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(Under the Direction of Munshi Rahman) 

ABSTRACT  

 

Due to the geographical setting, the Lakshmipur district of Bangladesh experiences adverse 

effects of global climate change that include but are not limited to natural disasters such as 

tropical cyclones, storm surges, coastal flooding, and riverbank erosion. While riverbank erosion 

is an implicit impact of climate change, it directly affects human settlements, agricultural 

activity, and the overall livelihoods of people in this area. Examining the spatiotemporal changes 

in land cover and population due to riverbank erosion in this region could help us better 

understand the dynamics of human-environmental relations. This study aimed to classify land 

cover for every five years from 2001-2021, examine land cover changes in this area from 2001-

2021, map populations in Lakshmipur district for every five years from 2001-2021, and estimate 

population displacement due to riverbank erosion every five years from 2001-2021. Landsat 5 

TM 30 m satellite Imagery from 2001-2011 and Landsat 8 OLI 30 m resolution Imagery from 

2016-2021 were used to classify landcover and observed landcover changes from 2001-2021. 

We classified Imagery using the smile random forest classifier in Google Earth Engine and 

calculated landcover change using the Change Detection Wizard in ArcGIS Pro 3.0. The overall 

classification accuracies range between 79.04% to 87 %. Our landcover change result suggests 

that from 2001-2021 fallow land/agricultural land has lost the largest area of land, 341.81 sq km, 

to homestead forest and waterbody among all the classes.  To map populations vector and raster-



 

based dasymetric mapping approaches were used. The vector and raster-based binary dasymetric 

mapping and population displacement calculation were carried out in ArcGIS Pro 3.0. The 

findings suggest that the lowest number of population displacements (1844 people using vector-

based approach and 5241 raster-based approach) happened from 2001-2006, and the highest 

number (86107 people using vector-based approach, 63453 using raster-based approach) were 

displaced between 2016-2021. 

INDEX WORDS: Landcover Change, Population Mapping, Google Earth Engine, Riverbank 

Erosion, Dasymetric mapping, Population displacement, Lakshmipur District, Bangladesh.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Purpose of the Research 

Riverbank erosion impacts both the natural and human environment (Islam et al., 2023; 

Rahman et al., 2020), causing loss of land, loss of infrastructure, the displacement of people, and 

significant alterations to local livelihoods (Alam et al., 2017). While previous research works 

(Islam et al., 2023; Ritu et al., 2023; Mallik et al., 2023) are mainly concentrated on the 

landcover change due to coastal and riverbank erosion, estimating population displacement along 

landcover change is important to account for the impacts of riverbank erosion on both the natural 

and human environment. Therefore, this study focuses on landcover classification, land cover 

change, and estimates population displacement due to riverbank erosion.  

Population data published by the census bureaus are often data that are aggregated at the 

administrative boundary level and do not match the geographical extent of hazards (Mennis, 

2015), limiting the scope of estimating hazard-struck populations. For instance, the number of 

people being displaced due to an estimated 1km of shoreline shift, as a consequence of riverbank 

erosion, is difficult to identify using choropleth map as choropleth maps are produced based on 

census data that distributes population evenly within an administrative boundary. Besides, as 

census data are aggregated at administrative boundaries, they do not provide actual 

representations of where people live (Wu & Murray, 2005; Liu, 2003). As a result, using 

choropleth map produces erroneous estimation. Given that, estimating the number of affected 

people by natural hazards requires a population distribution map that represents where people 
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live and can be superimposed with the geographic extent of the hazard to estimate affected 

populations. 

Although several readily available global population datasets, for instance, World Pop 

(www.worldpop.gov) and Landscan (www.landscan.org), enable small-area population 

estimation, this research attempts to develop population maps integrating local knowledge with 

geospatial techniques. Our effort involves producing population maps that are representative of 

on-ground population distribution. Producing such maps is instrumental in estimating the number 

of people being relocated due to riverbank erosion. This information is key to disaster planning, 

preparedness, mitigation, and policy formulation. 

1.2 Background 

Globally, the coastal regions are vulnerable to climate change-related events such as sea 

level rise, cyclones, storm surges, saltwater intrusion, and coastal erosion (Nicholls et al., 2007; 

Islam et al., 2015). Low-lying deltas are likely to be significantly affected by the climate change 

impacts, especially sea level rise (Nicholls, 2004; Weisse et al., 2014) due to their natural 

subsidence, reduced sediment deposition caused by construction of artificial dams in the upstream, 

tectonic plate movement and other geomorphological and anthropogenic stresses (Nicholls, 2007). 

Bangladesh is a low-lying delta facing toward the Bay of Bengal with more than 700 km of 

coastline (Haque et al., 2012). Being part of the Bengal Basin, one of the world's largest geo- 

synclinals (Karim et al., 2008), the country is prone to natural subsidence, experiencing a 2.2 cm 

yearly subsidence rate (Alam, 1996). Only 10 percent of the country is above 1m mean sea level 

(Karim et al., 2008). Sea level rise is considered one of the reasons for erosion and shoreline 

changes in coastal regions (Prasad & Kumar, 2004). Bangladesh lost 1368 sq km from 1973-2016 
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due to coastal erosion; however, at the same time, 2815.5 sq km has been gained by accretion 

(Hassan et al., 2017). Besides the coastline, inland coastal areas also experience the adverse effects 

of climate change that trigger riverbank erosions and saltwater intrusion (Armah et al., 2005). 

According to Alam et al. (2017), riverbank erosion in Bangladesh takes away an average 

of 34 square miles (88 square km) of homestead and farmland annually. The three large rivers 

called Ganges, Brahmaputra, and Meghna originate in the Himalayas, enter Bangladesh, and 

merge into the Bay of Bengal through the single outlet of the lower Meghna River (Curtis et al., 

2018). During the monsoon flood periods, 138,700 m3/s of water is discharged through the lower 

Meghna estuary, the highest in the world (Crawford et al., 2019). Analyzing the erosion rate and 

braiding index, Mahmud et al. (2020) found that from 1988 to 2017, the lower Meghna estuary 

widened by 49 percent, increasing in width from 8.7km to 13km, which indicates a significant 

amount of erosion happened over the years. 

Lakshmipur district, situated on the eastern bank of the lower Meghna estuary (Figure 1.1), 

is prone to riverbank erosion due to its location on the Bay of Bengal terminus (Crawford et al., 

2020; Paul et al., 2022). Crawford et al. (2021) found that the region experienced 90 meters of net 

shoreline movement from 1988 to 2018 when the sea level rise rate was 5.7 mm/year (Sarwar, 

2013), possibly one of the significant factors that aggravated the erosion event (Crawford et al., 

2020). As a consequence of riverbank erosion, the region experienced significant repercussions 

that include the loss of households, infrastructure, communication systems, population 

displacement, degradation of agricultural land, and impacts on household livelihoods (Islam et al., 

2023).  
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Several studies (Crawford et al., 2020; Paul et al., 2020; Crawford et al., 2021; Rahman et 

al., 2021; Paul et al., 2022) have explored the shoreline movement and associated household 

relocation in the subdistricts of Lakshmipur. Islam et al. (2023) studied shoreline movement 

landcover change in the Ramgati and Kamalnagar subdistricts of Lakshmipur district. Hasnat et 

al. (2016) studied the impact of climate change on agriculture and peoples' adaptive strategies in 

Lakshmipur and Kamalnagar subdistricts. To the best of our knowledge, based on published 

literature, no studies have quantified the landcover change in the entire Lakshmipur district and 

estimated the number of population dislocations due to riverbank erosion to date. Therefore, our 

study aims to fill the research gap by examining land cover change and quantifying population 

displacement due to riverbank erosion in the Lakshmipur district using a geospatial approach. 

Estimating the number of displaced populations helps identify vulnerable coastal 

communities to address the human-environmental issues that the communities experience. Using 

traditional field survey methods (e.g., household surveys) to count displaced populations could be 

time-consuming and costly. Due to the advancement of geospatial science, remote sensing-based 

population estimation methods have gained popularity for cost efficiency, flexible methodology, 

and rapid data production capacity (Hossain et al., 2015). Instead of counting the population, 

researchers have been using remote sensing-derived proxies such as night light, road density, land-

use classes, and building footprints to estimate the population (Lo, 1995; Mennis, 2003; Mennis, 

2004; Mennis, 2006; Langford, 2006; Fan et al., 2014; Roni & Jia, 2020). For example, previously 

produced global population datasets that use remote sensing-based proxies include the Landscan 

global population dataset (landscan.ornl.gov) 1km resolution, Global Rural-Urban Mapping 

Project (GRUMP) (sedac.ciesin.columbia.edu), 1km resolution, Worldpop (www.worldpop.org) 

resolution 100m -1km, project. These data sets are great resources; however, they often lack clarity 
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of method and proper ancillary data source for small area population estimation in the rural areas 

of developing countries, where spatial census data are unavailable, and indicators of human 

footprint are different from those of developed countries. 

For instance, GRUMP published 1km global gridded population data utilizing nighttime 

light processed by the National Centers for Environmental Information (www.ngdc.noaa.gov), 

formerly known as the U.S. National Geophysical Data Center (NGDC), as a proxy of human 

footprint for urban areas. Using nighttime light data as a proxy for human settlement in both urban 

and rural areas is problematic, especially in developing countries such as Bangladesh, where rural 

areas are not luminous during nighttime. Besides, these datasets are in coarse resolution and 

suitable for global or subcontinental scale analysis (Hoffman et al., 2019). Therefore, population 

mapping in finer spatiotemporal resolution is crucial to better understand where people live.  

Sentinel-2 Multispectral imagery (MSI) and very high resolution 3-5m Planetscope 

imagery can be effective in mapping rural settlements and disaggregating census populations to 

those areas. However, the unavailability of freely available historical satellite Imagery limits the 

opportunity to use sentinel and planet scope Imagery. Using freely available Landsat 30 m imagery 

settlement mapping is challenging in rural Bangladesh as rural settlements are hard to identify in 

30 m Landsat imagery due to dense canopy cover (Islam et al., 2023). In that case, homestead 

forests, canopies planted at household premises, can be considered as a proxy for human settlement 

(Figure 1.2) to estimate the population as an alternative to human settlements. Prior studies that 

mapped populations are primarily in urban (Eicher & Brewer, 2001; Lo, 2003; Mennis, 2003; 

Mennis, 2004; Mennis, 2009) where satellite imagery encounters less interference to identify 

human settlement and proxies of human settlements such as night light, impervious surface. 

Considering rural Bangladesh's geographic and socio-economic context, the homestead forest is a 
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better representation of human footprints as 30 m resolution Landsat Imagery fails to differentiate 

settlements due to canopy cover. One study by Hoffman et al. (2019) mapped the location of rural 

settlements in Rakhine, Myanmar using Landsat 30 m Imagery. The authors used distance to burnt 

areas as an indicator of human activities in rural areas of Rakhine, Myanmar, to map settlements. 

They assumed that burning activity was abnormal in deciduous tropical forest ecology; thus, 

burning activities in Rakhine rural areas indicated human activity, such as burning crop residues. 

Therefore, in the context of our study area, using homestead forests as an indicator of human 

settlements can be effective in the absence of any other suitable auxiliary data pertaining to human 

activities.  

Saha (2016) explored the relationship between homestead tree species and farmers' socio-

economic condition in Chandpur district, also situated on the eastern bank of the lower Meghna 

estuary in the north of Lakshmipur. The authors concluded homestead size has a moderate positive 

relationship with homestead forests. These findings support our assumption that the homestead 

forests in Lakshmipur represent human settlements as Lakshmipur and Chandpur Districts are 

situated close to one another and represent similar socio-cultural contexts. However, this 

assumption has some inherent limitations; for instance, the extent of homestead forests and 

settlements is not always equal; transferring population in those areas might result in erroneous 

estimation as areas of homestead forests might be, in some cases, larger than the areas of 

settlements. However, considering the difficulty of identifying the human settlements from 

homestead forests in moderate-resolution satellite imagery, we choose homestead forests to 

indicate settlements in the Lakshmipur district. Therefore, this study attempts to create small area 

population maps for the Lakshmipur District using the homestead forest as a proxy, which will 
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eventually help us estimate the number of displaced people every five years from 2001-2021 due 

to riverbank erosion. 

1.3 Remote Sensing in Population Estimation 

The use of remote sensing technology and geospatial data in population estimation started 

in 1950(Lo & Welch, 1977). At that time, the product of average household size based on census 

data and the number of housing settlements derived from aerial Imagery were used to estimate 

the population of a particular area (Lo, 1986). Although this method was accurate in estimating 

the population in smaller areas, this approach was laborious and unsuitable for estimating the 

population of larger areas due to its dependency on the visual identification of settlements than 

the classification of aerial Imagery using any raster-based computer software (Wang & Li, 

2018).  

With the advancement of remote sensing technology and the availability of satellite 

imagery, researchers started using radiance/reflectance values, extracted through digital image 

processing techniques, to estimate population using regression models instead of manually 

counting human settlements and multiplying them with average household size. Iisaka and 

Hegedus (1982) used the correlation between radiance values and population density using a 

regression equation between population density and spectral reflectance value to estimate the 

population density of the Kanto area (including Tokyo Metropolitan). The authors estimated the 

population density of 500×500 meter meshes using the relationship between population density 

at census units and radiance values across urban areas. One of the significant difficulties of this 

process was correlating reflectance/ radiance values from human settlements and urban areas 

directly to the population density. In 1995, Lo estimated population and dwelling units in 44 



20 
 

tertiary planning units (TPUs) in Kowloon, Hong Kong. This study used a combined method that 

included spectral radiance of image pixels and pixel counts for residential classes using SPOT 

multispectral satellite imagery. The author developed four regression equations using the 

stepwise linear regression method with the following independent variables: average of SPOT 

bands 1, 2, and 3; average of SPOT band three alone; percentages of pixels classified as high and 

low-density residential use in each TPU; percentage of pixels classified as high-density 

residential use in each TPU. By multiplying the estimated population density and dwelling unit 

density with the area of each TPU, the population in each TPU and dwelling unit was obtained. 

The study validated its result with actual population count and dwelling units on the ground and 

that calculating dwelling units was more accurate than calculating population. Besides, pure 

pixels in the residential land use classes are crucial to estimating the population accurately (Lo, 

1995). 

1.4 Areal Interpolation Techniques 

In contrast to the abovementioned methods, where the population is estimated directly by 

using parameters estimated from regression analysis of population density and land use classes, 

in a dasymetric method, the census populations are spatially disaggregated on a finer scale than 

the parent source, usually census unit, using the relationship between population density and land 

use classes or other ancillary remote sensing data. Dasymetric mapping is a form of areal 

interpolation technique to disaggregate census-level populations among known inhabitable areas 

using ancillary data (Mennis, 2009). The idea of disaggregating population from parent source to 

target source came from the areal interpolation technique, which uses areal weight derived from 

area ratio and multiplies with the population density, previously used to disaggregate population 

data into finer scale without ancillary remote sensing or geospatial data (Mennis, 2003). As an 



21 
 

improvement of the assumptions of the areal weighting, the dasymetric mapping technique 

gained popularity among geographers as a means of population estimation over the past three 

decades. Although dasymetric mapping is applicable to estimate any statistical surface data, such 

as earth surface elevation or air pressure, research works in dasymetric mapping have focused 

mainly on population, particularly in disaggregating available census population data to make 

estimates over small areas where census population data are not available. This technique is 

reliable as the relationship between the variable of interest and the ancillary data provides 

robustness in estimating low- and high-density areas (Eicher & Brewer, 2001). 

Mennis (2009) reviewed traditional and statistical cartographical techniques of 

dasymetric mapping and explained that the traditional cartographic techniques are binary, three-

class, and limiting variables. The most widely used technique, binary dasymetric mapping, uses 

an area class map as ancillary data classified as habitable and inhabitable areas (e.g., habitable 

built-up area, not habitable water body) to redistribute the population of the parent map. As a 

result, the new map shows the nonuniformity of population density within the area of interest 

that was previously homogeneous for equally distributed populations in habitable and non-

habitable areas. Alternatively, land use maps with three or more classes can be used, with 

different population percentages assigned to different land use categories. For example, 

considering the total population as 100 percent, in a three-class dasymetric mapping technique, 

70 percent of the population is distributed in urban areas, 10 percent near forestlands, and 20 

percent in rural areas. When the binary and three-class methods distribute population without 

creating a threshold for land use classes, the limiting variable method developed by McCleary 

(1969) is a method of redistributing population into target zones when maintaining the maximum 
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density threshold for area classes. This method iterates distributing the population among zones 

according to their threshold value until each zone is below the threshold level.  

Researchers have used regression-based approaches to identify the weights of different 

land use classes in the dasymetric mapping method (Roni et al., 2020; Harvey, 2002). Instead of 

assigning arbitrary weight to the areal class, regression estimates the relationship between 

ancillary data and population. The most explored relationships between ancillary data and 

population distribution are population and urban areas, land use, road density, imperviousness, 

and other physical, e.g., elevation or socio-economic characteristics. For example, using 

multispectral satellite Imagery, studies identified a proportional relationship between population 

growth rate and urban residential areas (Lo & Welch, 1977). Initially, research works (Lo, 1995; 

Harvey, 2002) used radiance values to identify the built-up residential areas. Later, a volume of 

research works (Sutton et al., 1997; Prosperie & Eyton, 2000; Lo, 2002) used the Defense 

Meteorological Satellite Program Operational Linescan System (DMSP-OLS) satellite nighttime 

Imagery to identify urban residential areas using regression models. The second type of 

relationship is land-use classes and population distribution. Identifying the varying degree of 

correlation between population distribution and different land use classes using regression 

equations, researchers distributed the population based upon the coefficient values into target 

zones (Weber, 1994; Lo, 2003). Imperviousness is another highly correlated variable with 

population distribution in urban areas. Sutton et al. (2009) found impervious surfaces (e.g., 

Roads, buildings, parking lots) as positive correlators of human footprints in urban areas. 

The relationship between ancillary data, such as land-use classes, road density, 

imperviousness, and nighttime light data, are used as exploratory variables to estimate the 

relationship between population density and those ancillary classes. Then, the parameter of the 
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regression equation is used as a weight for different regions in the target zones. Although this 

method is seemingly effective for estimating the population, the problem of a negative parameter 

in the regression model can indicate a negative population estimation.  

For example, when regressed against population density, residential, commercial, and 

industrial land use classes provide positive parameters, whereas agriculture and forests might 

provide negative parameters. This problem was first addressed by Yuan et al. (1997). The 

authors suggest that the solution to this problem is shifting the regression line to the origin and 

scaling the estimated density to fit with the original choropleth zone counts. In other words, to 

offset the negative parameter from the regression equation, the absolute value of the negative 

parameter is added to all the parameters, including the negative parameter. This results in zero 

parameters for the land use class that had a negative coefficient previously. As a result, a zero 

population will be assigned to that land use class. However, adding the absolute value of the 

negative coefficient to the other parameters does not change the relative proportion between 

them, as all the parameters are being increased by equal value; as a result, the regression 

equation consists of all positive values, and the ratio between all the parameters stays the same 

before adjustment (Yuan et al., 1997). Later, Liu et al. (2008) made further improvements to a 

regression-based analysis by accounting for the spatial dependencies of the regression residual 

using area-to-point residual kriging. The authors used Root Mean Square Error (RMSEs) and 

Mean Absolute Error (MAE) values to observe the difference between the estimated and 

observed population in block level population and observed reduction of error values when 

opting for area-to-point residual kriging. 

Recent studies have worked on improved population estimation methods using numerous 

geospatial and remote sensing datasets as ancillary data. For example, Stevens et al. (2015) used 
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semi-automatic dasymetric modeling using land cover types, MODIS-derived net primary 

productivity (NPP), and nighttime lights as ancillary data. The authors used a random forest 

algorithm to identify the contribution of these variables to population distribution weighting. 

Deriving the weights from the random forest technique, they applied them in dasymetric 

mapping. They used root mean square (RMSE) values to identify the error level in the 

dasymetric map. Su et al. (2010) developed multilayer multiclass dasymetric mapping to divide 

the regional population into smaller spatial areal units in the Taipei metropolitan area of Taiwan. 

The supporting information, such as remote sensing Imagery, land-use zoning, geography, 

transportation, and facility accessibility, was added in a hierarchical sequence according to how 

it correlated to the characteristics of population distribution. For instance, the regions were 

initially divided into building and nonbuilding areas using remotely sensed SPOT satellite 

Imagery, and then the layer was divided based on land-use zoning. Grippa et al. (2019) used the 

random forest technique to disaggregate census populations in urban areas. They used the 

random forest technique with both moderate and high-resolution satellite Imagery to prepare 

dasymetric population maps. Their findings based on RMSE values of these two approaches 

reveal that the random forest algorithm with high-resolution satellite imagery accurately 

redistributes the population compared to moderate-resolution imagery. 

1.5 Objectives 

The objectives of this study are: 1) to classify landcover for every five years between 

2001-2021 and examine twenty years of  land cover change in Lakshmipur District from 2001-

2021, 2) to map populations in Lakshmipur district for every five years from 2001-2021 in 

Lakshmipur district, and 3) to estimate the population displacement due to riverbank erosion for 

every five years from 2001-2021in the Lakshmipur district in Bangladesh. Several research 
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works have explored the amount of land loss in the eastern and western banks of the estuary due 

to erosion (Anwar et al., 2021; Crawford et al., 2021; Hussain et al., 2014); however, the 

estimation of displaced households and population has remained unexplored. Although Crawford 

et al. (2021) investigated the location of households that disappeared due to erosion, they did not 

use any robust methodology to estimate the number of displaced populations in this event. The 

authors roughly estimated the number of displaced populations using Worldpop data 

(www.worldpop.org), which needs to include publications that describe methods and data used 

in gridded population estimation for data-scarce environments like Bangladesh.  

This study is an attempt to fill this research gap by mapping the population into 30 m 

grids as well as estimating the number of displaced populations along the riverbank. To achieve 

that goal, we classified the land cover of Lakshmipur district for every five years between 2001-

2021 using landcover classes of every five years from 2001-2021; we mapped populations into 

30 m grids and finally estimated the displaced population due to river erosion by overlaying 

shorelines extracted by Crawford et al. (2021). We also observe changes in landcover classes of 

Lakshmipur district from 2001-2021 and explore the drivers of landcover change based on 

existing literature. 

1.6 Study area  

The study area is Lakshmipur district/zilla, situated on the eastern bank of the lower 

Meghna estuary,22° 57' 0" N and 90° 50' 0" E (Figure 1.1), with an area of 1455.95 sq km. 

According to the Bangladesh Bureau of Statistics (BBS), in 2011, the total population of the zilla 

was 1,729,188. The District/Zilla consists of 5 subdistricts/upazillas called Kamalnagar, Raipur, 

Ramganj, and Ramgati and is further divided into 62 unions, the smallest administrative unit. 
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These unions are not defined by certain attributes such as measure of area since their boundaries 

are determined by political boundaries (BBS, 2011). 

Due to its location in the central coastal estuarine zone of Bangladesh, the district 

experiences the severe consequences of climate change and sea level rise, such as tropical cyclones 

coupled with frequent storm surges, flood events, salinity intrusion, and riverbank erosion 

(Murshed et al., 2022). The sea level rise rate at Charchanga station (22°06' 0" N 91°30' 0" E) is 

5.7 mm/year (Sarwar, 2013), and an additional 0.2 m of mean sea level rise will inundate the areas 

adjacent to the lower Meghna estuary (Sarwar et al., 2007; Murshed et al., 2022). The region is 

frequently flooded by storm surges driven by tropical storms (Dasgupta et al., 2010). Besides, the 

area regularly experiences high diurnal tides, which worsen in monsoon (Jun-July) with heavy 

rainfall (Paul et al., 2020). Thus, river erosion intensifies during the monsoon in this region 

(Rahman et al., 2015; Rashid & Paul, 2014). The 80km stretch of the eastern bank of the lower 

Meghna estuary experienced an average end point rate (EPR) of -36 m between 1988 and 2018, 

indicating that erosion predominated over accretion (Crawford et al., 2021). The north and south 

regions of the 80km stretch experienced erosion over the years, and the two most affected Unions, 

Ramgati and Kamalnagar, have an annual erosion rate of -88.7m/y (Crawford et al., 2021; Paul et 

al., 2020). 

Erosion has substantially impacted the lives of the residents along the riverbank. According 

to Crawford et al. (2021), around 720000 people lived within 5 km of the riverbank in 2008. Their 

result shows that among 407 surveyed households’ forty-three percent of surveyed households lost 

their property to riverbank erosion and relocated elsewhere since 2008. Fifty-three percent of 

households expressed fears of losing households, and agricultural land to erosion and being 

relocated.   
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1.7 Significance of the research 

Climate change-induced hazards, cyclones, storm surges, saltwater intrusion, and 

riverbank erosion impact the coastal region's natural and human environment (Islam et al., 2021). 

Sea level rise, coastal erosion, saltwater intrusion, and storm surges reduce crop production and 

create food Insecurity (Huq et al., 2001; Parry et al., 2014). In response to the negative impacts, 

the inhabitants alter their livelihood strategies, indiscriminately impacting land uses, such as 

fragmenting agricultural land into waterbodies for shrimp cultivation (Pokrant, 2014). Farmers 

even changed their farming practices and switched to cultivating saline-tolerant species (Swapan 

et al., 2011). Besides, due to riverbank erosion, people relocate from the coast to farther inland, 

which adds extra pressure on agricultural land (Paul et al., 2021). Examining land cover change 

could help us better understand the implicit impact of climate change on land cover. It could also 

help agricultural and land use planning in rural areas to reduce environmental degradation.  

Natural hazards such as cyclones, storm surges, and floods have different extents based on 

the event's intensity and impacts varying geographical extent (Hoffman et al., 2019). Choropleth 

maps evenly distribute the population in spatial units that do not represent where people live and 

limit the opportunity to estimate affected people by the hazard (Maantay & Maroko, 2009). On the 

other hand, dasymetric mapping disaggregates populations in small spatial units that are part of 

human-inhabited areas (Maantay & Maroko, 2017). As a result, Dasymetric maps provide a correct 

representation of where people live and make estimating hazard-struck people convenient. 

Estimating population displacement due to riverbank erosion in Lakshmipur District has 

several advantages. One of the significant benefits is early planning and policy formulation to 

reduce the impact of riverbank erosion on affected communities. Others include rehabilitation and 
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estimating loss of assets. Apart from that, this study also outlines the improvement of 

methodology, which can guide future studies.  

1.8 Overview of the research 

This study is organized into five chapters. Chapter One introduces the research 

objectives, justifies the purpose and importance of this study, reviews the methods applied in the 

literature, and identifies the suitable method for our study. Chapter two details the data and 

methods used in this study and tests that have been performed to validate results. Chapter three 

presents the results, and chapter four includes a discussion to support the findings. Chapter Five 

concludes with an overview of our findings, limitations, and guidelines for future study. 
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1.10 Figures 

 

 

Figure 1.1 Study area, Lakshmipur District Bangladesh 
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Figure1.2 Homestead Forest, Canopies planted at the premises of rural households of 

Lakshmipur District, Bangladesh. Homestead forests have been used as proxies of human 

settlements. This image is a snapshot of Google earth image and does not have any spectral 

bands associated with it.  
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CHAPTER 2 

METHODOLOGY 

 

We classified landcover for every five years from 2001-2021 using satellite imagery.  To 

examine twenty years of landcover change from 2001-2021 we subtracted the 2001 and 2021 

post-classification Imagery to calculate the change from 2001-2021. To map the population, we 

used a dasymetric mapping approach to downscale the census data, National Population and 

Housing Census, Union statistics 2001, 2011, and 2021, and inter-census years 2006 and 2016 

data. The following sections outline data and methods we used to produce a population map of 

Lakshmipur district that later aided in estimating people displacement by river erosion. 

2.1 Data  

2.1.1 Satellite Data for Landcover Classification 

Landcover data are integral to dasymetric mapping (Zandbergen et al., 2010; Mennis, 

2009). Several studies (Sleeter, 2004; Baynes, 2022) used national landcover data for population 

disaggregation in the conterminous United States of America (USA). Due to non-existence of 

landcover data set in our study area, we produced landcover classifications for our study period 

(2001, 2006, 2011, 2016, 2021) using moderate spatial resolution (30 m) Landsat 5 Thematic 

Mapper (TM) data and Landsat 8 Operational Land Imager (OLI) data (See Appendix A, Table 

A.1). 

2.1.2 Census Data 

Bangladesh Bureau of Statistics provides union-level tabular population data every ten 

years (BBS, 2011). We used union-level tabular census data, the lowest administrative unit of 
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published population data for our analysis unit, for 2001 and 2011, and unpublished population 

data, official data provided by BBS upon request, for 2021. For inter-census years, the fifth year 

between two consecutive census years, 2006 and 2016, we interpolated the population, 

calculating the growth rate of each union. We used the following equation in the BBS 2011 

report to calculate growth rates and population for each union. 

P = Po* (1+r)t …………………………………………………………. (Eq 2.1; BBS, 2011) 

So, Growth rate r = (P/P0)
1/t -1…………………………………(Eq. 2.2) 

Where, P = Target year population 

 r = Growth rate  

 Po = Base year Population  

 t = Time between the base year and target year 

We calculated growth rates between two consecutive census years and used those growth 

rates to calculate inter-census year populations. For instance, to calculate populations in 2006, 

we calculated the growth rate between 2001 and 2011 using equation 2.2. Next, we calculated 

the population in 2006 using 2001’s population as the base year population and the growth rate 

between 2001 and 2011 as input in equation 2.1. Similarly, we calculated the population for the 

year 2016. As our census data is in tabular form, we created union-level spatial data, downloaded 

from humanitarian data exchange (The Humanitarian Data Exchange, n.d.), by joining tabular 

data with union feature classes (Figure 2.2) using ArcGIS pro 3.0 (www.esri.com). 

All our spatial data were reprojected to the Bangladesh Transverse Mercator (BTM) 

projection system before all analyses. Table 2.1 represents the census population (BBS 2001, 

http://www.esri.com/
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2011, 2021) and inter-census year population data (interpolated using equations 1 and 2). We 

only considered the residential population count from the census data. Besides, there was 

missing data in some unions in the upper right corner of the district due to the discrepancy 

between population data and union boundary. We filled the gaps in those data using the areal 

interpolation method in Geostatistics Wizard of ArcGIS pro 3.0 (www.esri.com). 

2.2 Workflow 

2.2.1 Landcover Classification and Change Detection 

Image classification was performed in Google Earth Engine (Google Earth Engine), a 

cloud-based geospatial analysis and data visualization platform (Gorelick et al., 2017). With 

petabytes of freely available satellite Imagery, it provides access to Google’s hosted cloud 

computing environment, reducing dependency on user computers (Mutanga et al., 2019; Zhao et 

al., 2021). Its Application Programming Interface (API) provides the flexibility of Java and 

Python scripting with libraries available for geospatial analysis (Zhao et al., 2021).  

We used Landsat 5 Thematic Mapper (TM) collection 2 Tier 1 top of atmosphere 

reflection Imagery (TOA) for the years 2001-2011 and Landsat 8 Operational Land Imager 

(OLI) collection 2 Tier 1 top of atmosphere reflection Imagery (TOA) Imagery for the years 

2016-2021(Table A1, Appendix A) from GEE’s publicly available online data catalog. 

Collection 2 tier 1 has improved the level of geometric correction and lower RMSEs as these 

datasets have been corrected with improved algorithms, ground control points, and elevation 

datasets (Lubke et al., 2021). The image search was limited between January and February to 

obtain cloud-free Imagery (See Table A1, Appendix A) of our study area. Based on our 

http://www.esri.com/
https://earthengine.google.com/
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familiarity with the study area, we drew our samples for four classes: homestead forest, fallow 

land, other vegetation, and waterbody.  

We used the random forest classification algorithm in Google Earth Engine. A random 

forest algorithm is an ensemble of decision trees that uses bootstrapping and 

aggregating/Bagging. Bootstrap sampling ensures the use of random subsets of variables and 

data with replacement when generating trees and then aggregates the results based on the 

majority vote of all trees (Breiman, 1996). It works well in classifying unknown data since it 

uses multiple decision trees and introduces randomness in the sampling process (Breiman, 

1996).  

The random forest classifier inside Google Earth Engine allows manual hyperparameter 

setting. Although hyperparameters set with software defaults yield optimum results, tweaking 

parameters can often increase the model performance (G & Sumathi, 2020; Kilany et al., 2021). 

As tuning hyperparameters and changing the ratio of training and validation data can improve the 

overall performance of the classifier (Probst et al., 2019), we manually tuned the number of 

variables per split, bag fraction, and the number of trees and changed the proportion of training 

and testing samples (Table A3, Appendix A). We determined our best classification result (Table 

A3, Appendix A) considering the combinations that provided lower out-of-bag error, which is 

the number of accurately predicted elements from out-of-bag samples and higher validation 

accuracy. The classification algorithm also provided us with variables of importance based on 

the Gini impurity index that calculates the probability of misclassification of a randomly selected 

element in a node, and provides us with which bands/variables are important/effectively split 

data into different classes. It analyzes how the reduction in impurity is obtained, using a 

particular band to split the data. The higher the reduction in impurity, the more important the 



41 
 

band is. We calculated the relative reduction in impurity for a band by summing up the weighted 

impurity reductions across all nodes. The higher the sum, the more important the band is 

considered for classification.  

For each study year, we reserved 100 ground reference points for external validation. 

Those points were generated using the stratified random sampling technique in ArcGIS pro3.0. 

As ground reference Imagery, we used Google Earth Imagery (spatial resolution ranges 0.3m 

Maxar-30 m Landsat) for 2006, 2011, 2016, and 2021 and a 10m resolution SPOT image for 

2001. Finally, confusion matrices were generated using reserved validation data with overall 

accuracy, error of commission, error of omission, and user’s and producer’s accuracy.  

 For change detection, we used ArcGIS Pro 3.0 (www.esri.com). We calculated thematic 

change from 2001 to 2021 using Landsat 5 TM image for 2001 and Landsat 8 OLI image for 

2021. The change detection provided from class to class table that has been used to create a 

change matrix and calculate net gain and loss of landcover classes. 

2.2.2 Dasymetric Approach-based Population Mapping 

As we only used homestead forest as a proxy of human settlement binary dasymetric 

mapping, where the land cover class was reclassified as habitable/non-habitable, is appropriate. 

We explored both vector and raster-based dasymetric approaches to map population and 

calculate displacement. We explored vector and raster-based approaches to disaggregate union-

level population data and calculated displacement. Appendix C and D contain the tools and 

techniques used for vector and raster-based dasymetric mapping. 
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2.2.2.1 Vector-Based Dasymetric Population Mapping 

The vector-based dasymetric approach is based on basic areal interpolation adopted from 

Goodchild and Lam (1980). Figure 2.1 explains the conceptual framework of vector-based 

dasymetric mapping. The authors applied the following equation (equation 2.3) using polygon 

overlay in GIS to transfer population count from the census tracts to planning districts of 

London, Ontario, without any ancillary data. In our case, we used homestead forest as ancillary 

data and transferred the population from union to homestead forest polygons and then to 30 m 

grids. This means that at first, our source zones were unions and target zones were homestead 

forests, and to transfer the population in 30 m grids, homestead forest polygons were source 

zones, and 30 m grids were target zones. As we used a vector-based approach, we initially 

converted 30 m raster landcover maps into vectors, and to transfer population in 30 m grid 

homestead forests, we created 30 m fishnets. Figure 2.2 explains the workflow diagram of 

vector-based dasymetric mapping, and Appendix C contains the tools and detailed processes 

used to implement the equation in GIS. 

 

Population in each target zone t, Pt = ∑ Ats /As * Ps ……………………………(Eq 2.3) 

 

Where Ats is the intersection area between the source and target zone. 

As is the Area of the source zone. 

Ps is the Population in the source zone. 

 

We started by converting our landcover maps into polygons and extracting our homestead 

forest class from the landcover map. Intersect tool was used to join union-level population data 
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with our habitable layer homestead forest. To assign populations from source zones/Union level 

to the target zones/ homestead forest polygons from the source zones/unions, we applied 

equation 2.3.  

To transfer the Population from Homestead forests to 30 m grids, we followed a similar 

process by creating 30 m grids for our study area. To translate our Population, count in 30 m 

grids from each homestead forest polygon; we first intersected the 30 m grids with homestead 

forest polygons that contain the Population assigned to each polygon. This process brought the 

30 m grid layer that contains homestead forest polygons inside each of those 30 m grids. To 

transfer the population in those homestead forest polygons that fell inside each of the 30 m grids, 

we divided the areas of those homestead forests by the areas of those 30 m grids. Then, we 

multiplied the ratio by the population in those homestead forest polygons within 30 m grids.  

The cartographic representation of vector-based dasymetric maps was unsuitable to 

represent (Figure 2.6) the Population in each 30 m grid. To achieve a better cartographical 

representation of 30 m vector-based dasymetric maps, we converted the 30 m grid cells to 30 m 

raster. 

2.2.2.2 Raster-Based Dasymetric Population Mapping 

The concept of dasymetric mapping in raster-based dasymetric mapping is almost 

identical to the vector-based method (See Figure 2.3). The only exception is that the vector-based 

population data is converted into raster, and the ancillary landcover data is preserved in raster 

format. The process followed the equation below that was transformed by Holloway et al. (1996) 

to calculate per pixel population. Likewise, in the vector-based approach, we also calculated the 

areal weight and multiplied the areal weight of the homestead forest by the population of each 
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union. We assumed each homestead forest pixel has a relative density of 100 and multiplies that 

with the product of population and areal weight. Finally, we divided it with the total number of 

homestead forest cells to obtain per-pixel populations. The tools and techniques we used to 

implement this method have been described in Appendix D. 

 

Population Per Pixel = ((RH) * N*E)/(AH/30*30) ……………………………….(Eq. 2.4) 

Or, = (RH) * N*30*30*E/AH………………………………… (Eq. 2.5) 

Where, 

RH = the relative density of each homestead forest cell 

AH/30*30 = Total number of homestead forest cells in each union 

N = Population in a Union 

E = Areal weight of land use classes in each union 

E = PH*100…………………………(Eq. 2.6) 

PH is the area proportion of homestead forest in a union calculated using the following 

equation,  

PH = AH/ AH+AF+AO+AW ……………….(Eq. 2.7) 

AH = Area of homestead forest, AF= Area of Fallow land, AO = Area of Water body AW = 

Area of Waterbody  

We divided the total homestead forest area by 30x30 to derive per pixel population to obtain the 

number of homestead forest cells. 

We converted our vector-based union level population data to 30 m raster since we 

assigned Population in each 30 m pixels of homestead forests. As we intended to assign all our 

population to the class homestead forest, we reclassified the landcover data to provide homestead 
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forest class 100 percent relative density (See Appendix D for detailed processes). Next, the Area 

of each landcover class in each union and the proportion of homestead forest in each union was 

calculated using equations 2.7 and 2.6. Multiplying the areal proportion of homestead forests 

with 100, we obtained the area weight of homestead forests in each union (See Equation 2.5). 

We finally used equation 2.4 to calculate the population in each 30 m pixel. 

2.2.3 Volume Preservation and Visual Inspection of Dasymetric Population Maps 

We tested the accuracy of the dasymetric maps by observing the volume preservation. As 

described by Waldo Tobler (1979), volume preservation is preserving the total number of 

populations when it is transferred into new target zones. When populations are transferred from 

higher spatial units to lower spatial units, there are chances that populations might increase or 

decrease compared to their source-level population due to the calculation process (Tobler, 1979). 

To assess the volume preservation, we calculated the total sum of the union-level and 

dasymetric-level populations. 

Dasymetric mapping techniques can distribute population density heterogeneously, with 

uneven population distribution across its parent source; however, the scope can be limited 

depending on ancillary data limitations. Wood (2006) stressed that dasymetric maps might 

represent homogeneous population density, even population distribution, within parent zones due 

to the lack of variation in land cover data. For instance, in urban areas, disaggregating census 

tract level populations into finer resolutions using ancillary land-use maps categorized as high, 

moderate, and low-density classes of residential land uses will provide a more realistic and 

heterogeneous distribution than using one broad class of residential land-use. Dasymetric 

mapping provides a more realistic and heterogeneous representation of population distribution 



46 
 

than a census unit-level choropleth map (Mennis, 2003). To understand how well our dasymetric 

maps represent the heterogeneity of population distribution compared to the choropleth map, we 

visually inspected the difference between the choropleth map and dasymetric maps.  

2.2.4 Calculation of Land Loss and Population Displacement due to Riverbank Erosion  

To estimate the amount of land loss and population displacement, we overlaid our 

dasymetric level population data with the shorelines of each study year. We used shoreline 

extracted by Crawford et al. (2021) in our study. The authors achieved an overall 25-30 m 

accuracy for the shorelines using Landsat Imagery. We took the shorelines and superimposed 

them on landcover data to auto-digitize shorelines on the landcover data. The purpose of doing 

this is to get accurate shorelines. Next, we extracted eroded areas every five years. Overlaying 

the areas with disaggregated population maps, we calculated the population displacement in each 

five years from 2001 to 2021. 
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Figure 2.1 Conceptual diagram of vector-based dasymetric mapping 
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Figure 2.2 Workflow vector-based dasymetric mapping and population displacement. 

 

 

 

 

Figure 2.3 Conceptual diagram of raster-based dasymetric mapping. 
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Figure 2.4 Workflow raster-based dasymetric mapping and population displacement. 
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Figure 2.5 Choropleth map representing union-level population distribution in 2001. The lowest 

density value was 494 persons/km2 and the highest was 9604 persons/km2. 
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Figure 2.6 Representation of vector-based dasymetric map with lowest 30 m mapping unit. The 

vector representation of 30 m grids could not produce a cartographically sound map. 
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Table 2.1 Census year and mid-census year population, Lakshmipur District, Bangladesh 

 

 

Year Union Level Total Population 

2001 1,706,858 

2006 1,643,838 

2011 1,672,552 

2016 2,115,626 

2021 2,239,718 
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CHAPTER 3 

RESULTS 

 

3.1 Image Classification 

3.1.1 Random Forest Performance 

As stated earlier in Chapter 3, the smile random forest classifier in the Google Earth 

Engine allows manual tuning of the data split, number of trees, variables per split, bag fraction, 

and maximum nodes. This section describes the combinations of training and testing data, 

number of trees, bag fraction, and variable per split used for different years to achieve optimum 

results from a random forest classifier. Classification parameters were tested on the 2001 Landsat 

TM 5 image, image acquisition date 01/21/2001. We tested several proportions of training and 

testing samples, adjusted the number of variables per split, number of trees, and bag fraction, and 

observed the model performance. We found a 70/30 split of training and testing data with 200 

numbers of trees, two variables per split, and 0.4 bag fraction as the best combination that 

provided the lowest out-of-bag error of 0.27. The most essential variable in this classification 

was Band 5 Near-Infrared (1.55 - 1.75 µm), and the least essential band was B2(Green 0.52 - 

0.60 µm). 

Utilizing a 70/30 split of training and testing data with the default of 200 trees and 0.5 

bag fraction for the 2006 Landsat TM 5 image (image acquisition date 02/04/2006), we obtained 

the lowest out-of-bag error of 0.06. The most crucial feature in the classification was Band 4 

Near-Infrared (0.76 - 0.90 µm), and the least important band was B2(Green 0.52 - 0.60 µm). 

For the 2011 Landsat TM 5 image (acquisition date 01/02/2011), 75/,25 splits of training 

and testing data with the default of 200 trees and a bag fraction of 0.6 resulted in the lowest out-
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of-bag error of 0.01. Band 7 Mid-Infrared (2.08 - 2.35 µm) was the classification's most 

significant variable, and the least important band was B2(Green 0.52 - 0.60 µm). 

For the 2016 Landsat 8 OLI image (acquisition date: 01/15/2016), a 75/25 split of 

training and testing data produced the optimum result. Changing hyperparameters of the random 

forest classifier did not have any effect on out-of-bag error. With default settings, we obtained a 

0.021 out-of-bag error. Band 5 (Near Infrared 0.85-0.88 µm) was the most important band and 

the least important band B1 (Coastal aerosol 0.43-0.45 µm). 

When, in some cases, tuning hyperparameters improved the results of our previous 

classifications, for 2021's Landsat 8 OLI image (Acquisition date 17/02/2021), default 

hyperparameters with a 70/30 split came out as the best combination. The default setting yielded 

a 0.14 out-of-bag error. The most significant band was band 5 (Near Infrared 0.85-0.88 µm). The 

least important band was B1 and B2(Coastal aerosol 0.43-0.45 µm, blue 0.45-0.51µm). 

3.1.2 Accuracy Assessment 

We produced our confusion matrices using ground reference data (see Chapter 3). The 

classification of the 2001 image, based upon the Landsat TM 5 image (image acquisition date 

01/21/2021), provides an overall accuracy of 79.04 % (Table 3.1). The landcover map (Figure 

3.1) shows four landcover classes: homestead forest, fallow land, other vegetation, and water 

body, with individual class accuracy ranging from 93.33 percent for homestead forest to 57.14 

percent for the waterbody (Table 3.3). Other vegetation was the most overclassified class 

(commission error 44.44 percent), mostly confused with fallow land and homestead forest. The 

classification worked well to classify our most important class, homestead forest, with an 

accuracy of 93.33 percent, 6.66 percent omission error, and 20 percent commission error while 
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contributing pixels to other vegetation type classes and received from fallow land and water 

bodies. It also has the highest producer, 93.3 percent, and user accuracy of 80 percent compared 

to other classes (Table 3.3). 

Based on the Landsat 5TM image, acquisition date 02/04/2006, the classification of the 

2006 image yields an overall accuracy of 81 percent (Table 3.4). Four landcover classes—

homestead forest, fallow land, other vegetation, and water body—are represented on the 

landcover map (Figure 3.2), with the accuracy of each class varying from 92.68 percent for the 

homestead forest to 44.44 percent for the other vegetation (Table 3.6). Likewise, the previous 

classification of other vegetation types was the most frequently misclassified (commission error: 

54.54%) class, confused with homestead forests and water bodies. The classification provided 

satisfactory results, classifying our most important class, homestead forests, with the highest 

producer and user accuracy of 92.68 percent, 82.60 percent, 7% omission error, and 17.39 % 

commission error while supplying pixels to the class other vegetation and receiving them from 

them fallow land, other vegetation, and water body. 

The overall accuracy for the 2011 image classification, using Landsat 5 TM image 

(image acquisition date 01/02/2011), is 87.87 % (Table 3.7). The landcover map depicts four 

landcover classes (Figure 3.3): homestead forest, fallow land, other vegetation, and water body. 

The accuracy of each class ranges from 91.66 percent for the homestead forest to 66.66 percent 

for the water body (Table 3.9). The class of other vegetation types is the most overclassified 

commission error of 50% (Table 3.8), and it is frequently mistaken for fallow land and 

homestead forest. While providing pixels to other vegetation type classes and receiving them 

from fallow land and water bodies, the classifier successfully classified our most significant 



57 
 

class, homestead forest, with an accuracy of 91.66 percent, 8.33 percent omission error, and 6.33 

percent commission error. 

We have achieved 82% overall accuracy (Table 3.10) for 2016 using Landsat 8 OLI 

image (acquisition date: 01/15/2016). The landcover map shows four types of landcover (Figure 

3.4): water bodies, fallow land, homestead forests, and other vegetation. The accuracy of each 

class varies, as shown in (Table 3.12), from 87% for the homestead forest to 77% percent for the 

water body. The most overclassified class is the other vegetation, with a commission error of 

33% (Table 3.11), which has been mistaken for homestead forests. Random forest classifiers 

classified our most important class, homestead forest, with an accuracy of 87%, an omission 

error of 12%, and a commission error of 10 % while providing pixels to other vegetation types 

and receiving them from fallow land, other vegetation, and water bodies as well. 

Landcover classification for the year 2021 using Landsat 8 OLI (Image acquisition date 

17/03/2021) the overall accuracy is 83% (Table 3.13). The landcover map (Figure 3.5) shows 

four landcover classes: homestead forest, fallow land, other vegetation, and water body, with 

individual class accuracy ranging from 91.83 percent for homestead forest to 56.25 percent for 

the other vegetation (Table 3.15). Other vegetation was the most overclassified class 

(commission error 43.75 percent), mostly confused with fallow land and homestead forest. The 

classification worked well to classify our most important class, homestead forest, with a user 

accuracy of 93.75 percent, 8.1 percent omission error, and 6.25 percent commission error while 

contributing pixels to waterbody and fallow land classes and received from fallow land and other 

vegetation. 
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3.2 Change detection 

We observed 21 years of change from 2001-2021. The overall accuracy of the 2001 

classification (Landsat 5 TM, image acquisition date 01/21/2001) was 79.04%, and the 

2021(Landsat 8 OLI, image acquisition date 17/03/2021) classification was 83.0 %. Fallow land 

experienced a substantial net loss of 341.81 sq. km, mainly due to its conversion into homestead 

forests and water bodies. Specifically, 276.65 sq. km of fallow land became homestead forests, 

and 132 sq. km were transformed into water bodies. This class of land lost 420 sq. km and 

gained only 78 sq. km, resulting in a net loss of 341 sq. km. Homestead Forest had the highest 

net gain of 220 sq. km, most of which was received from fallow land. The class lost 76.91 sq. km 

to the water body. The second highest net gain happened to waterbody 162.93 sq. km, with the 

highest gain from fallow land 132.69 sq. km and homestead forest 76 sq. km. 

3.3 Population Mapping  

3.3.1 Dasymetric Mapping Vector and Raster-Based Approach 

Table 3.17 exhibits union level and dasymetric population count using a vector-based 

approach. The count was compared to understand if any over or underestimation happened 

during the disaggregation process. It should be noted that the results have been derived from a 

vector-based approach; however, the dasymetric maps (Figure 3.6- 3.10) have been presented in 

a raster version for better cartographic representation. Our result shows (Table 3.17) that volume 

has not been preserved in the year 2001. The total population was 1,706 858 in 2001, and the 

estimated population was 1,666,537. We lost 40,321 people in disaggregating the population 

from the union level to the 30 m dasymetric level population. 
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Table 3.18 represents the union level and dasymetric population count using a raster-based 

approach. The total population and estimated population counts are not equal in 2001 and 2016, 

indicating the violation of the volume preservation assumption. In 2001 and 2016, the total 

union-level population was 1706858 and 2,115,626, whereas the estimated dasymetric level 

population was 1,728,554 and 2,119,186. In the process of disaggregation, we overestimated 

21696 and 3560 people. 

3.3.2 Dasymetric Mapping Visual Inspection 

Our visual inspection demonstrates that the variation captured by the dasymetric mapping 

is slightly improved over a choropleth population density map. Figure 3.6 -3.10 and Figure 3.12-

3.16, show that dasymetric mapping population density only represents a few variations in most 

unions compared to the choropleth map (Fig 3.11). However, unions near the riverbank show 

some variation in population distribution within union boundaries. 

3.4 Amount of Land Loss and Population Displacement Due to Riverbank Erosion 

Table 3.19 represents the amount of land loss to river erosion every five years from 2001-

2021. Our results indicate that land loss was highest between 2011-2016, 30.3 square kilometers, 

and lowest between 2001-2006, 4.93 square kilometers. Table 3.20 shows the estimated 

population displacement due to river erosion using vector-based dasymetric population maps. 

The highest number of people, 86107, were relocated between 2016-2021, and the lowest 

number of people, 1844, were relocated between 2001-2006. On average, 9582 people were 

displaced in the past 21 years due to river erosion. The years of the highest and lowest 

percentage of population displacement were consistent with the years of counted highest and 

lowest number of population displacement in the vector-based method. The lowest percentage of 
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population displacement happened from 2001-2006, which was 0.1 percent of the total 

population in 2001. The highest percentage of population displacement was from 2016-2021, 

which was 4.07 percent of the total population in 2016. Table 3.21 shows the population 

displacement calculation due to river erosion using a raster-based approach. The maximum 

number of people 63453 was displaced between 2016-2021, whereas the minimum number of 

people displaced 5241, was between 2001-2006. The highest percentage of displacements, 3.7 

percent of the total population, happened between 2011-2016, although the highest count shows 

that the maximum number of displacements occurred between 2016-2021. This is because the 

percentage is a relative measure and relative to the total population; the highest number of 

displacements happened from 2011-2016, in raster-based calculation. 
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3.6 Tables and Figures 

 

 

Figure 3.1Classified image for year 2001.Overall accuracy 79.04 % 
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Figure 3.2 Classified image for the year 2006. Overall accuracy 81 % 
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Figure 3.3  Classified image for the year 2011. Overall accuracy 87.87 % 
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Figure 3.4 Classified image for year 2016. Overall accuracy 88 % 
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Figure 3.5 Classified image for year 2021. Overall accuracy 83 % 
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Table 3.1 Accuracy Assessment of 2001 landcover Classification (Image acquisition date 

01/21/2001). The columns represent ground truth points (GTP) reference, rows represent 

classification from the satellite image. Overall accuracy 79.04% 

 

  GTP    

Classified Homestead forest Fallow land Vegetation Waterbody 

Homestead forest 28 5 0 2 

Fallow land 0 41 0 0 

Vegetation 2 5 10 1 

Waterbody 0 1 0 4 

 

 

Table 3.2 Errors of commission, errors of omission for each landcover class of 2001 

landcover Classification (Image acquisition date 01/21/2001) 

 

 Error of Omission(percent) Error of Commission (percent) 

Homestead forest 6.66 20 

Fallow land 21.15 0 

Vegetation 0 44.44 

Waterbody 42.85 20 
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Table 3.3 Producer’s and user’s accuracies for each cover class of 2001 landcover Classification  

(Image acquisition date 01/21/2001). 

 

 Producer's accuracy (Percent) User's accuracy (Percent) 

Homestead forest 93.33 80 

Fallow land 78.84 100 

Vegetation 100 55.55 

Waterbody 57.14 80 

 

 

Table 3.4 Accuracy Assessment of 2006 landcover Classification (Image acquisition date 

02/04/2006). The columns represent ground truth points (GTP)/reference data (acquired using 

Google Earth’s historical Imagery), and the row represents classification from satellite Imagery. 

Overall accuracy 81% 

 

  GTP    

Classified Homestead forest Fallow 

land 

Vegetation Waterbody 

Homestead forest 38 3 4 1 

Fallow land 0 28 0 0 

Vegetation 3 1 5 2 

Waterbody 0 5 0 10 
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Table 3.5 Errors of commission, errors of omission for each landcover class of 2006 landcover 

Classification (Image acquisition date02/04/2006). 

 

 Error of Omission(percent) Error of Comission(percent) 

Homestead forest 7.31 17.39 

Fallow land 10.81 0 

Vegetation 55.55 63.63 

Waterbody 23.07 33.33 

 

 

Table 3.6 Producer’s and User’s accuracy for each landcover class of 2006 landcover 

Classification (Image acquisition date02/04/2006). 

 

 Producer's accuracy User's accuracy  

Homestead forest 92.68 82.60 

Fallow land 89.18 100 

Vegetation 44.44 36.36 

Waterbody 76.92 66.66 
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Table 3.7 Accuracy Assessment of 2011 land cover Classification (Image acquisition date 

01/02/2011). The columns represent ground truth points (GTP)/reference data (acquired using 

Google Earth’s historical Imagery), row represents classification from satellite images. Overall 

accuracy 87.87% 

  GTP    

Classified Homestead forest Fallow land Vegetation Waterbody 

Homestead forest 44 0 3 0 

Fallow land 0 34 0 1 

Vegetation 3 4 7 0 

Waterbody 1 0 0 2 

 

 

Table 3.8 Errors of commission, errors of omission for each landcover class of 2011 landcover 

Classification (Image acquisition date01/02/2011) 

 

 Error of Omission(percent) Error of Commission (percent) 

Homestead forest 8.33 6.38 

Fallow land 10.52 2.85 

Vegetation 30 50 

Waterbody 33.33 33.33 
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Table 3.9 Producer’s and User’s accuracy for each landcover class of 2011 landcover 

Classification (Image acquisition date 01/02/2011) 

 

 Producer's accuracy User's accuracy  

Homestead forest 91.66 93.61 

Fallow land 89.47 97.14 

Vegetation 70 50 

Waterbody 66.66 66.66 

 

 

Table 3.10 Accuracy Assessment of 2016 land cover Classification (Image acquisition date 

01/15/2016). The columns represent ground truth points (GTP)/reference data (acquired using 

Google Earth’s historical Imagery), and the rows represent classification from satellite images. 

Overall accuracy 82% 

 
  

GTP 
  

Classified Homestead forest Fallow land Other vegetation Waterbody 

Homesteadforest 34 2 1 1 

Fallow land 1 24 0 2 

Other vegetation 3 1 10 1 

Waterbody 1 1 1 14 
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Table 3.11 Errors of commission, errors of omission for each landcover class of 2016 landcover 

Classification (Image acquisition date 01/18/2016). 

 

 Error of Omission Error of Commission 

Homestead forest 12.82 10.52 

Fallow land 14.2 11.11 

Other vegetation 16.66 33.33 

Waterbody 22.22 17.64 

 

 

Table 3.12 Producer’s and User’s accuracy for each landcover class of 2016 landcover 

Classification (Image acquisition date 01/18/2016). 

 
 

Producer Accuracy User Accuracy 

Homestead forest 87.17 89.47 

Fallow land 85.71 88.88 

Other vegetation 83.33 66.66 

Waterbody 77.77 82.35 
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Table 3.13 Accuracy Assessment of 2021 landcover Classification using Landsat 8 OLI (Image 

acquisition date 17/03/2021). The columns represent ground truth points (GTP)/reference data 

(acquired using Google Earth’s historical Imagery), and rows represent classification from satellite 

images. Overall accuracy 83.00% 
  

GTP 
   

Classified Homesteadforest Fallow land Other 

vegetation 

Waterbody Overall 

accuracy 

Homesteadforest 45 2 1 0 0.83 

Fallow land 2 20 1 1 
 

Other vegetation 0 7 9 0 
 

Waterbody 2 1 0 9 
 

 

 

Table 3.14 Errors of commission, errors of omission for each landcover class of 2021landcover 

Classification using Landsat 8 OLI (Image acquisition date 17/03/2021). 

 
 

Error of Omission(percent) Error of Commission(percent) 

Homesteadforest 8.16 6.25 

Fallow land 33.33 16.66 

Other vegetation 18.18 43.75 

Waterbody 10 25 
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Table 3.15 Producer’s and User’s accuracy for each landcover class of 2021 landcover 

Classification using Landsat 8 OLI (Image acquisition date 17/03/2021).  

 
 

Producer's Accuracy User's Accuracy 

Homesteadforest 91.83 93.75 

Fallow land 66.66 83.33 

Other vegetation 81.81 56.25 

Waterbody 90 75 

 

 

Table 3.16 Landcover change matrix from 2001-2021 using Landsat 5TM and Landsat 8 OLI 

Imagery (Image acquisition date 01/21/2021 and Acquisition date 17/03/2021). Each column 

represents the initial area of each class, while each row represents the final area of each class. 

Shaded cells indicate the areas that did not change. Positive signs indicate a net gain, whereas 

negative signs indicate a net loss.  

 

 Homesteadforest 

Fallow 

land Other vegetation Waterbody 

Total 

Loss 

Homesteadforest 270.59 50.18 0.36 76.91 127.46 

Fallow land 276.65 291.75 11.45 132.69 420.80 

Other vegetation 33.32 14.20 1.57 8.19 55.72 

Waterbody 38.23 14.60 2.03 10.74 54.86 

TotalGain 348.20 78.98 13.85 217.80  

NETLOSS/GAIN 220.74 -341.81 -41.86 162.93  
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Figures Dasymetric Mapping  

 

 

Figure 3.6 Dasymetric Population Distribution In 2001, 30 m vector grids were converted to 30 m 

raster grids. The 30 m raster surface has been symbolized using the Natural Jenks classification 

method. Original population densities have decimal places that have been rounded up in the legend 

to avoid representation of fractional population values. The raster surface represents population 

count (number of persons in each 30 m grid). 
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Figure 3.7 Dasymetric Population Distribution in 2006, 30 m vector grids were converted to 30 

m raster grids. The 30 m raster surface has been symbolized using the Natural Jenks 

classification method. Original population densities have decimal places that have been rounded 

up in the legend to avoid representation of fractional population values. The raster surface 

population count (number of persons in each 30 m grid). 
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Figure 3.8 Dasymetric Population Distribution in 2011, 30 m vector grids were converted to 30 m 

raster grids. The 30 m raster surface has been symbolized using the Natural Jenks classification 

method. Original population densities have decimal places that have been rounded up in the legend 

to avoid representation of fractional population values. The 30 m raster surface has been 

symbolized using the Natural Jenks classification method. The raster surface represents population 

count (number of persons in each 30 m grid). 

 



78 
 

 

 

Figure 3.9 Dasymetric Population Distribution in 2016, 30 m vector grids were converted to 30 m 

raster grids. The 30 m raster surface has been symbolized using the Natural Jenks classification 

method. Original population densities have decimal places that have been rounded up in the legend 

to avoid representation of fractional population values. The raster surface represents population 

count (number of persons in each 30 m grid). 
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Figure 3.10 Dasymetric Population Distribution in 2021, 30 m vector grids were converted to 30 

m raster grids. The 30 m raster surface has been symbolized using the Natural Jenks 

classification method. Original population densities have decimal places that have been rounded 

up in the legend to avoid representation of fractional population values. The raster surface 

represents population count (number of persons in each 30 m grid). 
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Figure 3.11 Choropleth map representing union-level population distribution in 2001. Legend for 

density has been categorized from low to high for simplification purpose and does not represent 

original density values. The lowest density value was 494 persons/km2, and the highest was 9604 

persons/km2. 
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Figure 3.12 Dasymetric Population Distribution in 2001 using a raster-based approach. The 30 m 

raster surface has been symbolized using the Natural Jenks classification method. Original 

population densities have decimal places that have been rounded up in the legend to avoid 

representation of fractional population values. The raster surface represents population count 

(number of persons in each 30 m grid). 
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Figure 3.13 Dasymetric Population Distribution in 2006 using the raster-based approach. The 30 

m raster surface has been symbolized using the Natural Jenks classification method. Original 

population densities have decimal places that have been rounded up in the legend to avoid 

representation of fractional population values. The raster surfac represents population count 

(number of persons in each 30 m grid) and population density. 
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Figure 3.14 Dasymetric Population Distribution in 2011 using a raster-based approach. The 30 m 

raster surface has been symbolized using the Natural Jenks classification method. Original 

population densities have decimal places that have been rounded up in the legend to avoid 

representation of fractional population values. The raster surface represents population count 

(number of persons in each 30 m grid). 
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Figure 3.15 Dasymetric Population Distribution in 2016 using raster-based approach. The 30 m 

raster surface has been symbolized using the Natural Jenks classification method. Original 

population densities have decimal places that have been rounded up in the legend to avoid 

representation of fractional population values. The raster surface represents population count 

(number of persons in each 30 m grid).  
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Figure 3.16 Dasymetric Population Distribution in 2021 using the raster-based approach.  The 30 

m raster surface has been symbolized using the Natural Jenks classification method. Original 

population densities have decimal places that have been rounded up in the legend to avoid 

representation of fractional population values. The raster surface represents population count 

(number of persons in each 30 m grid). 
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Table 3.17 Union level and Dasymetric level population count using the vector-based dasymetric 

approach. Equal values indicate volume preservation. 

 

Year Union Level Total Population Dasymetric Level Total Population 

2001 1,706,858 1,666,537 

2006 1,643,838 1,643,838 

2011 1,672,552 1,672,552 

2016 2,115,626 2,115,626 

2021 2,239,718 2,239,718 

 

 

 

 

Table 3.18 Union level and Dasymetric level population count using the raster-based dasymetric 

approach. Equal values indicate volume preservation. 

 

Year Union Level Total Population Dasymetric Level Total Population 

2001 1,706,858 1,728,554 

2006 1,643,838 1,643,838 

2011 1,672,552 1,672,552 

2016 2,115,626 2,119,186 

2021 2,239,718 2,239,718 
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Table 3.19 Amount of land loss and homestead forest loss to river erosion every five years from 

2001-2021 

 

Year Amount of 

Land loss in 

Sqkm 

Amount of 

Homestead 

Forest loss in 

Sqkm 

2001-2006 4.93 0.36 

2006-2011 19.57 2.33 

2011-2016 30.3 9.06 

2016-2021 16.53 5.64 

Max 30.3 9.06 

Min 4.93 0.36 

Average 3.39 0.82 

 

 

 

Table 3.20 Estimated Population Displacement Due to RiverBank Erosion Vector-based Binary 

Dasymetric Approach 

 

Year Number of 

Displaced 

People 

Maximu

m 

Minimum Total 

Population 

Population 

Displacement (in 

percent) 

2001-2006 1844  1844 1,706,858 0.10 

2006-2011 51703   1,643,838 3.14 

2011-2016 61579   1,672,552 3.68 

2016-2021 86107 86107  2,115,626 4.07 

2001-2021 

Average 

9582     
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Table 3.21 Estimated Population Displacement Due to RiverBank Erosion Raster-based Binary 

Dasymetric Approach 

 

 

Year Number 

of 

Displaced 

People 

Maximum Minimum Total 

Population 

Population 

Displacement (in 

percent) 

2001-2006 5241  5241 1,706,858 0.30 

2006-2011 51703   1,643,838 3.14 

2011-2016 62478   1,672,552 3.73 

2016-2021 63453 63453  2,115,626 2.99 

2001-2021 

Average 

8708     
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CHAPTER 4 

DISCUSSION 

 

4.1 Landcover Classification 

Our overall classification accuracies range from 79.04% to 87 % (See Chapter 3 Table 

3.1-3.15). Our most important class, homestead forest, which needs to be accurately classified 

for dasymetric mapping, had the highest user and producer accuracy (90% to 93.75%, See 

Chapter 3, Table 3.1-3.15) throughout the five different study years 2001, 2006, 2011, 2016, and 

2021. Although we observed overestimation in areas where homestead forest is a dominant class 

compared to fallow land and water bodies, we accepted those results due to low error of 

commission, ranging from 5% to 20% (Chapter 3, Table 3.1-3.15). Among all the classes, the 

other vegetation class was the most frequently misclassified. The presence of crop residues on 

some fallow lands in our study area and the presence of waterbodies with aquatic plants created 

confusion with other vegetation and, over the years, produced frequent high errors of 

commission for that class. Although the image search was deliberately restricted to the dry 

season, our study area’s complex farming system led to misclassification, resulting from 

heterogeneity within the classes. For instance, fallow lands had high intra-class variability due to 

inconsistent soil moisture in irrigated and non-irrigated lands, which led to confusion with water 

bodies. The reflectance of other vegetation classes was sometimes identical to fallow land and 

homestead forest due to the presence of remains of harvested crops and winter crops. These 

ambiguities are due to large intra-class variability, consistent with other studies (Jin et al., 2018; 

Magidi et al., 2021), in complex agricultural environments where within-class heterogeneity 

exists. Despite these misclassifications, we are satisfied with the classification of the homestead 
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forest that we will be using for dasymetric mapping for having high producer and user 

accuracies.  

The most significant variables across the classifications are near-infrared and mid-

infrared bands (Appendix A, Fig: A1-A5), consistent with the findings of Abdi, A. M. (2020) 

and Phan et al. (2020). Their study found NIR as an important variable after topographic 

variables and argued that the importance is attributable to NIR’s capability of discerning 

vegetation classes in scenes. Our study area is primarily rural, and our classes are predominantly 

vegetation classes, such as homestead forest, fallow land, and other vegetation, which reinforces 

the importance of near-infrared and mid-infrared in classifying scenes that mostly contain 

vegetation classes. NIR reflectance is influenced by canopy leaf structure and chlorophyll 

concentration (Gausman, 1985; Ray et al., 1993). In our study area, homestead forests are mainly 

canopies planted at rural residences, substantiating the importance of the NIR band. 

 Numerous landcover classification literature (Hurskainen et al., 2019; Khalmurzayeva, 

2019; Hosseiny et al., 2022) have used auxiliary variables such as elevation, textural properties, 

and spectral indices to improve land use/landcover classification. Dobrinić et al. (2021) 

demonstrated that incorporating spectral indices such as normalized difference vegetation index 

(NDVI) and soil-adjusted vegetation index (SAVI) helps separate forests from other land cover. 

The author argued that SAVI is especially important in sparsely vegetated areas where a 

considerable amount of reflection is coming from background soil. In the case of our study site, 

both NDVI and SAVI might be useful as we have both dense canopy cover and sparsely 

vegetated areas. Phan et al. (2020) found elevation to be an important variable in separating other 

vegetation and grassland, other vegetation, and settlements. Similar to their study area, our study 

site includes settlements and other vegetation classes; in the future, adding elevation as an 
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auxiliary variable might provide better results. Our current classifications misclassified water 

bodies and fallow lands due to the presence of irrigated land in our study area. Incorporating the 

SAVI index or downscaled soil moisture active passive (SMAP) data might help separate 

waterbodies and irrigated land.  

 Drawing training points and determining classes based on spectral separability is crucial 

to obtaining satisfactory classification results. Our training points of defined classes have values 

of more than 1.8(Appendix A, Table A4- A8), indicating that the classes are spectrally separable. 

We combined grassland and dispersed medium and small plants, which were not homestead 

forests, as other vegetation classes for having class separability less than 1.8. As a result, other 

vegetation, being a broad class, had mixed spectral signature with homestead forest and showed 

low-class separability. As stated earlier, prior studies (Hurskainen et al., 2019; Khalmurzayeva, 

2019; Hosseiny et al., 2022) improved classification using elevation and spectral indices; we 

assume that for our study site, including those auxiliary variables might improve class 

separability leading to more detailed classification. Besides, using higher spectral resolution data 

than Landsat might also help improve the land use classification. For instance, Sentinel 2-MSI 

has narrow spectral bands, red edge, NIR, and SWIR, capable of carrying out species-level 

vegetation classification (Chaves et al., 2020). In the future, using such fine spectral resolution 

imagery might help separate that broad class into more detailed classes. 

Our ground reference data points was drawn from SPOT Satellite image and Google 

Earth Imagery (See Chapter 3). Google Earth Imagery might often be misleading as Google 

Earth provides low-resolution historical Imagery for our study area. In the future, access to 

higher spatial-resolution historical imagery will help construct more accurate confusion matrices. 
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We used 100 ground reference points. Increasing the number of ground reference points and 

collecting them using field surveys might increase classification accuracy. 

4.2 Landcover Change  

In terms of landcover change, the major change took place from 2001-2021 in the fallow 

landcover class. A total of 341.81 sq. km of fallow land was transformed into homestead forests 

and water bodies. Islam et al. (2023) conducted a land use land cover change analysis from 1988-

2020 in Kamalnagar and Ramgati subdistrict and found that agricultural lands are decreasing due 

to river erosion. A study conducted in 2014-15 by Hasnat et al. (2016) surveyed 120 households 

in those subdistricts and found that 39 percent of people think that the primary reason behind 

agricultural land degradation is riverbank erosion. These studies were conducted in only two 

subdistricts of Lakshmipur district and do not represent the scenario of the Lakshmipur district. 

Our findings also support that a significant amount of fallow land, 132 sqkm of fallow 

land/agricultural land (we defined both agricultural land and fallow land as fallow land), was 

transformed into waterbodies and went into the river from 2001-2021. However, at the same 

time, a massive amount of 276.65 sq km of fallow land/agricultural land was also transformed 

into homestead forests. In our study, the homestead forest is a proxy of human settlement. As a 

result, we assume that increasing population and population displacement due to riverbank 

erosion could be related to the decline of agricultural land in the Lakshmipur district. Crawford 

et al. (2021) found that people who lose their households to riverbank erosion mostly migrate to 

nearby places and build settlements, which aligns with our assumption that the people being 

displaced are also contributing to the transformation of agricultural land to human settlements. 

Future studies should incorporate household surveys and in-depth interviews to reveal the 

dynamics of land use change and population displacement due to riverbank erosion.  
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4.3 Population Mapping and Estimating Population Displacement Due to Riverbank Erosion. 

The dasymetric maps (Fig 3.6 -3.10 and Fig 3.12-3.16) are the better representation of 

population density over the choropleth map (Fig 3.11) for disaggregating populations in known 

habitable areas. Our vector-based dasymetric maps displayed heterogeneous population 

distribution within the unions, and raster-based calculation provided heterogeneous distribution 

among the unions. The reason behind this is that the vector-based method provides flexibility to 

calculate the areal proportion of each habitable unit within each union, which creates different 

areal proportions of habitable areas within the unions. Therefore, when we multiplied the areal 

proportion with the Union-level populations, it gave heterogeneous density to some extent. On 

the other hand, the raster-based approach provides the opportunity to calculate the total 

proportion of total habitable areas instead of individual habitable areas within a union. Since our 

raster classification maps contained pixels from only a single class of habitable area, which was 

homestead forests, the raster calculation assigned populations to only that class, which resulted 

in homogeneous distributions. Heterogeneity in the raster approach would be possible in the 

presence of multiple habitable classes within the unions. This observation is aligned with 

Wood’s (2006) argument that dasymetric maps might occasionally represent homogeneous 

population density due to the limited variability in land cover data.  

Although a vector-based approach was provided within union heterogeneity to some 

extent, it also exhibited homogeneity in some areas. This is primarily attributable to the use of 30 

m resolution Landsat imagery. Using Landsat imagery, we could not classify settlements or other 

land use classes than homestead forests that indicate human presence in the upper right portion 

of the district (See Chapter 3, Fig 3.1-3.5). Therefore, some unions, especially unions in the 

upper portion of the maps (See Chapter 3, Fig 3.1-3.5), that are entirely covered by homestead 
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forests only contain the class homestead forest, leaving no space for uninhabited areas. As a 

result, the areal interpolation equations contain equal areas of homestead forests as source and 

target zones in equation 2.3 (See Chapter 2), resulting in equal nominators and denominators in 

equation 2.7. This produces a homogeneous population density across the unions like a 

choropleth map (See Chapter 3, Fig 3.6-3.10). For this reason, the upper portion of the vector-

based maps shows a higher density of population distributions compared to the raster-based 

maps.  

The second reason is the data aggregation in the final step of the vector-based method 

(See Appendix C, Step 8). The data aggregation created some smoothing effects. However, some 

unions, especially unions that are situated in proximity to the riverbank, still show heterogeneity 

in distribution. Due to the aggregation process, the entire vector-based process might be called 

areal interpolation instead of dasymetric mapping (Eicher & Brewer, 2001). However, there is 

evidence in the existing literature (Eicher & Brewer, 2001) that supports the method to be called 

a dasymetric method for using ancillary data.   

Our estimated number of displaced population ranges from 1844 (0.10 percent of the total 

population) to 86107(4.07 percent of the total population) from 2001 to 2021 using a vector-

based approach (See Chapter 3, Table 3.20) and 5241(0.3 percent of the total population) to 

63453(2.9 percent of the total population) using a raster-based approach (See Chapter 3, Table 

3.21). We found an increasing trend of population displacement over the years and assume that 

this is related to the increased population and high riverbank erosion rate. According to BBS 

(2011) and our population projection, over 21 years, the total 532,860 people increased in the 

Lakshmipur district, which also increased the displaced population. Crawford et al. (2021) found 

that between 2008 and 2018, the area experienced extreme erosion with an EPR (endpoint rate) 
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of 300m per year, supporting our findings of high population displacement. Their study also 

conducted a household survey creating stratified random sampling, and referring to BBS (2011), 

they mentioned that in their surveyed area, which is a small portion of our study area, around 

40,000 people were living. Our estimate suggests that from 2011-2016, using a raster-based 

approach, 62,478 people have been displaced due to riverbank erosion, which is a reasonable 

estimate considering the extent of our study area.  

The amount of land loss and homestead forest loss is highest from 2011-2016, 30.3 sq. 

km (See Chapter 3, Table 3.19) and 9.6 sq. km; however, the population displacement due to 

riverbank erosion is highest from 2016-2021. The reason might be attributed to the increased 

population in 2016 in this area (Table 3.17-3.18). The number of population displacements 

cannot be verified due to the nonexistence of ground validation data. Besides, as our study 

calculates population displacement every five years, comparing the displaced population with the 

yearly population would not give an accurate assumption of yearly displacement. A finer-level 

temporal analysis is needed to compare yearly displacement with total population change.  

Although our Dasymetric maps offer an actual representation of where people live, there 

are uncertainties associated with them. The sources of these uncertainties are uncertainty in 

population data and uncertainty in the relationship between ancillary data and population 

distribution (Nagle et al., 2014). Although these uncertainties cannot be completely controlled, 

they can be measured. Nagle et al. (2014) highlight the Penalized Maximum Entropy Dasymetric 

Model (P-MEDM) method to address the uncertainties in dasymetric mapping. Although we do 

not delve into the implications of those uncertainties, we acknowledge their existence. Exploring 

the uncertainties in our dasymetric maps using the method from Nagle et al. (2014) is a potential 

future direction of this research.   
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CHAPTER 5 

CONCLUSION 

 

We aimed to examine land cover change and population displacement due to riverbank 

erosion in the Lakshmipur district, Bangladesh. The landcover change result indicates that a 

significant amount of fallow land, 276.65 sq km, was transformed into homestead forests, and 

132 sq km of fallow land was transformed into waterbodies, indicating changes due to river 

erosion and population displacement. Regarding population displacement, we found an 

increasing trend of population displacement over the years and assume that this is related to the 

increased population and high riverbank erosion rate. Besides, we observed population 

underestimation in one year using a vector-based dasymetric mapping approach and 

overestimation in two years using a raster-based dasymetric mapping approach. The errors in 

dasymetric mapping might result from several sources. An error might be inherited from an error 

in ancillary landcover data (Mennis, 2003; Mennis, 2009), as our ancillary landcover data is not 

100 % accurate. Besides, our landcover class does not have many classes that can be used as a 

proxy for human footprint. The limitations also include difficulty defining high, moderate, and 

low-density residential areas using homestead forest as a proxy. Landcover data created from 

high-resolution satellite imagery and availability of additional ancillary data, e.g., land parcel 

level population data, could help define high, moderate, and low-resolution residential and 

improve overall estimation, producing a map with more variance in population density.  

This study will help replicate the process of dasymetric mapping in similar geographical 

settings. The population maps represent population distribution in the entire district, benefitting 

natural resource management, facility planning and distribution, disaster management and 

planning, and enhancing community resilience. In addition, the most recent population map can 
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be used in emergency evacuations in case of any potential natural disaster event that may disrupt 

people and their livelihoods on the coast of Lakshmipur and beyond as appropriate. 
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APPENDIX A 

 

Table A.1Satellite data description 

 

Year Image ID Acquisition 

date 

Correction 

level 

Cloud 

Coverage  

2001 LANDSAT/LT05/C02/T1_TOA/LT05_137

044_20010121 

01/21/2001 TOA 0% 

2006 LANDSAT/LT05/C02/T1_TOA/LT05_137

044_20060204 

02/04/2006 TOA 0% 

2011 LANDSAT/LT05/C02/T1_TOA/LT05_137

044_20110101 

01/02/2011 TOA 0% 

2016 LANDSAT/LC08/C02/T1_TOA/LC08_137

044_20160115 

01/15/2016 TOA 0% 

2021 LANDSAT/LC08/C02/T1_TOA/LC08_137

044_20210317 

03/17/2021 TOA 0% 

 

 

 

 

 

Table A.2 Number of training points for each landcover class in different years. Training points 

were drawn inside Google Earth Engine based on our familiarity with the study area. 

 

Year Homestead forest Fallow land Other 

vegetation 

Waterbody 

2001 508 238 351 185 

2006 285 263 85 300 

2011 739 996 78 235 

2016 703 812 611 354 

2021 508 231 351 158 
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Table A.3Random Forest hyperparameter Settings. 

 

Year Training and Testing Data 

Split  

Variable per 

split 

Bag 

Fraction 

2001 70/30 2 0.4 

2006 70/30 2 0.5 

2011 75/25 2 0.6 

2016 75/25 2 0.5 

2021 70/30 3 0.5 

 

Table A.4 Table A4 Spectral Separability analysis of training data for the 2001 image. Values 

range from 0 to 2. Higher values indicate high spectral separability between classes. As other 

vegetation is a broad class low class separability has been observed between homestead forest and 

other vegetation.   

 

 
 

Homestead 

forest 

 Fallow land Other vegetation Waterbody 

Homestead forest 
    

Fallow land 1.8 
   

Other vegetation 1.4 1.9 
  

Waterbody 1.9 1.9 1.9 
 

 

 

Table A.5 2006 Spectral separability analysis of training data for the 2006 image. Values range 

from 0 to 2. Higher values indicate high spectral separability between classes. 

 
 

Homestead 

forest 

 Fallow land Other vegetation Waterbody 

Homestead forest 
    

Fallow land 1.9 
   

Other vegetation 1.78 1.94 
  

Waterbody 1.9 1.83 1.98 
 

 



102 
 

 

Table A.6 Spectral separability analysis of training data for the 2011 image. Values range from 0 

to 2. Higher values indicate high spectral separability between classes. 

 
 

Homestead 

forest 

 Fallow land Other vegetation Waterbody 

Homestead forest 
    

Fallow land 1.9 
   

Other vegetation 1.64 1.94 
  

Waterbody 1.99 1.99 1.98 
 

 

 

Table A.7 Spectral separability analysis of training data for the 2016 image. Values range from 0 

to 2. Higher values indicate high spectral separability between classes. 

 
 

Homestead 

forest 

 Fallow land Other vegetation Waterbody 

Homestead forest 
    

Fallow land 1.99 
   

Other vegetation 1.98 1.99 
  

Waterbody 1.99 1.99 1.99 
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Table A.8 Spectral separability analysis of training data for the 2021 image. Values range from 0 

to 2. Higher values indicate high spectral separability between classes. 

 
 

Homestead 

forest 

 Fallow land Other vegetation Waterbody 

Homestead forest 
    

Fallow land 1.99 
   

Other vegetation 1.87 1.88 
  

Waterbody 1.99 2.00 1.99 
 

 

 

Figure A1-A5 Random Forest variable of Importance. Smile random forest classifier has an 

importance function. Google Earth engine calculates variables of importance using Gini 

impurity. Figures A to E are the five graphs for 2001-2021 

 

Figure A.1 Random forest variable of importance chart for classification 2001 using Landsat 

5TM. The most important band is B5 (Near-infrared 1.55 - 1.75 µm), and the least important 

band is B2(Green 0.52 - 0.60 µm). 
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Figure A.2 Random forest variable of importance chart for classification 2006 using Landsat 

5TM. The most important bands are B4 (Near-Infrared 0.76 - 0.90 µm) and B5 (Near-infrared 

1.55 - 1.75 µm); the least important band is B2(Green 0.52 - 0.60 µm). 

 

 

 

 

Figure A.3 Random forest variable of importance chart for classification 2011 using Landsat 

5TM. The most important band is B5 (Near-infrared 55 - 1.75 µm) and the least important band 

is B2(Green 0.52 - 0.60 µm). 
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Figure A.4: Random Forest variable of importance chart for classification 2016 using Landsat 8 

OLI. The most important band is B5 (Near Infrared 0.5-0.88 µm) and the least important band is 

B1 (coastal aerosol 0.43-0.45 µm). 

 

 

 

Figure A.5: Random Forest variable of importance chart for classification 2021 using Landsat 8 

OLI. The most important band is B5 (Near Infrared 0.85-0.88 µm) and the least important band 

is B1 and B2 (Coastal aerosol 0.43-0.45 µm and Blue 0.45-0.51). 
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APPENDIX B 

 

Figures Overlaying Dasymetric Maps with Shorelines. 

 

 

Figure B.1 Shorelines in 2001 and 2006 overlaid with the 2001 30 m raster surface of the 

population produced using vector-based approach. 
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Figure B.2 Shorelines in 2006 and 2011 overlaid with 2006 30 m raster surface of population 

produced using vector-based approach. 
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Figure B.3 Shorelines in 2011 and 2016 overlaid with the 2011 30 m raster surface of the 

population produced using a vector-based approach. 
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Figure B.4 Shorelines in 2016 and 2021 overlaid with 2021 30 m raster surface of population 

produced using vector-based approach. 

 

 

 

 

 

 

 

 

 

 



110 
 

Raster Based Approach 

 

 

Figure B.5 Shorelines in 2001 and 2006 overlaid with the 2001 30 m raster surface of the 

population produced using raster raster-based approach. 
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Figure B.6 Shorelines in 2006 and 2011 overlaid with the 2006 30 m raster surface of the 

population produced using raster raster-based approach. 
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Figure B.7 Shorelines in 2011 and 2016 overlaid with 2011 30 m raster surface of population 

produced using raster-based approach. 
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Figure B.8 Shorelines in 2016 and 2021 overlaid with the 2016 30 m raster surface of the 

population produced using a raster-based approach. 
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Figures Overlaying Landcover Maps with Shorelines. 

 

 

 

Figure B.9 Shorelines in 2001 and 2006 overlaid with 2001 30 m Landcover data. 
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Figure B.10 Shorelines in 2006 and 2011 overlaid with 2006 30 m Landcover data. 
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Figure B.11 Shorelines in 2011 and 2016 overlaid with 2011 30 m Landcover data. 
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Figure B.12 Shorelines in 2016 and 2021 overlaid with 2016 30 m Landcover data. 
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Fig B13-B16 Sample code of Landcover classification in 2001 

 

 

Figure B.13 Sample code of Landcover classification in 2001 
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Figure B.14 Sample code of Landcover classification in 2001 
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Figure B.15 Sample code of Landcover classification in 2001 
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                                     Figure B.16 Sample code of Landcover classification in 2001 
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APPENDIX C 

 

 Binary Dasymetric Mapping Vector-Based Approach 

 

Population in each target zone t, Pt =   ∑ Ats /As  * Ps 

 

Where Ats is the intersection area between the source and target zone. 

As is the area of the source zone. 

Ps is the population in the source zone. 

1. Reclassifying landcover data 

2. Converting them from raster landcover data to vector data using raster to polygon. We 

converted the raster into multipart polygons.  

3.  We masked out fallow land, other vegetation, and water bodies and kept only homestead 

forest class. By doing so we obtained only the homestead forest layer polygon.  

4. Then intersected the union population layer with homesteadforest polygon layer, and all 

the attributes were stored in the homesteadforest layer. Besides each homestead forest 

polygons contained population union populations. Homestead forests in each union act as 

multipart polygons which are connected and have total shape area in the attribute table. 

We add a new field in the attribute table called source area and use field calculator to 

copy value from field shape area. We used Sourcearea=!Shapearea! command in the field 

calculator. The reason behind this is in the next step we are going to have a single shape 

area for every homestead forest polygon where we will assign population. To reduce 

confusion, we created a new field called source area for the total area of homestead forest 

polygon in a union. 
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5. We converted the multipart homestead forest polygons into single part polygons and now 

each polygon is disconnected and has ‘shape area’s of their own. Besides every 

disconnected homestead forest polygon has its associated union population assigned to 

them. To calculate how many people live in each single polygon we will do areal 

interpolation. Which means we will calculate the areal proportion of each individual 

polygon in a union relative to total area of homestead forest polygons in each union. Then 

we will multiply them by the population count of their respective unions. 

6. Areal interpolation 

We used the following equation to assign population in each individual homestead forest 

polygon.  

AIT = (!Shapearea!/!Sourcearea!)*Total number of populations in a union 

7. We then again create a new field called Source Area 2. Next we calculate the field using 

field calculator and with expression Sourcearea2= !Shapearea! as the shape area of each 

polygons is going to work as source area in our next step. 

8. Next steps involve transferring the population to the 30 m grid. To do so we created 30 m 

fishnets. We clipped the fishnets with the union boundary. 

9. We intersected the 30 m grids with the homesteadforest layer where we previously 

disaggregated the union population data on every homestead forest polygon. After the 

intersection we now have the attributes of homestead forest layer. We now have shape 

area of each 30 m grids, and we have sourcearea2 from previous step and population in 

the homestead forest polygons. Now we again do areal interpolation using the following 

equation.  

AIT2 = (!Shapearea!/!Sourcearea2!)*AIT 
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10.  We then convert our 30 m polygons to 30 m raster. 
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APPENDIX D 

 

Binary Dasymetric Mapping Raster Based Approach 

 

Equation Population Per Pixel = ( (RH) * N*E)/(AH/30*30) 

Or ,                           = (RH) * N*30*30*E/AH 

RH = the relative density of a cell 

(AH/30*30) = Number of homestead forest cells in a union 

N = Actual population in a Union 

E = Areal weight 

E = PH*100+PF*0+Po *0+Pw *0 

PH is the area proportion of homestead forest in a union calculated using the following 

equation,  

PH = AH/ AH+AF+AO+AW  

AH   = Area of homestead forest, AF= Area of Fallowland, AO = Area of Water body AW = 

Area of Waterbody  

A = Total Area in union, derived from  

 

A= AH+AF+AO+AW 

 

1. Create Union Population Raster  
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As the entire method is raster based and we assign the population into 30 m homestead 

forest pixels our only vector based data needs to be converted to raster to perform raster 

based analysis. 

The first step involves converting the vector based union population data to 30 m raster. 

We used polygon to raster tool, choose input feature class as Union_2001, value field as 

population 2001.We determined 30 m cell size. For the year 2001 we name the output 

data Pop_2001. 

 

2. Reclassifying Landcover data 

 

As we assigned all our population to the homestead forest class, we provided 100 of 

relative density weight to homestead forest using reclassifying tool. The rest of the 

classes received 0 weight. We name this output data set as relative_density raster. 

 

3. Calculating Expected population in each Union 

 

To calculate the areal weight in each union we will follow the following equations. 

 

Areal weight, E = PH*100 

 

Proportion of Homestead forests in a Union, PH = AH/ A 

 

Total area in a Union, A= AH+AF+AO+AW 

 

 

Step 1: Total Area Calculation 
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To calculate total Area in each union we need to know the total areas of each landcover 

classes in each union. 

 

To do that we first rasterize the Union boundary data based on their union code. Then use 

tabulate area tool to calculate total area of each landcover class within each union.  

 

Rasterize union boundary. 

 

We used polygon to raster tool. 

 

For value field we set the ADMN_4 field as value which contains unique union codes of 

each union. We named this dataset as ADMN4_2001 

 

After rasterizing the union boundary, we used Tabulate area tool to obtain areas of each 

landcover class. 

 

Inside Tabulate Area tool, we provided following parameters Input zone data: 

ADMN4_2001, Zone field: ADMN_4, which is our unique union code, Input raster: 

relative_density, Output table Lctab_2001. 

 

Lctab_2001 table contains areas of homesteadforest, fallowland, othervegetation, 

Waterbody. We created a new field called Total to calculate total area of those classes in 

each union boundary. We use the following equation.  
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Total area in a Union, A= AH+AF+AO+AW 

 Step 2: Proportion of Homestead Forest calculation 

 To calculate the proportion of the homestead forest in each union we created a new field

 called PH.  We used  PH = AH/ A to calculate the total areas of homestead forests in each

 union. 

Step 3: Areal weight E  

We created a new field called E and multiplied the relative density weight of homestead forest 

100 with the proportion of homestead forest in each union using the following equation.  

E = PH*100 

4 Creating Homestead Forest Area and Expected Population Raster 

Next to obtain the E and AH in the equation 3.4 we created raster data from field E and Total in 

table Table Lctab_2001. 

Step 1: Joining Lctab_2001 with Union_2001 

We used ADMN_4 field as primary key to join LCtab_2001 with Union_2001 feature

 class. 

Step 2: Rasterizing AH and E field  

As now the AH and E field joined with our Union boundary feature class, we used

 polygon to raster tool and created AH and E rasters using Total and E fields as value

 fields respectively. For the parameter cell size, we chose 30 m.  
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5 Masking out only Homestead Forest class from relative_density raster.  

As our final step involves assigning population to only homestead forest class, we masked out 

only homestead forest from relative_density raster to decrease processing time.  We used 

reclassified tools and for homestedforest class we provided 100 in the value fields and 

‘NODATA’ for all other classes. We renamed the new relative density raster as 

relative_density_2. The new raster contains only pixels of homestead forest. 

6. Calculating Population Per Cell 

To calculate population in each homestead forest cell we used a rater calculator and used the 

following expression. The expression is based on equation 3.4 

"relative_density_2" * "POP_2001_Raster" *30 *30 * "E" / ("AH") 

The output raster was named as Dasy_pop_2001 
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