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This paper presents an aerodynamics modeling of a rotary type Vertical Take-Off and
Landing (VTOL) aircraft using the Blade Element Momentum Theory (BEMT). The BEMT
is incorporated into the rigid body dynamics to describe main force and its reactive torque
by rotor of the multirotor UAV. The dynamics modeling can demonstrate the motion of the
multirotor UAV in the presence of gust or wind in an unsteady environment effectively. In
order to operate the multirotor UAV, a robust nonlinear control technique is designed to track
the desired command and stabilize the UAV subject to uncertainties such as modeling error,
external disturbances. The hierarchical Sliding Mode Control (SMC) is adopted to organize a
multi-loop structure: the outer-loop and inner-loop mode. Actual control input is distributed
by physical configuration of the multirotor UAV with the described thrust and torque modeling
by the BEMT in the control allocation. Numerical simulation evaluates the feasibility of the
dynamic modeling of the multrirotor UAV with BEMT in the presence of external wind effects,
which enables to understand a motion of rotary type UAV in a windy environment.

Nomenclature

v𝑏 = velocity in the body frame
𝝎𝑏 = angular velocity in the body frame
v𝐼 = velocity in the inertial frame
v𝑏𝑟 = total velocity in the body frame
𝝎𝑏

𝑟 = total angular velocity in the body frame
𝑣𝐼𝑟 = total velocity in the inertial frame
q = quaternion
Φ = Euler angle
𝛼, 𝛽 = angle of attack, angle of side slip
𝐹𝑏
(𝑥,𝑦,𝑧) = resultant forces acting on the body frame
𝑀𝑏

(𝑥,𝑦,𝑧) = resultant moments acting on the body frame
𝐶{𝑇,𝐻,𝑄} = aerodynamic coefficient of thrust, horizontal force, and torque
𝑁 = number of blade
𝑐, 𝑏, 𝑅, 𝐴 = chord length of blade airfoil, blade span, disc radius, disc area
𝜇, 𝜆 = advanced ratio, rotor infow ratio
𝑗 = rotor index
Ω 𝑗 , 𝑙 𝑗 = jth rotor speed, jth rotor position
𝑚, 𝐽𝑏 = mass, moment of inertia
R𝑏

𝑎 = coordinate transformation matrix from a frame to b frame
𝜌 = air density

I. Introduction

Unmanned Aerial Vehicle (UAV) is getting more and more attention and its demand for civil area has been increased
over the last decade. Especially, rotary type UAV such as quadrotor or this kind of multirotor type UAV is widely
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used, since it is easy to operate, light, inexpensive and its capabilities to the Vertical Take-Off and Landing (VTOL),
hovering and maneuvering enable to be used in various missions. However, external disturbances can significantly
affect on the multirotor UAV, because most multirotor UAV is vulnerable to the disturbances due to less mass, inertia
and thrust power compared to the conventional aircraft [1, 2]. For this reason, the understanding for the multirotor
manuevering is important to the engineers to operate the UAV effectively. In the past, most of the researches on the
multirotor consider a simple kinematics relation by Newton-Lagrangian method with static thrust forces generated by
rotors, however, this assumption is not valid to understand the multirotor behaviour in the windy environment or external
disturbances. Hence, the studies on the aerodynamics characteristics of the multirotor body and rotating propeller are
carried out via wind tunnel tests [3] and Computational Fluid Dynamics (CFD) [4]. In addition, the mathematical
modeling of the rotating propeller is developed by utilizing the established rotorcraft dynamics [5–8].

Various control methods have been designed to operate multirotor UAV for trajectory tracking problem or stabilizing
its attitudes. Classic linear controller, Proportional-Integrator-Derivative (PID) controller, Linear Quadratic (LQ)
controller [8, 9], and nonlinear controller, backstepping control, nonliner dynamic inversion [1, 10, 11], are implemented
in the multirotor UAV control problem. Among them, Sliding Mode Control (SMC) that is one of robust control methods
is a promising approach to deal with uncertainties acting on the multirotor UAV flight such as implicit system fault,
external wind and disturbances in a practical application. As an alternative, uncertainty estimator can be incorporated,
for example by using Sliding Mode Disturbance Observer (SMDO) to handle estimation error by SMC [12, 13].

In this paper, the multirotor dyanmics modeling based on the helicopter dynamics [14, 15] is developed to
demonstrate multirotor maneuvering in an unsteady environment taking into account external disturbances. The standard
six Degree of Freedom (6DOF) dynamics is modeled by Newton’s 2nd law and the air surrounding dynamics is derived
considering the relative wind effect from initially referenced dynamics. The Blade Element Momentum Theory (BEMT)
incorporating blade lelement theory and momentum theory is utilized on the thrust force modeling to investigate
aerodynamic forces and moments acting on the multirotor UAV [6, 8]. The conventional SMC is then designed by
utilizing a cascaded control structure: position and attitude loops. Each loop has a its rate feedback in the inner loop to
design a Stability and Controllability Augmentation System (SCAS) structure. Indeed, the control mapping of the actual
input from the force and moment given by attitude controller is represented with the aerodynamic coefficient based on
the BEMT.

The rest of this paper is organized as follows: Section II describes the equation of motion for the rigid body dynamics.
The BEMT is introduced to demonstrate the aerodynamic forces and moments generated by a rotor, and the multirotor
UAV is modelled incorporated the rigid body dynamics with the BEMT. In Section III, Robust controller is designed as
a baseline controller. The cascaded SMC for position tracking loop and stabilizing attitude loop is designed based on
the command error and the control mapping is designed by the BEMT. Section IV shows the numerical simulation
result validating the developed dynamics and controller. Finally, a conclusion is given in Section V.

II. Multirotor Dynamics Modeling

A. Equation of Motion for rigid body dynamics
The motion of multirotor shown in the Fig.1 can be derived by Newton’s law with a rigid body assumption [16, 17]:

¤v𝑏 =
𝐹𝑏
𝑡𝑜𝑡

𝑚
− 𝝎𝑏 × v𝑏

¤𝝎𝑏 = 𝐽−1
𝑏 (𝑀𝑏

𝑡𝑜𝑡 − 𝝎𝑏 × 𝐽𝑏𝝎𝑏)
(1)

where v𝑏 = [𝑢, 𝑣, 𝑤]𝑇 and 𝝎𝑏 = [𝑝, 𝑞, 𝑟]𝑇 are velocity and angular velocity of the multirotor and 𝐹𝑏
𝑡𝑜𝑡 = [𝐹𝑥 , 𝐹𝑦 , 𝐹𝑧]𝑇

and 𝑀𝑏
𝑡𝑜𝑡 = [𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧]𝑇 denote the total external forces and moments applied on the multirotor with respect to its

body frame with the mass 𝑚 and inertia matrix 𝐽𝑏 given by

𝐽𝑏 =


𝐼𝑥𝑥 0 −𝐼𝑥𝑧
0 𝐼𝑦𝑦 0

−𝐼𝑧𝑥 0 𝐼𝑧𝑧

 (2)
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(a) System configuration of multirotor UAV (b) Geometry of multirotor model

Fig. 1 Overview of multirotor model

The rotational kinematics of the multirotor is represented by the quaternion q = [𝑞0, 𝑞1, 𝑞2, 𝑞3]𝑇 to prevent the
singularity issue

¤q =
1
2


0 −𝑝 −𝑞 −𝑟
𝑝 0 𝑟 −𝑞
𝑞 −𝑟 0 𝑝

𝑟 𝑞 −𝑝 0


q (3)

and its angular attitude or Euler angles Φ = [𝜙, 𝜃, 𝜓]𝑇 are the roll, 𝜙 ∈ [− 𝜋
2

𝜋
2 ], the pitch, 𝜃 ∈ [− 𝜋

2
𝜋
2 ] and the yaw

𝜓 ∈ [−𝜋 𝜋] that can be obtained from the quaternion. The velocity of multirotor defined in the North-East-Down (NED)
position relative to the inertial frame is transformed from the v𝑏 as:

v𝐼 = R𝐼
𝑏v𝑏 (4)

where v𝐼 = [𝑣𝑛, 𝑣𝑒, 𝑣𝑑]𝑇 is the velocity components in terms of the inertial frame or NED frame and R𝐼
𝑏 is the rotation

matrix that transforms a vector from the body frame to inertial frame:

R𝐼
𝑏 =


cos𝜓 sin𝜓 0
− sin𝜓 cos𝜓 0

0 0 1


𝑇 

cos 𝜃 0 − sin 𝜃
0 1 0

sin 𝜃 0 cos 𝜃


𝑇 

1 0 0
0 cos 𝜙 sin 𝜙
0 − sin 𝜙 cos 𝜙


𝑇

= R𝑇
𝑧 (𝜓)R𝑇

𝑦 (𝜃)R𝑇
𝑥 (𝜙)

(5)

where the R(·) is a rotating matrix through an Euler angle Φ = [𝜙, 𝜃, 𝜓]𝑇 .

B. Blade Element Momentum Theory
Each motors generates an upward thrust force by rotating propellers, which is the main manoeuvering forces and

moments. In order to express a thrust force and moment, the BEMT is applied to analyze how an aerodynamics forces
and moments effect on the multirotor. This subsection summarizes the BEMT briefly to derive the aerodynamic force
and moments by a rotor. First, the configuration of the propeller is shown in Fig. 2. The forces and torque of rotor are
can be given by momentum theory of rotors [14, 15]:

𝑇 = 𝜌𝐴(Ω𝑅)2𝐶𝑇

𝐻 = 𝜌𝐴(Ω𝑅)2𝐶𝐻

𝑄 = 𝜌𝐴(Ω𝑅)2𝑅𝐶𝑄

(6)

where 𝑇, 𝐻,𝑄 are the thrust, horizontal force and reactive toque of the motor, respectively. 𝜌 is the air density, 𝐴 is
area of the rotating propeller plane, Ω is the rotor speed, 𝑅 is the propeller radius, and 𝐶{ ·} are its force and torque

3



Fig. 2 Momentum theory of air flow model

coefficients which can be calculated by blade element theory [8, 14]:

𝐶𝑇 =
1
2
𝜎𝐶𝐿

(
1
3
𝜃′ (1 + 3

2
𝜇2) − 1

2
𝜆 − 1

2
𝜇𝑎1

)
𝐶𝐻 =

𝐶𝐿𝜎

2

[ 𝜇𝐶𝐷0

2𝐶𝐿

+ 1
3
𝑎1𝜃

′ − 3
4
𝜆𝑎1 +

1
2
𝜇𝜃′𝜆 + 1

4
𝜇𝑎2

1

]
𝐶𝑄 =

𝜎

4

[𝐶𝐷0

2
(1 + 𝜇2) +

𝐶𝐷𝛼

1 + 3/2𝜇2

{
𝜃′0

(
1
2
− 19

36
𝜇2 + 3

4
𝜇4
)
+ 𝜃′1

(
2
5
(1 − 𝜇2) + 1

2
𝜇4
)
+ 1

3
𝜆(2 − 𝜇2)

}] (7)

where 𝜎 = 𝑁𝑐/(𝜋𝑅) is the ratio of the rotor blade area (𝑁𝑐𝑅) to the total rotor disk area (𝜋𝑅2) shown in the Fig. 3. 𝐶𝐿

Fig. 3 Top view of the rotor disc

is the propeller lift coefficient, 𝐶𝐷0 and 𝐶𝐷𝛼
are the drag coefficients, 𝜃′ = 𝜃′0 +

3
4 𝜃

′
1 is the blade pitch angle with the

blade pitch 𝜃′0 at the root and twist 𝜃′1. A tip speed ratio or advanced ratio 𝜇 is the ratio of the relative air velocity to the
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tip speed of its rotor as follows:
𝜇 =

𝑉𝑎 cos𝛼
Ω𝑅

(8)

where 𝑉𝑎 is the velocity referenced to the air surrounding the multirotor, (or airspeed), 𝛼 is the angle of attack between
the and the blade section. The rotor inflow ratio, 𝜆, is the ratio of total inflow velocity to rotor tip speed:

𝜆 =
𝑉𝑎 sin𝛼 + 𝑣𝑖

Ω𝑅
(9)

where 𝑣𝑖 is the induced velocity calculated by solving the following equation:(
𝑣𝑖

𝑣ℎ

)4
+
(
𝑉𝑎

𝑣ℎ

)2 (
𝑣𝑖

𝑣ℎ

)2
= 1 (10)

with the induced velocity in hover 𝑣2
ℎ
= 𝑇/(2𝜌𝐴). The backward flapping angle 𝑎1 is

𝑎1 =
𝜇(8/3𝜃′0 − 2𝜆)

1 − 1/2𝜇2 (11)

C. External Forces and Moments by BEMT
The fundamental BEMT for the aerodynamics of rotating propeller is described in the subsection II.B. The external

forces and moments in Eq. (1) are mainly derived by the thrust and horizontal force 𝑇, 𝐻 and torque 𝑄 from the rotor,
which is obtained by the surrounding air. Hence, it is essential to distinguish the airspeed by the velocity with respect to
the surrounding air [17], which can be defined as:

v𝑏𝑟 = v𝑏 − v𝑏𝑤
𝝎𝑏

𝑟 = 𝝎𝑏 + 𝝎𝑏
𝑤

v𝐼
𝑟 = R𝐼

𝑏v𝑏𝑟 + v𝐼
𝑤

(12)

where v𝑏𝑤 = R𝑏
𝐼 v𝐼

𝑤 and 𝝎𝑏
𝑤 = R𝑏

𝐼𝜔
𝐼
𝑤 are the wind velocity and angular velocity in the body frame, and v𝑏𝑟 and 𝜔𝑏

𝑟 are
the body components of the relative airspeed and angular velocity vectors, respectively and v𝐼

𝑟 is the relative velocity in
terms of the inertial frame. The magnitude, Angle of Attack (AoA) and Angle of Sideslip (AoS) of the multirotor can
then be calculated by:

𝑉𝑎 = |v𝑏𝑟 |2
𝛼 = tan−1 (𝑤𝑟/𝑢𝑟 ) or sin−1 (𝑤𝑟/𝑉𝑎)
𝛽 = sin−1 (𝑣𝑟/𝑉𝑎)

(13)

In addition, actual velocity (v𝑏
𝑟, 𝑗

) and its angle of attack (𝛼 𝑗 ) and sideslip angle(𝛽 𝑗 ) of each rotors relative to the center
of mass are expressed by:

v𝑏𝑟, 𝑗 = v𝑏𝑟 + (𝝎𝑏
𝑟 × 𝑙 𝑗 )

𝑉𝑎, 𝑗 = |v𝑏𝑟, 𝑗 |2
𝛼 𝑗 = tan−1 (𝑤𝑟 , 𝑗/𝑢𝑟 , 𝑗 )
𝛽 𝑗 = sin−1 (𝑣𝑟 , 𝑗/𝑉𝑎, 𝑗 )

(14)

where the subscript, 𝑗 , denotes the motor number shown in Fig. 1 and 𝑙 𝑗 = [𝑙𝑥, 𝑗 , 𝑙𝑦, 𝑗 , 𝑙𝑧, 𝑗 ]𝑇 is the position of the motor
measured from the center of mass. Hence, the actual velocity, angle of attack and side slip angle [𝑉𝑎, 𝑗 , 𝛼 𝑗 , 𝛽 𝑗 ] for each
rotor replace [𝑉𝑎, 𝛼, 𝛽] in Eq.(8) - Eq.(10). The resultant forces acting on the multirotor can then be calculated by

𝐹𝑏
𝑡𝑜𝑡 = 𝐹

𝑏
𝑇 + 𝐹𝑏

𝐻 + 𝐹𝑏
𝑔

𝑀𝑏
𝑡𝑜𝑡 = 𝑀

𝑏
𝑇 + 𝑀𝑏

𝐻 + 𝑀𝑏
𝑄

(15)
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The following control mapping relation (or control allocation matrix) is satisfied by the configuration of the multirotor
shown in the Fig. 1.


𝐹𝑏
𝑇

𝑀𝑏
𝑥

𝑀𝑏
𝑦

𝑀𝑏
𝑧


= 𝑀𝐶𝐴



Ω2
1

Ω2
2

Ω2
3

Ω2
4

Ω2
5

Ω2
6


(16)

where component of the control allocation matrix can be derived as:

𝑀𝐶𝐴(1, 𝑗) = − (�̄�𝑇𝑗
− �̄�𝐻𝑧, 𝑗

)
𝑀𝐶𝐴(2, 𝑗) = − (�̄�𝑇𝑗

− �̄�𝐻𝑧, 𝑗
)𝑙𝑦, 𝑗

𝑀𝐶𝐴(3, 𝑗) =(�̄�𝑇𝑗
− �̄�𝐻𝑧, 𝑗

)𝑙𝑥, 𝑗
𝑀𝐶𝐴(4, 𝑗) = − �̄�𝐻𝑥, 𝑗

𝑙𝑦, 𝑗 + �̄�𝐻𝑦, 𝑗
𝑙𝑥, 𝑗 + (−1) 𝑗�̄�𝑄 𝑗

(17)

where �̄�𝑇𝑗
= 𝜌𝐴𝑅2𝐶𝑇𝑗

, �̄�𝐻 𝑗
= 𝜌𝐴𝑅2𝐶𝐻 𝑗

, �̄�𝑄 𝑗
= 𝜌𝐴𝑅2𝐶𝑄 𝑗

𝑅 are introduced from the Eq.(6). The horizontal force 𝐹𝐻
and the gravitational force 𝐹𝑔 are decomposed into body frame components corresponding to its axis by:

𝐹𝑏
𝐻 =


𝐻𝑥, 𝑗

𝐻𝑦, 𝑗

𝐻𝑧, 𝑗

 (18)

𝐹𝑏
𝑔 = R𝑏

𝐼


0
0
𝑔

 (19)

where R𝑏
𝐼 = R1 (𝜙)R2 (𝜃)R3 (𝜓) is the transformation matrix from inertial frame to body frame.

III. Controller Design

A. Sliding Mode Control
In this section, the SMC is designed for the multirotor manoeuver in the presence of dynamics uncertainties or

external disturbances [18]. The Fig. (4) shows the cascaded SMC structure where the outer loop is designed for the
command tracking while the inner loop stabilizes its state variables. Each of cascaded inner and outer loop controllers is
designed based on the PI sliding surface concept. The designed sliding surface and stability analysis guarantee the
convergence property by the Lyapunov theory.

Fig. 4 Cascaded Controller Structure

Consider the following nonlinear dynamics as follows:

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 + 𝑑 (20)
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where 𝑥 is the system state, 𝑓 (𝑥) and 𝑔(𝑥) are the known nonlinear system dynamics 𝑢 is the control input, and |𝑑 | ≤ 𝐷

is the uncertainty or disturbance. Define the following sliding surface in the PI controller form as:

𝑆 = 𝐾𝑃𝑒 + 𝐾𝐼

∫ 𝑡

0
𝑒𝑑𝜏 (21)

where 𝑒 = 𝑥 − 𝑥𝑐 and ¤𝑒 are the tracking error and its derivative with the PI gain, 𝐾𝑃 , 𝐾𝐼 . The time derivative of the
sliding surface Eq.(21) is

¤𝑆 =𝐾𝑃 ¤𝑒 + 𝐾𝐼𝑒

=𝐾𝑃 ( ¤𝑥 − ¤𝑥𝑐) + 𝐾𝐼𝑒
(22)

Consider the Lyapunov candidate function:

𝑉 =
1
2
𝑆𝑇𝑆 (23)

Taking the time derivative of Eq.(23)

¤𝑉 =𝑆𝑇 ¤𝑆
=𝑆𝑇 [𝐾𝑃 ¤𝑒 + 𝐾𝐼𝑒]
=𝑆𝑇 [𝐾𝑃 ( ¤𝑥 − ¤𝑥𝑐) + 𝐾𝐼𝑒]
=𝑆𝑇 [𝐾𝑃{ 𝑓 (𝑥) + 𝑔(𝑥)𝑢 + 𝑑 − ¤𝑥𝑐} + 𝐾𝐼𝑒]

(24)

Make sure the time derivative of the Lyapunov candidate function, ¤𝑉 ≤ 0, the following control input can be derived

𝑢 = 𝑔−1 (𝑥) [− 𝑓 (𝑥) + ¤𝑥𝑐 − 𝐾−1
𝑃 {𝐾𝐼𝑒 + 𝐶1𝑆 + 𝐶2sgn(𝑆)}] (25)

where 𝐶1 is a positive definite diagonal matrix and |𝐷 | ≤ 𝐶2. However, the one of the difficulties in the SMC approach
is a chattering issue caused by discontinuity of the 𝑠𝑖𝑔(𝑆) function. In order to mitigate un undesirable response, the
following function replaces 𝑠𝑔𝑛(𝑆) in the Eq.(25):

𝑠𝑎𝑡 (𝑆) =
{
𝑆/𝜖 if |𝑠/𝜖 | ≤ 1
𝑠𝑔𝑛(𝑆/𝜖) otherwise

(26)

where 𝜖 > 0. Substituting the derived control input Eq.(25) into the Eq.(24) yields

¤𝑉 = 𝑆𝑇𝑑 − 𝐶1𝑆
𝑇𝑆 − 𝐶2 |𝑆 |

≤ |𝑑𝑇𝑆 | − 𝐶1𝑆
𝑇𝑆 − 𝐶2 |𝑆 |

≤ |𝐷 | |𝑆 | − 𝐶1𝑆
𝑇𝑆 − 𝐶2 |𝑆 |

≤ −𝐶1𝑆
𝑇𝑆 − (𝐶2 − |𝐷 |) |𝑆 |

≤ 0

(27)

Therefore, the sliding surface 𝑆 converges to zero as 𝑡 tends to ∞ asymptotically by Lyapunov stability criterion.

B. Position Control
In this subsection, the position controller is designed for multirotor position tracking subjected to external disturbances.

The main objective is to track the target position the desired way point, 𝑥𝑐 = [𝑁𝑐, 𝐸𝑐, 𝐷𝑐]𝑇 , utilizing a following
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Fig. 5 SMC: Translational Rate Control

kinematic model for NED coordinate instead of the navigation equation, Eq. (4), as follows:

𝑑2

𝑑𝑡2


𝑁

𝐸

𝐷

 =
1
𝑚

R𝑇
𝑧 (𝜓)R𝑇

𝑦 (𝜃)R𝑇
𝑥 (𝜙)F𝑏

𝑡𝑜𝑡

=
1
𝑚

R𝑇
𝑧 (𝜓)R𝑇

𝑦 (𝜃)R𝑇
𝑥 (𝜙)


0
0

𝐹𝑏
𝑇
+ 𝐹𝑏

𝑔


=
𝑑

𝑑𝑡


𝑉𝑁

𝑉𝐸

𝑉𝐷



(28)

where 𝐹𝑇 = −∑
𝑇𝑗 is the total thrust force generated by each rotor 𝑗 . The acceleration, [ ¥𝑁, ¥𝐸, ¥𝐷]𝑇 can be considered

as a time derivative of ground velocity, [ ¤𝑉𝑁 , ¤𝑉𝐸 , ¤𝑉𝐷], hence position controller can be divided into inner and outer
loops by position and velocity loops. The position loop consists of a simple linear controller, i.e. PID controller as:

𝑉𝑐𝑚𝑑 = 𝐾𝑃𝑒𝑝𝑜𝑠 + 𝐾𝐼

∫
𝑒𝑝𝑜𝑠𝑑𝜏 + 𝐾𝐷 ¤𝑒𝑝𝑜𝑠 (29)

where 𝑒𝑝𝑜𝑠 = [𝑁, 𝐸, 𝐷]𝑇
𝑐𝑚𝑑

− [𝑁, 𝐸, 𝐷]𝑇 and 𝐾 (𝑃,𝐼,𝐷) are position error and its PID gains, respectively. The velocity
loop can utilise Eq. (28) to formulate in Eq. (20), the control input can then be found with mathematical manipulations,
which is called as a Translational Rate Control, (TRC) mode shown in Fig. 5 [19]. In order to derive an angular attitude
command, [𝜙, 𝜃]𝑇

𝑐𝑚𝑑
, kinematic inversion relation is adopted with a virtual control input, 𝜈 as:

𝑑

𝑑𝑡


𝑉𝑁

𝑉𝐸

𝑉𝐷

 =

0
0
𝑔

 +
1
𝑚

R𝑇
𝑧 (𝜓)R𝑇

𝑦 (𝜃)R𝑇
𝑥 (𝜙)


0
0
𝐹𝑏
𝑇


=𝜈

(30)
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By applying Eq. (30) into Eq. (20) and Eq. (21) yields a virtual input (𝜈) as:

𝜈 = ¤𝑥𝑐 − 𝐾−1
𝑃 [𝐾𝐼𝑒 + 𝐶1𝑆 + 𝐶2sgn(𝑆)] (31)

Expanding this matrix equations results in:

𝑚R𝑧 (𝜓)
©«𝜈 −


0
0
𝑔


ª®®¬
=𝜈′

= R𝑇
𝑦 (𝜃)R𝑇

𝑥 (𝜙)


0
0
𝐹𝑏
𝑇


=


𝐹𝑏
𝑇

cos 𝜙 sin 𝜃
−𝐹𝑏

𝑇
sin 𝜙

𝐹𝑏
𝑇

cos 𝜙 cos 𝜃


(32)

Solving for Euler angle command [𝜙, 𝜃]𝑇
𝑐𝑚𝑑

utilizing kinematics inversion yields:

sin 𝜙𝑐 = − 1
𝐹𝑏
𝑇

𝜈′ (2)

tan 𝜃𝑐 =
𝜈′ (1)
𝜈′ (3)

(33)

where 𝐹𝑏
𝑇

is calculated by

𝐹𝑏
𝑇 = 𝑚


¤𝑉𝑁

¤𝑉𝐸
¤𝑉𝐷 − 𝑔


2

= 𝑚


𝜈(1)
𝜈(2)

𝜈(3) − 𝑔


2

(34)

C. Attitude Control
Similar to the position loop controller, the inner loop controller can be derived to stabilize its angular attitude

performing the desired position tracking. Consider the following affine system dynamics as:

¤𝑥𝑖 = 𝑓𝑖 (𝑥) + 𝑔𝑖 (𝑥)𝑢𝑖 + 𝑑𝑖 (35)

Instead of the quaternion equation used for the angular attitude in the dynamics by Eq.(3), the stabilization of angular
attitude, i.e. rotational kinematics relation with Euler angle, Φ = [𝜙, 𝜃, 𝜓]𝑇 , is adopted:

𝑑

𝑑𝑡


𝜙

𝜃

𝜓

 =

1 sin 𝜙 tan 𝜃 cos 𝜙 tan 𝜃
0 cos 𝜙 − sin 𝜙
0 sin 𝜙/cos 𝜃 cos 𝜙/cos 𝜃



𝑝

𝑞

𝑟

 (36)

Recall and reformulate the moment equation in Eq. (1) for angular rate control as follows:

¤𝝎𝑏 =𝐽−1
𝑏 (𝑀𝑡𝑜𝑡 − 𝝎𝑏 × 𝐽𝑏𝝎𝑏)

= − 𝐽−1
𝑏 (𝝎𝑏 × 𝐽𝑏𝝎𝑏) + 𝐽−1

𝑏 𝑀𝑡𝑜𝑡

(37)

where Eq. (35) can be defined by cascaded structure with the 𝑥1 = Φ = [𝜙, 𝜃, 𝜓]𝑇 and 𝑢1 = 𝝎𝑏 = [𝑝, 𝑞, 𝑟]𝑇 for outer
loop and 𝑥2 = 𝝎𝑏 = [𝑝, 𝑞, 𝑟]𝑇 and 𝑢2 = M𝑏

𝑡𝑜𝑡 = [𝑀𝑏
𝑥 , 𝑀

𝑏
𝑦 , 𝑀

𝑏
𝑧 ]𝑇 for inner loop, respectively. Thus, the affine system

model for cascaded structure of angular attitude loop illustrated in Fig. 6 can be defined as:

𝑓1 (𝑥) = 03×1

𝑔1 (𝑥) =

1 sin 𝜙 tan 𝜃 cos 𝜙 tan 𝜃
0 cos 𝜙 − sin 𝜙
0 sin 𝜙/cos 𝜃 cos 𝜙/cos 𝜃


𝑓2 (𝑥) = −𝐽−1

𝑏 (𝝎𝑏 × 𝐽𝑏𝝎𝑏)
𝑔2 (𝑥) = 𝐽−1

𝑏

(38)
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Fig. 6 SMC: angular attitude control

Lastly, The commanded pseudo control input, 𝜈𝐹𝑀 = [𝐹𝑏
𝑇
, 𝑀𝑏

𝑥 , 𝑀
𝑏
𝑦 , 𝑀

𝑏
𝑧 ]𝑇 from the TRC of position loop by Eq. (34)

and moments by 𝑢2 = 𝑀𝑏
𝑡𝑜𝑡 of angular attitude loop, is then distributed to the actual motor speed Ω by geometric

configuration of multirotor with control mapping relation by Eq. (16) and (17).

Ω = 𝑀
†
𝐶𝐴
𝜈𝐹𝑀 (39)

where 𝑀†
𝐶𝐴

is a pseudo inverse matrix obtained by solving an optimized-based control allocation problem [11].

IV. Numerical Simulation
In this section, the numerical simulation is carried out to validate the multirotor modeling with the rigid body

dynamics and the BEMT. The multirotor UAV considered in this section is Draganflyer X-Pro of which parameters and
data sheet are provided by [8, 20]. The cascaded SMC structure and the dynamics with the BEMT are shown in Fig. 7
and the spatial wind data modelled by the CFD is provided from [21]. The reference command is transferred to the

Fig. 7 Overview of Control structure

TRC-loop through the following 1st-order command filter to obtain the ¤𝑥𝑟 :

𝑥𝑟 (𝑠)
𝑥𝑐 (𝑠)

=
1

𝜏𝑠 + 1
(40)

where the time constant is set by 𝜏 = 3 [19]. The filtered command 𝑥𝑟 and its derivatives replace the 𝑥𝑐 and ¤𝑥𝑐 in Eq.
(21). The controller gains and its parameters are presented in Table 1. Fig. 8 shows the result of waypoint tracking
guidance in a windy environment. Fig. 8a illustrates the 3D trajectory of the flight mission and the detailed trajectories
are given in Fig 8b. The solid red line means the actual response of state variable, solid blue line represents the external
wind and the dashed line indicates the command for corresponding variable. Here, the vertical motion of the NED
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Table 1 SMC gains and parameters

Gain parameter value Gain parameter value

Position

𝐾𝑃(𝑁,𝐸,𝐷) [0.4, 0.4, 0.4]

Velocity

𝐾𝑃(𝑉𝑁 ,𝑉𝐸 ,𝑉𝐷 ) [5, 5, 5]
𝐾𝐼(𝑁,𝐸,𝐷) [0, 0, 0] 𝐾𝐼(𝑉𝑁 ,𝑉𝐸 ,𝑉𝐷 ) [0.1, 0.1, 0.1]
𝐾𝐷(𝑁,𝐸,𝐷) [0.4, 0.4, 0.4] 𝐶1(𝑉𝑁 ,𝑉𝐸 ,𝑉𝐷 ) [1, 1, 1]

- - 𝐶2(𝑉𝑁 ,𝑉𝐸 ,𝑉𝐷 ) [1, 1, 1]
- - 𝜖 (𝑉𝑁 ,𝑉𝐸 ,𝑉𝐷 ) [5, 5, 5]

Euler
angle

𝐾𝑃(𝜙,𝜃,𝜓) [1, 1, 1]

Angular
rate

𝐾𝑃(𝑝,𝑞,𝑟 ) [1, 1, 1]
𝐾𝐼(𝜙,𝜃,𝜓) [0, 0, 0] 𝐾𝐼(𝑝,𝑞,𝑟 ) [0, 0, 0]
𝐶1(𝜙,𝜃,𝜓) [0, 0, 0] 𝐶1(𝑝,𝑞,𝑟 ) [0, 0, 0]
𝐶2(𝜙,𝜃,𝜓) [1, 1, 1] 𝐶2(𝑝,𝑞,𝑟 ) [1, 1, 1]
𝜖 (𝜙,𝜃,𝜓) [0.5, 0.5, 0.5] 𝜖 (𝑝,𝑞,𝑟 ) [0.5, 0.5, 0.5]

(a) 3D trajectory of flight (b) Time history of NED coordinate variables

Fig. 8 Result of the way point tracking simulation: navigation variables

coordinate is illustrated by Height, 𝐻, by 𝐻 = −𝐷 or 𝑉𝐻 = −𝑉𝐷 . As shown in the left side of the Fig. 8b, spatial wind
profiles exist during the simulation, which is not a constant wind but a variant wind. The Fig. 9 shows the time history
of responses: translational velocity in terms of body-fixed framework, AoA in Fig. 9a and rotational velocity and Euler
angle in Fig. 9b. The magnitudes of wind profile (v𝐼

𝑤 ,𝝎
𝑏
𝑤) are less than the parameter for the sign function in the

control input in Eq. (25) set in the Table 1, hence the validity of the SMC parameter, especially, 𝐶2 is confirmed by
Eq. (27). The maximum values of each SMC loop, i.e. [𝑉(𝑁,𝐸,𝐷) ,Φ,𝝎

𝑏], are less than 𝜖 set in the Table 1, the 𝑠𝑎𝑡
function in Eq. (26) is also validated. When it comes to the angular attitude (Euler angle), the its attitude is tilted to
hover and manoeuver against the wind environment, especially roll and pitch angle shown in Fig. 9b due to the wind
profile 𝑢𝑏𝑤 and 𝑣𝑏𝑤 . And an aerodynamic angle, AoA, can also consider an external wind effect shown in Fig. 9a, which
takes into account the rotor coefficient. Thus, the BEMT-based multirotor modeling built in the subsection II.B and II.C
can express the equation of motion in the windy environment or external disturbance effects.

V. Conclusion
In this paper, the dynamics modeling for the rotary type UAV is investigated. The 6DOF rigid body dynamics is

derived and the rotor thrust and moment acting on the multirotor are modelled based on the rotorcraft dynamics using
the BEMT. The proposed dynamics modeling in the body fixed frame at the center of gravity distinguishes the equation
of motion in the inertial frame by coordinate transform, which can provide a proper relation.
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(a) Time history of translational state variables (b) Time history of rotational state variables

Fig. 9 Result of the way point tracking simulation: body-fixed coordinate responses

Based on the derived dynamics modeling with the BEMT, the nonlinear controller is designed by SMC technique
for the operation in an uncertain environment. The designed control loop is made up of cascaded structure: a position
control system in the outer loop and attitude control in the inner loop. The separated position control is addressed
by adopting TRC mode, which enables to utilize an affine system form by incorporate velocity feedback loop into
the position control, and the attitude controller is designed by utilizing a conventional stability and controllabilty
augmentation system structure. The actual control input is then derived by solving new control mapping configuration
based on the BEMT modeling. The numerical simulation validates the BEMT-based multirotor modeling considering
an external wind effect.

Acknowledgments
The authors would like to acknowledge support from UKRI Innovate UK under the "SafeZone phase3" project under

10025740 under the Future Flight programme.

References
[1] Bouabdallah, S., and Siegwart, R., “Backstepping and sliding-mode techniques applied to an indoor micro quadrotor,”

Proceedings of the 2005 IEEE international conference on robotics and automation, IEEE, 2005, pp. 2247–2252.

[2] Wang, H., Ye, X., Tian, Y., Zheng, G., and Christov, N., “Model-free–based terminal SMC of quadrotor attitude and position,”
IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, No. 5, 2016, pp. 2519–2528.

[3] MacNeill, R., and Verstraete, D., “Blade element momentum theory extended to model low Reynolds number propeller
performance,” The Aeronautical Journal, Vol. 121, No. 1240, 2017, pp. 835–857.

[4] Ventura Diaz, P., and Yoon, S., “High-fidelity computational aerodynamics of multi-rotor unmanned aerial vehicles,” 2018
AIAA Aerospace Sciences Meeting, 2018, p. 1266.

[5] Orsag, M., and Bogdan, S., “Influence of forward and descent flight on quadrotor dynamics,” Recent Advances in Aircraft
Technology, 2012, pp. 141–156.

[6] Park, S., Eun, W., and Shin, S. J., “Hybrid analysis for quadrotor type uav and modified blade element momentum theory
considering gust and flight condition,” AIAA Scitech 2019 forum, 2019, p. 1329.

[7] Shastry, A. K., Kothari, M., and Abhishek, A., “Generalized flight dynamic model of quadrotor using hybrid blade element
momentum theory,” Journal of Aircraft, Vol. 55, No. 5, 2018, pp. 2162–2168.

[8] Whidborne, J. F., Mendez, A. P., and Cooke, A., “Effect of Rotor Tilt on the Gust Rejection Properties of Multirotor Aircraft,”
Drones, Vol. 6, No. 10, 2022, p. 305.

12



[9] Bouabdallah, S., Noth, A., and Siegwart, R., “PID vs LQ control techniques applied to an indoor micro quadrotor,” 2004
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), Vol. 3, IEEE, 2004,
pp. 2451–2456.

[10] Adigbli, P., Grand, C., Mouret, J.-B., and Doncieux, S., “Nonlinear attitude and position control of a micro quadrotor using
sliding mode and backstepping techniques,” 7th European Micro Air Vehicle Conference (MAV07), 2007, pp. 1–9.

[11] Park, O., Shin, H.-S., and Thourdos, A., “Evolutionary game theory based multi-objective optimization for control allocation of
over-actuated system,” IFAC-PapersOnLine, Vol. 52, No. 12, 2019, pp. 310–315.

[12] Lee, D., Jin Kim, H., and Sastry, S., “Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter,”
International Journal of control, Automation and systems, Vol. 7, 2009, pp. 419–428.

[13] Besnard, L., Shtessel, Y. B., and Landrum, B., “Quadrotor vehicle control via sliding mode controller driven by sliding mode
disturbance observer,” Journal of the Franklin Institute, Vol. 349, No. 2, 2012, pp. 658–684.

[14] Seddon, J. M., and Newman, S., Basic helicopter aerodynamics, John Wiley & Sons, 2011.

[15] Bramwell, A. R. S., Balmford, D., and Done, G., Bramwell’s helicopter dynamics, Elsevier, 2001.

[16] Stevens, B. L., Lewis, F. L., and Johnson, E. N., Aircraft control and simulation: dynamics, controls design, and autonomous
systems, John Wiley & Sons, 2015.

[17] Beard, R. W., and McLain, T. W., Small unmanned aircraft: Theory and practice, Princeton university press, 2012.

[18] Khalil, H. K., Nonlinear control, Vol. 406, Pearson New York, 2015.

[19] Lombaerts, T., Kaneshige, J., Schuet, S., Aponso, B. L., Shish, K. H., and Hardy, G., “Dynamic inversion based full envelope
flight control for an eVTOL vehicle using a unified framework,” AIAA Scitech 2020 Forum, 2020, p. 1619.

[20] Martinez Martinez, V., “Modelling of the flight dynamics of a quadrotor helicopter,” , 2007.

[21] Standingford, D., Sequeira, C., Allan, M., Rider, C., Furse, G., and Sharpe, J., “Validating airspace CFD models for drone
operation with flight test data,” 33th Congress of the international countil of the aeronautical sciences, ICAS, 2022.

13



Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2024-01-04

Dynamics modeling of multirotor type

UAV with the blade element momentum

theory and nonlinear controller design

for a wind environment

Park, On

AIAA

Park O, Shin HS. (2024) Dynamics modeling of multirotor type UAV with the blade element

momentum theory and nonlinear controller design for a wind environment. In: AIAA SCITECH

2024 Forum, 8-12 January 2024, Orlando, USA. Paper number AIAA 2024-2875

https://doi.org/10.2514/6.2024-2875

Downloaded from Cranfield Library Services E-Repository


