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Acknowledging the vulnerabilities of the Global Navigation Satellite Systems (GNSS) 

to various interferences, this research investigates alternative navigation solutions, 

essential for overcoming challenges where GNSS quality is compromised. The study 

explores a multi-sensor solution, suitable for operation in complex scenarios including 

degraded environmental conditions. To mitigate the inherent drifting behavior of a widely 

used alternative navigation information source referred to as the Inertial Navigation 

System (INS), fusion with a camera and a barometer is adopted within the federated multi-

sensor architecture. This approach utilizes an error detection mechanism based on 

analysis of residual test statistics for Extended Kalman Filter (EKF)-based local filters. To 

enhance the robustness of the system, a Bidirectional Long Short-Term Memory 

(BiLSTM) model is implemented for error correction of the filter measurements, 

integrated before fusion in the master filter. Validation tests in a simulated urban 

environment using various trajectories and environmental conditions reveal that the 

proposed mechanism provides a viable alternative to a GNSS-based system for 

positioning. The performance is compared with the state-of-the-art learning-based multi-

sensor navigation system by testing on similar datasets. Comparative results indicate 

significant improvements in positioning with error correction yielding enhancements of 

34%, 44%, and 20% in rainy, snowy and foggy conditions, respectively.    

I. Nomenclature 𝑥̂𝑘|𝑘          =    Estimated state  𝑃𝑘|𝑘 = Measurement covariance matrix 𝑣𝑘 = Residual vector  𝐾𝑘             =   Kalman gain 𝑄𝑘 = Process noise covariance matrix 𝑅𝑘 = Measurement noise covariance matrix  𝜆𝑥 , 𝜆𝑦 = Estimated scale factor at x and y axis  𝑊𝑠𝑖 = Weighted samples  𝜀1𝑘, 𝜀2𝑘 = Predicted position increments  χ∗ = Test statistics   𝑀= =   Number of training samples 𝑍𝑘 = Measurement vector   𝑆𝑘 = Variance of residual values  
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II. Introduction 

In the past decades, Global Navigation Satellite Systems (GNSS) has become a primary option for navigation 

in most Unmanned Aerial System (UAS) applications due to its ability to provide highly accurate Position, 

Navigation, and Timing (PNT) information. However, the inherent reliance of GNSS-based systems on weak 

satellite signals renders these systems susceptible to various forms of interference including jamming, spoofing, 

multipath, non-line-of-sight reception and atmospheric effects. To address such challenges, a common approach 

involves integrating GNSS with other measurements from aiding sensors or systems, such as an Inertial 

Navigation System (INS). However, this fusion cannot fully address all integrity concerns. The main limitations 

lie in the cumulative degradation of accuracy over time due to errors in inertial sensors for integral computations 

[3]. With advances in UAS technologies, and their wider and more demanding applications, the limitations of 

GNSS-based navigation in challenging environments accentuate the critical need to explore alternative navigation 

solutions. Such alternatives ought to guarantee end-to-end safety of navigation while also ensuring integrity 

monitoring capabilities. Certainly, the application of alternative navigation in GNSS-denied environments 

requires enabling a high level of safety and reliability. Recently, UAS navigation in GNSS-denied environments 

has attracted significant attention, with a particular emphasis on integrating visual and inertial sensor information, 

referred to as Visual Inertial Odometry (VIO). The fusion strategies proposed by state-of-the-art VIO systems are 

not performing well when VIO suffers from degradation factors including moving objects, illumination changes, 

noise measurements, weather effects, and texture-less environments [1]–[4]. Furthermore, the majority of the 

studies exploring the integration of GNSS/INS/VO in GNSS-denied environments focus on improving GNSS and 

INS measurements, whilst navigation performance strongly relies on visual information extracted from the 

environment. Thus, there is still a research gap in developing error correction solutions with consideration of all 

the sensors contributing to alternative GNSS within a multi-sensor navigation system.  

This work contributes towards addressing this problem by proposing and exploring the multi-sensor navigation 

system for UAS integrating GNSS, INS, VO, and barometer within a federated architecture. It explores the system 

performance under conditions when GNSS is only available at the take-off, compensating also the vulnerability 

of the visual-inertial odometry to the quality of the input features and complexity of the measurement corrections 

by application of a recurrent learning algorithm - Bidirectional Long Short-Term Memory (BiLSTM) that has 

been employed as the error corrector for the local filter outputs. Furthermore, the study also addresses the 

challenges of Visual Odometry (VO) when operating at high altitudes since monocular VO provides only 2D 

positioning. To compensate for VO’s potential errors in vertical positioning, the barometer, serving as an altimeter 

is incorporated within the navigation system.  

The remainder of the paper is organized as follows. Section 3 summarizes related works. Section 4 introduces 

the proposed methodology of performing BiLSTM-based error correction on the local filters and describes a multi-

sensor navigation system. Section 5 describes the simulation setup and configuration. Section 6 performs 

simulation testing on the proposed algorithm and comparative results based on state-of-the-art systems. Section 7 

summarizes the paper.  

III. Related Work 

For achieving better robustness and fault tolerance, decentralized systems, for example, federated architecture 

have become popular in recent years. Conventional federated-based multi-sensor navigation systems often rely 

on adaptive information allocation factor (IAF) which may not effectively address the challenges arising from 

inherent variations in sensor accuracy, particularly in diverse environmental conditions. Yue et. al. [5] proposed 

an IAF to adaptively adjust the covariance matrix of a multi-state constraint Kalman filter (MSCKF) based local 

filter when an abnormal measurement is detected in GNSS/INS/VO navigation system to eliminate issues of 

GNSS signal interruption. However, their research showed limitations in performance into the visual performance 

degradation caused by environmental effects such as lighting variation and motion blur. However, it is essential 

to consider such fault factors for a comprehensive understanding of the system’s performance in the absence of a 

GNSS signal. As a result, there is a need to explore error correction mechanisms in such systems for uninterrupted 

flights in GNSS-degraded and denied environments.  

The reliance of IAF to correct the error measurements of VIO-based local filter for better accuracy doesn’t 

inherently account for the dynamic of environmental interference such as lighting variations, motion blur, and 

motion variance. This limitation becomes pronounced when transmitting between environments with varying 

levels of sensor performance. It is discovered that most of the federated multi-sensor systems used widely 

preferred fusion algorithms refer to Kalman filters as local filters and master filter. Nevertheless, their intrinsic 

sensitivity to system dynamics and intricacies of parameter configurations can lead to suboptimal performance, 

particularly in non-linear and non-Gaussian contexts. In contrast, emerging deep-learning methodologies 

effectively address these challenges [6], [7]. However, the trade-off involves a substantial dependency on vast 

datasets and considerable computational capacity. Furthermore, the efficacy of these deep-learning techniques in 

scenarios diverging from the training domain remains under academic review. However, epistemic uncertainty 



can arise due to inherent noise in the sensors and environmental variation while collecting more training data. 

Techniques such as Bayesian neural networks or Bayesian inferential methodologies, e.g. Monte Carlo dropouts, 

provide a probabilistic framework to estimate this uncertainty. Addressing epistemic uncertainty can be achieved 

by enhancing the model's structure, fine-tuning its parameters, or expanding the training dataset. The decrease in 

this uncertainty enhances the ability of the model to generalize, allowing it to proficiently handle out-of-domain 

data, which is data not represented in the training sets[8].  

Researchers have incorporated machine learning with KF in various ways including compensating errors at 

the output of KF using machine learning [9]. This integration enables learning-based algorithms to better handle 

complex scenarios by assessing the level of epistemic uncertainty, adapting to varying sensor conditions and fault 

patterns. To resolve the inherent non-linearity caused by fault factors present in navigation environments, the 

paper presents and explores a multi-sensor alternative to GNSS navigation based on a federated architecture with 

an error detector and machine learning-based error correction. This integration enhances the system’s ability 

against non-gaussian error, mathematical model error and sensor error under diverse fault conditions.  

Song et. al [10] has introduced Backpropagation Neural Network (BPNN) in a federated structure for 

estimating the initial attitude misalignment angle from the master inertial navigation system (MINS) and the 

velocity and angularity of the slaver inertial navigation system (SINS). Errors that come from the federated 

Kalman filter (FKF) local filters are corrected using a BPNN and then fused into the master filter. Results show 

an improvement with respect to conventional FKF, particularly when the dynamic model and noise statistics of 

INS are ambiguous. Bitar [11] has developed a fusion algorithm that integrates a BPNN with an Unscented 

Kalman Filter (UKF) at the output of the filter, aiming to diminish tracking errors in distributed acoustic sensor 

networks. This approach effectively addresses target maneuverability and displays low sensitivity to model 

parameters. Other similar approaches, like [12] implemented Information Fusion KF with a BPNN for error 

estimation, which is enhanced with Particle Swarm Optimization (PSO) for the optimization of weights and 

thresholds. However, supervised learning-based algorithms, such as BPNN, which are better suited for static and 

non-sequential problems, often overlook the valuable information contained in historical data. Furthermore, 

navigation applications inherently involve time-dependent and dynamic elements, posing challenges for modeling 

with these learning algorithms. Given the advantages of having memory capability, less computational complexity 

and enhanced sequential learning BiLSTM is utilized for the error compensation in this paper.  

Other studies have investigated hybrid VIO approaches incorporating CNN-LSTM-based visual odometry to 

extract essential features for prediction position [7], [13] and updating measurements of Extended Kalman Filter 

(EKF) [14], [15]. Revach et. al [15] employed GRUs to predict VO position and update EKF measurements. 

However, such approaches exhibited limited performance due to inadequate datasets replicating complex 

scenarios. An alternative technique suggested in [16] involves an error corrector for adjusting KF measurements 

- a solution with a promising performance improvement due to a better resilience to out-of-distribution type of 

issues often present in test data. Subsequently, leveraging a learning-based error correction mechanism to 

compensate for the errors of the Kalman filter in order to improve positioning under diverse environments remains 

an open research area and motivates the work conducted in this study.  

    

IV.Proposed Multi-Sensor Navigation System 
Considering the need to ensure fault tolerance and reliability of multi-sensor alternative to the GNSS 

navigation system, the decentralized fusion architecture is adopted in this paper. Figure 1 shows the structure of 

the multi-sensor hybrid navigation system combining IMU, VO, barometer and GNSS with aiding from an AI-

based error correction mechanism.   

 

Figure 1. High-level architecture of the proposed solution. 

GNSS is included in the system, however, in this study it has intermittent availability. At lower altitudes, the 

camera field of view restricts the number of features captured. Consequently, GNSS was utilized during both take-

off and landing. Specifically, during the take-off, it was crucial to provide initial absolute positioning. The system 



employs INS as a contributor to both local filters 1 and 2 which utilize observation information for estimating the 

2D position from VO, and the vertical position from the barometer. The preference for EKF as local filters stems 

from its wide acceptance for this purpose, specific non-ideal behavior while handling nonlinearities, but good 

computation efficiency and suitability for real-time applications. The filtering results obtained from the local 

filters are the inputs to the master filter based on UKF. The residual test statistics-based fault detection 

methodology has been accepted as a switch to activate the error compensation module and optimize in that way 

computational complexity of the system. This module is configured to remain dormant, with its values below the 

threshold in the absence of faults. BiLSTM-based error compensator corrects outputs of local filters in the 

presence of faulty measurements. This comprehensive architecture, combined with the error corrector mechanism, 

is expected to demonstrate a significant improvement in the performance of an alternative to the GNSS navigation 

system in challenging scenarios.  

A. Local Filters  

In the filtering methods of VIO and barometer/INS integrations, tightly coupled architecture is implemented 

using EKF. Measured by VO position and INS measurements are utilized to estimate the state vector, as follows-  𝑥̂𝑘 = [𝑥𝑛, 𝑦𝑛 , 𝑧𝑛 , 𝑣𝑥𝑛 , 𝑣𝑦𝑛 , 𝑣𝑧𝑛 , 𝑎𝑥𝑛 , 𝑎𝑦𝑛 , 𝑎𝑧𝑛 , 𝜆𝑥, 𝜆𝑦]𝑘𝑇 

Here, xn, yn ,  zn denote VIO measured position along x and y axes and barometer/INS measured position 

along the z-axis; vxn, vyn denote VIO measured velocity along x and y axis respectively, while vzn denotes 

barometer/INS measured velocity along z-axis; axn,  ayn stand for VIO measured attitude along x and y axes 

respectively; 𝑎𝑧𝑛 denotes barometer/INS measured attitude along z-axis.  

Additionally, 𝜆𝑥 , 𝜆𝑦 denote scale factors corresponding to VO estimated position at the x and y axes 

respectively. The estimated scale factors adjust and optimize the accuracy of the VO estimates for a more precise 

positioning solution.  

The widely adopted tightly coupled EKF fusion strategy is employed here based on [17]. The state equations 

are as follows:  𝑥𝑘− = 𝑓(𝑥𝑘−1, 𝑢𝑘−1 ) 𝑥𝑘− = 𝐹𝐾𝑥𝑘−1 

(1) 

(2) 𝑃𝑘− = 𝐹𝑘𝑃𝑘−1𝐹𝑘𝑇 + 𝐺𝑘𝑄𝑘𝐺𝑘𝑇 (3) 𝑥𝑘 = 𝑥𝑘− + 𝐾𝑘𝑣𝑘 𝑆𝑘 = 𝐻𝑘𝑃𝑘−𝐻𝑘𝑇 + 𝑅𝑘 

(4) 

(5) 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘− (6) 

Here, x̂𝑘− , x̂𝑘−1 represent the system state vector at 𝑘 and 𝑘 − 1 epoch; 𝑃𝑘−, 𝑃𝑘 represent the state transition 

matrix and measurement covariance matrix; 𝐾𝑘 represents Kalman gain; 𝐻𝑘 represents measurement matrix. 𝑄𝑘, 𝑣𝑘 represent system processing noise and residuals vector. Regarding the measurements, they encompassed only 

the position variables from each state vector, excluding velocity and acceleration, since only position error was 

compensated. Finally, only the variables referring to the position in 𝑥̂𝑘𝑚 constituted the output of the master filter. 

B. Error Detectors  

By analyzing the residual, 𝑣𝑘,and the variance of the residual, 𝑆𝑘, from equations (4) and (5) respectively, 

of the EKFs, faults can be detected. A test statistic in the residual space was formulated to assess whether the 

residuals of a particular filter align with their anticipated distribution. For this research, fault detection was 

conducted from the distribution that emerges when the squared Mahalanobis distances are summed over a series 

of pre-update residuals, adopted from [18].  

The criterion for detecting fault is given by equation (7), where (1 − 𝛼) is the confidence level.  {χ∗ > χ2(1 − 𝛼, 𝑀 × 𝑍𝑖) 𝐹𝑎𝑢𝑙𝑡χ∗ ≤ χ2(1 − 𝛼, 𝑀 × 𝑍𝑖) 𝑁𝑜 𝑓𝑎𝑢𝑙𝑡 (7) 

From Figure 1, it is observed that the fault detection is different for EKF 1 and EKF 2. Both were set to 

maintain a confidence level of 95%, along with a number of trailing samples, 𝑀, of 1, as described in [19]. In the 

first local filter, the dimensionality of 𝑍𝑖  was set to 4, reflecting the complexity of the residual that encompasses 

both the horizontal position and the scale factor. Conversely, for the second local filter, where the residual is solely 

concerned with the vertical position, 𝑍𝑖  was designated as 1.  

C. Implementation of BiLSTM for Error Correction 

As illustrated in Figure 2, the neural network was implemented to estimate the discrepancies between the 

local filter’s output and the true states, enhancing the KF performance. In Figure 2, the inputs and the outputs of 

the BiLSTM are illustrated without the fault detection module. The inputs are composed of those KF parameters 



that directly influence the error: the difference between the state prediction and the previous state estimation, 𝑥̂𝑘 −𝑥̂𝑘|𝑘−1, the difference between the measurement and the observation estimation, 𝑍 k − ℎ(𝑥̂k), and the positional 

gain elements of the EKF’s gain, Kk [20]. The BiLSTMs are trained under supervised learning implementing the 

error between the real position and the model’s estimation.  

 

Figure 2. Error compensation structure without fault detection module. 

In the local filter 1, VIO, the position is represented by two distinct coordinates,𝑥𝑛 and  𝑦𝑛 This requires 

a decomposition of both inputs and outputs into these respective components. Consequently, instead of three, 

there are six inputs, with two corresponding outputs, as shown in equation (8). In contrast, local filter 2 only 

estimates the z-component of the position, thereby requiring three inputs and a single output, as specified in 

equation (9). 𝜀1𝑘 = [𝜀𝑥, 𝜀𝑦]𝑘 
(8) 𝜀2𝑘 = [𝜀𝑧]𝑘 
(9) 

Regarding the architecture of the neural network, a combination of manual tuning and algorithms such 

as Random Search was implemented to optimize the hyperparameters. This design was pursued to reduce the 

epistemic uncertainty outlined previously. Ultimately, the solution that yielded the best results, while controlling 

overfitting, consisted of a neural network with two BiLSTM layers containing 128 and 32 neurons respectively, 

and a dropout rate of 0.2. It was complemented with a fully connected layer with 50 neurons and followed by the 

output layer.  

D. Master Filter 

For the master filter, a UKF was selected due to its improved performance when working with 

nonlinearities.  Mathematical description of the UKF is summarized in Table 1. 

Table 1. Algorithm description of the UKF. 

Inputs 

    x𝑘−1|𝑘−1𝑎 , P𝑘−1|𝑘−1 𝑎 , priori estimated state and covariance matrix. 

    𝑢𝑘−1, control input 

    𝑄𝑘 , 𝑅𝑘, process and measurement noise covariance matrices 

 

Outputs 

   𝑥̂𝑘|𝑘 , 𝑃𝑘|𝑘, posterior estimated state and covariance matrix 

Step 1: Prediction at time k with the Unscented Transform. 
 𝑋𝑘−1|𝑘−1 

0 = 𝑥𝑘−1|𝑘−1𝑎  (10) 𝑋𝑘−1|𝑘−1 
𝑖 = 𝑥𝑘−1|𝑘−1𝑎 + (√(𝐿 + 𝜆)𝑃𝑘−1|𝑘−1 

𝑎 )𝑖 , 𝑖 =  1, . . . , 𝐿 
(11) 

𝑋𝑘−1|𝑘−1 
𝑖 = 𝑥𝑘−1|𝑘−1𝑎 − (√(𝐿 + 𝜆)𝑃𝑘−1|𝑘−1 

𝑎 )𝑖 , 𝑖 = (𝐿 + 1), … ,2𝐿 
(12) 𝜆 = 𝛼2(𝐿 + 𝑘) − 𝐿 
(13) 

Where k = 3 – N, being N the number of states. 

The sigma points are propagated through the nonlinear function 𝒇(·). 



𝑋𝑘−1|𝑘−1 
𝑖 = 𝑓(𝑋𝑘−1|𝑘−1 

𝑖 ),    𝑖 = 0, … ,2𝐿 (14) 

To calculate the predicted state and covariance of the approximate Gaussian, the sigma points 

are weighted. 𝑥̂𝑘|𝑘−1𝑎  =  ∑ 𝑊𝑠𝑖2𝐿
𝑖 = 0 𝑋𝑘−1|𝑘−1 

𝑖  

(15) 

𝑃𝑘|𝑘−1  =  ∑ 𝑊𝑐𝑖2𝐿
𝑖 = 0 [𝑋𝑘−1|𝑘−1 𝑖 −  𝑥̂𝑘|𝑘−1𝑎  ][𝑋𝑘−1|𝑘−1 𝑖 −  𝑥̂𝑘|𝑘−1𝑎  ]𝑇 + 𝑄𝑘 

(16) 

𝑊𝑠0 =
𝜆𝐿 + 𝜆 ,       𝑊𝑐0 =

𝜆𝐿 + 𝜆 + (1 − 𝛼2 + 𝛽) 
(17) 

𝑊𝑠𝑖 = 𝑊𝑐𝑖 =
𝜆

2(𝐿 + 𝜆)
 

(18) 

Step 2: Corrected prediction at time k given the measurement model. 

The noise-augmented state of the measurement is calculated with the equations (10), (11), and 

(12). The sigma points are propagated through the nonlinear function h(·). 𝛾𝑘 
𝑖 = ℎ(𝑋𝑘−1|𝑘−1 

𝑖 ),    𝑖 = 0, … ,2𝐿 
(19) 

𝑍 𝑘 = ∑ 𝑊𝑠𝑖2𝐿
𝑖 = 0 𝛾𝑘 

𝑖  

(20) 

𝑃𝑘|𝑘−1 = ∑ 𝑊𝑐𝑖2𝐿
𝑖 = 0 [𝛾𝑘 

𝑖 − 𝑍 𝑘][𝛾𝑘 
𝑖 − 𝑍 𝑘]𝑇

+ 𝑅𝑘 

(21) 

Then the state-measurement cross-covariance matrix is calculated to compute the UKF Kalman 

gain. 𝑃𝑥𝑘𝑧𝑘  =  ∑ 𝑊𝑐𝑖2𝐿
𝑖 = 0 [𝑋𝑘−1|𝑘−1 

𝑖 −  𝑥̂𝑘|𝑘−1𝑎  ][𝛾𝑘 
𝑖 −  𝑍 𝑘 ]𝑇 

(22) 

𝐾𝑘 = 𝑃𝑥𝑘𝑧𝑘𝑃𝑧𝑘𝑧𝑘−1  
(23) 

State estimate and error covariance are updated  𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘(𝑍𝑘 − 𝑍 𝑘) (24) 𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘P𝑧𝑘𝑧𝑘𝐾𝑘𝑇 
(25) 

V. Simulation Environment  
To validate the proposed solution, the Hardware in the Loop (HIL) configuration depicted in Figure 3 

was established. This simulation environment was part of the setup implemented in [21].  A Pixhawk 2.4 board 

was used as the primary Flight Control Unit (FCU) for the navigation and control of the UAS. This was directly 

connected to a local computer, which served as the Companion Computer (CC) in which monocular camera data 

was processed. To simulate real environments and sensor measurements, Unreal Engine and Cesium are 

incorporated along with AirSim to connect the FCU directly to the environment generation framework. The 

trajectory commands were produced within a Python script directly linked to AirSim. A high level of detail in the 

environment was achieved through the integration of photogrammetry data exported from Google Earth within 

the Unreal Engine. For the scope of this work, the simulation of Toulouse, depicted in Figure 4, was implemented. 

 



Figure 3. Hardware in the Loop setup. 

 
Figure 4. Toulouse 3D simulation. 

The IMU sensor specification is shown in Table 2. 

Table 2. IMU sensor configuration. 

 Gyroscope Accelerometer 

Bias 2.85e-5 rad/s 1e-5 m/s2 

Random walk 1.2e-6 (rad/s)/√𝑠 1.2e-6 (m/s2)/√𝑠 

VI. Performance Evaluation 
A. Simulation Results 

One of the significant drawbacks of the visual navigation system is its high sensitivity to environmental 

conditions, such as rain or snow, and to changes in lighting. Thus, to validate the alternative to GNSS navigation 

system performance, the research focuses on the impact of these changes on horizontal positioning. In order to 

evaluate the performance of the proposed approach with the error correction mechanism, the simulations were 

executed under conditions emulating the midday solar illumination characteristic of the scene. In this research, 

four different scenarios are considered: 20% fog intensity, 100% rainfall, 80% snow (illustrated in Figure 5), and 

evening light conditions with reduced luminosity and strong building shadows as depicted in Figure 6. Figure 5(4) 

illustrates the flight trajectory covering a distance of 400m at an altitude of 70m that has been selected for testing 

in the simulated environment incorporating an error correction mechanism. 

 
1) 100% Rain                                                              2) 80% Snow 

                                

3) 20% Fog 
 

4) Fight trajectory 

Figure 5. Simulation environment featuring the experimental path  
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Figure 6. Simulation environment with 1) Midday light 2) Evening light. 

Training and testing datasets are selected from the simulated environment generated by multiple complex 

scenarios incorporating various trajectories. For training 12 trajectories were employed, featuring straight lines of 

varying lengths at 70 m of altitude. These trajectories had changing x-y coordinates and spanned approximately 

200 m - 800 m in length, resulting in the inclusion of over 500,000 samples from each sensor. Training datasets 

replicate the fault conditions and environmental conditions including high-altitude flights, low-altitude flights, 

snow, rain, dust, sunny, partly sunny, dusk, fog, motion blur and UAV dynamics. Three data sources from EKF 

measurements such as position increments, innovation and Kalman gain are generated and used to train the 

BiLSTM module for each trajectory. In the testing phase, upon fault detection, BiLSTM-based error correction 

scheme predicts the corrected position increment which is then updated with EKF measurement and fed as input 

to the UKF module. Additionally, since the model was trained on trajectories at an altitude of 70 m, it is not able 

to generalize and predict a greater error with the altitude increase. A viable approach to address this limitation 

might be to train the model across various altitudes.  

B. Positioning Performance 

In Figure 7 and Figure 8, the outcomes of the VO are presented, illustrating how the problem of the scale 

factor is addressed through the use of  VIO. Comparing the different graphs, it is observed that rain, snow, or fog, 

even different light intensities, cause a higher divergence of the VO compared to midday lighting conditions, 

especially along the North coordinate. For example, even with low intensities of fog, the VO estimates position is 

far from its corresponding location at the end of the simulation. In the case of the evening lightning, the primary 

source of error of the VO is found along the East coordinate. 

 

 

Figure 7. Scale factor with different environmental conditions. 



 

Figure 8. Scale factor with different lighting conditions. 

The results of the master filter with error compensation are displayed in Figure 9. The term 'normal' was 

used here to refer to the environmental condition where the solar time is corresponding to the midday, and the 

weather is sunny.  

A significant increase in position error is observed in Figure 9 under foggy conditions. The primary 

source of this error is because of the feature-matching algorithm and it is resulting in feature tracking error, feature 

extraction error and feature association error. When altering the field of view of the camera with the fog, the VO 

algorithm matches fewer features between frames, resulting in a deterioration of the outcome. In the case of rain 

and snow, even for their elevated intensities, the outcome is only marginally inferior to normal conditions. Such 

effects introduce particles into the field of vision, negatively affecting the result, and particularly hindering the 

performance of the feature-matching algorithm. However, if these particles move sufficiently fast, their impact on 

the availability and traceability of the features is less pronounced. Thus, while the result does degrade, it is not as 

markedly affected as it is by fog. 

 

Figure 9. Results Outputs of the master filter with error compensation with different weather conditions. On the 

left: horizontal RMSE. On the right: fault test statistics for VIO.  

The observed behavior of the system is summarized in Table 3. Under snow conditions, error 

compensation results in a 42% reduction in RMSE, while in rainy conditions, the reduction is 34%. This 

discrepancy is attributable to the fact that in the case of rain, the error at the end of the first segment of the 

trajectory is not detected as a failure and therefore it is not compensated. In the case of fog, the error reduction by 

the proposed compensation mechanism is 20%. In this scenario, the error is significantly different from the models 

implemented for training, leading to inferior results. 

 

Table 3. Comparison of the horizontal position error of the master filter with error compensation with different 

weather conditions. 

 Rain 100% Snow 80% Fog 20% Normal conditions 

Master Filter w/o Error 

Compensation 
4.39 m 4.41 m 5.11 m 4.33 m 



Master Filter with Error 

Compensation 
2.91 m 2.55 m 4.05 m 2.43 m 

 

One can see from Figure 10 that at lower light conditions the overall error is higher. This increase is 

attributed to a reduction in the number of features to detect, causing the VO algorithm to yield inferior results. 

Consequently, the performance of the entire system is compromised. Additionally, at the end of the simulation, 

the VO becomes unavailable at the earlier stage in the evening lighting case. 

 

Figure 10. Results for the master filter with error compensation with different lighting conditions. On the left: 

horizontal RMSE. On the right: fault test statistics for VIO. 

Table 4 summarizes the observed error in this case, emphasizing that under normal lighting conditions, 

the error compensation mechanism is introducing a 44% reduction in the position error. However, in the evening 

lighting scenario, the improvement is limited to 15%. It has been also noted on a number of occasions that the 

efficiency of error compensation declines when applied to out-of-domain data. 

Table 4. Comparison of the horizontal mean RMSE of the master filter with error compensation with different 

lighting conditions. 

 Evening light conditions Daylight conditions 

Master Filter w/o Error 

Compensation 
5.13 m 4.33 m 

Master Filter with Error 

Compensation 
4.34 m 2.43 m 

C. Analysis and Discussion 

The study presented in [21] was selected for comparative analysis due to its use of the same VO and a 

similar simulation framework. In that study, a federated architecture is employed too, but with a GRU as the 

master filter. The objective is to incorporate INS and VO to enhance the navigation performance degraded by 

GNSS outages, but GNSS is considered to be generally available for the whole duration of the simulation. 

Moreover, INS drift is corrected with another GRU before the fusion within the local filters.  

Table 5 presents the results from VIO and the output of the master filter from both works. For a better 

understanding, results from [21] with and without the INS correction by GRU are provided. In this case, the values 

corresponding to the trajectory are used for comparison, as both trajectories have similar lengths.  

Table 5. Horizontal mean RMSE of VIO and master filter obtained in [21] and in the present work. 

 VIO (without INS GRU aid) [21] VIO (with INS GRU aid) [21] Present work 

VIO Local 

Filter 

7.31 m 4.26 m 4.42 m 

Master 

Filter 

1.08 m 0.80 m  2.43 m 

A higher value of the VIO error from [21] without INS correction by GRU is attributed to the presence 

of uncompensated IMU bias and random walk. The quality of the IMU implemented in [21] is lower than the IMU 

implemented in the present work, but with the INS-GRU scheme, similar values to the present work are obtained.  



Finally, results from the master filter show that even without the implementation of the GRU aid to the 

INS, the performance of [21] exceeds that in the present works, which can be attributed to the presence of GNSS 

over a significant part of the simulation. An additional factor is the implementation of the GRU as the master filter 

which is believed to be a strong competitor to the UKF with the BiLSTM error compensation proposed in this 

study.  

VII. Conclusion  
Ensuring the accuracy and integrity of autonomous vehicle navigation systems in GNSS-denied environments 

is of paramount significance. To complement the widely adopted aiding sensor IMU and reduce its inherent long-

term drift, this study adopted federated multi-sensor fusion architecture incorporating a camera and barometer to 

aid 3D positioning of the UAS in GNSS-denied environments. Within this framework, residual test statistics-

based fault detection modules after the local filters are included. To mitigate the effects of measurement faults 

and increase robustness under diverse environmental fault conditions, the errors from the outputs of the local 

filters are compensated using the proposed BiLSTM-based error corrector before fusion in the master filter.  

The main advantages of using BiLSTM-based error correction within the federated multi-sensor navigation 

system are as follows: (1) BiLSTM excels in capturing temporal dependency in sequential data, reducing 

overfitting issues and consider not to introduce significant latency compared to other machine learning models, 

2) the learning-based correction is able to effectively capture nonlinearity and fault patterns available in training 

dataset. Thus, the proposed alternative to GNSS multi-sensor navigation system possesses superior accuracy and 

robustness, particularly in complex weather conditions including 44% in rain, 20% in snow and lighting conditions 

covering 15% during evening and 44% during daylight. 

However, the error compensation is sensitive to the training data used, making epistemic uncertainty still 

noticeable even after correction applied. It is also difficult for the model to generalize the error among the variety 

of trajectories due to VO performance variability. The proposed approach incorporating error correction represents 

a step forward in improving the robustness and reliability of vision-based alternative to GNSS system, particularly 

in complex and dynamic environments where feature extraction error and feature association error are critical for 

accurate navigation. 

Future work planned will focus on a comprehensive study to evaluate the performance and generalization 

ability of learning-based of error compensation techniques for Kalman filter-based architectures aiming to achieve 

improved positioning accuracy and robustness. 
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