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Abstract We introduce a new product bilattice con-

struction that generalizes the well-known one for interlaced

bilattices and others that were developed more recently,

allowing to obtain a bilattice with two residuated pairs as a

certain kind of power of an arbitrary residuated lattice. We

prove that the class of bilattices thus obtained is a variety,

give a finite axiomatization for it and characterize the

congruences of its members in terms of those of their lat-

tice factors. Finally, we show how to employ our product

construction to define first-order definable classes of bi-

lattices corresponding to any first-order definable subclass

of residuated lattices.

Keywords Bilattice � Product bilattice � Twist-structure �
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1 Introduction and preliminaries

Bilattices are algebraic structures introduced by Ginsberg

(1988) as a uniform framework for inference in Artificial

Intelligence. Since then they have found a variety of

applications, sometimes in quite different areas from the

original one. The interest in bilattices has thus different

sources: among others, computer science and A.I. (see

especially the works of Ginsberg, Arieli and Avron), logic

programming (Fitting), lattice theory and algebra

(Mobasher et al. 2000) and, more recently, algebraic logic

(Rivieccio 2010; Bou and Rivieccio 2011; Bou et al.

2011). An up-to-date review of the applications of this

formalism and also of the motivation behind its study can

be found in the the PhD dissertation (Rivieccio 2010).

In the present paper we introduce a new class of structures

having a bilattice reduct, that we call residuated bilattices, and

prove a representation theorem for these algebras analogous to

the known ones for interlaced bilattices (and bilattices with

additional operators: see for instance Avron 1996; Rivieccio

2010; Bou and Rivieccio 2011). The motivations behind our

work are both logical and algebraic.

On a purely algebraic level, we are interested in gen-

eralizing as far as possible the constructions introduced and

studied in Rivieccio (2010) and Bou et al. (2011) to define

different classes of bilattices with implication operators.

Constructions of this kind are becoming increasingly

common and have proved to be useful in the study of

various classes of algebras related to logics, especially

residuated lattices (see Odintsov 2003, 2004, 2009;

Tsinakis and Wille 2009; Busaniche and Cignoli 2009).

However, this line of research has so far ignored the

parallel work done on bilattices and vice versa. So the

connection between bilattices and residuated structures

(that seems quite natural in the framework that we are

going to describe) has never been pointed out. One of our

aims is thus to fill in this gap by providing a formal bridge

between residuated lattices and bilattices.

One of the main motivations behind the study of bilattices

has been, since their introduction in the 1980s, the attempt to

formalize different forms of non-classical reasoning (espe-

cially paraconsistent, default and non-monotonic inferences).
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To this end Arieli and Avron introduced bilattice-based

logics (Arieli and Avron 1996) in which different kinds of

implications (a ‘‘strong’’ and a ‘‘weak’’ one) and conse-

quence relations are explored. However, even the ‘‘weak’’

implication of Arieli and Avron has quite strong algebraic

and logical properties: in a certain sense it can be regarded

as the bilattice counterpart of classical implication. To state

this more precisely, let us recall that in (Rivieccio 2010,

Sections 4 and 5) it is proved that the class of algebras that

constitute a semantics (the equivalent algebraic semantics,

in fact) for the Arieli-Avron logic is categorically equiva-

lent to the class of generalized Boolean algebras (i.e., the

0-free subreducts of Boolean algebras).

On the other hand, researchers in non-classical reason-

ing (especially relevant and paraconsistent) are usually

interested in weaker implication connectives that avoid the

so-called paradoxes of classical implication. We believe

that, in the context of bilattices, such connectives are to be

found within the framework that we sketch in the following

sections. In this respect the idea that guided our work was

to single out implication connectives satisfying minimal

requirements (corresponding to residuation in the context

of lattices) and thus being as general as possible. For these

reasons we believe that our algebraic study of residuation

within bilattices (which, thanks to the theory of algebra-

ization of logics, has a straightforward logical translation)

will suggest new logical systems based on bilattices that

may also have some interest for application-oriented

research.

The paper is organized as follows: In Sect. 1.1 we

introduce some preliminary notions and results on bilat-

tices that will be needed to develop our study. Section 1.2

introduces the product bilattice construction, a well-

known method for building a special kind of bilattices,

that we are going to generalize in the subsequent sections.

In Sect. 2 we extend this construction to define bilattices

having operations that enjoy certain residuation proper-

ties. In Sect. 3 we give an axiomatization of the class of

algebras corresponding to the bilattices that are repre-

sentable through the product construction introduced in

Sect. 2. Finally, in Sect. 4 we define translations from the

language of residuated lattices to that of bilattices and

vice versa that provide a means to find a ‘‘bilattice

counterpart’’ for an arbitrary first-order definable class of

residuated lattices.

1.1 Bilattices

In this section we introduce the basic definitions and some

well-known results on bilattices.

Definition 1.1 A bilattice is an algebra

B ¼ B;^;_;�;�;:h i

such that the reducts hB;^;_i and hB;�;�i are both

lattices and the negation : is a unary operation satisfying

that for every a; b 2 B;

ðneg1Þ if a� t b; then:b� t :a

ðneg1Þ if a� k b; then:a� k :b

ðneg3Þ if a ¼ ::a:

The order of the lattice hB;^;_i; sometimes called the

truth lattice or t-lattice, is denoted by � t and is called the

truth order, while the order � k associated with hB;�;�i;
sometimes called the knowledge lattice or k-lattice, is the

knowledge order.

Usually in the literature it is required that the two lat-

tices be complete or at least bounded, but here, for the sake

of generality, none of these assumptions is made. The

minimum and maximum element of the lattice hB;^;_i; in

case they exist, will be denoted, respectively, by f and t:

Similarly, ? and > will refer to the minimum and maxi-

mum of hB;�;�i; when they exist.

A bilattice is interlaced whenever each one of the four

operations h^;_;�;�i is monotonic with respect to both

orders � t and � k: That is, when the following quasi-

equations hold:

x� t y) x� z� t y� z

x� t y) x� z� t y� z

x� k y) x ^ z� k y ^ z

x� k y) x _ z� k y _ z:

As usual, the inequality x� ty is an abbreviation for the

identity x ^ y � x and similarly x� ky stands for x� y � x:

It is easy to see that the interlacing conditions imply the

following inequalities:

x� y� k x ^ y� k x� y x ^ y� t x� y� t x _ y
x� y� k x _ y� k x� y x ^ y� t x� y� t x _ y:

Bilattices form a variety, axiomatized by the lattice

identities for the two lattices plus the law of double negation

x � ::x

and the following generalized De Morgan laws:

:ðx ^ yÞ � :x _ :y :ðx _ yÞ � :x ^ :y
:ðx� yÞ � :x� :y :ðx� yÞ � :x� :y:

Avron (1996) proves that the class of interlaced bilattices is

also a variety, axiomatized by the identities for bilattices

plus the following ones:

ðx ^ yÞ � z� t y� z ðx ^ yÞ � z� t y� z
ðx� yÞ ^ z� k y ^ z ðx� yÞ _ z� k y _ z:

From an algebraic point of view, the variety of

interlaced bilattices is perhaps the most interesting
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subclass of bilattices. As we are going to see in the next

section, its interest comes mainly from the fact that any

interlaced bilattice can be represented as a special power of

a lattice. This result is well known for bounded bilattices,

and it has been more recently generalized to the unbounded

case by Movsisyan et al. (2006) and Bou and Rivieccio

(2011).

The interlacing conditions may be strengthened as in the

following definition, due to Ginsberg (1988). A bilattice is

distributive when all possible distributive laws concerning

the four lattice operations, i.e., any identity of the following

form, hold:

x � ðy � zÞ � ðx � yÞ � ðx � zÞ

for every �; � 2 f^;_;�;�g: The class of distributive bi-

lattices is a proper subvariety of the variety of interlaced

bilattices.

1.2 Product bilattices

Given an arbitrary lattice L ¼ hL;u;ti; we can construct

the product bilattice L	 L ¼ hL
 L;^;_;�;�;:i as

follows: For all a1; a2h i; b1; b2h i 2 L
 L;

a1; a2h i ^ b1; b2h i :¼ a1 u b1; a2 t b2h i
a1; a2h i _ b1; b2h i :¼ a1 t b1; a2 u b2h i
a1; a2h i � b1; b2h i :¼ a1 u b1; a2 u b2h i
a1; a2h i � b1; b2h i :¼ a1 t b1; a2 t b2h i

:ha1; a2i :¼ ha2; a1i:

L	 L is always an interlaced bilattice, and it is distributive

if and only if L is a distributive lattice. From the definition

it follows immediately that

ha1; a2i� k hb1; b2i iff a1� b1 and a2� b2

ha1; a2i� t hb1; b2i iff a1� b1 and a2� b2

where � is the lattice order of L:
The following results were proved by Avron (1996) for

bounded bilattices. They were then generalized to the un-

bounded case by Movsisyan et al. (2006) and indepen-

dently by Bou and Rivieccio (2011).

Theorem 1.2 (Representation of bilattices) A bilattice B

is interlaced if and only if there is a lattice L such that

B ffi L	 L: Moreover, B is distributive if and only if L is a

distributive lattice.

This representation can be used to characterize the

congruences of interlaced bilattices in terms of those of

their lattice factors: we have that

ConðL	 LÞ ffi ConðLÞ:

This result is very important, as it allows to characterize the

subdirectly irreducible interlaced bilattices as those that

can be obtained as a product bilattice of a subdirectly

irreducible lattice. This implies, for instance, that the only

subdirectly irreducible distributive bilattice is isomorphic

to the bilattice product 2	 2; where 2 denotes the two-

element lattice. Therefore the variety of distributive bilat-

tices is generated by the single four-element bilattice

2	 2:

Theorem 1.2 can be proved using different strategies

(see Movsisyan et al. 2006; Bou and Rivieccio 2011;

Rivieccio 2010).

Here we give some details of a construction that will be

used in the next sections.

Given an interlaced bilattice B; we consider the set

RegðBÞ ¼ fa 2 B : a ¼ :ag

of regular elements, i.e., the fixed points of the negation

operator. It is easy to see that RegðBÞ is closed under � and

�; hence is the universe of a sublattice of the k-lattice of B:

To every a 2 B a regular element can be associated

according to the following definition:

regðaÞ :¼ ða _ ða� :aÞÞ � :ða _ ða� :aÞÞ:

Using the properties of the reg operator (see Proposition

3.4), it is possible to prove that there is an isomorphism

iB : B ffi hRegðBÞ;�;�i 	 hRegðBÞ;�;�i

with iB : B 
! RegðBÞ 
 RegðBÞ defined, for all a 2 B; as

iBðaÞ :¼ hregðaÞ; regð:aÞi:

The inverse map i
1
B : RegðBÞ 
 RegðBÞ 
! B is defined,

for all a; b 2 RegðBÞ; by

i
1
B ðha; biÞ :¼ ða� ða _ bÞÞ � ðb� ða ^ bÞÞ:

Let us also note that, in a product bilattice L	 L (as

mentioned above, any interlaced bilattice is of this form),

the regular elements are those of the form ha; ai for some

a 2 L: Given a1; a2 2 L; we have that regðha1; a2iÞ ¼
ha1; a1i; so

iBðha1; a2iÞ ¼ hha1; a1i; ha2; a2ii:

Conversely, for any a1; a2 2 L;

i
1
B ðhha1; a1i; ha2; a2iiÞ ¼ ha1; a2i:

2 Product residuated bilattices

In this section we extend the product bilattice construction

to define a bilattice having two residuated pairs as a power

of an arbitrary residuated lattice. Our construction is a

generalization of the ones described in Rivieccio (2010,

Section 5.1) for ‘‘implicative bilattices’’ and in Bou et al.

(2011, Section 4) for ‘‘Brouwerian bilattices’’. We were

also inspired by results of Tsinakis and Wille (2006,
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Theorem 3.3) and of Busaniche and Cignoli (2009, Theo-

rem 2.3). In the next section we are going to give an axi-

omatization for the class of bilattices that are representable

as products of this kind.

By a residuated lattice we mean an algebra L ¼
hL;u;t; �; n; =i such that the reduct hL;u;ti is a lattice,

hL; �i is a semigroup (i.e. the operation � is associative) and

the following residuation properties are satisfied: for all

a; b; c 2 L;

(R) a � b� c iff b� anc iff a� c=b:

Notice that this definition is slightly more general than

the usual one (Galatos et al. 2007, p. 92), for we do not

postulate the existence of a unit element e 2 L such that

hL; �; ei be a monoid.

Definition 2.1 Given a residuated lattice

L ¼ hL;u;t; �; n; =i

we define the product residuated bilattice

L	 L ¼ hL
 L;^;_;�;�;�;�;:i

as follows:

i. the reduct hL
 L;^;_;�;�;:i is the product bilattice

hL;u;ti 	 hL;u;ti introduced in the previous section;

ii. the operations � and � are defined, for all

a1; a2h i; b1; b2h i 2 L1 
 L2

as

ha1; a2i � hb1; b2i :¼ ha1nb1; b2 � a1i
ha1; a2i � hb1; b2i :¼ ha1=b1; b1 � a2i:

Given a product residuated bilattice L	 L; we introduce

derived operations defined, for all a; b 2 L
 L; as

a! b :¼ ða � bÞ ^ ð:a � :bÞ
a b :¼ :a! :b

a � b :¼ :ðb! :aÞ:

Applying the definitions, we have that, for all

a1; a2h i; b1; b2h i 2 L1 
 L2;

ha1; a2i ! hb1; b2i ¼ hða1nb1Þ u ða2=b2Þ; b2 � a1i
ha1; a2i  hb1; b2i ¼ hða1=b1Þ u ða2nb2Þ; b1 � a2i
ha1; a2i � hb1; b2i ¼ ha1 � b1; ðb2=a1Þ u ðb1na2Þi:

As mentioned above, our construction generalizes those

of Rivieccio (2010) and Bou et al. (2011). In fact, it is easy

to see that the Brouwerian bilattices of Bou et al. (2011)

are just product residuated bilattices having the form L	 L

where L ¼ hL;u;t; �; n; =i is a Brouwerian lattice, i.e. a

residuated lattice satisfying the equation

x u y � x � y

and consequently also

xny � y=x:

Similarly, the implicative bilattices of Rivieccio (2010) are

Brouwerian bilattices of the form L	 L where L satisfies

the equation:

ðxnyÞnx � x:

The following result shows that any product residuated

bilattice contains indeed two residuated pairs, thus

explaining the choice of our terminology (the same result

can also be found in Tsinakis and Wille 2006, Corollary

3.4).

Proposition 2.2 Let L	 L be a product residuated

bilattice. Then, for all a; b; c 2 L
 L;

a � b� t c iff b� t a! c iff a� t c b:

Proof Let a ¼ ha1; a2i; b ¼ hb1; b2i and c ¼ hc1; c2i
where a1; a2; b1; b2; c1; c2 2 L: Assume

ha1; a2i � hb1; b2i� t hc1; c2i:

By the definitions this means that

ha1 � b1; ðb2=a1Þ u ðb1na2Þi� t hc1; c2i;

i.e. that a1 � b1� c1 and c2�ðb2=a1Þ u ðb1na2Þ where �
is the lattice order of L: From the latter inequality we

obtain c2� b2=a1 and c2� b1na2: By residuation (R), we

have the following equivalences:

(i) a1 � b1� c1 iff a1� c1=b1 iff b1� a1nc1

(ii) c2� b2=a1 iff a1� c2nb2 iff c2 � a1� b2

(iii) c2� b1na2 iff b1 � c2� a2 iff b1� a2=c2:

From (i) and (iii) we obtain b1�ða1nc1Þ u ða2=c2Þ; so

we have that

hb1; b2i� t hða1nc1Þ u ða2=c2Þ; c2 � a1i;

i.e. b� t a! c: From (i) and (ii) we obtain a1�ðc1=b1Þ u
ðc2nb2Þ; so we have that

ha1; a2i� t hðc1=b1Þ u ðc2nb2Þ; b1 � c2i;

i.e. a� t c b:
Conversely, assume b� t a! c: By the definitions this

means that

b1�ða1nc1Þ u ða2=c2Þ and c2 � a1� b2:

It is then easy, using the equivalences (i), (ii) and (iii) to

prove that the assumptions imply a � b� t c and therefore

a� t c b:

Thus, for any product residuated bilattice

L	 L ¼ hL
 L;^;_;�;�;�;�;:i
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the structure hL
 L;^;_; �;!; ;:i is a residuated lat-

tice endowed with an involutive negation. The following

properties are also easily checked:

• if the semigroup operation � is commutative in L; then

L satisfies

xny � y=x

and consequently L	 L satisfies

x � y � y � x

x! y � y x

x � y � y � x

• if there is an element 1 2 L such that hL; �; 1i is a

monoid and 1 is the top element of the lattice order of

L, then hL
 L; �; h1; 1ii is also a monoid, h1; 1i is the

maximum element of the � k order of L	 L (i.e., the

element we have denoted above by >) and hL
 L;

^;_; �;!; ;:; h1; 1ii is an involutive residuated

lattice according to the terminology used in Galatos and

Raftery (2004).

A remarkable feature of the construction introduced in

Definition 2.1 is that, like the product described in the

previous section, it preserves the congruences, in the

sense that the lattice of congruences of any residuated

lattice L is isomorphic to the lattice of congruences of the

corresponding product residuated bilattice L	 L: The

remaining part of this section is devoted to proving this

result.

As we have anticipated in the previous section, it has

been proved by Bou and Rivieccio (2011, Proposition

3.13) that the congruences of any interlaced bilattice L	 L

are isomorphic to those of L via the map

H : ConðLÞ ffi ConðL	 LÞ

defined, for all h 2 ConðLÞ and all a1; a2; b1; b2 2 L; as

follows:

ðha1; a2i; hb1; b2iÞ 2 HðhÞ iff ða1; b1Þ; ða2; b2Þ 2 h:

The inverse map H
1 can be defined, for all h 2
ConðL	 LÞ and all a; b 2 L; as follows: ða; bÞ 2 H
1ðhÞ
iff there are c; d 2 L such that ðha; ci; hb; diÞ 2 h: We are

going to see that the same maps give an isomorphism in

the expanded algebraic signature.

Theorem 2.3 Let L ¼ hL;u;t; �; n; =i be a residuated

lattice whose associated product residuated bilattice is

L	 L ¼ hL
 L;^;_;�;�;�;�;:i: Then ConðLÞ ffi
ConðL	 LÞ:

Proof We already know that the congruences of the re-

duct hL;u;ti are isomorphic to those of

hL
 L;^;_;�;�;:i:

So we just need to check that a relation h 2 ConðhL;u;tiÞ
is compatible with the operations h�; n; =i if and only

if HðhÞ is compatible with h�;�i: Assume then that

h 2 ConðLÞ and ðha1; a2i; hb1; b2iÞ; ðhc1; c2i; hd1; d2iÞ 2
HðhÞ; which by the definition of H means that

ða1; b1Þ; ða2; b2Þ; ðc1; d1Þ; ðc2; d2Þ 2 h:

We have to prove that

ðha1; a2i � hc1; c2i; hb1; b2i � hd1; d2iÞ 2 HðhÞ:

Applying the definitions, this amounts to proving that

ðha1nc1; c2 � a1i; hb1nd1; d2 � b1iÞ 2 HðhÞ;

i.e., that ða1nc1; b1nd1Þ; ðc2 � a1; d2 � b1Þ 2 h: Then the

result easily follows using the compatibility of h with the

operations � and n: The same reasoning shows that HðhÞ is

compatible with the operation � :

Conversely, assume h 2 ConðL	 LÞ and

ða1; a2Þ; ðb1; b2Þ 2 H
1ðhÞ:

This means that there are c1; c2; d1; d2 2 L such that

ðha1; c1i; ha2; c2iÞ; ðhb1; d1i; hb2; d2iÞ 2 h

and we have to prove that ða1Hb1; a2Hb2Þ 2 H
1ðhÞ
for any operation H 2 f�; n; =g: From the assumption that

h 2 ConðL	 LÞ it follows that ha1;c1i � hb1;d1i ¼
ha1nb1;d1 � a1ih ha2nb2;d2 � a2i ¼ ha2;c2i � hb2;d2i which

implies that ða1nb1;a2nb2Þ 2 H
1ðhÞ: The same reasoning,

using the compatibility of h with the operation �; shows

that ða1=b1;a2=b2Þ 2 H
1ðhÞ: To prove that

ða1 � b1; a2 � b2Þ 2 H
1ðhÞ;

notice that ðha1; c1i; ha2; c2iÞ 2 h implies

ðhc1; a1i; hc2; a2iÞ 2 h

because h is compatible with the bilattice negation.

Then we have that hb1; d1i � hc1; a1i ¼ hb1nc1; a1 �
b1ih hb2nc2; a2 � b2i ¼ hb2; d2i � hc2; a2i which, using

again compatibility with negation, implies that

ðha1 � b1; b1nc1i; ha2 � b2; b2nc2iÞ 2 h:

Now we just apply the definitions to conclude that

ða1 � b1; a2 � b2Þ 2 H
1ðhÞ:
As we have seen in the previous section for bilattices, the

above result implies that any property that depends on the

lattice of congruences (congruence-distributivity, congru-

ence-permutability, etc.) transfers from residuated lattices to

product residuated bilattices; also, the subdirectly irreducible

algebras of the two classes are in one-to-one correspondence.
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3 Residuated bilattices

We are now going to introduce a class of bilattices that will

be proved to coincide up to isomorphism with those that

can be obtained trough the construction described in the

previous section.

Definition 3.1 A residuated bilattice is an algebra

B ¼ hB;^;_;�;�;�;�;:i

such that hB;^;_;�;�;:i is an interlaced bilattice and the

following equations and quasi-equations are satisfied:

x � ðy ^ zÞ � ðx � yÞ ^ ðx � zÞ ðRB1Þ
ðx _ yÞ � z � ðx � zÞ ^ ðy � zÞ � ðx� yÞ � z ðRB2Þ
ðx ^ yÞ � z � ðx � zÞ ^ ðy � zÞ ðRB3Þ
x � ðy _ zÞ � ðx � yÞ ^ ðx � zÞ � x � ðy� zÞ ðRB4Þ
x � ðy� zÞ� kðx � yÞ � ðx � zÞ ðRB5Þ
ðx� yÞ � z� kðx � zÞ � ðy � zÞ ðRB6Þ
ðx � yÞ � ð:x � :yÞ � ðx � yÞ ^ ð:x � :yÞ ðRB7Þ
x! ðy! zÞ � :ðx! :yÞ ! z ðRB8Þ

x� t x� ðy � zÞ , y� t y� ðz � xÞ
, ðx � :yÞ � :z� t x � :y

ðRB9Þ

where x! y is an abbreviation for ðx � yÞ ^ ð:x � :yÞ:
We shall also use the following abbreviations:

x y :¼ :x! :y

x � y :¼ :ðy! :xÞ:

We denote by ReBiLat the class of residuated bilattices,

which is by definition a quasi-variety (in the next section

we are going to see that it is in fact a variety).

Our next aim is to show that any residuated bilattice can

be represented via the construction introduced in Definition

2.1. Let B ¼ hB;^;_;�;�;�;�;:i be a residuated bi-

lattice. We define the relation * as follows:

� :¼ fha; bi 2 B
 B : a� b ¼ a _ bg:

An alternative but equivalent definition is the following

(see Bou and Rivieccio 2011, Proposition 3.6):

� :¼ fha; bi 2 B
 B : a� b ¼ a ^ bg:

This relation was studied in Bou and Rivieccio (2011), and

Rivieccio (2010) in order to prove the representation the-

orem for interlaced bilattices. It was shown in Bou and

Rivieccio (2011, Proposition 3.8) that * is a congruence of

the reduct hB;^;_;�;�i of any interlaced bilattice B: We

are now going to see that * is also compatible with the

operations h�;�;�i:We shall need the following properties.

Proposition 3.2 Let B 2 ReBiLat and a; b; c 2 B: Then

(i) if a� t b; then c � a� t c � b and b � c� t a � c

(ii) if a� t b; then a � c� t b � c and c � b� t c � a

(iii) if a� k b; then c � a� k c � b and a � c� k b � c

(iv) if a ^ b ¼ a� b; then a � c ¼ b � c and c � a ¼
c � b

(v) a � b�:ðb � :aÞ
(vi) a � ðb � cÞ ¼ ða � bÞ � c:

Proof (i) Assume a� t b: Then, by (RB1), c � a ¼ c �
ða ^ bÞ ¼ ðc � aÞ ^ ðc � bÞ� t c � b: By (RB2) we

have b � c ¼ ða _ bÞ � c ¼ ða � cÞ ^ ðb � cÞ� t a � c:

(ii) Assume a� t b: Then, by (RB3), a � c ¼ ða ^ bÞ �
c ¼ ða � cÞ ^ ðb � cÞ� t b � c: By (RB4) we have c�
b¼ c�ða_bÞ¼ ðc� aÞ^ðc� bÞ� t c� a: (iii) Assume

a� k b: Then by (RB5) c� a¼ c�ða�bÞ� k ðc� aÞ�ðc�
bÞ: The same reasoning, using (RB6) instead of (RB5),

shows that a� c� k b� c: (iv) Assume a^b¼ a�b: Then,

by the absorption laws, a_ða�bÞ¼ a_ða^bÞ¼ a:

Applying (RB2), we have

a � c ¼ ða _ ða� bÞÞ � c

¼ ða � cÞ ^ ðða� bÞ � cÞ

¼ ða � cÞ ^ ða � cÞ ^ ðb � cÞ

¼ ða � cÞ ^ ðb � cÞ:

Hence, a � c� t b � c and, by symmetry, we obtain a �
c ¼ b � c: To prove that c � a ¼ c � b; we reason in the

same way, using (RB4) instead of (RB2). (v) By (RB7) we

have that, for all a; b 2 B;

ðb � :aÞ � ð:b � aÞ ¼ ðb � :aÞ ^ ð:b � aÞ:

Negating both sides of this equality and applying De

Morgan laws, we obtain

:ðb � :aÞ � :ð:b � aÞ ¼ :ðb � :aÞ _ :ð:b � aÞ

which means that :ðb � :aÞ�:ð:b � aÞ: Since * is a

congruence of the bilattice reduct of B; this implies that

:ðb � :aÞ ¼ :ðb � :aÞ _ :ðb � :aÞ
�:ðb � :aÞ _ :ð:b � aÞ:

Using De Morgan laws it is easy to check that a � b ¼
:ðb � :aÞ _ :ð:b � aÞ and this concludes our proof;

(vi) Applying the definition of �, we have

a � ðb � cÞ ¼ :ð:ðc! :bÞ ! :aÞ
¼ :ðc! ðb! :aÞÞ
¼ :ðc! ::ðb! :aÞÞ
¼ ða � bÞ � c:
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Proposition 3.3 For any residuated bilattice

B ¼ hB;^;_;�;�;�;�;:i

the relation * is a congruence of the reduct

hB;^;_;�;�;�;�i

and is compatible with the operation �:

Proof We have to check compatibility with the opera-

tions h�;�; �i: Given a; b; c; d 2 B; assume a * b and c

* d. Then, as observed above, we have that a ^ b ¼ a� b

and c ^ d ¼ c� d: Note also that, by Proposition 3.2 (iv),

b � d ¼ a � d: We have then

ða � cÞ ^ ðb � dÞ ¼ ða � cÞ ^ ða � dÞ by hyp.

¼ a � ðc ^ dÞ by (1)

¼ a � ðc� dÞ by hyp.

� kða � cÞ � ða � dÞ Prop. 3.2 (iii)

¼ ða � cÞ � ðb � dÞ by hyp.

Hence a � c� b � d: A similar argument allows to

conclude that a � c� b � d: To prove that a � c� b � d;

note that it is sufficient to show that :ðc � :aÞ�:ðd �
:bÞ: This is so because by Proposition 3.2 (v) we have that

a � b�:ðb � :aÞ for all a; b 2 B: By the assumptions and

Proposition 3.2 (iv), we have that

:ðc � :aÞ _ :ðd � :bÞ ¼ :ðc � :aÞ _ :ðc � :bÞ
¼ by De Morgan laws

¼ :ððc � :aÞ ^ ðc � :bÞÞ
¼ by (RB1)

¼ :ðc � ð:a ^ :bÞÞ
¼ by De Morgan laws

¼ :ðc � :ða _ bÞÞ
¼ by the assumptions

¼ :ðc � :ða� bÞÞ
¼ by De Morgan laws

¼ :ðc � ð:a� :bÞÞ
¼ by (RB5)

� k :ððc � :aÞ � ðc � :bÞÞ
¼ by De Morgan laws

¼ :ðc � :aÞ � :ðc � :bÞ:

Hence, the result easily follows using the interlacing

conditions.

Using the previous results, let us prove that some more

useful properties hold.

Proposition 3.4 Let B 2 ReBiLat and a; b 2 B: Then:

(i) a� regðaÞ
(ii) a� b iff regðaÞ ¼ regðbÞ
(iii) regða ^ bÞ ¼ regða� bÞ ¼ regðaÞ � regðbÞ
(iv) regða _ bÞ ¼ regða� bÞ ¼ regðaÞ � regðbÞ
(v) regða � bÞ ¼ regðregðaÞ � regðbÞÞ
(vi) regða � bÞ ¼ regðregðaÞ � regðbÞÞ
(vii) regða�bÞ¼regðregðaÞ�regðbÞÞ¼regðregðaÞ�bÞ¼

regða�regðbÞÞ¼regð:ðb�:aÞÞ¼regð:ð:b�aÞÞ
(viii) regðaÞ� k regðbÞ iff a� t a� b.

Proof For a proof of items (i)–(iv), we refer the reader

to Bou and Rivieccio (2011) or Rivieccio (2010, Prop-

osition 2.2.5). Items (v), (vi) and the first three equali-

ties of (vii) follow easily from (i), (ii) and the fact that

* is compatible with the operations h�;�;�i: The

last two equalities of (vii) follow easily from Proposi-

tion 3.2 (v). As to (viii), note that regðaÞ� k regðbÞ if

and only if

regðaÞ ¼ regðaÞ � regðbÞ ¼ regða� bÞ:

By (ii), this is equivalent to a ^ ða� bÞ ¼ a� ða� bÞ ¼ a;

i.e. a� t a� b:

Now, given a residuated bilattice

B ¼ hB;^;_;�;�;�;�; �;:i

we consider the algebra

B� ¼ hRegðBÞ;�;�; �; n; =i

where hRegðBÞ;�;�i is the sublattice of the k-lattice

of B and the operations f�; n; =g are defined, for all a; b 2
RegðBÞ; as follows:

a � b :¼ regða � bÞ

anb :¼ regða � bÞ

a=b :¼ regða � bÞ:

We have the following:

Proposition 3.5 Let B ¼ hB;^;_;�;�;�;�;:i be a

residuated bilattice. Then

(i) a � b ¼ regð:ðb � aÞÞ � regð:ðb � aÞÞ
for all a; b 2 RegðBÞ

(ii) B� is a residuated lattice.
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Proof (i) Let a; b 2 RegðBÞ: Then

a � b ¼ regð:ððb � :aÞ ^ ð:b � aÞÞÞ
¼ because a; b 2 RegðBÞ
¼ regð:ððb � aÞ ^ ðb � aÞÞÞ
¼ by De Morgan laws

¼ regð:ðb � aÞ _ :ðb � aÞÞ
¼ by Proposition 3.4 (iv)

¼ regð:ðb � aÞ � :ðb � aÞÞ
¼ regð:ðb � aÞÞ � regð:ðb � aÞÞ:

(ii) We have seen in Proposition 3.2 (vi) that the

operation � is associative. This implies that the

operation � is also associative, because one has

a � ðb � cÞ ¼ regða � regðb � cÞÞ
¼ regða � ðb � cÞÞ by Prop. 3.4 (vii)

¼ regðða � bÞ � cÞ by associativity of *

¼ regðregða � bÞ � cÞ by Prop. 3.4 (vii)

¼ ða � bÞ � c:

To prove that the operations fn; =g are the residua of �;
assume that a � b� k c for some a; b; c 2 RegðBÞ: By (i) we

have that

a � b ¼ regð:ðb � aÞÞ � regð:ðb � aÞÞ:

Then from the assumptions it follows that regð:ðb �
aÞÞ� k c ¼ regðcÞ and regð:ðb � aÞÞ� k c ¼ regðcÞ: By

Proposition 3.4 (viii), this means that :ðb � aÞ� t :ðb �
aÞ � c and :ðb � aÞ� t :ðb � aÞ � c: From the first

we obtain ðb � aÞ � :c� t b � a and now, applying (9),

we have b� t b� ð:a � cÞ ¼ b� ða � cÞ: Hence, by

Proposition 3.4 (viii),

regðbÞ ¼ b� k regða � cÞ ¼ anc:

Similarly, from :ðb � aÞ� t :ðb � aÞ � c; using (9), we

obtain :a� t :a� ðc � bÞ: Hence a� k regðc � bÞ ¼ c=b:

Conversely, assume for instance that b� k anc ¼
regða � cÞ for some a; b; c 2 RegðBÞ: By Proposition 3.4

(viii) we have b� t b� ða � cÞ and this, by (9), implies

ðb � :aÞ � :c� t b � :a: From this, by the properties of

the bilattice negation, we obtain :ðb � :aÞ� t :ðb �
:aÞ � c: Now we can apply Proposition 3.4 (viii) again to

conclude that regð:ðb � aÞÞ� k c: By a similar reasoning

we obtain regð:ðb � aÞÞ� k c and then, applying the

interlacing conditions, we have

regð:ðb � aÞÞ � regð:ðb � aÞÞ ¼ a � b� k c:

Finally, if a� k c=b ¼ regðc � bÞ; then by Proposition 3.4

(viii) we obtain a� t a� ðc � bÞ: By (9) this is equivalent

to b� t b� ða � cÞ: Now we apply Proposition 3.4 (viii)

again to obtain b ¼ regðbÞ� k regða � cÞ ¼ anc and this

completes the proof.

We are now able to state our main result:

Theorem 3.6 Any residuated bilattice

B ¼ hB;^;_;�;�;�;�;:i

is isomorphic to the product residuated bilattice

B� 	 B�

where B� ¼ hRegðBÞ;�;�; �; n; =i is a residuated lattice,

through the map

i : B! RegðBÞ 
 RegðBÞ

defined, for all a 2 B; as

iðaÞ :¼ hregðaÞ; regð:aÞi:

Proof We know from Bou and Rivieccio (2011,

Proposition 3.13) that there is an isomorphism

i: B! RegðBÞ 
 RegðBÞ

between

hB;^;_;�;�;:i

and

hRegðBÞ;�;�i 	 hRegðBÞ;�;�i:

So we only need to check that this map respects the

operations � and � : Let us denote by �� and �� these

operations in B� 	 B�: As to the first, we have

iða � bÞ ¼
hregða � bÞ; regð:ða � bÞi
by Proposition 2.4 (vi)

hregða � bÞ; regð:b � aÞi
by Proposition 2.4 (vi)

hregðregðaÞ � regðbÞÞ; regðregð:bÞ � regðaÞÞi
by definition

hregðaÞnregðbÞ; regð:bÞ � regðaÞi
by definition

hregðaÞ; regð:aÞi �� hregðbÞ; regð:bÞi
iðaÞ �� iðbÞ:

As to the second, we have
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iða � bÞ ¼
hregða � bÞ; regð:ða � bÞi
by Proposition 2.4 (vi)

hregða � bÞ; regðb � :aÞi
by Proposition 2.4 (vi)

hregðregðaÞ � regðbÞÞ; regðregðbÞ � regð:aÞÞi
by definition

hregðaÞ=regðbÞ; regðbÞ � regð:aÞi
by definition

hregðaÞ; regð:aÞi �� hregðbÞ; regð:bÞi
iðaÞ �� iðbÞ:

We immediately obtain the following:

Corollary 3.7 For any residuated bilattice B;

ConðBÞ ffi ConðB�Þ:

Proof Follows immediately from Theorem 2.3 and

Theorem 3.6.

The isomorphism H : ConðBÞ ffi ConðB�Þ can be

defined, for all h 2 ConðBÞ; as follows (cf. Bou et al. 2011,

Theorem 4.13):

HðhÞ :¼ h \ ðRegðBÞ 
 RegðBÞÞ

and conversely, for all h 2 ConðB�Þ and all a; b 2
B; ða; bÞ 2 H
1ðhÞ iff

ðregðaÞ; regðbÞÞ; ðregð:aÞ; regð:bÞÞ 2 h:

4 Translations

The results of the previous section (Theorem 3.6 and

Corollary 3.7) allow to establish a relationship not only

between residuated bilattices and residuated lattices, but

also between subclasses of them, in particular between the

sub-quasi-varieties of these two classes. Indeed, there is an

easily definable isomorphism between classes of residuated

lattices and classes of residuated bilattices that are closed

under isomorphic images. The isomorphism is established

by the map that sends a class K of residuated lattices closed

under isomorphisms to the class of residuated bilattices

KB :¼ fB : B ffi L	 L for some L 2 Kg

The inverse of this map sends a class K of residuated

bilattices closed under isomorphisms to the class of

residuated lattices

KL :¼ fL : B ffi L	 L for some B 2 Kg:

Both maps are obviously order perserving with respect to

the inclusion order, and since they apply to classes closed

under isomorphisms, it is easy to see that K ¼ ðKBÞL and

K ¼ ðKLÞB: The maps ð:ÞB and ð:ÞL send quasi-varieties to

quasi-varieties and varieties to varieties. In particular, ð:ÞB
maps the variety of residuated lattices to the class of re-

siduated bilattices, thus implying that the latter class is a

variety because the class of residuated lattices is (Galatos

et al. 2007, Theorem 2.7).

We will prove the aforementioned facts by introducing a

procedure to obtain an axiomatization of any class of re-

siduated bilattices definable by first-order sentences from

an axiomatization of the class of residuated lattices asso-

ciated with it by the isomorphism, as well as a procedure to

obtain an axiomatization of any class of residuated lattices

definable by first-order sentences from an axiomatization

of the class of residuated bilattices associated with it by the

isomorphism.

Let T be the set of terms in the language of residuated

bilattices:

h^;_;�;�;�;�; �;:i:

For any u 2 T ; we define the term

regðuÞ :¼ ðu _ ðu� :uÞÞ � :ðu _ ðu� :uÞÞ:

Let S be the set of terms in the language of residuated

lattices: hu;t; n; =; �i:
For every term u 2 S we can define the term u� 2 T
obtained from u by replacing all occurrences of the

symbols u;t; n; =; � respectively, by occurrences of

�;�;�;�; �: This is done inductively as follows: for

any variable x 2 S and all terms u;w 2 S;

x� :¼ x ðunwÞ� :¼ u� � w�

ðu u wÞ� :¼ u� � w� ðu=wÞ� :¼ u� � w�

ðu t wÞ� :¼ u� � w� ðu � wÞ� :¼ u� � w�
:

The translation s : S 
! T is then given by

sðuÞ :¼ regðu�Þ:

We have not included constants in either of the two lan-

guages (0 and 1 for lattices, f; t;? and > for bilattices), but

our translations can be easily extended to these enriched

languages by defining 0� :¼ ? and 1� :¼ >; so we have

that sð0Þ ¼ ? and sð1Þ ¼ >:
Let v be an assignment on a residuated lattice L: We

define the assignment vþ on L	 L as follows:

vþðxÞ :¼ hvðxÞ; vðxÞi:

It is easily seen by induction that, for every u 2 S;

vþðsðuÞÞ ¼ hvðuÞ; vðuÞi:

If v is an assignment on an algebra A and a 2 A; then va
x is

the assignment that maps x to a and every variable y 6¼ x to

v(y). Note that if v is an assignment on a residuated lattice
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L and a 2 L; then the assignment ðva
xÞ
þ

on L	 L satisfies

that ðvþÞha;aix ¼ ðva
xÞ
þ:

Let now w be an assignment on L	 L: For every u 2
T ; denote by wðuÞ1 and wðuÞ2; respectively, the first and

second component of the pair wðuÞ: It is easy to see that,

for every u 2 T ;
wðregðuÞÞ ¼ hwðuÞ1;wðuÞ1i:

It is also easy to check that if w0 is another assignment

on L	 L such that wðxÞ1 ¼ w0ðxÞ1 for every variable

x, then wðregðuÞÞ ¼ w0ðregðuÞÞ for every u 2 T : Let w


be the assignment on L defined by w
ðxÞ :¼ wðxÞ1 for

every variable x. By induction, we have that, for every

u 2 S;
w
ðuÞ ¼ wðu�Þ1:

Then, for every u 2 S;
wðsðuÞÞ ¼ hw
ðuÞ;w
ðuÞi:

Note that if x is a variable and ha; bi 2 L
 L; then

ðwha;bix Þ
 ¼ ðw
Þax :
We extend the translation s to first-order formulas as

follows: for all terms u;w 2 S and all first-order formulas

r; r0 of S;
sðu � wÞ :¼ sðuÞ � sðwÞ

sð� rÞ :¼ � sðrÞ
sðr) r0Þ :¼ sðrÞ ) sðr0Þ

sð9xrÞ :¼ 9xsðrÞ

where the symbols � ;) and 9 denote, respectively,

classical negation, implication and existential quantifier.

We have then the following:

Proposition 4.1 For every first-order formula r of S;

(i) L� r½w
� iff L	 L� sðrÞ½w�; for every assignment w

on L	 L

(ii) L�r½v�iff L	L�sðrÞ½vþ�; for every assignment on L:

Proof (i) By induction. Let w be an assignment on L	 L:

It is clear from the observations above that w
ðuÞ ¼
w
ðwÞ if and only if wðsðuÞÞ ¼ wðsðwÞÞ: Thus (i) holds for

equations. For negations and implications it is immediate

using the inductive hypothesis. Assume it holds for r. We

show that it holds for 9xr: Suppose that L�9xr½w
� and

let a 2 L be such that L� r½ðw
Þax �: Then, note that

ðw
Þax ¼ ðwha;bix Þ
 for every b 2 L: So, using the inductive

hypothesis, we obtain L	 L� sðrÞ½wha;bix �: Therefore, L	
L�9xsðrÞ½w�: Suppose now that L	 L� 9xsðrÞ½w�: Let

a; b 2 L be such that L	 L� sðrÞ½wha;bix �: Then, by

inductive hypothesis, L�r½ðwha;bix Þ
�: Now, since ðw
Þax ¼
ðwha;bix Þ
; we have that L� r½ðw
Þax �: It follows that

L�9xr½w
�: (ii) Follows from (i) because v ¼ ðvþÞ
 for

every assignment v on L:

As a consequence of the previous proposition, we have

the following:

Proposition 4.2 If K is a class of residuated lattices ax-

iomatizable by a set of first-order sentences P; then KB is

the class of residuated bilattices axiomatizable by the set of

sentences s½P� obtained by applying the translation s to the

sentences in P:

Proof If B ffi L	 L and L 2 K; then since every sen-

tence in P is valid in L; every sentence in s½P� is valid in

B: Conversely, if every sentence in s½P� is valid in a re-

siduated bilattice B; then since B ffi L	 L for some re-

siduated lattice L; we have that the sentences in P are valid

on L: Therefore, L 2 K:

Note that if P is a set of equations, then s½P� is also a set

of equations, and if P is a set of quasi-equations, so is s½P�:
Therefore, the map ð�ÞB sends varieties to varieties and

quasi-variaties to quasi-varieties.

Conversely, drawing inspiration from the representation

given in Theorem 3.6, we may define inductively a trans-

lation q : T 
! S 
 S as follows: First of all we make a

partition of the set of variables into two infinite sets and

consider its cartesian product. Then we consider a bijection

h between the set of variables and this cartesian product. If

x is variable, let hðxÞ :¼ hx1; x2i: Then, for any variable

x 2 T and terms u;w 2 T ; we define

qðxÞ :¼ hðxÞ
qð:uÞ :¼ hqðuÞ2; qðuÞ1i

qðu ^ wÞ :¼ hqðuÞ1 u qðwÞ1; qðuÞ2 t qðwÞ2i
qðu _ wÞ :¼ hqðuÞ1 t qðwÞ1; qðuÞ2 u qðwÞ2i
qðu� wÞ :¼ hqðuÞ1 u qðwÞ1; qðuÞ2 u qðwÞ2i
qðu� wÞ :¼ hqðuÞ1 t qðwÞ1; qðuÞ2 t qðwÞ2i
qðu � wÞ :¼ hqðuÞ1nqðwÞ1; qðwÞ2 � qðuÞ1i
qðu � wÞ :¼ hqðuÞ1=qðwÞ1; qðwÞ1 � qðuÞ2i
qðu � wÞ :¼ hqðuÞ1 � qðwÞ1;

ðqðwÞ2=qðuÞ1Þ u ðqðwÞ1nqðuÞ2Þi

where for any formula u we use the convention to refer by

qðuÞ1 to the first member of the pair qðuÞ and by qðuÞ2 to

the second member, so that

qðuÞ ¼ hqðuÞ1; qðuÞ2i:

If we want to include constants in the language, then we let

qðfÞ :¼ h0; 1i qðtÞ :¼ h1; 0i
qð?Þ :¼ h0; 0i qð>Þ :¼ h1; 1i:
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We extend the translation q to first-order formulas in the

language of residuated bilattices as follows: for all terms

u;w 2 T and all every first-order formulas r; r0 of T ;

qðu � wÞ :¼ qðuÞ1 � qðwÞ1 and qðuÞ2 � qðwÞ2
qð� rÞ :¼ � qðrÞ

qðr) r0Þ :¼ qðrÞ ) qðr0Þ
qð9xrÞ :¼ 9x1x2qðrÞ; where hðxÞ ¼ hx1; x2i:

Let L be a residuated lattice and v an assignment on

L	 L: We define the assignment v� on L as follows. Let

x 2 T be a variable and hðxÞ ¼ hx1; x2i: If vðxÞ ¼ ha1; a2i;
we set

v�ðx1Þ :¼ a1 and v�ðx2Þ :¼ a2:

Since every variable is the first or second component of

h(y) for some variable y 2 T ; we have indeed defined an

assignment. By induction it follows that, for every u 2 T ;
vðuÞ ¼ hv�ðqðuÞ1Þ; v�ðqðuÞ2Þi: ð4:1Þ

Let us now assume that w is an assignment on L: We

define the assignment w� on L	 L as follows:

w�ðxÞ :¼ hwðx1Þ;wðx2Þi

for every variable x 2 T ; where hðxÞ ¼ hx1; x2i: Then

clearly ðw�Þ� ¼ w: Thus, have the following:

Proposition 4.3 For every first-order formula r of T ;

(i) L	 L� r½v� iff L� qðrÞ½v�� for every assignment v on

L	 L

(ii) L	 L� r½w�� iff L� qðrÞ½w� for every assignment w

on L:

Proof (ii) follows from (i) taking into account that if w is

an assignment on L; then ðw�Þ� ¼ w: We prove (i) by

induction. For equations it easily follows using (4.1).

Applying the inductive hypothesis it is straightforward to

see that it holds for negations and implications. Assume it

holds for r: We prove that it holds for 9xr: Suppose that

L	 L� 9xr½v�: Then L	 L�r½vha;bix � for some a; b 2 L:

So, by inductive hypothesis, L� qðrÞ½ðvha;bix Þ��: Now note

that ðvha;bix Þ� ¼ ðv�Þa;bx1;x2
: So, L� qðrÞ½ðv�Þa;bx1;x2

� and there-

fore L� 9x1x2qðrÞ½ðv�Þ�; i.e. L� qð9xrÞ½v��: Conversely, if

L�qð9xrÞ½v��; then L� qðrÞ½ðv�Þa;bx1;x2
� for some a; b 2 L;

and so L� qðrÞ½ðvha;bix Þ��: Therefore, by inductive hypoth-

esis, L	 L� r½vha;bix �; which implies L	 L� 9xr½v�:

As a consequence of the previous proposition, we have

the following:

Proposition 4.4 If K is a class of residuated bilattices

axiomatizable by a set of first-order sentences P; then the

class KL is the class of residuated lattices axiomatizable by

the set of first-order sentences q½P� obtained from P by

applying the translation q to the sentences in P:

Note that if P is a set of equations, then q½P� can be

taken as a set of equations too, and if P is a set of quasi-

equations, then q½P� can be taken a set of quasi-equations.

Therefore, the map ð:ÞL sends varieties to varieties and

quasi-variaties to quasi-varieties.

In Bou et al. (2011, Section 5) the correspondence

between a number of quasi-varieties of lattices and bi-

lattices is extended to a categorical equivalence between

corresponding categories (see also Rivieccio 2010, Sec-

tion 5.6). The definition of the categories is in all cases

the natural one, i.e. the objects of the category are alge-

bras of the corresponding class of lattices or bilattices and

the morphisms are algebraic homomorphisms. This result

can be straightforwardly generalized, using the same

definitions for categories and functors, to the context of

residuated lattices and bilattices, thus establishing cate-

gorical equivalences between all the sub-quasi-varieties

of residuated lattices and all the sub-quasi-varieties of

residuated bilattices. We will not pursue this here, but it

is not difficult to see that all the relevant proofs of Bou

et al. (2011) can be straightforwardly adapted to the

present setting.
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