS). After recruitment, the participants 

can be exposed to an intervention, much like a traditional RCT, with the two 

“treatment” arms reflecting genotype. 

RbG studies can use single variants or multiple variants for their recruitment 

approach. Stratification and recruitment using a single genetic variant allows for 

detailed phenotypic examination and functional characterisation of the genetic 

variant, if unknown (187). If the direct biological effect of the variant is known, 

these studies can define the effect size of the variant. However, a single genetic 

variant can often only explain a small proportion of the variance seen in a trait of 

interest. On the other hand, a multiple variant approach is adopted to recover 

some of the lack of power from single variant analyses, which can increase the 

precision of causal estimate (187). These multiple variant RbG studies often 

employ a GRS from an independent GWAS, and recall individuals by stratifying 

their scores. Unlike the single variant recruitment, participants can have differing 

genotypes.  

Statistical power in RBG   

Statistical power of RbG studies is based on several factors: minor allele 

frequency (MAF); anticipated effect size; sampling frame size; and sample size 

(187, 188). It differs according to whether a single or multiple variant approach is 

adopted for recruitment. In single variant studies the power is directly related to 

the MAF and effect size, whereas in multiple variant studies the power depends 

on the distribution of the genetic risk scores, the number of participants in the tails 

of the genetic risk score distribution (assuming recruitment will be from the 
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extremes of the score), and the expected effect size and the gradient of effect 

seen over the range of the genetic risk score (187).  

The statistical power of an RbG study can be further enhanced by group or pair 

matching participants for age, gender and BMI (187), much as in a traditional 

RCT. 

Online calculators are now available to guide design of RbG studies (187, 188). 

Benefits of Recruit-by-Genotype studies 

RbG studies have been proven to improve the statistical power, and therefore 

reduce sample size required to identify a gene x treatment interaction. They are 

superior for modelling the gene-drug and gene-lifestyle interactions, compared to 

RCTs of similar size. By recruiting genetically “at risk” participants, there is an 

improved ability to elicit the treatment response or outcome of interest (188). 

 Large effect Small effect 

MAF RbG RCT RbG RCT 

High 
Frequency 

390 650 700 2500 

Moderate 
Frequency 

250 1000 1700 4500 

Table 3 Approximate sample size required to achieve 80% power to observe a GRS x metformin 

interaction for high (MAF = 0.2–0.5) and moderate (MAF = 0.05–0.2) frequency SNPs with both 

large (β = 0.15–0.30) and small (β = 0.05–0.15) effect sizes (188) 
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The greatest gain in power is seen when comparing the single variant RbG design 

with conventional recruitment strategies, at the lower end of the MAF range. 

However, recruitment to an RbG study of sufficient individuals with a single variant 

of low MAF depends on the availability of a very large bioresource with associated 

genetic information (187). The size of the genotyped cohort from which 

participants are recruited is inversely proportional to the MAF under investigation. 

By increasing statistical power, and subsequently reducing the study sample size, 

RbG are more financially and practically viable then equivalently powered RCTs. 

They are also not subject to reverse causality or confounding factors with respect 

to the phenotype being studied, resulting in more precise and informative 

phenotyping (187). 

Limitations of Recruit-by-Genotype Studies 

RbG studies have clear benefits as listed above, however, this study design is not 

ubiquitously appropriate. For example, if genotype is strongly correlated with 

phenotype, a recruit-by-phenotype study is more appropriate and potentially more 

cost-effective (188).  

RbG studies depend on the availability of large scale bioinformatics resources, in 

the form of health registries, biobanks or large RCTs. These resources should 

ideally include genotypic data, as well as prescribing and other health data, such 

as ICD-10 codes, biochemical and anthropometric measures. If the bioinformatics 

resource being used for recruitment requires genotyping before recruitment can 

commence, an RbG can become prohibitively expensive (187). However, the cost 

of extensive genotyping in these sample frames is justified as the resource can 

then be used by many research teams with multiple objectives (188). 

Results obtained through RbG studies are, by design, not representative of the 

general population, so interpretation should only be applied to the genotype 

recruited. Extrapolation of results to wider population would be inappropriate. 

There is also the question of the genetic impact on study participation, retention 
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and numbers lost to follow-up due to e.g. behaviour or death. If this is unbalanced 

across genotypes it could impact the trial outcome (187). Similarly, results may 

be complicated by pleiotropic effects of the genotype in questions, especially in 

single variant studies. However, this can also be of benefit if the study is designed 

to investigate and define the range of effects associated with the single variant 

(187). 

In summary, RbG is best considered as a tool in research for replication or 

confirmation of observational studies, which is only part of the process required 

to understand the genetic basis of mechanisms of action and causality of 

outcomes. 

Ethics of Recruit-by-Genotype Studies 

There are obvious ethical considerations when designing and managing an RbG 

study (185, 186, 189-196), which have been clearly summarised by Budin-Ljosne 

et al (185). When participants from an existing study cohort are re-contacted for 

the purpose of participation in further study, they should be made aware that the 

reason for their suitability for the RbG study is based upon their genotype (186). 

This then poses the question of how much information should be made available 

to these individuals during the recruitment phase of the study, when they are not 

a participant (192) and have not yet given consent . 

Informing the individual that they have a genotype of interest, may lead to 

unnecessary anxiety or distress – especially if the genotypic result in question is 

preliminary or has no known clinical sequelae. If the consequence of the genetic 

variant is known and has clinical significance or is linked to a specific disease, 

this too can cause stress. Informing the individual of this genotype, without any 

potential for modification of associated risk, is lacking in benefit to the participant. 

It may also violate the individual’s right not to know (186, 189, 190, 192, 193, 

197). 
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Studies have found that when participants are recruited to RbG studies from a 

disease register, e.g. cystic fibrosis (CF), individuals with the condition expressed 

no concerns regarding the genotypic eligibility criteria, whereas “healthy 

volunteers” recruited by genotype from a biobank, reacted with anxiety due to the 

perceived or implicated link to the condition under investigation (193). 

The ethical implications of RbG studies are inextricably linked to those of a 

bioinformatics resource. The advent of biobanks – both disease-specific and 

general –  has permitted studies of genotype-phenotype correlation, cohort 

studies and case-control studies, and are becoming increasingly popular to study 

gene-health interactions (197). Biobanks must be sufficiently large to support 

genotype-based study, as discussed above, but also to ensure that the potential 

participants are not harassed with multiple re-contacts for numerous studies 

(185).  

Indeed, biobanks are a unique research infrastructure, with specific governance 

requirements (197). The governance structures must balance the rights of the 

individual with scientific opportunity. They must provide stewardship of data and 

tissue samples, review the scientific and ethical implications of proposed studies 

and be adaptive as the scientific community and technology advances. The ethics 

surrounding a biobank, such as an individual’s data protection and anonymity are 

governed by a committee, which will involve both scientists and community 

members, to address the ever evolving issues (197). 

In summary, RbG studies have clear benefit when investigating gene-treatment 

interactions, compared to traditional recruitment models. They are, however, not 

applicable to every research question and the potential benefit must be balanced 

against the limitations of the study design, cost, and the ethical implications of 

genetic research.  
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Methods: Glucose Tracer Modelling 

A stable-isotope tracer is a molecule of interest, e.g. glucose, “labelled” with a 

stable isotope, which results in the labelled molecule having a different molecular 

mass from the naturally abundant form (198). Metabolic studies can use 

intravenous infusions and / or ingestion of glucose tracers to determine glucose 

kinetics, which can be used in the assessment of pharmacological treatments in 

type 2 diabetes. In such tracer studies, the naturally abundant molecule of interest 

is known as the tracee, and the isotope-labelled molecule is the tracer. It is 

assumed that the tracer will participate in the same metabolic processes and 

follow the same pathways as the tracee (tracer indistinguishability). The 

difference in molecular mass of the tracer and tracee can be detected using mass 

spectrometry (see Methods: Mass Spectrometry), and the tracer to tracee ratio 

(TTR) can be calculated. The change in the TTR over time allows for calculation 

of in vivo kinetics of the tracee (198).  

In Chapter 5 of this thesis, the Response of Individuals with Ataxia Telangiectasia 

to Metformin and Pioglitazone (RAMP) study used dual tracer mixed meal tests 

to compare the ability of metformin and pioglitazone to modulate post-prandial 

glucose homeostasis. During the dual tracer study, following basal samples, a 

primed (6 mg/kg infused for 1 minute) – continuous (0.06 mg/kg/min for 120 

minutes) infusion of [6,6-2H2] glucose (D2-glucose, Euriso-top, Saint-Aubin, 

France) was administered over an initial 2 hour period, from -120 to 0 minutes, to 

reach steady state.  Once in steady state, a liquid mixed meal labelled with U13C-

glucose (1.7g in 71.9g glucose drink; Cambridge Isotope Laboratories Inc, 

Andover, MA, USA) was ingested. Over the following 6 hours, a variable infusion 

of D2-glucose was administered with the rate mimicking the expected 

endogenous glucose production post-meal, with frequent blood sampling of 

plasma glucose during the study at time -120, -40, -35, -30, -20, -10, 0, 10, 20, 

30, 60, 75, 90, 120, 150, 180, 210, 240, 270, 300, and 360 minutes for 

measurement of glucose concentration and TTR at every time point. 

Measurement of the TTR to determine the rate of appearance (Ra) and 
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disappearance (Rd) of glucose is discussed below. Insulin, c-peptide, glucagon, 

active and total GLP1, NEFA, adiponectin and leptin were also measured at 

specific time-points only (see Appendix 5: Tracer Timeline). Indirect calorimetry 

was performed for periods of 30 minutes at fixed intervals (-60 to –30 minutes in 

the fasting state as well as 0 to 30, 60 to 90, 120 to 150, 180 to 210 and 240 to 

270 minutes after meal ingestion). Urine was collected separately during the basal 

period and during the meal, total volume was recorded for each period, and 

samples were stored for glucose measurements.  

Steady state 

Glucose homeostasis is determined by Ra (endogenous glucose production plus 

exogenous glucose e.g. ingested / infused glucose), and Rd (utilisation and 

disposal). In fasted steady state, Ra equals glucose production (EGP), which 

equals Rd. In steady state during a tracer study, the tracer infusion rate (TIR) 

equals tracer utilisation (TU).  
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Therefore, the ratio of tracer infusion rate to glucose production will be constant 

and equal to the ratio of tracer utilisation to tracee Rd. These are equal to the 

tracer to tracee ratio (TTR), which is also constant. 

TTR  =  TIR   =        TU  

EGP           Rd  

Therefore:  TIR  =     TTR x Rd  or  TTR x EGP 

However, it is important to highlight that the tracer is not massless, and therefore: 

TTR  =          Tracer   

(Tracee + Tracer) 

And therefore: 

  TTR =           TIR 

       (EGP + TIR) 

As total Ra during steady state is equal to EGP plus exogenous glucose i.e. tracer 

infusion rate: 

  RaTOT  =  TIR (Tracee + Tracer)   

             Tracer  

  EGP  =  TIR (Tracee + Tracer)  –  TIR 

              Tracer 

This can also be used to calculate Rd, as Ra = Rd in the fasted steady state.  
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Non-steady state, single compartment model and Steele’s equation 

Administration of the liquid mixed meal (Ensure Plus Juice: 71.9g carbohydrate, 

0g fat, 20.7g protein, total calories 330 kcal) labelled with U13C-glucose at time 

0 stimulates insulin secretion, which suppresses endogenous glucose production 

and increases glucose utilisation. The degree to which the EGP is suppressed is 

indicative of hepatic insulin sensitivity, whereas the change in utilisation is 

indicative of peripheral insulin sensitivity. Unlike the steady state, production ≠ 

utilisation, due to the addition of oral glucose, and because the fluxes of EGP and 

utilisation change with insulin stimulation. Therefore the steady state equations 

above no longer apply. 

In the non-steady state, the change in the amount (mass) of tracee over time is 

the difference between its rate of appearance and disappearance, i.e. Ra and Rd.  

   d(Tracee)t  = Ra – Rd     [1] 
         dt 
The change in the amount of tracer over time is equal to the difference in the 

tracer infusion rate and tracer utilisation: 

   d(Tracer)t  = TIR – TU     
          dt   

In the single compartment model, TU = Rd x TTR, then: 

  d(Tracer)t  = TIR – Rd x TTRt 

       dt 

And   Rd = TIR – d(Tracer)t    [2] 
           dt 
      TTRt 
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In steady state, TTR is equal to tracer / tracee, therefore the change in tracer over 

time is equal to TTR multiplied by the change in tracee over time. However, in the 

non-steady state in the single compartment model this becomes:  

  d(Tracer)t = d(Tracee * TTR) 

        dt    dt 

becomes: d(Tracer)t  = TTRt x d(Tracee)t  +  Traceet x d(TTR)t [3] 
       dt           dt             dt 

Therefore Ra in the non-steady state is: 

   Ra  = d(Tracee)t + Rd 
           dt 
   Ra = d(Tracee)t + TIR – d(Tracer)t [4] 

           dt         dt 
                 TTRt 

Solving equations (3) and (4) gives: 

   Ra = TIR – Traceet x d(TTR)t   [5] 
               dt    
And: 

   Rd = Ra – d(Tracee)t 

          dt 
   
However, the assumption of instantaneous and compete mixing for the tracer 

infusion into the entire volume of distribution (V) is incorrect, therefore Steele 

adapted the above, suggesting that mixing of the tracer between two discrete time 

points (t1 and t2) occurred in a fraction (p) of the distribution volume only (199, 

200).  

  

TTRt 
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Therefore:  Ra  = TIR – pV  ΣTraceet1+t2 x TTR t2-t1  [6] 
         2         t t2-t1  

         

 

   Rd = Ra – pV   Tracee t2-t1   [7] 
       t t2-t1 

Therefore, from the known infusion rate, glucose concentration and TTR, total Ra 

and Rd can be calculated. Post-meal, total Ra is the sum of the rate of 

appearance of oral glucose (RaO) and endogenous glucose production (201, 

202). Calculation of the plasma glucose concentration arising from the absorption 

of ingested glucose is calculated from the ratio of the plasma U13C-glucose 

concentration to the TTR of U13C-glucose in the ingested glucose (203). EGP is 

therefore the difference between total and ingested glucose concentrations. 

While the Steele equations benefit from their simplicity, they require data 

smoothing of the infusion rates, and the output (Ra) is sensitive to the smoothing 

method and data outliers. Importantly, this single compartment model, even when 

using a fraction of the volume of distribution (pV) does not accurately represent 

the physiology of glucose kinetics (204). 

  

ΣTTRt1+t2 

      2 
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Two-compartment modelling 

The two-compartment model (205, 206) is shown in the diagram below: 

 

 

 

 

 

  

The two-compartment model was designed to reduce the uncertainty of using a 

proportional approach to the single compartment model. It assumes the central 

compartment incudes the vascular space where we measure the glucose 

concentration and enrichment, and where the administered infused or ingested 

glucose appear. It also assumes that the rate at which glucose moves from the 

central to peripheral compartments remains constant, and that glucose is either: 

not lost from the peripheral compartment to a third space (207); or is lost, but at 

the same rate as from the central compartment (205).  

While the two-compartment model is reasonably accurate representation of 

glucose kinetics, conceptually a circulatory model is a better representation of the 

system. 

Peripheral Central 

Glucose 

conc. 

Ra 

Rd 
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Circulatory model 

Circulatory models are an extension of organ kinetics used to explain substrate 

kinetics of the whole body. When compared to the two-compartment, the modified 

Steele one-compartment model and the standard one-compartment model, the 

circulatory model of glucose kinetics more accurately predicts non-steady state 

glucose kinetics after an oral glucose load (208, 209). The model was developed 

by Mari et al (208-210), and is based upon previous models of organ kinetics, 

which recognise that when a substrate is administered intravenously, it passes 

through the heart and lungs, followed by the arterial circulation, through other 

organs (including brain, liver, kidneys, intestines, muscle – thought of as the 

peripheral component) before returning to the venous circulation. This can be 

thought of as two “blocks” – the heart and lungs, and the periphery. At each pass 

through this circuit, there is fractional extraction at the heart and lungs (negligible) 

and in the peripheral component.  
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The line graphs represent the impulse response, or transit time density function, 

of glucose during a single pass through the circulatory system.  

With each pass through the circulatory model, a fraction of the substrate is 

extracted, therefore clearance is a product of the cardiac output (CO = stroke 

volume x heart rate) and the fractional extraction. 

  Cl  =  CO  x  E 

In steady state, glucose appearance is equal to clearance and tracee (glucose) 

concentration is constant. As with the single compartment model, clearance is 

equal to tracer infusion rate divided by the TTR in steady state. As the tracee 

concentration is constant, we can see that: 

  Cl  =  CO  x  E  = TIR  

               Tracer  

CO is calculated using a fixed volume per kg of body weight, corrected for the 

ratio of glucose in whole blood to glucose in plasma, as glucose is only measured 

in plasma (209, 211, 212). It is assumed that CO does not vary greatly in the non-

steady state, and the fractional extraction of the heart/lung block is unchanged by 

insulin. However, the fractional extraction in the peripheral block will vary with 

insulin concentration (211, 212). 

The calculations involved in the circulatory model are complex, require the use of 

the mathematical software Matlab, and are beyond the scope of this thesis. 

However, they involve the convolution of exponential equations which describe 

the impulse responses in the two model blocks. The impulse response of the heart 

block is described by two exponential functions – a rapid upslope starting from 

zero, followed by a single exponential function describing the downslope returning 

to zero (212). The impulse response of the periphery is described by four 

exponential functions – a rapid upslope, and a downslope returning to zero, 

described by three exponential functions (209). These impulse responses of the 
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two blocks are converted to linear differential equations and are combined to 

obtain the differential equations of the circulatory model, which are then solved 

using Matlab (209, 211, 212). The model equations represent the relationship 

between the known tracer infusion rate and tracer concentration. Using least 

squares, the model parameters are adjusted until the model predicted tracer 

concentration matches the tracer concentration satisfactorily (211). The model 

can then be used to calculate the exogenous infusion component of the glucose 

concentration, rate of appearance of oral glucose, glucose clearance and 

production. The data is output in a form suitable for further statistical analysis. 

The circulatory model was used for the analysis of the tracer data obtained in the 

RAMP study. The modelling was completed using GLUTRAN on Matlab software, 

analysed by Prof Andrea Mari, at the Institute of Neuroscience, National Research 

Council, Padova, Italy. I performed the onward statistical analysis of the data 

using R studio. Results are detailed in Chapter 5, and Appendices 6 and 7. 
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Methods: Mass Spectrometry 

Both the “Pharmacokinetic of Metformin Intolerance (POMI)” and “Response of 

individuals with Ataxia-telangiectasia to Metformin and Pioglitazone (RAMP)” 

studies used mass spectrometry for sample analysis. 

POMI Study 

The POMI study used liquid chromatography tandem mass spectrometry (LC-

MS/MS) to measure metformin concentration in the plasma and urine samples. 

The methods used were described in the “Supplementary Methods” of the journal 

paper (213), and were written by Dr Niels Jessen, included in Appendix 1. The 

LC-MS/MS system consisted of an Ultimate 3000 UHPLC system connected to a 

TSQ Quantiva Triple Quadropole Mass Spectrometer with heated electrospray 

ionization (Thermo Scientific, San Jose, CA). The analytical separation was 

performed using hydrophilic interaction chromatography as previously described 

by Nielsen et al (183). 

RAMP Study 

The RAMP study employed dual tracer mixed meal tests to measure glucose 

kinetics. This involves an infusion of a radiolabelled glucose isotope (D2-glucose), 

and the ingestion of a second radiolabelled isotope (U13C-glucose), added to a 

liquid meal. Mass spectrometry was then used to differentiate and measure the 

ratio of the three glucose isotopes in the blood – D-glucose (unlabelled), D2- and 

U13C-glucose - according to their molecular weight. The ratio of the fragments 

can then be used to determine the tracer to tracee ratio (TTR), required for the 

glucose modelling using the Steel equation or the circulatory model, see Methods: 

Glucose Tracer Modelling. 

Method 

Mass spectrometry was performed at the University of Surrey. The process 

involves three steps: 
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1. Derivitisation.  

 Derivitisation is a process which transforms a compound into a product of 

similar structure, a derivative, with different chemical properties such as reactivity 

or boiling point. Usually a specific functional group of the compound is targeted 

by the derivitisation reaction. To prepare glucose samples for gas 

chromatography, a two-step derivitisation process is used. After deproteinisation 

of the sample, it is treated with methylhydroxamine hydrochloride to replace the 

carbonyl group with an oxime group. Next, silylation replaces the hydrogen of the 

hydroxyl functional groups with trimethylsilyl groups. This results in the formation 

of methyloxime penta-trimethysilyl (MOX-TMS) glucose derivative (214, 215).  

 

Figure 12 Methyloxime penta-trimethylsilyl (MOX-TMS) glucose 

The derivitisation process results in reduced intermolecular H+ bonding, and 

therefore increases volatility, required for gas chromatography. This derivative 

Oxime functional 

group 

OTMS 
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also protects the isotope label during fragmentation in the mass spectrometer.

  

2. Gas chromatography (GC)  

The volatile glucose derivative is injected into the GC injection port, and 

vaporised by heating to 250˚C. The gaseous compounds are then separated 

using the stationary and mobile phases of the capillary column. Carried through 

the column by the “mobile phase”, an inert gas such as helium, it is the reaction 

of the gaseous compound with the “stationary phase” – an inert, non-volatile liquid 

which coats the column – that dictates the retention time and determines when 

the specific compound will exit the column and enter the ionisation chamber of 

the mass spectrometer.  

The University of Surrey use an Agilent 7890A Gas Chromatographer, with 

a Restek RX-1 capillary column with cross-bond dimethyl polysiloxane (a silicone) 

for the stationary phase, and helium as the mobile phase. 

3. Mass Spectrometry (MS) 

On exiting the GC, the gaseous compound enters the ionisation chamber, 

where it is ionised and fragmented. In our samples, electron impact ionisation was 

used (EI), in which the sample is bombarded with high energy (70eV) electron 

beam, creates positively charged ions, causing the sample to fragment.  
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Figure 13 MOX-TMS glucose fragments between C2 and C3. The major fragment of D-glucose 

(left) has an m/z of 319, whereas D2-glucose (right) has he m/z 321. 

The molecular ion m/z (mass to charge ratio) of the MOX-TMS glucose is 

569, but when fragmented, the major fragment ion m/z is 319. However, when the 

derivate of D2-glucose and U13C-glucose fragment, the major fragment ion m/z 

is 321 and 323 respectively. 

Once ionised and fragmented, the sample is separated according to the 

m/z ratio using a mass filter - a quadropole. At any time, only ions of a selected 

m/z can pass through the filter to strike the surface of the detector, producing 

mass spectra spikes at that particular m/z ratio. The MS measures the abundance 

of the ion of specific m/z ratio, which can then be used to calculate the tracer to 

tracee ratio (TTR), for use in glucose kinetics calculations. The TTR is 

dimensionless, and does not quantify the glucose, but provides information 

regarding relative abundance.  

  area of peak at m/z 321 =  tracer 

  area of peak at m/z 319  tracee 
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The University of Surrey adopt a Selected Ion Monitoring (SIM) mode to 

search for specific ions of known m/z ratio, i.e. 319, 321, 323, using an Agilent 

5975 Mass Spectrometry detector. 

Glucose Quantification 

Alongside mass spectrometry of the glucose sample, the glucose needs to be 

quantified. The total glucose in the samples was measured at the University of 

Surrey by enzymatic determination, using the ABX Pentra Glucose PAP CP 

reagent, and the ABX Diagnostics COBAS Mira Plus. 
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Methods: Beta cell modelling 

Chapter 5 of this thesis reports the results of the “Response of individuals with 

Ataxia-telangiectasia to Metformin and Pioglitazone (RAMP)” study. This study 

examines the effects of two commonly used diabetes drugs in a specific patient 

group, compared to healthy controls. To compare treatment effects, a dual tracer 

mixed meal test was employed to obtain physiological estimation of glucose 

kinetics post-meal. Measurement of glucose and C-peptide also allowed for 

concurrent beta cell modelling to offer a detailed impression of beta cell function 

and its impact on glucose homeostasis. 

Background 

Insulin secretion from β-cells is regulated by numerous factors. Stimuli include 

glucose, amino acids, free fatty acids, and incretin hormones, as well as certain 

pharmacological agents. Counter-regulatory hormones including glucagon, 

cortisol and adrenaline, balance the effects of insulin, to prevent hypoglycaemia, 

through stimulation of glucose production, reduction of glucose uptake, or 

inhibition of insulin release. The primary mechanism of insulin release is glucose 

stimulation, with glucose taken up by the β-cell in an insulin-independent manner. 

Glucose uptake by the β-cell was initially thought to be GLUT2 dependent from 

murine data (216), but latterly is has been demonstrated that GLUT 1 and, to a 

lesser extent, GLUT3 expression predominates in human islets and β-cells (217). 

Within the β-cell, glucose is phosphorylated by glucokinase (218) to glucose-6-

phosphate (G6P), which is metabolised via the Krebs cycle to produce ATP. ATP 

binds to and close the ATP-dependent potassium channel, resulting in increased 

intracellular potassium and depolarisation of the cell membrane (219). This opens 

voltage-gated calcium channels, resulting in an influx of calcium to the cytoplasm, 

causing migration of vesicles to the membrane, and exocytosis of insulin, which 

is co-released with C-peptide (219). The process of glucose stimulated insulin 

release is amplified by other fuels e.g. amino acids, free fatty acids, as well as 

other hormones e.g. GLP1, and parasympathetic stimulation (220). 
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Hyperglycaemic clamp data, as shown above, have demonstrated that the 

“normal” insulin response is divided into two distinct phases: a rapid first phase 

lasting up to 10 minutes, and a second sustained phase, which continues until 

plasma glucose has normalised (221). The insulin concentration can be plotted 

against glucose concentration to give a rudimentary dose-response curve, the 

gradient of which is a measure of β-cell glucose sensitivity.  

Figure 14 Data from a hyperglycaemic clamp, demonstrating insulin concentration at baseline and 

elevated glucose concentrations, with a simplified β-cell dose-response curve below. Reproduced 

with permission from Natali et al (5). 



97 
 
 

 

Figure 15 Time course of insulin during OGTT or MMT, demonstrating the dose-response curve, 

exaggerated response in the early phase, and prolonged response secondary to potentiation. 

These three components of insulin response are modelled in the beta cell model by Mari et al 

described below. Figure reproduced with permission from Mari et al (222). 

However, while the dose-response component is the most significant component 

describing insulin secretion, it does not fully explain the insulin secretion seen 

after a glucose load. As shown in the diagram above, during an OGTT or MMT 

there is both an early, fast rise in insulin secretion, known as the derivative, early 

secretion or dynamic component, and sustained elevation of insulin secretion, 

known as potentiation. Due to these factors, beta cell modelling better estimates 

the β-cell response to a glucose load. 
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β-cell modelling 

The β-cell model used in the RAMP study is that described by Mari et al (222-

224), and consists of three parts – the glucose model, the insulin secretion 
model and a C-peptide model (224).  

Firstly, glucose concentrations are modelled, using what is essentially a single 

compartment model (see Methods: Glucose Tracer Modelling) to smooth and 

interpolate the data for use in the beta cell model. The glucose model is described 

by the differential equation: 

   dG(t) = -kG(t) + R(t) 
     dt 

wherein G(t) is glucose concentration, k is a constant (0.012 min-1) and R(t) is a 

function of time. 

 

Figure 16 Illustration of the insulin secretion model, and its output. The model consists of three 

components - early secretion, dose-response, and potentiation. Reproduced with permission from 

Mari et al (222) 
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Figure 16 illustrates the components of the insulin secretion model, developed by 

Mari et al (222, 224). The derivative (early secretion) component is a product of 

the rate sensitivity (kd) and the time derivative of glucose concentration, when the 

glucose concentration is rising (when glucose is falling, the time derivative is 

negative, and the early secretion component will be zero). The derivative 

component can be expressed as: 

   Early secretion = kd    dG  + 

        dt 

The time derivative can be thought of as the gradient of the glucose over time 

curve. As glucose starts to fall, the gradient of the slope becomes negative, and 

the derivative component will be zero. The exaggerated early insulin response is 

no longer required, as glucose is falling. 

The central and most significant component of the insulin secretion model is the 

dose-response, which is a function of the glucose concentration, f(G), relating 

insulin secretion to the glucose concentration (G). This is a complex mathematical 

expression, detailed in the appendix of (224), and is beyond the scope of this 

thesis. The dose-response when plotted is a straight line, the gradient of which is 

the glucose sensitivity, the ability of the β-cell to respond to changes in the 

glucose concentration. From the dose-response curve, it is possible to predict 

insulin secretion rate at a known glucose 

The final component of the insulin secretion model is potentiation, which 

modulates the dose-response (222), and is a positive function of time, P(t). It can 

be expressed as: 

   P(t) = eQ(t) 

where Q(t) is a function of time. P(t) is greater than 1 when Q(t) is above average, 

and less than 1 when Q(t) falls below average (224). The average potentiation 

factor across the meal test will be 1, as the average Q(t) is 0. Plotting the 
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potentiation factor over time (as shown in the top right of Figure 16) shows that 

potentiation should increase over the test period. Comparison of the potentiation 

factor at 2 hours to potentiation at baseline gives the potentiation factor ratio 

(PFR) which is a measure of the slope of the potentiation factor – time curve. The 

gradient has been shown to be flattened in obesity, impaired glucose tolerance 

and type 2 diabetes (222, 225). 

In summary, the insulin secretion rate (ISR) can be modelled using: 

   ISR  =  P(t) f(G) + kd [dG/dt]+ 

where f(G) is the dose–response relating ISR to glucose concentration (G), P(t) 

is the potentiation factor, kd is rate sensitivity and [dG/dt]+ equals the time-

derivative of glucose concentration when it is positive and zero otherwise. 

The final step in the β-cell model is the C-peptide model described by Van Cauter 

et al (226). This is a two-exponential model, which incorporates the individual’s 

sex, weight, height and age. Similar to the circulatory model discussed in 

Methods: Glucose Tracer Modelling, C-peptide concentration can be modelled as 

a convolution production of the impulse response of C-peptide, and its secretion. 

Therefore, deconvolution of the measured C-peptide concentration can be used 

to calculate the C-peptide secretion (226). As C-peptide is co-secreted with insulin 

in an equimolar ratio, the C-peptide deconvolution also calculates insulin 

secretion. There are advantages to using C-peptide modelling instead of 

peripheral insulin concentrations. Firstly, insulin undergoes first pass hepatic 

extraction, where C-peptide does not (226, 227). Secondly, C-peptide also 

demonstrates constant peripheral clearance, under variable conditions (226, 

228), and the clearance kinetics can be described by a one compartment model 

(226). 
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Application 

Using the models above, insulin secretion, and subsequently other indices of β-

cell function, can be modelled using plasma glucose and serum C-peptide 

concentrations, obtained during an OGTT or MMT – insulin concentrations are 

not required.  

The β-cell model was applied to the MMT data from the RAMP study, with 

modelling performed by Prof Andrea Mari, at the Institute of Neuroscience, 

National Research Council, Padova, Italy. The data output was then further 

analysed using R studio, as described in Chapter 5 of this thesis. Many of the β-

cell parameters are discussed in the Appendix 6: RAMP analysis. 
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Methods: Indirect Calorimetry 

The “Response of individuals with Ataxia-telangiectasia to Metformin and 

Pioglitazone (RAMP)” study uses indirect calorimetry during the dual tracer mixed 

meal tests, to compare the estimated basal metabolic rate of the participants and 

to assess for difference in substrate utilisation between groups. These measures 

were also compared before and after intervention. 

Theory 

Calorimetry means the measurement of heat. Direct calorimetry used to be the 

“gold standard” for quantifying human metabolic rate (229, 230). It quantifies 

temperature fluctuations to measure the heat production of a subject within an 

enclosed space (229). During all the process of cellular metabolism, some energy 

is released as heat. As per the first law of thermodynamics, energy is cannot be 

made or destroyed, so the energy liberated as heat is released into the subject’s 

environment by heat exchange. The rate of heat production is a measure of 

cellular metabolism and is directly proportional to energy expenditure and 

metabolic rate.  

CxHyOz + (x + y/4 – z/2) O2  xCO2 + (y/2) H2O + HEAT 

Energy-releasing reactions in the body depend on oxygen consumption, and 

produce carbon dioxide, water and heat. Oxidation is the final common pathway 

for all substrate metabolism (carbohydrate, fat, protein) (231). The quantification 

of oxygen consumption or carbon dioxide production can therefore provide an 

indirect means of measuring cellular metabolism, known as indirect calorimetry. 

Indirect calorimetry is now the gold standard, and most widely used method for 

estimating energy expenditure and substrate utilisation. It is more practical, as it 

does not require the whole subject to be within a sealed chamber as in direct 

calorimetry, and can use anything from a hand held device, to face mask, to hood 

/ canopy. Respiratory chambers can also be used, but are less common. 
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Energy expenditure 

Total energy expenditure over a 24 hour period is the sum of the basal metabolic 

rate, diet-induced thermogenesis and activity-related energy expenditure. 

TEE = BMR + DIT + AEE 

Basal metabolic rate is the amount of energy required to maintain basic cellular 

function. To measure BMR using indirect calorimetry, several criteria should be 

met: the individual should be fasted (ideally 12 hours); there should be an 

absence of gross muscular activity; there should be thermal neutrality; and the 

individual should be awake. Emotional disturbance or anxiety can affect 

measurement, as can the female menstrual cycle.  

Therefore, the resting metabolic rate (RMR), also known as resting energy 

expenditure (REE) is often measured as an approximation of the BMR. To 

measure the RMR, the subject is fasted (8 – 12 hours) and should have abstained 

from exercise for the preceding 12 hours. 

Calculation 

Using the abbreviated Weir equation (i.e. excluding nitrogen) (231-233), resting 

energy expenditure (REE) can be estimated using VO2 and VCO2: 

REE (kcal/d) = 1440 (3.94 VO2 + 1.11 VCO2) 

Calculation of REE based on respiratory function alone, i.e. with the removal of 

nitrogen from the Weir equation, can introduce error of approximately 4% in the 

fasted condition (231). This error decreases as the metabolic rate increases. 

Respiratory Quotient 

The respiratory quotient (RQ), which is calculated as the ratio of CO2 produced 

to O2 consumed (CO2 / O2), indicates which substrate is being metabolised (231, 

234). 
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For carbohydrate, e.g. glucose:  

C6H12O6 + 6O2  6CO2 + 6H2O 

 

Therefore the respiratory quotient of glucose is: 

6CO2 / 6O2 = 1.0 

For lipid, for example, palmitate:  

C16H32O2 + 23O2  16CO2 + 16H2O 

Therefore the respiratory quotient of lipid is: 

16CO2 / 23O2 = 0.7 

This value will vary slight according to which lipids are being metabolised. 

Protein is more complex as the RQ varies slightly according to the amino acids 

involved, but the RQ for protein is approximately 0.8.  

Application 

Indirect calorimetry is used in both clinical and research settings. Clinical uses for 

assessing energy expenditure include: weight management; post-bariatric 

surgery; energy and nutritional requirement in acute illness such as multi-organ 

failure; and parenteral nutrition (235, 236). 

Indirect calorimetry can be used as a research tool, to estimate BMR in the fasted 

resting state, or to assess substrate metabolism. If urinary nitrogen is measured, 

which is difficult to do with accuracy, glucose and lipid oxidation rates can also be 

calculated (231). 



105 
 
RAMP study 

In this thesis, the RAMP study applied indirect calorimetry to the study participants 

to compare baseline BMR and substrate utilisation between groups, and also to 

assess how this would change with the study drugs – metformin and pioglitazone. 

We used a GEM Nutrition, which is an open circuit indirect calorimeter which uses 

a ventilation “hood”, and calculates fluxes in O2 and CO2 on a minute by minute 

basis (one minute = one bin).  

A previous calorimeter called the Deltatrac II was widely accepted as the gold 

standard in indirect calorimetry, however this is no longer in production. Other 

calorimeters are now measured against the Deltatrac II standard. The GEM 

Nutrition Indirect Calorimeter has been shown to have good day-to-day 

repeatability, and less variation than other newer models (237).  

During the RAMP study, calibration was performed before each use. Gases used 

for calibration were recommended standard: (BOC) 1 % CO2 and 20 % O2. Flow 

was manually adjusted at the time of calibration to approximately 40 litres/min. 

Ethanol burning tests were performed on the GEM as a quality check for the 

calibration. 

For indirect calorimetry measurements, participants were supine on a hospital 

bed, having been resting for the preceding 10 minutes minimum. After calibration, 

the ventilation hood was worn for 30 minutes at a time, to allow the participant to 

relax and reach a steady state. This was particularly important for the participants 

with A-T, to make sure they were comfortable and any intervention related anxiety 

dissipated before the measurement was taken.  

The mean values of EE, VO2, VCO2 and RQ, discarded the first 10 bins (minutes) 

and took the average of the remaining measurements. If there were prolonged 

fluctuations at the beginning of the measurement, the number of discarded could 

be adjusted, aiming for a minimum of 15 bins for calculation of the mean values. 
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Methods: MRI Assessment of Adipose Distribution 

As part of the “Response of individuals with Ataxia-telangiectasia to Metformin 

and Pioglitazone (RAMP)” study, participants underwent an abdominal MRI to 

assess their adipose volume and distribution to investigate whether people with 

A-T had a lipodystrophic phenotype, as previously demonstrated in mice (238). 

MRI was used as an alternative to whole-body DEXA, due to the radio-sensitivity 

associated with A-T (239). 

Magnetic Resonance Imaging (MRI) uses the polar nature of hydrogen ions to 

measure water and fat quantities in tissues. Under a strong magnetic field, the 

hydrogen ions are excited, or rotated, and on relaxation omit a radio signal, which 

is detected by the receiving coil, placed over the anatomy of interest. There is 

therefore no ionising radiation involved, and repeated measures over time for 

monitoring can be used. 

MRI provides excellent soft-tissue contrast, which allows differentiation of visceral 

(VAT) and subcutaneous (SAT) adipose tissue compartments. VAT, relative to 

SAT, is known to correlate more strongly with adverse metabolic risk (240, 241), 

though more weakly with BMI. The VAT:SAT ratio can be used as a metric of fat 

distribution (242). 

Adipose volume and distribution 

Previous MRI studies used “partial abdomen” measures i.e. single or multiple 

slices at specific anatomical locations e.g. umbilicus or specific vertebrae, to 

estimate adiposity. A new method was developed in collaboration with Matthew 

Marzetti and Dr Stephen Gandy from the department of Medical Physics at the 

University of Dundee, for use in the RAMP study. This method used “whole 

abdomen” (from diaphragm to pelvic floor) measures, which correlate better with 

BMI. Participants were scanned on a 3.0T PrismaFit MRI scanner (Siemens 

Healthineers, Erlangen, Germany) using multiple coils for a series of axial dual-

echo, three point Dixon VIBE (Volume Interpolated Breath-hold Examination) 
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gradient echo sequence. Segmentation using a signal-intensity threshold cut-off 

value was applied to derive whole abdomen visceral and subcutaneous adipose 

tissue volumes. Technical details are described in greater detail in the method 

validation paper (243). 

 

Figure 17 Axial slice at the level of the kidneys, showing visceral adipose tissue (VAT) in red, and 

subcutaneous adipose tissue (SAT) in green. 

Liver fat and iron 

During the MRI scan, Liver Lab software was used to measure liver fat and iron 

content.  

Liver fat is measured in two ways – voxel based and image based. Voxel-based 

requires the user to mark a region of interest on identified liver tissue on the 

images, prior to spectroscopy being performed (244). Alternatively, fat 

suppression technique can be used on the whole liver image, where the MR 

signal is separated into its fat and water components and the difference in signal 

intensity is used to estimate the fat signal (244).  
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Liver iron content is measured using relaxation times (245). The higher the iron 

content of the liver, the higher the relaxation rate (R2*) and shorter the relaxation 

time (T2*), which can then be directly compared between the study groups.   
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Methods: Modelling Insulin Sensitivity 

The RAMP study, discussed in Chapter 5 of this thesis, uses models of insulin 

sensitivity to compare the treatment effects of two commonly used diabetes drugs 

between individuals with A-T and healthy controls. 

Insulin sensitivity is highly variable among individuals, and the gold standard 

approach for assessing insulin sensitivity is the euglycaemic hyperinsulinaemic 

clamp (EHC) technique. In steady state during the clamp, glucose infusion rate 

will equal whole body total glucose utilisation, and is therefore a measure of 

insulin sensitivity (246). However, the EHC is technically challenging to perform 

well, with frequent blood sampling at five minute intervals and recalculation of 

glucose infusion rates. Simpler models of insulin sensitivity have therefore been 

developed, using either fasting measures, or data from oral glucose tolerance 

tests (OGTT) / mixed meal tests (MMT). Mixed meal tests have the benefit of 

providing data closer to normal physiology post-meal, and will elicit the effects of 

incretin hormones (247). 

There are numerous indices available. Those which have been employed in the 

analysis of the RAMP study data are discussed below. Other indices such as 

QUICKI, Strumvoll, Bergman’s minimal model, are not discussed. 

Homeostatic model assessment (HOMA) 

Homeostatic model assessment (HOMA) can be used to estimate insulin 

sensitivity and beta cell function from fasting insulin and glucose concentrations 

(248). It was first developed by Matthews et al in 1985 and has been proven to 
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be a robust model for both clinical and epidemiological assessment of insulin 

resistance (249).  

HOMA-IR is a measure of whole body insulin resistance, calculated using (250):  

HOMA-IR  =  FPI x FPG / 22.5  

where FPI is fasting plasma insulin and FPG is fasting plasma glucose. Mean 

values of steady state insulin and glucose are used where possible, as this 

improves the coefficient of variation (250). HOMA-IR increases with insulin 

resistance, with normal insulin sensitivity <1.0, early insulin resistance >1.9, and 

significant insulin resistance >2.9. The reciprocal of HOMA-IR, calculates a 

measures of insulin sensitivity:  

HOMA%S  =  22.5 / FPI * FPG 

Beta cell function can also be estimated using:  

HOMA%B  =  20 * FPI / (FPG - 3.5) 

Calculated HOMA%B must be interpreted alongside HOMA-IR, or its reciprocal, 

HOMA%S, as a measure of beta cell function.  

Matsuda Index 

The Matsuda Index was first reported by Matsuda and De Fronzo in 1999 (251). 

It uses both fasting and dynamic measures of insulin and glucose from OGTT 

data to calculate a whole-body insulin sensitivity index. The Matsuda index has 

been well validated, and is highly correlated with the rate of whole-body glucose 

disposal during the euglycaemic clamp (251). It is calculated from insulin and 

glucose concentrations up to 120 minutes post meal: 

Matsuda  = 10000 / (FPG × FPI × MPG × MPI)1/2 
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where MPG is mean plasma glucose and MPI is mean plasma insulin. There is 

an online calculator, or downloadable EXCEL worksheet available. A Matsuda 

index ≤ 2.5 is in-keeping with whole body insulin resistance (251). 

Insulinogenic Index 

The insulinogenic index (IGI) can be used as a measure of first phase insulin 

response to glucose load, using the 0 and 30 minute data from OGTT or MMT. It 

is calculated as the ratio of the change in insulin to the change in glucose, during 

the first 30 minutes of the test (252): 

   IGI = Δ insulin 0–30 / Δ glucose 0–30 

Although not as extensively validated, it provides an estimation of insulin 

secretion from a simple test, using a more physiological route of glucose 

administration than the traditional IVGTT or clamp (249, 252). If the calculated IGI 

is less than 0.4, there is an insulin secretion defect. 

Oral Glucose Insulin Sensitivity (OGIS) index 

The oral glucose insulin sensitivity (OGIS) index was developed by Mari et al 

(253), and is equivalent to the glucose clearance calculated during a clamp. OGIS 

is calculated using data from a 75g OGTT, namely glucose and insulin 

concentrations from baseline up to 120 / 180 minutes post-meal. The OGIS 

incorporates the use of a single-compartment model of glucose kinetics (see 

Methods: Glucose Tracer Modelling) and the model of insulin action is relatively 

complex compared to those discussed above. The equation used to define the 

model are detailed in (253), and there is an online calculator, or downloadable 

spreadsheet for calculation. Unlike the other indices discussed thus far, OGIS 

index is corrected for anthropometric data including BMI and BSA. It is closely 

correlated with the traditional euglycaemic hyperinsulinaemic clamp (253). 
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Disposition index and oral disposition index 

The disposition index (DI) is a constant which can be used as a measure of the 

beta cells ability to compensate for insulin resistance (254, 255). In an individual 

with normal beta cell function, the sensitivity – secretory relationship is 

traditionally described as a rectangular inverse hyperbola, and the product of the 

two parameters is the disposition index. It was originally defined as the product of 

the insulin sensitivity index (Si) and acute insulin response (AIR) from the IVGTT, 

however several studies have since described an oral disposition index (256, 

257). 

Oral DI can be calculated using indices from the OGTT or beta cell modelling, for 

example, it is possible to plot the Matsuda Index against the Insulinogenic index, 

and the product of the two is the oral disposition index (258, 259). 

 

All of the above indices of insulin response are used in the analysis of the RAMP 

data, detailed in Chapter 5, and Appendix 6: RAMP Analysis. 
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Pharmacokinetics of metformin intolerance (POMI) study 

Contributions: 

The following chapter details the “Pharmacokinetics of Metformin Intolerance” 

(POMI) study. 

I contributed to the study design along with Dr Paul Connelly and Prof Ewan 

Pearson, in collaboration with Prof Kim Brøsen and Dr Tor Stage from the 

University of Southern Denmark.  

I recruited all participants, and completed all study visits with assistance from 

Research Nurses Louise Cabrelli and Heather Loftus.  

Sample analysis was performed by Dr James Burns at the Department of Blood 

Sciences at NHS Tayside, Dundee, Scotland; Dr Flemming Nielsen at the 

University of Southern Denmark, Odense, Denmark; and Dr Cornelia Prehn and 

Prof Jerzy Adamski at the Institute of Experimental Genetics, Genome Analysis 

Center, Munich, Germany. 

I analysed the pharmacokinetic data, under the guidance of Dr Tor Stage, and 

performed further statistical analysis with advice from Dr Mike Lonergan, 

University of Dundee. 

This study has been published: 
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Introduction 

Despite affecting up to 20% of those treated, metformin intolerance is poorly 

understood (260). Intolerance to metformin is usually characterised by 

gastrointestinal side-effects (GI SEs) of nausea, abdominal pain, bloating, or 

diarrhoea. Gradual up-titration of dose following introduction, or slow release 

preparations can, in some cases, attenuate symptoms of intolerance. However, 

in 5% of individuals exposed to metformin, the severity of the GI SEs leads to 

discontinuation of treatment (260). For others, metformin intolerance may result 

in sub-optimal dosing or poor compliance. These factors: delay optimal glycaemic 

control in the individual; result in the addition of, or switch to, alternative oral anti-

hyperglycaemic agents; and as a result, potentially contribute to increased risk of 

microvascular complications of diabetes.  

Metformin is the first-line pharmaceutical treatment for type 2 diabetes 

recommended by the ADA-EASD guideline (3). This, and other guidelines (2), 

recommends metformin based upon prospective (14, 65, 261, 262) and 

retrospective (64) studies, which demonstrate an improved glycaemic profile with 

metformin treatment, reduction in cardiovascular mortality (14, 64, 65, 262), no 

associated hypoglycaemia (261), weight neutrality or weight loss (261). These 

desirable characteristics, along with its low cost, explain metformin’s status as the 

most extensively prescribed anti-hyperglycaemic agent worldwide. These same 

characteristics drive the need for ongoing research into the mechanisms 

underlying intolerance to metformin, aiming to prevent, modulate or treat 

intolerance. This would not only benefit the individual but could have significant 

implication for health economy.  

Pharmacokinetics of metformin 

As discussed in the introduction chapter of this thesis, metformin has a reported 

oral bioavailability within the range of 55 - 70% (16, 20), with the remainder 

recovered from the faeces. Metformin is absorbed from the small intestine, and is 

transporter-dependent (16, 23), therefore genetic variation and efficacy of these 
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transporters could impact upon: oral bioavailability; maximum drug concentration 

achieved in the plasma (Cmax); the time from ingestion to achieving the maximum 

concentration (Tmax) and the area under the drug concentration – time curve 

(AUC). 

In the systemic circulation metformin travels unbound to proteins (16), and is 

easily transported or absorbed into other tissues, including the kidneys, liver, and 

erythrocytes. This results in large volume of distribution, which contributes to the 

rate of elimination and plasma half-life of the drug. Again, variation in transporter 

efficiency could result in variability in PK of and systemic exposure to metformin. 

Metformin is not metabolised, and is eliminated via the kidneys, excreted 

unchanged in the urine (16, 17). Again, this process is transporter dependent and, 

therefore, exposed to potential variation in efficacy. This could impact upon the 

renal clearance; plasma half-life of the drug and AUC.  

The association between the pharmacokinetics of metformin and metformin 

intolerance has not previously been studied. Therefore, the Pharmacokinetics of 

Metformin Intolerance (POMI) study was designed to investigate whether 

intolerance was associated with variation in the systemic exposure to metformin. 

Metformin and the gastrointestinal tract 

Metformin has a complex relationship with the gastrointestinal tract (77). It exerts 

many effects on the intestine as described in the introduction and our review 

article (77). Multiple hypotheses for the mechanism of GI intolerance to metformin 

have been proposed, including: 

1. Abnormal uptake  

Metformin uptake from the gut lumen is transporter-dependent (16, 23).  Genetic 

variation (29, 32, 47, 169) in or inhibition (29, 47) of transporters, such as OCT1, 

could alter metformin uptake from the intestinal lumen to enterocytes, and 

subsequently affect efflux of metformin across the basolateral membrane to the 
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systemic circulation. This would lead to changes in metformin concentration within 

the GI tract, enterocytes or systemic circulation.  

2. Increased lactate production 

Previous studies have shown that metformin concentration in enterocytes has 

been recorded at up to 300 times higher than the systemic concentration (21), 

and the variation in transporter activity described above could result in even 

greater differences in some individuals. Metformin is known to increase glucose 

uptake and anaerobic glucose utilisation in the intestine, resulting in increased 

lactate production (19, 21, 124, 125, 127). In humans, there is a small but 

significant increase in systemic lactate when comparing those taking metformin 

to those who are not (124). We suggest that metformin intolerance may be 

associated with an increased concentration of metformin in the intestine, or 

prolonged exposure of the enterocyte to metformin, leading to a greater increase 

in anaerobic glucose utilisation and lactate production, than in tolerant individuals.  

The increase in local lactate concentration may contribute to the intolerance to 

metformin. Intracellular lactate accumulation will lead to a subsequent increase in 

measurable serum lactate (124). 

3. Accumulation of serotonin or histamine  

Metformin is known to stimulate the release of serotonin from enterochromaffin 

cells (148), and is a known substrate for SERT (serotonin transporter) (47, 148, 

149). Metformin may inhibit the uptake of serotonin from the intestinal lumen, 

leading to accumulation of serotonin in the gut. Serotonin activates afferent 

neurons of the enteric nervous system, and is responsible for peristaltic and 

secretory reflexes within the intestine, as well as information transmission to the 

central nervous system (263). Known serotonergic effects on the gut include 

nausea, vomiting and diarrhoea (264), which are in-keeping with the GI SEs seen 

in metformin intolerance.  Histamine also increases gut motility (265), and 
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metformin may reduce the enterocytic metabolism of histamine by diamine 

oxidase (149). 

4. Alteration in the bile acid pool 

It is recognised that metformin reduces ileal absorption of bile acid (152), leading 

to an increased concentration of bile acids in the large intestine and potential 

osmotic diarrhoea. Metformin could potentially alter the conversion of primary bile 

acids, which are synthesised by the liver, to secondary bile acids. This process 

depends on dehydroxylation by bacterial 7α-dehydroxylase (266-268), which may 

be reduced in metformin treatment due to the reduction diversity in the 

microbiome associated with metformin (159), specifically a reduction in the 

genera known to produce 7α-dehydroxylase. Bile is usually reabsorbed and 

returned to the liver, where it can be re-secreted by the liver. It is possible that 

metformin disrupts this enterohepatic circulation, resulting in an increase in the 

hormonal and osmotic effects of bile acids in the gut. 

The Pharmacokinetics of Metformin Intolerance (POMI) study is an open-label 

pharmacokinetic study designed to investigate these hypothesised mechanisms 

for metformin intolerance, by studying how individuals tolerant to metformin 

differed from those who are intolerant.  
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Hypothesis  

The Pharmacokinetics of Metformin Intolerance (POMI) study was designed to 

investigate our primary hypothesis that variability in metformin tolerance is 

associated with systemic metformin concentration, reflecting differences in the 

pharmacokinetics of metformin.  

We also hypothesised that metformin intolerance may be caused by:  

1. An increase in systemic lactate compared to tolerant individuals, as a result 

of metformin-related anaerobic glucose utilisation. 

2. A reduction in systemic serotonin, due to metformin-related inhibition of 

serotonin uptake from the gastrointestinal lumen. 

3. An increase in systemic histamine concentration, secondary to a 

metformin-related reduction in histamine metabolism. 

4. A reduction in the systemic bile acid pool, specifically a reduction in 

secondary bile acids, due to a metformin-related reduction in ileal 

absorption, and deconjugation of bile acids. 

Aims 

Our primary objective was therefore to compare the pharmacokinetics (PK) of 

metformin in individuals identified as tolerant or intolerant of metformin, to assess 

if intolerance is related to alterations in PK.  

Our secondary objectives were to compare plasma lactate; serotonin; histamine 

and bile acids after metformin dosing, between tolerant and intolerant individuals, 

to investigate these potential mechanisms of metformin intolerance. 

Plasma metformin and serum lactate concentrations were measured, along with 

targeted metabolomics, in the hours following the administration of a single dose 

of metformin IR 500mg, to compare the two groups.  
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Materials and Methods 

This study was conducted in the Clinical Research Centre (CRC) at Ninewells 

Hospital, in Dundee, between June 2015 and April 2016. It was co-sponsored by 

University of Dundee and NHS Tayside, and ethical approval was given by East 

of Scotland Research Ethics Committee. The study was conducted in accordance 

with the Good Clinical Practice guidelines, and the Declaration of Helsinki. The 

study is registered on the public database ClinicalTrials.gov, identifier 

NCT03361878. Formal written informed consent was obtained from each 

individual prior to inclusion. 

Recruitment  

Individuals were recruited if they had type 2 diabetes (T2D), were white European, 

and met the criteria for tolerance or intolerance to metformin. Metformin intolerant 

individuals were defined as those who had previously been treated with a 

maximum of 1000mg metformin daily for a maximum of 8 weeks, and 

discontinued treatment due to GI upset (Criterion 1). Alternatively, intolerance 

was defined as inability to increase metformin dose above 500mg without 

experiencing GI SEs, despite having an HbA1c >53mmol/mol (Criterion 2). 

Tolerant individuals were defined as those taking 2000mg metformin daily in 

divided doses, with no GI SEs. Those taking metformin were asked to discontinue 

their metformin 72 hours prior to the study. The length of washout period was 

based on an estimated t1/2 for plasma metformin of 5.7 hours (16). Exclusion 

criteria were: inability to consent; age out with 18 – 90 years of age; eGFR <60 

ml/min; pregnancy; history of gastric bypass; evidence of slowed gastric or 

intestinal motility. None of the patients included were treated with drugs known to 

affect the pharmacokinetics of metformin in vivo (30): acarbose (269), 

cephalexine (270), cimetidine (271), dolutegravir (272), pyramethamine (273), 

ranolazine (274), trimethoprim (275) or tyrosine kinase inhibitors (276). 

Ten metformin intolerant individuals were recruited from the DIRECT (175) cohort 

in Tayside, eight of whom met intolerance Criterion 1. Ten metformin tolerant 
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individuals were then recruited from the GoDARTS (176) cohort, matching for 

gender, age, and BMI.   

Study design and interventions 

Participants attended the CRC at Ninewells Hospital fasted from midnight. At 

0900 (time 0) a blood sample was obtained prior to administration of a single dose 

of oral metformin (IR) 500mg. Further blood samples were taken at 0.5, 1, 1.5, 2, 

2.5, 3, 3.5, 4, 6, 8 and 24 hours post-metformin. Urine was collected over the 24 

hours following administration of metformin. Participants were given breakfast two 

hours, and lunch five hours, post-metformin. Plasma metformin and lactate 

concentrations were measured at all time points, using plasma lactate 

concentration as a proxy of intestinal lactate production, secondary to metformin 

concentration within the enterocyte. Plasma lactate was measured using a lactate 

oxidase method; plasma and urine metformin concentrations were determined 

using liquid chromatography and tandem mass spectrometry (LC-MS/MS), and 

the limit of quantification (LOQ) was 0.01 mg/L. Histamine and serotonin, and bile 

acids were determined using the targeted metabolomic assays Biocrates 

AbsoluteIDQTM p180 Kit and BiocratesTM Bile Acids Kit, respectively. Full 

descriptions of analytical methods are provided in the Appendix 1: POMI sample 

analysis methods.  

Outcomes 

The primary endpoint was metformin pharmacokinetics as determined by the area 

under the curve (AUC) of metformin concentration over time. The secondary 

outcome of the study was to determine whether systemic lactate concentration, a 

surrogate for metformin concentration in the enterocyte, is associated with 

metformin intolerance. Additional outcomes included the assessment of 

serotonin, histamine and bile acids concentrations in acute metformin dosing. 

During the study, a Metformin Symptom Severity Score was completed by 

participants (Appendix 2: MISSS). This questionnaire details the individual’s 
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maximum tolerated dose of metformin, identifies which GI SEs experienced while 

taking metformin, and scores the severity of the symptoms. This was completed 

to confirm the phenotype of the cohorts, and gather information as to the nature 

of the individuals’ side effects.  

The questionnaire was not used as a diagnostic tool in this study, but as a means 

of characterising the intestinal intolerance experienced and the perceived severity 

of this. The “true diagnosis” of intolerance was based upon the inclusion criteria 

alone. 

The MISSS was later adopted in the “Impact of OCT1 genotype and OCT1 

inhibiting drugs on an individual’s tolerance of metformin (ImpOCT)” study, and is 

discussed further in Chapter 4 of this thesis. 

Statistical methods 

Sample size 

The study was powered to detect a 30% difference in AUC0-24 of the metformin 

concentration-time curve, with 80% power, and significance of 5%. This value 

was chosen based on previous studies by Najib et al (277), and required a cohort 

of ten metformin-intolerant individuals plus ten metformin-tolerant individuals.  

Statistical analysis 

Pharmacokinetic data were analysed using non-compartmental analysis using 

the R package NCAPPC (184), in conjunction with the Department of Clinical 

Pharmacology and Pharmacy, Institute of Public Health, University of Southern 

Denmark. Pharmacokinetic endpoints are presented as median with interquartile 

range (IQR, 25th-75th percentiles) and geometric mean ratios with 95% 

confidence intervals. Pharmacokinetic parameters were calculated as described 

in Methods: Pharmacokinetics. Statistical significance was determined using 

unpaired t-test on log-transformed data and accepted at p<0.05.  
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Creatinine clearance was calculated using the Cockcroft-Gault equation using 

Ideal Body Weight (IBW), and corrected for Adjusted Body Weight (ABW = IBW 

+ 0.4 x (actual body weight – IBW)) in those with BMI >25. 

All other data were analysed using R studio, and were assessed for normality 

using Shapiro Wilks method. Those data with a normal distribution are expressed 

as mean +/- 95% CIs and were compared using unpaired t-test with two tails and 

unequal variance. Graphic data are plotted as mean ± SEM. Those data with non-

normal distribution were expressed as median with IQR and compared using the 

non-parametric Mann Whitney U test. 

Calculation of incremental area under the curve (iAUC) for lactate, serotonin and 

bile acids used the linear trapezoidal method.  

For the purpose of this study and to minimize multiple testing penalties, we 

analysed only serotonin and histamine from the Biocrates p180 panel, and 

accepted values of p<0.05 as statistically significant. For the analysis of the bile 

acids panel, adjusting for the Bonferroni correction, we accepted a significance 

level of p<0.0024.  
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Results 

Recruitment 

 

Figure 18 Recruitment flow diagram for the Pharmacokinetics of Metformin Intolerance (POMI) 

study. 
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Baseline characteristics  

All 20 participants completed the study, with no withdrawals. The baseline 

characteristics are listed in Table 4. The cohorts were well matched for gender, 

age and BMI. There was no significant difference in creatinine clearance between 

the cohorts. HbA1c was different in the two cohorts: 60.0 (55.0 – 68.0) and 72.0 

(67.3 – 76.8) mmol/mol in the tolerant and intolerant cohorts respectively, but this 

should not impact the pharmacokinetics of metformin. This difference is not 

surprising as the intolerant cohort have discontinued metformin, and their higher 

HbA1c may represent the difficulty in optimising their medical management. 

However, both cohorts had additional anti-hyperglycaemic medications 

prescribed, including SUs, TZDs, DPP4 inhibitors, GLP1 receptor agonists and 

insulin. Additional medication was administered two hours post-metformin dosing. 

Characteristic Metformin Tolerant Metformin 
Intolerant 

p 

n 10 10 1.000 
Female/Male  7/3 7/3 1.000 
Age, yrs 67.5 (60.8 – 72.5) 71.0 (65.75 – 80.3) 0.307 
Age at diagnosis, yrs 51.5 (51.0 – 58.0) 60.0 (57.3 – 61.8) 0.111 
Diabetes duration, 
yrs 

12.0 (9.0 – 15.5) 12.0 (7.5 – 14.8) 0.850 

HbA1c,mmol/mol 60.0 (55.0 – 68.0) 72.0 (67.3 – 76.8) 0.012 
Weight, kg 90.0 (79.0 – 97.2) 91.2 (79.6 – 104.0) 0.910 
BMI 34.6 (26.3 – 38.3) 34.3 (29.5 – 38.5) 0.800 
Creatinine 
Clearance 

86.3 (76.6 – 107.3) 78.8 (68.3 – 93.2) 0.353 

SU (n) 3 6 0.370 
DPP4i (n) 3 1 0.582 
GLP1 RA (n) 3 1 0.582 
TZD (n) 0 2 0.474 
Insulin (n) 4 4 1.000 

Table 4 Baseline characteristics of the participants of the POMI study. Data are median (IQR); p 

value for Mann Whitney U test. For categorical data, p value for Fisher exact test. SU = 

sulphonylurea; GLP1 RA = GLP1 receptor agonist; DPP4i = dipeptidyl peptidase inhibitor; TZD = 

thiazolidinedione. 
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Effect of acute metformin dosing 

The Metformin Symptom Severity Score (Appendix 2) was completed by all 

participants, with a potential score ranging from 0 to 50. The intolerant cohort had 

a mean severity score of 30.4, much greater than the tolerant cohort’s 1.9 

(p<0.0001). Of the ten tolerant individuals, eight participants scored 0 for the 

severity score, with the two individuals who scored 8 and 11 having symptoms of 

IBS which preceded metformin and were unchanged by metformin treatment. Of 

the intolerant cohort, 70% of participants had previously experienced nausea with 

metformin, 50% described abdominal pain or bloating, and 50% suffered from 

diarrhoea.  

During the 24 hour study, 9 of the 10 intolerant individuals experienced GI side 

effects after 500mg of metformin, while none of the tolerant cohort described any 

symptoms. Of the intolerant cohort, 50% suffered diarrhoea, 50% experienced 

nausea, with 30% describing abdominal pain, and 20% complaining of bloating.  

 
Figure 19 Symptoms of metformin intolerance by phenotype, following a single dose of metformin, 

500mg. 
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Study ID Symptom 

Nausea Bloating Abdominal Pain Diarrhoea 
MI 01 - - Y Y 
MI 02 - - - Y 
MI 03 Y - - - 
MI 04 Y Y - Y 
MI 05 - - - Y 
MI 06 - - - - 
MI 07 - Y Y - 
MI 08 Y - Y Y 
MI 09 Y - - - 
MI 10 Y - - - 
  

    

MT 01 - - - - 
MT 02 - - - - 
MT 03 - - - - 
MT 04 - - - - 
MT 05 - - - - 
MT 06 - - - - 
MT 07 - - - - 
MT 08 - - - - 
MT 09 - - - - 
MT 10 - - - - 

Table 5 Metformin associated gastrointestinal side-effects after acute dosing 

However, as this is an open-label study, it is susceptible to reporting bias in those 

expecting symptoms of intolerance with metformin, with a potential over-reporting 

of GI symptoms. It should also be noted that the intolerance seen in the 24 hour 

study period is acute intolerance. We cannot comment on chronic intolerance, 

although our inclusion criteria identified individuals with true, chronic intolerance. 

Metformin pharmacokinetics in intolerant and tolerant individuals 

At time 0 hours (pre-metformin dose) the intolerant group had a plasma metformin 

concentration, as expected, under the limit of detection.  The metformin tolerant 

group, despite 72 hours of metformin washout, had a detectable metformin 

concentration, median 0.067 (IQR 0.030 – 0.095) mg/L at baseline.  Similarly, at 

24 hours, median metformin concentration in the tolerant cohort was higher 

(0.085, IQR 0.066 – 0.135 mg/L) than the intolerant cohort (0.051, IQR 0.034 – 
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0.066 mg/L). Although the differences at baseline and at 24 hours post-metformin 

are significantly different from zero (p < 0.001; p = 0.015 respectively), the levels 

are small when compared to the peak metformin concentration after 500mg of 

metformin. Peak concentration (Cmax) for both cohorts was reached at 2.5 hours 

post-dose, with median Cmax of 2.1 (IQR 1.7 – 2.3) and 2.0 (IQR 1.8 – 2.2) mg/L 

for tolerant and intolerant cohorts respectively (p = 0.76). The plasma metformin 

concentrations of the groups, over 24 hours post 500mg dose, were not 

significantly different, with median AUC0-24 16.9 and 13.9 (mg/L)*h in the tolerant 

and intolerant cohorts respectively (p = 0.72), as illustrated in Figure 20.  

 
Figure 20 Plasma concentration of metformin over time, following a single dose of 500mg given 

at time 0 hr.  Data points are mean ±SEM. 

The t1/2 life of metformin was higher in the tolerant group (4.8 vs 4.1 hours, p = 

0.001).  However, the apparent oral volume of distribution (V/F), apparent total 

clearance from plasma after oral administration (CL/F), and renal clearance of 

metformin from the plasma (CLr) did not differ between the tolerant and intolerant 

groups (Table 6).   
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Intolerant 
 

Tolerant 
Geometric 
Mean Ratio 
(95% CIs) 

 
p 

AUC 
((mg/L)*h) 

13.9 
(12.9 – 16.8) 

16.9 
(13.9 – 18.6) 

0.95 
(0.72 - 1.26) 

0.72 

Cmax (mg/L) 2.0 
(1.8 – 2.2) 

2.1 
(1.7 – 2.3) 

1.04 
(0.83 – 1.30) 

0.76 

T1/2 (h) 4.1 
(3.8 – 4.3) 

4.8 
(4.7 – 5.3) 

0.82 
(0.76 – 0.89) 

<0.001 

CL/F (L/h) 35.2 
(29.4 – 38.1) 

28.6 
(25.8 – 34.6) 

1.07 
(0.81 – 1.43) 

0.62 

V/F (L) 211.4 
(164.0 – 225.8) 

197.3 
(186.0 – 261.3) 

0.88 
(0.66 – 1.17) 

0.36 

CLR (L/h) 17.6 
(13.9 – 25.5) 

20.5 
(14.7 – 25.2) 

0.88 
(0.56 – 1.41) 

0.59 

F (%) 71 
(62 – 84) 

95 
(56 – 101) 

0.83 
(0.53 – 1.27) 

0.38 

Table 6 Pharmacokinetic parameters after acute metformin dosing. Data are median and IQR; 

geometric mean ratios with 95% CIs. P value for unpaired t test. 

Serum lactate and metformin intolerance 

The lactate concentration increased post-metformin with the median time to peak 

3.5h post-dose (Figure 21). Mean peak lactate concentration was 2.4mmol/L for 

both groups (tolerant 95%CI 2.0 – 2.8 mmol/L, and intolerant 95% CI 1.8–

3.0mmol/L).  There was no significant difference in the incremental AUC0-24 for 

lactate between the tolerant (6.98 mmol/L*h, 3.03–10.93) and intolerant (4.47 

mmol/L*h, -3.12–12.06) groups, p=0.55.    



129 
 

 

Figure 21 Mean lactate concentration over time, following a single dose of metformin, 500mg at 

time 0 hr. Data points are mean ±SEM. 

Plasma Serotonin, histamine and bile acid concentrations 

The incremental AUC0-24 of the serotonin concentration–time curve did not differ 

between the cohorts (p = 0.529), and there was no apparent rise in plasma 

serotonin following metformin dosing in either group (Figure 22).  Histamine levels 

were below the lower limit of detection in the p180 panel for both cohorts. 
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Figure 22 Mean serotonin concentration over time, following a single dose of metformin, 500mg 

at time 0hr. Data points are mean ± SEM. 

The Biocrates bile acid panel measures the concentration of twenty different bile 

acids. There was no difference in incremental AUC0-24 between the tolerant and 

intolerant cohorts for each individual bile acid, when corrected for multiple testing. 

Similarly, when considering the bile acids by class – primary, conjugated primary, 

secondary and conjugated secondary – no significant difference was identified. 
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Bile acid (abbreviation) MI MT p 

Cholic acid  
(CA) 

-0.73 
(-3.3 – 0.71) 

0.46 
(-0.04 – 2.68) 

0.1431 

Chenodeoxycholic acid 
(CDCA) 

-0.06 
(-3.36 – 5.78 

0.28 
(-5.02 – 4.68) 

0.8534 

Deoxycholic acid  
(DCA) 

1.12 
(-3.11 – 4.12) 

2.23 
(-5.13 – 8.04) 

0.5787 

Glycocholic acid  
(GCA) 

4.18 
(1.38 – 9.99) 

1.12 
(-0.92 – 4.83) 

0.0892 

Glycochenodeoxycholic 
acid  
(GCDCA) 

15.84 
(5.63 – 27.04) 

9.28 
(-5.80 – 25.81) 

0.3527 

Glycodeoxycholic acid  
(GDCA) 

7.65 
(5.55 – 12.53) 

3.75 
(-9.87 – 15.11) 

0.2799 

Glycolithocholic acid  
(GLCA) 

0.44 
(0.09 – 0.57) 

0.15 
(-0.39 – 1.21) 

0.4813 

Glycoursodeoxycholic 
acid (GUDCA) 

0.66 
(0.18 – 3.53) 

0.14 
(-0.86 – 1.99) 

0.2799 

Lithocholic acid 
(LCA) 

-0.07 
(-0.34 – 0.18) 

0.01 
(-0.30 – 0.20) 

0.7054 

Muricholic acid, beta 
(MCA(b)) 

0.07 
(-0.14 – 0.19) 

-0.01 
(-0.15 – 0.10) 

0.4813 

Taurocholic acid  
(TCA) 

0.93 
(0.23 – 2.13) 

-0.01 
(-0.19 – 0.61) 

0.01854 

Taurochenodeoxycholic 
acid (TCDCA) 

2.21 
(0.64 – 2.78) 

0.46 
(-0.45 – 1.61) 

0.04326 

Taurodeoxycholic acid  
(TDCA) 

0.86 
(0.63 – 1.52) 

0.04 
(-0.52 – 1.25) 

0.07526 
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Taurolithocholic acid  
(TLCA) 

0.07 
(0 – 0.20) 

0.02 
(0 – 0.18) 

0.5148 

Tauromuricholic acid (a 
+ b)  (TMCA(a+b)) 

0.11 
(0.06 – 0.18) 

0.00 
(-0.11 – 0.06) 

0.01469 

Tauroursodeoxycholic 
acid (TUDCA) 

0.07 
(0.03 – 0.19) 

0.02 
(-0.04 – 0.09) 

0.1211 

Ursodeoxycholic acid 
(UDCA) 

0.17 
(-0.84 – 0.53) 

0.10 
(-0.11 – 1.16) 

0.9118 

Total Primary -2.05 
(-3.83 – 0.75) 

0.57 
(-4.88 – 6.91) 

0.2176 

Total Conjugated 
Primary  

0.89 
(-3.59 – 4.53) 

3.80 
(-5.35 – 8.72) 

0.2176 

Total Secondary 24.19 
(10.19 – 43.22) 

11.00 
(-7.20 – 31.46) 

0.4813 

Total Conjugated 
Secondary 

11.02 
(7.63 – 17.93) 

5.19 
(-11.09 – 19.50) 

0.315 

Table 7 Comparison of incremental AUC of bile acids after acute metformin dosing, between 

tolerant and intolerant cohorts. Data shown as median (IQR), µM*hr. p value for Mann Whitney U 

test, with Bonferroni correction, significance level = p < 0.0024. Three of the twenty measured bile 

acids were below the LOD, and therefore not analysed. 
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Discussion 

Metformin intolerance is a common and costly challenge in the management of 

type 2 diabetes. Despite metformin’s status as first line medical treatment for 

T2DM, its mechanism of action is still debated. Although widely accepted that 

metformin acts in the liver to reduce gluconeogenesis (72), there is increasing 

evidence that metformin may exert some of its effect via the gastrointestinal tract 

(77), and it is unclear which of these potential mechanisms of action may be linked 

to metformin intolerance. In this study of extreme intolerance, we have shown for 

the first time that metformin intolerance is unlikely to be mediated by differences 

in absorption, distribution or elimination of metformin. We also demonstrate that 

intolerance is not associated with lactate derived from anaerobic glucose 

metabolism in the gut, altered systemic bile acid or serotonin concentration. 

Metformin uptake from the intestine is predominantly via three transporters: 

OCT1, PMAT and SERT. In observational studies using GoDARTS data, Dujic et 

al demonstrated increased risk of metformin intolerance in those with reduced 

function alleles for OCT1 (29), and latterly SERT transporters (47). Studies 

investigating the effect of OCT1 genotype on the pharmacokinetics of metformin 

have reported varying results. Shu et al show that, following acute dosing with 

metformin, the area under the plasma concentration–time curve (AUC) of 

metformin was significantly greater in those with OCT1 variants compared to 

those with wild type OCT1 (34). However, steady state pharmacokinetics of 

metformin appear to be independent of OCT1 genotype (31). Christensen et al 

identified a number of SNPs in PMAT which were associated with reduced trough 

steady-state metformin concentrations, significant to p <0.05 level, but this result 

did not withstand multiple testing (32). The above studies indicate that systemic 

metformin concentration may differ according to transporter genotype, and 

genotype has been associated with risk of intolerance, therefore we wanted to 

see if systemic metformin concentration was associated with intolerance. Our 

study shows that, despite a well-defined extreme intolerant phenotype, with 90% 

of the intolerant participants experiencing symptoms of metformin intolerance 
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after a 500mg dose, neither the Cmax nor tmax (and therefore absorption) of 

metformin, were significantly different between cohorts (Table 6). The lack of 

association of metformin PK with severe intolerance suggests that the association 

reported of OCT1 and SERT variants altering metformin intolerance may reflect 

an impact of these transporter variants on local rather than systemic metformin 

concentrations. 

We identified a surprising difference in baseline metformin concentration, 

resulting from detectable metformin in the plasma of the tolerant group after 72 

hours washout. The detection of metformin after 72 hours washout may represent 

an improvement in metformin assay: from gas chromatography, to high-

performance liquid chromatography and now liquid chromatography with tandem 

mass spectrometry. Results from the original pharmacokinetic studies of the 

1970s would suggest 72 hours without metformin should result in complete 

washout (17).  The persistence of measurable plasma metformin at 72 hours is 

likely to be indicative of a two (or more) compartment model, with metformin taken 

up and released slowly, for example, by erythrocytes. The slow elimination phase 

of metformin from the erythrocyte compartment has a t1/2 of 20 hours (16, 17, 

278), compared to a plasma t1/2 of 5.7 hours in subjects with normal renal function 

(16). This is the likely cause of the difference in the calculated plasma t1/2 of the 

two cohorts, as the tolerant cohort had been at steady state while on metformin 

and likely had higher metformin accumulation in secondary compartments. In 

contrast, the intolerant group have depleted secondary compartments, which are 

absorbing some of the excess metformin, and leading to a shorter elimination 

half-life.  

Where transporter dysfunction may lead to reduced efflux and the systemic 

concentration of metformin, it may also lead to increased enterocytic or 

intraluminal metformin concentration. Cycling of metformin between lumen and 

enterocyte, or uptake to enterocyte with reduced efflux, could lead to increased 

local metformin concentration. The resulting increase in glucose uptake and 

anaerobic glucose utilisation, leads to a subsequent rise in intracellular lactate 
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concentration (19, 21, 124, 125, 127). As intracellular lactate rises, it is released 

into the systemic circulation. Therefore, measuring plasma lactate concentration 

can be used as a proxy measure of lactate production secondary to intestinal 

metformin concentration. Serum lactate concentration was not significantly 

different between tolerant and intolerant cohorts, indicating that enterocyte 

metformin concentration was similar in both groups. Both groups did see a rise in 

lactate from 2 hours, peaking around 3.5 hours post-dose, at a mean maximum 

concentration of 2.4mmol/L, which is above the normal range in clinical practice. 

Portal venous sampling for lactate concentration may provide a more accurate 

measure of intestinal lactate production, when compared to peripheral 

concentrations, but this is extremely challenging to carry out in humans and 

beyond the scope of this pharmacokinetic study. 

The use of metabolomics to measure serotonin and bile acids gave further insight 

to metformin intolerance. Serotonin was detectable using the Biocrates p180 

panel, but metformin dosing did not increase serotonin concentrations.  However, 

this does not rule out a local effect of metformin on serotonin uptake by SERT. 

Bile acid concentrations varied post-metformin dosing, however we did not 

identify a difference in systemic concentrations of the individual or grouped bile 

acid concentrations between tolerant and intolerant cohorts.  There was a trend 

toward a lower total AUC for DCA (deoxycholic acid – a secondary bile acid from 

the conversion of cholic acid by 7α-dehydroxylase) in the intolerant group (p = 

0.052). This is interesting as most bile acids are reabsorbed in the terminal ileum, 

whereas DCA is absorbed from the colon (152). A reduced plasma concentration 

may indicate a reduced uptake of DCA, resulting in accumulation in the colon, 

which could potentially lead to bile acid diarrhoea. Further studies are required to 

investigate the role of the microbiome, and subsequent changes to bile acid 

metabolism, in metformin intolerance. 
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Limitations 

We acknowledge this study has a number of limitations.  Firstly, the study had a 

small sample size, but was powered to detect a 30% change in metformin AUC 

between cohorts. We deemed a priori this would be a clinically important 

difference when comparing such extremes of intolerance. The similarity in the 

mean concentrations for the two groups, and overlap of the distributions of 

individual values, are not consistent with these parameters explaining the 

mechanism for the marked difference in tolerance seen in these two groups. 

However, the point estimates for some of the PK parameters and lactate do differ 

and this difference might achieve statistical significance if the sample size were 

much larger so it is possible that more subtle differences in metformin PK or the 

other measures evaluated do contribute to metformin intolerance.   

Secondly, we observed incomplete washout of metformin in the tolerant cohort 

which highlights the need for a longer washout in future studies, but as discussed 

above, the metformin level at baseline was very low when compared to the peak 

post-dose concentration and did not impact upon the parameters of metformin 

absorption.  

Thirdly, metformin is known to increase GLP1, and it is possible that this may lead 

to gastrointestinal symptoms in some cases. However, we were unable to 

measure GLP1 in our study cohort, due to the concurrent use of DPP4 inhibitors 

and GLP1 receptor agonists.  

We also acknowledge that the administration of metformin two hours prior to food 

is not in line with clinical practice, and that this may increase the risk of metformin 

intolerance. In clinical practice, patients are asked to take metformin with or after 

food, in an attempt to reduce intolerance. However, drug administration in the 

fasted state is standard practice in pharmacokinetic studies, as this removes 

confounding factors of digestion and gastrointestinal transit time, which could 

significantly alter the pharmacokinetics including bioavailability, Cmax, and Tmax. 
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Of note, if intolerance was simply the effect of taking metformin without food, this 

would likely have been evident in both groups. 

Finally, serum lactate concentration increased 2 hours post-metformin dosing, but 

a potential confounding factor for this rise in lactate is the ingestion of a 

carbohydrate-rich meal at 2h post-metformin. However, previous studies in 

healthy volunteers indicate that the lactate concentrations increased transiently 

to a maximum at 90 minutes post mixed meal, returning to baseline by 180 

minutes (279). Participants in the study received a second carbohydrate-rich meal 

at 5 hours post-metformin dosing, which did not correspond with a further peak in 

serum lactate. This supports the conclusion that the rise in and peak lactate 

concentration is associated primarily with metformin dosing, as opposed to 

ingestion of a carbohydrate-rich meal. 

Conclusion  

In conclusion, in this pharmacokinetic study of well-defined extreme metformin 

intolerant and tolerant individuals, we ruled out multiple potential systemic effects 

of metformin that may have contributed to metformin intolerance. We showed that 

the difference between tolerant and intolerant cohorts in the absorption, 

distribution or elimination of metformin, or in systemic lactate, serotonin or bile 

acid concentrations, were too small to be the mechanism of intolerance.  
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Impact of OCT1 genotype and OCT1 inhibiting drugs on an 

individual’s metformin tolerance (ImpOCT) study 

 

Contributions: 

The following chapter discusses the “Impact of OCT1 genotype and OCT1 

inhibiting drugs on an individual’s metformin tolerance” (ImpOCT) study. 

I wrote the study protocol with Prof Ewan Pearson. Statistical methodology was 

guided by Prof Peter Donnan. With assistance from Research Nurses Sheena 

Pritchard, Amanda Anderson and Shirley Fawcett, I recruited study participants 

and completed all study visits and data collection.  

Interim analysis was performed by Prof Peter Donnan, University of Dundee, as 

an independent statistician. 

Final statistical analysis was performed by me, with guidance from Simona 

Hapca, a statistician from the University of Dundee. 

I am the sole author of this chapter.
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Introduction  

At physiological pH, metformin exists as a hydrophilic cationic species with low 

lipophilicity, meaning passive diffusion through cell membranes is unlikely (16). 

Metformin uptake from the intestinal lumen into the enterocyte is, therefore, 

transporter dependent, predominantly relying on OCT1, PMAT and SERT (23). 

This transporter-dependent mechanism of uptake is saturable (22) and 

susceptible to variability in efficacy, due to genetic variation in the transporters, 

or competitive inhibition by other substrates (280). Theoretically, these factors 

could impact upon the pharmacokinetics (PK), pharmacodynamics (PD) and 

tolerability of metformin, by altering bioavailability, absorption and likelihood of 

drug-drug interactions (DDI) (30, 34, 281, 282).  

Metformin intolerance affects up to 25% of those exposed (29), with 

approximately 5% of those treated with metformin discontinuing therapy due to 

adverse effects. However, the mechanism and variability of intolerance is poorly 

understood. Disruption of metformin uptake from the gastrointestinal tract results 

in an increase in the time the intestinal lumen and enterocytes are exposed to 

metformin. This may increase local or systemic lactate; alter the bile acid pool; 

increase intestinal GLP1, serotonin or histamine; or alter the microbiome, all 

potential mechanisms of metformin intolerance (77).  

Transport via OCT1 accounts for approximately 25% of metformin uptake from 

the gastrointestinal tract (23). OCT1, a polyspecific transporter of the SLC22A 

family, is implicated in the absorption of numerous commonly prescribed 

medications (26, 56, 283) – see Appendix 3. This poly-specificity exposes 

substrates to competitive inhibition, and increases the risk of DDI. Metformin can 

act as victim or perpetrator in OCT1-related DDI (30), as demonstrated by in vitro, 

observational and in vivo studies, as shown in Table 8. DDI may affect the 

pharmacokinetics and pharmacodynamics (PK/PD) of metformin, including 

tolerability, for the individual. 
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Drug Metformin  Effect Study type Author 

PPI Victim Increased 
metformin 
intolerance 

Human, 
observational 
cohort 

Dujic et al (29) 

Pantoprazole,  
rabeprazole 

Victim Increased 
metformin 
Cmax 

Human, 
interventional 

Kim et al (284) 

PPIs: 
omeprazole, 
lansoprazole, 
pantoprazole, 
rabeprazole 

Victim Reduced 
uptake of 
metformin 

In vitro Nies et al (285) 

Trospium Perpetrator Reduces AUC 
and Cmax of 
trospium 

Human, 
interventional 

Oefelein et al 
(286) 

Rifampicin Victim Increased AUC 
and renal 
clearance of 
metformin 

Human, 
interventional 

Cho at el (287) 

Verapamil Victim Decreased 
glucose-
lowering effect 
of metformin 

Human, 
interventional 

Cho et al (288) 

Berberine Victim Increased 
AUC, 
decreased 
clearance of 
metformin 

In vitro Kwon et al 
(289) 

Clopidogrel Victim Decreased 
liver uptake of 
metformin 

In vitro Li et al (290) 

Quinidine Victim Decreased 
liver uptake of 
metformin 

In vitro Li et al (290) 

Repaglinide Victim Decreased 
liver uptake of 
metformin 

In vitro Bachmakov et 
al (291) 

Tyrosine kinase 
inhibitors 

Victim Inhibit 
metformin 
uptake 

In vitro Minematsu et al 
(292) 

Table 8 OCT1-related drug-drug interactions involving metformin 



141 
 
Genetic polymorphisms in transporter genes may contribute to variability in drug 

response (293). Human OCT1 is highly polymorphic (281), with over 85 

polymorphisms identified across 52 population groups (294), of which 34 

polymorphisms were considered in detail in a recent systematic review (295). 

Mofo Mato et al demonstrated that the role of OCT1 polymorphisms in therapeutic 

response to metformin is population specific, with significant difference in the 

allele frequencies of polymorphisms across different ethnic groups (295), for 

example, the allele frequency of M420del is 18.5% in Caucasian compared to 5% 

in African American populations (281).  

In study populations of European descent, the most commonly documented 

OCT1 polymorphisms are M408V (minor allele frequency, MAF = 59.8%), 

M420del (18.5%), R61C (7.2%), F160L (6.5%), G465R (4%), and G401S (1.1%) 

(296). Of these, M420del, R61C, G465R and G401S exhibit reduced function in 

cellular models of OCT1 and its variants, demonstrated as reduced uptake and 

response to metformin (Figures 23 and 24, reproduced with permission from Shu 

et al) (281).  

Figure 23 Metformin uptake in stably transfected HEK293 cells expressing OCT1 and its variants. 

Reproduced with permission from Shu et al. 
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Figure 24 Metformin response in HEK293 cells, transfected with OCT1 and its variants. There is 

an associated reduction in phosphorylation of AMPK and ACC with all OCT1 variants, except 

M408V. Reproduced with permission from Shu et al. 

Table 9, below, summarises the current evidence for the impact of OCT1 genetic 

variation on the PK/PD of metformin, focussing on Caucasian populations:
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Variant studied Study Model PK effect PD effect Author Year 

Oct1 knockout 
mice (-/-) and 
heterozygote mice 

Mouse hepatocyte 

Reduced hepatic 
uptake and 
accumulation of 
metformin, according 
to number of reduced 
function Oct1 alleles 

Reduced AMPK 
activation, resulting in 
reduced inhibition of 
hepatic 
gluconeogenesis. 
Fasting plasma glucose 
reduction lost in Oct1(-/-) 
mice 

Shu et al 
(281) 2007 

OCT1 R61C / 
M420del / G465R / 
G401S vs OCT1 
wild type 

OGTT in healthy 
Caucasian volunteers, 
with and without 
metformin 

Not assessed 

After metformin 
treatment, individuals 
with OCT1 
polymorphisms had 
significantly higher 
plasma glucose levels 
and glucose AUC during 
OGTT, compared to 
those with OCT1 wild 
type 

Shu et al 
(281) 2007 

OCT1 R61C / 
M420del / G465R / 
G401S vs OCT1 
wild type 

PK study of metformin 
in healthy Caucasian 
volunteers, with and 
without OCT1 variants 

Lower volume of 
distribution; higher 
AUC; higher Cmax 
and lower oral 
clearance of 
metformin in OCT1 
variants 

Not assessed Shu et al 
(34) 2007 
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Variant studied Study Model PK effect PD effect Author Year 

Ten 
polymorphisms of 
OCT1, including 
R61C / M420del / 
G465R / G401S  

PK study of healthy 
Caucasian male 
volunteers 

Polymorphisms in 
OCT1 increase renal 
clearance in a gene-
dose dependent 
manner 

Not assessed Tzvetkov et 
al (62) 2009 

OCT1 R61C / 
M420del 

Observational cohort 
study of Caucasian 
patients with T2DM, 
using GoDARTS data 
(176) 

Not assessed 
Loss of function variants 
did not affect glycaemic 
response to metformin  

Zhou et al 
(173) 2009 

Twelve SNPs (both 
coding and 
tagging) of OCT1 

Observational cohort 
study of Caucasian 
patients with T2DM, 
using data from the 
Rotterdam Study 

Not assessed 

Glycaemic response to 
metformin reduces with 
increasing number of 
minor alleles of rs622342  

Becker et al 
(297) 2009 

OCT1 R61C / 
M420del / G465R / 
G401S, along with 
polymorphisms in 
OCT2 / MATE / 
PMAT 

PK / PD study of 
metformin transporter 
polymorphisms in 
European patients with 
T2DM 

Lower trough 
metformin 
concentration at 
steady-state in 
M420del 
heterozygotes. 
Additive decrease in 
trough concentration 
with increasing 

Initially reported impact 
of OCT1 genotype on 
HbA1c during metformin 
treatment (32). This 
signal was lost when 
data were adjusted for 
baseline HbA1c (33) 

Christensen 
et al (32) 2011 
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Variant studied Study Model PK effect PD effect Author Year 

number of LOF 
haplotypes 

OCT1 R61C / 
M420del / G465R / 
G401S vs OCT1 
wild type 

PK study of steady 
state metformin in 
healthy European 
volunteers with 0,1 or 2 
variant alleles in OCT1 

No difference in 
steady state AUC of 
metformin 

Not assessed Christensen 
et al (31) 2015 

OCT1 R61C / 
M420del / G465R / 
G401S / C88R vs 
OCT1 wild type 

Observational cohort 
study of Caucasians 
patients with T2DM, 
using GoDARTS data 
(176) 

Not assessed 

Increasing risk of 
metformin intolerance in 
those: using OCT1 
inhibiting drugs; with 
LOF OCT1 variant; and 
combination of LOF 
genotype and inhibiting 
drugs 

Dujic et al 
(29) 2015 

OCT1 M420del / 
R61C 

Prospective 
observational study of 
Caucasian patients with 
newly diagnosed T2DM 

Not assessed 

Number of reduced 
function alleles 
associated with 
increased risk of 
metformin intolerance 

Dujic et al 
(298) 2016 

Nine candidate 
polymorphisms in 
five transporter 
genes, including 

Meta-analysis of 
pharmacogenomic 
studies of metformin 
response in European 

Not assessed 
No significant impact of 
polymorphisms on 
metformin response 

Dujic et al 
(51) 2017 
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Variant studied Study Model PK effect PD effect Author Year 

OCT1 R61C / 
M420del / rs622342  

patients with T2DM, 
using MetGen data 
(171) 

Table 9 Studies in Caucasian populations, describing impact of OCT1 genetic variation on PK/PD of metformin
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As demonstrated in Table 9, the evidence regarding the impact of OCT1 genotype 

on metformin PK/PD has, thus far, been inconsistent. The somewhat 

contradictory nature of these results is likely attributable to the variation in study 

populations, including genetic, physiological and environmental factors. The 

study designs were also varied, and often observational in nature. 

Of particular interest is the gene x drug x drug interaction between OCT1 

genotype, OCT1 inhibiting drugs, and metformin, which was observed by Dujic et 

al in a Scottish Caucasian population (29). Using GoDARTS data (176), they 

identified an increased risk of metformin intolerance with loss of function variants 

in OCT1, with the odds ratio of intolerance increasing further with the addition of 

other OCT1 inhibiting drugs (29). As already discussed, many commonly 

prescribed medications are substrates of OCT1, including PPIs, codeine, and 

anti-hypertensives such as doxazosin. This observed association is therefore 

potentially clinically applicable – if inhibiting drugs could be replaced with 

alternatives which were independent of OCT1 transportation, clinicians could help 

increase metformin tolerance and improve efficacy by achieving optimal dosing. 

 

Table 10 Effect of OCT1 genotype and inhibiting drugs on metformin intolerance. Reproduced 
with permission from Dujic et al (9). 
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In the population studied by Dujic et al, proton pump inhibitors were the most 

commonly prescribed OCT1 inhibiting drug with 17.6% of the study population 

treated with a PPI (29). The most common OCT1 polymorphism was M420del, 

with a minor allele frequency of approximately 19.1%. While approximately 40% 

of the study cohort carried one loss of function allele for OCT1, a further 8.4% 

carried two loss of function alleles (29). This is a significant proportion, especially 

when we consider that the incidence of metformin intolerance is often quoted as 

between 20 and 30%, with approximately 5% discontinuing therapy due to 

adverse effects. Could this 5% represent the OCT1 RF individuals treated with 

metformin and a second OCT1 inhibiting drug? 

Thus far, interventional studies of OCT1 genotype and metformin have focused 

on PK / PD. To our knowledge, no interventional studies have considered the 

effect of OCT1 genotype, or indeed OCT1 dependent drug-drug interactions, on 

the tolerability of metformin treatment. 

This chapter focuses on the Impact of OCT1 genotype and OCT1 inhibiting drugs 

on an individual’s metformin tolerance (ImpOCT) study, which was designed to 

investigate the impact of OCT1 genotype and use of OCT1 inhibiting drugs, such 

as PPIs, on metformin intolerance.  
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Hypothesis and Aims 

The study was designed to investigate the observed gene x drug x drug 

interaction between OCT1, metformin and PPIs, described by Dujic et al (29, 

298).  

We hypothesised that participants with OCT1 reduced function genotype would 

have a reduced tolerance of metformin:  

i. compared to those with OCT1 wild type, and  

ii. during treatment with concomitant omeprazole compared to concomitant 

placebo treatment.  

Therefore, the aim of the study was to demonstrate a difference in maximum 

tolerated dose of metformin between genotypes and when taking concurrent 

OCT1 inhibiting drug.  

Materials and Methods 

The ImpOCT study was conducted between the University of Dundee Clinical 

Research Centre between April 2016 and April 2018. It was co‐sponsored by the 

University of Dundee and NHS Tayside, with ethical approval granted by the East 

of Scotland Research Ethics Committee. The study was conducted in accordance 

with the Good Clinical Practice guidelines, and the Declaration of Helsinki.  

The study was registered on http://clinicaltrials.gov (identifier NCT02586636). 

Formal written informed consent was obtained from each individual prior to 

inclusion. 

Study design  

A recall-by-genotype recruitment model (see Methods: Recruit-by-Genotype 

(RBG) Studies) was used to populate a randomised, placebo-controlled, double-

blind crossover study comparing metformin tolerance during concurrent 

omeprazole vs placebo use, across OCT1 genotypes.  

http://clinicaltrials.gov/
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Study duration was a total of 9 - 10 weeks, consisting of two x four week treatment 

periods, separated by a washout period of one to two weeks. During each 

treatment period, metformin was administered as an oral tablet, along with the 

concurrent treatment (placebo or omeprazole), taken as one capsule twice daily 

throughout. The concurrent medication was over-encapsulated and labelled by 

Tayside Pharmaceuticals, as shown in Figure 25 below, to maintain blinding of 

both researcher and participant. 

 

Figure 25 Labelling and over-encapsulation used to maintain blinding of the treatment order for 

the concurrent medication. 

The metformin dose was titrated over each four week treatment period, according 

to the individual’s tolerance, to a maximum of 2000mg daily, in divided doses. 

Dose titration was on a weekly basis, to establish the individual’s maximum 

tolerated dose i.e. the highest dose at which metformin is agreeable to the 

participant, without gastrointestinal symptoms of intolerance.  
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Recruitment 

Healthy volunteers were recruited, according to their OCT1 genotype, from three 

Scottish bioresources with genotypic data available - the GoDARTS (176), 

GoSHARE and GS:SFHS studies (see Methods: Bioinformatics Resources). All 

participants were White Scottish, non-diabetic individuals with either two loss-of-

function (LOF) alleles (herein referred to as OCT1 reduced function, RF) or zero 

LOF alleles (OCT1 wild type, WT). We included those with R61C and M420del 

variants, as these account for the majority (92%) of OCT1 genetic variants in the 

GoDARTS cohort (29), and also only occur as a haplotype with the wild type allele 

of each other (29, 298). Other inclusion and exclusion criteria are shown in table 

11 below. 

 

 

 

 

Figure 26 Infographic of the participant journey through the ImpOCT study 
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Inclusion Exclusion 

Aged 18 - 80 Heterozygous OCT1 genotype i.e. 
only one loss of function allele 

White Scottish Previous treatment with metformin 

OCT1 reduced function or OCT1 wild 
type 

Previous diagnosis of diabetes 

Able to complete the symptom severity 
score and Bristol stool chart 
independently i.e. no cognitive 
impairment or visual impairment 

Recent involvement (<30 days) in a 
CTIMP 

Normal renal function – eGFR>60 Pregnancy or planning to conceive 

 Inability / unwillingness to comply with 
the protocol 

 No known gastrointestinal pathology 
e.g. inflammatory bowel disease, IBS, 
coeliac 

 Daily treatment with PPI, anti-
spasmodic, or anti-motility drugs 

 Daily OCT1 inhibiting drugs (unless 
able to withhold during study period) 

Table 11 Inclusion / exclusion criteria for the ImpOCT study 

 

Participants were initially recruited from GoDARTS, before expanding to 

GoSHARE and, latterly, GS:SFHS. Potential participants were identified by the 

Health Informatics Centre at the University of Dundee, using the above genotypic 
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and phenotypic criteria, and were invited to participate via invitation letters 

(GoDARTS, GoSHARE and GS:SFHS) or telephone calls (GoSHARE). 

In our first mail-out via GoDARTS, we subdivided the potential participants into 

age brackets, and sent an equal number of letters to each genotype, attempting 

to keep recruitment within the 50-60 year old age bracket, in an attempt to match 

the cohorts for age. The age bracket was expanded in stages as recruitment 

continued.  

The contact details (excluding genotype) of individuals who responded positively 

to the invitation letters were made available to the research team via the HIC 

recruitment tracker, shown below.  

 

Figure 27 Screenshot of the HIC recruitment tracker used in the ImpOCT study 

Individuals were then contacted by telephone by the research team to discuss the 

study in more detail and to arrange the screening visit.  

As there is overlap between the GoDARTS, GoSHARE and GS:SFHS cohorts, 

duplicates within the identified potential participants were removed at each 
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expansion of the recruitment cohort, to prevent repeat invitations and 

inconvenience for both participants and the research team.  

Potential participants from GoSHARE were contacted by telephone or letter by 

the GoSHARE team to assess interest in the study. The details of those who 

voiced interest in participating were then passed to HIC, where their details 

(excluding genotype) could be added to the recruitment tracker for further contact 

by the research team. 
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Intervention and sampling schedule 

Participants attended the research centre on three occasions – at baseline, at the 

end of treatment period one and finally at the end of treatment period two. Blood, 

urine and stool samples were taken at each visit. Baseline HbA1c and U+Es, to 

exclude undiagnosed diabetes and renal impairment respectively, were 

processed as part of screening. U+Es were analysed at each subsequent visit to 

ensure no deterioration in renal function which could be a contraindication to 

ongoing metformin treatment. The remaining samples were processed and stored 

at the Clinical Research Centre for future analysis. 
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Baseline 

TREATMENT PERIOD ONE W/O TREATMENT PERIOD TWO 

End of week number: 

1 2 3 4 5 6 7 8 9 

Example 
Metformin 
dosing: 

 500
mg 
OD 

500
mg 
BD 

1000
/ 500 
mg  

1000
mg 
BD 

Nil 500
mg 
OD 

500
mg 
BD 

1000
/ 500 
mg 

1000
mg 
BD 

Blinded 
treatment 
(omeprazole 
or placebo) 

 1 cap 
BD 

1 cap 
BD 

1 cap 
BD 

1 cap 
BD 

Nil 1 cap 
BD 

1 cap 
BD 

1 cap 
BD 

1 cap 
BD 

Medical and 
drug history 

X          

BMI X    X     X 

Bloods  X    X (X)    X 

Urine X    X     X 

Stool X    X     X 

Symptom 
severity 
score 

 X X X X  X X X X 

Bristol stool 
chart 

 X X X X  X X X X 

Con Meds  X X X X  X X X X 

Adverse 
effects 

 X X X X  X X X X 

Table 12 Intervention and sampling schedule for the ImpOCT study 
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Randomisation 

The concurrent medication treatment order (omeprazole / placebo; placebo / 

omeprazole) was randomised across and within the genotypic groups, using a 

double randomisation. Therefore, within the two genotypes studied, there was 

randomisation of treatment order, but with equal numbers allocated to each 

treatment order within genotype. 

Tayside pharmaceuticals performed the double randomisation using 

www.randomization.com, and held the seed list until data locking.  

Table 13 Excerpt from the randomisation table, produced by Tayside Pharmaceuticals, to dictate 

concurrent medication treatment order. 

Clinical trials pharmacy were blinded to treatment order, and semi-blinded to 

genotype. They were informed of genotype “A” or “B” to determine the allocation 

of the appropriate treatment pack to the new participant, according to the pack 

information given by Tayside Pharmaceuticals. This enabled pharmacy to inform 

PACK ID Treatment 1 Treatment 2 OCT1 Status 

1 Placebo Omeprazole Combined type 0 

2 Omeprazole Placebo Combined type 0 

3 Omeprazole Placebo Combined type 2 

4 Placebo Omeprazole Combined type 2 

5 Omeprazole Placebo Combined type 2 

6 Placebo Omeprazole Combined type 2 
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the research team when interim analysis could be performed (see Statistical 

Methods). 

Participants and research team were blinded to genotype and treatment order 

throughout the study. Only after data locking was the treatment order and 

genotype for each individual revealed to the research team. 

Symptom severity score and dose titration 

Participants were followed-up on a weekly basis by telephone consultation, and 

monitored for symptoms of metformin intolerance. At the end of the treatment 

period, the maximum tolerated dose was documented as the highest dose 

achieved without symptoms of intolerance. 

Dose titration followed a predetermined guideline (figure 28, below), to ensure 

dose titration was objective across participants and members of the research 

team.  

The titration of metformin dose was determined by the participant-perceived 

tolerance, a calculated symptom severity score (Metformin Intolerance Symptom 

Severity Score, MISSS), and participant inclination. These dictated whether or not 

the dose of metformin should be titrated up, down or remain at the current dose. 
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Figure 28 Decision aid for metformin dose titration in the ImpOCT study 
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The “Metformin Intolerance Symptom Severity Score” (MISSS) was designed for 

use in this study, but will be applicable to future studies of metformin intolerance. 

To investigate mechanisms and management of metformin intolerance, we first 

need to be able to diagnose, assess severity and monitor symptoms of metformin 

intolerance. However, there are currently no research tools available specifically 

to assess metformin intolerance. While some questionnaire-based scoring 

systems, such as the Irritable Bowel Syndrome Severity Scoring System (IBS-

SSS) (299) or Severity of Dyspepsia Assessment (SODA) (300), cover some of 

the symptoms of metformin intolerance, some of their content is inappropriate for 

use in this setting. Therefore, we have designed a symptom severity score for 

metformin intolerance, which can be used to define the phenotype of intolerance 

in research, or to potentially guide clinical management of metformin intolerance. 

The Metformin Intolerance Symptom Severity Score (MISSS) (Appendix 2) 

consists of ten questions. The MISSS incorporates adherence, symptoms of 

nausea, vomiting, pain, bloating and diarrhoea. In the case of discontinuation of 

the medication, it considers previously tolerated dosing, or use of modified-

release preparations. Finally, it assesses the patient-perceived tolerance, as this 

will greatly impact upon compliance with treatment. The total maximum score is 

50, with the severity score sub-divided as follows: 0-10 = tolerant; 11-20 = mildly 

intolerant; 21-30 = moderately intolerant; >30 = severely intolerant. 

The MISSS was developed based on the well-documented, common GI 

symptoms of metformin intolerance. We asked participants of the 

Pharmacokinetics of Metformin Intolerance (POMI) study (213) to complete the 

score, to confirm their phenotype of “tolerant” or “intolerant” individuals. The study 

recruited ten white European participants with type 2 diabetes, who were 

phenotypically intolerant to metformin, with a matched cohort of ten metformin 

tolerant individuals (matched for age, gender and BMI), and is described in detail 

in Chapter 3. In the POMI study, we used the MISSS to confirm the participants’ 

phenotype, to show that the recruitment criteria used to define an individual as 

phenotypically intolerant had correctly identified those with gastrointestinal 
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symptoms of metformin intolerance. Figure 29, below, shows the mean MISSS 

scores for the two study cohorts in POMI, confirming that the recruited 

participants’ phenotype had been correctly identified. 

 

Figure 29 MISSS scores from participants of the POMI study. Data shown as mean with 95% 

confidence intervals. 

The use of the MISSS in the POMI study demonstrates that the score correlated 

with the metformin intolerance phenotype, and could therefore be used to identify 

individuals with metformin intolerance. As per Figure 28, the MISSS was used in 

the ImpOCT study to identify those with intolerance but also to guide titration of 

metformin dose according to the severity of symptoms. 

Statistical methods 

Sample size 

Accepting a difference of one pill of metformin at maximum tolerated dose as 

clinically significant, and assuming a SD = 1 with 90% power and 2-sided alpha 

of 0.05 in the sample size calculation, gives n = 13 for a standard crossover. As 

we have two cohorts A and B, then this would be 13 in each cohort. We chose a 
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target recruitment of 30 per cohort with interim analysis to allow the study 

recruitment to be halted if results are already showing significance. 

We chose to recruit thirty participants in each cohort as this is a feasible number 

when considering the availability of genotypic data in, for example, the GoDARTS 

database, and accounting for the estimated response rate to invitation letters of 

10%. We have based our initial estimation of the maximum sample size available 

on the known rate of reduced function allele incidence. The two most common 

reduced-function mutation have a combined frequency of approx. 25%, which 

means, for a person to have two reduced function alleles the likelihood is 0.25 x 

0.25 = 0.0625 i.e. approximately 6% of the population should have two reduced 

function OCT1 alleles. On the other hand, the probability of having no reduced 

function alleles is 0.6 x 0.6 = 0.36, i.e. approximately 36% of the population have 

a normal, or “wild type”, OCT1 genotype.  

Interim analysis 

This study used the frequentist method of Lan-DeMets which incorporates an 

alpha spending function to build interim analyses at two recruitment landmarks – 

10 v 10, and 20 v 20 and preserve the standard test for significance at the final 

analysis of p < 0.05. Interim analysis was carried out by Professor Peter Donnan, 

as an independent statistician with treatment allocation blinded. Using the alpha 

spending function of Lan-DeMets, meant that the initial interim analysis at 10 v 10 

would have had to reach significance of p < 0.0002 to halt the study, which it did 

not. Further interim analysis at 20 v 20 needed to reach significance of p <0.012, 

and again this was not reached. Advice was to complete the study to target 

recruitment of 30 v 30. Final analysis accepted statistical significance of p <0.05. 

Timing of analysis 

Analysis of final data commenced after last patient last visit was completed, and 

data entry was completed and locked. The statistical analysis plan was completed 

and signed by research team and statistician prior to analysis commencing. 
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Analysis methods 

Analysis was carried out using the statistical software “R Studio”. The data, where 

applicable, was assessed for normality using Shapiro-Wilks method and 

inspection of the distribution using QQ plots.  

As this is a cross-over study, with correlated data (i.e. the same person assessed 

on treatment 1 and 2), it is in essence a repeated measures / paired approach for 

treatment effect. Assessment of genotypic effect is an unpaired fixed effect in the 

model.  

The data were therefore analysed using mixed models, which contain both fixed 

effects (genotype, treatment, and period) and random (subject) effects. In the 

mixed model, the “y” outcome variable i.e. the response variable, is the maximum 

tolerated dose of metformin. This is an ordinal variable, therefore the R package 

“ordinal” was used for analysis (301). Alternatively, the outcome was transformed 

into a matrix for use in a generalised binomial model (data shown in Appendix 4: 

ImpOCT analysis). 

In our primary analysis, we considered the independent effects of treatment and 

genotype, and well as an interaction term of treatment*genotype to assess 

whether the effect of treatment differs by genotype.  

Secondary analyses included age, gender BMI and treatment order in the model, 

as potential contributing factors for intolerance. Further exploratory analysis was 

performed using generalised linear models (data in Appendix 4: ImpOCT 

analysis). 
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Results 

Recruitment flow chart 

Participants were initially recruited from GoDARTS, before expanding to 

GoSHARE and GS:SFHS. From the individuals in the GoDARTS cohort with 

genotypic information available, Health Informatics Centre (HIC) identified 4514 

individuals who met the phenotypic inclusion criteria. Of these, 315 were OCT1 

RF, and 2473 were wild type. A total of 543 invitation letters were sent, with 79 

individuals responding positively. Of those, 34 were consented and included in 

the study, with 2 participants withdrawing at the subject’s request. 

Recruitment expanded to GoSHARE, where HIC identified 6224 individuals who 

met the phenotypic criteria. Of these, 1118 individuals had genotypic information 

available, of whom 635 were OCT1 wild type, and 84 were OCT1 RF. After 

removal of duplicated potential participants from GoDARTS, a total of 145 

individuals were approached, with only 8 responding positively. Of these, 3 

individuals were consented, with 1 withdrawing at the subject’s request. 

Recruitment finally expanded to include GS:SFHS, in which 8388 individuals with 

genotypic data available matched the phenotypic criteria. Of these, 580 

individuals were OCT1 RF, and 4552 were wild type. A cohort list was passed to 

HIC, and 515 invitation letters sent, with 49 positive responses in total. Of these 

29 were consented with 2 withdrawing at the subject’s request.  

Recruitment is summarised in Figure 30, below. 
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          Figure 30 Flow chart of participant recruitment, from three bio-resources 
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Interim analysis did not reach the specified significance and the independent trial 

statistician advised recruitment should continue at each stage, to a final number 

of 30 v 30. Those who withdrew from the study (5 in total) were not included in 

final analysis, and were replaced with new participants. Unfortunately, our final 

participant withdrew prior to completing, so recruitment was re-opened at a late 

stage. Two individuals were recruited in an attempt to ensure that one would 

complete. In fact, both completed the study, hence a total of 61 participants 

completed the study. The breakdown of genotype and treatment order is shown 

in Figure 31: 

 

Figure 31 Breakdown of study population according to genotype and treatment order. Genotype 

A = OCT1 Wild Type; Genotype B = OCT1 Reduced Function; treatment order 1 = omeprazole 

followed by placebo; treatment order 2 = placebo followed by omeprazole. 
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Baseline characteristics 

The baseline characteristics of the ImpOCT study population are shown in Table 

14, below. Of the study population (n = 61), 30 were OCT1 wild type, and 31 

OCT1 RF. A higher proportion of the wild type group were female (67% vs 45%) 

but this was not statistically significant (p = 0.091). The genotype groups were 

well matched for age, but there was a significant difference in BMI, with the OCT1 

RF group having a higher median BMI (29 vs 26, p = <0.001). To our knowledge, 

there have been no reported associations between obesity and the SNPs 

included in the ImpOCT study. However, OCT1 polymorphisms are associated 

with higher total cholesterol and higher LDL levels (302). The difference in BMI 

highlights one of the difficulties of a double blind, recruit-by-genotype study, as 

we were not able to match on an individual basis without acquiring insight into 

participants’ genotype. 

Visualisation of the data 

The primary outcome, maximum tolerated dose (MTD), was determined as the 

highest dose the individual could tolerate with participant-perceived tolerance as 

“Tolerant” or “Mildly Intolerant”, along with a MISSS of <20, and the patient being 

 Wild Type OCT -/- p 

n 30 31  

Gender, F (%) 20 (67) 14 (45) 0.091 

Age (y) 63 (57-67) 62 (54-66) 0.509 

BMI 26.3 (24.1-28.1) 29 (26.5-31.8) <0.001 

Table 14 Baseline characteristics according to genotype. Data are median with IQR, unless 

otherwise stated. P value for Mann Whitney test for continuous data, or chi-square for count data. 
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willing to remain on the dose (as per dose titration guideline). The MTD was 

recorded as number of metformin 500mg tablets per day, i.e. 1500mg = 3 tablets. 

The MTD was then compared during concurrent omeprazole versus placebo.  

Wild type: 

Figure 32 shows the distribution of metformin tolerability in the OCT1 wild type 

cohort. The majority (18 out of 30, 60%) were able to tolerate maximum metformin 

dose (2000mg daily, 4 x 500mg tablets) during both concurrent omeprazole and 

placebo. Of those who experienced intolerance (12 out of 30, 40%), and did not 

reach the maximum daily dose of metformin during one or both of the treatment 

periods, there is a visible trend toward improved tolerance with concurrent 

omeprazole treatment. Of those experiencing symptoms of intolerance, only 3 out 

of 12 (25% of within genotype intolerants) had a higher MTD on placebo than 

omeprazole. The remaining 75% (9 of 12) showed improved tolerance when 

taking omeprazole. 

 

Figure 32 Actual maximum tolerated dose of metformin whilst taking placebo versus omeprazole 

for the OCT1 wild type group. Bubble size indicates number of individuals. 
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The trend towards improved tolerance on omeprazole is visually represented in 

the line graph below (Figure 33). Whilst the majority are able to take the maximum 

of 2000 mg daily in both treatment periods, the trend of the remaining individuals 

is towards a lower MTD on placebo. 

 

Figure 33 Direction of tolerance of OCT1 wild type individuals. Data have been "jittered" around 

the data point to reveal overlapping data. 

OCT1 RF 

Figure 34 shows the distribution of metformin tolerability in the OCT1 reduced 

function cohort. Again, the majority (20 out of 31, 64.5%) were able to tolerate 

maximum metformin dose (2000mg daily, 4 x 500mg tablets) during both 

concurrent omeprazole and placebo. Of those who experienced intolerance (11 

out of 31, 35.5%), and did not reach the maximum daily dose of metformin during 

one or both of the treatment periods, there is no visible trend toward improved 

tolerance with either concurrent treatment. Of those experiencing symptoms of 

intolerance, only 4 out of 11 (36.4% of within genotype intolerants) had a higher 
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MTD on placebo than omeprazole. However, a further 36.4% had a higher MTD 

on omeprazole then placebo, with the remaining 27.2% (3 of 11) had equivalent 

MTDs on both concurrent treatments. 

 

Figure 34 Actual maximum tolerated dose of metformin whilst taking placebo versus omeprazole 

for the OCT1 RF group. Bubble size indicates number of individuals. 

Figure 35, below, confirms visually that there is no obvious trend in MTD across 

treatments within the OCT1 RF genotype. 

 

Figure 35 Direction of tolerance of OCT1 RF individuals. Data have been "jittered" around the 

data point to reveal overlapping data.  

2021

21

1

21

10

1

2

3

4

0 1 2 3 4

Ac
tu

al
 M

TD
 w

hi
le

 o
n 

O
m

ep
ra

zo
le

Actual MTD while on Placebo

OCT1 Reduced function - Actual MTD Placebo v Omeprazole

0

1

2

3

4

Omeprazole Placebo

M
TD

Concurrent drug

OCT1 Reduced function



171 
 
Statistical analysis 

 

Testing for normality 

The data for age, and BMI were tested for normality using Shapiro Wilks method, 

and direct visualisation using QQ plots. While BMI is normally distributed across 

and within genotypes, age is not normally distributed. Therefore, direct 

comparison of groups as in baseline characteristics above, used non-parametric 

testing. 

 

Chi-Square Test 

The frequency of intolerance across the two genotypes was compared using a 

Chi-Squared test. The data were reduced to a binomial outcome i.e. success or 

failure, identifying individual as either tolerant or intolerant. If during either 
treatment period an individual did not reach the maximum tolerated dose of 

2000mg daily, they are “intolerant”. The chi-square contingency table is shown 

below: 

 Tolerant Intolerant Row total 

Wild Type 18 12 30 

Reduced function 20 11 31 

Column total 38 23 61 (grand total) 

The chi-square statistic is 0.1324, with a p value of 0.716 – i.e. no significant 

difference between genotypes, when considering tolerance as a binomial 

outcome. 
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Tolerance during each treatment was considered independently. The contingency 

table shows the presence or absence of metformin tolerance whilst on concurrent 

placebo: 

 Tolerant Intolerant Row total 

Wild Type 21 9 30 

Reduced function 20 11 31 

Column total 41 20 61 (grand total) 

 

For the above contingency table, the chi-square statistic is 0.208, with a p value 

of 0.648, showing no significant difference in genotype tolerance on placebo. 

The same test was performed for concurrent treatment with omeprazole: 

 Tolerant Intolerant Row total 

Wild Type 23 7 30 

Reduced function 23 8 31 

Column total 46 15 61 (grand total) 

The chi-square statistic is 0.05, with p value of 0.82, therefore there is no 

significant difference in tolerance between genotypes whilst on concurrent 

omeprazole. 
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McNemar Test 

The McNemar test was performed for each genotype, to assess for significance 

in the variation in tolerance within genotype. For R code and outputs please refer 

to Appendix 4: ImpOCT analysis. 

OCT1 wild type: 

OCT1 wild type 
Omeprazole 

Tolerant Intolerant 

Placebo 
Tolerant 18 3 

Intolerant 5 4 

The McNemar test did not identify any significant difference within the OCT wild 

type tolerance across treatments (p = 0.723).  

OCT1 reduced function: 

OCT1 Reduced function 
Omeprazole 

Tolerant Intolerant 

Placebo 
Tolerant 20 0 

Intolerant 3 8 

Again, the McNemar test does not identify any significant difference in metformin 

tolerability within genotype, across treatments (p = 0.248). 

Both the chi-square and McNemar test are useful, simple statistical tests, 

however they have numerous limitations. By applying them to the data from the 
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ImpOCT study, significant information is lost. Using chi-squared loses the detail 

obtained though the cross-over design, by simplifying into a binary outcome. The 

McNemar test allows comparison of treatment outcomes within genotype only. To 

compare the treatment outcomes both within and across genotypes, it is possible 

to use a Cochran-Mantel-Haenszel (CMH) test.  

Cochran-Mantel-Haenszel test 

The Cochran-Mantel-Haenszel test allows for the analysis of disease-exposure 

relationships within subgroups, or strata. In the ImpOCT study, the case / control 

refers to genotype, and exposure is to the concurrent treatment, with the strata of 

MTD in each exposure. The contingency table is populated as follows: 

 

 
 

Wild Type Reduced function 

  Placebo MTD Placebo MTD 

O
m

ep
ra

zo
le

 M
TD

 

 
0 1 2 3 4 0 1 2 3 4 

0 0 0 0 0 0 0 1 0 0 0 

1 1 0 0 0 0 0 1 2 0 0 

2 0 1 0 0 0 0 0 0 1 0 

3 0 1 1 0 3 0 0 1 2 0 

4 0 1 2 2 18 0 0 1 2 20 
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The CMH test identifies a significant difference (p =0.003) in the frequency of 

the outcomes across genotype and treatment. For R code / output, please see 

Appendix 4: ImpOCT analysis. 

This can be further investigated with the use of statistical modelling.  

Mixed effects model – gene-drug interaction 

Cumulative linked mixed models 

The data were modelled using the R package “ordinal” which uses cumulative 

linked mixed models, and accepts ordinal outcomes (301).  

The mixed model incorporates fixed (genotype and treatment) and random 

(subject) effects, with the ordinal outcome of maximum tolerated dose. The model 

uses Laplace approximation, and provides a means of model selection in the form 

of AIC, which is an estimator of relative quality of statistical models. 

The model of best fit (defined as lowest AIC) identifies both “Treatment” (p = 

0.008) and the interaction term “Genotype*Treatment” (p = 0.04) as significant 

within the model. The R code and output can be found in the Appendix 4: ImpOCT 

analysis.  

Similar to the CMH test, the model identifies a significant gene x drug interaction. 

To determine the effect size of this gene x drug interaction, it is necessary to 

perform sub-analysis of the study data according to genotype, and calculate the 

odds ratio of metformin tolerance from the model estimates. R code and output 

detailed in the Appendix 4: ImpOCT analysis. 

 

 

 

 



176 
 
Odds ratio 
 

Odds Ratio of 
Tolerance 

95% CI 

OCT1 WT, treated with 
placebo 

1.0 -  

OCT1 WT, treated with 
omeprazole 

4.02 0.8 – 20.8 

Table 15 Odds ratio of tolerance predicted with a cumulative linked mixed model, for OCT1 wild 

type individuals, using the ordinal package 

 

 
Odds Ratio of 

Tolerance 
95% CI 

OCT1 RF, treated with 
placebo 

1.0 -  

OCT1 RF, treated with 
omeprazole 

1.19 0.2 – 7.1 

Table 16 Odds ratio of tolerance predicted with a cumulative linked mixed model, for OCT1 

reduced function individuals, using the ordinal package 

Odds ratios can be calculated from the exponential of the model estimate for each 

factor, with 95% confidence intervals of the odds ratio calculated as the 

exponential of the CIs of the estimate.  

Although the sub-analysis does not reach statistical significance, OCT1 wild type 

individuals an odds ratio of metformin tolerance >4 while taking omeprazole (OR 
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4.08, 95% CI 0.8 – 20.8) compared to when they were not taking omeprazole. 

However, in OCT1 RF individuals the addition of omeprazole made no significant 

difference to the tolerance of metformin. It is this difference between the genotype 

response to omeprazole which is identified as a gene*drug interaction in the 

primary model. 

Secondary analyses of gender, age, and BMI effects 

In addition to genotype and treatment, our secondary analysis included genotype, 

treatment, age, gender, BMI or treatment order as fixed effects within the mixed 

model. Using the ordinal package to produce cumulative linked mixed models 

with each of the above as single fixed effects, only “Treatment” was significant 

independently.  

Of note, BMI has no effect on maximum tolerated dose. Given the significant 

difference in BMI between the genotype groups, this provides reassurance that 

the genotype*treatment effect identified by the model is not simply representing 

the difference in BMI. 

Comparing models, the model incorporating the interaction term of 

genotype*treatment is superior to treatment alone, as per analysis of variance 

comparison and demonstrated by a lower AIC. 

Subsequent models with the addition of age, BMI, gender or treatment order 

sequentially, to genotype*treatment, did not improve the model goodness of fit. 

Following univariate analysis of each term individually, clinically relevant 

interaction terms were then considered in the model, including interaction of 

genotype with age / BMI / gender, and interaction of treatment with age / BMI / 

gender. None of these terms were significant in the model.  
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Discussion 

Hypothesis Review  

Metformin uptake from the gastrointestinal tract is transporter dependent, with 

OCT1 accounting for approximately 25% of metformin transport. This cationic 

transporter is highly polyspecific and polymorphic, increasing the potential for 

both genetic variation and competitive inhibition to affect its functionality. Many 

commonly used drugs are substrates of OCT1, including proton pump inhibitors, 

certain anti-hypertensives, and analgesia such as codeine and tramadol. 

Many studies have been carried out to assess the role of OCT1 in drug-drug 

interactions between its substrates, and also to assess the impact of genetic 

variation on PK/PD of its substrates, as summarised in Table 8 and 9. One 

particular study of note, reported by Dujic et al (29), is the observational cohort 

study using GODARTS data which identified a gene x drug x drug interaction 

between OCT1, OCT1 inhibiting drugs, and metformin. The study reported a four-

fold increase in the odd ratio of metformin intolerance in individuals with OCT1 

RF genotype with concurrent use of OCT1 inhibiting drugs. The biological 

mechanism and frequency of genetic variation in the transporter, make OCT1 

variation a plausible mediator for metformin intolerance. 

The ImpOCT study, the first of its kind, is a recruit by genotype, double blind, 

placebo controlled cross-over interventional study to investigate this observed 

gene x drug interaction. No previous interventional study of OCT1 genotype has 

assessed impact on metformin tolerance. The study hypothesis was that 

individuals with OCT1 reduced function genotype would demonstrate a reduced 

metformin tolerance, compared to OCT1 wild type individuals, and that this 

difference in tolerance would be increased by the addition of concurrent treatment 

with OCT1 inhibiting medication, in the form of the proton pump inhibitor 

omeprazole. The study was successfully completed, recruiting a total of 61 

participants - 30 OCT1 wild type and 31 OCT1 RF individuals. Participants 

maximum tolerated dose of metformin was then assessed during a randomised 
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and double-blinded cross-over of concurrent treatment with omeprazole and 

placebo. 

Study Design 

The study design is interesting in its own right, and one which has since been 

adopted by other studies in the research centre at University of Dundee. The use 

of a double-blind, placebo controlled, cross-over study is a robust study design 

which increases the power of the study, due to: 

a) The use of paired data, or repeated measures. Each participant acts as 

their own control, and removes significant confounding factors seen in 

parallel studies. 

b) Double-blinding removes bias from both the research team and 

participant. 

c) Placebo-control ensures the effect seen is not the placebo effect, in this 

case, the drug burden alone which increases intolerance. 

The addition of the recruit by genotype model further increases the power of the 

study, as to perform this study in an unselected population, in the hope of 

identifying a gene interaction, the sample size would have been significantly 

larger, with the associated time and financial cost (187, 188).  This study design 

can be easily adapted and re-used for other transporters and their substrates.  

Primary analysis: No effect of OCT1 genotype on metformin tolerance  

The ImpOCT study did not identify an OCT1 gene effect on metformin intolerance. 

There was no significant difference in the frequency of tolerance between 

genotypes (p = 0.72). This is in contrast to the results from Dujic et al. 

observational cohort study, in which OCT1 loss of function variants negatively 

impacted tolerance. 
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When considering the mixed model, this study has successfully identified, for the 

first time in an interventional study, a gene x drug interaction between the OCT1 

transporter, concurrent use of omeprazole and metformin tolerance (p = 0.04).  

Interestingly, the direction of this interaction is opposite to our initial expectation. 

The hypothesis predicted that OCT1 RF individuals would have a lower tolerance 

than OCT1 wild type, and that treatment with omeprazole will reduce the tolerance 

of the OCT1 RF individuals further. 

Our results indicate that OCT1 wild type group benefit from an improvement in 

their metformin tolerance (OR of tolerance 4.02, 95% CIs 0.7 – 20.8) when treated 

with omeprazole. The improvement in tolerance with the addition of omeprazole 

may be in keeping with clinical instinct – an individual with symptoms of metformin 

intolerance such as nausea, may be expected to benefit from a proton pump 

inhibitor.  

However, while the interaction term of genotype * treatment is significant in the 

model (p = 0.04), when the data is subdivided and analysed within genotype to 

further investigate the interaction, the effect of treatment is no longer significant 

(p = 0.1). This is potentially due to the loss of power associated with the 

subdivision of the study group, and therefore sample size. However, it may be 

due to the assumptions of the model, which assumes normal distribution of the 

ordinal outcome. The outcome of the study, maximum tolerated dose, will not be 

normally distributed, as the participants’ maximum tolerated dose was limited to 

four tablets of metformin daily. This is because this maximum dose is clinically 

relevant, and to increase the dose beyond the maximum dose used in a clinical 

setting would not be ethical. The outcome is therefore left-skewed, resulting in a 

large variance within the data.  

In contrast, the OCT1 reduced function group do not benefit from the addition of 

PPI, with no significant difference in metformin tolerance with or without 

omeprazole. The OCT1 reduced function group may therefore be less likely to 
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continue omeprazole treatment if no clinical improvement was noted, which in 

observational data, may appear as a reduction in the number of individuals 

treated with concurrent omeprazole and metformin. It is worth noting that, while 

omeprazole is an inhibitor of OCT1, it is not a substrate for this transporter (285). 

Therefore, it is unlikely that the difference in response to omeprazole between 

genotypes would be explained by reduced uptake of omeprazole. 

At first glance, the results of this randomised placebo-controlled trial would appear 

to be contradictory to those of the observational data reported by Dujic et al (29). 

However, if considering OCT1 wild type individuals on omeprazole as the 

reference group, comparison of the less tolerant OCT1 RF individuals treated with 

omeprazole could be interpreted as a genotype effect when considered in 

isolation, which would be consistent with the previously reported observational 

data. However, by comparing across treatment with omeprazole and placebo, our 

results indicate that rather than a reduction in tolerance for OCT1 RF, there is an 

improvement in tolerance in the OCT1 wild type group. 

Nonetheless, the gene x drug interaction identified by the ImpOCT study is 

clinically relevant and applicable. It suggests that in patients with metformin 

intolerance, a trial of concurrent omeprazole may, in up to 36% of cases (i.e. the 

OCT1 wild type individuals), improve the symptoms of intolerance, which could 

improve compliance and allow up-titration and optimisation of the metformin dose. 

In those whose symptoms do not improve with omeprazole, it may be that they 

are OCT1 RF, and if intolerant, unlikely to benefit from concurrent PPI. 

It is anticipated that, in the near future, access to patient’s genetic information will 

be available to guide clinicians at the time of diabetes diagnosis. In this case, 

patients identified as OCT1 wild type could be offered omeprazole when 

prescribed metformin and reporting symptoms of intolerance. 
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Secondary analysis – Gender, Age and BMI. 

In addition to the gene x drug interaction, secondary analyses considered the 

addition of gender, age and BMI into the model, to assess for an improvement in 

model fit. Using mixed models, none of these terms were significant in the model, 

neither independently nor in addition to the genotype x treatment interaction term. 

However, when sub-analysis was performed using generalised linear models, the 

addition of age improved the fit of the model, without being statistically significant 

within the model. This data is shown in the Appendix 4: ImpOCT analysis. 

Limitations 

We acknowledge that the ImpOCT study has a number of limitations. Firstly, we 

developed a Metformin Intolerance Symptom Severity Score (MISSS) to identify 

metformin intolerance and guide metformin titration. Although this score is a new 

research tool, it is grounded in pre-existing clinical knowledge of metformin 

intolerance and was used in combination with the participant’s perceived 

intolerance and their willingness to increase their metformin dose. This is 

equivalent to dose titration in clinical practice, when the physician will enquire 

about the physical symptoms of intolerance but will ultimately be guided by the 

individual and their willingness to increase the dose. The MISSS had previously 

been used in the Pharmacokinetics of Metformin Intolerance (POMI) study, where 

an individual’s score was strongly correlated with their metformin tolerance 

phenotype. 

Secondly, the sample size of the study was small. However, the study was 

powered to identify a difference in the maximum tolerated dose of 500mg of 

metformin. Recruitment by genotype helped to reduce the sample size required 

to identify a significant difference. In fact, we recruited a larger study population 

than indicated from sample size calculation, but incorporated interim analysis to 

allow for cessation of recruitment if significance was reached in a smaller study 

population. We are confident, therefore, that there is no significant difference in 

metformin tolerance between OCT1 genotypes, and that the lack of significant 
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difference is not due to a lack of power. Although the study failed to identify a 

genotype effect on tolerance, it has identified a gene * drug interaction, which is 

clinically relevant and applicable, and is not inconsistent with the observational 

data reported by Dujic et al (29). 

The ImpOCT data were analysed using a mixed model, among other statistical 

methods. There are numerous types of mixed models, and it is often a challenge 

to identify the model which is best suited to the data. While no model is perfect, 

the model used was a regression model for ordinal data, and was chosen based 

on its ability to handle ordinal outcomes, its inbuilt measures of model “goodness 

of fit” and the ability to compare models using ANOVA. The resulting model has 

identified a significant gene * drug interaction. The use of other models, such as 

generalised linear mixed models and generalised linear models as detailed in 

Appendix 4, have also shown the gene * drug interaction, which acts as a form of 

internal replication, and confirms that the interaction is not model dependent. 

It is interesting that the results of this randomised placebo controlled study appear 

to be at odds with the observational data reported by Dujic et al (29). However, 

this may be because the observational study used a conglomerate of many OCT1 

inhibiting drugs to identify an interaction with metformin, where this study used 

only a single drug – omeprazole. PPIs were associated with an increase in the 

OR of metformin intolerance (1.94) in the observational data, but this increase 

was not as marked as, for example, the increase in intolerance associated with 

citalopram, verapamil, or codeine (Figure 36). These more potent inhibitors of 

OCT1 may have produced a different result if adopted for the ImpOCT study drug. 

However, it would not be ethical to treat participants with citalopram or verapamil 

unless clinically indicated, due to potential side-effects. Codeine may have 

caused gastrointestinal side-effects independent of metformin, and has the 

potential to cause opioid dependence.  The decision to use a PPI as the study 

drug was based on: the safety and tolerability profile of the drug class; availability 

of PPIs over-the-counter; and the frequency with which PPIs are prescribed, as 

any interaction identified would therefore affect a greater number of patients. 
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However, it may be that the beneficial effects of PPI on indigestion and 

gastrointestinal symptoms may dominate those symptoms related to OCT1 

inhibition. 

 

 

The ImpOCT results do highlight potential limitations of observational cohort 

studies. Causal associations will always involve correlation, but the identification 

of a correlation does not necessarily imply causation (303). The use of 

retrospective pharmacoepidemiological data to assess, for example, intolerance, 

depends on the use of surrogate endpoints or “proxy” phenotypes based upon 

prescribing patterns. Therefore, using observational data may lead to 

misidentification of metformin intolerance. There may also be confounding by 

indication in the observed increase of metformin intolerance in those prescribed 

PPIs, as PPIs may be prescribed in response to the symptoms of intolerance. 

Figure 36 Odds ratios of intolerance from commonly prescribed OCT1 inhibiting drugs, as 

demonstrated by Dujic et al. Reproduced with permission. 
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Conclusion 

The ImpOCT study did not identify an OCT1 genotype effect on metformin 

tolerance per se. However, it has, for the first time in an interventional study, 

identified a gene * drug interaction between OCT1, omeprazole use, and 

metformin tolerance. In OCT1 wild type individuals, we identified an improved 

metformin tolerance when treated with omeprazole. Although this result is not fully 

consistent with previously reported observational data, this may be due to the 

methods adopted to identify intolerance in the retrospective data, or confounding 

by indication of the PPI prescription.  

The observed interaction is clinically relevant, applicable and of potential benefit. 

The results indicate that PPI treatment may be of benefit to a subgroup of those 

who experience metformin intolerance, by increasing their maximum tolerated 

dose of metformin. This could lead to improved compliance; allow for optimisation 

of metformin dosing and known clinical benefits of metformin therapy. 
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Response of individuals with Ataxia-Telangiectasia to 

Metformin and Pioglitazone (RAMP) study 

 

Contributions: 

 

The following chapter details the “Response of individuals with Ataxia-

Telangiectasia to Metformin and Pioglitazone” (RAMP) study. 

I wrote the study protocol with Prof Ewan Pearson, with guidance from previous 

studies by Prof Margot Umpleby from the University of Surrey.  

All participant recruitment, study visits, sample and data collection was completed 

by me, with the assistance of Research Nurses Louise Cabrelli and Heather 

Loftus. 

In collaboration with Matthew Marzetti and Dr Stephen Gandy from Medical 

Physics at the University of Dundee, I helped to develop a new method for 

assessing fat distribution using MRI. The images obtained were analysed using 

this new method by Matthew Marzetti. I performed statistical analysis on the 

resulting data. 

Glucose kinetics and beta cell modelling was performed by Dr Andrea Mari, from 

the National Research Council, Padua, Italy. I performed all statistical analysis on 

the resulting data. 

I am the sole author of this chapter.
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Introduction 

The field of metformin research continues to expand, as new potential clinical 

applications arise. However, to achieve personalised medicine, there is an ever-

growing need for more detailed understanding of the genetics of drug response 

for metformin. Pharmacogenetics can improve our understanding of the genetics 

of drug response in a number of ways, as discussed in Chapter 1. Due to the 

development of biobanks, and the increase in availability and reduction in cost of 

genotyping, genome-wide association studies (GWAS) are increasingly used to 

provide genetic insight into drug function. GWAS employ a hypothesis free, 

unbiased approach, to identify genetic variants associated with a phenotype of 

interest, and can therefore identify novel drug targets or clarify a drug’s 

mechanism of action (168). Despite metformin’s long history of clinical use, the 

lack of certainty regarding mechanism of action leads to difficulty when 

investigating the inter-individual variability in glycaemic response to and 

tolerability of metformin. 

GWAS of glycaemic response to metformin  

In 2011, Zhou et al applied a genome-wide association approach to investigate 

glycaemic response to metformin, hoping to gain insight into the mechanism of 

metformin’s action, and to identify genetic variants that may predict efficacy or 

adverse effects (170). The GWAS was performed on genetic data from 1024 

metformin-treated patients of European ancestry, from the GoDARTS cohort. 

There were 14 SNPs with p-value <1*10-6, which were in strong linkage 

disequilibrium (LD) on chromosome 11q22. The SNP most strongly associated 

with the phenotype of treatment success (pre-defined as HbA1c of <7% within 18 

months of commencing metformin therapy) was rs11212617, with an odds ratio 

of 1.35 (95% CI 1.22 – 1.49) for treatment success, and a genome wide 

significance of p = 2.9 x 10-9. This result has been replicated in an independent 

set of 1783 GoDARTS participants, in 1113 UKPDS participants, and in a meta-

analysis of these, including an additional 1365 individuals from three cohorts 
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(DCS; Rotterdam Study; CARDS Trial) (304). The functionality of this ATM SNP 

is not yet known. The SNP of interest falls within a large block of LD which 

includes a number of genes, of which the Ataxia-Telangiectasia Mutated (ATM) 

gene was identified as a possible candidate for metformin response.  

This chapter describes the “Response of individuals with Ataxia-Telangiectasia to 

Metformin and Pioglitazone (RAMP)” study, which was designed to further 

investigate the potential link between the ATM gene and glycaemic response to 

metformin. 

ATM gene and encoded protein kinase 

ATM is located on human chromosome 11q22-q23 (305) and is made up of 66 

exons (four non-coding and 62 coding) spanning 150 kb. The ATM gene encodes 

ATM, a serine / threonine protein kinase belonging to the phosphatidylinositol 3 

kinase-like kinase (PIKK) family. ATM is involved in the coordination of cellular 

responses to DNA damage, specifically double-strand DNA breaks (DSBs). ATM 

interacts with MRN complex at the site of the DNA break, and initiates DNA end 

resection in preparation for repair via the homologous recombination pathway 

(306). ATM is therefore predominantly found in the nucleus, with a small 

proportion of the protein in the cytoplasm. Along with DNA damage repair, ATM 

is involved in cellular pathways of oxidative stress and metabolism including 

insulin signalling (306).  

The hypothesis that ATM is the candidate gene associated with metformin 

response was based upon the following evidence linking the ATM gene with 

metabolism: 

1. ATM deficiency and diabetes 

Homozygous loss of function mutations in the ATM gene result in the rare 

neurodegenerative condition Ataxia-Telangiectasia (A-T, discussed in detail 

below), which is associated with insulin resistance, diabetes and fatty liver 

disease. This association between the loss of function of ATM and insulin 
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resistance in humans supports ATM as a potential candidate gene of those 

identified by the GWAS of metformin response.  

2. ATM and AMPK 

The ATM protein kinase is involved in the activation of AMPK (306-308). As 

discussed in the introduction of this thesis, AMPK activation is an established 

pathway of metformin’s mechanism of action. ATM is activated by reactive oxygen 

species (ROS) in cell cytoplasm, to regulate protein synthesis, cell survival and 

autophagy. Activation of ATM by ROS, leads to phosphorylation and activation of 

LKB1, which subsequently activates AMPK (306). The mechanism of metformin 

activation of AMPK by inhibition of complex 1 of the respiratory chain, is also 

thought to be LKB1-dependent (309, 310).  

However, IGF-1 stimulates phosphorylation of tyrosine residues in the ATM 

molecule, which results in phosphorylation of AMPK-alpha subunit via in an LKB1-

independent manner (311). This ATM-dependent, LKB1-independent pathway of 

AMPK phosphorylation has been implicated in the mechanism of action of the 

diabetes drug AICAR (307). 

Of note, ATM is involved in the regulation of mitochondrial function. There is 

abnormal structural organisation and intrinsic dysfunction of mitochondria in A-T 

cells, which demonstrate reduced mitochondrial respiratory activity, resulting in 

continuous oxidative stress (312), a known contributor to the development of 

diabetes. 

3. ATM and insulin signalling 

A-T is associated with insulin resistance and glucose intolerance. This may be 

due to the interaction of ATM with various components of the insulin signalling 

pathway, from translational activity to cellular glucose uptake.  

Insulin and IGF-1 stimulate protein synthesis via ATM-dependent phosphorylation 

of eIF-4E-binding protein 1 (4E-BP1), which releases eIF-4E – a translation 
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initiation factor (313). ATM-deficiency could therefore reduce translational activity, 

resulting in poor growth, metabolic abnormalities and insulin resistance. 

p53 is a tumour suppressor, which is also involved in the regulation of 

transcriptional activity and the expression of genes involved in metabolism, 

mitochondrial respiration, glucose transport, adipocyte function and glucose 

homeostasis (314). ATM phosphorylates p53 at a site that regulates 

transcriptional activity, and mice with germ line mutation of this specific 

phosphorylation site have increased metabolic stress, impaired glucose tolerance 

and insulin resistance (314). 

In a mouse model of A-T, in vitro studies have shown that macrophages and 

hepatocytes have decreased insulin receptor substrate (IRS) expression, 

specifically mRNA and protein levels of IRS-2 (315). ATM also regulates the 

transcriptional activity of cAMP response element binding protein (CREB), which 

induces IRS-2. Inactivation of IRS-2 leads to insulin resistance, impaired insulin 

secretion, and reduced beta cell survival (316, 317). In ATM-deficient mice there 

is also increased phosphorylation of IRS-1 by Jun N-terminal kinase (JNK), which 

disrupts insulin signalling (315), and contributes to insulin resistance. 

Reduced IRS-2 expression or activation results in a reduction in 

phosphatidylinositol-3-kinase (PI3k) activity – one of the most important pathways 

of insulin signalling – and subsequently decreased AKT phosphorylation, which 

impedes insulin signalling (315, 318). AKT kinase (also known as protein kinase 

B) promotes cell proliferation and survival in response to insulin stimulation, and 

is required for insulin-induced translocation of glucose transporter 4 (GLUT4) to 

the plasma membrane. GLUT4 is the primary transporter of glucose into cells, 

allowing glucose to move down the concentration gradient into the cell cytoplasm, 

where it is quickly phosphorylated to glucose-6-phosphate, thereby maintaining 

the glucose gradient. In mouse muscle cells transfected with kinase dead ATM, 

there is inhibition of GLUT4 translocation to the cell surface in response to insulin 
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(319), resulting in a reduction in glucose uptake. Disruption of GLUT4 is known 

to cause insulin resistance and glucose intolerance (320). 

4. ATM-deficient mice and insulin sensitivity 

In ATM +/- mice, hyperinsulinaemic euglycaemic clamp data demonstrate 

reduced insulin-associated suppression of endogenous glucose production, in-

keeping with hepatic insulin resistance (315). Similarly, oral glucose tolerance 

testing (OGTT) and insulin tolerance testing (ITT) of high-fat diet fed ATM +/+, 

ATM +/- and ATM -/- mice confirmed that the lack of ATM is associated with 

glucose intolerance and insulin resistance. These ATM-deficient mice developed 

a metabolic syndrome phenotype, with elevated blood pressure, increased 

adiposity (specifically intra-abdominal fat) with decreased adiponectin levels 

compared to the ATM +/+ mice, despite no significant difference in weight or 

metabolic rate (measured by indirect calorimetry) (315). However, fasting 

cholesterol, triglycerides and non-esterified fatty acids (NEFAs) did not differ 

significantly between genotypes (315). 

In contrast, another study of ATM-deficient mice reported normal fasting insulin 

sensitivity from clamp data, but impaired insulin secretion and an age-related 

decrease in insulin and C-peptide levels, resulting in hyperglycaemia in older 

animals (316). The OGTT data from this study highlighted a delay in glucose-

stimulated insulin secretion in the ATM-deficient mice (316). The authors 

hypothesised that repeated delay in insulin secretion in response to glucose load 

would result in recurrent episodes of transient hyperglycaemia, which could 

aggravate β-cell dysfunction, with progression to β-cell failure and reduced insulin 

secretion in the older animals (316). 

Ataxia-Telangiectasia 

Ataxia-telangiectasia (A-T) is a rare, autosomal recessive condition caused by 

homozygous loss of function mutations in the ATM gene (239), affecting between 

1 in 40,000 to 100,000 people worldwide (321), increasing in areas of 
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consanguinity. Over 400 distinct genetic mutations have been described in the 

ATM gene (322), 85% of which are null mutations resulting in truncation of the 

protein and total absence of ATM kinase activity. Missense and splice mutations 

result in reduced kinase activity (323). It is estimated that 1 in 100 people are 

carriers of an ATM mutation in Western populations (324). In A-T, most patients 

are compound heterozygotes, inheriting a distinct mutation from each parent 

(322). Parents of individuals with A-T (obligate heterozygotes), although generally 

healthy, have increased risk of certain cancers (breast and gastrointestinal) and 

ischaemic heart disease (325). 

Often referred to as ATM Syndrome (323), A-T is a complex DNA damage 

response (DDR) syndrome, with significant variation in the age of onset, 

constellation and severity of features (239). The severity of an individual’s 

phenotype is thought to correlate with their genotype and degree of residual ATM 

kinase activity (326, 327). The different presentations are broadly categorised 

according to severity, typically “classic” (no residual kinase activity) and “variant” 

(residual kinase activity).  

A-T is characterised by: progressive cerebellar ataxia often requiring wheelchair 

assistance by adolescence; telangiectasia (classically ocular); oculomotor 

apraxia; immunodeficiency associated with recurrent respiratory infections; 

progeria; sensitivity to ionising radiation; predisposition to cancer, typically 

lymphoma or leukaemia; poor growth; gonadal atrophy; and delayed puberty.  

A-T is also associated with insulin resistance, diabetes and fatty liver disease, 

which highlighted ATM as a gene of interest when considering the GWAS of 

metformin response. 

Ataxia-telangiectasia and insulin resistance 

A case series of 8 individuals with ataxia-telangiectasia reported in 1970, 

described an “unusual” form of diabetes in 5 of the patients (328).  The authors 

describe hyperglycaemia without ketosis or glycosuria, with markedly increased 
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insulin levels in response to administered glucose, and stunted glucose response 

to both endogenous and exogenous insulin, in-keeping with insulin resistance 

(328). Interestingly, the authors also comment on hepatic dysfunction of unknown 

aetiology in all 5 individuals - likely fatty liver disease. It has been suggested that 

the insulin resistance seen in A-T is associated with reduced affinity of the insulin 

receptor for insulin, caused by inhibitors of insulin binding (328, 329). However, 

as detailed above, ATM is now known to interact with the insulin signalling 

pathways in numerous ways. 

To confirm the case reports of insulin resistance in A-T, a collaborative study 

between Papworth hospital and the University of Dundee compared OGTT data 

from 10 non-diabetic individuals with A-T and 10 healthy controls (330). The two 

groups were well matched for age, gender and BMI. The fasting glucose and 

fasting insulin concentrations were comparable in the two groups, however after 

glucose load the individuals with A-T had higher, prolonged glucose excursions 

despite increased insulin levels (330). This, along with the calculated Matsuda 

Index (a measure of insulin sensitivity), confirmed that the non-diabetic individuals 

with A-T were more insulin resistant than the control cohort. 

Figure 37 OGTT data from A-T (solid line) and healthy controls (dashed line). Reproduced with 

permission from Connelly et al (330). 
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ATM deficiency and response to metformin 

Further investigation into the link between the ATM gene and metformin response 

followed. Unpublished data from the McCrimmon lab at the University of Dundee, 

demonstrate that ATM (+/-) mice were markedly hyperglycaemic compared to 

wild type mice. However, euglycaemia was restored by metformin treatment, as 

shown in Figure 38. 

Figure 38 Area under the glucose concentration time curve from glucose tolerance testing in wild 

type (WT) and ATM heterozygote (ATM) mice, with and without metformin (MET). Reproduced 

with permission, from Gallagher et al, unpublished data. 

This observed improvement in glycaemia in the ATM +/- mice could support the 

hypothesis that the ATM gene is linked to metformin response. 

ATM and adipocyte function 

As well as insulin resistance, Takagi et al noted that ATM -/- mice exhibited 

abnormal adipose distribution, with decreased intrascapular and subcutaneous, 

but increased visceral adipose tissue (238). This could be compared to the human 

metabolic syndrome, in which there is increased accumulation of visceral fat 
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associated with insulin resistance. Alternatively, this phenotype may be more 

similar to lipoatrophic diabetes, in which abnormal development of adipose tissue 

leads to impaired secretion of adipokines – a family of hormones secreted by 

adipose tissue, including adiponectin and leptin.  The ATM -/- mice had reduced 

adiponectin levels, which is in-keeping with insulin resistance (331, 332). 

Interestingly, low levels of leptin are reported in the ATM knockout mice, which, 

as in congenital leptin deficiency, could cause hyperphagia, insulin resistance and 

hyperlipidaemia (333). 

In vitro studies using mouse embryonic fibroblasts (MEFs) to investigate the 

observed abnormal adipocyte distribution and function in ATM knockout mice, 

demonstrate failure of adipocyte differentiation, due to a loss of ATM-dependent 

transcriptional activation of C/EBPα and PPARγ expression (238). However, 

adipocyte differentiation was restored in ATM -/- MEFs when treated with the 

PPARγ agonist rosiglitazone, as demonstrated by an increase in C/EBPα on 

western blot, and increased lipid visible on Oil Red O staining. Treatment with 

pioglitazone improved glucose tolerance and increased serum adiponectin 

concentration in the ATM -/- mice, indicative of a restoration of adipocyte function 

(238).  

While metformin improved glucose tolerance and insulin sensitivity in this mouse 

model of ATM-deficiency, it did not impact upon the adiponectin levels, 

suggesting that metformin improved the glycaemic response through an 

adipocyte-independent pathway (238). 

Pioglitazone 

Pioglitazone belongs to the thiazolidinedione (TZD) drug class, also known as 

glitazones, which are a family of anti-hyperglycaemia drugs designed to treat type 

2 diabetes. First reported by Takeda Pharmaceuticals in 1980, ciglitazone was 

the first compound of the class. In studies of mouse models of insulin resistance, 

ciglitazone lowered blood glucose without an increase in insulin secretion. In fact, 
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the insulin concentration in these hyperinsulinaemic animals was decreased, 

indicating an improvement in insulin sensitivity (334).  

Since then, multiple compounds have been developed in the glitazone class, but 

only three have reached clinical use since the 1990s – pioglitazone (335, 336), 

rosiglitazone (336, 337) and lobeglitazone (338). Pioglitazone is the only drug of 

this class available in the UK, since rosiglitazone was banned from use in 2010 

due to associated increased risk of coronary heart disease, and consequentially, 

death (339).   

Pioglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) 

agonist. PPARs are nuclear receptors, which act as transcription factors for over 

100 genes, playing an important role in carbohydrate and lipid metabolism. 

Pioglitazone is currently licensed for use in type 2 diabetes as an anti-

hyperglycaemia drug, used alone; in combination with metformin, a sulphonylurea 

or both; as well as alongside insulin (340). It is available as a combination with 

metformin. More recently, pioglitazone has been suggested for the 

pharmacological management of non-alcoholic steatohepatitis (NASH) (341, 

342), as pioglitazone is associated with a reduction in inflammation, steatosis and 

necrosis (341).  

Incidence of heart failure increases when pioglitazone is used in combination with 

insulin, especially in patients with history of risk factors such as myocardial 

infarction. The MHRA advise that pioglitazone use is therefore contraindicated in 

individuals with a history of heart failure, and should be discontinued if there is 

evidence of deterioration in the cardiac status (340). If response is inadequate at 

3-6 months, treatment should be discontinued (340). Of interest, and not included 

in the BNF, is the modestly increased risk of any pneumonia or lower respiratory 

tract infection associated with long-term use of TZDs (343).  
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Response of individuals with Ataxia-telangiectasia to Metformin and 

Pioglitazone (RAMP) study 

The RAMP study was designed to investigate the link between the ATM gene and 

metformin response, by studying individuals with A-T compared to healthy 

controls. However, due to the reported improvement in adipocyte function and 

insulin resistance associated with thiazolidinedione treatment in ATM knockout 

mice, it was decided that the RAMP study should include pioglitazone as a 

comparator drug alongside metformin, to assess response to these commonly 

prescribed diabetes drugs in humans with A-T, and how their response compares 

to healthy controls. 

The RAMP study therefore recruited individuals with A-T and healthy controls for 

an open label crossover study, in which participants were initially treated with 

metformin, followed by pioglitazone.  
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Hypothesis and Aims 

The study hypotheses were: 

1. Individuals with A-T are insulin resistant compared to healthy controls. 

2. Individuals with A-T have evidence of adipocyte dysfunction and abnormal 

distribution of adipose tissue, as in ATM-knockout mice. 

3. Individuals with A-T have an exaggerated response to metformin compared to 

the general population, based upon the GWAS data described (170), as well 

as mouse data, and anecdotal evidence of metformin treatment in patients 

with diabetes and A-T.  

4. Pioglitazone treatment improves the insulin resistance associated with A-T, 

based upon the mouse model of A-T discussed above (238). 

 

The objectives of the RAMP study were therefore: 

a. Further characterise the insulin resistance seen in Ataxia-telangiectasia. 

b. Assess adipocyte function and adipose distribution in A-T and controls through 

measurement of adipokines and MR imaging of fat distribution. 

c. Compare the change from baseline in insulin sensitivity during metformin 

treatment between the A-T and control groups. 

d. Compare the change from baseline in insulin sensitivity during pioglitazone 

treatment between the A-T and control groups. 

e. Compare the change in insulin sensitivity during metformin and pioglitazone 

treatment in A-T individuals, to identify the superior treatment for the insulin 

resistance of A-T. 
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Materials and Methods: 

Ethics and funding 

The Response of individuals with Ataxia-Telangiectasia to Metformin and 

Pioglitazone (RAMP) study was conducted at the Clinical Research Centre at 

Ninewells Hospital, Dundee, between September 2016 and August 2017. It was 

co‐sponsored by the University of Dundee and NHS Tayside, with ethical 

approval granted by the East of Scotland Research Ethics Committee. The study 

was conducted in accordance with the Good Clinical Practice guidelines, and the 

Declaration of Helsinki.  

The study was registered on http://clinicaltrials.gov (identifier NCT02733679). 

Formal written informed consent was obtained from each individual prior to 

inclusion. 

Study design  

This non-randomised, non-blinded, open label crossover study compared how A-

T patients and ‘healthy’ controls responded to two commonly used diabetes drugs 

– metformin and pioglitazone.  

The total time in study was approximately 17 weeks, with two eight week 

treatment periods, separated by a minimum of one week washout period. 

Treatment or washout periods could be extended where necessary to 

accommodate flights and hotel availability, due to the national recruitment 

required for the study.  

During treatment period one, participants were treated with metformin, titrated to 

1000mg twice daily over the first four weeks, remaining on maximum dose for the 

remainder of the treatment period. During treatment period two, participants were 

treated with pioglitazone, titrated to 30mg once daily over the first two weeks, 

continuing on 30mg daily for the remainder of the treatment period. Each 

participant had three study visits to the Clinical Research Centre in Ninewells 



200 
 
Hospital, Dundee – visit 1 for screening, consent and baseline investigations, visit 

2 after metformin treatment, and visit 3 after pioglitazone treatment.  

Each visit lasted for 1.5 days – one “half” day for baseline bloods (including U+Es, 

LFT, leptin and adiponectin) and preparation for the tracer study, followed by a 

full day visit for a dual tracer mixed meal test with indirect calorimetry (see below). 

During the baseline visit, the half day visit also included MR imaging, and fat 

biopsy. Throughout the study, individuals were contacted weekly by telephone to 

ensure they were tolerating their medication without any side effects, and to 

advise on dose titration. 

 

Figure 39 Flow diagram of the participant journey through the RAMP study 
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Recruitment  

Participants were recruited from across the UK, using various media.  

A-T is a rare condition, therefore recruitment for the A-T participants was on a 

UK-wide basis. The A-T group were either recruited from the national A-T clinic 

in Papworth Hospital, Cambridge or via the A-T Society - a charity involved in 

raising the awareness of A-T, supporting research into A-T, and providing care 

and support for individuals and families living with A-T.  

Posters and information leaflets were displayed at the national clinic. Clinicians 

were asked to identify patients who fit the inclusion criteria for recruitment and 

provide them with information regarding the study, if they were interested in taking 

part.  

The A-T society published information regarding the study on their website and in 

their magazine. They provided the opportunity to speak to members of the charity 

at their annual “Family Day”, primarily to inform their members of the planned 

study, to garner interest and receive feedback on feasibility of the study design. 

Latterly, the charity directly approached their members who fit the inclusion 

criteria, sending invitation letters, and prompting families to contact the research 

team if interested. 

Control participants were recruited from the Tayside area, or via the “Bring a 

Buddy” scheme. In Tayside, posters were displayed around Ninewells Hospital 

and Medical School, and group emails were sent to the medical students from the 

University of Dundee, to advertise the study. Permission was granted for 

recruitment of controls from the Genetics of Diabetes Audit and Research Tayside 

Study (GoDARTS) cohort, however this was never used. 

One unique recruitment strategy employed by the RAMP study was the “Bring a 

Buddy” scheme. This enabled participants with A-T to identify their own “control”, 

who would then accompany them to Dundee and participate in the study. The 
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suggested “Buddy” could not be a relative, nor have A-T, but ideally was the same 

age and gender. We asked that the Buddy was similar in size to the A-T 

participant, in an attempt to control for BMI.  

The “Bring a Buddy” scheme was intended to make the participant with A-T more 

comfortable, having a friend to go through the experience with, and to have moral 

support during travel and on study visits. We hoped that this would increase the 

likelihood of each individual’s compliance and completion of the study. The 

“Buddy” could also act as a carer for the participant with A-T, as these individuals 

were mostly wheelchair users and required assistance with eating, personal care 

and transfers. 

Inclusion and exclusion criteria 

The criteria for inclusion / exclusion are detailed in Table 17, below.  

Initially we planned to recruit only those with “classic” A-T, however due to the 

small number of individuals with classic A-T who fit the remaining inclusion 

criteria, the decision was made to widen the inclusion criteria to include “variant” 

A-T.  

Whilst the most closely matched control group would have been a group of ataxic 

wheelchair users, as these are most similar to patients with A-T, recruitment of 

this patient group would be difficult and the study demands would be excessive 

for this group, without affording any potential benefit. Therefore a healthy control 

group, matched for age and sex, was chosen. This cohort was more likely to 

manage the demands of the study. This control group has the added advantage 

that the data obtained in this study can be used as control for planned future 

studies on metformin action.  

BMI matching was broadly attempted, but rather than matching 1:1 with the 

cases, controls with a “normal / healthy” BMI – i.e. BMI 20-25 – were recruited. 
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This allowed for recruitment of both cohorts in parallel as it was deemed unlikely 

that the AT patients would be out-with this BMI range. 

Inclusion Criteria 
Exclusion Criteria 

A-T Control 

Age 18 – 60 Age 18 – 60 HbA1c ≥ 48mmol/mol 

Diagnosis of Ataxia 

Telangiectasia - classic 

or mild variant (as 

opposed to related 

conditions e.g. AOA1) 

Sex-matched to cases, 

where possible 

Active malignancy 

White European 

descent 

White European 

descent 

History of heart failure 

Non-diabetic Non-diabetic Long-term oral steroid 

treatment 

Normal renal function, 

eGFR > 60 ml / min / 

1.73m2) 

Normal renal function, 

eGFR > 60 ml / min / 

1.73m2) 

Recent (<30 days since 

completion) or current 

participation in another 

clinical trial or 

interventional study 

 BMI 20 - 25 Pregnancy 

Table 17 Inclusion and exclusion criteria for participant recruitment for the RAMP study. 
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Intervention and sampling schedule  

The participants had three visits during the 17 week study. Each visit lasted for a 

maximum of 1.5 days. The intervention schedule for each visit is detailed in Table 

18, below. 

Table 18 Intervention and sampling schedule for the RAMP study 

Visit Time in 
study 

Total 
duration Investigation Duration  

1 Baseline,  

Wk 0 

1.5 days Anthropometry 5 minutes 

Vital signs 5 minutes 

Tracer study 8 hours 

MRI 45 minutes 

Bloods 5 minutes 

Fat biopsy 15 minutes 

2 Week 8, 
steady state 
metformin 

1.25 days Anthropometry 5 minutes 

Vital signs 5 minutes 

Tracer study 8 hours 

Bloods 5 minutes 

3 Week 17, 
steady state 
pioglitazone 

1.25 days Anthropometry 5 minutes 

Vital signs 5 minutes 

Tracer study 8 hours 

Bloods 5 minutes 
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Tracer studies of glucose metabolism 

The main investigation at each study visit was a dual tracer mixed meal test 

(MMT), which is described in greater detail in Methods: Glucose Tracer Modelling. 

In brief, participants received a standardised meal the evening before the MTT. 

They were fasted from midnight, able to drink only clear fluids from midnight 

onwards. They attended the CRC at 0800, and had two cannulae inserted, one 

for a continuous infusion of D2-glucose, the other for blood sampling. The D2-

glucose was a primed-continuous infusion for the first two hours to reach steady 

state, at which time (time 0) a mixed meal labelled with U13C glucose was given, 

along with a 1g dose of liquid paracetamol. From time 0 onwards, the D2 glucose 

infusion rate was varied to mimic the expected endogenous glucose production 

rate, for a further 6 hours.  

Blood samples were taken at 21 time points over the 8 hour period. Samples were 

analysed for glucose at every time-point, using mass spectrometry (see Methods: 

Mass Spectrometry) to differentiate endogenous from labelled glucose. Insulin, 

C-peptide, glucagon, active and total GLP1, NEFAs, and paracetamol level (used 

as a measure of gastric emptying) were also measured, at 16 / 16 / 6 / 6 / 12 / 7 

time points respectively. 

During the MTT, urine was collected pre- and post-meal. Volume of urine 

collected was documented and samples were taken for urinary glucose detection 

and quantification. 

Throughout the 8 hour study, the participants wore an indirect calorimetry hood 

at 6 time points for 30 minutes each, for measurement of their metabolic rate, as 

per Methods: Indirect Calorimetry. The timing and frequency of the blood 

sampling and indirect calorimetry can be seen in more detail in the Appendix 5: 

Tracer timeline and task list. 

From the mass spectrometry data from glucose samples collected during the 

MMT, tracer modelling allows calculation of: the rate of appearance of glucose 
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from the meal; endogenous glucose production and glucose clearance. Beta cell 

modelling using C-peptide and glucose data allows calculation of glucose 

sensitivity, insulin secretion rates and rate sensitivity (see Methods: Beta Cell 

Modelling).  

Outcomes 

To characterise the insulin resistance in A-T, baseline measures of insulin, 

glucose and calculated HOMA-IR will be compared to healthy controls. Other 

parameters including baseline adipocyte function and adipose distribution will 

help to further define the phenotype of insulin resistance in this condition. 

The primary outcome is change from baseline in insulin sensitivity during 

metformin treatment. Indices of insulin sensitivity and the change in EGP will be 

compared across groups.  

Secondary outcomes include: the change from baseline in insulin sensitivity 

during metformin using other parameters including glucose clearance and 

HOMA-IR; the change from baseline in insulin sensitivity (EGP, HOMA-IR, 

clearance) during pioglitazone treatment; comparison of treatment effects within 

each group; and assessment of treatment effect on adipocyte function comparing 

change in adipokines concentration. 

MRI studies of fat distribution  

During the baseline visit, all participants who met the standard safety criteria for 

MRI underwent MR imaging of their abdomen, for assessment of their adiposity. 

In collaboration with Matthew Marzetti and Dr Stephen Gandy from Medical 

Physics, we developed a new method of calculating visceral to subcutaneous 

adipose tissue (VAT:SAT) ratio (see Methods: MRI for VAT:SAT ratio), which has 

since been published in the British Journal of Radiology (243).  

Assessment of liver fat and iron content was undertaken using the software “Liver 

Lab”. These parameters were measured at baseline only, and compared across 
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the two groups. During the scan, an operator would identify two regions of interest 

(ROI) within the liver, being careful to avoid obvious blood vessels. Liver Lab 

could then calculate a percentage fat fraction of these two regions using T1 and 

T2 times. Finally, liver iron deposition was estimated using the R2* - a higher R2* 

equates to a shorter T2*, implying greater iron deposition (344).  

  

Figure 40 Images obtained from MRI for adipose distribution and VAT:SAT calculation. 

Subcutaneous fat is coloured green, and visceral fat is red. Image on left is a male with A-T, while 

the image on the right is a female control. 

 

Figure 41 A composite 3D image obtained from MRI. Participant is a male with A-T. 
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Statistical methods 

Sample size  

Our sample size calculation was based on the expected change in endogenous 

glucose production in metformin treatment (ΔEGPMET). Hundal et al report the 

baseline and post-metformin EGP in T2DM and at baseline in healthy controls 

(345). We estimated that the EGP would change minimally in the healthy control 

(estimated range 0.05 – 0.1 mmol·m−2·min−1), but that the change in EGP in the 

A-T group would be greater than that seen in T2DM (>0.17; estimated range 0.18 

– 0.22 mmol·m−2·min−1), to support the GWAS result linking ATM to improved 

glycaemic response to metformin.  

Assuming equal variance with SD = 0.1, power of 80%, two-sided alpha of 0.05, 

and a sampling ratio of 1, the sample size required for the ΔEGPMET ranges for 

the two groups are shown in Figure 42 below. 

 

Figure 42 Sample size calculations for varying ΔEGPMET with SD = 0.1, power 80% and two-sided 

alpha of 0.05. 
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The red and green dashed lines represent sample size of 12 and 15 in each 

group, respectively.  The recruitment target was initially 15 per group, to allow for 

withdrawal, to a minimum of 12 per group. 

However, it became clear that recruiting 15 individuals with A-T would prove 

difficult, due to the recruitment criteria and prevalence of A-T in the UK. The 

sample size was therefore recalculated based upon a sampling ratio of 2, equal 

variance with SD = 0.1, power of 80% and two sided alpha 0.05. Assuming 

average ΔEGPMET in the A-T of 0.2 and controls 0.07 respectively, the required 

sample size was 7 and 14 participants respectively. We aimed to recruit 8 and 15, 

replacing any participants who withdrew. 

Statistical analysis 

Statistical analyses were performed using R studio. Data were tested for normality 

using Shapiro-Wilks or inspection of the data using QQ plots, or distribution of the 

residuals, where appropriate.  

Normal data are presented as mean +/- SEM, and compared within group using 

the paired t test, and across groups using the non-paired t test. Non-normal data 

are presented as median with IQR and compared using Mann-Whitney U test. 

Categorical data were compared using Fisher’s exact test. 

Area under the concentration time curve, when calculated, used the trapezoidal 

method. The meal mean value was calculated as the AUC over time, to get the 

mean value for the duration of the MMT. 

Linear and mixed effects models were used for additional analyses. The data 

were modelled using the R package “stats” in R studio, which can model both 

linear and generalised linear models. For mixed effects models, the R package 

“nlme” was used for analysis. 

To compare insulin sensitivity of the two groups at baseline, linear regression 

models were used to assess which covariates were significant in predicting the 
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outcome of the model (insulin sensitivity). The covariates which best explain the 

variance of the outcome, as per adjusted R2, are included in the model. This can 

be employed to confirm if genotype (A-T or control) is significant in determining 

insulin sensitivity.  

To compare the change from baseline during treatment between the groups, a 

mixed effects model is required to identify a genotype (A-T vs Control) by 

treatment interaction. As the data is paired, with each individual having baseline 

and post-treatment measures, the effect of the individual is included in the model 

as a random effect. The fixed effects within the model are the genotype * 

treatment interaction terms, and the outcome is a measure of insulin sensitivity. 

To assess which drug is best for the treatment of insulin resistance and diabetes 

in A-T, it is necessary to compare data from the A-T group across the three visits, 

using a mixed model. The model allows comparison of the change in insulin 

sensitivity from baseline with each treatment, while accounting for the random 

effect of the individual. 

 

Results: 

Recruitment  

The recruitment flow chart below summarises the participant recruitment for the 

RAMP study.  

Initially it was thought that the majority of our A-T group would be recruited via the 

National Centre for A-T, in Papworth Hospital, Cambridge. However, after a visit 

to the unit, it became clear that individuals with A-T visit the “clinic” once per year, 

involving a 48 hour stay in hospital, which included numerous investigations and 

consultations with a broad multi-disciplinary healthcare team. Inclination to 

participate in clinical research would understandably be at its lowest whilst 

undergoing multiple investigations and enduring repeated blood samples. 
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Instead, all of our recruited participants were identified via the A-T Society. 

Through their database, it was clear that our original target of 15 individuals with 

A-T was going to be difficult. In their UK database, there were approximately 60 

individuals who fit the inclusion criteria for the A-T group. Considering the extent 

of disability in A-T, and the intensive nature and distance of travel required for the 

study, it became clear that recruitment of 15 individuals might not be achievable. 

Our sample size calculation was therefore repeated (see statistical analysis – 

sample size) with an increase in the sampling ratio, to allow for a smaller case 

cohort by increasing the control cohort, to achieve the same power. 

The flow diagram below illustrates participant recruitment from the available 

sources for the RAMP study.  

 

Figure 43 Recruitment flow diagram for the RAMP study 



212 
 
Of the nine people with A-T recruited, one participant withdrew due to personal 

reasons and difficulty in the logistics of attending the study visits. Of the control 

group, 3 participants withdrew, two of whom vomited during the tracer study and 

the decision was made to discontinue the study. The final participant experienced 

symptoms of metformin intolerance and did not wish to continue in the study.  

None of the data from individuals who withdrew has been included in the final 

analysis. 

Baseline characteristics 

The two groups were well matched for age, BMI, and baseline HbA1c, as shown 

in Table 19, below. Although not significant, it is worth noting that the two groups 

were different, for example, the A-T group were 62.5% female, while the control 

group were 40% female (p = 0.24).  

As discussed, we anticipated that the chosen control group would not be ideal 

controls for the cases, as the majority of the individuals with Ataxia-Telangiectasia 

were wheelchair users, with a subsequent reduction in muscle mass. However, 

the groups were well matched for BMI, despite this potential difference in lean 

mass. 
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The A-T group included both classic and variant A-T, with four of each subtype 

recruited. Due to the small cohort, the A-T results were analysed as one group, 

with sub-analysis performed in some instances. However, the study was not 

powered to detect differences between the A-T sub-groups and this subgroup 

analysis should be viewed as exploratory only. 

There was no significant difference in the absorption of paracetamol between the 

groups at baseline, when comparing median AUC of paracetamol over time (A-T 

989 [IQR 762 – 1444], vs control 1041 [IQR 499 – 1269] mg/l.min, p = 0.75). The 

rate of appearance of oral glucose (RaO) did not differ between groups at any 

visit, therefore it can be assumed that gastric emptying was comparable between 

groups. 

 
AT CONTROL p 

n 8 15 
 

GENDER, 

F (%) 

5 

(62.5) 

6 

(40.0) 

0.24 

AGE 23 

(20.8 - 27.3) 

22 

(20 - 23.5) 

0.49 

BMI 23.2 

(18.9 - 27.1) 

23.3 

(22.1 - 26.7) 

  0.43 

HbA1C 35 

(30.8 - 38.0) 

34 

(30 - 36) 

0.68 

Table 19 Baseline characteristics of RAMP participants. Data are median (IQR), unless otherwise 

stated. P values for Mann Whitney test for continuous data, Chi-squared for categorical data. 



214 
 

 

Figure 44 Paracetamol concentration over time. Data are mean (SEM). 

The results have been analysed and are reported in the following sections: 

1. Defining the phenotype – based on the comparison of the baseline data for the 

two groups. 

2. Response to metformin – based on the comparison of metformin parameters 

to baseline, subdivided into fasting and MMT, and compared across groups. 

3. Response to pioglitazone – as for metformin. 

4. Comparison of treatment effects – based on the comparison of the change from 

baseline for each treatment within the A-T group. 

5. Adipose distribution and function – based on the baseline MRI data, along with 

adipokine and NEFA data across treatments. 

Each section will draw on comparison of the raw data, simple models e.g. HOMA, 

tracer modelling and beta cell modelling, where appropriate. Additional results are 

shown in Appendix 6: RAMP analysis, and results are summarised in table form 

in Appendix 7: Summary table RAMP results.  
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Individuals with A-T are insulin resistant 

Fasting profile at baseline 

The A-T group were insulin resistant compared to controls, as expected. Median 

fasting glucose at baseline (A-T 4.8 [IQR 4.4 – 5.1], vs control 4.6 [IQR 4.5 – 4.7] 

mmol/l, p = 0.68) was comparable between groups, however, median fasting 

insulin was significantly higher in the A-T group (A-T 61.1 [IQR 26.1 – 134.6] vs 

control 15.1 [IQR 7.8 – 24.9] pmol/l, p = 0.002). Median fasting glucose clearance 

and endogenous glucose production were not different between the groups at 

baseline. Fasting insulin secretion rate (ISR) was higher in the A-T group (A-T 96 

[IQR 54 – 111] vs control 48 [IQR 38 – 64] pmol/min/m2, p = 0.04). In the context 

of comparable fasting glucose, glucose clearance and endogenous glucose 

production, the increased rate of insulin secretion represents resistance to the 

action of insulin. 

The A-T group have a higher median HOMA-IR than controls (A-T 2.19 [IQR 0.96 

– 4.14] vs control 0.51 [IQR 0.27 – 0.89], p 0.002). The wide interquartile range 

in the A-T group reflects the heterogeneity within the group. However, when 

subdivided into “classic” and “variant” A-T, both subgroups have higher HOMA-

IR than controls (classic 4.4 [IQR 3.0 – 6.7]; variant 1.4 [IQR 1.0 – 2.0] and control 

0.5 [IQR 0.3 – 0.9], p = 0.009 and p 0.036 respectively), and the A-T subgroups 

are not significantly different (p = 0.34).   

Figure 45 HOMA-IR at baseline (A), with A-T subdivided into classic and variant (B). Data are 

median (IQR). 
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Meal Test (MMT) 

Despite comparable fasting glucose levels, meal mean (AUC divided by time) 

glucose was higher in the A-T group (A-T 6.3 [IQR 6.1 – 6.7] vs control 5.2 [IQR 

5.0 – 5.6] mmol/l, p < 0.001). The A-T group also had higher mean insulin 

concentration (A-T 393 [IQR 275 - 2103] vs control 147 [IQR 95 - 227] pmol/l, p 

0.005) and mean insulin secretion rate during the MMT (A-T 878.8 [IQR 63.6 – 

125.3] vs control 47.0 [IQR 40.4 – 56.3] nmol/m2, p = 0.003). 

 

Figure 46 Plasma glucose (A) and plasma insulin (B) concentration during baseline MMT. Data 

are median (IQR). 

The mean glucose clearance during the MMT appears higher in the control group 

at baseline (see figure 49), though not statistically significant (A-T 2.8 [IQR 2.7 – 

3.2] vs control 3.3 [IQR 3.1 – 3.5] ml/min/kg, p = 0.13). This is despite higher 

mean insulin concentration and secretion rate in the A-T group, indicating 

peripheral insulin resistance in the A-T group.  

Conversely, mean endogenous glucose production during the meal was lower in 

the A-T group than controls (A-T 3.7 [IQR 3.3 – 4.4] vs control 5.2 [IQR 4.8 – 6.5] 

µmol/min/kg, p = 0.004), with a greater, though not significant, suppression from 

fasting EGP (see figure 49). This could indicate that the A-T group have preserved 

hepatic insulin sensitivity, however, this was in the context of markedly elevated 

insulin concentrations throughout the MMT. 
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The median Matsuda index (251), was lower in the A-T group at baseline (A-T 2.7 

[IQR 1.2 – 5.9] vs control 8.8 [IQR 6.2 – 17.7], p 0.002), in-keeping with whole 

body insulin resistance in the glucose-stimulated state, in this patient group. 

Similarly, the A-T group have a lower oral glucose insulin sensitivity (OGIS) index 

(A-T 322 [IQR 198 - 374] vs controls 444 [IQR 404 - 474], p <0.001), similar to 

that seen in obese individuals or those with IGT (253). However, the median 

insulinogenic index (IGI) was not different between groups (A-T 4.3 [IQR 2.0 – 

7.2] vs control 1.5 [IQR 1.3 – 2.6], p 0.09), and secretion appeared normal (i.e. 

>0.4) in both groups. 

The Matsuda index can be plotted against the ISR to demonstrate beta cell 

function and the product of the two values gives the oral disposition index (256, 

257). The resulting plot (Figure 47) has an inverse non-linear distribution, similar 

to that seen in the traditional rectangular hyperbola of the disposition index (346). 

This indicates that at lower insulin sensitivity, the beta cell is appropriately 

upregulated to secrete more insulin. Glucose sensitivity (A-T 87.6 [IQR 68.3 – 

101.1] vs control 91.4 [IQR 62.3 – 101.1] pmol/min/m2/mmol, p = 1.0) – calculated 

as the slope of the dose response curve – is also comparable between the two 

groups. Therefore, the beta cell function of the two groups appears comparable. 
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Figure 47 ISR plotted against Matsuda index, showing the typical hyperbolic relationship of the 

disposition index. 

There was no significant difference between the genotype groups in fasting or 

mean glucagon, active GLP1, total GLP1, resting energy expenditure (REE) or 

respiratory quotient (RQ) at baseline.  

Linear regression model 

Linear regression models can be used to assess which covariates are significantly 

associated with insulin sensitivity. With OGIS as the response variable, individual 

variables of clinical interest and relevance were modelled independently, before 

combining the significant terms (genotype, mean glucagon during MMT, and 

adiponectin) in a full model, along with age, sex and BMI. The full model was then 

simplified to the model of best fit, as per adjusted R2. 

The final model identifies genotype (p < 0.001), mean glucagon (p < 0.001) and 

age (p = 0.048) as significant terms, which contribute to the model of best fit 

(adjusted R2 0.66, p = 2.49 x 10-5). Controlling for BMI improves the model fit 

marginally (to adj. R2 0.69), however, BMI is not significant within the model (p = 

0.12).   
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Of note, visceral adipose tissue and liver fat fraction were significant 

independently when modelling OGIS, however, due to missing MRI data in some 

participants, it was not included in the full model. 

Summary 

From the baseline data we have demonstrated that the A-T group are insulin 

resistant compared to healthy controls, likely caused by peripheral insulin 

resistance. The insulin resistance is evident at fasting and in the glucose-

stimulated state, as demonstrated by elevated HOMA-IR and Matsuda indices 

respectively.  
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Response to metformin 

Fasting profile on metformin 

Metformin treatment reduced median fasting insulin concentration in the A-T 

group only (baseline 61.1 [IQR 26.1 – 134.6] to metformin 38.0 [IQR 26.0 – 111.6] 

pmol/l, p = 0.04), in the context of unchanged fasting glucose concentration in 

either group. There remained a difference in fasting insulin between the groups 

(A-T 38.0 [IQR 26.0 – 111.6] vs control 16.3 [IQR 11.1 – 25.2] pmol/l, p = 0.02). 

Fasting ISR post-metformin did not change from baseline in either group, and 

therefore, fasting ISR remained higher in the A-T group compared to controls (A-

T 73.5 [IQR 56.7 – 121.0] vs control 52.4 [IQR 41.6 – 58.4] pmol/min/m2, p =0.05). 

HOMA-IR remains higher in the A-T group after metformin treatment (A-T 1.4 

[IQR 0.9 – 3.6] vs control 0.5 [IQR 0.4 – 0.9], p = 0.01), without significant change 

from baseline in either group. 

Mixed meal test (MMT) post-metformin 

Meal mean glucose and insulin were not different from baseline in either group 

after metformin treatment, with the between-group difference in mean glucose (A-

T 6.6 [IQR 6.4 – 7.2] vs control 5.5 [IQR 5.3 – 5.7] mmol/l, p <0.001), mean insulin 

(A-T 491 [IQR 254 – 1780] vs control 184 [IQR 125 – 220] pmol/l, p = 0.01) and 

mean insulin secretion rates (A-T 101 [IQR 67 - 142] vs control 52 [IQR 45 - 62] 

nmol/m2, p = 0.007) remaining significant.  
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Figure 48 Meal mean (AUC / time) glucose (A) and insulin (B) post-metformin. Data are median 

(IQR). 

There was no metformin-related change in beta cell function, with no change in 

glucose sensitivity (p = 0.87) nor in ISR for specified glucose (p = 0.21). The 

median Matsuda index for the A-T group did not change from baseline, remaining 

lower than controls despite metformin treatment (A-T 3.2 [IQR 1.3 – 4.6] vs control 

7.9 [IQR4.5 – 13.3], p = 0.008). Similarly, there was no change from baseline in 

the OGIS index in either group, with the A-T group remaining less insulin sensitive 

than controls (A-T 308 [IQR 161 - 346] vs control 437 [IQR 396 - 458], p 0.009). 

The Insulinogenic index was lower following metformin in the A-T group only 

(metformin 1.54 [IQR 0.73 – 3.71] vs baseline 4.35 [IQR 1.99 – 7.20], p = 0.016), 

with a similar insulin response to the control group (A-T 1.54 [IQR 0.73 – 3.71] vs 

control 1.53 [IQR 1.16 – 2.20], p = 0.92). 

Differences in glucose kinetics following metformin 

Despite unchanged fasting glucose concentration (and a reduction in fasting 

insulin in the A-T group), metformin treatment was associated with an increase in 

fasting glucose clearance from baseline in both groups (A-T: baseline 2.3 [IQR 

2.2 – 2.8] vs metformin 2.6 [IQR 2.3 – 3.1] ml/min/kg, p = 0.04; control: baseline 

2.7 [IQR 2.3 – 2.8] vs metformin 3.0 [IQR 2.7 – 3.4] ml/min/kg, p < 0.001).  
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Interestingly, metformin treatment resulted in a rise in the endogenous glucose 

production at fasting in the control group only (baseline 10.9 [IQR 10.1 – 12.4] to 

metformin 13.8 [11.7 – 15.0] µmol/min/kg, p <0.001); this effect was not significant 

in the A-T patients.  

 

  

Figure 49 Fasting glucose clearance (A) and endogenous glucose production (EGP) (B) and 

meal mean glucose clearance (C) and EGP (D) at all visits for both genotypes. Data are median 

(IQR). 
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glucose clearance than the A-T group (control 3.4 [IQR 3.0 – 3.5] vs A-T 2.8 [IQR 

2.6 – 3.2] ml/min/kg, p = 0.04).  

Similarly, following metformin treatment there was no change from baseline in the 

mean glucose production within group, therefore glucose production remained 

higher in the control group (control 6.1 [IQR 4.4 – 7.0] vs A-T 3.4 [IQR 3.2 – 4.3] 

µmol/min/kg, p = 0.02), as at baseline.    

Other effects of metformin 

In the control group only, metformin treatment was associated with a significant 

increase from baseline in: 

- Fasting active GLP1 (baseline 0.4 [IQR 0.3 – 1.3] to metformin 1.6 [IQR 

0.8 – 3.3] pg/ml, p = 0.02)  

- Mean active GLP1 (baseline 2.7 [IQR 1.8 – 4.3] to metformin 3.7 [IQR 

2.5 – 6.8] pg/ml, p = 0.048) 

- Fasting total GLP1 (baseline 5.5 [IQR 4.0 – 11.9] to metformin 8.4 [IQR 

7.7 – 12.7] pg/ml, p = 0.03)   

- Mean total GLP1 (baseline 11.1 [IQR 6.7 – 13.5] to metformin 13.7 [IQR 

7.8 – 36.5], p = 0.03) 

- Meal mean glucagon (baseline 54.5 [IQR 35.8 – 71.0] to metformin 58.4 

[IQR 42.3 – 78.4], p = 0.007).  
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Figure 50 Active GLP1 over the MMT at baseline and post-metformin in the A-T (A) and control 

(B) group 

  

Figure 51 Total GLP1 over the MMT at baseline and post-metformin, in the A-T (A) and control 

(B) groups. Data are median (IQR). 
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Figure 52 Fasting and meal mean glucagon at baseline and post-metformin for both genotypes. 

Data are median (IQR). 

However, metformin treatment did not significantly affect GLP1 or glucagon within 

the A-T group. Direct comparison of the two groups following metformin did not 

identify a significant difference in GLP1 or glucagon. 

BMI was reduced post-metformin in the control group (23.3 [IQR 22.1 – 26.7] to 

23.2 [IQR 21.2 – 26.0] kg/m2, p = 0.02), but was unchanged in the A-T group. 

There is a loss of potentiation in the A-T group (see Appendix 6: RAMP analysis) 

compared to the control group, indicating a reduced incretin effect (347), as seen 

in obesity and type 2 diabetes. This is in-keeping with the lack of increment in 

GLP1 following metformin treatment in the A-T group. This may represent blunted 

response to metformin, as one would expect an increase in GLP1 with metformin, 

as seen in the control group.  

Mixed effects model 
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interaction identified between genotype and metformin. Treatment was not 

significant, however genotype was significant independently (p = 0.001). 

lme (OGIS ~ Genotype * Treatment), AIC = 494 

Model term P value 

Genotype 0.001 

Treatment 0.8 

Genotype * Treatment 0.9 

Controlling for age, sex and BMI improves the fit of the model: 

lme (OGIS ~ Genotype * Treatment + Age + Sex + BMI), AIC = 477 

Model term P value 

Genotype <0.001 

Treatment 0.58 

Genotype * Treatment 0.98 

Age 0.02 

Sex  0.86 

BMI 0.10 
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Age is not significant independently, but is significant when added to the genotype 

* treatment interaction term as shown above. This is in-keeping with the modelling 

at baseline.   

Secondary analysis was performed to include other terms which were significant 

independently in linear mixed models of OGIS. Mean active GLP1 was the only 

term besides genotype which was independently significant. Therefore, mean 

active GLP1 was added to the model above to achieve the model of best fit: 

lme (OGIS ~ Genotype * Treatment + Mean a.GLP1 + Age + Sex + BMI),  

AIC = 464 

Model term P value 

Genotype <0.001 

Treatment 0.12 

Genotype * Treatment 0.35 

Age 0.01 

Sex  0.95 

BMI 0.07 

Mean a.GLP1 0.008 

The lack of a significant gene * drug interaction means that individuals with A-T 

do not have an exaggerated response to metformin, when considering insulin 

sensitivity. However, given that metformin has many potential mechanisms and 
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may not work solely (if at all) by improving insulin sensitivity, we modelled other 

parameters in which there was a significant difference between groups using non-

parametric testing. This included BMI, fasting and mean active and total GLP1; 

mean glucagon; EGP and glucose clearance. None of these models identified a 

gene*metformin interaction (for full models and output see Appendix 6: RAMP 

analysis).  
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Response to pioglitazone  

Fasting profile on pioglitazone 

Pioglitazone treatment markedly reduced fasting insulin concentration in the A-T 

group only (baseline 61.1 [IQR 26.1 – 134.6] to 28.0 [IQR 20.9 – 110.1] pmol/l, p 

= 0.008). Similarly, the fasting ISR was reduced (though not significantly) from 

baseline in the A-T group (baseline 96.0 [IQR 53.8 – 110.6] vs pioglitazone 63.7 

[IQR 59.7 – 90.5] pmol/min/m2, p = 0.20), such that the fasting ISR following 

pioglitazone treatment was no longer significantly different between groups (A-T 

63.7 [IQR 59.7 – 90.5] vs control 55.7 [IQR 47.0 – 74.7] pmol/min/m2, p = 0.27). 

There was no change from baseline in fasting glucose concentration, clearance 

or production in either group following pioglitazone treatment. 

In-keeping with the reduction in insulin concentrations, there was a reduction in 

HOMA-IR from baseline in the A-T group (baseline 2.19 [IQR 0.96 – 4.14] to 

pioglitazone 0.97 [IQR 0.76 – 3.54], p = 0.023). However, despite this reduction, 

the HOMA-IR of the A-T group following pioglitazone treatment remained higher 

than that of the control group (0.97 [IQR 0.76 – 3.54] vs 0.61 [IQR 0.53 – 0.80], p 

= 0.016). The HOMA-IR of the control group remained unchanged (baseline 0.51 

[IQR 0.27 – 0.89] to pioglitazone 0.61 [IQR 0.53 – 0.80], p = 0.76). 

Mixed meal test (MMT) post-pioglitazone 

In the A-T group, pioglitazone reduced the meal mean glucose (baseline 6.4 [IQR 

6.1 – 6.7] to pioglitazone 5.9 [IQR 5.7 – 6.2] mmol/l, p = 0.02), in the context of a 

lower meal mean insulin concentration (baseline 393 [IQR 275 – 2103] to 

pioglitazone 252 [IQR 195 – 823], p = 0.02) and lower mean ISR during the MMT 

(baseline 87.8 [IQR 63.6 – 125.3] vs pioglitazone 78.3 [IQR 49.7 – 111.9] 

nmol/m2, p = 0.008), indicating an improvement in insulin sensitivity. Despite 

lower meal mean glucose in the A-T group, there was no difference in glucose 

clearance (p = 0.20) or production (p = 0.31) during the MMT (Figure 49).  
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There was no change in the control group meal mean glucose or insulin 

concentrations. 

  

Figure 53 Glucose (A) and insulin (B) over the duration of the MMT post-pioglitazone. Data are 

median (IQR). 
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Figure 54 Fasting insulin (A) and glucose (B) and meal mean insulin (C) and glucose (D) at all 

visits, both genotypes. Data are median (IQR). 

Following pioglitazone treatment, the median Matsuda index of the A-T group 

increased (baseline 2.7 [IQR 1.2 – 5.9] to pioglitazone 5.3 [IQR 1.6 – 7.1], p = 

0.0078), and was no longer significantly different from the control group (A-T 5.3 

[IQR 1.6 – 7.1] vs control 8.2 [IQR 6.1 – 13.3], p = 0.06). 

Similarly the OGIS index increased in the A-T group with pioglitazone treatment 

(baseline 322 [IQR 198 – 374] to pioglitazone 364 [IQR 322 – 426], p = 0.008), 

while the control group remain unchanged (baseline 444 [IQR 404 – 474] to 

pioglitazone 453 [IQR 408 – 467], p = 0.8). However, the two groups remain 

significantly different post-pioglitazone (A-T 364 [IQR 322 – 426] vs control 453 

[IQR 408 – 467], p = 0.03), indicating that the OGIS may be a more sensitive 

index for comparison of treatment effects. 

0

20

40

60

80

100

120

140

AT Control

Fa
st

in
g 

In
su

lin
 (p

m
ol

/l)

A

4

5

6

7

8

AT Control

Fa
st

in
g 

G
lu

co
se

 (m
m

ol
/l)

B Baseline
Metformin
Piogltiazone

0

500

1000

1500

2000

2500

A-T Control

M
ea

n 
In

su
lin

 (p
m

ol
/l)

C

4

5

6

7

8

A-T Control

M
ea

n 
G

lu
co

se
 (m

m
ol

/l)

D



232 
 
As the OGIS and Matsuda indices increased, in-keeping with an improvement in 

insulin sensitivity, so too the IGI decreased in the A-T group (baseline 4.35 [IQR 

1.99 – 7.20] to pioglitazone 1.88 [IQR 1.28 – 3.88], p = 0.078), although not 

reaching significance. The IGI was not different between groups post-pioglitazone 

(A-T 1.88 [IQR 1.28 – 3.88] vs control 2.22 [IQR 1.37 – 2.79], p = 0.92).  

Other effects of pioglitazone 

Pioglitazone had no significant effect on fasting or mean glucagon, active or total 

GLP1 in either group, therefore, as at baseline, the two groups had comparable 

glucagon and GLP1 following pioglitazone treatment.  

Interestingly, the median fasting respiratory quotient was increased by 

pioglitazone treatment in the A-T group only (0.9 [IQR 0.8 – 1.0] to 1.1 [IQR 1.0 – 

1.2], p = 0.04), indicating a move from fatty acid to carbohydrate oxidation. REE 

of the A-T group was also reduced following pioglitazone (1377 [IQR 1275 – 1450] 

to 1169 [IQR 1046 - 1288] kcal/day, p = 0.03), in the context of unchanged BMI. 

Mixed effects model 

To compare the change from baseline during pioglitazone treatment between the 

groups, mixed effects modelling was used, as performed for the metformin data, 

to identify a genotype * pioglitazone interaction.  

In a linear mixed effects model of OGIS, there is an interaction between A-T and 

pioglitazone (p = 0.001). Pioglitazone treatment was not significant independently 

(p = 0.72) as it did not affect OGIS in controls. However, genotype was significant 

independently (p <0.001), as OGIS was lower in the A-T group at baseline. 

Model 1: lme (OGIS ~ Genotype * Treatment), AIC = 479 
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Model term P value 

Genotype <0.001 

Treatment 0.7 

Genotype * Treatment 0.001 

Controlling for age, sex and BMI improves the fit of the model: 

Model 2: lme (OGIS ~ Genotype * Treatment + Age + Sex + BMI), AIC = 459 

Model term P value 

Genotype <0.001 

Treatment 0.77 

Genotype * Treatment 0.001 

Age 0.05 

Sex  0.22 

BMI 0.25 

Secondary analysis was performed to include other terms which were significant 

independently in simple linear mixed models of OGIS, specifically mean active 

GLP1, leptin, and basal and mean glucagon.   
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Model 3: lme (OGIS ~ Genotype * Treatment + Age + Sex + BMI+ mean a.GLP1 

+ Leptin + basal Glucagon + mean Glucagon),  

AIC = 466 

Model term P value 

Genotype <0.001 

Treatment 0.99 

Genotype * Treatment <0.001 

Age 0.04 

Sex  0.75 

BMI 0.07 

Mean a.GLP1 0.14 

Leptin 0.20 

Basal Glucagon 0.19 

Mean Glucagon 0.89 

The model above was then simplified to achieve model of best fit: 

Model 4: lme (OGIS ~ Genotype * Treatment + Age + BMI + mean a. GLP1 + 

basal Glucagon), AIC = 459  
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Model term P value 

Genotype <0.001 

Treatment 0.87 

Genotype * Treatment 0.001 

Age 0.03 

BMI 0.07 

Mean a.GLP1 0.08 

Basal Glucagon 0.009 

However, despite equal AIC, ANOVA of model 2 and model 4 indicates that model 

2 is superior and is the model of best fit. 

Metformin versus pioglitazone 

To assess which drug is best for the treatment of insulin resistance and diabetes 

in A-T, it is necessary to compare data for the A-T group across the three visits, 

using a linear mixed model. The model allows comparison of the change in insulin 

sensitivity from baseline with each treatment, while accounting for the random 

effect of the individual. 

Therefore, OGIS was modelled in a subset of the data, looking at the A-T group 

only, with treatment as a fixed effect and the effect of the individual as a random 

effect in the model. 

Model AT: lme (OGIS ~ Treatment) in A-T only, AIC = 249 
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Model term P value 

Metformin 0.73 

Pioglitazone 0.002 

In A-T, there is no effect of metformin on OGIS (p = 0.73), but pioglitazone was 

highly significant (0.002), indicating that pioglitazone would be the treatment of 

choice to improve insulin sensitivity in A-T.  



237 
 
Adipocytes in A-T 

Adipokines  

Baseline 

The baseline adiponectin concentration was lower in the A-T group (A-T 2528 

[IQR 2008 – 4887] vs control 6262 [IQR 4051 – 89940] ng/ml, p = 0.03), despite 

comparable visceral adipose volume (A-T 1.82 [IQR 0.97 – 2.5] vs control 1.47 

[IQR 0.87 – 1.9] litres, p = 0.5). Low adiponectin in the A-T group is in-keeping 

with the mouse model of A-T (238). Hyposecretion of adiponectin has been linked 

to obesity, diabetes, hyperlipidaemia, hypertension and atherosclerosis, and can 

be primary (caused by genetic disorders) or secondary (due to visceral fat 

accumulation) (331). Adiponectin is thought to promote insulin sensitivity via 

activation of AMPK, so reduction in adiponectin could lead to reduced insulin 

sensitivity.  

However, unlike the mouse model, leptin concentrations were markedly 

increased in the A-T group (A-T 24013 [IQR 14591 - 30836] vs control 4867 [IQR 

2501 - 12717] pg/nl, p 0.004) in the absence of obesity, likely representing leptin 

resistance.  

Post-metformin 

Adiponectin levels increased in the A-T group after metformin treatment (baseline 

2528 [IQR 2008 – 4887] to metformin 3306 [IQR 2309 – 5390] ng/ml, p = 0.15). 

Though this observed increase was not statistically significant, the median 

adiponectin levels in the two groups were no longer statistically different post-

metformin (A-T 3306 [IQR 2309 – 5390] vs control 5975 [IQR 3382 – 7966] ng/ml, 

p = 0.12).  

On the other hand, leptin concentration remained higher in the A-T group than 

controls (A-T 17812 [IQR 6578 – 19918] vs control 5457 [IQR 1614 – 8170] pg/nl, 

p 0.01), despite a trend towards improvement with metformin treatment (baseline 
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24013 [IQR 14591 – 30836] to metformin 17812 [IQR 6578 – 19918] pg/nl, p 

0.08).  

Post-pioglitazone 

Adiponectin was markedly increased by pioglitazone treatment in both groups 

without change in BMI (A-T baseline 2528 [IQR 2008 – 4887] to pioglitazone 

12461 [IQR 4451 – 15843] ng/ml, p = 0.008; and controls baseline 6262 [IQR 

4051 – 89940] to pioglitazone 15123 [IQR 9594 – 19384] ng/ml, p = 0.001).  

Leptin remained higher in the A-T group post-pioglitazone compared to controls 

(A-T 14812 [IQR 9362 – 22789] vs control 5323 [IQR 1648 – 7921] pg/nl, p = 

0.01). Although the leptin concentration appeared lower following pioglitazone 

treatment compared to baseline in the A-T group, this was not statistically 

significant (baseline 24013 [IQR 14591 - 30836] to pioglitazone 14811 [IQR 9362 

– 22789] pg/nl, p = 0.15).  

 

Figure 55 Serum adiponectin (A) and leptin (B) concentrations at baseline, post-metformin and 

post-pioglitazone in A-T and Control groups. Data are median (IQR). 
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NEFA in A-T 

Elevated fasting NEFA concentration at baseline (A-T 0.72 [IQR 0.65 - 0.88] vs 

control 0.53 [IQR 0.45 – 0.68] mmol/l, p = 0.03), serves as further evidence of 

insulin resistance in the A-T group. This is despite comparable volume of visceral 

fat (as detailed below), which is known to be an important source of NEFA due to 

its lipolytic activity (348). The higher concentration of NEFA may be due to the 

reduced adiponectin concentration, with subsequent reduction in insulin 

sensitivity, and an increase in lipolysis (349).  

Basal NEFA remained higher in the A-T group than controls during metformin 

therapy (A-T 0.74 [IQR 0.62 – 0.81] vs control 0.56 [IQR 0.51 – 0.60] mmol/l, p = 

0.03), with no significant treatment effect within either group. 

However, pioglitazone treatment resulted in decreased fasting and mean plasma 

NEFA from baseline in both groups (A-T fasting: baseline 0.72 [IQR 0.65 - 0.88] 

to pioglitazone 0.54 [IQR 0.43 – 0.60] mmol/l, p = 0.008; Control fasting: baseline 

0.53 [IQR 0.45 – 0.68] to pioglitazone 0.46 [IQR 0.36 – 0.56] mmol/l, p = 0.02; A-

T mean: baseline 0.25 [IQR 0.22 – 0.28] to pioglitazone 0.18 [IQR 0.14 – 0.20], p 

= 0.016; Control mean: baseline 0.21 [IQR 0.19 – 0.26] to pioglitazone 0.16 [IQR 

0.14 – 0.20], p = 0.007). There was no longer any difference between the groups 

indicating an improvement in insulin sensitivity in the A-T group. 
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Figure 56 Basal and meal mean (AUC / time) plasma NEFA at each visit. Median (IQR). 
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Adipose distribution 

The table below show the MRI data for the two groups:   

 

 A-T Control p value 

VAT (L) 
1.8 

(0.97 – 2.5) 

1.5 

(0.87 – 1.9) 
0.54 

SAT (L) 
6.3 

(4.4 – 8.9) 

4.9 

(3.0 – 6.4) 
0.20 

VAT:SAT  
0.22 

(0.20 – 0.38) 

0.31 

(0.25 – 0.39) 
0.49 

Total (L) 
8.8 

(5.7 – 11.0) 

6.7 

(4.0 – 8.0) 
0.17 

Liver fat 
fraction (%) 

3.3 

(1.6 – 10.5) 

1.4 

(1.0 – 1.8) 
0.09 

Liver Iron R2* 
42.4 

(39.0 - 59.3) 

36.1 

(33.8 – 39.9) 
0.19 

Table 20 MRI assessment of adipose volume and distribution. VAT = visceral adipose tissue; SAT 

= subcutaneous adipose tissue; VAT:SAT = visceral to subcutaneous adipose tissue ratio. Data 

are median (IQR). 

While there was no difference identified between the two groups based on the 

MRI data shown, this is likely due to lack of power. Not all of the RAMP study 

participants were able to undergo MRI, and this resulted in 7 individuals with A-T 
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and 14 healthy controls being successfully scanned. The study was also not 

powered based upon the MRI outcomes.  

Although the numbers are small, and it is therefore difficult to draw meaningful 

conclusion, it is interesting that the estimations of liver fat indicate a trend towards 

increased liver fat in the A-T group, which would be in-keeping with their insulin 

resistant phenotype. Of note, the individuals with classic A-T had increased liver 

fat compared to healthy controls (17.8% vs 1.4%, p 0.01), which is in-keeping with 

insulin resistance and the propensity for fatty liver disease in these individuals.  

However, the VAT:SAT ratio was not different in the two groups (p = 0.49), and 

there is no evidence of a lipodystrophic phenotype as described in the ATM 

deficient mouse model. 

Discussion 

Research into metformin’s mechanism of action is ongoing, over 60 years after 

its introduction to clinical use. The application of GWAS to the question of 

variability in metformin response identified a locus on chromosome 11 associated 

with glycaemic response to metformin. We hypothesised that the ATM gene was 

the likely causal gene at this locus, due to documented associations between 

ATM and the insulin signalling pathway; AMPK activation; and the insulin resistant 

phenotype seen in ATM-deficient mice and humans with A-T. Preliminary mouse 

data appeared to support the hypothesis that ATM was linked to metformin 

response, as metformin treatment of ATM +/- mice reverted glycaemia to normal 

levels of the wild type littermates. However, data from another mouse model of 

A-T identified a potential lipodystrophic phenotype in ATM-knockout mice, with 

abnormal adipose differentiation and reduced adipokine production, both of which 

responded well to treatment with TZDs, with concurrent improvement in 

glycaemia.  

The “Response of individuals with Ataxia-telangiectasia to Metformin and 

Pioglitazone (RAMP)” study was designed to investigate the link between ATM 
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and metformin response, with the TZD pioglitazone as a comparator drug, due to 

the impressive data regarding response to TZDs in the mouse model of A-T. To 

our knowledge, the RAMP study is the first physiology study of its kind in this 

patient group, using dual tracer mixed meal tests and other investigations 

including MRI, to compare glucose kinetics, beta cell function and metabolic 

phenotype of  individuals with A-T and healthy controls, presenting a unique 

opportunity to define the metabolic phenotype in this rare condition.  

We confirmed that A-T is associated with peripheral insulin resistance, compared 

to healthy controls. Although unable to validate the pharmacogenetics result 

linking ATM to enhanced metformin response, we have demonstrated that A-T 

may be associated with a blunted response to metformin. In contrast, pioglitazone 

markedly improved insulin sensitivity and adipocyte function in the A-T group.  

Metabolic phenotype in A-T 

As expected, our data confirm that individuals with A-T are insulin resistant. 

Despite comparable age, BMI, and adipose volume and distribution, the A-T 

group had elevated fasting and meal mean insulin during the MMT at baseline. 

This reflects higher insulin secretion rates, secondary to insulin resistance. 

Despite normal fasting glucose and elevated mean insulin concentrations, the A-

T group had greater excursion in mean glucose post-meal. This differs slightly 

from previously reported OGTT data, where both fasting glucose and insulin 

concentrations were comparable to healthy controls (330). 

Elevated HOMA-IR, low OGIS and Matsuda indices in the A-T group confirm the 

presence of insulin resistance. The insulin resistance appears to be 

predominantly peripheral, with apparently normal beta cell function. The 

insulinogenic index is within normal range and the glucose sensitivity is 

comparable to healthy controls, therefore the beta cells are equally sensitive to 

glucose flux.  
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Interestingly, when the potentiation factor is plotted against time up to 120 

minutes, the gradient of the curve is lower in the A-T group, which is in-keeping 

with a reduced incretin response (347), despite comparable GLP1 levels during 

the  baseline visit. Reduced potentiation has previously been reported in impaired 

glucose tolerance and diabetes (222). 

A-T is not associated with improved insulin sensitivity in response to 

metformin 

From the RAMP data, we have been unable to identify an enhanced metformin 

effect on insulin sensitivity in the A-T group, compared with the controls.  

The A-T group did have lower fasting insulin concentration following metformin, 

with an elevated fasting glucose clearance, with a (albeit non-significant) 

reduction in their fasting ISR. This suggests an improvement in peripheral insulin 

sensitivity, although this did not continue after glucose load, with their mean 

glucose, insulin and insulin secretion rate remaining higher than the control group 

and unchanged from baseline. Calculated indices of insulin sensitivity did not 

show any improvement with metformin in either group. Alternatively, metformin 

may increase glucose clearance via an insulin-independent pathway, which 

would then appear to improve peripheral insulin sensitivity.  

A linear mixed effects model used to assess the impact of genotype and treatment 

on insulin sensitivity, did not identify a gene x metformin interaction between A-T 

and metformin.  

However, metformin has many potential mechanisms of action, and may not work 

solely (if at all) by improving insulin sensitivity. When considering other 

mechanisms, there may be indication to suggest that the A-T group have a 

blunted response to metformin, compared to controls. The control group had a 

significant reduction in BMI post-metformin, where the A-T group did not. The 

control group had an increase in active and total GLP1 from baseline – a well-

documented response to metformin (130, 140, 143) – but this not evident in the 
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A-T group. Similarly, there was an increase in mean glucagon post-metformin in 

the control group, which was not seen in A-T. However, secondary analyses using 

mixed effect models with GLP1, glucagon, glucose clearance or production as the 

outcome variable did not identify a gene x metformin interaction. Therefore, we 

have been unable to clinically validate the results of the GWAS, and it is unlikely 

that A-T is associated with altered response to metformin, either enhanced or 

blunted. 

This may be because the GWAS data identified a SNP at a locus which included 

a number of genes, of those ATM was thought to be the causal gene. However, 

it is possible that one of the other genes from the locus identified is responsible 

for the GWAS signal.  

Alternatively, as the minor allele frequency of the SNP identified by the GWAS is 

44%, it is possible that we recruited individuals with wild type alleles of this SNP. 

However, through recruitment of individuals with A-T who typically have two 

different mutations in each allele of their ATM gene, often associated with 

truncation of the protein, we hoped to demonstrate a larger effect size than that 

expected from the SNP alone. However, without performing a recruit-by-genotype 

study, it is impossible to predict if the study population carry the SNP of interest.  

It may be that, in order to fully expose a blunted response, the A-T group would 

need to be compared to insulin resistant individuals without A-T. This “control” 

group may have a greater physiological response to metformin than the 

normoglycaemic insulin sensitive controls used in RAMP, which would unmask 

the reduced response in A-T, by comparison. 

Response to metformin in controls 

The RAMP data has provided some interesting insight into metformin action. As 

discussed above, both groups had increased fasting glucose clearance after 

metformin treatment, which has been previously reported in clamp data (350, 

351). This could reflect an improvement in peripheral insulin sensitivity, resulting 
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in increased glucose utilisation. Alternatively, the increase in clearance could 

represent increased glucose uptake by the intestine, which has recently been 

postulated as a “glucose sink” (352, 353).  

The control group have a metformin-related counter-regulatory increase in their 

mean glucagon, perhaps to prevent hypoglycaemia in the context of increased 

glucose clearance in these normoglycaemic individuals. In-keeping with this, they 

have an increase in their fasting glucose production, which could be due to 

glucagon-induced glycogenolysis or gluconeogenesis. This has been described 

previously in healthy subjects, with a metformin-related increase in glucose 

clearance associated with a rise in glucagon, lactate and cortisol (354), and a 

subsequent increase in glucose production from gluconeogenesis and 

glycogenolysis. 

This metformin-associated increase in EGP appears to defy conventional wisdom 

that metformin’s mechanism of action lies mainly in the reduction of hepatic 

gluconeogenesis. However, these pathways of metformin response are not 

necessarily mutually exclusive. In the context of hyperglycaemia, such as in 

individuals with type 2 diabetes, the metformin-associated increase in glucose 

clearance may not be sufficient to induce hypoglycaemia or stimulate counter-

regulatory mechanisms, such as glucagon. In this setting, the hepatic effects of 

metformin to reduce gluconeogenesis are permissible. However, in the healthy 

individual with normoglycaemia, increased glucose clearance may risk 

hypoglycaemia, thereby stimulating glucagon secretion. The inhibitory effect of 

metformin on hepatic gluconeogenesis would be outweighed by the stimulatory 

effects of glucagon on glycogenolysis and gluconeogenesis. 

In contrast to the healthy controls, the individuals with A-T, who have greater 

mean glucose post-meal than the control subjects, did not have elevated 

glucagon, nor elevated glucose production, indicating that the increase in glucose 

clearance did not stimulate a counter-regulatory response. 
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Pioglitazone improves insulin sensitivity in A-T 

The data from the RAMP study supports the mouse data that TZDs improve 

glycaemia and insulin resistance in A-T. Despite no change in fasting glucose 

concentration, and a reduction in their mean glucose during the meal, the A-T had 

reduced fasting and mean insulin concentrations, reflecting a reduction in mean 

insulin secretion rate. There was no change in glucose production or clearance 

during pioglitazone treatment, despite the reduced insulin secretion rate, in-

keeping with greater response to circulating insulin, due to reduced peripheral 

insulin resistance. 

Calculated indices of insulin sensitivity (OGIS and Matsuda) are increased by 

pioglitazone treatment in the A-T group, and HOMA-IR is reduced, reflecting the 

improved insulin sensitivity the treatment confers. 

Beta cell modelling did not reveal statistically significant changes in beta cell 

glucose sensitivity, although this was numerically greater than at baseline. The 

lack of significance may be due to the wide interquartile range and heterogeneity 

within the A-T group. Similarly the rate sensitivity was lower post-pioglitazone, but 

this did not reach significance. It is likely, therefore, that pioglitazone improves in 

beta cell sensitivity to glucose, as well as increasing peripheral insulin sensitivity.  

The pioglitazone-associated increase in insulin sensitivity may be partly explained 

by an increase in adiponectin secretion, which is known to promote insulin 

sensitivity. Both groups had a large increment in adiponectin levels post-

pioglitazone compared to baseline, with associated decrement in NEFA, both at 

baseline and during the meal. The reduced NEFA concentration is in-keeping with 

an improvement in insulin sensitivity, and subsequent reduction in lipolysis. In the 

A-T group, pioglitazone also reduced circulating leptin, as would be expected in 

improved insulin sensitivity. This did not reach significance, again likely due to the 

heterogeneity of the A-T cohort. 
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Pioglitazone in the management of diabetes in A-T 

Within the A-T group, when the treatment effects of pioglitazone are directly 

compared to the effects of metformin, it is clear that pioglitazone is a superior 

treatment for the insulin resistance seen in this condition. In a mixed effects 

model, treatment with pioglitazone (p = 0.0018), but not metformin (p = 0.73), was 

significant in predicting insulin sensitivity. 

Currently, if an individual with A-T was diagnosed with diabetes, the first-line oral 

agent prescribed, as per ADA-EASD guidance (3), would be metformin. Our data 

clearly shows that in this patient group, metformin treatment would not be as 

effective as treatment with pioglitazone. We suggest, therefore, that a more 

patient-centred approach when treating diabetes in these individuals would be 

early consideration of pioglitazone, either as monotherapy or in conjunction with 

metformin.  

Pioglitazone has been implicated in the management of NAFLD (341, 342, 355), 

which could strengthen the argument for its use in A-T. Two of the four individuals 

with classic A-T had deranged liver function, with elevated ALT. These same 

individuals had evidence of fatty liver on MRI, and had a reduction in ALT with 

pioglitazone treatment. Obviously, this is not statistically significant, and it is 

impossible to draw conclusion from such small numbers, but does highlight an 

area for future research. 

As with any medical therapy, potential benefits need to be weighed against risk. 

Pioglitazone is associated with a moderate increased risk of pneumonia. In this 

immunocompromised patient group with a pre-disposition to recurrent infection, 

this potential adverse effect clearly needs to be discussed and balanced against 

the potential benefits. Early review of treatment response is recommended after 

3 – 6 months, with discontinuation if no perceived benefit. 
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Adipocyte dysfunction in A-T 

In contrast to the mouse data reported by Takagi et al, individuals with A-T did 

not have a lipodystrophic phenotype. MRI data comparing visceral and 

subcutaneous adipose deposition, confirmed no difference in adipose volume or 

distribution in A-T compared to controls. However, there was a trend towards 

increased liver fat and iron deposition. As the RAMP study sample size was not 

calculated based on MRI parameters, it is likely that the study was simply not 

powered to detect the potential difference in liver fat content. However, it is 

recognised that A-T is associated with fatty liver, so this trend would not be 

unexpected. 

There is, however, evidence of adipocyte dysfunction in the A-T group. Insulin 

resistance is associated with low adiponectin levels, as seen in the mouse model 

of ATM deficiency, and now in humans with A-T.  While reduction in adiponectin 

may be secondary to insulin resistance (356), it could also represent disruption of 

insulin-stimulated adiponectin secretion. Insulin stimulates secretion of 

adiponectin by activation of the PI3K pathway (357). ATM deficiency is associated 

with reduced PI3K activity (315, 318), therefore it may be possible that stimulation 

of adiponectin secretion from adipocytes of individuals with A-T is reduced due to 

this negative impact on insulin signalling. The resulting reduction in adiponectin 

could contribute to insulin resistance and increased insulin concentrations.  

Pioglitazone is a PPARγ selective agonist, and PPARγ is a key transcriptional 

factor in adipokine gene expression (358), which has been shown to increase 

adiponectin levels, even in normal glucose tolerance, in the absence of insulin 

resistance (359, 360). This was evident in our data, as adiponectin was 

dramatically increased post-pioglitazone in both groups. 

Unlike the mouse model of ATM deficiency, leptin was markedly elevated in the 

A-T group, in the absence of obesity. This is likely secondary to the elevated 

insulin concentrations in A-T, with subsequent increase in leptin secretion. Of 

note, insulin stimulates leptin secretion via a PI3K independent pathway (361), or 
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in the chronic setting, through glucose metabolism associated upregulation of 

transcription of leptin mRNA (362). Therefore, it could be possible that ATM 

dysfunction would negatively impact upon adiponectin secretion via the PI3k 

pathway, without reducing leptin secretion. 

Elevated NEFA concentrations at baseline and after metformin in the A-T group 

are secondary to increased lipolysis as a result of insulin resistance. The 

reduction in insulin resistance post-pioglitazone results in a reduction in lipolysis, 

and subsequently, NEFA concentration.  

Limitations 

The RAMP study was a physiology study of glucose kinetics, beta cell function 

and adipocyte function in a rare condition associated with diabetes. The study 

provided a unique opportunity to study the insulin resistance in A-T, and has 

provided interesting insight into the appropriate management of this condition. 

However, we recognise a number of limitations within the study design and 

subsequent results. 

Firstly, the study was non-blinded, with both researchers and participants fully 

aware of the study drug and dosing. This exposes a study to potential bias, 

especially if measuring subjective end points. However, in the RAMP study, the 

end points were biochemical parameters and were therefore less prone to bias or 

interpretation than, for example, symptom severity scoring. 

Secondly, the treatment order was not randomised and did not include placebo 

control. This was deliberate. It was recognised that the effects of pioglitazone 

treatment on insulin sensitivity, liver fat, and adipocyte function, may be longer 

lasting than the effects of metformin. It was therefore decided that metformin 

treatment should precede pioglitazone treatment. The treatment periods were 

separated by a one week washout, which is sufficient for metformin (16, 213). The 

treatment periods were also eight weeks in duration, so it is unlikely that any 

carried over effect of metformin would have been evident 9 weeks after 
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discontinuation. Placebo control was not included, as each individual had a 

baseline visit, which acted as the intra-individual control for each treatment, rather 

than increasing tablet burden or time in study to include a placebo treatment 

period. 

Thirdly, the RAMP study was a small study, with only eight individuals with A-T 

recruited. However, the study was appropriately powered to identify a change in 

in insulin sensitivity with metformin. Due to the low frequency of the condition, the 

stipulated inclusion and exclusion criteria, the time commitment and travel 

required to attend the research centre in Dundee, as well as the comorbidities 

and vulnerable nature of this patient group, the potential study population was 

severely limited, with only approximately 60 individuals in the UK fitting the basic 

criteria.  

As a consequence of anticipated difficulty in recruitment, we opted to include both 

classic and variant A-T in the A-T group. There is increased in-group variability, 

and at times, the clear impression of two separate metabolic phenotypes. 

However, both subgroups were insulin resistant. It is difficult to comment on the 

differences between the subgroups, as the study is not powered to do so, 

however, the impression stands that residual ATM kinase activity confers a less 

severe metabolic phenotype. 

While it appears that pioglitazone was more effective in the treatment of insulin 

resistance in the A-T group, we recognise that overweight females are known to 

respond better to pioglitazone than other demographic subsets. As the A-T group 

were predominantly female (62.5%) and matching was not exact (control group 

females 40%), it is possible that this difference contributed to the improved 

pioglitazone response seen in the A-T group. However, the A-T group were not 

overweight, and although predominantly female, when controlling for age, sex 

and BMI in the mixed model, sex was not a significant variable. 
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Lastly, and potentially the biggest limitation to this study and its interpretation, 

was the chosen control group. To assess for ATM–associated improvement in 

response to metformin, the ideal control group would have been a group of 

wheelchair users with evidence of insulin resistance, which would obviously have 

posed a significant challenge for recruitment. However, for the purpose of defining 

the metabolic phenotype in A-T, comparison to healthy controls was useful, and 

for comparison of treatment effects of metformin and pioglitazone, the A-T 

individuals acted as their own control. As discussed, it would be useful to compare 

the A-T group to those with a similar level of insulin resistance, such as individuals 

with pre-diabetes, to compare metformin response and potentially unmask a 

blunted response in the A-T group.  

Conclusion 

The “Response of individuals with Ataxia-telangiectasia to Metformin and 

Pioglitazone (RAMP)” study is the first study of its kind in A-T, and to our 

knowledge, the most detailed assessment of the metabolic phenotype associated 

with this rare condition. We have confirmed that individuals with A-T are 

peripherally insulin resistant, and have a marked improvement in insulin 

sensitivity with pioglitazone treatment.  

However, we were unable to validate the results of the GWAS study previously 

reported by our research group. Contrary to our hypothesis, there was no 

evidence in the RAMP data to suggest that A-T is associated with an enhanced 

response to metformin as assessed by OGIS. Similarly, no gene*drug interaction 

was identified to explain variance in other parameters which differed between 

groups, such as BMI or GLP1. It may be that a recruit-by-genotype study design 

is required, where individuals with the identified genome-wide significant SNP are 

recruited to assess response to metformin. Alternatively, the GWAS signal may 

be associated with another gene from the identified locus.  



253 
 
We have confirmed that there is abnormal adipokine secretion in A-T, and 

identified a potential increase in liver fat and iron deposition, although this requires 

further investigation.  

The RAMP study has not only improved our understanding of the metabolic 

dysfunction in A-T, but it has also provided guidance for the management of 

diabetes in A-T.  
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Conclusions 

Metformin is the most commonly used oral medication for type 2 diabetes, with 

an impressive safety and benefit profile. It continues to garner new interest from 

other fields in medicine, especially oncology. As such, research into metformin is 

ever increasing. Part of metformin’s intrigue lies in the fact that it precedes 

modern drug discovery and testing protocols, and its mechanism of action 

remains relatively elusive – or at least debatable. More recently, in addition to the 

widely accepted cellular mechanisms of action such as metformin’s effect on 

AMPK or gluconeogenesis, the gastrointestinal tract has been highlighted as a 

site of particular interest in both efficacy and tolerability.  

Metformin has considerable variability in its efficacy and tolerability, and the 

challenge of predicting this variability is inextricably linked to understanding the 

site and mechanisms of action of the drug. This thesis has employed 

pharmacokinetics, pharmacogenetics and physiology studies to add to this field 

of metformin research.  

What have we learned? 

Pharmacokinetics of Metformin Intolerance 

Chapter 3 of this thesis details the “Pharmacokinetics of Metformin Intolerance” 

(POMI) study, employed a pharmacokinetics study to compare individuals who 

were tolerant to those who were intolerant of metformin. The study data presented 

demonstrates that the PK of metformin does not differ significantly in the two 

phenotypes, nor does the systemic lactate, serotonin, or bile acid pool, suggesting 

that these are not the underlying mechanism of metformin intolerance. 

It is possible that intolerance may be multifactorial, however, and that these 

individual effects of metformin, when accumulated, could cause intolerance. 

However, our data clearly show that intolerance is not driven by one of these 

factors independently. In fact, the results from this recruit-by-phenotype study 
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suggest that metformin intolerance is likely to be mediated by local factors within 

the lumen or enterocyte. 

Areas for further investigation  

Firstly, it would be interesting to further investigate the link between metformin 

transporter genotype, pharmacokinetics and tolerance of metformin, as genotype 

was not considered in the POMI study. To do so, a large recruit-by-genotype 

study would be necessary, to compare two genotypes of a known transporter e.g. 

OCT1, along with pharmacokinetic data, in tolerant and intolerant individuals.  

Secondly, as the results from this recruit-by-phenotype study suggest that 

metformin intolerance is likely to be mediated by local factors, there is a need to 

undertake more mechanistic studies that investigate the local (luminal) 

environment, especially the microbiome, in intolerant vs tolerant individuals. 

Thirdly, while the systemic lactate did not differ post-metformin between the 

phenotypic groups, it is possible that the gastrointestinal symptoms of intolerance 

are driven by an increase in local lactate concentrations. Portal venous sampling 

for lactate concentration would provide a more accurate measure of intestinal 

lactate production, rather than using peripheral concentrations as a proxy 

measure. However, obtaining portal venous samples for research purposes 

would prove extremely challenging in humans, both physically and ethically. 

Lastly, we did not measure GLP1 levels in this study of metformin intolerance. A 

further study to compare the change in GLP1 concentrations post-metformin in 

tolerant and intolerant individuals, would be of interest. 

Impact of OCT1 genotype and OCT1 inhibiting drugs on an individual’s 

metformin tolerance 

Chapter 4 of this thesis reports the findings from the “Impact of OCT1 genotype 

and OCT1 inhibiting drugs on an individual’s metformin tolerance” study. This 

study employed a recruit-by-genotype design to investigate observed 
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associations between metformin intolerance and OCT1 genotype and inhibition. 

While our data did not validate the observation that loss of function in OCT1 

negatively impacts on metformin intolerance, we did identify a gene*drug 

interaction between OCT1, metformin and omeprazole, which may explain the 

observed data. Individuals with wild type OCT1 have an improved tolerance of 

metformin when concurrently treated with omeprazole. Conversely, those with 

reduced function variants in OCT1 do not benefit from the addition of omeprazole. 

Therefore, this study, for the first time, has identified a clinically relevant and 

applicable gene*drug interaction between OCT1, metformin and omeprazole. 

Areas for further investigation  

The identified gene*drug interaction has clinical application and potential benefit. 

However, there is still significant research required to fully characterise and 

understand metformin intolerance. Using the stool, serum and urine samples 

collected opportunistically during the ImpOCT study, there is the potential to gain 

further insight into the mechanism of metformin intolerance. 

Firstly, using the stool samples collected at baseline and after each treatment 

period, we can study the microbiome to assess for alterations in the variety and 

abundance of species present before and after metformin. Furthermore, we can 

compare the change in species seen in individuals who were tolerant to that seen 

in intolerance, to assess if the microbiome may contribute to metformin 

intolerance.  

Secondly, serum and urine samples taken before and after metformin could be 

used to assess the PK of metformin with and without concurrent use of an OCT1 

inhibiting drug. This may, however, prove difficult to interpret, and would involve 

complex modelling due to the variability in metformin dosing across the study 

population, as well as the timing of samples from metformin dose. The PK 

analysis may therefore be best applied to the tolerant individuals, all of whom 

achieved the maximum tolerated dose of 2000mg daily. 
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Lastly, the study design developed for the ImpOCT study is easily applicable to 

other drug transporters, their genetic variants and substrates. For example, the 

study design could be adopted for the investigation of the impact of genetic 

variation in the serotonin transporter (SERT) on metformin tolerance. 

Response of individuals with Ataxia-Telangiectasia to Metformin and 

Pioglitazone 

Chapter 5 of this thesis describes the “Response of individuals with Ataxia-

Telangiectasia to Metformin and Pioglitazone” (RAMP) study, which used dual 

tracer mixed meal tests to study the physiological effects of metformin and 

pioglitazone in individuals with A-T vs healthy controls. This study provided a 

wealth of data on the metabolic phenotype of this rare genetic condition, and 

provided a useful comparison of potential treatments for the diabetes associated 

with A-T.  

While this study did not validate the results of the GWAS which implicated ATM 

in metformin response, it has shown that A-T may be associated with a blunted 

response to metformin, though this may only become evident when compared to 

individuals with a similar metabolic phenotype or equivalent level of insulin 

resistance, rather than healthy controls. The study data also suggest that in the 

treatment of insulin resistance and diabetes in this patient group, pioglitazone 

may be a more effective treatment than metformin – a deviation from the current 

management guidelines for type 2 diabetes.  

The RAMP study also demonstrated some interesting glucose kinetics in healthy 

controls post-metformin, including an increase in EGP and glucose clearance. 

This lends support to the theory that metformin increases glucose clearance as a 

mechanism of glycaemic control, with the gastrointestinal tract acting as a 

potential site of clearance. 
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Areas for further investigation 

The RAMP study has identified a number of areas for further research. As 

mentioned, comparison of metformin response in the A-T group to individuals with 

pre-diabetes may be more informative.  

Secondly, we are in the process of developing a protocol for a study of the adipose 

biopsies taken from all participants at baseline. Based on the adipokine data from 

RAMP, we believe that adipose tissue plays an active role in the metabolic 

phenotype seen in A-T. By performing lipidomic and proteomic analysis of the 

adipose tissue obtained at the baseline visit, we hope to further define the lipid 

and protein complement of adipose tissue in A-T, which could give insight into 

insulin signalling in adipose and pathogenesis of insulin resistance in A-T. The 

information learned could ultimately help identify treatment targets or guide 

management of insulin resistance and diabetes in A-T.  

Ideally, cell culture could also be performed using the stromal vascular fraction of 

the adipose tissue, permitting drug response experimentation to assess insulin 

and pioglitazone response. This will be dependent upon the quantity of tissue 

available post-lipidomic analysis. 

Thirdly, a wider study of pioglitazone treatment in A-T would be the next logical 

step to assess for clinical benefit. It would be interesting to obtain MR imaging 

before and after pioglitazone treatment to assess for a reduction in liver fat 

fraction. Alternatively, it would be ideal to be able to apply Liver Lab software to 

existing MRI images from A-T patients, to investigate the trend towards increased 

iron deposition in the liver, which may be associated with a chronic pro-

inflammatory state. This would likely prove technically difficult, as specific imaging 

sequences and breath holds were required to obtain images for Liver Lab 

analysis. 

Lastly, the Sanger institute in Cambridge have successfully developed IPSCs 

from A-T patients. As part of a collaboration with the Centre for Regenerative 
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Medicine at the University of Edinburgh, our intention is to study how these IPSCs 

respond to insulin, as well as deriving hepatocytes for drug response experiments 

using insulin, metformin and pioglitazone.  

Conclusion 

This thesis has contributed new and varied data to the field of metformin research, 

which is both clinically relevant and applicable. Importantly, it has highlighted 

areas for additional research and has challenged our interpretation of previous 

studies.  
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Appendix 1: POMI sample analysis methods 

Determination of metformin concentrations in plasma and urine 

samples. 

The concentration of metformin in plasma and urine samples were determined at 

the Department of Clinical Pharmacology and Pharmacy,  Institute of Public 

Health, University of Southern Denmark, by use of liquid chromatography and 

tandem mass spectrometry (LC-MS/MS). The LC-MS/MS system consisted of an 

Ultimate 3000 UHPLC system connected to a TSQ Quantiva Triple Quadropole 

Mass Spectrometer with heated electrospray ionization (Thermo Scientific, San 

Jose, CA). Data acquisition was performed in single reaction monitoring (SRM) 

mode. Metformin was quantitated by positive ionisation at the transition from (m/z) 

130.4 – 71.1, and with (m/z) 130.4 – 60.1 as a qualifier trace. Metformin-d6 

(internal standard) was monitored from (m/z) 136.4 – 77.1. The analytical 

separation was performed using hydrophilic interaction chromatography as 

described by Nielsen et al (183).  

The sample preparation of the plasma samples consisted of a single protein 

precipitation step. To a 100μL plasma sample, 10 μL 25 ug/mL metformin-d6 

(internal standard), 20 μL 0.53M ammonium acetate and 390 μL acetonitrile were 

added. The sample was vortex mixed for 30 sec and centrifuged at 3.000g for 15 

minutes. The urine samples were diluted (1:50) before use, but were otherwise 

treated as the plasma samples. A volume of 10 μL of the supernatant was injected 

onto the LC-MS/MS system. Calibration curves, as well as quality control 

samples, were prepared and included in each batch of analysis. The intra- and 

interday variability was < 8%. The limit of detection (LOD) for the method was 1 

ng/mL and limit of quantification (LOQ) was 10 ng/mL. 

Determination of histamine, serotonin and bile acid concentrations 

EDTA plasma samples from time points 0, 3.5, 8 and 24 hours post-metformin 

were used for targeted metabolomics measurements, which were done in the 
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Metabolomics Platform of the Genome Analysis Center, Helmholtz Zentrum 

München). Histamine and serotonin were quantified using the Biocrates 

AbsoluteIDQTM p180 Kit and bile acids using the BiocratesTM Bile Acids Kit 

(BIOCRATES Life Sciences AG, Innsbruck, Austria).  

The measurements of plasma samples with the AbsoluteIDQTM p180 Kit and FIA- 

and LC-ESI-MS/MS (flow injection analysis-/liquid chromatography-electrospray 

ionisation-tandem mass spectrometry) have been described in full detail by 

Zukunft et al (363). Out of 10 µL sample, 188 metabolites can be quantified 

simultaneously. The assay includes free carnitine, 39 acylcarnitines, 21 amino 

acids, 21 biogenic amines, hexoses, 90 glycerophospholipids, and 15 

sphingolipids.  

Using the BiocratesTM Bile Acids Kit and LC-ESI-MS/MS, 20 bile acids can be 

quantified out of 10 µL plasma. The assay includes cholic acid, chenodeoxycholic 

acid, deoxycholic acid, glycocholic acid, glycochenodeoxycholic acid, 

glycodeoxycholic acid, glycolithocholic acid, glycoursodeoxycholic acid, 

hyodeoxycholic acid, lithocholic acid, alpha-muricholic acid, beta-muricholic acid, 

omega-murichoclic acid, taurocholic acid, taurochenodeoxycholic acid, 

taurodeoxycholic acid, taurolithocholic acid, tauromuricholic acid (sum of alpha 

and beta), tauroursodeoxycholic acid, ursodeoxycholic acid. Compound 

identification and quantification were based on scheduled multiple reaction 

monitoring measurements (sMRM). We provide the description on how sample 

preparation and mass spectrometric measurements were performed in the 

laboratory (364). In short, 10 µL of internal standard solution in methanol were 

pipetted onto the filter inserts of a 96 well sandwich plate. After drying the filters 

for 5 min at RT in a nitrogen stream, 10 µL of blank, calibration standards, quality 

control samples and plasma samples were pipetted into the distinct respective 

wells and the filters were dried again for 5 min. For extraction of metabolites and 

internal standards, 100 µL of methanol were added and the plate was shaken for 

20 min at 650 rpm. The metabolite extracts were eluted to the lower deep well 

plate by a centrifugation step (5 min at 500 x g at RT). The upper filter plate was 
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removed, the extracts were diluted with 60 µL ultrapure water, and the plate was 

shaken for 5 min at 450 rpm and placed into the cooled auto sampler (10 °C) for 

LC-MS/MS measurements. The LC-separation was performed using 10 mM 

ammonium acetate in a mixture of ultrapure water/formic acid v/v 99.85/0.15 as 

mobile phase A and 10 mM ammonium acetate in a mixture of 

methanol/acetonitrile/ultrapure water/formic acid v/v/v/v 30/65/4.85/0.15 as 

mobile phase B. Bile acids were separated on the UHPLC column for BiocratesTM 

Bile Acids Kit (Product No. 91220052120868) combined with the precolumn 

SecurityGuard ULTRA Cartridge C18/XB-C18 (for 2.1 mm ID column, 

Phenomenex Cat. No. AJ0-8782). All solvents that have been used for sample 

preparation and measurement were of HPLC grade.  

Both Biocrates methods has been proven to be in conformance with the EMEA-

Guideline "Guideline on bioanalytical method validation” (July 21st 2011) 

(365)which implies proof of reproducibility within a given error range. Sample 

preparation and FIA- and LC-MS/MS measurements were performed as 

described by the manufacturer in the manuals UM-P180 and UM-BA. Analytical 

specifications for LOD (limit of detection), LLOQ and ULOQ (lower and upper limit 

of quantification), specificity, linearity, precision, accuracy, reproducibility, and 

stability were described in Biocrates manuals AS-P180 and AS-BA. The LODs 

were set to three times the values of the zero samples (PBS). The LLOQ and 

ULOQ were determined experimentally by Biocrates. Samples were handled 

using a Hamilton Microlab STARTM robot (Hamilton Bonaduz AG, Bonaduz, 

Switzerland) and a Ultravap nitrogen evaporator (Porvair Sciences, Leatherhead, 

U.K.), beside standard laboratory equipment. Mass spectrometric analyses were 

done on an API 4000 triple quadrupole system (Sciex Deutschland GmbH, 

Darmstadt, Germany) equipped with a 1200 Series HPLC (Agilent Technologies 

Deutschland GmbH, Böblingen, Germany) and a HTC PAL auto sampler (CTC 

Analytics, Zwingen, Switzerland) controlled by the software Analyst 1.6.2. Data 

evaluation for quantification of metabolite concentrations and quality assessment 

was performed with the software MultiQuant 3.0.1 (Sciex) and the MetIDQ™ 
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software package, which is an integral part of the AbsoluteIDQ™ and BiocratesTM 

Bile Acids Kits. Metabolite concentrations were calculated using internal 

standards and reported in µM.  

Determination of plasma lactate concentrations 

Fluoride oxalate samples were analysed for plasma lactate using a lactate 

oxidase method on a Siemens ADVIA 2400 Chemistry System (analysed by 

Biochemical Medicine, Department of Blood Sciences, NHS Tayside).  
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Appendix 2 : Questionnaire to Assess Character and 

Severity of Metformin Intolerance   

    

1. Are you still taking metformin? 
- Yes (if still taking skip to question 6)     0 
- No          5 

If you are no longer taking metformin: 

2. Was the metformin stopped due to side-effects? 
- Yes (go to question 3)      5

  
- No  (go to question 6)      0 

 

3. What dose were you taking at the time of discontinuing metformin? 
- 500mg once daily (1 tablet once daily)    4 
- 1000mg once daily (2 tablets once daily)    3 
- 500mg twice daily (1 tablet twice daily)    2 
- 2000mg once daily (four tablets once daily)    1 
- 1000mg twice daily (two tablets twice daily)    0 

 

4. Had you previously been on a lower dose of metformin, which you 
tolerated without significant side-effects? 
- Yes           0 
- No          1 

a) If yes, what was the maximum dose you tolerated? 
 

_________________________________________ 2 

  (if 500 mg OD) 

 

 

5. Have you been trialled on a modified release preparation of metformin 
(e.g. Glucophage SR)? 
- Yes         2 
- No          0 
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In the last week of taking metformin, have you experienced? 

6. Nausea? 
- Yes         1 
- No          0 

a) If yes, how many times?  
 More than once a day     4 
 Once a day      3 
 Occasionally       2 
 Only once      1 

b) How would you score its severity from 1 - 5 (where 1 is mild, 
not causing distress or affecting your daily routine, and 5 is 
very severe, causing marked distress and / or disrupting your 
daily activities)? _________________                    __ / 5 

 

7. Abdominal bloating / pain? 
- Yes         1 
- No          0 

a) If yes, how often? 
 More than once a day     4 
 Once a day      3 
 Occasionally       2 
 Only once      1 

b) How would you score its severity from 1 - 5 (where 1 is mild, 
not causing distress or affecting your daily routine, and 5 is 
very severe, causing marked distress and / or disrupting 
your daily activities) ? ________________                 __ / 5 

 

8. Diarrhoea? 
- Yes         1 
- No          0 

a) If yes, how often? 
 More than once a day     4 
 Once a day      3 
 Occasionally       2 
 Only once      1 

b) How would you score its severity from 1 - 5 (where 1 is mild, 
not causing distress or affecting your daily routine, and 5 is 
very severe, causing marked distress and / or disrupting your 
daily activities) ? _____________________      __ / 5 
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9. Have you experienced any of the side-effects you have described 
above PRIOR to starting metformin? 
- Yes         -5 
- No           0 

a) If yes, whilst taking metformin have the symptoms: 
 Improved       -1 
 Worsened       1 
 Stayed the same      0 

TOLERANCE: 

10. Would you describe yourself as: 
 

a) Tolerant of metformin treatment    0 
b) Mildly intolerant of metformin treatment   1 
c) Intolerant of metformin treatment    2 
d) Severely intolerant of metformin treatment.   3 

Thank you for taking the time to complete this questionnaire. 

For Clinical Staff Use: 

TOTAL SCORE: ____ / 50 

Score: 

0 – 10 = tolerant (T) 

11-20 = mild intolerance (MI) 

21-30 = intolerant (I) 

31-50 = severely intolerant (SI) 

Severity 

Score 

( __/50 ) 

Score based 

tolerance 

( T / MI / I / SI ) 

Patient perceived 

tolerance 

( T / MI / I / SI ) 

Correlation 

( Y / N ) 
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Appendix 3: OCT1 inhibiting drugs 

 

Commonly prescribed drugs known to be substrates for 
OCT1 

PPIs (omeprazole, lansoprazole) 

TCAs (amitriptyline) 

Citalopram 

Calcium-channel blockers (verapamil, diltiazem) 

Alpha-adrenoceptor blockers (doxazosin, prazosin) 

Spironolactone 

Clopidogrel  

Repaglinide  

Rosiglitazone 

Quinine 

Antiarrhythmic drugs (quinidine, disopyramide, propafenone) 

Tramadol 
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Codeine 

Morphine 

Ketoconazole 

5-HT3 receptor antagonists (tropisetron, ondansetron) 

Antipsychotic agents 

Tyrosine kinase inhibitors 
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Appendix 4: ImpOCT Analysis 

McNemar Test R code and Output: 

OCT1 wild type: 

 

 

OCT1 Null: 
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Cochran-Mantel-Haenszel test 

Due to the large number of “zero” cells, the addition of a delta value to all cells is 

required for analysis. In the following R code, delta = 0.25:  
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Cumulative linked mixed models 

Code: 

 

Output: 
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Figures 57, below, shows the predicted probability of each maximum tolerated 

dose, from 0 to 4 tablets daily, across groups. Individuals who are OCT1 wild type 

taking concurrent omeprazole have a lower probability of a MTD of 0, 1, 2 or 3 

tablets per day, compared to other groups. However, they have a higher 

probability of achieving the MTD of 4 tablets per day. In contrast, while taking 

placebo, the OCT1 wild type individuals have a higher probability of reaching a 

lower tolerated dose, i.e. 0, 1, 2, or 3 tablets daily, compared to other groups, and 

a lower probability of achieving the maximum tolerated dose of 4 tablets daily. 

Note the difference in the vertical scale across plots.  
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Figure 57 Predicted probability of each maximum tolerated dose, according to group. 

Group 1 = Wild type + Placebo; Group 2 = Wild type + Omeprazole; Group 3 = Null + Placebo; 

Group 4 = Null + Omeprazole. 
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This can be compared in a single plot of the predicated probabilities of each dose, 

for all groups. 

 

Figure 58 Predicted probabilities of each MTD across groups. 

Figure 57 shows that individuals with OCT1 wild type, when treated with placebo, 

have a higher probability of achieving lower tolerated doses. The OCT1 wild type 

group, when treated with omeprazole, have a reduced probability of lower 

tolerated doses. However, when examining the probability of achieving the 

maximum tolerated dose of 4 tablets per day, the probability is greatest in wild 

type individuals treated with omeprazole. 
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Generalised Linear Mixed Models 

Using a mixed model to incorporate both fixed and random effects, it is possible 

to predict the probability of the MTD of metformin based on genotype and 

treatment. With maximum tolerated dose as the outcome, genotype and treatment 

effects as fixed, and the individual as a random effect, and we can use a mixed 

model to predict probability of achieving maximum dose of metformin. 

The model below, which uses the “MASS” package in R, adopts penalised quasi-

likelihood (see Methods: Mixed Models) to model response, and can be used to 

predict probabilites on the scale of the response variable.  

Code: 

 

Note the glmmPQL model does not handle ordinal outcomes, and therefore our 

outcome of MTD (0, 1, 2, 3, 4 tablets per day) is transformed into a matrix: 

(Number of tablets tolerated; Maximum number minus number actually tolerated) 

i.e. (MTD, 4 – MTD) 

This is one of the reasons why we opted to use the ordinal package for primary 

analysis - to prevent the need for transformation of the response variable.  
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Output: 

 

As shown, both “Treatment” and the interaction term “Genotype*Treatment” are 

significant within the simplified model. 

The glmmPQL model has been used for validation of our result, rather than for 

primary analysis, as the model requires transformation of the ordinal outcome as 

mentioned above, but also does not offer a measure of model fit, e.g. AIC or p 

value. The package does not allow comparison of models using anova, and 

therefore, we could not assess for model superiority. 

The simplified model was used to predict probability of the outcome, and the 

output is plotted below: 
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Figure 59 Mixed model (glmmPQL) predicted probability of MTD with genotype and treatment 

 

Similar to the CMH test and the ordinal model, the model demonstrates a 

significant gene x drug interaction, with OCT1 Wild Type having a significantly 

higher predicted MTD of metformin during concurrent omeprazole use, compared 

to OCT1 null, or concurrent placebo use. The effect size of this gene x drug 

interaction is demonstrated using the odds ratio of metformin tolerance, 

calculated from the mixed model above. 
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Odds Ratio 
 

Odds Ratio of 
Tolerance 

95% CI 

OCT1 WT, treated with 
placebo 

1.0 - 

OCT1 null, treated with 
placebo 

1.57   (0.38 – 6.44) 

OCT1 WT, treated with 
omeprazole 

3.87 (2.02 – 7.43) 

OCT1 null, treated with 
omeprazole 

1.75 (0.43 – 7.22) 

Table 21 Odds ratio of metformin tolerance as calculated from the generalised linear mixed model, 
using penalised quasi-likelihood 

Odds ratios can be calculated from the exponential of the model estimate for each 

factor, with 95% confidence intervals of the odds ratio calculated as the 

exponential of the CIs of the estimate.  

As shown in the table above OCT1 wild type individuals are nearly four times 

more likely to tolerated metformin while taking omeprazole. However, in OCT1 

null individuals the addition of omeprazole only increased the OR of tolerance by 

0.1. 

This result is in-keeping with our primary analysis, that OCT1 wild type have an 

improved metformin tolerance on omeprazole treatment.  



280 
 

 
 

Generalised linear models 

An alternative method for analysing a cross-over study, is to adopt a generalised 

linear model, to assess the intra-individual response to the exposure. In this 

method, the model is tested within the individual, removing the random effect of 

the individual.  

This gives a model with the MTD on omeprazole as the dependent variable, and 

genotype and MTD on placebo (MTDP) as fixed effects. In this model, the 

outcome has to be transformed into a matrix, rather than an ordinal variable. The 

model and plotted predicted outcome is shown below. This generalised linear 

model once again demonstrates a significant gene * drug interaction, with 

omeprazole treatment improving tolerance in the OCT1 wild type group. 

lm1  glm (cbind (MTDO, X4.MTDo) ~ Genotype * MTDP, family=binomial). 

 

Figure 60 Predicted MTD on Omeprazole, from Genotype and MTD on placebo 
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When we consider terms individually in the linear model, such as age, BMI, 

gender, MTDP and concurrent treatment order (referred to as sequence), BMI 

and MTDP are significant. Interaction terms genotype*sequence, and 

genotype*MTDP are both significant independently. When all of the above 

significant variables are added to the model, the resulting simplified model is: 

lm2  glm (cbind (MTDO,X4.MTDO) ~ Genotype*as.factor (Sequence) +  

Genotype* MTDP,  

family=binomial) 

Using AIC as an estimate of relative quality of the model, the addition of age as 

an independent variable, improves both model lm1 and lm2, although age is not 

a significant term within either model. 

The linear model of best fit was identified as: 

lm3  glm (cbind (MTDO, X4.MTDo) ~ Genotype * as.factor(Sequence) +  

          Genotype * MTDP +  

Age * Genotype,  

family = binomial) 

 

Model lm3 was used to predict the MTD on Omeprazole, according to an 

individual’s genotype, age, MTD on placebo, and sequence of concurrent 

treatment. The model was used to predict outcomes for age 40, 50, 60 and 70 

years. Figures 61 – 64 show the model predictions. Sequence 1 refers to 

omeprazole treatment followed by placebo, sequence 2 is placebo followed by 

omeprazole. 
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Figure 62 Predicted MTD on Omeprazole in 50 year olds, modelled using lm3 

Figure 61 Predicted MTD on Omeprazole in 40 year olds, modelled using lm3 
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Figure 64 Predicted MTD on Omeprazole in 70 year olds, modelled using lm3 

 

Figure 63 Predicted MTD on Omeprazole in 60 year olds, modelled using lm3 



284 
 

 
 

Figures 61 - 64 clearly demonstrate a reducing metformin tolerance with 

advancing age in the OCT1 Null group. In contrast, metformin tolerance in the 

OCT1 wild type group is not affected by age. 

The difference in tolerance between the treatment sequence groups, although 

significant in the model, does not appear significant in the plots, as the trajectory 

of the genotype plots is similar across sequence, and the standard error of the 

sequence is consistently overlapping within genotype. Interestingly, the direction 

in which sequence appears to impact on tolerance is divergent in the genotype 

groups. 

Discussion 

Sub- analyses – the Impact of Age 

The sub-analyses of the data using generalised linear models to consider how 

the maximum tolerated dose achieved on placebo affects that achieved on 

omeprazole, once again confirmed the gene x drug interaction seen in the mixed 

models. The model of best fit also included age and treatment sequence as 

interaction terms with genotype (although this model had only marginally lower 

AIC than the model without sequence included).  

Prediction of the MTD on omeprazole using this model of best fit clearly 

demonstrated an age effect on tolerance in the OCT1 null group.  This is in-

keeping with previous data from GoDARTS which found that individuals intolerant 

of metformin were older than the tolerant cohort (29). In 40 and 50 year olds, there 

is no significant difference in tolerance between the genotype groups. However, 

as age advances into the 6th and 7th decades, the OCT1 null group’s MTDO 

reduces.  

The contribution of treatment sequence to the model is potentially a psychological 

effect of time in study or the effect of experiencing symptoms within the first 

treatment period on the individual’s interpretation or reporting of symptoms. 

Interestingly, the two sequences had opposing effects on the two genotypes. 
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While the outcomes of the linear models are intriguing and shed additional light 

on the potential mechanism of metformin intolerance, the models are not as well 

suited to the data, as the random effect of the individual is lost. Therefore these 

are viewed as sub-analyses only. 
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Time 

(mins) 

Time 

from 

beginning 

Target 

time 

Actual 

time 

Target D2 

Glucose 

Infusion 

rate 

(mg/kg/min) 

Actual D2 

Glucose 

Infusion 

Rate 

(mg/kg/min) 

Bloods? Blood 

bottles 

Indirect 

calorimetry? 

Urine 

collection 

Signature comment 

-120 0   6  Y G  Pre-meal 

urine 

collection 

into 24 

hour 

collection 

bottle. 

  

-119 1   0.06  -    

-110 10   0.06  -    

-65 55   0.06  -  Calibrate   

-60 1h   0.06  -  Start run 

 

 

  

-40 1h20   0.06  Y G, Y, P   

-35 1h25   0.06  Y G   

Appendix 5 Tracer Timeline 
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-30 1h30   0.06  Y G  

 

 

 

 

 

 

  

  

-20 1h40   0.06  Y G, Y 

(5ml), 

 

   

-10 1h50   0.06  Y G   

-5 1h55   0.06  -  Calibrate Empty 

bladder 

  

At time 0 give the liquid meal with U13-C Glucose added. When finished the drink, give 1g liquid paracetamol.  

         0 2h   0.042  Y G, Y, 

C, P 

Start run 

 

 

 

 

 

 

 

 

Post 

meal 

urine 

collection 

into 

second 

24 hour 

urine 

  

10 2h10   0.036  Y G, Y, 

C, P 

  

15 2h15   0.036  -    

20 2h20   0.030  Y G, Y, 

C, P 

  

30 2h30   0.021  Y G, Y 

(5ml), 
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45 2h45   0.021  -   collection 

bottle 
  

55 2h55   0.021  -  Calibrate   

60 3h   0.021   Y G, Y 

(5ml), 

  

Start run 

 

 

 

 

 

 

  

  

75 3h15   0.021  Y G   

90 3h30   0.021  Y G, 

Y(5ml), 

 

  

115 3h55   0.021  -  Calibrate   

120 4h   0.024  Y G, 

Y(5ml), 

  

Start run 

 

 

 

  

  

150 4h30   0.024  Y G, Y, P   

175 4h55   0.024  -  Calibrate   

180 5h   0.027  Y G, 

Y(5ml), 

 

  



289 

 
 

210 5h30   0.027  Y G, Y Start run 

 

 

 

  

  

235 5h55   0.027  -  Calibrate   

240 6h   0.030  Y G, 

Y(5ml), 

 

Start run 

 

 

 

  

  

270 6h30   0.030  Y G, Y   

280 6h40   0.033  -     

300 7h   0.039  Y G, Y    

360 8h   stop  Y G, Y    
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End of tracer study checklist: 

Remove cannulae    ☐   

Give emergency contact details   ☐  CRC number for 9am – 5pm. NHS helpline out of hours. 

Give medication: Metformin (Visit 1)  ☐ 

   Piogltiazone (Visit 2)  ☐ 

Collect XS meds:  Metformin (visit 2)  ☐ 

    Pioglitazone (visit 3)  ☐ 

 Arrange weekly telephone call   ☐ 

Arrange date(s) for next visit(s)   ☐   

Time Urine Volume 

-120 to 0 mins (pre-meal)  

0 to 360 (post-meal)  
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Appendix 6: RAMP analysis 

Individuals with A-T are insulin resistant 

HOMA 

Comparing insulin sensitivity (HOMA-%S) and beta cell function (HOMA%B), the 

resulting plot has an inverse non-linear distribution, similar to that seen in the 

traditional rectangular hyperbola of the disposition index (346). This indicates that 

at lower insulin sensitivity, the beta cell is appropriately upregulated to secrete 

more insulin. Therefore, at least in the fasted state, the beta cell function of the 

two groups appears comparable, as both have normal fasting glucose.  

 

Figure 65 Comparison of calculated insulin sensitivity (HOMA%S) and beta cell function 

(HOMA%B) at baseline. 

However, HOMA measurements are correlated indices, as both are proportional 

to fasting insulin and glucose. They are, therefore, interdependent and not ideal 

for assessing beta cell function (346). For a more accurate assessment, OGTT 

data or beta cell modelling, using C-peptide deconvolution (226) to calculate 

insulin secretion, is required. 
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Beta cell modelling 

The dose-response curve for the two groups at baseline was remarkably similar, 

indicating equivalent beta cell function in the two groups. Glucose sensitivity (87.6 

vs 91.4, p = 1.0) - calculated as the slope of the dose response curve - and the 

insulin secretion rate at known glucose (4.7mmol/l) (A-T 83.4 vs 61.5, p = 0.51), 

were, therefore, also comparable between the two groups 

Figure 66 Dose-response curve at baseline. Data are mean (SEM). 

Rate sensitivity, a marker of first phase insulin response, although numerically 

greater in the A-T group, was not statistically different from the controls (970.6 vs 

789.0, p = 0.36). Elevation of the rate sensitivity would be in-keeping with the 

picture of insulin resistance.  
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Figure 67 Potentiation factor over the first 120 minutes of the MMT. The lesser gradient of the A-

T slope is in-keeping with impaired glucose tolerance. Data are mean (SEM). 

The potentiation factor during the first 120 minutes of the MMT is shown in the 

figure above. The flatter profile of the potentiation factor is similar to that seen in 

impaired glucose tolerance and diabetes (222). 

Disposition index and Beta Cell Function 

The disposition index (DI) is a constant which can be used as a measure of the 

beta cells ability to compensate for insulin resistance (254, 255). In an individual 

with normal beta cell function, the sensitivity – secretory relationship is 

traditionally described as a rectangular inverse hyperbola, and the product of the 

two parameters is the disposition index. It was originally defined as the product of 

the insulin sensitivity index (Si) and acute insulin response (AIR) from the IVGTT, 

however several studies have since described an oral disposition index (256, 

257). Oral DI can be calculated using indices from the OGTT or beta cell 

modelling, for example, it is possible to plot the Matsuda Index against the 
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Insulinogenic index, and the product of the two is the oral disposition index (258, 

259). 

 

Figure 68 Insulinogenic index (IGI) plotted against the Matsuda insulin sensitivity index results in 

the rectangular inverse hyperbola associated with the disposition index. As beta cell function 

reduces the hyperbola moves closer to the origin. 

 

Figure 69 Proof of hyperbolic relationship between IGI and Matsuda index. When log values of 

the indices are plotted, there should be a negative linear relationship, with slope =-1. 
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Alternatively, the Matsuda index can be plotted against the ISR. This is more 

robust as the ISR is calculated from C-peptide deconvolution and therefore the 

two measures are more independent, though not entirely so, as using the same 

OGTT data. Therefore this comparison was included in the main results chapter. 

 

Figure 70 ISR plotted against Matsuda index, showing the typical hyperbolic relationship. 
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Figure 71 Log ISR plotted against log Matsuda has a slope of -1. 
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Response to metformin 

HOMA 

 

Figure 72 HOMA-IR after metformin treatment. Data are median (IQR). 
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Figure 73 HOMA%B compared to HOMA%S post-metformin. 
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Beta cell modelling 

 

Figure 74 Dose-response curve of insulin secretion according to glucose concentrations post-

metformin. Data are mean (SEM). 

The dose-response curve shown above remained similar between groups, and 

unchanged from baseline. There is therefore no change in glucose sensitivity (p 

= 0.87) nor in ISR for specified glucose (p = 0.21). Rate sensitivity was unchanged 

from baseline, with no difference between groups. 

The potentiation factor profile was flatter in the A-T group, as shown in the figure 

below. As for baseline, this could represent impaired glucose tolerance. However, 

in A-T, there is obvious loss of the initial potentiation, which is evident in the 

control group. This may indicate a reduced incretin effect (347), especially as 

there was no increment in GLP1 in the A-T group, as would be expected with 

metformin. 
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Figure 75 Potentiation factor post-metformin up to 120 minutes post-meal. Again, A-T group have 

a flatter profile, and loss of the initial potentiation post-meal. Data are mean (SEM). 
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Insulin sensitivity and secretion indices 

 

Figure 76 Comparison of the Matsuda index and ISR as an oral disposition index. 

 

Figure 77 Oral disposition – log (Matsuda) against log (ISR) with the slope of -1. 
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Response to pioglitazone  

HOMA 

 

Figure 78 HOMA-IR after pioglitazone treatment. Data are median (IQR). 

 

Figure 79 HOMA%B compared to HOMA%S while taking pioglitazone. The axes scales have 

been kept constant for each study visit, to demonstrate the left shift of the hyperbola. 
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Beta cell modelling 

 

Figure 80 Dose-response curve following pioglitazone treatment. Data are mean (SEM). 

There was a reduction in the mean ISR over the duration of the MMT in the A-T 

group. Although not significant, both ISR at reference glucose (83.4 to 66.5, p = 

0.3) and rate sensitivity (970 to 645, p = 0.6) were lower compared to baseline in 

the A-T group, and glucose sensitivity increased (87.6 to 97.2). This is evident 

from the perceived increased gradient in the dose-response curve shown above.  

The control group did not demonstrate any change from baseline in insulin or 

glucose concentration, nor in fasting or mean ISR. However their ISR at reference 

glucose was increased (61.5 to 78.0, p = 0.03), which would be in-keeping with 

the increased gradient of the dose-response curve. 

Despite the improvement in glucose tolerance and insulin resistance, the profile 

of potentiation in the A-T group remains flatter than the controls. 
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Figure 81 Potentiation factor post-pioglitazone. Flatter profile persists despite improved glucose 

tolerance in the A-T group, lending support to the theory that there is a reduced incretin effect in 

these individuals. Data are mean (SEM). 

 

Figure 82 Comparison of Matsuda index and ISR as an oral disposition index. 
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Figure 83 Oral DI: log (Matsuda) plotted against log (ISR). The green dashed line represents a 

gradient of -1, inkeeping with the inverse hyperbolic relationship between sensitivty and secretion. 

 

Metformin mixed effects models 

The following mixed effects models were used to analyse a subset of the RAMP 

data, including only baseline and metformin results, to assess for a gene*drug 

interaction explaining the variance of each of the following outcomes: 

BMI 

modelbmi <- lme (BMI ~ Genotype * Treatment) 

Model term P value 

Genotype 0.57 

Treatment 0.04 

Genotype*Treatment 0.53 
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This confirms that metformin does effect BMI. However, there is not a gene*drug 

interaction between ATM and metformin, to explain the variance in BMI. Even 

when controlling for age and gender, there is no gene*drug interaction identified. 

Fasting active GLP1 

modelglp <- lme (Basal Active GLP1 ~ Genotype * Treatment) 

Model term P value 

Genotype 0.13 

Treatment 0.03 

Genotype*Treatment 0.17 

Once again, this model confirms that metformin has a significant effect on fasting 

active GLP1, but no gene*drug interaction is identified. Controlling for age, sex 

and BMI had little effect on the model. 

Mean active GLP1 

modelaglp <- lme (Mean Active GLP1 ~ Genotype * Treatment) 

Model term P value 

Genotype 0.39 

Treatment 0.09 

Genotype*Treatment 0.11 
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There were no significant terms in the model of mean active GLP1, with no 

improvement by controlling for age, sex and BMI. 

Fasting total GLP1 

modeltglp <- lme (Basal Total GLP1 ~ Genotype * Treatment) 

Model term P value 

Genotype 0.78 

Treatment 0.08 

Genotype*Treatment 0.65 

There were no significant terms when modelling fasting total GLP1, again with no 

change when controlling for age, sex and BMI.  

Mean total GLP1 

modelmtglp <- lme (Mean Total GLP1 ~ Genotype * Treatment) 

Model term P value 

Genotype 0.87 

Treatment 0.06 

Genotype*Treatment 0.20 
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It is likely that metformin does explain some of the variance in mean total GLP1, 

though strictly has not reached significance. This was not improved by the 

addition of age, sex, and BMI to the model. 

Mean glucagon 

modelgcg <- lme (Mean Glucagon ~ Genotype * Treatment) 

Model term P value 

Genotype 0.91 

Treatment 0.05 

Genotype*Treatment 0.53 

Metformin treatment does affect mean glucagon concentration, though there is 

no gene*drug interaction. Controlling for age, sex and BMI does not improve the 

model. 

Fasting EGP 

modelfgp <- lme (Fasting EGP ~ Genotype * Treatment) 

Model term P value 

Genotype 0.57 

Treatment 0.005 

Genotype*Treatment 0.20 
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Metformin increases fasting EGP, but this is a drug effect, not a gene*drug 

interaction. When controlling for age, sex and BMI, both BMI (p = 0.007) and 

Treatment are significant in the model.  

Mean EGP 

modelmgp <- lme (Mean EGP ~ Genotype * Treatment) 

Model term P value 

Genotype 0.02 

Treatment   0.18 

Genotype*Treatment 0.41 

Interestingly, there is a genotype effect on mean EGP, with the A-T group having 

a lower mean EGP. The model does not show the metformin effect on EGP nor 

a gene*drug interaction. When controlling for age, sex and BMI, both sex (p = 

0.02) and BMI (p = 0.02) are significant, along with genotype (p = 0.01). 

Fasting Clearance 

modelfcl <- lme (Fasting Clearance ~ Genotype * Treatment) 

Model term P value 

Genotype 0.02 

Treatment   0.003 

Genotype*Treatment 0.20 
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Metformin increases fasting glucose clearance, although there was no gene*drug 

interaction identified. Controlling for age, sex and BMI, BMI was significant (p = 

0.03), alongside metformin (p = 0.006). 

Mean Clearance 

modelmcl <- lme (Mean Clearance ~ Genotype * Treatment) 

Model term P value 

Genotype 0.06 

Treatment   0.42 

Genotype*Treatment 0.99 

There were no significant terms within the model of mean glucose clearance, 

though the A-T genotype was trending towards a reduction in mean glucose 

clearance. When controlling for age, sex and BMI, genotype becomes significant 

(p = 0.01), and so is BMI (p = 0.003).  

In summary, no gene*drug interaction was found when considering the effect of 

A-T genotype and metformin treatment, on BMI, GLP1, glucagon, EGP, or 

clearance. 
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Appendix 7: 

Summary table 

RAMP results 

A-T Control 

Baseline Metformin Pioglitazone Baseline Metformin Pioglitazone 

Insulin conc. 

(pmol/l) 

Fasting 

61.1 

(26.1 – 134.6) 

 

38.0 

(26.0 – 111.6) 

28.0 

(20.9 – 110.1) 

15.1 

(7.8 – 24.9) 

 

16.3 

(11.1 – 25.2) 

 

18.0 

(15.5 – 21.9) 

 

Mean 

393.0 

(274.6 – 2102.7) 

 

490.8 

(254.4 – 1780.4) 

 

252.4 

(195.2 – 823.2) 

147.2 

(94.9 – 227.0) 

 

184.4 

(124.7 – 219.9) 

 

142.2 

(95.8 – 194.7) 

 

Glucose conc. 

(mmol/l) 
Fasting 

4.8 

(4.4 – 5.1) 

 

4.8 

(4.5 – 4.9) 

4.7 

(4.4 – 4.7) 

4.6 

(4.5 – 4.7) 

4.6 

(4.5 – 4.8) 

4.7 

(4.5 – 4.9) 
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Mean 

6.3 

(6.1 – 6.7) 

 

6.6 

(6.4 – 7.2) 

5.9 

(5.7 – 6.2) 

5.2 

(5.0 – 5.6) 

5.5 

(5.3 – 5.7) 

5.3 

(4.8 – 5.5) 

Glucagon 

(pg/ml) 

Fasting 

50.5 

(21.8 – 67.3) 

 

58.4 

(20.0 – 101.9) 

54.7 

(20.5 – 90.2) 

54.8 

(42.0 – 70.5) 

65.2 

(36.9 – 83.4) 

57.4 

(42.1 – 73.9) 

Mean 

38.8 

(23.9 – 54.4) 

 

47.2 

(18.4 – 65.0) 

38.0 

(20.1 – 65.6) 

54.5 

(35.8 – 71.0) 

58.4 

(42.3 – 78.4) 

53.6 

(38.6 – 74.1) 

Active GLP1 

(pg/ml) 
Fasting 

1.2 

(0.6 – 2.5) 

2.0 

(1.3 – 2.1) 

0.8 

(0.2 – 2.4) 

0.4 

(0.3 – 1.3) 

1.6 

(0.8 – 3.3) 

0.5 

(0.2 – 0.9) 
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Mean 

3.4 

(2.6 – 4.7) 

 

3.0 

(1.6 – 3.6) 

2.9 

(1.7 – 4.6) 

2.7 

(1.8 – 4.3) 

3.7 

(2.5 – 6.8) 

2.4 

(1.6 – 3.3) 

Total GLP1 

(pg/ml) 

Fasting 

15.0 

(4.4 – 32.6) 

 

11.4 

(5.9 – 45.2) 

13.8 

(7.0 – 31.5) 

5.5 

(4.0 – 11.9) 

8.4 

(7.7 – 12.7) 

6.6 

(3.7 – 13.7) 

Mean 

18.4 

(10.7 – 26.9) 

 

12.7 

(8.9 – 35.4) 

18.0 

(13.0 – 25.4) 

11.1 

(6.7 – 13.5) 

13.7 

(7.8 – 36.5) 

12.5 

(7.1 – 26.2) 

Leptin 

(pg/nl) 

24013 

(14591 – 30836) 

17812 

(6578 – 19918) 

14812 

(9362 – 22789) 

4867 

(2501 – 12717) 

5457 

(1614 – 8170) 

5323 

(1648 – 7921) 
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Adiponectin 

(ng/ml) 

2528 

(2008 – 4887) 

3306 

(2309 – 5390) 

12461 

(4451 – 15843) 

6262 

(4051 – 89940 

5975 

(3382 – 7966) 

15123 

(9594 – 19384) 

NEFA 

(mmol/l) 

Fasting 

0.72 

(0.65 – 0.88) 

 

0.74 

(0.62 – 0.81) 

0.54 

(0.43 – 0.60) 

0.53 

(0.45 – 0.68) 

0.56 

(0.51 – 0.60) 

0.46 

(0.36 – 0.56) 

Mean 

0.25 

(0.22 – 0.28) 

 

0.25 

(0.20 – 0.27) 

0.18 

(0.14 – 0.20) 

0.21 

(0.19 – 0.26) 

0.21 

(0.18 – 0.23) 

0.16 

(0.14 – 0.20) 

RaO 

58.4 

(55.1 – 62.4) 

59.1 

(53.4 – 61.5) 

58.6 

(54.9 – 62.6) 

 

59.2 

(56.7 – 61.5) 

59.4 

(54.2 – 62.0) 

60.6 

(54.9 – 61.5) 
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Glucose 

Clearance 

(ml/min/kg) 

Fasting 

2.3 

(2.2 – 2.8) 

 

2.6 

(2.3 – 3.1) 

2.6 

(2.2 – 2.9) 

2.7 

(2.3 – 2.8) 

3.0 

(2.7 – 3.4) 

2.6 

(2.4 – 2.9) 

Mean 

2.8 

(2.7 – 3.2) 

 

2.8 

(2.6 – 3.2) 

3.1 

(3.0 – 3.2) 

3.3 

(3.1 – 3.5) 

3.4 

(3.0 – 3.5) 

3.4 

(3.3 – 3.8) 

Glucose 

Production 

(µmol/min/kg) 

Fasting 
10.6 

(8.4 – 11.5) 

11.3 

(9.8 – 12.8) 

10.3 

(9.0 – 11.7) 

10.9 

(10.1 – 12.4) 

13.8 

(11.7 – 15.0) 

11.9 

(11.0 – 12.8) 

Mean 
3.7 

(3.3 – 4.4) 

3.4 

(3.2 – 4.3) 

4.2 

(3.8 – 4.4) 

5.2 

(4.8 – 6.5) 

6.1 

(4.4 – 7.0) 

5.4 

(4.5 – 7.2) 
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EE 

(kcal / day) 

Fasting 
1377 

(1275 – 1450) 

1167 

(1088 - 1201) 

1169 

(1046 - 1288) 

1603 

(1341 – 1823) 

1523 

(1309 – 1732) 

1468 

(1358 - 1629) 

Mean 
1531 

(1382 - 1580) 

1429 

(1253 - 1681) 

1387 

(1260  - 1525) 

1745 

(1494 - 1941) 

1752 

(1539 - 1926) 

1728 

(1508 - 1799) 

RQ 

Fasting 
0.91 

(0.84 – 0.99) 

0.95 

(0.91 – 1.07) 

1.10 

(1.02 – 1.18) 

0.96 

(0.86 – 1.01) 

0.90 

(0.84 – 0.98) 

0.93 

(0.83 – 1.09) 

Mean 
0.87 

(0.85 – 0.92) 

0.89 

(0.87 – 0.94) 

0.97 

(0.92 – 0.99) 

0.89 

(0.87 – 0.91) 

0.88 

(0.86 – 0.90) 

0.87 

(0.86 – 0.95) 

Glucose Sensitivity 

(pmol/min/m2/mmol) 

87.6 

(68.3 – 101.1) 

76.7 

(64.4 – 92.8) 

97.2 

(68.7 – 123.2) 

91.4 

(62.3 – 101.1) 

73.4 

(62.1 – 92.1) 

79.2 

(59.7 – 129.8) 
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Rate Sensitivity 

(pmol/m2/mmol) 

970.6 

(575.0 – 1425.7) 

650.3 

(438.3 – 982.6) 

644.6 

(343.3 – 1195.9) 

789.0 

(303.8 – 964.0) 

481.5 

(254.9 – 697.8) 

479.3 

(330.4 – 768.2) 

Potentiation Factor Ratio 

(PFR) 

(100-120) :(0 – 20) mins 

1.04 

(0.84 – 1.21) 

1.26 

(1.15 – 1.42) 

1.11 

(0.78 – 1.55) 

1.21 

(0.82 – 2.12) 

1.11 

(0.98 – 1.62) 

1.28 

(1.05 – 1.97) 

ISR at known glucose 

(4.7mmol/l) 

(pmol/min/m2) 

83.4 

(51.5 – 153.4) 

103.7 

(63.1 – 129.7) 

66.5 

(57.0 – 78.4) 

61.5 

(52.6 – 80.2) 

68.9 

(54.9 – 83.6) 

78.0 

(65.0 – 101.7) 

ISR 

(pmol/min/m2) 

(nmol/m2) 

Fasting 
96.0 

(53.8 – 110.6) 

73.5 

(56.7 – 121.0) 

63.7 

(59.7 – 90.5) 

48.0 

(38.4 – 64.2) 

52.4 

(41.6 – 58.4) 

55.7 

(47.0 – 74.7) 

Mean 
87.8 

(63.6 – 125.3) 

101.0 

(66.6 – 141.8) 

78.3 

(49.7 – 111.9) 

47.0 

(40.4 – 56.3) 

52.4 

(45.3 – 62.4) 

43.0 

(36.4 – 56.6) 
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BMI 

(kg/m2) 

23.3 

(18.9 – 27.1) 

23.0 

(18.6 – 26.7) 

23.0 

(20.3 – 26.7) 

23.3 

(22.1 – 26.7) 

23.2 

(21.2 – 26.0) 

23.1 

(22.5 – 26.2) 

 

Data shown are median (IQR).  

GREEN – different from other group at time-point (p < 0.05),  

RED – treatment difference from baseline within group, as per paired non-parametric testing. 

Green box with red text – difference from baseline and between groups. 
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Appendix 8: Assays 

A list of the assays used throughout the course of this thesis: 

Lactate 

Fluoride oxalate samples were analysed for plasma lactate using a lactate 

oxidase method on a Siemens ADVIA 2400 Chemistry System (analysed by 

Biochemical Medicine, Department of Blood Sciences, NHS Tayside). 

Glucose 

Glucose was measured at the University of Surrey by enzymatic determination, 

using the ABX Pentra Glucose PAP CP reagent, and the ABX Diagnostics 

COBAS Mira Plus. 

NEFA 

NEFA were measured at the University of Surrey by the Acyl-CoA Synthase / Acyl 

CoA Oxidase (ACS-ACOD) method, on the Roche COBAS Mira Plus (Basel, 

Switzerland). 

Glucagon  

Glucagon was measured by the Immunoassay Biomarker Core Laboratory at the 

University of Dundee, using a radioimmunoassay (RIA, GL-32K) from Millipore 

(UK) on a Wallac Gamma Counter, which utilises 125I-labelled Glucagon and a 

Glucagon antiserum to determine the level of pancreatic glucagon by the double 

antibody / PEG (polyethylene glycol) technique. 

Total GLP-1 

Total GLP-1 was measured by the Immunoassay Biomarker Core Laboratory at 

the University of Dundee, using an electrochemiluminescence immunoassay 
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(K150JVC-1) from Meso Scale Discovery (Maryland, USA) on a Quickplex SQ120 

reader.  

Active GLP-1  

Active GLP-1 was also measured by the Immunoassay Biomarker Core 

Laboratory at the University of Dundee, using an electrochemiluminescence 

immunoassay (K150JWC-1) from Meso Scale Discovery (Maryland, USA) on a 

Quickplex SQ120 reader.  

Leptin 

Leptin was measured by the Immunoassay Biomarker Core Laboratory at the 

University of Dundee, using an enzyme-linked immunoassay (ELISA, DLP00) 

from R&D Systems (Minneapolis, USA), on a Thermo Varioskan multimodal plate 

reader. 

Adiponectin 

Adiponectin was measured by the Immunoassay Biomarker Core Laboratory at 

the University of Dundee, using an enzyme-linked immunoassay (ELISA, 

DRP300) from R&D Systems (Minneapolis, USA), on a Thermo Varioskan 

multimodal plate reader. 

Insulin 

Insulin was measured by the Immunoassay Biomarker Core Laboratory at the 

University of Dundee, using an ELISA (80-INSHU-E01.1) from Alpco (Salem, 

USA), on a Thermo Varioskan multimodal plate reader. 

C-peptide  

C-peptide was measured by the Immunoassay Biomarker Core Laboratory at the 

University of Dundee, using an ELISA (80-CPTHU-E01.1) from Alpco (Salem, 

USA), on a Thermo Varioskan multimodal plate reader. 
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Paracetamol 

Paracetamol was measured by spectrophotometry in the Department of Blood 

Sciences in NHS Tayside, using an enzymatic bichromatic endpoint technique on 

a Siemens Dimension VISTA 1500. 

U+E and LFTs 

U+E and LFTs were measured by the Department of Blood Sciences in NHS 

Tayside, using a Siemens ADVIA 2400 Chemistry System.
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