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ABSTRACT

Relationships between peak discharges and catchment size (e.g., flood scaling) in a catchment have the potential to support new river flood

forecasting approaches but have not been tested in tropical regions. This study determined flood scaling relationships between peak dis-

charge and nested drainage areas in the La Sierra catchment (Mexico). A statistical power law equation was applied to selected rainfall–

runoff events that occurred between 2012 and 2015. Variations in flood scaling parameters were determined in relation to catchment

descriptors and processes for peak downstream discharge estimation. Similar to studies in humid temperate regions, the results reveal

the existence of log-linear relationships between the intercept (α) and exponent (θ) parameter values and the log–log power–law relationships

between α and the peak discharge observed from the smallest headwater catchments. The flood parameter values obtained were then fac-

tored into the scaling equation (QP = αAθ) and successfully predicted downstream flood peaks, especially highly recurrent flood events. The

findings contribute to a better understanding of the nature of flood wave generation and support the development of new flood forecasting

approaches in unregulated catchments suitable for non-stationarity in hydrological processes with climate change.
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HIGHLIGHTS

• Peak discharge in the La Sierra catchment follows a power–law relationship, similar to humid temperate regions.

• Log-linear and log–log relationships can be used to estimate flood parameters and peak downstream discharge especially for frequent

events.

1. INTRODUCTION

Flood prediction in ungauged regions is a global challenge. Most tropical regions with increasing flood risk do not have
enough hydrometeorological records required for setting up flood models, and, as a result, people are exposed to elevated

and increasing flood risk. To address this challenge, the United States Geological Survey (USGS) pioneered a flood esti-
mation method that employs regional quartile equations to build regression relationships between catchment descriptors
and variables where no streamflow data are available (Gupta et al. 2007). The equations are statistical relationships that
use observations of annual maximum discharge over large, homogeneous regions to estimate flood magnitudes (Mandapaka

et al. 2009b). The use of homogeneous regions enables the pooling of streamflow data from various basins within the same
region with streamflow records to address the lack of streamflow data in other ungauged basins within the same region
(Gupta et al. 2007). Regional flood frequency (RFF) analysis is still used currently to estimate annual peak flow quantiles

in ungauged basins.
Many regions of the world, however, remain poorly gauged, resulting in limited data to apply the RFF method. Further-

more, the significant alterations to catchment hydrology caused by climate change and land use change make past

observations less useful for flood estimation in many regions. Also, the current flood quantile equations do not account
for the physical processes that cause flooding and make providing flood estimates at smaller basins challenging (Gupta
et al. 2007). A physical solution has long been required to improve the accuracy of flood quantile estimates and compensate
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for the limited data records (Gupta 2017, 2010; Furey et al. 2016). There has been a need for methodologies that estimate

flood frequencies based on physical principles of water movement and general knowledge of the geographic and geomorpho-
logic characteristics of upstream catchments for the location of interest (Perez Mesa 2019).

A solution is to estimate flood parameters and peak discharge at a rainfall–runoff event scale rather than current large-scale

resolutions based on annual temporal scales and large homogeneous spatial regional scales. To switch from RFF approaches
to physics-based flood frequency estimates, it is important to find the patterns between rainfall and runoff at increasing scales
of sub-catchments within a river network, i.e., flood scaling (Perez Mesa 2019). In this regard, several studies have provided
the theoretical and empirical basis for formulating a geophysical or a scaling theory of floods focused on scalable drainage

areas and rainfall event scales (Gupta et al. 1996, 2010, 2015; Robinson & Sivapalan 1997; Menabde & Sivapalan 2001;
Ogden & Dawdy 2003; Gupta 2004, 2017; Dawdy et al. 2012; Farmer et al. 2015; Medhi et al. 2015; Furey et al. 2016;
Lee & Huang 2016; Ayalew et al. 2018; Yang et al. 2020).

The scaling theory of floods is based on the idea that, at the individual rainfall–runoff event scale, there is a scale-invariant
spatial structure of peak discharge with drainage areas defined by power–law relationships (Ayalew et al. 2018). In other
words, the peak flood discharge will increase in a predictable fashion as it flows downstream (and catchment area increases).

The theory focuses on river drainage areas, abandoning the concept of large, homogeneous regions in favour of incorporating
flood-producing physical processes at a small rainfall–runoff scale (Gupta et al. 2010). Studies have found that peak dis-
charge, from a single rainfall–runoff event scale, has a power–law relationship with a drainage area given as

QP ¼ aAu (1)

where Qp is the peak discharge, A is the drainage area, α is the scaling intercept, and θ is the scaling exponent values (Gupta

et al. 2010; Medhi & Tripathi 2015).
The intercept (α) and exponent (θ) of the peak discharge power–law relations are referred to as flood scaling parameters.

An important discovery is that the values of these two scaling parameters change from one rainfall event to another, and this

variation determines the magnitude of peak discharge (Ogden & Dawdy 2003; Ayalew et al. 2018). Thus, a better understand-
ing of catchment factors and the processes governing the variation of these parameters is critical in developing scaling
equations capable of estimating peak discharge, contributing towards solving the problem of flood prediction in ungauged

basins (Sivapalan 2003; Hrachowitz et al. 2013; Yang et al. 2020).
The focus of most research studies has been on establishing and validating the scaling relationships between rainfall, peak

discharge, and drainage areas, as well as other factors that control flood parameters (Ayalew et al. 2014b). However, most of
these studies have been done in humid northern latitude regions, with several studies conducted in the United States and the

United Kingdom, and it is not known whether the scaling flood theory is applicable in other climatic regions with different
rainfall types and coverages (Wilkinson & Bathurst 2018). There is a need to generalise the scaling theory of floods to medium
and large river basins spanning different climatic regions with a greater variety of rainfall event types (Gupta 2017).

This study aims to determine if flood scaling relationships are valid in large tropical regions to support flood forecasting.
The three main objectives are (i) to investigate flood scaling relationships between peak discharge and nested drainage areas
in an unregulated tropical catchment, (ii) to identify and explain factors influencing variations in the scaling parameters and

the confidence levels, and (iii) to provide a unified framework for estimating flood parameter values and peak flood magni-
tudes across data-scarce tropical catchments.

2. METHODS

2.1. Study area and data

The La Sierra catchment area, located in southeast Mexico, was used to investigate the scaling theory of floods. The catch-

ment covers an area of 6,743 km2, drains a mountainous area with a maximum elevation of 2,216 m, and is located in the east
of the Grijalva basin (Figure 1). The Sierra River is a tributary of the Grijalva River, with its confluence located downstream of
the city of Villahermosa. It originates in the central highlands of Chiapas, with headwater catchments covering primarily the

Sierra Mountains. The topography of the headwater catchments comprises highly dissected mountainous areas with very
steep slopes (.40%) and narrow V-shaped river valleys. However, catchment areas in the downstream sections consist of
broad and gentle (2%) low-lying plains with a minimum elevation of 6 m above sea level. The La Sierra catchment area is
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Mexico’s wettest catchment, with an annual rainfall of approximately 4,000 mm and monthly averages of 200 mm throughout
the year, with extremely high totals occurring from June to October and lower totals occurring from November to May

(Mercado et al. 2016; INEGI 2018). The Sierra River has a significant impact on flood discharges and is a major source
of flooding in Villahermosa City (López-Caloca et al. 2017).

The La Sierra catchment area experiences two types of rainfall: large-scale rainfall events that affect the entire catchment

and intense convective rainfall events that affect localised areas of the catchment. The three major sources of rainfall in the
catchment area are tropical cyclones from the Caribbean Sea and the Atlantic Ocean; the Inter-Tropical Convergence Zone
(ITCZ), which extends to higher latitudes during the summer and affects the upper Grijalva basin; and late summer tropical

waves, which cause significant rainfall in the northern parts of the catchment (Arreguín-Cortés et al. 2014).
Seven nested catchment areas in the La Sierra catchment area were used to investigate the scaling relationships and peak

flow generation at various spatial scales, based on the location of existing flow gauging stations (GSs) (Table 1 and Figure 2).
Discharge data of the El Puente GS were not used in the analysis because of insufficient hydrometeorological records for the

years under consideration. Using the Spatial Analyst extension tool in ArcGIS on a 30-arc-second-resolution digital elevation
model (DEM), each nested catchment was delineated along the watershed, beginning with where flow GSs were located in
the catchment (Rabus et al. 2003). The resulting multi-scale nested catchment structure consisted of units of drainage areas

nested in the main catchment, the La Sierra catchment area in this case (Paschalis et al. 2014). In this way, the nested struc-
ture allowed the quantification of the spatial process by which floods are generated in small headwater catchments, building
up into floods at larger-scale catchments (Wilkinson & Bathurst 2018).

2.2. Hydrometeorological data

Rainfall data for the La Sierra catchment area were obtained from a total of 12 rain gauge stations. However, these rainfall
data only encompassed the time period spanning from 2012 to 2015, as depicted in Table 2. The data were obtained from the
Mexican rainfall database (CLIMCOM 2013) maintained by the Mexican Meteorological Service (Servicio Meteorologico

Figure 1 | The Sierra catchment area in southeast Mexico (Rabus et al. 2003; Esri 2012; Lehner & Grill 2013).
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Nacional, SMN) and the Mexican Water Commission (CONAGUA). The nested hydrometric network’s discharge data were
collected from seven GSs located at the outlets of each nested catchment (Figure 2), spanning from 2012 to 2015. The flow

data were obtained from CONAGUA, the Mexico Surface Water Management and Rivers Engineering (GASIR) database,
and the National Surface Water Data Bank (BANDAS) database. However, discharge data for El Puente and Tapijulapa
nested catchment areas were limited, with missing values or having some gaps in their time series. As a result, the El

Puente sub-catchment area was not included in the analysis (Table 2).

2.3. Investigation of scaling relationships

The analysis sought to investigate the scaling relationships between peak discharge and nested catchment drainage areas, as
well as to identify underlying factors driving variations in the relationships, to enable flood prediction in the La Sierra catch-

ment. The scaling relationships between selected rainfall–runoff events between 2012 and 2015 were investigated using a
statistical power law equation (Equation (1)). The study investigated scaling relationships not only with drainage area data
but also with other catchment descriptors and processes that contribute significantly to the mechanism of flood peak gener-

ation in the study area (Formetta et al. 2021).

2.3.1. Selection of observed peak discharge events

A total of 59 rainfall events that generated peak discharges greater than a 2-year return period between 2012 and 2015 were
identified for analysis. The events were selected following a preliminary analysis of rainfall–discharge records to identify the

time of concentration of flows in the catchment area. Figure 3 illustrates an excerpt of the 2015 peak discharge events that
were analysed. For the La Sierra catchment, the estimated time of concentration was 3 h, which is the smallest time window
size that separates individual rainfall–runoff peak events in the area (Ayalew et al. 2015a). The time of concentration was

calculated using the velocity method (Equations (2) and (3)) that sum flow journey times for segments along the hydraulically
most remote open channel flow (NRCS 1997).

Tc ¼ Tt1 þ Tt2 þ Tt3 þ � � � þ Ttn (2)

where Tc is the time of concentration in hours, Tt is the travel time of a segment, and n is the number of segments comprising
the total hydraulic length.

The travel time for any given segment is equal to

Tt ¼ l =3, 600 V (3)

Tt is the travel time, in hours, l is the flow length, in metres, V is the average velocity (m/s), and 3,600 is the conversion
factor (seconds to hours).

Table 1 | Characteristics of nested catchment areas in the Sierra main catchment

Catchment name
(names derived from
outlet flow GSs)

Catchment area
�1,000,000 (m2)

Length of the
main channel
�1,000

Minimum
elevation of the
main channel (m)

Maximum
elevation of the
main channel (m)

Average slope
of the main
channel (%)

Standard
average annual
rainfall (mm)

Standard
runoff (%)

Gaviotas (for La
Sierra)

6,743 173,615 6 2,216 1.27 1,730 20–30

Pueblo nuevo 4,748 157,442 9 2,177 1.38 1,730 20–30

Tapijulapa 3,698 131,192 19 2,216 10.67 1,602 .30

Oxolotan 2,416 115,064 109 2,216 20.08 1,602 .30

El Puente 1,787 97,219 7 902 1.00 2,101 20–30

Teapa 438 42,027 35 1,106 20.55 2,513 20–30

Pichulcalco 431 3,992 10 2,100 30.00 2,600 20–30

Puyacatengo 229 15,370 59 644 30.81 2,561 .30

Note: the catchment area and channel length are in km and can be expressed in square metres and metres (metre unit) when multiplied by 100,000 and 1,000, respectively.
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2.3.2. Peak scaling analysis

The following procedure was followed to establish significant scaling relationships for estimating flood parameter values for
the La Sierra catchment area (Ayalew et al. 2015a). The α, θ, and coefficient of determination (R2) values were determined
using the power–law equation (Equation (1)) by establishing scaling relationships between the observed peak discharge for

each rainfall event and its corresponding nested catchment drainage area plotted on a logarithmic scale scatter plot with
a straight line fitted between data points. The R2 was used to evaluate the reliability of the scaling parameters (α and θ)
and thus the accuracy of prediction of the scaling equation (Chen et al. 2020). Individual rainfall events were selected

Figure 2 | Nested catchments and gauge network in the La Sierra catchment (Rabus et al. 2003; Esri 2012; CLIMCOM 2013; Lehner & Grill
2013).
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based on their R2 values; those with values greater than 0.5 were considered, while those with values less than 0.5, indicating
that the scaling relationship or equation contained discrepancies, were discarded (Ayalew et al. 2015a, 2018; Farmer et al.
2015).

2.3.3. Catchment descriptors and processes affecting parameters

A linear regression model was used to determine the relationships between estimated flood parameter values and other mea-

surable catchment descriptors and processes that include rainfall location, soil moisture, rainfall accumulation, river levels,
and peak discharge (Gupta et al. 1996; Mandapaka et al. 2009a; Ayalew et al. 2015, 2018).

Pearson’s correlation analysis was conducted using IBM SPSS Statistics for Windows, Version 25, to assess both the
strength and the direction of established relationships (IBM Corp. 2017). This study employed the Pearson correlation coeffi-

cient (CC) (r) to measure the relationship between scaling parameters and physical catchment characteristics. The resulting
values were evaluated on a scale ranging from �1 to 1. When r exceeds 0.5 or falls below �0.5, it is inferred that the data
points are in close proximity to the line of best fit.

Furthermore, linear and multiple regression analyses were conducted to investigate the dependency of the flood scaling
parameters on multiple variables from the catchment’s properties and processes. A forward stepwise multiple regression
was employed to identify the strongest predictors of the flood scaling parameter values from the measurable catchment

Table 2 | Discharge data availability across GSs for the nested catchment areas

Figure 3 | Extract of some of ·peak discharge events analysed for the La Sierra nested catchments, 2012–2015. (The 2015–2016 time series
for El Puente and Pichucalco nested catchment regions are not shown owing to limited data.)
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descriptors and processes identified (Formetta et al. 2021). The regression equations were further assessed based on the good-

ness-of-fit measure shown by the R2, the normal distribution of errors, the t-statistic, collinearity statistics, and the Shapiro–
Wilk residual tests (Ayalew et al. 2015b, 2018).

The Shapiro–Wilk test was used to check the normality of the data and produces a W value; low values indicate that the

sample was not normally distributed. The null hypothesis of normally distributed data was rejected if the alpha (α) value was
0.05 and the p-value was less than 0.05. The p-values indicate the probability that any observed difference between datasets
was attributable to chance. Checks for multicollinearity were done to check if it occurs when independent variables in a model
are correlated. Two variables were regarded as perfectly collinear if their CC was within the tolerance of .0.1 and the variance

inflation factor (VIF) is ,10. The VIF detected and quantified collinearity in the regression models developed (Bruin 2006).
The best optimal equation, which should not overfit data and perform well in new contexts, was selected using the XLSTAT

software, version 2019.3.2, from a pool of several equations developed. The software employs the Akaike information cri-

terion (AIC) and the Bayesian information criterion (BIC), to select optimal equations for predicting flood parameter
values for the catchment (Ding et al. 2018). The two model selection methods were selected due to their ability to effectively
determine the optimal statistical model for fitting hydrological extremes. Di Baldassarre et al. (2009) did a study to see how

well the AIC, the BIC, and the Anderson–Darling criterion work in statistical flood model selection. The results of their study
revealed that the model selection methods were valuable tools for model selection and for reducing the uncertainty of design
flood estimation.

The best regression equations selected were then used in a flood prediction framework to estimate the scaling parameter
values and peak discharge across nested catchments in the study area. The model results were validated by comparing them
to observed values from different time periods and sub-catchments that were not included in the development of equations.

2.4. Framework for predicting flood parameters and peak discharge magnitudes

A flood prediction framework, consisting of the following steps (Figure 4), was employed to estimate flood parameter values

and peak discharge magnitudes across the catchment area (Ayalew et al. 2014). First, a log–log regression equation was used
to calculate the scaling α value from the observed peak discharges from the nested catchments. Second, a log-linear regression
equation was applied to estimate the corresponding scaling θ value from the natural logarithm of the scaling α estimated in
Step 1. Third, the estimated flood parameters (θ and α) were then used in the flood scaling (Equation (1)) to determine the

expected magnitude value of peak discharge across the La Sierra catchment.
To validate the model results and confirm that the equations developed were sufficiently predictive, the simulated α and θ

values were compared to observed values derived from scaling relationships from a different sub-catchment and time (2016–

2018) than used in model development. The model was run with the Teapa nested catchment added to the flood scaling
equation (Equation (1)), along with the estimated parameters. This was done to test the model’s ability to predict in different
spatial conditions and see if it can make simulations that are accurate enough. The Nash–Sutcliffe efficiency (NSE), the Pear-

son CC, and the percentage bias (PBIAS) were calculated to objectively compare the simulated and observed discharge
obtained. The root mean square error (RMSE) was also used to estimate the errors between observed and simulated peak
discharge values found. A flowchart to visually depict the statistical scaling modelling stages is shown in Figure 4.

Uncertainties in the estimated flood scaling parameters and peak discharge values were shown using confidence and pre-

diction intervals. The confidence interval bounds of 5 and 95% were used to represent the range of frequently varying
discharge and parameter values, illustrating the bounds of their natural variability, and thus expressing the uncertainty in
the flood parameters and peak discharge estimates found (Wadsworth 1990; NIST 2012). The prediction interval was

taken as the range likely to include the mean value of the estimated flood parameter and peak discharge values given the
specific values of independent variables (Helsel & Hirsch 2002).

3. RESULTS AND DISCUSSION

3.1. Investigation of scaling relationships in the La Sierra catchment

The results of flood scaling analysis of peak discharge data based on hydrometric records of peak flow from 59 rainfall events

in the La Sierra catchment from 2012 to 2015 demonstrate that peak discharge exhibits a power–law relationship with drai-
nage areas, which is consistent with findings from humid temperate regions. The average R2 is 0.86, with R2 values greater
than 0.7 for 60% of all 59 rainfall–runoff events under consideration (Table 3).
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3.2. Other catchment variables affecting flood scaling parameter estimation

3.2.1. α parameter estimation

Correlation analysis between flood parameter values and other catchment variables revealed that peak discharge observed at

the Puyacatengo GS has the strongest positive relationship with scaling α values with a CC of r ¼ 0.86 and p¼ 0.01. The scal-
ing intercept values when regressed on the natural logarithm of peak discharge results in a model with a good overall fit with
R2¼ 0.74 (Figure 5).

Figure 4 | Flowchart to visually depict the modelling process.
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The results indicate that the peak discharge observed at the Puyacatengo GS can be used to predict the α parameter values
across the catchment area using a log–log regression equation with an α value of �9.17, varying from �14.00 to �4.34, and an

estimated mean slope value of 0.34, varying from 0.25 to 0.42 at a 95% confidence level (Table 4).
Equation (4) summarises the resulting overall log–log regression equation for estimating α values.

lna ¼ �9:170þ 0:340� ln Puyacatengo peak flows: (4)

Student’s t-test on the coefficients of Equation (4) indicates that they are statistically significant at a 95% confidence level.
Checks on the Q–Q plot for residuals and the Shapiro–Wilk test for normality yield W ¼ 0.96 and p¼ 0.007, indicating that
the residuals are normally distributed.

Table 3 | Peak scaling relationships from selected individual rainfall events in the La Sierra catchment (α and θ)

Rainfall event No. Peak discharge date

Scaling
parameters

R2 Rainfall event No. Peak discharge date

Scaling
parameters

R2α θ α θ

1 1 January 2012 6.72 0.46 0.76 31 24 May 2014 29.07 0.31 0.66

2 08 January 2012 3.98 0.51 0.97 32 28 May 2014 5.89 0.81 0.90

3 30 January 2012 12.32 0.34 0.88 33 03 June 2014 5.11 0.61 0.82

4 17 April 2012 37.38 0.14 0.51 34 05 July 2014 3.39 0.49 0.78

5 14 May 2012 30.40 0.22 0.52 35 14 July 2014 5.84 0.50 0.73

6 21 May 2012 80.85 0.20 0.53 36 03 August 2014 5.67 0.70 0.75

7 26 June 2012 10.76 0.36 0.59 37 15 August 2014 5.04 0.45 0.52

8 12 August 2012 50.40 0.22 0.57 38 26 August 2014 5.03 0.56 0.53

9 27 September 2015 17.46 0.35 0.59 39 31 August 2014 4.75 0.58 0.85

10 20 December 2012 10.76 0.36 0.59 40 12 September 2014 5.09 0.54 0.78

11 20 January 2013 33.01 0.24 0.56 41 19 September 2014 4.39 0.66 0.83

12 08 June 2013 5.41 0.84 0.58 42 23 September 2014 5.78 0.73 0.79

13 06 July 2013 5.25 0.59 0.81 43 14 October 2014 16.22 0.35 0.58

14 18 August 2013 28.08 0.24 0.60 44 26 October 2014 10.87 0.39 0.50

15 27 August 2013 11.57 0.38 0.59 45 29 October 2014 51.13 0.47 0.55

16 07 September 2013 10.75 0.44 0.53 46 08 November 2014 28.60 0.24 0.57

17 14 September 2013 48.45 0.17 0.59 47 13 November 2014 55.09 0.20 0.64

18 26 September 2013 46.15 0.18 0.51 48 27 November 2014 15.09 0.37 0.60

19 14 October 2013 12.14 0.41 0.71 49 13 June 2015 10.80 0.40 0.85

20 28 October 2013 1.72 0.73 0.79 50 29 August 2015 7.73 0.45 0.92

21 16 November 2013 12.32 0.44 0.87 51 15 September 2015 5.39 0.81 0.82

22 27 November 2013 1.15 0.77 0.86 52 23 September 2015 9.33 0.60 0.82

23 13 December 2013 0.61 0.95 0.80 53 01 October 2015 6.62 0.63 0.94

24 16 December 2013 19.91 0.39 0.89 54 20 October 2015 9.72 0.61 0.66

25 13 March 2014 2.30 0.61 0.97 55 26 October 2015 17.52 0.45 0.91

26 08 April 2014 10.12 0.88 0.57 56 14 November 2015 5.41 0.56 0.70

27 16 April 2014 27.30 0.25 0.50 57 23 November 2015 82.32 0.26 0.70

28 20 April 2014 5.60 0.69 0.88 58 08 December 2015 19.70 0.42 0.75

29 05 May 2014 5.37 0.70 0.78 59 20 December 2015 12.24 0.50 0.92

30 14 May 2014 4.64 0.60 0.76

R2 is the coefficient of determination.
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3.2.2. θ parameter estimation

Correlation analysis shows the strongest linear negative relationship between scaling α and θ values, with a CC of r¼�0.74
and a p-value of 0.01. The scaling θ values when regressed on the natural logarithm of the scaling α values result in a model

with an overall good fit with R2¼ 0.54 (Figure 6). This result shows that the explanatory α variables in this log-linear relation-
ship can predict 54% of the variability of the dependent scaling θ values.

Analysis results (Table 5) show the robustness of the log-linear relationship between the scaling θ and α parameters, with

significant coefficients (p¼ 0.05). This shows that α values can significantly predict θ values using a log-linear equation with
an α value of 0.60 ranging from 0.55 to 0.64 and an estimated mean slope value of �0.01 varying from �0.01 to �0.006 at the
95% confidence level.

Equation (5) summarises the overall log-linear regression model.

u ¼ 0:596 –7:426E�03 � lna: (5)

Student’s t-test on the equation coefficients (Equation (5)) reveals that they are statistically significant at a 95% confidence
level. Checks on the Q–Q plot for residuals between α and θ values as well as the Shapiro–Wilk test for normality (W ¼ 0.89
and p¼ 0.01) show that the residuals are normally distributed.

Figure 5 | Natural logarithm of the scaling α regressed against the natural logarithm of peak discharge observed at Puyacatengo GS from 59
rainfall–runoff events that occurred between 2012 and 2015.

Table 4 | The log–log relationship between α values and Puyacatengo peak discharge

Source Value Standard error t Pr. |t| Lower bound (95%) Upper bound (95%)

ln(α) �9.170 2.399 �3.822 ,0.003 �14.002 �4.338

ln(Puyacatengo) 0.339 0.042 7.995 ,0.001 0.254 0.424

Notes: t is the Student’s t-test statistic. The Pr(.t) relates to the probability of observing any value equal to or larger than t.
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3.2.3. α values multi-regressed with other catchment variables

A multiple regression analysis was also used to estimate α and θ parameter values, this time using more than one exploratory
variable. Analysis results show that α parameter values have the strongest relationship with the observed discharge at the

Puyacatengo GS (r¼ � 0.77, p¼ 0.01), followed by discharge at the Teapa GS (r¼ 0.38, p¼ 0.01) (Table 6). The natural log-
arithm of α values was multi-regressed on the natural logarithm of peak discharges observed at Puyacatengo and Teapa GSs.
A simple equation with all significant coefficients (p¼ 0.05) was then obtained using a stepwise forward elimination

procedure.

Figure 6 | Scaling θ regressed against the natural logarithm of the scaling α values (Adapted from Ayalew et al. 2018).

Table 5 | The log-linear regression analysis between θ and α parameters

Source Value Standard error t Pr. |t| Lower bound (95%) Upper bound (95%)

θ 0.596 0.023 25.947 ,0.0012 0.550 0.641

α �0.007 0.001 �8.184 ,0.0014 �0.009 �0.006

Notes: t is the Student’s t-test statistic. The Pr(.t) relates to the probability of observing any value equal to or larger than t.

Table 6 | Log–log multiple regression analysis of the relationships between α parameters, for Puyacatengo GS and Teapa GS peak discharge

Model
Unstandardised coefficients

Standardised
coefficients Correlations

Collinearity
statistics

B* Std. Error Beta t Sig. Zero-order Partial Part Tolerance VIF

ln(constant) 0.667 0.04 17.73 0.004

ln(Puyacatengo) �0.003 0.00 �0.81 �8.03 0.003 �0.73 �0.77 �0.77 0.91 1.11

ln(Teapa) 0.0001 0.00 0.27 2.65 0.011 0.02 0.38 0.26 0.91 1.11

Notes: B* is the unstandardised beta value representing the slope of the line between the predictor variable and the dependent variable. t is the Student’s t-statistic. VIF is the factor

for quantifying collinearity (see Section 2.3 for explanation).
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Equation (6) summarises the resulting log–log multiple regression equation.

ln Intercept ¼ 0:667 – 0:003 lnPuyacatengo peak flowsþ 0:0001 lnTeapa flows: (6)

Student’s t-test on the equation coefficients reveals that Puyacatengo and Teapa peak discharge values can significantly
(p¼ 0.05) predict α parameter values for the catchment area. Furthermore, checks for multicollinearity in the model show
that it is at 1.1, which is within the tolerance of .0.1 and VIF ,10.

3.3. Developing flood scaling equations

Using the methods described above, six scaling equations were developed for estimating flood parameter values for the entire

La Sierra the catchment. Four of the six equations were for the θ parameter estimation, with an average good model fit (R2¼
0.57). The remaining two were found to be valid for estimating α parameter values, both with an overall good model fit and an
R2¼ 0.62.

3.4. Selection of the best scaling equations

Equation (1) was found to have the lowest AIC (�232.30) and BIC (�228.14) values and was thus chosen as the best log-

linear regression model for estimating θ parameter values for the La Sierra catchment (Table 7). Equation (5) was found
to be the best for estimating α parameter values, with the lowest AIC (�191.15) and BIC (�185.66) values.

3.5. Flood prediction framework

The estimated values for the intercept and exponent parameters were incorporated in the scaling equation to estimate dis-
charge values in the study area. By comparing the values that were predicted and those that were observed, it was

possible to see how well the equations were able to predict flood parameters and peak discharge across the La Sierra
catchment.

3.6. α parameter comparison

The simulated intercept values mirrored changes in the observed values, with an overall equation fit with R2¼ 0.51 (Figure 7).
However, errors were generated in estimating the values, shown by a high RMSE of 11.36 m3/s and a PBIAS of �10.39%,

which indicates an underestimation in the predictions.

3.6.1. θ parameter comparison results

The log-linear equation can estimate the value of the θ with an overall equation fit with R2¼ 0.56 (Figure 8). However, there
were some errors in the estimates, as evidenced by the high RMSE of 12.57 and a PBIAS of 2.08%, indicating overestimation
in predictions.

Table 7 | Scaling equation ranking according to the AIC and BIC estimators

Rank
No Overall equations

Equation selection metrics

MSE
Adj.
R2 AIC BIC

1 θ¼ 5.96E-01� 7.43E-03� ln α 0.02 0.53 �232.30 �228.14

2 θ¼ 6.99E-01� 3.01E-03� ln Puyacatengo peak discharge 0.02 0.49 �192.54 �188.80

3 θ¼ 3.17E-01þ 3.21E-04� ln 2 h Oxolotan peak discharge 0.01 0.56 �34.16 �34.00

4 ln α¼ 9.17Eþ 00þ 3.40E-01� ln Puyacatengo peak discharge 78.19 0.74 211.19 214.94

5 ln α¼ 6.67E-01� 5.92E-04� ln (Puyacatengo peak dischargeþ 3.46E-03� ln Teapa peak
discharge)

0.015 0.58 �191.15 �185.66

6 ln θ¼ 4.93E-01� 3.33E-03� ln (Puyacatengo peak discharge þ4.99E-04�Gaviota peak
discharge)

0.006 0.83 �232.20 �226.71

Note: Adj. R2 is a corrected goodness-of-fit measure for assessing models.
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Figure 7 | Comparison between observed and simulated scaling α values from rainfall–runoff events (2012–2015) across the La Sierra
catchment.

Figure 8 | Comparison of estimated θ and observed values from rainfall–runoff events in the La Sierra catchment from 2012 to 2015.
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3.6.2. Peak discharge comparison results

A comparison of the simulated and observed peak discharge from 2016 to 2018 at the Teapa GS shows the strongest good
model fit, shown by R2¼ 0.72 (Figure 9), a good CC (r¼ 0.79), and a good NSE (0.60), but again with a large RMSE of

9.04 m3/s.

3.7. Summary of statistical significance

The α and θ parameter equations developed were found to be statistically significant in their relationship with catchment
descriptors and processes in the La Sierra catchment and validated by comparing them to historical data. A series of statistical

tests were conducted to validate the robustness of the regression equations obtained. The test results show that the peak flood
observed at the smallest sub-catchments in the basin significantly predicted the intercept (p, 0.05). The residuals were also
confirmed to be normally distributed through the inspection of their Q–Q plot and the Shapiro–Wilk test (W¼ 0.96 and
P¼ 0.12) for the α and between the α and θ values (W¼ 0.89 and p¼ 0.01), showing that the residuals were normally distrib-

uted. Similarly, the study checked for multicollinearity in the model data, whether it was within the tolerance of.0.1 and VIF
,10 and whether the data were normally distributed. Based on these findings, it is possible to conclude that the regression
models generated were reliable though with uncertainties that were quantified and reflected in the results.

4. DISCUSSION

The results reveal that peak discharge in the La Sierra catchment exhibits power–law relationships. The study also demon-

strates how the estimated scaling parameters are linked to catchment descriptors and processes, allowing statistical
equations to be developed and utilised to estimate flood parameter values and the magnitude of peak discharge across the
studied catchment area. Similarly, recent studies on scaling laws have demonstrated the potential of estimating flood par-

ameters by analysing the physical characteristics of drainage areas (Menabde & Sivapalan 2001; Furey & Gupta 2005,
2007; Mantilla et al. 2006; Mandapaka et al. 2009a; Ayalew et al. 2014a, 2014b, 2015; Farmer et al. 2015; Medhi et al.
2015; Ferey et al., 2016; Lee & Huang 2016; Wilkinson & Bathurst 2018; Perez Mesa 2019; Yang et al., 2020).

A noteworthy result from present study is that peak discharge exhibits a power–law relationship with drainage areas, simi-
lar to studies from humid temperate regions (Table 2). The results of the scaling relationship analysis in the La Sierra sub-

Figure 9 | Comparison results of simulated and observed discharge from Teapa GS from 2016 to 2018.
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catchment confirmed that the flood parameters, θ and α in the scaling equations, vary with rainfall events, which is consistent

with findings in the United States and the United Kingdom (Gupta et al. 1996, 2007; Ogden et al., 2003; Gupta 2004; 2010;
Furey et al., 2005; Mantilla et al. 2007, 2011; Ayalew et al. 2014a, 2014b, 2015).

The study reveals the existence of a log-linear relationship between α and θ values (Equation (5)) and a log–log power–law

relationship between α and the peak discharge observed from the smallest headwater catchments (Equation (4)). The results
show that the log-linear and log–log relationships can be used to estimate the values of flood scaling parameters across the
nested catchments, even though there are some quantifiable errors in the predictions. This finding is consistent with the
research conducted by Ayalew et al. (2015, 2018) in Iowa River basin, which revealed a log-linear relationship between

the intercept and exponent as well as a log–log relationship between the intercept and the peak flood observed in the smallest
gauged sub-catchments within the nested catchment. These relationships, when combined with the scaling law equation for
peak floods, can be used to reasonably predict peak floods at any location within the nested catchments after a rainfall–runoff

event (Ayalew et al. 2018).
Chen et al. (2020) recently revealed that using log-transformation methods in peak discharge power–law analysis produces

errors and uncertainties when compared to nonlinear regression methods, which is noted in this study. The study found that

the log–log-linear regressions produced higher peak discharge prediction errors than nonlinear regressions, and the logarith-
mic transformation results in smaller peak and drainage area data points that are more heavily weighted. As a result, Chen
et al. (2020) recommends using nonlinear regression on the arithmetic scale to estimate the scaling parameters when perform-

ing peak discharge scaling analysis, particularly for prediction purposes. This study was conducted before the study by Chen
et al. (2020), so it did not incorporate their findings into the design of this study. However, there is some evidence in this work
that the log transformations show a satisfactory fitting on the log–log scale, reliably control the size-dependent variability pre-
sent, and ensure a normal distribution of the residuals. The regression equations obtained from using multi-scale nested

catchments, each less than 10,000 km2 in size, were found to be adequately fitted, not overfitting the data, and performing
well in new contexts. The errors and uncertainties generated by the log-transformation approach used in this study were quan-
tified to demonstrate the variability in the estimated flood scaling parameters and peak discharge values. Thus, the knowledge

of quantified uncertainties improves the flood modelling approach employed and allows for a clear uncertainty analysis
aimed at taking into account errors and uncertainties in the modelling process.

The ability of the scaling equations to predict small-scale flood events has been demonstrated with a degree of confidence

(Figure 9); however, the equation’s ability to predict large-scale flood events is questioned. The results show that the simulated
peak discharges have greater variability around their expected values, which is particularly noticeable in the estimation of
high-magnitude flood events (Figure 9). These results could support the findings of Chen et al. (2020); however, it is believed
that the uncertainties in the scaling relationships can be explained in part by the lack of long records of hydrometeorological

datasets. This study was limited to a short window, between 2012 and 2015, as it was the only period that had data across all
gauging sites. Thus, in their current form, the equations are suitable for estimating low- to medium-peak discharges with high
recurrence intervals. Therefore, caution should be exercised when extrapolating the findings of this study over time. Future

research is recommended to repeat this work in locations with long hydrometeorological records extending across several
years to fully capture the low frequent severe flood events.

The findings of this study are significant because they quantify relationships between drainage size, peak discharge, and

other catchment processes that cause flooding from small to larger downstream catchments in a tropical region. The results
provide statistical relationships (Equations (4) and (5)) that shed light on the broader catchment flood response and flood
generation across catchments. In other words, the findings contribute to establishing how flood scaling relationships are

quantifiably linked to larger catchment-scale descriptors and processes to enable the estimation of flooding. The most impor-
tant finding in this regard is how point-scale processes at the smallest nested catchment, such as observed discharge, are
related to catchment-wide flooding, which enables new strategies in flood monitoring and prediction. The result contributes
to the formulation of a flood risk strategy that promotes a network of flow GSs in smaller headwater streams for peak dis-

charge monitoring and prediction for larger downstream catchment areas (Gupta 2017). This application is especially
important for the La Sierra catchment area, which drains floodwaters from smaller mountainous catchments to frequently
flood larger downstream catchments in the Gaviotas district areas of Villahermosa City.

Although this research has established valid flood scaling relationships between small headwater catchments and larger
downstream catchment areas, not all flooding factors were included in formulating the equations developed. Several other
physical catchment properties and processes that directly or indirectly control flooding were not considered due to the
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lack of relevant data. For example, this study did not consider channel geometry and roughness, key factors that strongly influ-

ence river flooding. Although some additional flood-generating variables were not considered, the results obtained were
statistically significant and were validated through comparison with historical data.

Thus, this study supports the potential use of scaling equations to simulate discharge without using hydrological models, a

method which is essential and relevant under current conditions of climate change. Model calibration has always been a
major challenge in the hydrological community (Zheng et al. 2021). In changing climatic conditions, the accuracy of histori-
cal data is unreliable, and parameter re-calibration using historical data does not reflect future conditions. The scaling
equations provide a flood estimation technique that does not require model calibration against historical observations to fore-

cast peak discharge in the future (Gupta 2017). As a result, this study has important implications for the long-term use of
statistical equations for flood monitoring and prediction in the face of climate change. It is also suggested that more research
should be done to find out what roles climate variability and change play in scaling peak floods.

5. CONCLUSIONS

The significance of this study lies in extending the scaling theory of floods to tropical regions and investigating catchment
descriptors and processes that influence the flood scaling parameters and the estimation of the same parameter values

and peak discharge magnitudes. This study has shown that peak discharge in the La Sierra catchment area exhibits
power–law relationships with drainage areas similar to findings from humid temperate regions. The findings substantiate
the log-linear relationship identified by Ayalew et al. (2015) between the θ and the α of the power–law relationships, not
often used in other studies, as well as the significance of the log–log relationship between the α and peak discharge observed

from the smallest nested catchment. In this regard, this study contributes to the ongoing universal application of the scaling
theory of floods and to efforts in predicting floods in data-scarce regions. However, the question of whether the relationship
between the intercept and exponent is universal remains unanswered. It is hoped that this question may spark further

research.
Nonetheless, the current study has provided a framework for estimating flood parameter values and peak discharge mag-

nitudes that enables flood prediction in data-scarce tropical catchments. The results of the study have led to the identification

of some influential factors and provided the foundation for operational flood prediction tools. The study has demonstrated the
potential of scaling relationships to estimate the magnitude of peak floods by leveraging the intrinsic relationship between
peak discharge and geophysical characteristics and processes within nested catchment areas. The relationships obtained

offer valuable insights into the wider catchment flood response and the generation of floods linked to headwater flood
peaks (Gupta et al., 2019). One potential implication of this finding is the potential for developing a flood risk strategy
that advocates for the setting up of a network of flow GSs in smaller headwater streams that serve the purpose of monitoring
peak discharge and estimating flood levels in larger downstream catchment areas.

The self-similarity of river networks and the flood scaling parameters are not expected to change as the climate changes.
The scaling laws and statistical models developed will remain unchanged for some time (Gupta 2017). Therefore, there is
potential for the long-term use of statistical models for flood monitoring and prediction. This study provides a new research

direction to make flood predictions at multiple spatial and temporal scales under a changing global hydroclimate. However,
there is a need to investigate the role of climate variability and change using the scaling framework for floods discussed.

Thus, the persistent challenge that remains is to ‘bridge the scaling gap’ by extending the scaling theory of floods (scaling

relationships) from the smallest rivers on the mainland to large regional and continental rivers in different climate regions.
There is still a shortage of scaling relationship studies in multi-scale catchments across climatic regions. In several catch-
ments, the process by which floods are generated from small headwater catchments to larger downstream catchments is
still not quantified. Therefore, there is a need for further studies that apply the scaling theory of floods and establish patterns

of scaling relationships across regional and continental river catchments.
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