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Abstract: Seasonal snowpacks, characterized by their snow water equivalent (SWE), can play a major
role in the hydrological cycle of montane environments with months of snow accretion followed by
episodes of melt controlling flood risk and water resource availability downstream. Quantifying
the temporal and spatial patterns of snowpack accumulation and its subsequent melt and runoff is
an internationally significant challenge, particularly within mountainous regions featuring complex
terrain with limited or absent observational data. Here we report a new approach to snowpack
characterization using open-source global satellite and modelled data products (precipitation and
SWE) greatly enhancing the utility of the widely used Soil and Water Assessment Tool (SWAT). The
paper focusses on the c. 23,000 km2 Chenab river basin (CRB) in the headwaters of the Indus Basin,
globally important because of its large and growing population and increasing water insecurity due to
climate change. We used five area-weighted averaged satellite, gridded and reanalysis precipitation
datasets: ERA5-Land, CMORPH, TRMM, APHRODITE and CPC UPP. As well as comparison to local
weather station data, these were used in SWAT to model streamflow for evaluation against observed
streamflow at the basin outlet. ERA5-Land data provided the best streamflow match-ups and was
used to infer snowpack (SWE) dynamics at basin and sub-basin scales. Snow reference data were
derived from remote sensing and modelled SWE re-analysis products: ULCA-SWE and KRA-SWE,
respectively. Beyond conventional auto-calibration and single-variable approaches we undertook
multi-variable calibration using R-SWAT to manually adjust snow parameters alongside observed
streamflow data. Characterization of basin-wide patterns of snowpack build-up and melt (SWE
dynamics) were greatly strengthened using KRA-SWE data accompanied by improved streamflow
simulation in sub-basins dominated by seasonal snow cover. UCLA-SWE data also improved SWE
estimations using R-SWAT but weakened the performance of simulated streamflow due to under
capture of seasonal runoff from permanent snow/ice fields in the CRB. This research highlights the
utility and value of remote sensing and modelling data to drive better understanding of snowpack
dynamics and their contribution to runoff in the absence of in situ snowpack data in high-altitude
environments. An improved understanding of snow-bound water is vital in natural hazard risk
assessment and in better managing worldwide water resources in the populous downstream regions
of mountain-fed large rivers under threat from climate change.

Keywords: SWAT; snow water equivalent; global precipitation products; multi-variable calibration;
remote sensing

1. Introduction

Sparse meteorological and snowpack data pose challenges for hydrological modelling
in the Upper Indus Basin (UIB). The amount of water stored in snowpacks in the UIB,
known as snow water equivalent (SWE), and its utilization in hydrological applications is
constrained due to significant uncertainty for water resource management and downstream
floodings [1–3]. Snow plays a crucial role in high altitude settings regulating resources
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such as water supply, hydropower and flood hazard [4,5]. The topographic complexity of
montane terrain increases the spatial variability in snow mass and snow extent. This is
influenced by a myriad of factors including elevation, slope, aspect, topography, orographic
effects, vegetation coverage, wind redistribution, aerodynamic roughness atmospheric
circulation [6,7]. Given the importance and the dynamic nature of mountain snowpacks,
accurately estimating the SWE stored within these regions is an important scientific and
societal challenge [8,9].

In recent decades, hydrological models have risen as potent tools for investigating the
SWE [10,11]. They are versatile because they primarily use widely available meteorological
data requiring site-specific data for calibration and validation. Hydrological modelling
has its greatest challenges where data, including meteorological inputs are scarce, and
especially in remote montane regions where snowpack data are exceptionally rare. Utiliz-
ing global satellite and re-analysis datasets that furnish gridded meteorological and the
SWE information is a promising avenue to enhance the assessment of hydrological pro-
cesses and simulate snowpack behaviour [1]. Calibrating hydrological models by satellite
and reanalysis measurements also offers scope to improve the limitations of traditional
calibration based solely on observed streamflow [12,13]. Incorporating various variables,
both individually and in combination with streamflow measurements, offers potential
to improve model performance and enrich understanding of hydrological processes [14].
However, the challenge in data-scarce regions is the absence of quality ground observations
which instead is typified by low-quality, including missing, irregularly sampled, or poorly
validated data. One promising avenue involves leveraging emerging earth observation
technologies [15].

Hydrological models span a range from data-intensive energy balance models to tem-
perature index models [16]. Previous investigations that have compared temperature-index
and energy-balance models have yielded inconclusive results regarding the superiority
of one approach over the other [17]. The energy balance model presents a favourable
alternative due to its reduced calibration demands. However, the model performance is
contingent upon the availability and accuracy of the supplementary climate input data
it requires [16]. The temperature-index model benefits from readily available input data,
although its calibration for individual catchments demands substantial labour [18]. In high
altitude and high latitude settings, the soil and water assessment tool (SWAT) operates as
a temperature-index model, relying on air temperature and precipitation as its primary
inputs to replicate the dynamics of snow accumulation and snowmelt processes.

In mountain environments securing reliable observed climate data is challenging
due to limited spatial coverage of field stations and because global gridded precipitation
products are prone to significant local errors. This creates problems for monitoring or fore-
casting the risk of hydrometeorological hazards like flooding and landslides [19]. However,
remote sensing and reanalysis precipitation datasets hold significance in these regions
where data availability is limited [20]. Precipitation stands as the primary contributor to
uncertainty which leads to varying optimal ranges for the fine-tuned parameters [21]. The
elevation band method employed in SWAT addresses the challenge of having limited pre-
cipitation stations within a catchment [21]. However, this method can result in errors when
estimating precipitation data for specific sub-catchments, especially in those with varied to-
pography. The most promising alternative involves incorporating worldwide data, such as
high-resolution daily precipitation datasets like ERA5-Land (European Center for Medium-
Range Weather Forecasts fifth generation), satellite precipitation data from CMORPH
(Climate Prediction Centre Morphing Technique), CPC UPP (Climate Prediction Center
Unified Precipitation Project), APHRODITE (Asian Precipitation Highly Resolved Observa-
tional Data), and TRMM (Tropical Rainfall Measuring Mission). Satellite and reanalysis
precipitation products require evaluation against in situ data and calibration to hydrological
models before use, with varying regional impacts on product performance [22,23].

The available tools for SWAT parameter calibration, sensitivity analysis, and uncer-
tainty analysis are either commercial products or free tools with limited functionalities.
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SWAT-CUP is one of the most widely used software to auto-calibrate SWAT model. SWAT-
CUP is commercial software, and its free version has certain limitations, such as restrictions
on the maximum number of simulations and parallel simulation options. ArcSWAT and
SWATEditor also provide options for running SWAT with modified parameter values, but
they lack automatic parameter calibration, sensitivity analysis, and uncertainty analysis
techniques. In contrast, several free or open-source tools have been developed specifi-
cally for SWAT+, which is a restructured version of SWAT [24]. These tools include the
SWAT+ toolbox and the Integrated Parameter Estimation and Uncertainty Analysis Tool
Plus (IPEAT+) [25]. The development of such tools for SWAT model is essential given
the widespread use of this modelling platform. Nevertheless, tasks such as parameter
calibration, sensitivity analysis, and uncertainty analysis continue to pose significant chal-
lenges. R-SWAT provides a valuable and versatile solution for overcoming the challenges
in SWAT parameter calibration, sensitivity analysis, and uncertainty analysis. Its interac-
tive interface and compatibility with R’s wide range of functions and packages make it a
powerful tool for advancing hydrological research and modelling [26]. R-SWAT facilitates
a deeper understanding of hydrological processes by leveraging the power of open-source
SWAT and R. One valuable aspect of utilizing R-SWAT is its capability to provide real-time
visualizations of adjustments in simulated and observed flow, snowfall, snowmelt, and
other water balance elements at the catchment level when modifying hydrological and
snow parameters. This specific feature of R-SWAT enhances its effectiveness for the manual
calibration of snow parameters, substantially reducing the labour-intensive nature of the
manual calibration process in the SWAT model.

Calibrating hydrological models involves various considerations, inclusive of the
algorithms used, the parameters requiring calibration and whether they need calibrating
individually or collectively [27,28]. Any model calibrated solely on streamflow data is
unlikely to yield dependable spatio-temporal portrayal of other hydrological fluxes and
states [29]. The calibration procedure can differ in multiple aspects, including the time step
(monthly, daily, etc.), calibration using single vs. multiple variables, spatial scale (single
point or multi-point calibration), auto- and manual calibration, the choice of objective func-
tion employed for optimizing the variable of interest. Multivariate parameter estimation
can lead to more realistic internal model dynamics and associated hydrological characteris-
tics [30,31], ultimately enhancing the overall representation of catchment behaviour. Prior
research has demonstrated the effectiveness of using remotely sensed data to implement
and calibrate hydrological models [32–34]. The issue of model equifinality, where multiple
parameter sets can produce equally good model performance, introduces uncertainty that
can undermine the reliability of hydrological models in forecasting future water resources,
especially in mountainous regions where snow processes significantly influence the hy-
drological cycle [19]. Multi-variable calibration schemes have been proposed as useful
means to address model equifinality [35,36] and reduce prediction uncertainty [37]. How-
ever, results from multivariate calibration approach have enhanced the power of model
simulation in some cases [38], while others have reported poor model performance or even
substantial deteriorations [39–41]. There could be multiple reasons for these contradictory
findings such as differences in model structures, parameterization, wide variety of remote
sensing datasets or case study specific. Nonetheless, multivariate parameter estimation
using remote sensing data remains a promising approach, especially in situations where
streamflow data availability is limited, or data quality is questionable.

The choice of calibration scheme can significantly influence the outcomes of hydro-
logical models especially in mountainous catchments with sparse input data [27]. Multi-
variable (in addition to observed streamflow) calibration is commonly used to improve
streamflow simulations in SWAT model, but snow reference data are rarely available due
to collection challenges. This was the case in the study catchment necessitating examina-
tion of different calibration methods, encompassing single-, multi-variable, manual, and
auto-calibration of both lumped and spatially varied snow parameters. The primary focus
of this study is to comprehend the estimation of SWE during the accumulation season. This
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emphasis is driven by the critical role of SWE and an accurate characterization of SWE
is a fundamental requirement for a precise representation of the available water supply.
The novelty of this research lies in incorporating snow reference data to manually calibrate
snow parameters within R-SWAT to estimate SWE at basin and sub-catchment scales in
the Chenab river basin (CRB). In previous studies, auto-calibration using SWAT-CUP has
been widely adopted foregoing arduous manual calibration. It is worth highlighting that
the incorporation of SWE data into the calibration process offers a direct means to achieve
optimal parameter values with efficiency.

2. Materials and Methods
2.1. Study Area

The Chenab river basin (CRB) is an eastern tributary of the Indus River (Figure 1),
originating from the Kulu and Kangra districts of Himachal Pradesh, India. It is formed by
the confluence of two major tributaries, the Bhaga, and the Chandra and flows through
Indian-administered Jammu and Kashmir before entering the plains of the Punjab province
in Pakistan, covering a length of 974 km [42]. The south and north of the CRB are located
in the foothills and very high mountains, respectively of the western Himalayas. Approxi-
mately half of the total water supply comes from the eastern Hindukush, Karakoram, and
western Himalayas [43]. The catchment area of the CRB, upstream of the Marala Barrage
is approximately 26,258 km2. The elevation in the upper snowy catchment of the Chenab
River peaks at 7085 m.
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Figure 1. Study area map of the Chenab river basin (CRB) showing weather station, stream, catchment
boundary and data points used to extract data from satellite and reanalysis products.

The CRB is situated in an active monsoon belt, experiencing monsoon rainfall between
mid-June to mid-October. The character and timing of precipitation vary according to
location and altitude. Singh et al. (1995) observed that precipitation mainly occurs during
the monsoon (about 75%) and pre-monsoon, while 15–26% occurs during winter months
as snowfall in both the Middle and Greater Himalayan ranges. In the outer Himalayan
ranges, winter precipitation falls as rainfall due to lower altitudes.
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A significant proportion of the flow in the Chenab River derives from snowmelt
during the mid to later summer season, augmented by pre-monsoon and monsoon rainfall.
Approximately 84% of the annual discharge occurs between April and September, especially
from June onwards due to synchronized flow from snowmelt and precipitation [44].

2.2. Data Sets Employed

Data used to configure, calibrate and run SWAT across the CRB spanned the years 1998
to 2015. The model requires topographic, soils and land cover inputs along with climate
data, inclusive of precipitation patterns along with minimum and maximum temperatures,
relative humidity, solar radiation, and wind speed. Table 1 provides a summary of the data
used in this study, encompassing their attributes and sources. Streamflow records from the
basin outlet and 19 sub-catchments offers scope to validate simulated runoff and elucidate
the role of the snowpack in hydrological response. Accessing such data at scale and over
extended timescales is always challenging, especially in mountainous environments [19].

Table 1. Data sets used in this hydrological modelling study.

Data Type Sources Spatial
Resolution Time Span Region Reference

Precipitation

CMORPH
TRMM

CPCUPP
APHRODITE
ERA5-Land

~8 km
~25 km
~55 km
~25 km
~9 km

1998–2015 Global https://www.climateengine.org/

Streamflow Observed Basin and
sub-catchment 2000–2015 Local Pakistan Water and Power Development

Authority

Min and max
temperature,

relative humidity,
solar radiation,

wind speed

Climate Forecast
Reanalysis ~38 km 2000–2015 Global

https://climatedataguide.ucar.edu/
climate-data/climate-forecast-system-

reanalysis-cfsr Accessed on 22 May 2023

Digital Elevation
Model

Open Topography
SRTM 30 m - Global

Global
https://portal.opentopography.org

https://srtm.csi.cgiar.org

Land use and
land cover ESA CCI LC 300 m - Global https://www.esa-landcover-cci.org/

Accessed on 12 July 2023

Soil FAO Digital Soil Map 1 km - Global

http://www.fao.org/soils-portal/soil-
survey/soil-maps-and-databases/

faounesco-soil-map-of-the-world/en/
Accessed on 12 July 2023

Snow Water
Equivalent

High Mountain Asia
Snow Reanalysis

(UCLA SWE)
500 m 2000–2014 High

Mountain Asia

https:
//nsidc.org/data/hma_sr_d/versions/1

Accessed on 15 July 2023

Daily Snow
Modelling (KRA

SWE)
5 km 2000–2015 High

Mountain Asia
https://zenodo.org/record/4715953

Accessed on 15 July 2023

ERA5-Land 25 km 2000–2014 Global https://www.climateengine.org/
Accessed on 15 July 2023

GLDAS 25 km 2000–2010 Global https://www.climateengine.org/
Accessed on 15 July 2023

In hydrological modelling, land use and land cover (LULC) play a crucial role in
influencing runoff generation. The LULC map of the CRB reveals that the northern higher-
altitude region of the catchment is predominantly characterized by rangeland (covering
10,619 km2, which is approximately 40.4% of the area) and permanent snow/ice (constitut-
ing 10.70% of the total area, equivalent to 2827 km2, as depicted in Figure 2). Meanwhile,
the middle and lower sections of the catchment comprise crops (covering 1082 km2, or
4.12%), trees (5889 km2, approximately 22.4%), barren land (5130 km2, or about 19.5%), and
built-up areas (occupying 547 km2, approximately 2.1%).

https://www.climateengine.org/
https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
https://portal.opentopography.org
https://srtm.csi.cgiar.org
https://www.esa-landcover-cci.org/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://nsidc.org/data/hma_sr_d/versions/1
https://nsidc.org/data/hma_sr_d/versions/1
https://zenodo.org/record/4715953
https://www.climateengine.org/
https://www.climateengine.org/
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Figure 2. Land use/cover map of the Chenab river basin (CRB).

For reference SWE datasets we employed the High Mountain Asia (HMA) daily snow
reanalysis by University of California (UCLA) [45] and modelled snow data (KRA) [46],
hereafter referred to as UCLA-SWE and KRA-SWE, respectively (Figure 3). The KRA-
SWE product across HMA was developed by Kraaijenbrink et al. [46] (Figure 3c). They
conducted a comprehensive assessment of the SWE and snowmelt at high spatial resolution
in all major river basins within the HMA region by integrating a regional-scale snow model
with gridded climate data and satellite snow cover observations. The snow model operates
at a resolution of 0.05◦ (~5.7 km), allowing for detailed SWE quantification. To validate the
model’s accuracy, they compared the modelled SWE with in-situ measurements of SWE in
the Nepalese Himalaya and daily snow-depth maps derived from spaceborne Sentinel-1
radar data.

A substantial portion of the CRB is enveloped by glaciers or semi-permanent snow
(Figure 2). As a result, it becomes crucial to differentiate between snow that is seasonal
and snow that persists year-round on land or glacier surfaces. Potentially erroneous pixels
(non-seasonal snow and ice pixels) are masked out including pixels where complete snow
melt has not occurred in the UCLA-SWE product (Figure 3b). UCLA-SWE suffers from
the absence of validation data across the HMA but has been shown to be effective in tests
elsewhere. In both the Sierra Nevada (USA) and the central Andes (South America) satellite-
derived snow cover and SWE reanalysis methods yielded positive outcomes relative to
observed data [45].

These SWE products were used to calibrate snow parameters in the SWAT model and
whilst they do not constitute direct observations, they are the best available alternative for
in situ SWE measurements otherwise absent in the basin.
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Figure 3. Snow water equivalent (SWE) products (a) UCLA-SWE (without masking non-seasonal
snow/ice) (b) UCLA-SWE (masking non-seasonal snow/ice pixels) (c) KRA-SWE in the CRB. In
legend, values less than 1 are considered as no data or masked area.

2.3. Methods
2.3.1. Hydrological Model

The implementation of SWAT hydrological model to simulate streamflow and the SWE
is summarized in Figure 4. The setup of the SWAT model involved the utilization of open-
source data, including digital elevation models (DEM), land use and land cover (LULC)
information, soil data, and precipitation datasets (Table 1; Figure 4). To consider the spatial
variations within the catchment, the basin was divided into sub-basins by the SWAT model,
which are further disaggregated into hydrological response units (HRUs). Within the CRB,
the subdivision was carried out into 19 sub-basins, each delineated based on a drainage
area threshold of 1000 ha and categorized into three slope classes: 0–3%, 3–10%, and
10–100%. Further division of these sub-basins resulted in a total of 92 HRUs using the SWAT
2012 interface within the ArcGIS 10.5 environment. Each HRU is characterized by unique
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combinations of soil, land use, and slope. In mountainous basins, where precipitation and
temperature exhibit significant orographic effects, SWAT subdivides HRUs into various
elevation bands to extrapolate the meteorological forcing point. These elevation bands in
SWAT help in accounting for the topographical influences of temperature and precipitation
on the simulation of snowpack and snowmelt dynamics. Model simulations were executed
at daily time scale, spanning from 1998 to 2015. Notably, the initial 2 years (1998–1999)
were designated as a warm-up period, primarily aimed at mitigating the influence of
user-estimated initial state variables on the outcomes.
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and snow water equivalent (SWE) simulation. The simulation of streamflow and the SWE was
conducted with uncalibrated SWAT model (SWATuncal) and calibrated SWAT with R-SWAT (R-
SWATcal). *Observed precipitation data of weather stations is monthly scale.

2.3.2. SWAT Snow Module

In mountainous regions precipitation takes the form of both snow and rain as well
as in combination. The SWAT model operates as a temperature-based degree-day index
model, and it effectively segregates precipitation into rain and snow categories based on
temperature thresholds and melting rates. This segregation is fundamental for modelling
the intricate interplay between precipitation types and their contribution to streamflow
dynamics. Capturing the accretion/depletion behaviour of seasonal snowpacks is also
pivotal in determining the snow melt contribution to streamflow. The SWAT model can
be implemented as a distributed model with parameters defined at various spatial levels,
such as HRU and sub-basins. SWAT calculates the SWE at HRU scale and averaged at each
sub-basin. The SWAT inputs are stored in ASCII file format with different file extensions
like “.snw”, “.hru”, “.sub”, and “.bsn”, representing distinct spatial modelling units and/or
properties. The SWE is stored in the ‘.hru’ and in ‘.snw’ file with specific elevation bands.

The model categorizes precipitation as rain or snow based on a user-specified threshold
value of the mean daily air temperature. Snowfall accumulates as a snowpack at the ground
surface, and the water stored in the snowpack is represented as SWE. The snowpack can
increase with snowfall and accumulation or decrease through snowmelt or sublimation.



Remote Sens. 2024, 16, 264 9 of 30

Snowmelt and rainfall contribute to the computation of runoff and percolation. The snow
mass balance simulations in the SWAT model are significantly influenced by the snow
parameters SMFMX and SMFMN, representing the maximum and minimum snowmelt
rates, respectively. As elucidated in the SWAT input/output files [47], SMFMX is the
maximum melt factor for regions in the northern hemisphere and functions as the minimum
melt factor for regions in the southern hemisphere. In the geographical context of this study
SMFMX is anticipated to be greater than SMFMN.

The snowmelt was computed as a linear function of the difference between the average
snowpack maximum air temperature and the base temperature, or threshold temperature,
for snowmelt. Sublimation from the snow surface is determined based on the function of
potential evapotranspiration. Additionally, a temperature lag factor was incorporated to
account for the thermal characteristics of the snowpack, which influences the snowpack
density, depth, and exposure. As this temperature lag factor approached 1.0, the mean air
temperature had an increasingly greater influence on the snowpack temperature, while the
snowpack temperature from the previous day becomes less influential.

The snowmelt algorithm employed in the SWAT is based on a simple temperature
index method. The primary climate data required for this algorithm includes maximum
and minimum temperature, as well as precipitation. When the mean daily air temperature
falls below the snowfall temperature (SFTMP), the precipitation is considered as snow, and
its liquid water equivalent is added to the snowpack. The snowpack’s size increases with
additional snowfall but decreases due to snowmelt or sublimation.

SNOi = SNOi−1 + Rs f i − Esubi − SNOmlti−1 (1)

where:

SNOi and SNOi−1 represents the snow water equivalent of snowpack on current day i
(mm H2O) and on the previous day i − 1 (mm H2O), respectively.
Rs f i represent the amount of precipitation in terms of snowfall on the day i (mm H2O)
Esubi represents sublimation loss during the day i (mm H2O)
SNOmlti−1 represents the snowmelt loss from the previous day i − 1 (mm H2O)

The snowfall temperature (SFTMP) serves as a benchmark for distinguishing between
snowfall and rainfall. If the average daily air temperature falls below the SFTMP, precipita-
tion is labelled as snowfall, and it will contribute to the accumulation of the snowpack.

The calculation of snow sublimation depends on the potential evapotranspiration
within the evapotranspiration module. The snowpack remains in its solid state until its
temperature surpasses a specific threshold referred to as the snowmelt base temperature
(SMTMP) in degrees Celsius. The computation of the snowpack temperature is carried out
according to the following equation:

Tsnowi = Tsnowi−1(1 − TIMP) + Tavi.TIMP (2)

where:

Tsnowi and Tsnowi−1 are the snowpack temperature on the current day i and the previous
day i − 1, respectively, TIMP and Tavi are the snow temperature lag factor and mean air
temperature on the current day i, respectively.

Once the snowpack’s temperature rises above the designated snowmelt base tempera-
ture (SMTMP), the process of melting initiates. The amount of snowmelt can be calculated
by following equation:

SNOmlti = bmlti. snocovi.
[

Tsnowi + Tmaxi
2

− SMTMP
]

(3)
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where:

bmlti =
(SMFMX + SMFMN)

2
+

(SMFMX − SMFMN)

2
.sin

[
2π

365
(i − 81)

]
(4)

Here, SNOmlti represents the quantity of snowmelt on day i in millimeters of water
(mm H2O). The parameter bmlti represents the melt factor for that specific day i in units
of millimeters of water per degree Celsius per day (mm H2O ◦C−1 d−1). The variable
snocovi corresponds to the proportion of the Hydrologic Response Unit (HRU) area covered
by snow. Tmaxi denotes the highest air temperature on the given day. SMFMX represents
the melt factor for 21 June in millimetres of water per degree Celsius per day (mm H2O
◦C−1 d−1), while SMFMN stands for the melt factor for 21 December in the same units.

2.3.3. Model Evaluation and Calibration

The Root Mean Square Error (RMSE), serving as a measure of dissimilarity, along with
the Nash–Sutcliffe Efficiency (NSE) and R2, recognized as prominent similarity metrics,
percent bias (PBIAS) measuring the average tendency of the simulated values larger or
smaller than measured data and Kalling-Gupta Efficiency (KGE), which is a hybrid statis-
tical metric, were employed to compare the observed and simulated streamflow within
the suggested scenarios. The mathematical formulations for these metrics are expressed
as follows:

PBIAS = 100 ∗ [sum(sim − obs)/sum(obs)] (5)

RMSE =

√
∑n

i=1
(
Qobs

i − Qsim
i

)
2

n
(6)

KGE = (r−1)
2 +

(
1 −

ug

uObS

)2
+

(
σg/ug

σObs/uobs

)
(7)

NSE = 1 −

〈
(P1 − P2)

2
〉

〈
(P1 − P2)

2
〉 (8)

R2 =

[
∑n

i=1
(
Oi − O

)
(si − s)

]2

∑n
i=1

(
O−

i=0

)
Σn

i=1(si − s)2 (9)

2.4. Calibration Schemes

Commonly, hydrological models undergo calibration through the utilization of recorded
streamflow data collected at hydrometric gauging stations. This approach is effective for
refining the model’s performance, but because complex models like SWAT have many
parameters that can be optimised depending on the resources and expertise of any given
user group—it is possible to generate plausible results but with incorrect behavioural
representation. It is thus essential to confirm that calibration through parameterising the
model is scientifically robust and gives meaningful and representative model outputs.
Additionally, traditional calibration methods could lead to a higher dependence of internal
processes, such as the snow module, on the outlet’s streamflow. To address these limita-
tions, a two-stage calibration strategy was implemented. This approach, coupled with the
integration of multi-source information, aimed to diminish the reliance of the snow process
on the outlet’s streamflow, thus improving the overall constraint of the hydrological model.
In this context, the SWE products were introduced as novel references for calibrating the
SWAT model under the proposed scenarios.

We employed two calibration methods to evaluate the performance of the SWAT model
in simulating streamflow and the SWE within the mountainous CRB. In the initial approach,
the SWAT was calibrated solely using observed streamflow data. In the second (multi-
variable) calibration approach to the SWE reference data were incorporated alongside
streamflow data for calibration.
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The snow temperature index method in the SWAT model involves several parameters,
such as snowpack/snowmelt factors (SMFMX, SMFMN), snowfall/snowmelt temperature
thresholds (SFTMP, SMTMP), and temperature lag factor (TIMP). These parameters were
manually fine-tuned until achieving acceptable evaluation statistics (NSE, KGE, R2 and
PBIAS), aiming to optimize the best match between simulated and observed streamflow.
Following calibration strategies were applied:

• Initially, a catchment-scale automatic calibration approach was employed with default
snow parameters using single variable (streamflow) to optimize all model parameters.
This scenario, often employed as the conventional method for calibrating hydrological
models in numerous studies.

• Following the process of auto-calibration, manual calibration of snow parameters was
performed by leveraging the SWE and streamflow data together to attain the best
possible outcomes.

• Subsequently, the calibration was performed at a sub-basin-scale, recognizing the need
to consider the spatially varied snow parameters.

The selected parameters were divided into three groups comprising snow parameters, basin
parameters and elevation lapse rate parameters. In earlier research endeavours [10,11,34,48]
aimed at stimulating the SWE, SNOCOVMX and SNO50COV were deemed insensitive and
consequently omitted. Nevertheless, in our investigation, we opted to incorporate these
parameters (SNOCOVMX and SNO50COV) to assess their influence on streamflow simu-
lation. Interestingly, it was observed that the inclusion of SNOCOVMX and SNO50COV,
along with five additional snow parameters (SFTMP, SMTMP, SMFMX, SMFMN, TIMP)
had no discernible impact on the simulation of streamflow. We excluded SNOCOVMX and
SNO50COV, retaining only the five snow parameters for further analysis. The calibration
process then proceeded with the remaining 16 parameters, as outlined in Table 2. It is
important to emphasize that the elevation lapse rate parameters—temperature and precipi-
tation lapse rates (Tlapse and Plapse), can influence the partition of precipitation into rain
and snow, as well as the distribution of snow in high-elevation areas. To address orographic
controls in mountainous basins, which affect both temperature and precipitation, the SWAT
model permits the definition of up to 10 elevation bands within each sub-basin. Prior
research has indicated that, typically between three and five elevation bands can achieve
the accuracy required for most model predictions while maintaining low computational
demands, such as running time [49]. Here we followed the upper limit by using five
elevation bands to simulate streamflow and the SWE in the CRB.

Table 2. The SWAT model parameters including 5 snow parameters, 7 basin parameters and 2 eleva-
tion band parameters used in this study to calibrate model in the CRB, their initial values and final
calibrated values.

ID Name Description Range

Snow Parameters

V_SFTMP Snowfall temperature (_C) 0–5

V_SMTMP Snowmelt base temperature (_C) −5–5

V_SMFMX Melt factor for snow on 21 June (mm H2O/_C-day) −5–5

V_SMFMN Melt factor for snow on 21 December (mm H2O/_C-day) 0–5

V_TIMP Snowpack temperature lag factor 0–1

Basin Parameters

R_CN2 SCS curve number −0.2–0.2

V_GW_DELAY Groundwater Delay (days) 0–500

V_ALPHA_BF Baseflow alpha factor (days) 0–1

R_SOL_AWC Available water capacity of the soil layer (mm H2O/mm soil) −0.5–0.5

V_GWQMN shallow aquifer required for return flow to occur (mm) 0–5000

V_GW_REVAP Groundwater “revap” coefficient 0.02–0.2

V_RCHRG_DP Deep aquifer percolation fraction 0–1
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Table 2. Cont.

ID Name Description Range

R_ESCO Soil evaporation compensation factor 0–1

V_CH_K2 Effective hydraulic conductivity in the main channel (mm/h) 0–500

Elevation Lapse rate
Parameters

PLAPS Precipitation lapse rate (mm H2O/km) 0–1000

TLAPS Temperature lapse rate (mm H2O/km) −8–−4

3. Results
3.1. Data Evaluation

The area-weighted averaged satellite, gridded and reanalysis precipitation datasets in
the CRB were evaluated against the available observed precipitation station data (Muzaf-
farabad and Garhi Dupatta) located just outside the basin before using it as forcing data to
derive the SWAT model (Table 3).

Table 3. Validation of satellite gridded and reanalysis precipitation (SGRP) data with station precipi-
tation at Muzaffarabad (station-01) and Garhi Dupatta (station-02) in the CRB.

Satellite-Reanalysis
Precipitation

Observed
Precipitation RMSE PBIAS (%) NSE KGE R2

CMORPH
Station-01 617.56 419.7 −34.20 −4.10 0.27

Station-02 634.51 449.9 −42.80 −4.81 0.13

TRMM
Station-01 128.02 −79.7 −0.53 −0.12 0.51

Station-02 118.24 −78.5 −0.52 −0.16 0.48

CPCUPP
Station-01 108.87 −52.0 −0.09 0.11 0.26

Station-02 105.26 −54.0 −0.20 0.08 0.15

APHRODITE
Station-01 91.10 −32.0 0.23 0.32 0.36

Station-02 81.96 −28.7 0.27 0.38 0.37

ERA5-Land
Station-01 74.26 −0.7 0.49 0.56 0.49

Station-02 62.12 5.1 0.58 0.64 0.58

All satellite and reanalysis precipitation datasets demonstrate very high mean squared
error (MSE) values when compared with observed precipitation data at Muzaffarabad
(station-01) and Garhi Dupatta (station-02). Monthly precipitation range (310 to 1189 mm)
of CMORPH is much higher than all other precipitation datasets. MSE values of CMORPH
are the highest while, ERA5-Land showed the lowest values against observed precipitation.
ERA5-Land outperformed all other datasets on the bases of MSE. On the basis of the
PBIAS metric, all datasets showed worst performance except ERA5-Land. TRMM and
CMORPH showed very high negative and positive bias, respectively against both observed
precipitation stations as shown in Figure 5. CMORPH was highly overestimated (Figure 5)
while all remaining precipitation products underestimated precipitation when compared
with observed station data (Figure 5). However, all precipitation products are negatively
biased against observed except CMORPH. A cross-validation procedure involving five
precipitation datasets over the CRB demonstrated that ERA5-Land provides better estimates
of precipitation amounts and variability at monthly to annual scales.
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3.2. Global and Regional SWE Products

Figure 6a depict the comparison of global and regional (e.g., UCLA and KRA) SWE-
products and Figure 6b illustrate the snow cover area (SCA) at monthly scale in the CRB.
There is a notable difference in SWE amounts over basin scales between satellite-derived,
modelled and reanalysis products. Such disparities could stem from biases present in
atmospheric input data or disparities in model resolution. The ERA5-Land reanalysis
product notably underestimate SWE when compared to the higher resolution satellite-
derived UCLA-SWE product. GLDAS, a reanalysis of the SWE product exhibits some
similarity with UCLA-SWE between June and December while, it underestimates the SWE
during the accumulation period (January to April). Similarly, both modelled and satellite
derived products also demonstrate similarities during snow accumulation, but they di-
verge considerably during the snowmelt period. The KRA-SWE product diverges notably
from other datasets in terms of quantity and pattern during the snow accumulation and
snowmelt periods.

TWhen examining the SWE products in the CRB alongside SCA on a monthly time
scale, distinct differences emerge. For instance, the KRA-SWE dataset indicates the accu-
mulation of snow during June and July, contrasting with the decreasing trend observed in
the SCA dataset. In contrast, the UCLA-SWE product shows snow accumulation occurring
after September, while the SCA product depicts snow accumulation commencing after
August. Similarly, both the GLDAS and ERA5 products exhibit even greater discrepancies
when compared with the SCA product at the monthly scale.
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Figure 7 shows the spatial distributions of the muti-year mean daily KRA-SWE and
UCLA-SWE products. Both SWE products substantially differ in spatial distribution of the
SWE at sub-basin level in the CRB. In the KRA-SWE and UCLA-SWE dataset, sub-basins 14,
15, and 16 exhibited no discernible SWE. In other sub-basins, significant disparities emerge
when examining the SWE representation at the sub-basin scale. Over the period from
2000–2015, the KRA (152 mm) and UCLA (109 mm) SWE products exhibit considerable
discrepancies at the basin scale which extended to the sub-basin level also.

In this regard, the most notable differences occurring between Sub-basins 10 and 17,
where KRA reports overestimation of the SWE values of 199 mm and 239 mm, respectively,
while UCLA reports underestimation of the SWE only 1.3 mm and 62.3 mm, respectively.
Similar substantial differences are observed in Sub-basins 2, 5, 18, and 19, where KRA-SWE
records values of 296 mm, 271 mm, 275 mm, and 293 mm, contrasting with UCLA-SWE
values of 182 mm, 120 mm, 188 mm, and 220 mm, respectively. However, it’s worth noting
that in sub-basins 3, 4, and 11, both KRA-SWE (181 mm, 118 mm, and 205 mm, respectively)
and UCLA-SWE (182 mm, 122 mm, and 208 mm, respectively) depict SWE with a higher
degree of similarity.
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Figure 7. Comparison of spatial distribution of the SWEs in each sub-basin (a) UCLA-SWE (b) KRA-
SWE in the Chenab River Basin (CRB).

3.3. Pre-Calibrated SWAT Model Simulations

The SWAT model was initially run with default parameters and input data from
precipitation products as depicted in Figure 8. It is evident that CMORPH and TRMM
precipitation inputs did not yield adequate discharge records in the CRB (Figure 8a,b, respec-
tively). The former overestimated streamflow while the latter underestimated streamflow.
Baseflows and peak flows are not well captured by simulated streamflow with input data
from CPCUPP (Figure 8c). However, the SWAT model with input data from APHRODITE
captures baseflow very well. Only simulated streamflow with input data from ERA5-Land
captures both baseflow and peakflow satisfactorily. In general, the ERA5-Land precipitation
data demonstrate superior performance when it comes to driving the SWAT model with
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default parameters. The SWAT model simulations derived with other than ERA5-Land
precipitation products achieved unsatisfactory results (NSE ≤ 0.50).
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Figure 8. Model performance with various precipitation datasets for daily streamflow during
2000–2015. Streamflow simulation was conducted with the default SWAT parameters by inputting
data from the satellite and reanalysis precipitation products such as (a) ERA5-Land (b) CPCUPP
(c) APHRODITE (d) TRMM (e) CMORPH.

The SWAT model ran with the APHRODITE, CPCUPP and ERA5-Land precipitation
data was further evaluated for its performance in simulation of the SWE in the CRB as de-
picted in Figure 9. These simulations were then compared with two existing SWE products
(KRA-SWE and UCLA-SWE). The SWE output from the SWAT model run with ERA5-Land
precipitation data exhibited a better performance when compared with reference snow
datasets (KRA-SWE and UCLA-SWE). The simulated SWE showed higher peaks than
UCLA-SWE but lower than the KRA-SWE product. However, the SWE simulated by the
SWAT model that used APHRODITE and CPCUPP precipitation data did not yield satis-
factory results. As a result, we chose to include only the SWAT model run with ERA5-Land
precipitation data in the subsequent analysis, as the other precipitation products were
excluded due to their inadequate performance in simulating the streamflow and SWE in
the CRB.

3.4. Single Variable Calibration Approach

After thoroughly investigating the impact of precipitation data on the SWAT model
simulations (e.g., streamflow and the SWE), the best performing precipitation data (ERA5-
Land) was used to calibrate and validate the SWAT model. First, all hydrological parameters
were calibrated with autocalibration in R-SWAT using observed streamflow in the CRB.
After getting the satisfactory ranges of hydrological parameter, the SWAT snow parameters
were calibrated manually. Table 4 presents a synopsis of the goodness-of-fit statistical
outcomes.
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Figure 9. Daily snow water equivalent (SWE) simulation with the SWAT model run with precipitation
data from APHRODITE, CPCUPP and ERA5-Land and comparison with SWE products (UCLA and
KRA) in the CRB.

Table 4. Statistical evaluation of the simulated SWE and streamflow using the SWAT model with
UCLA and KRA SWE products during calibration and validation period.

Metrics Calibration Validation Calibration Validation

(2000–2011) (2012–2015) (2000–2011) (2012–2015)

UCLA Streamflow KRA Streamflow

PBIAS −13.9 −8.1 −8.2 −5.2

NSE 0.33 0.42 0.71 0.77

R2 0.36 0.43 0.66 0.78

KGE 0.46 0.5 0.77 0.87

UCLA SWE KRA SWE

PBIAS 3.9 5.4 11.5 −10.7

NSE 0.64 0.87 0.94 0.94

R2 0.65 0.88 0.96 0.97

KGE 0.78 0.91 0.86 0.87

The model performance is evaluated with NSE, R2 and PBIAS. For calibration period,
NSE, R2 and PBIAS were 0.63, 0.78, and 3.2% while during validation period NSE, R2

and PBIAS were 0.71, 0.83 and 3.9%, respectively. The match-up between the simulated
and observed data suggests that the model is well-calibrated and that peak flows are well
captured during both wet and dry years (Figure 10). There is also promising evidence in
the validation period with respect to base flows.
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Figure 10. Daily streamflow simulation using single variable calibration approach during calibration
(2000 to 2011) and validation (2011–2015) separated by red dotted line.

The simulated SWE from the SWAT model (SWAT-SWE) was compared with snow
reference data (KRA-SWE and UCLA-SWE) in the CRB as shown in Figure 11. SWAT-
SWE consistently underestimated peaks in the SWE when compared to KRA-SWE during
calibration and validation period. However, this trend was irregular when compared
to UCLA-SWE. For instance, SWAT-SWE peaks were overestimated during 2000, 2003,
2005, 2007, 2009, 2011, 2012 while, underestimated during 2001 and 2004. The SWAT-
SWE showed late accumulation and early snow melt when compared with KRA-SWE. In
contrast, SWAT-SWE consistently showed early accumulation and late snowmelt when
compared with UCLA-SWE. SWAT-SWE aligned more closely with KRA-SWE during some
years (2000, 2007) while, with UCLA-SWE product during certain years (2002, 2008, and
2010). In general, SWAT-SWE peaks remained lower compared to KRA-SWE while, higher
than UCLA-SWE in the CRB.
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3.5. Multi-Variable Calibration Approach

Figure 12 illustrates the streamflow simulations conducted with reference SWE data
(KRA-SWE and UCLA-SWE). The simulated streamflow results using KRA-SWE product to
calibrate the SWAT model closely resemble those results from a single-variable calibration
approach, whereas those utilizing the UCLA-SWE product perform less satisfactorily.
Calibrating snow parameters with UCLA-SWE negatively impacted both the timing and
magnitude of peak flows (Figure 12a) weakening streamflow simulations. However, the
multi-calibration techniques improved the simulated streamflow performance using KRA-
SWE as indicated by the statistical indices provided in Table 4.
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line (a) UCLA-SWE and (b) KRA-SWE in the CRB.

Figure 13 illustrates the SWAT-SWE outputs conducted with reference SWE data (KRA-
SWE and UCLA-SWE) showing that the SWAT model performed better when calibrated
with KRA-SWE as opposed to UCLA-SWE data. The utilization of KRA-SWE for snow
parameters calibration significantly improved the simulation of SWAT-SWE. Specifically,
NSE (0.94), R2 (0.96), and KGE (0.86) values confirm that the SWAT model performance
was enhanced during calibration and the validation (NSE = 0.94, KGE = 0.87, and R2 = 0.97).
Using KRA-SWE data, SWAT-SWE adeptly captures the peak values does less well with
timings, especially at the onset of snow accumulation and end of the snow melting period
between 2000 and 2009. Thereafter, SWAT-SWE more closely matched the KRA-SWE and,
overall, the performance of the SWAT model is with the KRA-SWE product as compared to
the UCLA-SWE data.
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Figure 13. Comparison of the simulated SWE (SWAT-SWE) with UCLA-SWE and KRA-SWE in the
CRB. In panel (a), simulated SWE using UCLA-SWE product during calibration and validation period
while panel (b), simulated SWE using KRA SWE product during calibration and validation period
are shown.

The SWAT-SWE with UCLA-SWE data did not produce as good results as with KRA-
SWE data. However, performance of the SWAT model to simulate SWE was enhanced
during validation (NSE = 0.87, KGE = 0.91, and R2 = 0.88) period compared to calibration
(NSE = 0.64, KGE = 0.78, and R2 = 0.65). Except for some years (2008 & 2010), peaks of
SWAT-SWE remained higher during calibration period. However, SWAT-SWE captures
peaks and base in UCLA-SWE quite accurately.

3.6. Snow Water Equivalent Simulations (Sub-Basins)

The comparison of the SWAT-simulated SWE (SWAT-SWE) with KRA-SWE and UCLA-
SWE is presented in Table 5 through various statistical indices. The SWAT model demon-
strated exceptional performance to simulate SWE using KRA-SWE as reference snow data
in sub-basins BSN01, BSN02, BSN05, BSN09, and BSN12, as indicated by PBIAS < ±10.
Likewise, sub-basins BSN01, BSN02, BSN05, BSN12, BSN13, and BSN17 exhibited com-
mendable agreement between KRA-SWE and simulated SWESWE (NSE > 0.5). Based on
R2 (R2 > 0.60), the SWAT-simulated streamflow exhibited good agreement with KRA-SWE
in all sub-basins except sub-basins BSN06 and BSN11. In fact, the SWAT performance was
deemed satisfactory in the majority of sub-basins (BSN01, BSN02, BSN09, BSN12, BSN13,
BSN17, BSN18, and BSN19) based on evaluation statistics.
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Table 5. Evaluation of simulated SWAT-SWE in each sub-basin of the Chenab River Basin (CRB)
using UCLA-SWE and KRA-SWE data. NSE ≥ 0.5 are shown bold.

PBIAS% NSE R2 KGE PBIAS% NSE R2 KGE

Sub-Basins KRA-SWE UCLA-SWE

BSN01 10.4 0.82 0.95 0.66 17.5 0.76 0.81 0.79

BSN02 5.4 0.71 0.96 0.52 24.7 0.6 0.64 0.66

BSN03 72.2 −2.29 0.89 −0.59 −31 0.62 0.76 0.46

BSN04 60.9 −2.05 0.92 −0.63 −31.9 0.55 0.68 0.42

BSN05 −9.2 0.6 0.92 0.48 21.8 0.39 0.44 0.55

BSN06 −77.7 −0.24 0.21 −0.01 258.8 −8.9 0.7 −2.46

BSN07 330.6 −17.82 0.83 −3.69 −34.5 0.52 0.62 0.39

BSN08 143 −3.14 0.88 −1.11 −14.7 0.51 0.54 0.5

BSN09 −10.9 0.22 0.63 0.51 138.1 −2.11 0.61 −0.85

BSN10 57.3 −0.3 0.91 −0.01 9239 −761.45 0 −93.22

BSN11 348.9 −30.06 0.1 −3.5 −43 0.51 0.82 0.37

BSN12 0.4 0.72 0.93 0.57 −66.8 −0.05 0.51 0.04

BSN13 −24.8 0.52 0.82 0.59 9.4 0.32 0.33 0.46

BSN14 NA NA NA NA NA NA NA NA

BSN15 NA NA NA NA NA NA NA NA

BSN16 NA NA NA NA NA NA NA NA

BSN17 −28.7 0.65 0.84 0.68 46.5 0.41 0.57 0.47

BSN18 31.4 −0.21 0.63 0.33 −45.1 0.43 0.75 0.34

BSN19 23.4 −0.01 0.61 0.43 −40.7 0.43 0.64 0.4

Using UCLA-SWE as reference snow data, the SWAT-SWE simulations achieved
satisfactory results in nearly all sub-basins, except for sub-basin BSN13 and BSN10, as
evidenced by R2 (>0.5). Additionally, based on NSE (>0.5) and KGE (>0.4), the SWAT
model displayed a good performance in simulating the SWE across sub-basins (BSN01,
BSN02, BSN03, BSN04, BSN07, BSN08, and BSN11. However, when assessed using PBIAS
(>±15%) evaluation metric, the SWAT-SWE consistently displayed a considerable bias
against UCLA-SWE across all sub-basins.

Figure 14 presents a visual depiction of SWAT-SWE with KRA-SWE and UCLA-SWE
in selected sub-basins (1a, 2b, 5c, 12d, 13f, and 17f). This graphical representation reveals
that, during certain years, the SWAT-SWE closely aligns with KRA-SWE and UCLA-SWE in
these sub-basins. However, for most sub-basins, the SWAT-SWE consistently exceeded the
KRA-SWE while, underestimated UCLA-SWE. The SWAT model tended to overestimate
both snow accumulation and melting, except for sub-basin 17f, where close agreement in
the SWE peaks was observed. The timing of snow accumulation and melting was also
well-replicated in SWAT-SWE with KRA-SWE across various sub-basins, demonstrating a
good match at sub-basin level.
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Figure 14. Simulated SWAT-SWE using KRA-SWE and UCLA-SWE product in selected sub-basins
for KRA-SWAT SWE (a–f) and UCLA-SWAT (g–l) in selected sub-basins (BSN01, BSN02, BSN05,
BSN12, BSN13, and BSN17) of the CRB.
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4. Discussion

Modelling hydrology in snowy mountain regions requires knowledge of snowpack
behaviour and its connectivity to streamflow to validate models with wider spatial appli-
cations. However, the case remains that such data are either extremely rare or absent all
together placing emphasis on conceptually sound models and making virtue of new data
sources including proxies for calibration and validation. Here we used the well-described
and widely employed SWAT model to estimate SWE incorporating information from re-
motely sensed and modelled SWE products. The results show that SWE predictions can be
improved in SWAT model using reference snow data in general and enhance the overall
prediction reliability.

The current discourse in hydrological modelling and calibration involves two op-
posing approaches: simultaneous calibration and sequential calibration. The simultane-
ous approach [50] emphasizes calibrating discharge measurements and distributed snow
observations together to complement each other and improve overall model accuracy.
In contrast, the sequential approach [28,47], suggests calibrating these components step
by step to achieve a more detailed calibration avoiding hidden errors. We adopted the
latter—optimizing snow parameters independently before calibrating other hydrological
parameters. This approach aims for a systematic and thorough calibration process, enhanc-
ing the understanding of the model’s behaviour and potentially improving accuracy by
addressing errors in a controlled manner.

In snow-dominated basins, conventional calibration of snow parameters often involves
simultaneous adjustment with hydrological parameters against observed discharge, disre-
garding snow conditions [51]. However, some studies highlight the benefit of integrating
snow observations in a multi-objective calibration to enhance SWE simulation [11,52,53]. In
previous studies, satellite-derived snow cover area from MODIS and Landsat, is commonly
used for calibration, despite its potential limitations such as cloud cover and forest inter-
ference [52]. Although in situ snow data are less frequently employed due to challenges
in heterogeneous snow conditions, they have proven valuable in calibrating hydrological
models, particularly in glacierized basins [54]. This study addresses the absence of in situ
snow data in the study area by using modelled and remote sensing SWE data to calibrate
and validate the SWAT model, building on the success of previous studies that improved
the SWE simulations with the SWAT model using in situ measurements [45,53]. This study
revealed that satellite-derived UCLA-SWE performed less well than the modelled snow
KRA-SWE product in estimating the SWE using SWAT in the CRB. Calibrating snow param-
eters using UCLA-SWE weakened the simulation of streamflow. A key reason for the lack
of accuracy of this data lies in the fact that the dataset does not account for the substantial
coverage of permanent snow and ice, which makes up approximately 10.70% of the CRB
and is entirely omitted in the UCLA-SWE dataset. The accuracy of satellite-derived SWE
products can vary due to multiple factors, including large biases in the satellite derived
products in mountainous regions, low reliability of meteorological data, the geographic
and temporal scales considered, cloud cover, masking areas of permanent snow/ice and
a lack of ground-truth data for validation in the studied region. Consequently, this per-
manent snow and ice cover area does not contribute to the basin’s overall flow, leading to
discrepancies in flow simulations using the SWAT model when calibration was performed
with UCLA-SWE data.

We applied a methodology akin to that used by [10,11,34,49] for calibrating snow pa-
rameters to simulate SWE and streamflow in the study basin. However, in the absence of in
situ data in the study basin, we utilized two newly developed datasets as reference data for
snow parameters calibration. Our approach surpasses previous methods, as we manually
adjusted the unrealistic combination of SMFMX and SMFMN in R-SWAT resulting from
autocalibration in SWAT-CUP, as highlighted by [10]. When employing a single variable cal-
ibration approach that relies solely on observed streamflow, the SWAT model demonstrated
good agreement between simulated and observed streamflow, but it faced challenges in
accurately modelling snowpack. The implementation of a multivariate calibration method,



Remote Sens. 2024, 16, 264 26 of 30

which incorporated snow reference data from KRA-SWE product, resulted in enhanced
predictions for both SWE and streamflow. However, it’s important to note that UCLA-SWE
product performed well in simulating the SWE in certain individual sub-basins (Figure 14)
as compared to the performance at the basin-wide level. This observation suggests that
UCLA-SWE data could be valuable in sub-basins where a relatively smaller area is masked
out due to permanent snow/ice in the product. This study underscores the effectiveness of
the SWAT model in estimating the SWE when utilizing a multivariate calibration approach.

The calibration methods detailed in this study have improved streamflow and the
SWE prediction by incorporating snow reference data, offering potential for more effective
operational strategies in forecasting. However, the observation data about snowpack and
streamflow may have inherent errors or uncertainties in the measurements. These uncertain-
ties can make it challenging to validate hydrological models accurately. Additionally, when
you want to demonstrate that improving the SWE simulation results in better predictions of
streamflow, these uncertainties in the data can hinder the ability to establish a clear cause-
and-effect relationship between the two. In other words, it may be challenging to prove
that SWE improvements directly lead to better streamflow predictions because the initial
data used for validation contains uncertainties. The results of employing a multivariate cal-
ibration approach have strengthened modelling accuracy in specific cases, as noted by [38].
However, in other instances, researchers have reported either minimal improvements or
even substantial declines [12,39,41]. These models may not fully capture the complexities
of snowpack dynamics, such as the spatial distribution of snow, variations in snow density,
and the effects of forest cover. Even if the SWE simulation is improved, the overall model
may still have limitations in representing the hydrological processes [55]. The simulation of
streamflow is influenced by various hydrological processes beyond solely snowmelt. These
processes include groundwater inputs, soil properties, evapotranspiration, alterations in
land use, and more. Even with enhancements in the SWE simulation, the interplay with
these additional processes may introduce uncertainties in streamflow forecasts. Similarly,
external factors such as climate change, land use changes, and infrastructure development
have a substantial impact on streamflow, but these factors are frequently underrepresented
in hydrological models, making it difficult to enhance streamflow simulation by focusing
solely on improving the SWE simulation. The calibrated parameters used for streamflow
simulation may help compensate for the SWE discrepancies and potential deteriorations,
such as earlier peak flows, if the SWE is enhanced by the inclusion of reference snow
data [56].

Various approaches to measuring snowpack come with their own advantages and
limitations. In the case of in situ monitoring for SWEs in mountainous regions, it can
yield reliable data but may fall short in capturing local variations due to limited network
coverage or placement primarily in valley bottoms. Remote sensing, on the other hand,
provides extensive spatial coverage but lacks certain snow parameters, contains errors, and
offers coarse resolutions. Hydrological models, while capable of compensating for these
shortcomings, introduce errors due to numerical simplifications and a limited understand-
ing of snow physics. To address these challenges, it is recommended to combine these three
techniques, enhancing our ability to monitor, estimate, and predict SWE and associated
hydrological processes. This integrated approach leverages the strengths of each method,
thereby improving the accuracy of hydrological models. Remote sensing, with its capability
for large-scale spatial observations, presents opportunities for more comprehensive land
surface modelling, especially when integrated with ground observations.

This study brought attention to the challenges associated with using the SWE data
retrieved from regional products to calibrate snow parameters in a semi-distributed hy-
drological model to simulate snowpack and discharge. In particular, forcing data from
reanalysis product resulted in more realistic simulation of the SWE (even with uncalibrated
SWAT model) which, in turn, supports the model’s utility for simulating the SWE. This un-
derscores the significance of accurate precipitation data and modelled SWE data, especially
in regions where snowpack dynamics play a crucial role in hydrological processes. The
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ongoing advancement of these datasets and modelling frameworks holds great promise. It
contributes to enhancing our comprehension of water resources in regions with limited
data availability such as the CRB, especially as they grapple with the challenges posed by
climate change.

5. Conclusions

Accurate understanding of the snow water equivalent (SWE) is an essential prerequi-
site for predicting the availability of water in a basin during the warm season. This study
shows that SWAT can accurately simulate SWE and streamflow in snow dominated basins
using snow reference data to calibrate the snow parameters especially in high-altitude sys-
tems. The capability of the SWAT model is traditionally reliant on the use of precipitation
as primary input for simulating streamflow. In this research, the SWAT model underwent
calibration using two different methods: single-variable calibration based on streamflow
data and multi-variable calibration using streamflow and SWE data. In the single-variable
calibration approach, the SWAT model successfully replicated streamflow according to
statistical criteria, but the simulated SWE did not match with any of the available reference
SWE products. Conversely, when employing a multi-variable calibration approach with
observed streamflow and KRA-SWE product as the reference snow data, both the simu-
lated streamflow and SWE demonstrated good agreement with observed streamflow and
reference KRA-SWE product. Significant enhancements in the accuracy of simulated SWEs
were achieved, and there were also improvements, to a certain extent, in the simulation
of streamflow when fine-tuning the snow parameters of the SWAT model with KRA-SWE
data. However, incorporating UCLA-SWE for calibrating snow parameters resulted in
improved SWE simulation but led to a decline in the accuracy of simulated streamflow. The
poor performance of the UCLA-SWE in accurately representing streamflow can be ascribed
to the fact that UCLA-SWE obscures a substantial portion of permanent snow/ice in the
CRB. These results imply that using modelled snow data to fine-tune the snow parameters
within the SWAT model, for simulating both SWE and streamflow, may be the preferable
method in non-seasonal snow/ice-dominated basins, especially in cases where remote
sensing products might not provide adequate information regarding spatial distributions
of SWE estimates. Furthermore, these findings suggest that integrating data from reli-
able snow reference products to calibrate the snow parameters in SWAT has the potential
to accurately simulate SWE in terms of its timing and magnitude. The optimization of
parameters notably improved the performance of the SWAT model in estimating the SWE.

The primary aim in refining our snow modelling approach was to enhance the accuracy
of the basin-wide SWE characterization by integrating different SWE products individually.
By adjusting snow parameters, we were able to achieve a good result in estimating the
SWE during accumulation and melting phases, along with slight improvements in model
performance concerning discharge. However, considerable differences were observed at
the sub-basin level during the snow accumulation and depletion periods. These disparities
at the sub-basin level are probably attributable to the intricate topographical and climatic
factors characteristic of this region.

Our multivariate calibration/validation approach permitted a comprehensive evalua-
tion of snow modelling across the basin and throughout the entire period. This suggests
that model showed its potential for application in the SWE and streamflow simulation
to advance water supply forecasting for the future changing conditions. Furthermore,
it emphasized the significance of incorporating satellite, modelled, and reanalysis data,
for estimating model parameters necessary for simulating the streamflow and SWE in a
mountainous watershed. The good agreement between the SWAT-simulated SWE and
KRA-SWE underscores the importance of a multivariate calibration approach, especially
in alpine regions with limited ground observations. Multivariate calibration, demanding
ample meteorological and hydrological data, faces challenges in regions with limited data
availability. Uncertainties in input data and parameter estimates, as well as correlations
among parameters, may not be adequately accounted for, impacting model reliability.
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Additionally, errors in observed data can propagate into the calibrated model, affecting
predictive accuracy. Spatial variability of the SWE, especially in mountainous regions, may
not be effectively captured.

This study holds relevance for ongoing scientific research focused on estimating SWEs
using remote sensing and re-analysis data. This work also assesses the reliability of recently
established reference dataset (UCLA-SWE) for snowpack in a snow-dominated basin within
the Himalayan region. Overall, the integration of remote sensing data into computational
model enhances the accuracy of SWE simulations, particularly at the basin scale. This
approach provides valuable information for water resource management, flood prediction,
and understanding the hydrological behaviour of a given region. The methodologies
detailed in this study can be readily applied to other basins which often lack comprehensive
meteorological data for the assessment of hydrological processes. The implications of this
study extend to operational water management in regions with limited meteorological data
in high-altitude systems across the world.
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