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Abstract

The aim of this study is to explore the potential and economic benefits of utilising Supervi-
sory Control and Data Acquisition (SCADA) data to improve wind turbine operation and
maintenance activities. The review identifies a gap in the current understanding of how
to effectively use SCADA data in wind turbine applications. It emphasises the need for
pre-processing SCADA data to ensure data integrity by addressing outliers and employ-
ing interpolation techniques. Additionally, it highlights the challenges associated with early
fault detection methods using SCADA data, including the development of physical mod-
els, data-driven machine learning models, and statistical regression models. The review also
recognises the limitations caused by the lack of public data from wind turbine developers
and the imbalance between normal operation data samples and abnormal data samples,
negatively impacting model accuracy. The key findings of the review demonstrate that
SCADA data-driven techniques can lead to significant improvements in wind turbine oper-
ations and maintenance. The application of data-driven technologies based on SCADA
data has proven effective in reducing operation and maintenance costs and enhancing wind
power generation. Moreover, the development of robust decision support systems using
SCADA data minimises the need for frequent maintenance interventions in offshore wind
farms. To bridge the gap and further enhance wind turbine applications using SCADA
data, several recommendations are provided. These include encouraging greater openness
in sharing SCADA data to improve the robustness and accuracy of AI models, adopt-
ing transfer learning techniques to overcome the scarcity of quality datasets, establishing
unified standards and taxonomies, and providing specialised resources such as software
applications with interactive graphical user interfaces for easier storage, annotation, and
analysis of SCADA data.
The authors’ review paper identifies a gap in the current understanding of how to effec-
tively utilise SCADA data in wind turbine applications. It emphasises the importance of
pre-processing SCADA data to ensure data integrity by addressing outliers and employing
interpolation techniques. Furthermore, the authors highlight the challenges associated with
early fault detection methods using SCADA data, including the development of physical
models, data-driven machine learning models, and statistical regression models.

1 INTRODUCTION

Wind power, as a renewable energy source, has witnessed a
remarkable surge, growing at an average annual rate of 30%
over the past two decades, positioning itself as a key player in
the global energy landscape [1]. Since offshore wind speeds
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are more consistent and powerful, more power is produced
when wind turbines are built there. As a result, wind turbines
frequently operate in hot and humid climates as well as in
remote locations [2]. The maintenance and operation of wind
turbines are severely hampered by this. The dependability of
wind turbines is a top priority for manufacturers and operators.
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Low-reliability wind turbines in an offshore setting may have a
more negative effect on the effectiveness of energy production
because they need more time to repair faults once they occur [3].
Low-reliability wind turbines can significantly reduce the effi-
ciency of power generation in offshore conditions. This is due
to the possibility of prolonged maintenance downtime due to
access constraints if a wind turbine malfunctions. As a result,
the costs associated with wind turbine operation and mainte-
nance (O&M) are high. It is widely accepted that between 25%
and 35% of the overall costs of producing power come from
the operation and maintenance (O&M) of wind turbines [4]. As
a result, manufacturers and operators are quite concerned about
the dependability of wind turbines. A sizable sample of opera-
tional wind farms’ annual average availability is represented in
[5], showing a sizable disparity between the highest availabili-
ties (which are 50% higher than 97.5%) and lowest availabilities
(which are 10% lower than 92.5%) [5]. This suggests that there
may be room to raise wind turbine dependability. Developing
acceptable maintenance procedures and conducting appropriate
condition monitoring (CM) are efficient ways to increase relia-
bility. Although the economic benefits of early fault detection
by the Condition Monitoring System (CMS) have been demon-
strated, it has not yet been widely adopted [6] due to cost and
technical complexity restrictions (typically more than 11,000
Euros per turbine). Recently, a low-cost monitoring technique
that does not need extra sensors has been suggested: employ-
ing Supervisory Control and Data Acquisition (SCADA) data as
CM for wind turbines. At 10-min intervals, this system records
more than 200 wind turbine-related variables, creating a signifi-
cant amount of data that, after suitable data processing, is used
for early failure identification. SCADA data is influenced by a
variety of operational circumstances and environmental factors
in addition to how well the wind turbine is performing [7]. It is
critical to track data trends and remove negative impacts caused
by environmental and operational variability from SCADA data
since changes in SCADA data do not always indicate a prob-
lem with the wind turbine. To locate problems in wind turbines,
suitable data analysis technologies must be proposed.

This review aims to make substantial contributions to the
field by pursuing three key objectives. First, it conducts a com-
prehensive literature study to provide an in-depth overview of
the causes of wind turbine failures, analyzing trends in failure
rates, and assessing the broader financial implications on the
overall cost of wind energy. This exploration is vital for advanc-
ing our understanding of the underlying factors contributing
to wind turbine failures and their sector-wide effects. Second,
the review critically evaluates various SCADA data analysis
techniques, shedding light on their benefits and drawbacks. As
SCADA data analysis plays a pivotal role in identifying potential
issues and anomalies in wind turbines, the review aims to offer
nuanced insights into the most effective strategies for leverag-
ing SCADA data. The examination encompasses a diverse range
of approaches, including both physical models and data-driven
methodologies. Lastly, this review endeavours to introduce
innovative technologies for the early identification and diagno-
sis of wind turbine failures. By delving into current research and
advancements in the field, the paper seeks to uncover novel

approaches and technologies that hold the potential to signif-
icantly enhance the reliability and efficiency of wind energy
systems. In essence, this review aims to deepen our understand-
ing of wind turbine failures, provide a balanced assessment of
various SCADA data analysis methods, and propose cutting-
edge technologies to advance the early identification of failures
in wind turbines.

2 OVERVIEW OF SCADA SYSTEMS

2.1 Introduction to SCADA systems

A typical automation system used to manage industrial oper-
ations is the SCADA system. It gathers data in real time for
control or monitoring purposes from sensors at distant places
and collects it at a central location. SCADA gives businesses
the resources they need to make data-driven choices about their
industrial operations. Both hardware and software components
make up SCADA systems. The field controller system receives
data from the hardware and processes it. Additionally, the data
is prepared and shown on the user interface. SCADA systems
also capture and document all occurrences in order to report
on the status and problems of the process. The SCADA system
provides notifications when errors happen [8]. SCADA systems
comprise hardware for on-site real-time data collection as well as
data support and automation software. SCADA’s components
include the following (Figure 1):

1. Instruments or sensors used in the field: Sensors gather
information from the environment, such as temperature,
pressure, liquid level, etc.

2. SCADA field controllers: SCADA field controllers are often
separated into two types and are directly connected to sen-
sors. RTUs, or remote terminal units, take data from sensors
and send it to the system. Industrial equipment is con-
trolled by Programmable Logic Controllers (PLCs), which
are linked to actuators.

3. SCADA monitoring computers: Manage all SCADA func-
tions and issue instructions to industrial equipment con-
trollers based on information gathered on-site.

4. Human–Machine Interface (HMI) software: Integrates and
displays data within the SCADA system, allowing operators
to intuitively comprehend the state of industrial processes.

5. The SCADA monitoring system’s communication infras-
tructure links field equipment with it, enabling remote data
gathering and equipment control.

SCADA systems operate at five of the six levels for enterprise
integration [8], which is shown in Figure 2:

∙ Level 0: Process-controlling actuators and sensors that
transmit data on field processes.

∙ Level 1: Local controllers receive sensor data and communi-
cate commands to field equipment.

∙ Level 2: Local monitoring systems provide commands and
summarise data from level controllers.
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FIGURE 1 Component of SCADA system [9].

FIGURE 2 Layers of SCADA system architecture [8].

∙ Level 3: Regionally functional system monitoring devices
produce data reports for usage at the production scheduling
level.

∙ Level 4: Systems used by businesses to handle ongoing
activities are at Level 4.

2.2 Data acquisition and communication
protocols

Data from the wind turbine, such as wind speed, wind direction,
rotor speed, power output, etc., are collected and interpreted
by a SCADA system for the wind turbine. This information

is gathered by sensors placed all around the turbine and then
transmitted to a central control system for monitoring and anal-
ysis. The guidelines that specify how information is sent and
received between devices in a SCADA system are known as
communication protocols. These protocols make guarantee that
the data being communicated is dependable and safe and that all
components of the system can properly communicate with one
another.

The most widely used protocols in wind turbines are IEC
61400-25, DNP3, and Modbus. Because of its widespread
acceptance and ease of implementation, the Modbus proto-
col is straightforward and reliable. In contrast, DNP3 offers
more sophisticated functionality including event recording and
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timestamping. For applications involving wind power, the IEC
61400-25 protocol was created expressly. It offers a standard
model for data exchange between wind power plants and con-
trol centres, simplifying the integration of various systems and
parts.

3 SCADA DATA COLLECTION IN
WIND TURBINES

Wind turbines rely on SCADA systems to gather real-time oper-
ational and historical data. This comprehensive dataset enables
operators and engineers to assess turbine efficiency, detect
potential faults, and optimise overall performance. SCADA
data, often collected at frequent intervals, is transmitted from
the turbines, typically located in remote areas, to centralised pro-
cessing centres. SCADA data collection is briefly described as
follows.

3.1 Integration of SCADA systems in wind
turbine operations

Wind turbine operation efficiency depends on SCADA systems.
They make it possible for the equipment to be controlled and
monitored centrally, improving performance, foreseeing any
problems, and even providing remote access and control. There
are numerous ways to incorporate SCADA systems into wind
turbine operations:

∙ Remote Monitoring and Control: With the help of the
SCADA system, operators can keep an eye on things like
wind speed, rotor speed, power output, and temperature on
wind turbines that are in operation. The turbines may also be
started, stopped, and their blade angles and rotation speeds
can be changed remotely.

∙ Predictive Maintenance: Machine learning algorithms can
be used in conjunction with the data gathered by SCADA
systems to forecast equipment breakdown. By preventing
unanticipated breakdowns and prolonging the lifespan of
wind turbine components, this preventative maintenance can
result in significant cost savings.

∙ Alarm Management: The SCADA system can set off alarms
to alert the operators if it detects any abnormal conditions,
such as high temperature, low oil level, or high vibration. This
makes it easier to find and fix problems fast.

∙ Grid Integration: SCADA systems are also useful for control-
ling how wind turbines are integrated into the grid. They can
keep an eye on and control the power output to match the
demand on the grid, assisting in grid stabilisation and averting
blackouts.

The wind turbine SCADA system’s parameters are listed in
Table 1. The data is recorded by the SCADA system as 10-
min averages of 1-Hz sampling values. Additionally, the system
records the greatest and lowest variances of specific parame-
ters [6]. A part of the CM also includes the start-stop count and

TABLE 1 Parameters collected from SCADA system [6, 10].

Environmental

Electrical

characteristics

Part

temperatures Control variables

Wind speed Active power
output

Gearbox bearing Pitch angle

Wind direction Power factor Gearbox lubricant
oil

Yaw angle

Ambient
temperature

Reactive power Generator winding Rotor shaft speed

Nacelle
temperature

Generator
voltages

Generator bearing Generator speed

Generator phase
current

Main bearing Fan speed/status

Voltage
frequency

Rotor shaft Cooling pump status

Generator shaft Number of yaw
movements

Generator slip ring Set pitch
angle/deviation

Inverter phase Number of
starts/stops

alert logs that the SCADA system has logged. Different groups
of wind turbines have various equipment and collection stan-
dards. More sensors are being added to contemporary turbines
is already a general tendency.

3.2 Data acquisition process and frequency

SCADA systems enable remote operation of machinery and
processes, as well as data collection to track and evaluate
wind turbine performance. The following steps are commonly
involved in the data acquisition process in an SCADA system
for wind turbines:

∙ Data Collection: This is the main stage of the SCADA sys-
tem’s data collection process for information from sensors
installed in wind turbines. The sensors can keep an eye on a
number of variables, including wind direction and speed.

∙ Data Communication: The collection and transmission of
data to a data concentrator or centralised control system.
Typically, several communication methods, such as wireless
networks, fibre optic cables, or internet connections, are used
for this. It is also possible to time-stamp the data to ensure
correct capture and analysis.

∙ Data processing and control: The central control system con-
trols and processes data once it has been gathered and sent.
This system, which is frequently a computer running SCADA
software, allows human operators to remotely manage wind
turbines while also interpreting data, generating alerts or
instructions based on predetermined criteria, and interpreting
data.

∙ Data Analysis and Storage: Data is kept in databases
for further reporting and analysis. This enables operators
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to see patterns, anticipate breakdowns, plan maintenance,
and enhance the wind turbines’ general productivity and
efficiency.

4 APPLICATIONS OF SCADA DATA IN
WIND TURBINES

4.1 Condition monitoring and fault
detection

Condition monitoring and fault detection is a developing
method used for observing system performance. It collects data
to verify design values and make decisions to help enhance sys-
tem performance. Early detection of imminent faults such as
cracks, wear, rotor mass imbalance, etc., can improve system
reliability. This method selects specific parameters for monitor-
ing and uses algorithms to determine the occurrence of faults.
Finally, an intelligent alarm system interprets the alarms and
takes corrective actions [11].

4.1.1 Vibration analysis

Vibration is a crucial indicator of the health of wind turbines
and a study topic for spotting irregularities in their functioning.
The creation of a defect monitoring system employing vibration
data gathered from the tower and wind turbine transmission
system has been suggested by Zhang et al. [12]. Acceleration
detected by the SCADA system serves to define vibration.
Despite being connected, the accelerations of the gearbox sys-
tem and the tower are examined independently in this study
because there is no statistically significant correlation between
them.

An enhanced k-means clustering technique is used in this
study to track wind turbine vibration. This algorithm for unsu-
pervised learning evaluates data similarity and groups data into
groups. Turbine maintenance choices are made using the clus-
tering model. A warning message will be generated and the
proper steps for maintaining wind turbines will be conducted
if the data is a part of a cluster that represents an incorrect state.
A few occurrences will be randomly chosen for diagnostic anal-
ysis if the data is part of a cluster representing an unknown state
of the wind turbine. No action is required if the data are part of
a cluster that represents a regular state.

The relationship between acceleration and time cannot be
observed because clustering does not account for the passage of
time. The state of the wind turbine in the future must therefore
be predicted using a model that can track acceleration trends.
The study suggests using control charts to track acceleration
trends and spot unusual wind turbine incidents. The control
chart’s centreline, the NEE baseline model, is used to track
outliers that deviate from the norm.

The models provided by Kusiak et al. [13] for tracking wind
farm power output are numerous. To track the performance of
the wind farm, a non-linear parametric model was constructed
using an evolutionary computation approach. For the wind farm

TABLE 2 Performance of five classifiers for predicting drive train
acceleration.

Classifier MAE MAPE

NN 1.17 0.07

SVM 8.64 0.27

Standard C&RT 4.23 0.16

Boosted tree 3.20 0.20

Random forest 2.06 0.09

running under typical circumstances, the k-NN model pro-
vided good performance. In a later investigation, they suggested
applying anticipatory control to WTs. A non-linear restricted
optimisation problem was resolved using a modified evolution-
ary strategy approach. In a later study, Kusiak et al. suggested a
strategy for improving the power that WTs produce. The pitch
and yaw angles of the blades were optimised using the control
strategy they suggested.

From two separate approaches, time domain and frequency
domain, Kusiak et al. [14] proposed evaluating vibration data
of wind turbine units. To identify the wind turbine parameters
that can reduce turbine vibration, three data-driven methodolo-
gies were used in the time domain analysis: predictive variable
importance analysis, global sensitivity analysis, and correlation
coefficient analysis. Fourier analysis was utilised to transform
time-domain data into the frequency domain for the frequency
domain analysis. The association between parameters and wind
turbine vibrations was determined using five data mining algo-
rithms, and the best one was selected for modelling and in-depth
computer investigation.

Table 2 illustrates the performance of the five classifiers for
predicting the drive train acceleration. The NN model provides
the lowest MAE and MAPE. Thus, the NN model is selected as
the most accurate model to predict wind turbine vibrations.

4.1.2 Temperature monitoring

Unexpected temperature increases in wind turbines could be a
sign of overloading, insufficient lubrication, or ineffective pas-
sive or active cooling. Potential breakdowns can be predicted by
using neural networks to create normal operating temperature
models for the gearbox and generator based on SCADA data.
However, increasing the accuracy of neural network methods in
predicting wind turbine failures is challenging due to the lengthy
model training time and the issue of local minima. Guo et al.
proposed a temperature trend analysis technique based on the
Non-linear State Estimation Technique (NSET) [15]. The sen-
sitivity of this method to isolated model errors can be decreased
by utilising NSET to build a normal operating model of wind
turbine temperature and a moving average window to smooth
the time series residuals between the actual observed tempera-
ture and the estimated value. The residual distribution of a wind
turbine’s temperature over time will be different from normal
operation when it has a possible malfunction.
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FIGURE 3 Residual results of different solutions in main bearing offset
failure [18].

The mechanical performance of wind turbines may be
impacted by considerable wake effects caused by the separation
between turbines. In order to prevent the deterioration of the
wind turbines, it is important to pay attention to the impact of
temperature changes. Astolfi et al.’s method [16] displays a graph
depicting the correlation between observations from wind tur-
bine temperature sensors and the percentage of power relative
to rated values to anticipate impending serious damage to wind
turbines. This technique is used on historical data and in real
time on a test wind turbine, and it is demonstrated that it can
identify temperature patterns that are developing into traumatic
machine stoppage.

The fluctuating load circumstances that wind turbines run
under make it difficult for typical bearing monitoring tech-
niques to produce reliable findings. Cambron et al. suggested
an approach for monitoring the condition of a wind turbine’s
main bearing by constructing an empirical physical model based
on the discrepancy between the actual temperature and the
expected temperature [17]. They employed least-squares fitting
to establish the model’s parameters after choosing data from
typical operational scenarios. Additionally, they developed an
EWMA control chart based on this physical model to keep track
of potential bearing problems. The system will sound an alarm
if the monitoring signal based on bearing temperature exceeds
the control limit.

Hou et al. proposed a WCC scheme using the k-means algo-
rithm, which can build models under different wind conditions,
thereby improving the reliability and accuracy of fault detec-
tion [18]. An Improved Genetic Algorithm (IGA) is used to
optimise the Extreme Learning Machine (ELM) to avoid local
minima caused by the irregularity of wind condition changes
and the randomness of initial weights and biases. Figure 3 shows
the two IGA-ELM solutions. On average, the solution without
WCC lags the solution with WCC by more than 60 min, reach-
ing roughly 90 min at a residual result of 2◦C. The solution
with WCC also displays consistent performance with changes
in wind conditions, and the residual results are often less than
0.5◦C, according to the findings of the WCC performance test.
However, with the solution without WCC, the residual results
under normal working state might be greater than 1◦C, occa-

sionally even reaching 4◦C, due to the change in wind condition.
These findings show that monitoring can produce early failure
alarms using WCC.

4.1.3 Gearbox and bearing health

The gearbox has the longest downtime per failure of all the
parts of a wind turbine. When a failure occurs, the downtime
can reach a maximum of 55.2% of the annual downtime and
the energy loss can reach a maximum of 52.0% of the annual
output. A physical model for gearbox problem identification
based on the correlations between temperature, efficiency, rota-
tional speed, and power production was proposed by Feng et al.
[19] after summarising the typical failure types of wind tur-
bine gearboxes. Using low-speed SCADA data, this technique
is appropriate for long-term gearbox fault identification.

In order to precisely replicate the lubrication pressure of a
healthy gearbox, Wang et al. [20] created a data-driven model
utilising Deep Neural Networks (DNN). The DNN model was
found to be the best accurate for simulating gearbox lubricant
pressure after comparisons were made between six of the most
popular data mining algorithms. Before a defect manifests, the
Absolute Percentage Error (APE) of the DNN will vary. The
guidelines for monitoring lubricant pressure were developed
using an Exponentially Weighted Moving Average (EWMA)
chart in order to detect changes in the APE.

Turbine bearings are essential parts, and dynamic and unpre-
dictable pressures can cause early bearing wear, increasing
turbine maintenance costs and raising the possibility of unex-
pected turbine failures. By analysing historical data from wind
turbines, Kusiak et al. [21] suggested employing neural net-
work techniques to create bearing failure prediction models.
In the study, supervised learning was done using the Weighted
Best First Search Wrapper (WBFS) approach, which used 10-
fold cross-validation to identify the parameters that were most
important for predicting generator bearing temperature. The
association between input parameters and generator bearing
temperature during typical behaviour was captured by the neu-
ral network technique through optimisation. To examine model
error residuals and foretell overheating episodes, a moving
average window was used. 1.5 h prior to a failure occurring,
overheating events were expected.

In order to characterise the behaviour of wind turbine gear-
boxes and generators and to predict operational anomalies using
statistical process control (SPC), Santolamazza et al. [22] created
a model employing artificial neural networks (ANN). Italian
wind turbines were used to assess the effectiveness and appli-
cability of the suggested strategy. In addition to wind speed,
ambient temperature, and standard deviation of wind speed,
which, albeit to a lesser extent, contribute to the performance
of the model, are also employed as inputs in the FFNN model
used to monitor output power. A control chart of Power Out-
put deviations is presented in Figure 4 as an illustration of how
this model might be used.

Figure 5 presents a control chart of power output deviations
using this other reference model. By the comparison between
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FIGURE 4 Control chart of power output deviations using the ANN model.

FIGURE 5 Control chart of power output deviations using the non-linear
regression model.

the two models, it is clear that the first one, the ANN model,
is able to overcome the issue of seasonality, assuring a better
representation of the behaviour of the wind turbine.

4.2 Performance analysis and optimisation

Analysing performance data across multiple turbines or wind
farms allows for performance benchmarking. This can help
identify best practices and standardise operations across the
fleet, leading to more consistent and reliable performance.
Besides, continuous monitoring of turbine performance can
help identify issues early on before they become major prob-
lems. This not only prevents equipment failures but can also
extend the useful life of the turbines, resulting in significant cost
savings.

4.2.1 Power output and efficiency analysis

In the field of wind energy, the power curve of a wind turbine
represents a key characteristic, linking the wind speed at hub
height to the power output of the turbine. Accurate modelling

of this power curve is crucial for accurately predicting the power
generation of wind turbines. Pandit et al. [23] introduced the
application of Quantile–Quantile (QQ) plots in assessing the
Gaussian process-based error distribution function of wind tur-
bine power curves. The study verified that using QQ plots as an
assessment tool can help understand the accuracy and reliabil-
ity of the prediction models applied to the wind turbine power
curves. In statistical models, identifying the correct distribution
function is key to its performance. Therefore, accurate assess-
ment of the distribution function plays a crucial role in state
monitoring using Gaussian Process (GP). The ‘goodness of fit’
between a collection of observed data and a theoretically pos-
tulated distribution may be intuitively assessed using QQ plots,
which lends them practicality. In order to determine if the antic-
ipated GP power curve adhered to the assumed Gaussian error
distribution, the study presented the QQ plot. The study shows
how QQ plots can be used to identify specific sources of non-
normality, such as skewness, heavy tails, or multimodality, which
may indicate problems with the underlying model or how well
the results conform to the assumed Gaussian error distribu-
tion. The study emphasises how these insights can be applied to
enhance the GP model, resulting in estimates of wind turbine
power that are more precise and effective [23].

An advanced technique for forecasting wind turbine power
output is presented by Mehrjoo et al. [24] using a model
based on the principles of monotonic regression. Traditional
power curve modelling techniques frequently run into issues
with overfitting and non-linearity. The research suggests util-
ising monotonic regression to address these issues because it
preserves trend direction and is thus appropriate for the wind
turbine power curve’s intrinsic monotonicity. By doing this, the
training model’s data set is not reduced as a result of delet-
ing data that leads to non-monotonicity from the training data,
which can have unintended consequences. In the study, the
power curve fitting method’s inherent need for monotonicity
lessens the influence of outliers on the predicted curve. This
approach is a useful way to describe the power curve of wind
turbines and can increase the predicted accuracy of the fitting
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FIGURE 6 Effect of tilting method on the Nadaraya–Watson kernel
estimator [24].

curve. By applying the monotonic regression model to real wind
power generator data, the paper discusses the iterative process
of determining the optimal power curve and presents the output
in a visual way to show improved fitting compared to traditional
methods. Cross-validation and sensitivity analysis are carried
out to test the model under different wind conditions and tur-
bine types. The results of this validation process show that the
monotonic regression model provides better fitting and more
accurate power predictions than traditional power curve mod-
els [24]. Figure 6 shows the Nadaraya–Watson kernel estimator
and its corresponding monotonised curve. One can notice that
in monotone regions both fitted curves are essentially the same;
however, in non-monotone regions there exist some differences
between fitted curves.

An approach for early failure identification of wind turbines
using a no-fault behaviour model of the turbine was proposed
by Butler et al. [25]. The relationship between weather obser-
vations, turbine sensor observations, and the average power
produced by the turbine is included in the model. The trained
model is then used to track the performance of the associated
turbine after modelling using the no-fault behaviour. The prop-
erties of the residual signal, which is the difference between the
turbine’s predicted and actual power output at each time step,
are used to identify faults. The authors found a 16% decrease
in the root mean squared error when predicting turbine power
output using both wind speed and air density, as opposed to
using simply wind speed as a model input. This led them to
recommend utilising air density as an input. The output power
generated for a given wind speed climbs as the air density value
rises, as shown in Figure 7, clearly demonstrating.

A multivariable input power curve model with an enhanced
Gaussian process method was introduced by Guo et al. [26].
The power curve model prediction residuals were analysed using
the Sequential Probability Ratio Test (SPRT) approach, which
also produced wind turbine operation alerts. The usefulness of
the suggested power curve modelling and monitoring method
was demonstrated by the presentation of two wind turbine case
studies, one including an anemometer failure and the other
involving a pitch control failure. Using penalty factors and slack
variables in the computation, Yang et al. [10] proposed a model
based on Support Vector Regression (SVR) for rebuilding mod-

FIGURE 7 Scatter plot of filtered 10-min average wind speed and power
measurements [25].

els to forecast early failures in components. The study also
showed that the SVR algorithm can, to a certain extent, filter out
noise in the training data and recognise outliers during model
formation.

4.2.2 Turbine control and pitch optimisation

The pitch control system plays a vital role in this process, adjust-
ing the angle of the turbine blades according to wind speed
variations. These adjustments optimise power generation, pro-
tect the turbine from damaging wind speeds, and ensure system
stability.

The effectiveness and performance of wind turbines can
be considerably improved by using optimisation approaches,
according to Biegel et al. [27]. Pitch control optimisation’s
main objective is to increase power output in light to mod-
erate winds and safeguard the mechanical structure of the
turbine in strong gusts. In order to do this, modern turbines use
sophisticated control techniques like Model Predictive Control
(MPC) and adaptive control. To forecast future behaviours and
optimise control inputs, MPC uses a mathematical model. Con-
trarily, adaptive control modifies control parameters in response
to changes in the system. These techniques have success-
fully improved turbine power output and decreased mechanical
stress. Use Sequential Convex Programming (SCP) to locate
local solutions to the non-convex multi-objective optimisation
issue of maximising average output torque while maintaining
uniformity and minimising fatigue load [27]. Physical models
and data-driven models are examples of conventional meth-
ods for fault detection in wind turbine pitch systems that have
limitations. Due to the intricacy and non-linearity of wind
turbines, physical models frequently have trouble. Contrarily,
data-driven models like Artificial Neural Networks (ANNs)
or Support Vector Machines (SVMs) would need a lot of
training data and computer capacity, which is sometimes not
feasible.

The Relevance Vector Machine (RVM) regression approach
was suggested by Wei et al. [28] as a novel Normal Behaviour
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FIGURE 8 The degradation trend of pitch systems [29].

Modelling (NBM) technique. With fewer basis functions, it can
attain accuracy comparable to SVM, resulting in a sparser and
more understandable model. The Artificial Bee Colony algo-
rithm’s kernel function is used to modify the RVM model’s
parameters. The encoder, slip ring, and motor failures that
commonly occur in variable-pitch systems can all be quickly
identified using the suggested method.

For monitoring SCADA data and evaluating fault data,
Wei et al. [29] established four independent ageing indica-
tors, namely functional, energy consumption, temperature, and
reliability indicators. They also proposed an ageing evaluation
approach for the wind turbine electric pitch system. The sug-
gested method can gauge how much the pitch systems degrade
each year. The degradation trend of the pitch systems during
their life cycle can be determined with enough degradation-
degree data. The line is fitted using the annual average values
of ageing markers, as seen in Figure 8. The ageing indicator in
this instance will rise by 0.036 each year.

4.3 Predictive maintenance and reliability
analysis

4.3.1 Failure prediction and preventive
maintenance

By performing timely maintenance, anticipating downtime,
spotting anomalies, and aiding in the diagnosis of different
failure types, predictive maintenance can assist managers in
bridging the gap between reactive maintenance and planned
maintenance. Extreme Gradient Boosting (XGBoost) and Long
Short-Term Memory (LSTM) were utilised by Udo et al. [30] to
create a model that represents the typical behaviour of wind tur-
bines. The discrepancy between the healthy wind turbine model
and the gathered data is compared using SCADA data in this
model. The Statistical Process Control (SPC) control chart is
used to track these variations; data points that are above the per-
mitted failure threshold are regarded as anomalies. The model is
trained using fresh data from several wind turbines with fail-
ure statistics, and following validation, it is deemed ready for
real-time monitoring.

Using clustering and box plot approaches, Rodriguez et al.
[31] established a method for spotting abnormalities in SCADA

data and identifying incorrect behaviours of wind turbines.
This data-driven strategy attempts to enhance predictive main-
tenance and successfully identify anomalous behaviours. The
K-means algorithm is used in the study to determine the ideal
number of clusters. The silhouette criteria is the parameter
used in the MATLAB function ‘evalclusters’ for this pur-
pose. In order to determine the mean, quartiles, maximum
and minimum values, and outliers, the box plots of the vari-
ables are utilised. Points that fall outside these boundaries
are referred to as anomalies and can help identify potential
flaws.

Full Signal Reconstruction (FSRC) and AutoRegressive
model with eXogenous inputs (ARX) are two Normal
Behaviour Modelling (NBM) strategies that were compared by
McKinnon et al. in their article [32]. To examine the effect of
the training time on each model’s capacity to detect anoma-
lies, the models trained using 12 months and 6 months of
data were compared. A moving window and a sliding win-
dow were both used to compare the models in order to better
examine the absolute inaccuracy. The NARX and NN mod-
els were compared in Figure 9 using training data from 12
months of 10-min averaged SCADA data. The daily sliding
window is shown in Figures 9a and 9b, and the daily moving
window is shown in Figures 9c and 9d. The RMSE for the
training period is represented by the light-yellow lines, while
the RMSE for the testing period is represented by the dark-
brown lines. It is clear that the RMSE of the NARX models
is lower than that of the NN models. Overall, their peaks
seem to occur at the same times, but the NN’s peaks seem
higher [32].

Unsupervised clustering was utilised by Zhao et al. [33] to
predict the Remaining Useful Life (RUL) of wind turbines. In
order to more clearly see the fault development trajectory of
wind turbines, the Abnormal Operation Index (AOI) idea was
put forth. Before a problem developed, the wind turbines’ per-
formance degraded for roughly 44 days. Other wind turbines
also experience this phenomenon. The forecast accuracy of
RUL for the five turbines experiencing generator fault is shown
in Figure 10a. Figure 10a illustrates the overall pattern that the
average prediction accuracy rises as the lead time needed for
repairs and maintenance reduces. The graph has a small ran-
dom variation due to the functioning of wind turbines, but the
general trend is still evident. The average accuracy is displayed
in Figure 10b. The accuracy increases as the number of days
employed to anticipate in advance decreases, as illustrated in
Figure 10b. More specifically, if the necessary repair and mainte-
nance lead-time is 18 days out, the average prediction accuracy
is roughly 80% [33].

The diagnostic performance of four classifiers on the basic
behaviour of wind turbines was compared, and whether these
classifiers are applicable to generator fault diagnosis was
discussed.

Table 3 shows the accuracy of different classifiers. The best
performance of different classifiers is indicated in bold print. As
Table 3 demonstrates, overall, there is no best classifier for max-
imising 𝑇𝑃𝑅, 𝑇𝑁𝑅, and 𝐴𝐶𝐶 simultaneously. The main reason
is that the different classifiers are suitable for various scenarios.



10 PANDIT and WANG

FIGURE 9 Comparison of RMSE for NARX vs. neural network considering 12 months training period and 10-min mean data resolution [32].

FIGURE 10 Prediction accuracy of RUL with different days ahead (a), mean prediction accuracy of RUL (b) [33].

TABLE 3 Classification accuracy for different algorithms [33].

ANN KNN SVM Naive Bayes

𝑇𝑃𝑅 0.7115 0.2741 0.4025 0.4198

𝑇𝑁𝑅 0.9859 0.9975 0.9936 0.9827

𝐴𝐶𝐶 0.9821 0.9759 0.9796 0.9642

The ANN classifier performs best in identifying 𝑇𝑃𝑅 and 𝐴𝐶𝐶,
as it is based on the data characteristics of finding the non-linear
relationship between the feature and the corresponding status
(Table 4).

TABLE 4 Comparative analysis of machine learning models for gear
bearing [36].

ANN SVM LR

Correct prediction 72.5% 60% 59%

Missed failure 20% 36% 31%

False positive 7.5% 4% 10%

4.3.2 Remaining useful life estimation

To determine how long a wind turbine will operate, Dimitrov
et al. [34] suggested a regression model based on an ANN with
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three hidden layers, trained with a lot of load data. By combining
SCADA data, correcting for wind observations, and applying an
alternative model based on simulation to take into consideration
the impacts of wake flow, it is possible to accurately anticipate
power production and load time series. A regression model that
has been trained and estimated wind-free conditions are used
to predict load. By contrasting the expected power output with
the SCADA records that are readily available, the model’s per-
formance is confirmed. The findings indicate that, both at the
wind farm and individual turbine levels, there is a strong corre-
lation between anticipated and measured power output. When
providing measured load time series of rotor speed, power gen-
eration, wind speed, pitch angle, and tower top acceleration, the
alternative model successfully reproduced the load time series of
the leaf root and tower base components [34]. Additionally, Dai
et al. [35] created four ageing evaluation criteria by optimising
the weighting factors based on professional opinions, in order to
characterise the ageing problem of wind turbine units from var-
ious angles. They created an ageing evaluation approach using
a blend of traditional and informational methods on the basis
of this. Finally, using actual SCADA data gathered from wind
farms, the effectiveness of the suggested method in evaluating
ageing was tested.

A novel approach for estimating the usable life left in wind
turbine gearboxes using machine learning techniques is pre-
sented by Carroll et al. in [36]. This study uses substantial tagged
SCADA and vibration data from wind turbines to anticipate the
failure and remaining usable life (RUL) of gearboxes in contem-
porary multi-megawatt wind turbines. The study finds that in
terms of failure and RUL prediction, artificial neural networks
perform better than conventional tried-and-true machine learn-
ing techniques. The investigation shows that SCADA data can
reliably foresee failure 1 month in advance, and high-frequency
vibration data can increase this capability to 5 to 6 months.
Depending on the failure scenario, two-class neural networks
trained using SCADA data may accurately forecast gearbox
breakdowns 72.5 to 75% of the time. When trained using vibra-
tion data, this accuracy rises to 100%. Also mentioned are data
patterns that precede failure and the weighting of SCADA data
inputs [36].

5 DATA ANALYTICS TECHNIQUES
FOR SCADA DATA

5.1 Data pre-processing and cleaning

Due to measurement, transmission, control, and wind curtail-
ment, many anomalous data arise throughout the gathering
of WT data. This has no practical application value for the
expected state, or it influences the WT’s power prediction. For
WT power forecast and health management, it is crucial to
properly evaluate wind turbine data and identify problematic
circumstances.

The power characteristic in Figure 11, which is depicted by
the curve of wind turbine output power changing with wind
speed, is a significant indicator of the fundamental performance

FIGURE 11 Anomalies in SCADA [37].

of a wind turbine. According to the operation status of the wind
turbine unit, data anomalies are split into three categories, and
their typical characteristics are as follows:

∙ The horizontal accumulation data at the bottom or middle
(Anomaly 1 and Anomaly 2) are referred to as accumulation
points. Anomaly 1 data is typically produced when a wind
turbine stops operating for maintenance or when the wind
speed is below the cut-in speed, which prevents the wind tur-
bine from producing energy. Over a particular time period,
the output power of these locations is negligibly low or zero.
Anomaly 2 data is frequently brought on by man-made power
outages, communication breakdowns, etc., with output power
being lower than usual and not varying much (or at all) with
wind speed over time. Although they do not immediately
show whether there is an anomaly in the wind turbine unit,
these points will have an impact on the predictions. Based on
human experience [37], these two forms of aberrant data can
be deleted.

∙ In anomalies, the abnormal data is spread at certain spots
(Anomaly 3). Sensor anomalies, random noise, and changes
in operational circumstances are the main culprits. The out-
lier data fluctuate at random rates. The performance forecast
accuracy of wind turbines will be impacted when the percent-
age of outlier data is high and the dispersion is significant,
even though it somewhat mirrors the real working condi-
tions. Additionally, there are continuous outliers in the timing
sequence that result from frequent control switching caused
by the extreme volatility of the operating conditions, although
the major parameter changes with wind speed defy physical
principles. Thus, in addition to wind power, the correspond-
ing characteristic factors should be taken into account when
cleaning the data. Use correlation analysis tools to find
important variables and spot outliers [37].

An SCADA data pre-processing technique based on the
Thompson tau-local outlier factor (TTLOF), which eliminates
outliers by parameter correlation, was proposed by Yao et al.
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FIGURE 12 Wind turbine power curve scatter plot after filtration [38].

[38]. First, data from manually curtailed power is removed using
the correlation between wind power and pitch angle based on
the workings of wind turbines. The ECMI approach is then
utilised to choose pertinent parameters for the evaluation of
aberrant feature using the wind power as the observation point.
In order to filter away outlier data, these factors are paired with
wind power and integrated into a high-dimensional space, from
which the local density is determined. The data of the wind tur-
bine SCADA system can be processed with data such as wind
speed, active power, generator speed, and pitch angle. Firstly,
outliers whose speed is less than or equal to 0 and whose wind
speed is outside the cut-in wind speed or cut-out wind speed
need to be deleted. Secondly, the data is processed by selecting
threshold of pitch angle in the allowed power range at the rated
power (Figure 12). Those points which exceed the pitch angle
threshold and the allowed power range are discarded. Thirdly,
the scatters whose powers are less than 10% of the maximum
power and whose pitch angles are greater than 2◦ are removed.
The pre-processed wind speed and active power scatter points
are shown in Figure 3. However, it is found that some anomalies
still remain, and further data processing is required [38].

In order to eliminate outliers based on parameter correla-
tions, the data were further cleaned using the TTLOF approach
[38]. Below is written the TTLOF method’s defined process.

∙ Using ECMI, relevant parameters were chosen and priori-
tised.

∙ Equal intervals are created within the wind speed. Each
parameter’s mean value, standard deviation, and absolute
deviation are calculated. And in order to find anomalous
points, the anomaly coefficient is obtained. Until the outliers
could not be filtered out, the step is repeated.

∙ Additional processing is done on the previously unfiltered
points. All points are subjected to the outlier quantisation in
accordance with the local outlier factor. The outlier threshold
identifies the outliers.

Binning has been used by Astolfi et al. [39] to analyse mea-
surement channels associated with the rotor and blade pitch

control in the polynomial regression of the power curve of
wind turbines. The fundamental conclusion of this study is that
rotor imbalance and the observed much lower performance of
hydraulic pitch turbines compared to wind turbines are both
thought to be connected to the gradual decline in pitch pressure.
According to the data gathered for this study, wind turbines’
hydraulic pitches are delicate parts that need to be closely reg-
ulated. The average generator speed-power curves of the two
wind turbines with the biggest performance discrepancies are
shown in Figure 13 in terms of differences from 2017 for the
years 2019 and 2021. In both T2 and T4, the power output for
a certain generator speed declined over time in 2019, although
it at least somewhat increased in 2021 (Figure 14).

In 2017, 2019, and 2021, wind turbines T2 and T4’s average
pitch manifold pressure and generator speed were compared
using the function shown in Figure 15. In contrast to wind
turbine T4, which has an increasing pressure over time for a
particular generator speed, wind turbine T2’s pressure gradu-
ally lowers over time. This research suggests that hydraulic pitch
control may be to blame for the performance reduction of wind
turbines.

The most recent improvements in data-driven models for
condition monitoring and preventive maintenance of impor-
tant wind turbine components were examined by Pandit et al.
[40]. They noted that while generators, which are more cru-
cial for wind turbine failures, are understudied, the health status
research on hydraulic blade pitch is still in its infancy. The liter-
ature on gear and bearing condition monitoring predominates,
they said, but there is less on these components. To get beyond
the vibration data’s complexity and boost prediction accuracy
and specificity, multi-time-scale data is used. The types of wind
turbine failures (bearing failures, gearbox failures, generator fail-
ures, pitch system failures, and yaw failures) were evaluated
along with research methodology.

5.2 Statistical analysis and anomaly
detection

Generally, fault detection approaches can be divided into model-
based methods and data-driven methods. The data-driven
model methods use data mining techniques, such as artifi-
cial intelligence algorithms to capture discrepancies between
observed data and that predicted by a model.

Zhao et al. [41] propose using Denoising Autoencoders
(DAEs) for fault analysis and anomaly detection in wind turbine
components. The DAE model captures the turbine’s dynamic
behaviour and is trained with WT data. The reconstruction
error of the model determines component health. Abnormal
detection and fault location are achieved using a condition
index, adaptive threshold, and input–output residual. The DAE
leverages reconstruction errors from SCADA data, even during
normal operation with variable wind speed. An adaptive thresh-
old prevents false alarms, and tracking the reconstruction error
enables early flaw detection. Extreme value theory designs a
threshold for abnormal detection and condition evaluation. The
DAE outperforms a neural network model, detecting faults over
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FIGURE 13 The scatters of the wind speed and the power using different cleaned methods. (a) The proposed method; (b) the quarterback method; (c)
cleaning method based on pitch angle; (d) TTLOF algorithm; (e) LOF algorithm; (f) the raw data [38].

FIGURE 14 The average yearly generator speed–power curve: years 2019 and 2021 in the form of difference with respect to the year 2017 [39].

FIGURE 15 The average yearly generator speed–average pitch curve [39].
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FIGURE 16 Reconstruction error of wind turbine generator under
normal condition [41].

FIGURE 17 Control chart of wind turbine gearbox (a) by DAE network,
(b) by NN [41].

14 h ahead of downtime and nearly 10 h earlier than the NN (see
Figures 16 and 17). This highlights the DAE’s superior accuracy
in describing wind turbine component behaviour.

Wind turbines plagued by yaw problems could continue to
run for many years without producing distressing disruptions,
according to Astolfi et al. [42]. The remaining life of the machine
may be impacted by these faults, which have a certain non-
negligible impact on wind energy conversion efficiency total
working times. The accuracy of yaw error inspections can be
increased by adding more downwind sensors, but the expense is
prohibitive. Furthermore, it is impossible to tell from SCADA
data whether the rotor is correctly oriented in relation to the
incoming wind. As a result, it is difficult and worthwhile to do
research to detect yaw problems in wind turbine systems using
data-driven models based on SCADA data.

A recent study [43] indicates that underperformance reliably
signals the impact of yaw error on wind turbines. Data-driven
analysis of power curves can detect yaw faults, but ruling
out machine-specific processes can be challenging. Multivariate

FIGURE 18 Performance comparison: wind speed [43].

FIGURE 19 Performance comparison: wave height [43].

power curve models address this issue but pose interpreta-
tion challenges. Causality tests can determine the relationship
between power output and yaw error, with future research
focusing on operational factors and structural responses linked
to yaw errors. Additionally, distinguishing system yaw errors
from deviations can be done using measurements from the
nacelle anemometer. Pandit et al. [43] propose using sequence
data-driven models (LSTM, BiLSTM, GRU) to enhance off-
shore O&M through weather forecasting. These models exhibit
similar accuracy in predicting wind speed and wave height, with
GRU being faster but less accurate compared to LSTM and
BiLSTM, making them suitable for larger datasets as shown in
Figures 18 and 19.

Pandit et al. [44] present a Gaussian Process (GP) technique
for wind turbine condition monitoring, using rotor speed to
derive a rotor curve. The developed GP model is compared
with the binning technique to identify operational anomalies,
and a comparative analysis highlights the strengths and weak-
nesses of each approach. Optimising the hyperparameter values
of the squared exponential covariance function is necessary to
reflect correlations in the processed rotor curve data. The GP
model closely follows the binned and measured rotor power
curve, with low uncertainty within the cut-in and rated wind
speed range. However, above rated wind speed, limited SCADA
data result in a less well-determined GP curve, showing some
mismatch with the binned rotor power curve. This empha-
sises the importance of an optimal dataset size for accurate
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GP modelling, considering the trade-off between data volume,
complexity, and processing costs.

5.3 Big data analytics and cloud-based
solutions

According to Abdallah et al. [45], they developed bagged deci-
sion tree classifiers that can better tolerate noise and forecast the
likelihood of excessive vibration. Ignore routine activities first,
then locate every leaf node that has the relevant fault categories.
Once the nodes have been sorted and filtered based on rele-
vance, pathways including target fault leaf nodes are retrieved in
order to pinpoint the underlying issue. To handle the continually
changing system and system feedback behaviour, the framework
additionally employs an object-oriented decision tree learning
technique. Wind turbines are regarded as a multi-layer object
system built on super-abstract classes. In order to assess con-
ditional probabilities and produce an updated risk indicator
for potential component failures, the decision tree classifier is
further translated to a Bayesian network.

When used to monitor tiny wind turbines, IoT and cloud
computing technologies performed best in real time, according
to Akyuz et al. [46]. The software transfers data to the Microsoft
Azure cloud computing system using data loggers and Rasp-
berry Pi gateways. Thus, visualisation is made possible with the
aid of the cloud system, providing real-time data monitoring
and performance evaluation across many platforms. Data from
the user interface, including wind speed, current, voltage, tur-
bine rotation speed, and input torque, were measured. These
statistics were used to compute the power coefficient, alterna-
tor efficiency, and wind turbine output. The entire information
was displayed on a single GUI platform. Different users can eas-
ily make instantaneous data interpretation and visualisation via
platforms such as mobile device and can analyse historical data
from the SQL database.

Roy et al. [47] introduce a Cloud-Based Real-Time Monitor-
ing System (CRMS) that employs a wireless sensor network for
early fault detection in wind turbines. The CRMS incorporates
vibration and temperature sensors to identify faulty motors,
issue timely fault warnings, and enable intelligent maintenance
for motor longevity and prevention of equipment damage.
Result suggests that accelerometer and gyroscope data clearly
demonstrate the amplitude disparity between a healthy genera-
tor and one with bearing faults. Vibrations increase noticeably
at a frequency of 50 Hz during bearing faults.

IoT-based technologies offer opportunities to improve effi-
ciency and reliability in wind energy microgrids. Real-time
monitoring and control enable downtime reduction, resource
optimisation, cost savings, and lower maintenance needs. Li
et al. [48] summarise research on IoT-based wind energy micro-
grid management and control techniques. They emphasise the
use of historical and real-time data for energy production
prediction, facilitating microgrid operation adjustments to max-
imise renewable energy utilisation and reduce dependence on
traditional sources. Additionally, they propose blockchain tech-
nology as a means to enhance security and transparency in

FIGURE 20 An example of wind speed data missing case in large-scale
WTs [49].

microgrid transactions, promoting the adoption of renewable
energy and facilitating the transition to a sustainable energy
system.

6 CHALLENGES AND LIMITATIONS

6.1 Data quality and integrity issues

Data integrity and quality problems can come in a variety of
forms [46]:

∙ Sensor Defects: To assess vital operational factors including
wind speed, direction, temperature, and vibration levels,
wind turbines rely on sensors. Inaccurate system perfor-
mance brought on by malfunctioning sensors might result in
unneeded system shutdowns or even catastrophic failure.

∙ Errors in data transmission: Since wind turbines are frequently
positioned in remote areas, data from these turbines must
be sent to a centralised place for processing. Data loss or
corruption can be caused by problems with communication
networks.

∙ Inaccurate data logging: Data logging errors are inevitable
because of noise. Signals in real-world applications are invari-
ably tainted by measurement noise in addition to other
sources of variability and uncertainty, such as transmission
problems, calibration concerns, or misalignment between
recorded and actual timestamps. As a result, features that
have been retrieved from tainted data may be quite tainted,
making it difficult to interpret the features.

Data imputation techniques are required to address the
SCADA data in wind turbines’ incompleteness. These tech-
niques can be divided into two groups: data mining- and
statistics-based [49]. The efficiency of these technologies,
however, declines because of the challenging data collection
environment present at wind turbines. The estimation of miss-
ing data in wind turbines presents unique difficulties. WT data
are strongly impacted by the environment’s fluctuation, which
makes it difficult to forecast missing data accurately. As seen
in Figure 20, where multiple turbines have missing wind speed
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data, it is common to encounter data missing in wind farms with
large-scale turbines. This limits the amount of data that can be
used for imputation. The wake flow in wind turbines introduces
a strong non-linear relationship among the data from different
turbines. As a result, simple models fail to achieve satisfactory
imputation results in such cases [49].

6.2 Data security and privacy concerns

Wind-based energy units were once considered immune to
cyber-attacks, but in March 2019, a wind power facility in Salt
Lake City, USA, fell victim to an attack that disrupted control
over 500 megawatts of wind turbines. This incident highlighted
the need for robust cyber security measures in the wind energy
sector, leading the U.S. Department of Energy to prioritise
strategies for protecting wind units against cyber threats [50].

Denial of service (DoS) and deception attacks, such as
false data injection, are common types of adversarial actions
targeting power and networked control systems. In a DoS
attack, the attacker aims to obstruct or interrupt communication
channels within the power system. Deception attacks involve
manipulating and injecting manipulated signals into the system.

When DFIG-based wind power plants are connected to
series compensated transmission systems, a phenomenon
known as sub-synchronous interaction (SSI) can occur, pos-
ing security risks to wind turbines. However, there are several
challenges related to SSI damping [50]:

∙ The existing SSI damping methods rely on continuous-time
measurement and control updates, which impose restrictive
assumptions.

∙ The current SSI damping schemes assume a secure, attack-
free environment, which may not hold true in the presence
of DoS and deception threats.

∙ The feasibility of using fuzzy controllers for SSI damping
in DFIG-based wind power plants has not been extensively
studied.

6.3 Scalability and computational
requirements

The management of data streams gathered by sophisticated
condition monitoring devices is a particularly difficult problem.
When transferring to big Operation and Maintenance (O&M)
platforms, these data suffer from poor scalability due to their
high complexity and typical need for specialised knowledge to
read them appropriately. Engineers and technicians might not
prioritise manually annotating (or creating appropriate automa-
tion techniques) to build a corpus for alarm messages that
summarise contextual information for low-priority faults, which
results in a significant variation in the quality of the avail-
able messages across different sub-components. Additionally,
because the authors typically apply models to very specific
SCADA datasets (which differ greatly in terms of features and
specifications), it is extremely difficult to produce meaningful

TABLE 5 Proposal’s predictive models vs. based work’s ones [52].

Global measure types Accuracy Sensitivity Specificity

Base work 76.50% 77.60% 75.70%

Proposed method 82.04% 92.34% 60.58%

FIGURE 21 Scalability study for turbulent Taylor–Couette flow
simulation. The computation time is normalised by the result of 64-processor
case [53].

new results and comparisons with baselines [51]. Furthermore,
the data used in the papers is typically not shared with the
published research.

Canizo et al. [52] propose a cloud-based data-driven solution
for predicting wind turbine failures. The solution is designed to
operate in a scalable cloud computing environment, allowing it
to handle increasing data volumes efficiently. The study demon-
strates the solution’s advantages in terms of speed, scalability,
automation, and reliability. Instead of relying on vertical scala-
bility with more powerful hardware, the solution leverages cloud
computing and big data frameworks to horizontally scale and
process data from numerous wind turbines. The study utilises
Hadoop Data File System (HDFS) for offline processing to gen-
erate predictive models and Spark Core and Spark Streaming
for real-time predictions. Additionally, Spark SQL and Spark’s
machine learning library (MLlib) are employed for data querying
and mining purposes, respectively.

Monitoring agents receive data from wind turbines and pro-
vide geographic location visualisation, prediction, and status
information notifications. ETL processes are used to eliminate
unnecessary data and format it appropriately. The identified sta-
tus patterns and operational data are combined to create training
sets. Six training sets were prepared using the original method,
and the random forest algorithm was applied to generate six
prediction models. Experiments were conducted to optimise the
algorithm’s parameters for this specific use case, and each model
was saved in HDFS. This approach shows significant improve-
ments, with nearly a 6% increase in global accuracy and a higher
sensitivity of 15% for precise failure prediction as shown in
Table 5. However, it has a lower specificity of approximately
15%, resulting in more false positives.
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FIGURE 22 Scalability study for wind turbine rotor simulation. The
computation time is normalised by the result of 60-processor case [53].

FIGURE 23 GP power curve incorporating rotor speed [49].

FIGURE 24 Impact of rotor speed on GP fault detection algorithm [49].

TABLE 6 Alarm record and detection by each approach [49].

Model

Time taken to identify

the fault

Online power curve model 6 h

Probabilistic assessment using binning ∼4 h

Probabilistic assessment using GP 1.5 h

FIGURE 25 Four power curve fitting methods on real data from wind
turbines in a wind farm located in Canada: (a) Nadaraya-Watson Kernel
Estimator (NWKE) and Tilting Method (TM) applied to NWKE, (b) Natural
Cubic Spline (NCS) and Monotone Regression Spline method (MRS) [56].

Hsu et al. [53] propose a high-performance computa-
tional framework for advanced flow simulations, based on
Residual-Based Variational Multiscale (RBVMS) methods and
isogeometric analysis. They have showcased the simulation and
parallel scalability results of turbulent Taylor-Couette flow and
NREL 5 MW offshore baseline wind turbine rotor, achiev-
ing near-perfect linear parallel scaling, as shown in Figures 21
and 22.

7 CASE STUDIES AND SUCCESS
STORIES

7.1 Real-world applications of SCADA data
in wind turbines

As wind-power data are often noisy, even after polishing data
using proper methods, fitted wind turbine power curves could
be very different from the theoretical ones that are provided by
manufacturers. Mehrjoo et al. [24] introduce two nonparametric
methods, the tilting method and monotonic spline regres-
sion, for constructing wind turbine power curves that maintain
monotonicity. They evaluate and compare these techniques with
the commonly used power curve fitting methods using historical
data from a wind farm in Manitoba, Canada.

In a separate study, Pandit et al. [54] propose a data-driven
machine learning approach based on GP for monitoring wind
turbine failures. They demonstrate that incorporating rotor
speed into the GP model enhances accuracy, as depicted in
Figure 23. Additionally, the combined GP model and rotor
speed enable automatic detection of yaw errors without false
positives. Figure 24 illustrates that signs of yaw errors can be
detected within 40 min, significantly improving the early fault
detection capability compared to the GP model without rotor
speed.
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The binned power curve was utilised by Pandit et al. [55] to
identify yaw defects and suggest a monitoring system based on
the Gaussian Process. By using Fisher’s combined probability
test, evaluate potentially harmful incoming data point by point
against the relevant bin and its uncertainty. To assess the speed
and accuracy of anomaly detection, a real-time power curve
form is constructed using a modified IEC approach, and both
methods are compared using the Gaussian Process model, as
shown in Table 6.

A system yaw error detection algorithm is proposed by
Astolfi et al. [56] based on the examination of nacelle anemome-
ter signals. Less than 10◦ of yaw error correction is thought to
yield an order of 15% performance gain based on a study of the
power curves with and without the systematic yaw error. This
study suggests a power–power method based on the relative
performance in comparison to the other wind turbines in the
farm because the presence of the yaw error affects the nacelle
wind speed data.

7.2 Benefits and outcomes achieved

The modelling of power curves in wind turbines frequently
uses non-parametric kernel approaches. The Nadaraya–Watson
(NW) kernel regression estimator is a well-known non-
parametric kernel estimator of the regression function; however,
it does not always maintain the monotonicity of the curve. In
order to enforce the monotonicity property, the kernel esti-
mator must be modified. As a result, they have suggested an
all-encompassing technique for monotonicity correction that
can be used with any curve estimation technique and is also
appropriate for other generic kernel estimator techniques. This
method can be used to enforce shape requirements in addi-
tion to monotonicity. This technique can be used, for instance,
to force a wind turbine’s theoretical power curve to decline in
specified places where the wind speed is specific.

7.3 Lessons learned and best practices

Models are applied to proprietary wind data from North Amer-
ican wind farms. Figure 25 shows that the tilting method and
the monotone regression method result in curves that are more
similar to manufacturer power curve as both are monotone in
all regions. Consequently, since these two power curve estima-
tors are similar to the manufacturer one, it makes more sense to
use these methods in practice.

8 FUTURE DIRECTIONS AND
RESEARCH OPPORTUNITIES

8.1 Advancements in SCADA systems and
data collection techniques

To avoid the studied models being unlearnable due to the usage
of specialised datasets, more wind farm owners need to be
encouraged to give accessible SCADA data. For the successful

development and implementation of extremely complex arti-
ficial intelligence models, quality control of the datasets used
by the wind energy industry, specifically through data stan-
dardisation and the establishment of uniform standards and
taxonomies by turbine operators and manufacturers, is in fact
essential. To enable informed decision-making even in situa-
tions with sparse and unbalanced data, the wind energy sector
should concentrate on adopting oversampling techniques more
broadly.

8.2 Integration of SCADA with other
emerging technologies

In the wind industry, the application of AI techniques, specif-
ically transfer learning, is crucial for achieving more detailed
analysis and accurate prediction of turbine failures. By lever-
aging knowledge from various sources such as historical alarm
message records, operator manuals, and work orders, transfer
learning enables the development of high-performance learners
even with limited training data. Furthermore, the wind industry
can greatly benefit from the use of advanced language mod-
els like OpenAI’s GPT-2/GPT-3, which have been pre-trained
on massive amounts of data. These models can be fine-tuned
with custom data, addressing the challenges posed by lim-
ited availability and quality of alarm messages [57]. By utilising
these models, a more comprehensive understanding of faults
and effective O&M strategies can be obtained, surpassing the
limitations of brief alarm messages currently prevalent in the
industry.

8.3 Standardisation and interoperability
considerations

Wind farm operators could train engineers and technicians
in the fundamentals of annotating, analysing, and interpreting
information on turbine operational conditions in accordance
with a common framework or industry standards that could be
created for O&M based on the global agreement of many tur-
bine operators. By giving engineers and technicians specialised
resources in this field (such as software applications with inter-
active graphical user interfaces (GUIs) to simplify the storage,
annotation, and analysis of SCADA data, failure logs, and alarm
messages) and supporting them with advice and insights from
data scientists, it would probably be beneficial to encourage the
adoption of data science and analytics techniques in the wind
industry [58].

8.4 Recommendations for future SCADA
data utilisation

Enhancing the robustness and accuracy of AI models can be
achieved through greater openness in sharing SCADA data,
while preserving confidentiality through data anonymisation
and non-disclosure agreements [59]. Wider adoption of transfer



PANDIT and WANG 19

learning techniques is recommended to overcome the scarcity
of quality datasets in the wind energy sector. Developing uni-
fied standards, taxonomies, and training personnel to follow
them will improve dataset quality. Specialised resources such as
software applications with user-friendly interfaces can simplify
SCADA data storage, annotation, and analysis.

8.5 Challenges in consistent SCADA data
analysis for wind turbines

The variability in SCADA data from turbine to turbine intro-
duces a significant challenge in accurately discerning between
genuine operational irregularities and potential false errors
[60]. Operational circumstances, including environmental fac-
tors and turbine specifications, contribute to the divergence
in the data collected. This diversity complicates the identifica-
tion of patterns that signify actual issues, making it crucial to
develop robust analytical techniques that account for the inher-
ent differences in SCADA datasets [51]. The challenge lies not
only in detecting anomalies but also in distinguishing between
normal variations and anomalies induced by factors such
as sensor malfunctions, calibration issues, or communication
errors. Addressing this challenge requires the implementation
of advanced statistical methods, machine learning algorithms,
and anomaly detection techniques tailored to the unique char-
acteristics of each turbine’s SCADA data [61]. By enhancing the
accuracy of error identification and minimising false positives,
these approaches contribute to more reliable condition mon-
itoring and predictive maintenance strategies in wind turbine
operations.

9 CONCLUSION

Condition monitoring (CM) based on SCADA data holds sig-
nificant potential for improving wind turbine operations and
maintenance. However, pre-processing of SCADA data is nec-
essary, including outlier removal and ensuring data integrity.
Early fault detection methods for wind turbines can be imple-
mented through physical models, data-driven machine learning
models, and statistical regression models. While data-driven
machine learning algorithms offer closer alignment with actual
wind turbine operation, accuracy is limited due to the lack of
public data and imbalanced datasets.

SCADA data-driven technologies have reduced O&M costs
and improved wind power generation, enabling the develop-
ment of robust decision support systems. This has resulted
in fewer maintenance interventions for offshore wind farms.
In conclusion, this review paper emphasises the importance
of harnessing SCADA data, identifies existing gaps, and
presents key findings on its potential benefits for wind tur-
bine applications. The provided recommendations aim to
guide the future utilisation of SCADA data, optimising wind
turbine operations and maintenance in the wind energy
sector.
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