
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Jack N. Averitt College of Graduate Studies

Fall 2023

Comparative Analysis of Fullstack Development
Technologies: Frontend, Backend and Database
Qozeem Odeniran

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

 Part of the Computational Engineering Commons, Data Science Commons, Data Storage
Systems Commons, Programming Languages and Compilers Commons, Software
Engineering Commons, Systems Engineering Commons, and the Theory and Algorithms
Commons

Recommended Citation
Odeniran, Qozeem, "Comparative Analysis of Fullstack Development Technologies:
Frontend, Backend and Database" (2023). Electronic Theses and Dissertations. 2663.
https://digitalcommons.georgiasouthern.edu/etd/2663

This thesis (open access) is brought to you for free and open access by the Jack N. Averitt College
of Graduate Studies at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/2663?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

COMPARATIVE ANALYSIS OF FULLSTACK DEVELOPMENT TECHNOLOGIES:

FRONTEND, BACKEND AND DATABASE

by

QOZEEM ODENIRAN

(Under the Direction of Hayden Wimmer)

ABSTRACT

Accessing websites with various devices has brought changes in the field of application development.

The choice of cross-platform, reusable frameworks is very crucial in this era. This thesis embarks in the

evaluation of front-end, back-end, and database technologies to address the status quo. Study-a explores

front-end development, focusing on angular.js and react.js. Using these frameworks, comparative web

applications were created and evaluated locally. Important insights were obtained through benchmark

tests, lighthouse metrics, and architectural evaluations. React.js proves to be a performance leader in

spite of the possible influence of a virtual machine, opening the door for additional research. Study b

delves into backend scripting by contrasting node.js with php. The efficiency of sorting algorithms—

binary, bubble, quick, and heap—is the main subject of the research. The performance measurement

tool is apache jmeter, and the most important indicator is latency. Study c sheds light on database

systems by comparing and contrasting the performance of nosql and sql, with a particular emphasis on

mongodb for nosql. In a time of enormous data volumes, reliable technologies are necessary for data

management. The five basic database activities that apache jmeter examines are insert, select, update,

delete, and aggregate. The performance indicator is the amount of time that has passed. The results

showed that the elapsed time for insert operations was significantly faster in nosql than in sql. The p-

value for each operation result was less than 0.05, indicating that the performance difference is not

significant. The results also showed that the elapsed time of update, delete, select, and aggregate

operations are less in nosql than in sql. This suggests that the performance difference between sql and

nosql is not significant. These research studies are combined in this thesis to provide a comprehensive

understanding of database management, backend programming, and development frameworks. The

results provide developers and organisations with the information they need to make wise decisions in

this constantly changing environment and satisfy the expectations of a dynamic and diverse technology

landscape.

INDEX WORDS: Framework, JavaScript, frontend, React.js, Angular.js, Node.js, PHP, Backend,

technology, Algorithms, Performance, Apache JMeter, T-test, SQL, NoSQL, Database management

systems, Performance comparison, Data operations, Decision-making.

COMPARATIVE ANALYSIS OF THE FULLSTACK DEVELOPMENT TECHNOLOGIES:

FRONTEND, BACKEND AND DATABASE

by

QOZEEM ODENIRAN

B.S., University of Ilorin, Nigeria, 2018

A Thesis Submitted to the Graduate Faculty of the Georgia Southern University in the Partial

Fulfilment of the Requirement for the Degree

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY

STATESBORO, GEORGIA

© 2023

QOZEEM ODENIRAN

All Rights Reserved

 1

COMPARATIVE ANALYSIS OF THE FULLSTACK DEVELOPMENT TECHNOLOGIES:

FRONTEND, BACKEND AND DATABASE

by

QOZEEM ODENIRAN

Major Professor: Hayden Wimmer

 Committee: Meenalosini Vimal Cruz

 Kim Jongyeop Kim

Electronic Version Approved:

December 2023

 2

 DEDICATION

I dedicate this to Almighty God, and a very few good people.

 3

ACKNOWLEDGMENTS

I would like to sincerely thank Dr. Hayden Wimmer, my thesis advisor, for his excellent advice,

steadfast support, and knowledgeable insights during the study process. I would like to express my

sincere gratitude to every member of my thesis committee for their insightful criticism and

contributions to this work.

In addition, I want to thank my fellow students for their support and companionship throughout this

academic adventure. Your assistance has greatly influenced how this thesis has turned out.

I appreciate all your help and inspiration.

 4

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... 3

LIST OF FIGURES ... 9

 LIST OF TABLES ... 7

CHAPTER

1 INTRODUCTION ... 12

2 LITERATURE REVIEW .. 14

 Study A – Literature Review ... 14

 Study B – Literature Review ... 22

 Study C – Literature Review ... 29

3 STUDY A – JAVASCRIPT FRAMEWORKS: A COMPARATIVE STUDY

BETWEEN REACT.JS AND ANGULAR.JS ... 37

 Introduction ... 37

 Background ... 38

 Method .. 39

 Framework .. 41

 Angular.Js .. 42

 Virtual Machine (VM) ... 42

 Similar Web App Implementation ... 43

 Testing Procedures .. 43

 Lighthouse ... 45

 Task Manager (Google Chrome) ... 47

 5

 Result... 47

 Discussion ... 57

 Conclusion... 57

4 STUDY B – PHP Vs. Node.Js: Determining Better Backend Scripting LANGUAGE .. 59

 Introduction ... 59

 Background .. 60

 Sorting Algorithms .. 60

 Algorithmic Complexity .. 61

 Comparison Of Sorting Algorithms ... 62

 Php And Node.Js ... 69

 Methodology .. 71

 Research Problem And Purpose Of Study ... 71

 Performance Goal, Statement Of Research Objectives And Research Questions 71

 Research Objectives: ... 71

 Research Questions: .. 72

 Description Of Research Design, Apache Jmeter, Php & Node.Js, Sorting Algorithms,

And Performance Metrics. ... 72

 Research Design: ... 72

 Apache Jmeter & Settings: .. 72

 Data Collection Process, Testing Procedures .. 79

 Results ... 81

 Limitations ... 86

 Future Research ... 87

 Discussion .. 87

 Conclusion ... 88

5 STUDY C – Database Technology Performance Evaluation: SQL Vs. Nosql 89

 6

 Introduction ... 89

 Methodology .. 90

Research Problem And Purpose Of Study ... 90

Performance Goal, Statement Of Research Objectives And Research Questions 90

Research Objectives: In This Research, Our Objectives Are As Follows 90

Data Collection Process, Testing Procedures .. 98

 Result ... 101

 Conclusion ... 108

6 CONCLUSIONS ... 109

REFERENCES .. 111

 7

LIST OF TABLES

Table 3.1: Parameters and values of environment ... 39

Table 3.2: Virtual Machine (VM) Configuration and Specification Settings 48

Table 3.3: Day-1 React.js Performance Readings (A) ... 49

Table 3.4: Day-1 React.js Performance Readings (B) ... 49

Table 3.5: Day-1 React.js Performance Readings (C) ... 50

Table 3.6: Day-1 React.js Performance Readings ... 50

Table 3.7: Day-1 React.js Performance Readings (E) ... 50

Table 3.8: Day-1 React.js Performance Readings (F) .. 50

Table 3.9: Day-1 Angular.js Performance Readings (A) ... 51

Table 3.10: Day-1 Angular.js Performance Readings (B) .. 51

Table 3.11: Day-1 Angular.js Performance Readings (C) .. 51

Table 3.12: Day-1 Angular.js Performance Readings (D) ... 51

Table 3.13: Day-1 Angular.js Performance Readings (E) .. 52

Table 3.14: Day-1 Angular.js Performance Readings (F) .. 52

Table 3.15: Day-2 React.js Performance Readings (A) ... 52

Table 3.16: Day-2 React.js Performance Readings (B) ... 52

Table 3.17: Day-2 React.js Performance Readings (C) ... 53

Table 3.18: Day-2 React.js Performance Readings (D) ... 53

Table 3.19: Day-2 React.js Performance Readings (E) ... 53

 8

Table 3.20: Day-2 React.js Performance Readings (F) .. 53

Table 3.21: Day-2 Angular.js Performance Readings (A) ... 53

Table 3.22: Day-2 Angular.js Performance Readings (B) .. 53

Table 3.23: Day-2 Angular.js Performance Readings (C) .. 54

Table 3.24: Day-2 Angular.js Performance Readings (D) ... 54

Table 3.25: Day-2 Angular.js Performance Readings (E) .. 54

Table 3.26: Day-2 Angular.js Performance Readings (F) .. 54

Table 3.27: Table showing the average of the overall performance of React.js and Angular.js

.. 55

Table 4.1: Advantages and Disadvantages of Sorting Algorithms ... 67

Table 4.2: Time Complexity Table of Sorting Algorithms ... 68

 9

LIST OF FIGURES

Figure 3.1: Command to run React.js App from terminal ... 43

Figure 3.2: Command to run Angular.js App from terminal .. 44

Figure 3.3: Resulting Application with 20 rows of data loaded from MySQL database 44

Figure 3.4: Generating 1000 paginated rows on button click .. 45

Figure 3.5: Performance metrics from Lighthouse .. 46

Figure 3.6: Google Chrome Task Manager .. 47

Figure 3.7: Column graph of day 1 & 2 performance of react.js and angular.js frameworks . 56

Figure 3.8: Column graph of average performance of React.js and Angular.js 56

Figure 4.1: Apache JMeter showing Number of Threads & Ramp-up period 74

Figure 4.2: Apache JMeter showing test run results .. 74

Figure 4.3: A basic PHP code inside HTML page. .. 75

Figure 4.4: A basic node.js code .. 75

Figure 4.5: Binary Sort in PHP .. 76

Figure 4.6: Binary Sort in Node.js ... 76

Figure 4.7: Bubble Sort in PHP ... 77

Figure 4.8: Bubble Sort in Node.js .. 77

Figure 4.9: Quick Sort in PHP ... 77

Figure 4.10: Quick Sort in Node.js .. 77

 10

Figure 4.11: - Heap Algorithm in PHP .. 78

Figure 4.12: - Heap Algorithm in Node.js ... 78

Figure 4.13: Apache JMeter showing the Table Listener ... 79

Figure 4.14: Running targeted algorithm in Apache JMeter .. 80

Figure 4.15: Bubble Sort result for 30 runs and Latency Average ... 82

Figure 4.16: Binary Sort result for 30 runs and Latency Average ... 83

Figure 4.17: Quick Sort result for 30 runs and Latency Average .. 84

Figure 4.18: Heap Algorithm result for 30 runs and Latency Average 85

Figure 4.19: Sorting Algorithm results for t-test .. 86

Figure 4.20: Heap Algorithm results for t-test ... 86

Figure 5.1: Apache JMeter ... 92

Figure 5.2: Apache JMeter showing the INSERT OPERATION thread group 93

Figure 5.3: Apache JMeter showing the SELECT OPERATION thread group. 93

Figure 5.4: Apache JMeter showing the UPDATE OPERATION thread group...................... 94

Figure 5.5: Apache JMeter showing the DELETE OPERATION thread group 94

Figure 5.6: Apache JMeter showing the AGGREGATE OPERATION thread group 95

Figure 5.7: VS Code showing NoSQL and SQL queries for INSERT operations 96

Figure 5.8: VS Code showing NoSQL and SQL queries for SELECT operations. 96

Figure 5.9: VS Code showing NoSQL and SQL queries for UPDATE operations. 97

Figure 5.10: VS Code showing NoSQL and SQL queries for UPDATE operations. 97

 11

Figure 5.11: VS Code showing NoSQL and SQL queries for Aggregate (Average) operations.

.. 97

Figure 5.12: Apache JMeter showing the ‘View Results Tree’ Listener 99

Figure 5.13 Running targeted algorithm in Apache JMeter ... 99

Figure 5.14: INSERT operation result for 30 runs showing the elapsed time average. 102

Figure 5.15: UPDATE operation result for 30 runs showing the elapsed time average. 103

Figure 5.16: DELETE operation result for 30 runs showing the elapsed time average. 104

Figure 5.17: SELECT operation result for 30 runs showing the elapsed time average. 104

Figure 5.18: AGGREGATE(Average) operation result for 30 runs showing the elapsed time

average. .. 105

Figure 5.19: INSERT operation results for t-test ... 105

Figure 5.20: UPDATE operation results for t-test ... 106

Figure 5.21: DELETE operation results for t-test .. 106

Figure 5.22: SELECT operation results for t-test .. 106

Figure 5.23: AGGREGATE (AVERAGE) operation results for t-test 106

 12

CHAPTER 1

INTRODUCTION

Development frameworks and stacks have evolved and improved over time. Deciding on which

framework to apply to a particular application is a choice that deserves careful consideration. In a multi-

tier framework, one must consider front-end, back-end, and database technologies. Angular and React

are modern front—end frameworks with Angular developed by Google and React developed by

Facebook to address specific issues for the Facebook application. PHP, or PHP Hypertext Processor,

has been around for decades and dominated the development landscape due to its power, performance,

and scalability and is the most common framework on the web today; however, JavaScript has emerged

as a more modern alternative and challenger to PHP’s legacy. Similar, MySQL is the most common

back-end database technology due to its performance and open-source support; however, MongoDB

has emerged as a challenger and seeks to improve performance over MySQL. In this work, we seek to

compare these frameworks from a front-end, back-end, and database level. We first focus on Angular

vs React, followed by PHP vs JavaScript, and finally we compare MySQL to MongoDB.

The first study focuses on Angular versus React. The front-end engineering of web-pages continuously

experience growth as the number of devices used in accessing it increases. Users tend to spend more

time on a webpage if it has a simple and appealing interface. In the past decades, building a responsive

webpage is tedious as the developer must make use of HTML, CSS, and pure (vanilla JavaScript).

Nowadays, all these have been combined into an easy-to-use template known as a framework. However,

many frameworks have been developed by developers from diverse backgrounds, and the choice of

which framework to use must be made rightly. Hence, we embark on a research study to unveil features,

power, and benchmark characteristics of some selected JavaScript frontend frameworks (React.js and

Angular.js) to ease the decision-making process for developers.

Following front-end development, we move to back-end web technology. Within the field of back-end

web scripting, architecture, scalability, and performance are frequently discussed. In our research

study, PHP and Node.js are used to illustrate this argument. The popularity of Node.js, a contemporary

 13

and effective back-end technology, has grown, while PHP continues to keep its historical position.

Performance issues are very important in the quick-paced digital world of today. Our goal is to

evaluate the performance of PHP and Node.js using popular algorithms to shed light on this matter.

The temporal complexities of binary, bubble, quick sorts, and heap algorithms allowed for effective

performance differentiation in their selection. Through rigorous data gathering using Apache JMeter,

latency comparisons, and extensive testing with varying array sizes, this study provides valuable

insights for software engineers and developers. It facilitates the process of deciding which backend

scripting is best.

Finally, we examine the performance between SQL and NoSQL databases. Within the field of data

management, our research study centers on the crucial decision between NoSQL and SQL database

systems, tackling the needs of a constantly changing, diverse data environment. By carefully comparing

the performance of these two different database systems across essential activities, including as Insert,

Select, Update, Delete, and Aggregate (Average), it acts as a guide for decision-makers, database

administrators, and developers. The study highlights the superiority of SQL databases in reporting and

aggregating tasks, facilitated by Apache JMeter and the T-Test statistical approach, while revealing the

strengths of NoSQL databases, exemplified by MongoDB, in data manipulation tasks.

 14

CHAPTER 2

LITERATURE REVIEW

2.1 STUDY A – Literature Review

Presently, devices of various sizes are used to access webpages. This resulted in an increased demand

for a cross-platform, reusable, and easy-to-maintain front-end development code to enhance the

development process and efficiency of the overall front-end system. Framework technology offers well-

defined code structures embedded with enough features to accomplish a speedy front-end development

solution [1]. Xu [1] focused on a thorough evaluation of popular JavaScript frameworks in order to

make available insightful options while developers are in the decision-making stage of which frontend

JavaScript framework to use for a particular project. In Xu [1]’s research, the same website was created

with selected frameworks to evaluate the advantages and disadvantages, and the kind of projects they

can be used for. Also, performance metrics for each website were also recorded to compare the

efficiency of these frameworks in terms of DOM operations. The experiment in Xu [1] research

unveiled the important characteristic features of the selected JavaScript frontend frameworks making

the selection process easier for developers when they are about to embark on a project.

JavaScript is one of the most popular scripting languages used in the development of

standard, interactive and easy-to-maintain websites [2]. Hence, many frontend frameworks leverage

the outstanding features of JavaScript, which in turn make the design and maintenance of small and

large websites a breeze. Among others, React.js, Angular.js, and Vue.js are the most popular

JavaScript frontend frameworks. study aimed to carry out a comprehensive evaluation of the most

used JavaScript frontend frameworks in order to establish which framework is advantageous in terms

of DOM performance benchmark, as well as determining the strength and weaknesses of each

framework in the realm of web development. Assessing Document Object Method (DOM)

performance metrics was what Levlin [2] based the evaluation of his experiment on. In the study, he

created four similar applications in React.js, Angular.js, Vue.js, and Svelte. These applications all have

the same functionalities and HTML, CSS files, and test files are located in an ‘src’ folder, to avoid

 15

unbiased testing and performance. In his result, Levlin [2] inferred that the React.js framework had

the overall best performance having been observed to be the most used framework as well as

satisfying standard scores in DOM performance metrics, popularity, documentation languages, and so

on.

The inability of Hypertext Markup Language (HTML) to satisfy the need for application

integration, model flexibility and cross-platform birthed the three-layers architecture which supports

the separation of the logical layers in an application. These layers include the presentation layer,

application layer, and a dedicated database layer [3]. Many frameworks were created following this

style and have been experiencing exponential growth since inception as the latest technologies were

been introduced to complement its evolvement. The objective of Verma [3] research was to examine

the performance of different frameworks by executing similar chat applications built in selected web

frameworks and native frameworks under the same server. Background network communication

makes obtaining targeted data from native applications more difficult than web applications. Hence,

while other background-running network-related activities were isolated from the network requests on

the chat server, Verma [3] obtained datasets for the selected frameworks via network methodology.

The allocation of performance scores to selected frameworks was based on criteria such as

development, debugging, modifying, and testing of the chat applications. From Verma [3] it was

inferred that the association of React.js and Rails framework satisfied the overall standard

performance, hence emerging as the most efficient frameworks. While the second-rated performance

goes to the combination of Laravel and Vue.js frameworks.

As the request to build more complex web applications such as Multiple Pages Applications

(MPA) and Single Page Applications (SPA) rises, the decision-making process as to which framework

to use could pose a challenge to the developer [4]. However, making the wrong choice of framework

might result in some setbacks in the development process. Hence, Vukelić [4] worked on research that

examines the available frameworks and proffers some decision-making advice on which framework is

suitable for which web application project. In this research, Vukelić [4] hoped to give a detailed

explanation of MPA and SPA web applications emphasizing on advantages and disadvantages, and

 16

characteristic features expected of a framework to make it suitable for specific web application

projects. Vukelić [4] adopted the style of initially gathering some probing questions on MPA and SPA

development, then based the analysis of available frameworks on these questions. Doing this ensured

narrowed-down research as to which features of the available framework to look out for. At the end of

the experimental analysis, Vukelić [4] presented a table composed of obtained performance metrics

showing a comparison among React.js, Angular.js, and Vue.js frameworks, and how they can enhance

the development of MPA and SPA.

JavaScript is indeed one of the most famous and used scripting languages among developers

of today. Its complementing features embedded in a lot of frameworks and libraries are another

supporting factor for its popularity among developers, especially frontend-heavy programmers [5]. In

order to properly utilize different JavaScript frameworks, and to beat the challenges in choosing the

right framework for a specific project, it is important to investigate the available frameworks to get

more insight into specific features which might or not meet the requirements of a project. Yorulmaz

[5]’s goal of this research was to thoroughly asses some selected JavaScript frameworks (Angular and

React), then be able to give solid suggestions as to which framework best suits a project. For this

research, Yorulmaz [5] chose to develop two To-do-list applications, one in Angular.js, and the other

in React.js. He conducted a comparative analysis of these applications based on some chosen factors

which appeared to be significant to developers, as well as performed an extensive evaluation. At the

end of the experimental processes, Yorulmaz [5] gave detailed results on the selected frameworks

based on the comparative analysis conducted. The results comprise of suitability and updates of the

frameworks where Angular.js and React.js were almost rated the same, variables and functionalities

where React.js is a bit complex to comprehend. Other evaluation factors considered are

documentation, number of libraries, performance, security, localization, and so on.

In order to achieve absolute productivity in a shorter time, developers leverage the power of a

framework [6]. Apart from the fact that the use of frameworks facilitates a shorter time to market in

application development via design and code reuse, there are some overhead issues a developer

should be aware of as regards development. Furthermore, another issue associated with making

 17

choice-of-framework is that, as long as JavaScript frameworks are open-source, a lot of JavaScript

developers continually propose new features which force the framework users to remain updated with

the new development in the selected framework. In a thesis titled ‘Supporting web development

decisions by comparing three major JavaScript frameworks: Angular, React and Vue’ by

Wohlgethan [6], a constructive overview of three JavaScript frameworks which are currently trending

in the market was present. This aims to provide software developers with indications in the decision-

making process of which framework to use for front-end development. Wohlgethan [6] summarized

the criteria for analysis of the selected framework into three aspects which are stability, learning

curve, and JavaScript integration. In the first aspect, sub-criteria like versioning, release policy,

maintainability, and licensing was discussed. The second criterion considered available

documentation, knowledge requirements, and career opportunities. While the third consists of stacks,

development languages, and syntax. A comparative analysis among the three frameworks was

performed and compared baes on selected features. In the results, Wohlgethan [6] gave conclusion

that there is no constructive conclusion that states that one framework is better than another. However,

the choice of a framework sits on the shoulder of the nature of the project being considered, the

developer’s knowledge. Other points such as community support, and file separation technology

which React.js and Angular.js score a high score due to big tech companies' support.

Mohammadi [7] classified the traditional website's model as being multipage which is

characterized by bad responsiveness, meaning that it takes a considerable amount of time for the

browser to load/refresh when users perform operations like a page change or data retrieval from the

server. As more and more operations are performed, more time is required to finish a process. This

calls for a system where the client (front end) and the server (back end) can be separated such that

logic and processing are handled by the server. Hence, a single-page application (SPA) was proposed

as a feasible solution. The objectives behind (Mohammadi)’s research includes the following:

Introduction of JavaScript’s framework (React.js and Angular.js) along with its structure and

functionalities, as well as analyzing what key features are available in them, unveiling some key

advantages between selected framework and making the right choice in the project, to create a SPA in

 18

Angular in order to be able to assess its complexity then make an inference as to which kind of project

it is most suited for. In [7]’s research, in order to carry out a comparative analysis of the selected

frameworks of study, a single-page application (property service website) was developed and various

benchmark features such as communication trends between clients and servers, and the number of

libraries available were evaluated. [7] concluded, regarding his experiment that Angular turned out to

be the most used for SPA due to its data binding features and considerably large support from Google.

Also, the Angular.js framework is capable of working successfully with the SPA model.

With the rate at which JavaScript frameworks are evolving, KEPLER [8] suggested that users (i.e.,

developers) must meticulously choose which one to use in a project, otherwise, they would be

investing their time and money wrongly. For the fact that if developers are not familiar with the

fundamental programming language of a framework, the need for changing to another framework is

the next thing to do, and this might happen at any point in the project life cycle, it becomes important

to analyze and review some merits and demerits of a bunch of the available frameworks of today as

well as being informed of its overall requirements [8].

Defining the research’s problem statement, KEPLER [8] aimed to offered to carry out a

comparative analysis by experimenting with and evaluating the three most popular JavaScript

frontend frameworks (React.js, Angular.js, and Vue.js) in order to establish some solid facts about the

frameworks that would be useful to developers and companies in the decision-making process stage.

In order to perform the experiment, a website that displays data from an Android Device Security

Rating was developed with one of the frameworks. KEPLER [8] placed some important requirements

such as presenting data in a table, filtering of table data, URL representation of filters, and full

responsiveness on the website in order to be able to grab some metrics while performing various

operations. Also, KEPLER [8] made sure to implement the operations with huge data to measure

efficiency. The collection of relevant criteria was done via the study of literature and their comparison

methods on web applications and was used to evaluate selected frameworks. In the results of his

experiments, KEPLER [8] inferred that Angular is characterized by a smooth learning process and

clear structures, hence selected for the applications like the one developed in the research.

 19

Due to an increased demand for better functionalities and usability, web applications needed

to adopt new techniques, hence abandoning the idea of browser plugins and embracing the SPA

(single-page application) model [9]. The embraced model leveraged the powerful feature of

JavaScript to asynchronously fetch data and partially or completely update web pages’ contents

without refreshing the page. Mousavi [9] embark on research to evaluate the two most popular

JavaScript frameworks namely: React.js and Angular.js. In the midst of competitive markets, rapid

requirements, and accelerated delivery, Mousavi [9] main objective was to evaluate and compare the

selected frameworks' maintainability, and complexity, to establish firm facts about the frameworks

while helping developers gain more insights. In the research, Mousavi [9] evaluated prototype

applications in both React and Angular and performed an extensive comparative analysis of

components of the applications and frameworks involved from basic to advanced levels. An open-

source tool, Plato was used to obtaining performance metrics. Then, presented results and statistics in

tabular formats to give quantitative reports. Also, qualitative reports were obtained. The result from

the Mousavi [9] experiment showed that both frameworks significantly differ in terms of the number

of files and lines of code. Also, Angular.js uses more function calls for retrieving server data, and

splitting data into related chunks, while React.js leverage state mutation to separate functions into two

files which cancel the need for factory and abstract class for exercise. This results in React.js using

fewer lines of code. However, the object-oriented style of Angular.js makes a better splitting with

respect to higher cohesion [9].

The correlation between the framework used in the development of SPA (Single Page

Application) and the application itself is positive [10]. The workflow of an application is dependent

on the framework it was developed in. Also, the use of frameworks speeds up the development

process and cancels the occurrence of possible errors. However, the uniqueness of each framework

cannot be underestimated. Hence, a decision on which framework to use for a project must be

strategic [10]. Saks [10]’s interest was to make the decision-making process a breeze for developers

while trying to figure out what framework is best to use for what project. Hence, Saks [10] conducted

a comparative analysis of the three most popular JavaScript frameworks: React.js, Angular.js, and

 20

Vue.js. For the purpose of obtaining performance metrics, Saks [10] developed three similar small-

sized web applications in React.js, Angular.js, and Vue.js. In these applications, a key performance

metric, loading speed was evaluated while some defined operations were performed. After an

extensive evaluation exercise Saks [10] inferred that React.js is the most popular and perhaps the best

framework to consider learning to land a well-paying job. Also, Vue surfaces to be the fastest

framework and easiest to learn. While Angular seems to be the hardest to learn and is characterized by

the slowest performance of the three [10].

As the era of web development is fast advancing, the need to develop interactive web

applications becomes significant [11]. JavaScript frontend frameworks help facilitate the development

of single-page web applications, hence referred to as one of its most important parts. Kumar and

Singh [11]’s research aims to offer an in-depth understanding of the two most popular JavaScript

frameworks, React.js and Angular.js. First, Kumar and Singh [11] comprehensively introduced the

client side of the web application, and technologies used such as HTML and JavaScript. Then, the

frameworks of concern, React.js and Angular.js were also discussed, as well as the Virtual DOM

which serves as a tree having nodes listing HTML elements, attributes, and contents in terms of

properties and objects [11]. Lastly, the two JavaScript frameworks were compared in terms of some

benchmark features and performances to unveil the power of each of the frameworks. Obtained results

showed that both frameworks differ in features including the size of the project, supporting the

community, debugging techniques, Document Object Model (DOM), as well as mobility (Kumar and

Singh [11]

The frameworks created in JavaScript are commonly used in both client and server-side

development of web applications [12].However, one of the most dangerous security issues in web

applications is cross-site scripting (XSS), and this is pertinent to JavaScript applications. Hence

Peguero, et al. [12] did extensive research to contribute to the understanding of how a JavaScript’s

framework embedded security features can impact the application’s security developed in such

framework. Peguero, et al. [12] demonstrated four places in an application where an XSS reduction

can be done, in relation to the framework being utilized. Peguero, et al. [12] conducted an

 21

experimental analysis of the three most-used template engines namely: Jade/Pug, EJS, and Angular

used by JavaScript applications. Peguero, et al. [12] determined the number of projects vulnerable to

XSS, as well as the number of vulnerabilities in each of the projects, depending on the framework

used, using an automatic and manual examination of each group of applications. At the end of the

empirical study, Peguero, et al. [12] inferred that application security is affected by the location of the

mitigation; framework-based mitigations make apps more secure.

Lots of frameworks have been developed and adopted by IT companies as well as researchers

[13]. This is a result of new requirements for the features of web and mobile-based applications.

However, Sultan [13]understands the fact that these frameworks differ from each other in one way or

the other. The difference in characteristics and features of the existing and newly developed

framework, therefore, opens a door for a comparative study of these frameworks, which is the goal of

[13]’s research. To establish a firm distinction among the numerous frameworks, Sultan [13]

identified twelve (12) new characteristic features common to all frameworks of interest, then

extensively compare how these features are implemented on each framework. After well performed

comparative study of these frameworks, various advantages of using a particular type of framework

were discussed. Although, no framework was pronounced the ‘winner’, otherwise, the pros and cons

of using choosing a particular framework for a particular project were clearly stated to help

companies, developers, and researchers in the decision-making stage [13].

In order to make sure that long-run development is achieved, old technologies should be

updated with new technologies [14]. Utilizing a frontend framework is one of the new technologies

that facilitate the separation of frontend and backend development, hence making both development

processes independent. Guan, et al. [14], aim to use this research as a medium to achieve the review

of the framework (Yahoo UI) used to develop Networked Control System Lab (NCSLab) system.

Redevelop the existing system with the React.js framework, as the support for Yahoo UI is no longer

available. Make a comparison among Angular.js, React.js and Vue.js First, Guan, et al. [14]

comprehensively explained the current architecture of the NCSLab in order to give a clear insight into

its current state. Then, the system was redeveloped in the React.js framework. Also, deep explanations

 22

and e=definitions of all components of React.js utilized in the redesign were provided, as well as an

emphasis on the backend-frontend separation. In conclusion, Guan, et al. [14] inferred that the

exceptional features of the React.js framework brought about a new user experience (UX) on the

pages of NCSLab.

As the technology on the web is experiencing exponential growth, HTML is fast becoming the

worldwide consortium, as well as leading the frontend development to be standing firm at the

forefront of the history of the internet [15]. The goal of [15]’s research is to establish some facts to

assist in the selection stage of frameworks or libraries in the development of an e-business platform in

order to ensure a satisfied UI/UX (User Interface / User Experience). In Xing, [15]’s research, the

most popular frontend frameworks React.js, Angular.js, and Vue.js were comparatively studied in

terms of performance focusing on the features that can improve the overall performance of an e-

business platform. The frontend solutions such as data processing, volume & performance, language-

based, and technical support were examined. A conclusion from this study was that the Angular.js

framework is characterized by extensive functions and features capable of the development of large

commercial projects such as e-business platforms, while React.js and Vue.js frameworks are a good fit

for small-to-medium projects such as streaming applications, blogging system, etc. [15].

2.2 STUDY B – Literature Review

As organizations' information systems grow, Prayogi, et al. [16] were interested in the fact that

data exchange within those systems becomes increasingly important. Information systems play crucial

roles in business processes in educational institutions, from student and course registration to end-of-

semester/session evaluations and graduation processes [16]. The objective of Prayogi, et al. [16]’s

research study was to prototype the development of a REST API for academic information systems

and to analyze its performance by implementing it using two different server technologies: PHP and

Node.js. The prototype that Prayogi, et al. [16] implemented was developed using a database with one

sample table representing employees in a college, and two different endpoints were created for the

implemented REST API. In the experiment, Apache JMeter was used to simulate a thousand

concurrent requests on the database .Node.js consistently outperformed PHP in the experiment,

 23

achieving a 100% throughput for all concurrent 1000 requests, while PHP recorded a throughput of

only 48.70% under the same conditions [16].

 Chaniotis, et al. [17]’s article discusses the implications of developing end-to-end web

applications in the social web era and examines a distributed architecture suitable for modern web

application development. The aim of this study was to find the most efficient and scalable technology

stack for web application development in the current social web era. The authors, Chaniotis, et al. [17]

conducted stress tests on popular server-side technologies, including PHP/Apache stack, Nginx, and

Node.js, to determine their efficiency and scalability. The study found that the PHP/Apache stack was

not efficient in handling increasing demand in network traffic, while Nginx was more than 2.5 times

faster in I/O operations than Apache. Node.js outperformed both in I/O operations and resource

utilization but lacked in serving static files. Therefore, Nginx was recommended to be used in front of

Node.js to proxy static file requests, offering better infrastructure in terms of efficiency and

scalability. The study concluded that building cross-platform applications using web technologies is

feasible and productive, and Node.js is an excellent tool for developing fast, scalable network

applications that offer client-server development integration and aid code reusability [17].

 Raharjo [18]’s research explores Node.js, which is an application framework that can

construct network server and web applications, and its effectiveness in building dynamic web

applications. The authors draw a comparison between Node.js and the PHP/Nginx web development

stack and analyze their performance and scalability. The main goal was to assess and compare the

performance and scalability of Node.js and PHP/Nginx web applications using a load generator. To

conduct the study, the designed mock applications based on the Dijkstra Algorithm, which computes

the shortest path between nodes, particularly the Trans Jogia shelters. They utilized a load generator to

simulate concurrent user requests and assessed the performance and scalability of Node.js and

PHP/Nginx web applications. The study determined that Node.js applications performed better and

were more scalable than PHP/Nginx applications [18].

 Lei, et al. [19]’s study highlights the significance of large-scale, high-concurrency, and data-

intensive web applications in the latest generation of websites. Node.js has become popular for

 24

building such applications. Lei, et al. [19] were interested in comparing the performance of Node.js,

Python-Web, and PHP in constructing data-intensive web applications using benchmark and scenario

tests. Lei, et al. [19] conducted benchmark and scenario tests to compare the performance of Node.js,

Python-Web, and PHP in creating data-intensive web applications. The benchmark tests assessed

performance data, while the scenario tests simulated realistic user behavior. The study results revealed

that Node.js has a much higher capacity than PHP and Python-Web for handling requests within a

specific time frame. The authors concluded that Node.js is lightweight and efficient, making it an

excellent choice for I/O intensive websites. PHP is only suitable for small and medium-scale

applications, while Python-Web is developer-friendly and suitable for large web architectures. This

study is the first to assess these web programming technologies using both objective systematic tests

and realistic user behavior tests, with Node.js being the primary focus of discussion [19].

The current requirements of web applications, which demand performance and scalability and

implement the event model throughout the stack was examined in the research study. It also

introduces Node.js, a new web framework that accomplishes both through server-side JavaScript and

event-driven I/O. The objective is to compare practical web frameworks for the challenges of the

current web and assess the performance and efficiency of Node.js as a server-side language and non-

blocking asynchronous model. The experiments will compare Node.js to Apache and evaluate

practical web frameworks for the challenges of the current web. Tests was conducted against two

comparable frameworks that compare service request times over multiple cores. The results will

demonstrate the performance of JavaScript as a server-side language and the efficiency of the non-

blocking asynchronous model. The research study concludes that Node.js is an appropriate framework

for developing scalable web servers that can be scaled and distributed across multiple nodes using

clustering and replication mechanisms. Node.js is efficient in utilizing a multithreading programming

approach and its non-blocking asynchronous model, making it an ideal choice for high-performance

web applications [20].

To verify portability and flexibility, Dhalla [21] tests native JSON parsers written in 5

different programming languages (Java, Python, PHP, MS.NET Core, and JavaScript). Additionally,

 25

the research emphasizes the significance of JSON in IoT, mobile computing, smart grid systems, big

data applications, and the requirement for effective data transfer. The goal of this study is to observe

how five different programming languages can easily parse JSON files that have fixed nesting depths

and key-value pairs. It will assist in choosing the best technological platform for real-time messaging,

IoT, and JSON parsing, among other uses [21]. Five JSON parsers were tested by Dhalla [21], and

their efficiency in terms of processing time and resource usage was measured. It was done using a

laptop running Windows 10 Home, an Intel Core i5-7200U processor clocked at 2.50 GHz, and 16 GB

of RAM. Microsoft's System and Oracle's JSON-P library were two of the five parsers

employed.JSON.parse() in Node.js, the Text.Json library, the native Python json module, and the json

decode function in PHP. Five parsers—JavaScript, Java, PHP, Python, and MS.Net Core—were tested

for parsing performance, memory usage, and CPU usage. All parsers' parsing speeds were shown to

be positively correlated with file size, with JavaScript being the least efficient for smaller files and

Java being the highest. JavaScript has the most RAM for greater sizes, whereas Python had the least.

For JSON-formatted data, JavaScript performed the best while Java used less memory and CPU. Less

effective than the other three parsers were the PHP and Python parsers. More programming languages

and real-world JSON data should be included in future work [21].

The use of server-side JavaScript programming is discussed in Nkenyereye and Jang [22], and

Rhino, a Java-based JavaScript interpreter, is contrasted with V8-based alternatives like Node.js and

SilkJS. It describes how Node.js enables scalable network applications by avoiding blocking with an

event-loop and ensuring that call-backs are handled as rapidly as feasible when events happen.

Nkenyereye and Jang [22] suggests using a wearable device for remote healthcare monitoring in rural

villages, but it also emphasizes how difficult it will be for the healthcare hub server to manage

concurrency problems. It is advised to use Node.js as a cross-platform runtime environment to

effectively manage concurrency [22]. According to test results, MongoDB is 40% quicker than

Apache Sling and can be used to create an event-driven, high-performance healthcare hubserver. For

the Remote Healthcare Monitoring (RHM) to gather patient data and compare it to guidelines

established by doctors, an object model is offered. A message is sent to a set of actions to run an

 26

object, which carries out tasks that the patient and the doctor had previously agreed to. A message

queue and a thread pool are combined with Node.js to provide asynchronous communication. The

callback contains the state data for passive objects that completed lengthy, non-blocking tasks [22].

The test plan for evaluating Node.js and Apache Sling's functionality in a healthcare monitoring

system is described [22]. The client is the Instant Heart Rate Android app, and JMeter is used to gauge

response time and throughput. The findings from Nkenyereye and Jang [22]’s research study indicate

that Node.js-MongoDB outperforms Apache-Sling in terms of throughput and response time,

especially when there are many concurrent users. It was discovered that Node.js was about 40%

quicker than Apache-sling.

 Crawford and Hussain [23] discussed the difficulties in selecting a server-side technology for

web development, comparing four major scripting languages, including PHP, Django, Ruby on Rails,

and Node.js, based on five characteristics: popularity, accessibility to development tools and

packages, ease of starting, and availability of help and support. It is predicted that this research will be

useful to software engineers, developers, and educators that teach web development courses [23].

Crawford and Hussain [23] compared the selected scripting technologies in terms of getting started,

help and support, popularity, development tools and package management systems, integration with

database and drivers, and lastly, performance. Node.js, due to its fast-technology nature enables event-

driven, non-blocking I/O operations [23]. It is a well-liked development environment that can be used

to build console apps, run on desktop computers using Electron, in web browsers, and in embedded

systems. It is simple to keep using any database system desired thanks to the interface with five of the

most well-liked databases through packages. However, given the limited number of packages,

operating systems, and performance levels, its learning curve is constrained [23].

New programming tools are increasingly necessary, particularly for web and mobile apps, as

websites and web applications continue to expand [24]. The two most widely used web development

languages, PHP and ASP, are contrasted in this study with an emphasis on their most recent iterations.

In order to create dynamic, interactive web applications, server-side scripting languages like ASP and

PHP as well as databases like MySQL are used. PHP is a well-liked general-purpose scripting

 27

computer language for online development, while ASP is an open-source web framework that builds

webpages using HTML5, CSS, and JavaScript. Odeh [24] compared the quantity of websites on the

internet between 1995 and 2018 using the C# programming language. The purpose of Odeh [24]’s

work is to offer a critical analysis and useful advice on how to use a web programming language to

create a high-quality product. Odeh [24]’s research technique looks at web developers' experiences

and views on PHP, ASP, and web development. Other comparison criteria include cost, performance,

readability, understanding, maintainability, editing & deployment tools, platform, database,

webservers, core-language, synthetic character, webpage structure. The knowledge, application

domain, platform being used, and other considerations all play a role in the decision between ASP and

PHP. While ASP is more dependable and effective than PHP, PHP is better suited for developers who

are more familiar with Microsoft products. Both are appropriate, but C# is a safer language in terms of

server-side web application development [24].

In order to make them simpler for users to understand and learn, programming languages are

designed to increase readability and writability [25]. High-level programming languages were created

to boost abstraction and simplify coding, including Python, R, and Julia. For both inexperienced and

seasoned programmers, readability, writability, and reliability are crucial aspects of programming

languages. Reliable programming languages guarantee that the code behaves as intended. The

readability, writability, and dependability of six regularly used programming languages are compared

in [25] study: C, C++, Java, Python, JavaScript, and R. The study's goal is to assess their competitive

advantage in various applications and comprehend the trade-offs. A survey was used to collect data,

and a theoretical comparison was performed to analyze the value of these criteria and their impact on

the decision-making process of selecting a programming language. Ahmed, et al. [25]’s research

devised a novel method for comparing the six programming languages in terms of readability,

writability, and dependability. A metric evaluation system was developed to evaluate each language

for each indicator using the categories 'Bad,' 'Moderate,' and 'Good.' A poll was also undertaken to

validate the appraisal of this metric system, with a group of people answering a series of questions.

The most readable and writeable languages were found to be Python and R, with Java having an

 28

advantage in terms of reliability [25]. According to a poll, Python is the programming language of

choice for beginners and non-programmers, although Java is favored by seasoned programmers due to

its dependability. Theoretical analysis and survey findings were complementary, with Python

excelling in readability and writability and Java excelling in reliability. Expert programmers might,

however, favors the language in which they feel the most at ease.

The evolution of web scripting languages from CGI to PHP and ASP.NET is covered in this

research [26]. Open source, PHP is a commonly used server-side scripting language that can be

integrated into HTML. Microsoft's ASP.NET web development platform enables programmers to

create dynamic web apps using compiled languages like VB.NET and C#. Scripting languages are

progressing on many fronts, but businesses still have the difficult but important task of comparing

options to determine which one best suits their particular requirements [26]. The focus of the

Adebukola and Kazeem [26]’s research study is to analyze and contrast the effectiveness of PHP and

ASP.NET, the two most widely used dynamic scripting languages for online development. In

Adebukola and Kazeem [26]’s study, WAPT software is used to evaluate PHP and ASP.NET for

online application development. The focuses on measuring the response time, which is the amount of

time it takes for a client to send and receive a request, to assess the performance of online applications

created using PHP and ASP.NET. Performance tests were run to determine the average, minimum, and

maximum reaction times while the two technologies remained the same during the development of the

program. The most significant performance indicator is thought to be response time. PHP has a faster

reaction time under stress and endurance tests, making it a superior choice for online applications

[26].

For online applications that require lots of data, Node.js is gaining popularity [27]. Due to its

event-driven, non-blocking I/O approach, Node.js is growing in popularity, and Brar, et al. [27]’s

study employs objective benchmark testing and accurate user behavior testing to assess its

performance. Brar, et al. [27] utilized benchmark tests and scenario tests to evaluate the performance

of Node.js, Python-Web, and PHP. The test results provide some insightful enforcement data,

demonstrating that Node.js can handle far more requests in a certain period than PHP and Python-Web

 29

can. Three key tests were run in Brar, et al. [27]’s experiment to gauge how well Node.js, Python

Web, and PHP performed. Node.js fared better than Python Web and PHP, according to the results, in

terms of average requests per second and latency per request. Python-Web, Node.js, and PHP are

mature frameworks for large-scale websites [27].

Since 1991, websites have developed quickly, giving businesses access to online presences,

portfolios, and web-based applications HTML-based website development has given way to Node.js

and Python, which provide new difficulties such multi-user requests and high concurrency [28].

Challapalli, et al. [28]’s research paper examines the process of creating websites in the past and

present, the evolution of content delivery over time, the uses of websites, websites for mobile devices,

and a performance comparison of the two most popular web backend development languages, namely

Node.js and Python. In Challapalli, et al. [28]’s research, the server must be started and the program

must be directed to the same port on the local host in order to prepare for the test. Only 10 users are

simulated by the software because more will increase the server's and benchmark software's resource

demands. To prevent high CPU utilization and slow server response, it is best to keep the number of

users low. The "Hello World" server model, which is the simplest operational server model, aids in

identifying the internal variations in various technologies. Node JS outpaced Python at processing

requests, processing about 250 times as many requests as Python in a 30-second period. As the

number of users increased, Node JS's requests per second increased rapidly, whereas Python's increase

was steady and gradual. The failure rates in both situations were 0%. Python's average response time

was roughly 2040ms, compared to 7ms for Node JS. While Python's latency climbed dramatically as

the number of users increased, plateauing at 14000ms near the end of the test, with an average delay

of 7187ms, Node JS had an average latency of 1.04ms [28].

2.3 STUDY C – Literature Review

Structured Query Language (SQL) representing the Relational database poses itself as a logical

choice for data containing fixed or rarely changeable data structure. However, NoSQL databases

advent opened the door for fast processing of vast quantities of unstructured data, such as Biomedical

data, EEG signal data [29] [30]. As today’s businesses continue to face challenges in the use of

 30

different database types, Bjeladinovic, et al. [30], proposes a panacea to explore the use of a database

consisting of SQL/NoSQL. In the hybrid database system proposed by Bjeladinovic, et al. [30], when

the user initiates a query statement, the system decomposes it and determine the suitable database

language to be used in executing the query and adjusts to it. The system then accepts the results,

unifies them, translate them into user’s language, then display an integrated result [30]. Bjeladinovic,

et al. [30] architecture enabled connection of data from different hybrid component as well as

centralization of database administration.

 Antas, et al. [31]’s study examines the impact of COVID-19, evaluating database systems for

storing and mining COVID-19 data, assessing SQL and NoSQL databases along with Data Mining

algorithms. The research identifies MongoDB as the most effective database for most tests and

highlights the success of the Random Forest algorithm in predicting COVID-19 outcomes. Despite

vaccine progress, the paper emphasizes the need for continued efforts and AI-based analysis to

address the pandemic's challenges and prevent future crises. By constructing a complete data

framework for COVID-19 analysis using a variety of data sources, Antas, et al. [31] solves

shortcomings in earlier research. With the use of cutting-edge techniques like Naive Bayes, Decision

Tree, Random Forest, and Logistic Regression, the work focuses on choosing appropriate databases

for COVID-19 data and establishing a framework for data mining. To conduct performance testing,

the study combines data from numerous sources, particularly Brazilian hospitals, and builds relational

models for Microsoft SQL Server, MongoDB, and Cassandra databases [31]. The study builds a

COVID-19 predictive model with a variety of data variables, attaining good accuracy and insights. It

compares databases and discovers that MongoDB outperforms SQL Server in unstructured data

without the need for join queries due to its superior performance and scalability. The study

emphasizes the value of coordinated efforts in containing the pandemic and highlights MongoDB as

an excellent option for COVID-19 data processing [31].

The demand for effective data storage and retrieval has increased due to the expansion of

cloud and IoT applications [32]. Because they can manage Big Data from IoT contexts, NoSQL

databases like Redis, Cassandra, MongoDB, and Neo4j are overtaking conventional SQL-based

 31

databases in popularity [32]. In this situation, security and privacy issues develop that call for

solutions for data protection and access management. Sicari, et al. [32]’s study investigates these

problems, evaluates the functionalities of several NoSQL databases, and offers potential future paths

for strengthening security in IoT database scenarios. The rising popularity of NoSQL databases in the

business sector is attributed to their distributed architecture and dynamic management capabilities.

Despite mimicking relational databases in certain aspects, they maintain their unstructured nature. The

trend of using SQL query engines like Apache Drill to access NoSQL databases is on the rise. Key-

value models are not recommended for data relationships or complex transactions, while document-

oriented models suit logging events and web analytics, and column-oriented models are useful for

indexing, counters, and deadline management [32]. The analysis of the state-of-the-art shows that

many literary works make use of NoSQL databases, frequently coupling them with security

frameworks rather than directly integrating security capabilities, to ensure the accuracy of data storage

and querying procedures.

Both SQL and NoSQL Databases face difficulties in processing Big Data effectively due to

their respective emphasis on managing structured data and vertical scalability (SQL) against handling

unstructured data (NoSQL) [33]. The different topologies of SQL and NoSQL databases make it

difficult to choose the best paradigm for an organization's needs, and different paradigms within cloud

platforms make it even more difficult to move data across different cloud service providers. Khan, et

al. [33]’s research examines data portability and interoperability issues across various cloud platforms,

with an emphasis on SQL and NoSQL Database software architectures. Performance evaluations of

SQL and NoSQL databases show that they are both suitable for OLTP databases and large data

analytics, respectively. The report makes recommendations for how to overcome problems with data

transfer, including the requirement for unified APIs to improve interoperability and streamline data

movement across various cloud service providers. This study, which focuses on technical concerns for

SQL and NoSQL Databases, uses the systematic literature review approach to choose pertinent

articles. Khan, et al. [33] also offers insights into the proper use scenarios, data analysis, data

gathering methods, and results for these databases. This comprehensive assessment of the literature

 32

looked at 142 papers on the subject, analyzing the distribution of document types and comparing the

performance of SQL and NoSQL Document Databases. The study also investigated DBaaS, and

unified APIs approaches for data portability and interoperability, highlighting gaps and pointing out

that SQL and NoSQL databases offer distinct advantages in particular scenarios while also addressing

difficulties in data movement across cloud platforms through DBaaS architecture and unified APIs

frameworks.

 Khasawneh, et al. [34]’s study emphasizes the significance of documenting events and

knowledge throughout human history by focusing on the development of data storage techniques from

ancient methods like cutting on stones to contemporary database systems. Relational databases, or

SQL databases, use SQL queries to analyze and retrieve data held inside a specified schema that

creates relational links between the data, providing an organized method of data storage. A non-

relational database management system includes NoSQL databases, such as key-value, column-

oriented, document-oriented, and graph-oriented types. They enable the storage of many data kinds

without the need for rigid linkages or a predetermined schema. In situations where on-request

analytics and high consistency are crucial, NewSQL systems, a modification of conventional SQL,

can also be used as an alternative to NoSQL [34].

 Kumar and Mohanavalli [35] examine the advent of document-oriented databases as a rival to

conventional relational databases, their flexibility in storing semi-structured data, and their use in

NoSQL systems. Performance, scalability, and the significance of choosing the proper database type

for applications—particularly streaming ones—are all stressed. MongoDB and CouchDB, two well-

known document-oriented NoSQL databases, are thoroughly compared [35]. The collections and

documents that make up MongoDB's architecture include dynamic schemas and enable BSON for

data representation, indexing, and replication. On the other side, CouchDB prioritizes usability,

employing multi-version concurrency control, bidirectional synchronization, Erlang for concurrency,

and JSON for documents[35]. In order to analyze these databases in the context of a streaming

application, Kumar and Mohanavalli [35] highlighted their advantages and disadvantages for various

use cases. Kumar and Mohanavalli [35]’s application involves capturing tweets from Twitter based on

 33

specified keywords and storing them as JSON documents in both MongoDB and CouchDB for the

purpose of performance comparison and potential sentiment analysis. This study focuses on

comparing the widely used document-oriented NoSQL databases MongoDB and CouchDB

specifically within the context of a streaming application using NodeJS. For performance analysis, the

system architecture shows how streaming data travels through NodeJS to JSON documents kept in the

two databases. In the context of streaming applications, Kumar and Mohanavalli [35] MongoDB with

CouchDB based on a few qualitative features, such as replication, storage type, CAP features, and

MapReduce capabilities. The investigation concludes that MongoDB outperforms CouchDB in terms

of performance for streaming applications [35].

Unstructured and semi-structured data are commonly handled by NoSQL databases like

MongoDB and Oracle NoSQL, which provide adaptable, schema-less storage suited for a variety of

data types [36]. Padhy and Kumaran [36]’s research study compares the insert, remove, and update

performance of MongoDB with Oracle NoSQL using a range of dataset sizes. The investigation is

done on a single node, however next research might look at performance in clustered settings. The

research comprises running time-based insert, remove, and update performance tests on MongoDB

and Oracle NoSQL databases. Database performance is assessed using test datasets with a range of

sizes (from 1,000 to 100,000 records). As the amount of the dataset grows, MongoDB outperforms

Oracle NoSQL in terms of insert operations. Like insert operations, MongoDB exhibits improved

performance as dataset size increases. Oracle NoSQL, however, offers competitive performance.

When it comes to update operations, MongoDB once more outperforms Oracle NoSQL, especially for

larger datasets [36].

The BigDAWG polystore idea is used in Kepner, et al. [37]’s study to merge many databases,

and it looks at how well SQL, NoSQL, and NewSQL databases perform in financial transactions,

internet search, and data analysis. Presenting the SQL relational model using associative arrays and

highlighting important mathematical concepts like associativity, commutativity, distributivism,

identities, annihilators, and inverses are the main goals of this paper [37]. Additionally, Kepner, et al.

[37]’s study tries to quantify how these characteristics affect the efficiency of associative array

 34

operations. Kepner, et al. [37]’s study investigates how the relational paradigm, which has its roots in

set theory, underpins SQL databases. It looks at the improvements to boost mathematical rigor as well

as the mathematical rigor needed for databases. By describing relations as associative arrays, the

paper suggests an associative array model that incorporates SQL, NoSQL, and NewSQL. It explains

how relations can be thought of as associative arrays that answer queries on sets, tuples, indices,

ordered sets, multisets, and sequences. It also provides other relational operations using associative

array algebra. The discovery in Kepner, et al. [37]’s research provides fresh insights into the

mathematical features of relations by showing that relations can be represented as associative arrays.

It emphasizes how crucial distributivism and associativity are for maximizing these processes and

accelerating query execution.

Flexible and scalable infrastructures are required as communication technologies advance and

converge more and more, to store and analyze the enormous amounts of data generated everyday by

mobile applications and social networks. NoSQL databases have become a substitute for storing this

type of data [38]. Araujo, et al. [38]’s study compares the effectiveness of the Cassandra and

MongoDB databases through two experiments. Using three workloads to assess performance, the first

experiment found that Cassandra performed better. The second experiment evaluates real-time

performance by simulating actions on a database of investors from the National Treasury. MongoDB

outperforms other databases in most of these activities. The YCSB benchmark and Python notebooks

in Google Collab for CRUD operations were used in the studies, which were carried out in both cloud

and standalone infrastructures. Araujo, et al. [38] contrasted MongoDB, a schema-less document-

based storage, and Cassandra, a columnar-based storage. While MongoDB excelled in the second

experiment mimicking real-world operations on a database of investors from the National Treasury,

Cassandra outperformed it in the first trial using the YCSB tool. With the exception of updates, where

Cassandra performed better, MongoDB showed to be more efficient for a number of operations [38].

 Mahmood, et al. [39]’s study highlights the necessity for effective data processing in

applications like power plants, smart cities, and transportation systems by comparing the performance

of MongoDB, Cassandra, and Redis in large-scale sensor log analysis in actual hydraulic power

 35

systems. In order to provide insights for IIoT applications, Mahmood, et al. [39] examines three

central NoSQL data stores for large-scale sensor log analysis, concentrating on key lookup and range

query operations. On more than 100 million sensor log data from hydraulic power systems, key

lookup and range query operations are executed as part of the performance evaluation. Mahmood, et

al. [39] compare three NoSQL data stores: Redis (distributed key-value store), Cassandra (column

store), and MongoDB (document store). Range queries are used to get records with measurements that

deviate from predicted values, whereas key lookup queries are used to locate specific sensor log

entries. In these data stores, Mahmood, et al. [39]’s study makes use of secondary ordered indexes and

composite primary keys to enhance query performance. On a cluster of 64-CPU servers with 384GB

of RAM, performance tests are run. All three NoSQL data stores perform comparable for the key

lookup query, with query execution times typically within 10 milliseconds. Redis outperforms

MongoDB and Cassandra in the range query because of its in-memory architecture, whereas

MongoDB performs better than Cassandra mostly because its B-tree index frequently sits in memory,

minimizing disc access [39]. The study offers insightful information on the benefits and limitations of

various NoSQL data stores for handling fundamental queries in complex IoT applications.

To compare effective data storage and administration in a small-scale Internet of Things

application, namely a sprinkler system, Rautmare and Bhalerao [40]’s study compares standard SQL

and NoSQL databases, specifically MySQL and MongoDB. The main goal is to determine whether

NoSQL databases, notably MongoDB, perform better than SQL databases like MySQL in various IoT

application scenarios [40]. The study measures response times for various queries, such SELECT and

INSERT, while considering elements like the quantity of threads and records. In this study, Rautmare

and Bhalerao [40] deployed a small-scale Internet of Things (IoT) application for a sprinkler system

and makes use of sensors to gather temperature, humidity, and soil moisture data. Both MySQL and

MongoDB databases hold this data. Response times for various queries executed with various

numbers of threads and records are used as the basis for the performance comparison. Apache JMeter

is used in the study for load testing and performance evaluation. Interesting results of the investigation

are presented. Initially, MongoDB performs comparably to MySQL for SELECT queries, but as the

 36

number of threads rises, response times increase, possibly owing to system overload [40]. MySQL, in

comparison, keeps its stability. MongoDB outperforms MySQL for INSERT queries, showing quicker

response times. However, due to problems like write queue overflow and database locking, MongoDB

displays fast response time changes during INSERT operations. In these cases, MySQL's replies are

more consistent. The report advises that while deciding between SQL and NoSQL databases for IoT

applications, query types and application needs should be considered [40].

 37

CHAPTER 3

STUDY A – JavaScript Frameworks: A Comparative Study Between React.js And Angular.js

3.1 INTRODUCTION

A framework is the technology that offers a software engineer a defined code structure to build

applications as fast and completely as possible. Advancing technologies continuously demand

advancing functionalities, hence the need for evolving frameworks. Software development

frameworks have indistinguishable functionalities but each framework has characteristic features that

make them distinct. However, when selecting the framework to use for a project, it is important to

consider some key measures such as the technicality of the framework, the overall goal of the project

or system, and the developer’s skills.

Frameworks facilitate productivity and fast development via reusable codes and design.

However, a situation of overhead may occur with regard to development. We propose to embark on

research that involves a comparative study of two JavaScript frameworks namely: React.JS and

Angular.js. In the course of the study, we will perform a comparative analysis of most attributes of the

selected framework. JavaScript allows for fully building an application in it on the client side while

the data interface is done on the server side and vice versa. The flexibility of JavaScript gives room to

developers from diverse backgrounds of software designs to build distinct JavaScript frameworks.

The study would include the comparison of the selected frameworks leveraging on the Document

Object Model (DOM) performance as the basis of the study to determine which one of the

frameworks is best to be considered for software projects and inferring the strengths and weaknesses

of each one of them.

The constant updates in technology require constant updates in the tools used to develop

applications needed to access the updates. Since the conception of frameworks, a great shift has been

recorded as most developers move from creating web applications using the native stack to the use of

frameworks: a sophisticated tool that offers predefined design and code reuse to enhance the

development of fast and complete applications. Our aim is to proffer a fair decision-making process as

 38

to which framework to choose for specific projects based on our analyzed measures and results

obtained from our deep analysis and observations taken from running applications developed using

the frameworks selected. The proposed research intends to deliver and outline use cases of the

selected JavaScript frameworks, React and Angular. In order to analyze the critical features of the

selected frameworks, we will develop two similar web applications, one using React.JS and the other

using Angular, and carefully observe and record some critical measures while both applications run on

selected operating systems and machines.

Our research follows a thorough process to observe the selected framework while we

implement similar applications developed in both frameworks and comparatively assess them. With

this, we would be able to proffer a reliable choice of framework to software engineers while

embarking on a project in real-life production. The comparative study in our research would be a

procedural paradigm from top-level analysis to architectural analysis, ensuring ease of digestion of the

process for future researchers.

3.2 BACKGROUND

It is a known fact that some time ago, the front end in the world of application development

was meant to majorly function as the building block of the application where the contents of the page

were being displayed. However, with the birth of a new technology era where millions of devices

ranging from tablets, mobile, and phones to other IoT devices, are now being used to access websites,

there comes a rise in the need for cross-platform, easy-to-use, and reusable frameworks to facilitate

the efficiency of application development it is important to identify the support of ECMA standards

on different modern browsers as this has a significant effect on how JavaScript (or its frameworks)

functions.

In order to proffer remedies to challenges pertaining to front-end frameworks in the aspect of

web development, several research has been conducted and this research won’t be an exception.

However, the drive behind this research focuses on the fact that most developers find it difficult in

choosing the right framework for their project. At the end of this research, we are confident to proffer

 39

an efficient solution to the issue of choosing the right framework leveraging on our results from the

analysis of critical metrics and other functionalities and factors of our framework of interest in this

research.

3.3 METHOD

The purpose of this study is to compare the two most popular JavaScript frameworks, React.js

and Angular.js, and to make the decision-making process on which frontend framework to use easy

for software engineers and/or companies while embarking on a project. This approach allowed for in-

depth insights into the framework functionalities, performance, and efficiency, as well as other

advantages that any selected framework has to offer.

As the focus of this study is to comparatively analyze the performance of two different web

application frameworks on the same server, we acknowledged the fact that the network capturing style

is widely in use to gather the necessary dataset for frameworks. However, it is a de facto that network

data capturing analysis for web applications is characterized by few drawbacks as compared with

native applications in the sense that on a mac/Linux and windows operating system, a loopback

network adapter can be used to log all pertinent packets of required data restricting all unwanted

background network traffic.

This part of our paper will elaborate on the performance of each selected framework, with the

aim of giving fairly advice to developers on the choice of framework to choose for projects in the real

world. Our research is based on two aspects, one involving the development of two similar web

applications using the selected frameworks, then comparing the performance of these applications

based on some selected measures to uncover the pros and cons of these frameworks, and what kind of

project each framework is suitable for. Both applications would be tested on localhost or a local server

and connected to a MySQL database engine from which data would be fetched. Also, we would

dynamically load rows into a table with the click of a button. The table below shows a high level of

specifications of the environments in our application that would be tested in.

Table 3.1: Parameters and values of environment

 40

Environmental (VM) Parameters Values

VM RAM size 3GB

VM HDD size 100GB

Host Machine Brand Windows

VM Operating System Windows

We would ensure to mimic the real-life project following the universal, representative, and

instructive standards for development and production. This project would feature a networked

moderately sized project. Furthermore, our analysis would involve a benchmark test that would

estimate DOM (Document Object Model) operation individually, as well as a deep-dive study of the

architectural layer to explore reasonable facts while drawing our conclusions.

Eventually, our work will assess the two experiments we mentioned above to observe if both

validate each other as regards the outcome obtained. A convincing conclusion can be inferred if our

results correlate in a consistent manner. However, if the outcome of our experiments contradicts, this

is a red flag as it depicts a flaw in our experiment. We have identified the importance of convincing

results, hence setting up dual experiments to absolutely ascertain standard conclusions. Inferring

conclusions based on DOM operation-based benchmarking would be subject to less accuracy when

juxtaposed with a complex web application, such as the amazon e-commerce website [1]. Also, using

a real-world web application might impose certain network errors which can restrict us from getting

the right metric readings for our analysis. Thus, our two proposed experiments are a good approach as

it gives us a standard simulation to verify and complement both applications. We also recognize the

fact that the reliability is open to improvement from future researchers.

In this chapter, we would first explain what framework means generally. Then, we would go

ahead to discuss the selected frameworks for this study. Next, we would dive into the ecosystem in

which our experiment was performed which is a virtual machine and its specifications. Other

 41

important thing discussed in this chapter includes the implementation of two similar web applications

developed differently in React.js and Angular.js, testing procedures to obtain performance metrics, as

well a comparison of the frameworks of study.

3.3.1 Framework

In layman’s world, the framework is a generic term used to define a supporting structure on

top of which other things are built on. However, in the field of Software Engineering, framework (or

software framework) is an abstraction in which software, offering generic functionalities, can be

selectively changed by additional user-written code, hence providing application-specific software.

Also, offers a standard way to develop and deploy applications leveraging a universal, reusable

software environment that offers specific functionality as part of a larger software platform to speed

up software application development, solutions, and products. Some components pertinent to a

software framework include compilers, code libraries, support programs, toolbox/set, and APIs

(Application Programming Interface) which help bond different components to enable the full

development of a system.

3.3.1.1 Web Application Framework (WAF)

A Web Application Framework is a software framework developed to provide support for web

application development. This framework is embedded with components such as web services, web

resources, and web APIs, as well as providing a standard way of building and deploying web

applications into the World Wide Web (WWW).

3.3.1.2 React.js

The React.js framework was developed at Facebook as an internal project and was converted

to open-source in May 2013 to allow contributions from JavaScript developers worldwide. As React.js

is a framework that consists of JavaScript libraries for developing user interfaces, it has the ability to

unite multiple independent code pieces into some complex user interface. The framework is

characterized by cross-browser compatibilities, as well as high performance and simple code logic.

With the React.js framework, developers have the ability to directly combine user interfaces with

 42

components such as buttons, dialogs, and many more which results in rich interactive webpages. Also,

the introduction of ‘JavaScript XML’ popularly called JSX syntax in creating the user interface

simplifies the reusability of components while ensuring clarity in the internal structure of the

components. In the components, the React.js framework uses the DOM rendering capabilities in the

browser to differentiate code from real target on the webpage thereby making the development of

mobile applications easier.

3.3.2 Angular.js

The Angular.js framework was developed by Misko Hevery in 2009. Primarily, the framework is

used in developing single-page applications (SPAs) with the CRUD (Create Read Update Delete)

functionalities, leveraging its dynamic page design features. Angular.js is characterized by a lot of

features ranging from MVW (Model-View-Whatever: - ability of a framework to use any of Model-

View-Controller or Model-View-View-Model approaches) which is considered the core feature,

modularity, automated bi-directional data binding, semantic tagging, to dependency injection. In the

Angular.js framework, HTML is extended with directives, and data binding to HTML is done via

expressions. Its directives can be utilized in HTML in the following ways:

● New HTML elements

● HTML element’s attribute

● HTML element classes

● HTML element comments

The Angular.js framework is pronounced a complete framework considering its embedded

features such as templates, two-way data binding, routing, modular services, filters, and dependency

injection.

3.3.3 Virtual Machine (VM)

In this project, to ensure enough isolation of the system, we leverage virtual machine

functionalities. A Virtual Machine, or VM for short, is defined as a compute resource that uses

software in place of a physical computer for program execution and application deployment. These

VM’s can also be deployed to online cloud platforms such as Microsoft Azure, Google Cloud

Platform(GCP), and Amazon Web Service(AWS)[41]. One or more VMs (sometimes referred to as

 43

the guest) is able to fully function or run on a physical machine (sometimes referred to as the host),

where each VM runs its unique OS (Operating System) and functions separately from other VMs on

the same host. The use of a VM in our project enabled us to exercise a platform-independent

development as a VM was VMWare Fusion with Windows OS was installed on a MAC OS where all

development processes took place. The VM was then exported to evaluate performance on two other

host PCs.

3.3.4 Similar Web App Implementation

As the objective of this research project was to measure and compare the performance of two

JavaScript frontend web frameworks (React.js and Angular.js), we have created two web applications,

one using React.js, and the other using Angular.js. These two applications have similar interfaces as

well performing similar tasks. The tasks performed by the web applications developed includes

statically fetching 20 rows of data from an SQL database and presenting it in a jQuery Datatable,

dynamically adding 1000 rows to a jQuery Datatable on the click of a button.

3.3.5 Testing Procedures

The commands used to start and open the applications in a web browser (Google Chrome, in

our case) are ‘npm start’ (for react.js) and ‘ng serve -o’ (for angular.js). Once these commands are

entered in the terminal and we hit the ‘enter’ button, the app begins to build and eventually opens in a

web browser.

Figure 3.1: Command to run React.js App from terminal

 44

Figure 3.2: Command to run Angular.js App from terminal

Figure 3.3: Resulting Application with 20 rows of data loaded from MySQL database

 45

Figure 3.4: Generating 1000 paginated rows on button click

3.3.6 Lighthouse

Next is to check for performance metrics by navigating to lighthouse following the clicks:

from google chrome, click the three vertical dots on the top right corner => more tools => developer

tools => lighthouse. Set ‘mode’ to ‘Navigation(default)’, ‘device’ to ‘Desktop’, and check

‘Performance’ under ‘categories. Finally, hit the Analyze page load button to get the performance

metrics.

 46

Figure 3.5: Performance metrics from Lighthouse

First Contentful Paint (FCP) – Records the time taken to paint the first text or image.

3.3.6.1 Time to Interactive (TI) – Gives the time taken for the page to become fully interactive

3.3.6.2 Speed Index (SI) – Shows how fast content becomes populated and seen on the web page

3.3.6.3 Total Blocking Time (TBT) – Gives the time period between TI and FCP if activity’s length

is greater than 50ms.

3.3.6.4 Largest Contentful Paint (LCP) – Records time taken to paint the largest text or image

3.3.6.5 Cumulative Layout Shift (CLS) – computes the movement of visible elements within

viewport

 47

3.3.7 Task Manager (Google Chrome)

Also, we explored google chrome’s task manager to obtain further performance metrics and

memory usage of the selected frameworks. Below is a screenshot of google chrome’s task manager

while the web apps were executed. We chose to use google chrome’s task manager over windows’

task manager as it offers a high level of isolation and gives reports in a cool GUI that was easily

captured.

Figure 3.6: Google Chrome Task Manager

3.3.7.1 Memory Footprint (MF) – Displays the amount of RAM each process is currently using

3.3.7.2 CPU – Shows the amount of CPU power a process is taking up.

3.3.7.3 Network – Measures the amount of data a process uses in operation

3.3.7.4 JavaScript Memory (JM) – Represents the JavaScript Heap. In this column, we are

interested in the value in parenthesis which shows the amount of memory used by reachable

objects on the web page. This value is correlated to a number of objects in the project.

3.4 RESULT

The benchmark performance metrics obtained during the extensive test of the applications

developed using the React.js and Angular.js frameworks are presented below. The specification and

 48

configuration settings of the Virtual Machine (VM) environment used in development are given in the

table below:

Table 3.2: Virtual Machine (VM) Configuration and Specification Settings

Device Summary

Memory 3GB

Processors 2

Hard Disk (NVMe) 100GB

CD / DVD SATA Auto detect

Network Adapter NAT

Short explanations and implications of the items in the table above are given:

3GB Memory – This implies that the VM has a total of three (3) gigabytes of Random Access

Memory (RAM) which is used by the VM to store and run all its tasks including the operating system

and all of its applications.

Two (2) Processors – This indicates that the VM has two (2) virtual processors which in turn results to

the increased processing power of the VM, such that multiple tasks can be run simultaneously on the

VM.

100GB Hard Disk (NVMe) – This means that the VM has a 100GB non-volatile data storage that

holds and maintains data and files when the VM is turned off. However, NVMe (Non-Volatile

Memory express) increases the speed of data transfer between enterprise and client systems and solid-

state drives over a computer's high-speed Peripheral Component Interconnect Express bus.

 49

Auto Detect CD/DVD SATA – This helps to automatically detect the Serial Advanced Technology

Attachment (SATA) which is responsible for how data is transferred between the VM and mass

storage devices.

NAT Network Adapter – This facilitates the transport of network data between the virtual machine

and the external network. The VM NAT device identifies incoming data packets that are intended for

the virtual machine and sends them to the correct destination.

Also, the specifications of the Host Machines that were utilized during testing were given in

the respectively attached screenshots. The meaning of all terminologies present in the performance

metrics screenshots have been comprehensively explained in the Method section of this paper.

In the tables below, we present the overall performance of both React.js and Angular.js while the

developed web applications were executed on two different host machines. The specifications of the

host machines were included in each screenshot. We have performed the execution on different days

to ensure we obtain metrics that are fit for further analysis, as well as make conclusion.

Table 3.3: Day-1 React.js Performance Readings (A)

Wimlab: Host 1 (Memory: 65GB | OS: Windows)

Lighthouse

performance (%) 61

first contentful paint (seconds) 0.8

time to interactive (seconds) 3.4

speed index (seconds) 2

Table 3.4: Day-1 React.js Performance Readings (B)

GA: Host 2 (Memory: 16GB | OS: Windows)

Lighthouse

performance (%) 54

first contentful paint (seconds) 0.9

time to interactive (seconds) 3.5

speed index (seconds) 2

 50

total blocking time (meters/seconds) 70

largest contentful paint (seconds) 3.3

cumulative layout shift 0.874

total blocking time (meters/seconds) 200

largest contentful paint (seconds) 3.3

cumulative layout shift

0.60

5

Table 3.5: Day-1 React.js Performance Readings (C)

Chrome Task Manager (page load with 20 rows)

memory footprint (K) 51472

CPU 20.3

network (B/s) 1940

JavaScript memory (K) 12551

Table 3.6: Day-1 React.js Performance Readings

Chrome Task Manager (page load with 20 rows)

memory footprint (K) 23924

CPU 52.6

network (B/s) 1030

JavaScript memory (K) 3496

Table 3.7: Day-1 React.js Performance Readings (E)

Chrome Task Manager (add 1000 rows)

memory footprint 117956

CPU 103.3

network 0

JavaScript memory 11406

Table 3.8: Day-1 React.js Performance Readings (F)

Chrome Task Manager (add 1000 rows)

memory footprint 116604

CPU 105.5

network 0

JavaScript memory 12483

 51

Table 3.9: Day-1 Angular.js Performance Readings (A)

Wimlab: Host 1 (Memory: 65GB | OS: Windows)

Lighthouse

performance (%) 48

first contentful paint (seconds) 4.9

time to interactive (seconds) 5.7

speed index (seconds) 4.9

total blocking time (meters/seconds) 20

largest contentful paint (seconds) 5.9

cumulative layout shift 0.081

Table 3.10: Day-1 Angular.js Performance Readings (B)

GA: Host 2 (Memory: 16GB | OS: Windows)

Lighthouse

performance (%) 49

first contentful paint (seconds) 4.9

time to interactive (seconds) 5.9

speed index (seconds) 4.9

total blocking time (meters/seconds) 10

largest contentful paint (seconds) 6.1

cumulative layout shift 0.06

Table 3.11: Day-1 Angular.js Performance Readings (C)

Chrome Task Manager (page load with 20 rows)

memory footprint (K) 50048

CPU 3.1

network (KB/s) 8.9

JavaScript memory (K) 10857

Table 3.12: Day-1 Angular.js Performance Readings (D)

Chrome Task Manager (page load with 20 rows)

memory footprint (K) 15244

CPU 21.4

network (KB/s) 8.9

JavaScript memory (K) 7041

 52

Table 3.13: Day-1 Angular.js Performance Readings (E)

Chrome Task Manager (add 1000 rows)

memory footprint (K) 52236

CPU 11

network (KB/s) 0

JavaScript memory (K) 7045

Table 3.14: Day-1 Angular.js Performance Readings (F)

Chrome Task Manager (add 1000 rows)

memory footprint (K) 50312

CPU 9.2

network (KB/s) 0

JavaScript memory (K) 7171

Table 3.15: Day-2 React.js Performance Readings (A)

Wimlab: Host 1 (Memory: 65GB | OS: Windows)

Lighthouse

performance (%) 60

first contentful paint (seconds) 0.8

time to interactive (seconds) 3.4

speed index (seconds) 1.8

total blocking time (meters/seconds) 110

largest contentful paint (seconds) 3.2

cumulative layout shift 0.898

Table 3.16: Day-2 React.js Performance Readings (B)

GA: Host 2 (Memory: 16GB | OS: Windows)

Lighthouse

performance (%) 54

first contentful paint (seconds) 0.9

time to interactive (seconds) 3.5

speed index (seconds) 2

total blocking time (meters/seconds) 200

largest contentful paint (seconds) 3.3

cumulative layout shift 0.605

 53

Table 3.17: Day-2 React.js Performance Readings (C)

Chrome Task Manager (page load with 20 rows)

memory footprint (K) 74416

cpu 80.4

network (B/s) 1940

JavaScript memory (K) 18236

Table 3.18: Day-2 React.js Performance Readings (D)

Chrome Task Manager (page load with 20 rows)

memory footprint (K) 23924

cpu 52.6

network (B/s) 1030

JavaScript memory (K) 3496

Table 3.19: Day-2 React.js Performance Readings (E)

Chrome Task Manager (add 1000 rows)

memory footprint 141732

cpu 113.5

network 0

JavaScript memory 17832

Table 3.20: Day-2 React.js Performance Readings (F)

Chrome Task Manager (add 1000 rows)

memory footprint 116624

cpu 118.5

network 0

JavaScript memory 12483

Table 3.21: Day-2 Angular.js Performance Readings (A)

Wimlab: Host 1 (Memory: 65GB | OS: Windows)

Lighthouse

Table 3.22: Day-2 Angular.js Performance Readings (B)

GA: Host 2 (Memory: 16GB | OS: Windows)

Lighthouse

 54

performance (%) 46

first contentful paint (seconds) 4.9

time to interactive (seconds) 5.8

speed index (seconds) 4.9

total blocking time (meters/seconds) 0

largest contentful paint (seconds) 6

cumulative layout shift 0.154

performance (%) 49

first contentful paint (seconds) 4.9

time to interactive (seconds) 5.9

speed index (seconds) 4.9

total blocking time (meters/seconds) 10

largest contentful paint (seconds) 6.1

cumulative layout shift 0.06

Table 3.23: Day-2 Angular.js Performance Readings (C)

Chrome Task Manager (page load with 20 rows)

memory footprint (K) 47676

CPU 17.2

network (KB/s) 8.9

JavaScript memory (K) 7026

Table 3.24: Day-2 Angular.js Performance Readings (D)

Chrome Task Manager (page load with 20 rows)

memory footprint (K) 15244

CPU 21.4

network (KB/s) 8.9

JavaScript memory (K) 7041

Table 3.25: Day-2 Angular.js Performance Readings (E)

Chrome Task Manager (add 1000 rows)

memory footprint (K) 53044

Table 3.26: Day-2 Angular.js Performance Readings (F)

Chrome Task Manager (add 1000 rows)

memory footprint (K) 50312

 55

CPU 7.8

network (KB/s) 0

JavaScript memory (K) 7161

CPU 9.2

network (KB/s) 0

JavaScript memory (K) 7171

In Table 3.27, we have calculated the average of the overall performance metrics recorded in the two

days of our testing. The result, as displayed below shows that the React.js framework has an average

performance score of 57%, while the Angular.js framework has an average performance score of 48%.

Table 3.27: Table showing the average of the overall performance of React.js and Angular.js

Day 1 React Angular

Wimmlab 61 48

GA 54 49

Day 2

Wimmlab 60 46

GA 54 49

Average 57 48

 56

Figure 3.7: Column graph of day 1 & 2 performance of react.js and angular.js frameworks

Finally, we present our result in a graphical format below to ensure a quick grasp of the trend

between our framework of interest.

Figure 3.8: Column graph of average performance of React.js and Angular.js

 57

3.5 DISCUSSION

Currently, there are three (3) significant frontend framework which is:

• React.js

• Angular.js

• Vue.js

These frameworks each have their characteristics and features that makes each one of them

unique and best for a particular type of a project. However, software engineers need to be aware of

some basic features of a framework before jumping to a conclusion in the decision-making stage.

Hence, our objective for this research is. In our study, we focused on two most popular JavaScript

frameworks (React.js and Angular.js) and we were able to develop from scratch, two similar and

simple web applications each with these frameworks. Selected benchmark features of these

applications have been extensively tested and performance metrics have been recorded and analyzed.

From our qualitative and quantitative analysis, we have pinpointed some top features of each

framework and their technical implications, which would in turn help software engineers in the

decision-making process of frontend framework selection for a project. Also, to ensure that a

production and well-isolated environment is modeled, we have created a standard Virtual Machine

(VM) environment to simulate the real-life scenario where our developed applications were tested.

Our applications have been extensively run and tested on different machines to make sure a fair

conclusion on the performance of both frameworks.

3.6 CONCLUSION

In our research study, we have been able to carry out a comparative analysis of the two most-

used JavaScript frontend frameworks, React.js and Angular.js. From our work, we uncover many

insights regarding the overall performance of these frameworks by developing basic similar web

applications with each of the frameworks. We took further steps to measure benchmark performance

metrics leveraging the lighthouse and task manager, which are all part of the google chrome browser.

The test environments were isolated enough to simulate the real-life world-wide web. The results

show that, although both frameworks have their unique significance with respect to the kind of project

 58

it’s being used for, React.js still outperforms Angular.js in the overall performance scoring based on

our analysis shown in the tables and graphs above. In future works, we intend to improve on these

web applications and also consider more robust performance metrics to ascertain more rigid

conclusions regarding these selected frameworks.

 59

CHAPTER 4

STUDY B – PHP vs. Node.js: Determining the Better Backend Scripting Language

4.1 INTRODUCTION

Node.js and PHP are two popular backend scripting technologies adopted in building web

applications. As both technologies are characterized with unique features, understanding their

performance characteristics is important, so that we can determine which language is best suited for a

particular type of project.

PHP is a general-purpose scripting language that works well with web development and is

mainly used for dynamic webpages, while Node.js developed on chrome’s JavaScript runtime for

developing fast and scalable network apps [19].

Node.js adopts an event-driven, non-blocking I/O style which efficient handling of large

concurrent connections. Whenever a request is received by node.js server, the event is placed on a

queue while node.js event loop picks up the event and handles it asynchronously. If this event requires

blocking I/O or computation, node.js offloads the task to a separate thread from the internal thread

pool in order to ensure that event loop is not blocked, then handle the request once it is completed.

After processing the request, it is sent back to the event queue by node.js where the event loo pick

it up and handle it. This makes node.js to simultaneously handle multiple requests without

event-loop blockage or performance issue. On the other hand, when PHP executes, a PHP interpreter

processes it on the server-side which generates a Hypertext Markup Language (HTML), or other

output that can be sent to web browser’s client [16].

In our research study, we compared both PHP and Node.js in terms of performance using

sorting algorithms and a heap algorithm to generate all possible permutations. Our goal is to provide a

comprehensive analysis of the performance of these two backend scripting technologies in handling

complex algorithms and processing large data. The statistical method we used in analyzing obtained

data is T-Test. This statistical method is best used for testing for a significant difference between two

 60

given samples and the result obtained from this process is known as t-statistics [42]. We hope to use

this research study to provide deep insights that can help organizations and software engineers make a

well-informed choice on which backend scripting technologies to adopt for their web development

projects.

4.2 BACKGROUND

4.2.1 Sorting Algorithms

Sorting algorithms are procedures for sorting items according to a specific order. Unsorted items

are reordered based on a specific criterion, such as alphabetical or numerical. Sorting algorithms are

classified based on their space and time complexities, stability, comparison or non-comparison-based

nature. To our research study, we have picked only three of the commonly and most efficient used

sorting algorithms, namely:

• Binary Sort – is a simple sorting algorithm that works by comparing each element with the

elements that precede it and swapping them if they are in the wrong order. If the array is in a

sorted order, binary sort has a O(n2) worst-case time complexity and a best-case time

complexity of O(n log n). Binary sort is advantageous in situations when the input data is

mostly sorted or for tiny lists.

• Bubble Sort – This algorithm repeatedly swaps adjacent elements in a list until the entire list

is sorted. It has a worst-case time complexity of O(n^2) and a best-case time complexity of

O(n) when the input data is already sorted. Bubble sort is not very efficient and is generally

only used for small lists.

• Quick Sort – This algorithm is a divide-and-conquer algorithm that works by selecting a

"pivot" element from the array and partitioning the other elements into two sub-arrays,

according to whether they are less than or greater than the pivot. The sub-arrays are then

sorted recursively. It has a worst-case time complexity of O(n^2) but typically performs much

better, with an average time complexity of O(n log n). Quick sort is widely used and is often

the preferred algorithm for large data sets.

In addition to the above-mentioned sorting algorithms, we were keen to explore the use of another

special type of algorithm ‘Heap Algorithm’ to generate all possible permutations of a list of elements.

It works by recursively generating permutations by swapping elements in the list and then calling

itself on the remaining elements.

• Heap Algorithm – The heap algorithm is a recursive algorithm that generates all possible

permutations of a given set. It works by swapping elements in the set and recursively

 61

generating permutations of the remaining elements. It has a worst-case time complexity of

O(n!), where n is the number of elements in the list. Heap algorithm for permutation is useful

for cases where all possible permutations of a list are required.

Every algorithm has its unique strengths and weaknesses and can be suitable for specific uses

depending on the size and nature of the dataset in question.

In Computer Science, sorting algorithms are fundamental and are utilized in a wide range of

applications ranging from database management systems, search engines, and computational biology.

4.2.2 Algorithmic Complexity

A measure of an algorithm's effectiveness or efficiency is its algorithmic complexity. It is

typically stated in terms of the number of steps needed to run the algorithm in relation to the size of

the input. Time complexity and spatial complexity are the two most popular metrics for algorithmic

complexity.

Time complexity measures the number of computational steps required to execute an

algorithm as a function of the size of the input data. The most common notations used to express time

complexity are O, Ω, and Θ. Big O notation is the most used notation to describe time complexity,

and it represents an upper bound on the number of steps required by the algorithm. Ω notation

represents a lower bound on the number of steps, and Θ notation represents an average or tight bound

on the number of steps.

Space complexity, on the other hand, measures the amount of memory required by an

algorithm to execute as a function of the size of the input data. It is usually expressed in terms of the

number of memory cells required by the algorithm.

The analysis of algorithmic complexity is important because it helps us understand how an

algorithm will perform on different input sizes and allows us to make informed decisions about which

algorithm to use for a particular task. In general, we prefer algorithms with lower time and space

complexity because they are more efficient and faster. However, the choice of algorithm also depends

on other factors, such as the problem domain, the input size, and the available resources.

 62

4.2.3 Comparison of Sorting Algorithms

For our research, we have selected the commonly used sorting algorithms (binary, bubble,

quick) and an additional algorithm heap algorithm, which is used to generate all permutations of a

given list. All our selected algorithms are well known and commonly used algorithms in Computer

Science.

In order to effectively communicate the comparison of these sorting algorithms, we would be using

the pseudocode of each.

• Pseudocode for Binary Sort

function binarySort(array):

 if length of array is less than or equal to 1:

 return array

 else:

 mid = length of array // 2

 left = array[:mid]

 right = array[mid:]

 return merge(binarySort(left), binarySort(right))

function merge(left, right):

 result = empty array

 while left is not empty and right is not empty:

 if left[0] is less than or equal to right[0]:

 append left[0] to result

 remove left[0] from left

 else:

 63

 append right[0] to result

 remove right[0] from right

 if left is not empty:

 append all elements in left to result

 if right is not empty:

 append all elements in right to result

 return result

How it works:

I. The function binarySort takes an array as input and checks if the

length of the array is less than or equal to 1. If it is, then the

function simply returns the array as it is already sorted. This is

the base case of the recursive function.

II. If the length of the array is greater than 1, the function

calculates the midpoint of the array by dividing the length by 2

using integer division (//). It then splits the array into two sub-

arrays: left, containing the elements from the start of the array up

to the midpoint, and right, containing the elements from the

midpoint to the end of the array.

III. The function then recursively calls itself on the left and right

sub-arrays using binarySort(left) and binarySort(right),

respectively, and then merges the two sorted sub-arrays using the

merge function

 64

IV. The merge function takes two sorted sub-arrays, left and right, and

merges them into a single sorted array. It initializes an empty

array called result to store the merged array.

V. The merge function takes two sorted sub-arrays, left and right, and

merges them into a single sorted array. It initializes an empty

array called result to store the merged array.

VI. After the loop completes, the function checks if there are any

remaining elements in either the left or right sub-array. If there

are, it appends them all to the result array.

VII. Finally, the function returns the merged and sorted array.

• Pseudocode for Bubble Sort

function bubbleSort(array):

 for i in range(length of array):

 for j in range(length of array - 1):

 if array[j] is greater than array[j+1]:

 swap array[j] with array[j+1]

 return array

How it works:

I. The function bubbleSort takes an array as an input.

II. A nested loop is used to iterate through the array. The outer loop

runs length of array times.

III. The inner loop runs length of array - 1 times. This is because we

compare each element with the one next to it, so there is no need to

compare the last element with anything.

IV. The if statement inside the inner loop checks if the current element

(array[j]) is greater than the next element (array[j+1]).

V. If the current element is greater than the next element, we swap the

two elements using a temporary variable.

 65

VI. We repeat this process until all elements have been compared and

sorted in ascending order.

VII. Finally, the sorted array is returned.

• Pseudocode for Quick Sort

function quickSort(array):

 if length of array is less than 2:

 return array

 else:

 # find the median element

 medianIndex = length of array / 2

 median = array[medianIndex]

 left = empty array

 right = empty array

 for each element in array except the median:

 if element is less than or equal to median:

 append element to left

 else:

 append element to right

 return concatenate quickSort(left), median, quickSort(right)

How it works:

I. Check if the length of the input array is less than 2. If it is,

return the array since it is already sorted.

 66

II. Otherwise, find the median element of the array by dividing the

length of the array by 2 and taking the element at that index.

III. Create two empty arrays called "left" and "right" to hold the
elements that are less than or equal to the median and greater than

the median, respectively.

IV. Iterate through each element in the input array except for the

median element. For each element, if it is less than or equal to the
median, append it to the "left" array. Otherwise, append it to the

"right" array.

V. Recursively call quickSort() on the "left" and "right" arrays to

sort them.

VI. Concatenate the sorted "left" array, the median element, and the

sorted "right" array into a single sorted array and return it.

• Pseudocode for Heap Algorithm

function heapPermutation(array, size):

 if size is equal to 1:

 print array

 else:

 for i in range(size):

 heapPermutation(array, size-1)

 if size is odd:

 swap array[0] with array[size-1]

 else:

 swap array[i] with array[size-1]

How it works:

I. The function heapPermutation takes in an array and its size as input

parameters.

II. If the size of the array is equal to 1, it prints the array and

returns.

 67

III. If the size of the array is greater than 1, it enters a loop that

iterates through each element of the array.

IV. For each element in the array, the function recursively calls itself

with the array and size-1 as parameters.

V. After the recursive call, if the size of the array is odd, it swaps

the first element with the last element of the array.

VI. If the size of the array is even, it swaps the ith element with the

last element of the array (where i is the current iteration of the

loop).

VII. The function terminates after the loop has iterated through all the

elements in the array.

Table 4.1: Advantages and Disadvantages of Sorting Algorithms

 Advantages Disadvantages

Binary It has a time complexity of O(log n) which

makes it much faster than other search

algorithms.

Requires that the array is sorted in advance, so

it's not useful for sorting unsorted arrays.

It can be implemented iteratively or

recursively, which makes it more flexible in

terms of implementation.

Has a worst-case time complexity of O(log n)

which is slower than some other sorting

algorithms.

Bubble It is easy to understand and implement,

which makes it a good choice for small data

sets or as a teaching tool.

Has a worst-case time complexity of O(n^2),

which makes it inefficient for large arrays.

 68

It has a low memory footprint, as it only

requires a single additional memory space

to store a temporary variable during swaps.

Bubble sort is not very efficient for arrays that

are already sorted or nearly sorted.

Quick It has a very high average-case performance

and is one of the fastest sorting algorithms

in practice.

Worst-case time complexity is O(n^2) which

occurs when the pivot is chosen poorly, making

it less efficient than some other sorting

algorithms in the worst-case scenario.

It is an "in-place" sorting algorithm, which

means it requires very little additional

memory to run, making it useful in

memory-constrained situations.

Quick sort requires additional memory space for

the stack to keep track of recursive calls which

can be a disadvantage for large arrays.

In terms of efficiency, the ranking from most efficient to least efficient is:

Table 4.2: Time Complexity Table of Sorting Algorithms

Algorithm / Time Complexity Best Case Average Case Worst Case

Quick Sort O(n log n) O(n log n) O(n2)

Binary Sort O(1) O(n log n) O(n log n)

Bubble Sort O(n) O(n2) O(n2)

A simple scenario to explain the implications of Table 2 above is as follows:

Suppose we have a dataset of unsorted list/array containing 10 elements [5, 2, 8, 1, 9, 7, 3, 6, 4, 10] ,

the sorting algorithms work as follows:

 Quick Sort – with a time complexity of O(n log n), the list will be sorted in 10 ∗ 𝑙𝑜𝑔10(10)

which gives a 30 unit time to sort the array.

 69

 Binary Sort – with a time complexity of O(n log n), the list will be sorted in 10 ∗ 𝑙𝑜𝑔10(10)

which gives a 30 unit time to sort the array. Just like the quick sort above.

 Bubble Sort - with a time complexity of O(n2), the list will be sorted in 10² which gives a

100 unit time to sort the array.

Note: Although, Quick and Binary sorts have the same time complexity, but the former has a good

performance over the later due to:

 Cache Efficiency – In contrast to Binary Sort, which needs additional memory space to keep

track of indexes or pointers to the sorted sub-lists, Quick Sort is an in-place sorting method.

 Partitioning Strategy – Binary Sort divides the array into two half and sorts them recursively

before merging the sorted halves, whereas Quick Sort separates the array so that all the

elements smaller than the pivot element are transferred to the left side of the pivot. This is

slower in practice and requires more steps to sort the same array.

4.2.4 PHP and Node.js

Dynamic web pages and web applications are created using PHP (Hypertext Preprocessor), an

open-source programming language. The language is often combined with HTML, CSS, and

JavaScript for creating websites. After PHP executes on the server, the HTML it produces is

transferred to the client's browser.

A simple PHP code used to define a variable $name, then dynamically generating an HTML heading

using the echo is provided below:

<html>

<head>

 <title>My PHP Page</title>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

</head>

<body>

<?php

 70

 // This is a PHP code block

 $name = "Qozeem Odeniran";

 echo "<h1>Hello, $name!</h1>";

?>

</body>

</html>

On the other hand, scalable network applications can be created using Node.js, a JavaScript

runtime. Building real-time applications that need a lot of I/O operations, such chat applications,

streaming services, and online games, is made possible by Node.js' event-driven, non-blocking I/O

paradigm. Together with other web technologies like Angular, React, and Vue.js, Node.js is frequently

utilized.

A sample code that creates a simple web server that listens on port 3000 and responds with a "Hello,

Qozeem Odeniran!" message when a request is made to the server.

const http = require('http');

const server = http.createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 const name = "Qozeem Odeniran";

 res.end(`Hello, ${name}`);

});

const port = 3000;

server.listen(port, () => {

 71

 console.log(`Server running at http://localhost:${port}/`);

});

4.3 METHODOLOGY

4.3.1 Research Problem and Purpose of Study

Comparing the efficiency of two backend programming languages and technologies, PHP

(old) and Node.js (new), using a variety of sorting algorithms, including binary sort, bubble sort,

quick sort, and heap algorithm to generate all possible permutation of array element, is the research

objective and goal of the study in this research. Our goal is to identify the most optimal backend

language or scripting technology that can provide a maximum performance with regards to latency –

time taken for a request to reach the server and receive a response. This research study aims to offer

useful insights to software engineers and organizations seeking to enhance their web application

performance and make well-informed choices when selecting the backend scripting technologies.

Back-end scripting technologies are crucial in web development, as they greatly enhance the

development of web applications and services. The popularity of backend scripting technologies is

constantly evolving, with new backend scripting technologies emerging on a regular basis. As such,

developers as well as organizations need to evaluate the performance of existing and new backend

scripting technologies to determine which ones to use for their projects.

4.3.2 Performance Goal, Statement of Research Objectives and Research Questions

4.3.2.1 Performance Goal:

There is a significant difference between the performance of PHP (old) and Node.js (new) backend

scripting technologies.

4.3.3 Research Objectives:

 To compare the performance of PHP and Node.js using binary sort, bubble sort, quick sort,

and heap algorithm.

 72

 To determine which algorithm performs better in PHP and Node.js

 To provide recommendations for choosing the appropriate backend scripting technology.

4.3.4 Research Questions:

 RQ 1: Is node.js faster than PHP when it comes to Sorting Algorithms?

 RQ 2: Is node.js is faster than PHP when it comes to heap algorithm?

 RQ 3: In overall, is node.js faster than PHP for backend scripting?

4.3.5 Description of Research Design, Apache JMeter, PHP & Node.js, Sorting Algorithms, and

Performance Metrics.

4.3.6 Research Design:

Our design for this research involved comparing the performance of two prominent backend

scripting technologies – PHP (old) and Node.js (new) using three sorting algorithms (bubble, binary,

and quick) to sort data as we exponentially increased the array size, and heap algorithm to generate all

possible permutations of the elements of the array. Each of the algorithms were run thirty (30) times

for both PHP and Node.js. Our performance metrics were collected using the Apache JMeter software

– an open-source load testing tool used to simulate different types of load testing scenarios for web

applications. The selection of these algorithms was based on popularity, relevance and effectiveness in

data sorting as used in the field of Computer Science. The key performance metric used in this

research was LATENCY which is discussed extensively in later paragraph.

4.3.7 Apache JMeter & Settings:

 Ramp Up

time taken by JMeter to start all the virtual users specified in the test plan. It determines the

rate at which users are added during the test execution. We used a ramp-up time of 10.

 Thread – Thread refers to a single virtual user that simulates user activity on the application

being tested. Each thread executes the test script independently of all other threads. We

simulated 100 virtual users.

Although, there is no one-size-fits-all answer to what the standard settings for ramp-up and

threads (number of simulated users) should be in Apache JMeter. The ideal values depend on various

factors such as the size and complexity of the application being tested, the available hardware

resources, and the performance goals. However, as a rule of thumb, the ramp-up time should be set to

a value that allows a gradual increase in the number of virtual users, instead of an abrupt spike. This

 73

helps simulate real-world scenarios where traffic gradually increases over time. A good starting point

for ramp-up time could be 5-10 seconds. The number of threads, or virtual users, should also be

chosen based on the hardware resources available for the load testing. In general, it's recommended to

start with a low number of threads and gradually increase it to find the optimal number that the system

can handle without performance degradation or failures. A starting point could be 50-100 threads, and

then gradually increase to several hundred or even thousands depending on the available resources. A

ramp-up of 10 seconds is a reasonable choice for a 100 number of threads and a typical test scenario

as allows the load to be gradually increased (our array size), giving the server time to warm up and

stabilize before reaching the maximum load. It also provides enough time for JMeter to start all the

threads and for the server to respond to the initial requests. In Apache JMeter, the Ramp-up period

represents the time taken to spin up all the threads in the thread group.

For instance, if we have 100 threads and a ramp-up period of 10 seconds, then JMeter will create

a new thread every 100 milliseconds (10,000 milliseconds / 100 threads). In other words, the ramp-up

period determines how quickly the threads will be created and started. If the ramp-up period is short,

like 1 second, then all 100 threads will be created almost simultaneously, which could overload the

server being tested.

On the other hand, if the ramp-up period is too long, like 100 seconds, then it will take too long to

start all the threads, and the test may not be representative of real-world scenarios.

Therefore, the ramp-up period of 10 seconds and 100 threads mean that JMeter will create a

new thread every 100 milliseconds over the course of 10 seconds, so all threads will be active after the

ramp-up period. This setting strikes a balance between quickly starting the threads and not

overloading the server with too many requests at once.

 74

Figure 4.1: Apache JMeter showing Number of Threads & Ramp-up period

Figure 4.2: Apache JMeter showing test run results

4.3.7.1 PHP

Hypertext Pre-processor (PHP), commonly referred to as a scripting language, is a server-side

programming language used to create dynamic web pages. Rasmus Lerdorf created it in 1994 to

include some dynamic components on his page. It supports object-oriented programming, is open

source, simple to learn, and integrates well with HTML. Even now, PHP is still used as the back-end

scripting technology for many millions of websites. In order to execute it successfully, a server and

PHP editor are required. The most recent version is PHP-8.

 75

Figure 4.3: A basic PHP code inside HTML page.

4.3.7.2 Node.js:

Since its release in 2009, Node.js, a well-known JavaScript technology, has been installed

over a billion times. It is a cross-platform runtime environment with an event-driven, non-blocking

I/O strategy for quick, scalable online apps based on Chrome's JavaScript runtime. With over 800,000

GitHub repositories, businesses are seeing the advantages of Node.js more and more. On GitHub,

JavaScript is now the most widely used language.

Figure 4.4: A basic node.js code

 76

4.3.7.3 Sorting Algorithms

In Computer Science, sorting algorithms refer to procedures for sorting elements in an array or list.

Sorting algorithms implement the process of rearrangement by sorting items according to a

predetermined order.

In our research, we implemented the following sorting algorithms.

 Binary Sort: This algorithm uses a divide-and-conquer style whereby it divides the

array into two equal halves, sorts each half individually, and merges them back

together. Elements in the left and right sub-arrays are compared by the merge

operation, which then merges them into sorted order. Until the full array is sorted, this

procedure is repeated.

Figure 4.5: Binary Sort in PHP

Figure 4.6: Binary Sort in Node.js

 Bubble Sort: This sorting algorithm analyses adjacent elements and swaps them if

they are in the wrong order as it iteratively moves through the list to be sorted. Until

the list is sorted, this trip through the list is repeated. The smaller components

"bubble" is passed to the top of the list with each run, hence this technique is known

as bubble sort. The worst-case and average time complexity of bubble sort, where n is

the total number of elements to be sorted, is O(n2).

 77

Figure 4.7: Bubble Sort in PHP

Figure 4.8: Bubble Sort in Node.js

 Quick Sort: This sorting technique divides an array or list of elements into two sub-

arrays, one of which contains elements less than a pivot value and the other of which

contains elements greater than or equal to the pivot value. After that, it sorts the two

sub-arrays recursively.

Figure 4.9: Quick Sort in PHP

Figure 4.10: Quick Sort in Node.js

 Heap Algorithm: This algorithm generates all possible permutations of a given array

or list. The for loop iterates over each element of the array, and for each element it

 78

calls heapPermutation with a reduced array size of $size-1. The swap operation is

performed depending on whether $size is odd or even. If $size is odd, the first

element of the array is swapped with the last element, otherwise the $ith element is

swapped with the last element.

Figure 4.11: - Heap Algorithm in PHP

Figure 4.12: - Heap Algorithm in Node.js

4.3.7.4 Performance Metrics

Latency (milliseconds) - The term "latency" describes how long it takes a server, usually

measured in milliseconds, to reply to a client request. It includes any processing time required on the

server side as well as the time it takes for a request to go from the client to the server and back again.

A server that is quick and responsive has a low latency, while one that is slow and unresponsive has a

high latency. Latency is an important metric for evaluating the performance of any system, especially

in the context of computer networks and the internet. Latency refers to the time delay between a

request for data and the response to that request. In other words, it's the time it takes for data to travel

from its source to its destination. Low latency is important for a number of reasons. Firstly, it affects

the user experience of interactive applications such as online gaming, video conferencing, and real-

time communication tools. In these applications, high latency can cause delays and interruptions in

communication, leading to a poor user experience. Secondly, latency is critical for high-speed trading

applications, where even a small delay can have a significant impact on the outcome of a trade. In this

 79

context, low latency can give traders a competitive advantage by allowing them to make decisions and

execute trades faster than their competitors.

• Sample Time (milliseconds) - Sample time is the duration of time for which a test run is

executed. It can help identify whether the system can provide consistent performance over a

period of time, especially when multiple requests are made.

• Connect Time (milliseconds) - Connect time is the time taken to establish a connection

between the client and the server. A low connect time is crucial for applications that require

frequent connections, such as real-time applications.

• Sent Bytes (bytes) - Bytes refer to the amount of data transferred during a request/response

cycle. The amount of data transferred can have a significant impact on the overall

performance of a system, especially when handling large volumes of data.

4.3.8 Data Collection Process, Testing Procedures

4.3.8.1 Collection Process

As Apache JMeter provides several ways to collect data during load testing, our adopted

collection process involves the use of TABLE LISTENER – which provides listener to collect data in

real-time while the load test is running. With the table listener, we were able to capture a wide range

of data including latency, connect times, bytes, sample time etc. Apache JMeter enables us export this

table as a csv file which we then used for our statistical analysis.

Figure 4.13: Apache JMeter showing the Table Listener

 80

4.3.8.2 Procedure

To ensure that we are only running targeted load test, our testing procedure involves first

right-clicking on the intended algorithm, then clicking on ‘Start’ to begin the test load run.

Figure 4.14: Running targeted algorithm in Apache JMeter

4.3.8.3 Data Analysis Process & Statistical Techniques, Hypothesis Testing

4.3.8.4 Analysis Process:

The analysis process of performance testing in our research involves thoroughly examining the

data collected during the load test to gain insights into the behavior of the backend scripting

technologies, as well as the sorting algorithms under different loads (array sizes). Our main goal for

analyzing remains the fact we want to see which backend scripting performs better. We will break

down the analysis processes in the next paragraphs.

● Step 1 – Data Preparation: - we gathered the data collected during the test and organize them

in a format that we can easily analyze.

● Step 2 – Performance Metrics: - once our data has been organized and formatted, we

calculated the average latency of each simulated user for the 30 runs.

4.3.8.5 Statistical Technique

Since our research involves a moderately large data, and we aimed to analyze the data to draw

conclusions so that we can make reasonable inferences, we adopted one of the commonly used

statistical technique, T-TEST which is a type of hypothesis test used to determine whether two groups

are significantly different.

 81

Hypothesis testing is an effective technique for analyzing the significance of the difference

when comparing populations, such as when assessing or testing the difference between the means

from two samples of data [42].

4.3.8.6 Hypothesis Testing:

Hypothesis testing is the process of making a statement and verifying it with data. During this

process, it is typically assumed that two samples are not different from each other. This assumption

helps to create two hypotheses: a null hypothesis (H0) and an alternative hypothesis (Ha). The

outcomes of a hypothesis test can either reject the null hypothesis and accept the alternative

hypothesis (indicating that there is a difference between two samples), or not reject the null

hypothesis. In a scenario where the null hypothesis states that the population means of two unrelated

groups are equal (H0: u1=u2) and the alternative hypothesis states that the population means are not

equal (Ha: u1≠u2), it is determined whether to reject or accept the alternative hypothesis based on a

significance level of p<0.05.

4.4 RESULTS

4.4.1.1 Overview

Our research question for this study involves determining if there is difference in performance

between PHP (old backend technology) and Node.js (new backend technology) is significant. After

writing the programs to implement various sorting algorithms, and heap algorithm to generate all

possible permutations, we gathered our data from the performance test we ran on Apache JMeter. We

adopted the T-Test statistical method in analyzing collected data, since it is best used to determine if

there is a statistically significant difference between the means of two groups, in our case PHP and

Node.js.

 82

4.4.1.2 Statistics

4.4.1.3 Descriptive:

We summarized and described the collected data in terms of central tendency in order to

provide a clear and concise picture of the performance of PHP and Node.js such a mean.

Figure 4.15: Bubble Sort result for 30 runs and Latency Average

 83

Figure 4.16: Binary Sort result for 30 runs and Latency Average

 84

Figure 4.17: Quick Sort result for 30 runs and Latency Average

 85

Figure 4.18: Heap Algorithm result for 30 runs and Latency Average

4.4.1.4 Inferential

We utilized this to make inferences and drew conclusions on our collected data. We used t-test

as our inferential statistical method to determine if there is a significant difference in the performance

between PHP and Node.js. As seen in our t-test results in figures 4.19 – 4.20, p-value is less than

0.05, hence we reject the null hypothesis and concluded that a significant difference occurs between

the performance of PHP and Node.js.

 86

Figure 4.19: Sorting Algorithm results for t-test

Figure 4.20: Heap Algorithm results for t-test

4.4.2 Limitations

In this study, we had couples of limitations as discussed below:

I. Variability in performance – for the sorting algorithms, we limited our array to

100, 1000, and 10000. While for the Heap algorithm, our array size was limited

 87

to 5, 7 and 9. In both PHP and Node.js cases, the implemented algorithms

behaved differently as we vary the array size.

II. Scope of study – we have limited our performance to sorting and heap algorithms

which may not be generalizable to other types of software or applications. Also,

we limited performance metric to latency which may not capture all aspects of

system performance.

4.4.3 Future Research

Regarding our accomplished results and limitations of the study, there are several areas for

future research which include considering additional sorting algorithms and permutation algorithms to

determine performance difference in PHP and Node.js. Include other backend technologies and

compare their performance to that of PHP and Node.js. Furthermore, researchers can examine the

impact of various hardware configurations on the performance of PHP and Node.js. Lastly,

Investigating the relationship between the performance and other important factors like development

time, scalability, and maintainability.

4.4.4 Discussion

Our research study was focused on comparing the performance of PHP (old backend

technology) and Node.js (new backend technology) through the implementation of different sorting

algorithms and a heap permutation to generate all possible permutation of a given array size. We

measured performance using a load testing software, Apache JMeter and analyzed collected data

using t-test statistical method. Our results showed that a significant difference occur in the

performance of PHP and Node.js. To be precise, Node.js outperformed PHP in terms of latency and

other performance metrics. These findings proposed that the new backend technology, Node.js may be

a better option for developing backend systems which required high performance. It is however

important we state that this study had some limitations as we only considered relatively small sample

size and focused on specific sorting algorithms and a single heap algorithm. Future researcher could

expatiate on this study by testing a larger sample size, considering other sorting and heap algorithms,

and explore other backend technology performance. Lastly, our research proffered valuable insights

into the performance of PHP and Node.js and can be helpful in the decision-making process when

selecting a backend scripting technology for developing a high-performance system.

 88

4.5 CONCLUSION

In conclusion, our research study aimed at performance comparison between PHP and Node.js,

which are two prominent backend technologies. We implemented various complex sorting algorithms

and a heap algorithm to generate all possible permutations with varying array sizes. Our tests were ran

using Apache JMeter and the T-Test statistical method was used in analyzing the collected data. Our

results showed that Node.js performed better than PHP in all the tests, with notable statistically

significant difference between the two backend scripting technologies.

Our study will contribute to the existing literature on backend technologies and will provide

valuable insights not just for developers but also organizations in choosing the suitable backend

scripting technology on project needs. The newer technology, Node.js portrayed a superior

performance compared to the PHP, the old one. However, it is important we state that this study has

few limitations as we could only consider small sample size and specific algorithms tested. Future

researchers are advised to expatiate on this study by considering more algorithms and a larger sample

size. Despite that, our study provides valuable contribution to the field of backend technologies and

highlights the significance of considering performance while choosing a technology.

 89

CHAPTER 5

STUDY C – Database Technology Performance Evaluation: SQL vs. NoSQL

5.1 INTRODUCTION

Data management has seen considerable changes because of technology over time, including

the introduction of databases to streamline the procedure. These databases, which can range from

straightforward text documents to complex ones, need to be periodically fine-tuned to get rid of

information that is redundant, inconsistent, or inaccurate [43]. The decision between SQL and

NoSQL, is critical in deciding the effectiveness and performance of various database operations in the

constantly changing world of database systems. Both SQL and NoSQL databases have distinctive

feature and functionality sets that make them suitable for various use cases and scenarios. It is crucial

to figure out which of these two database technologies shines in terms of speed and performance

across different database activities. Big data, which consists of a sizable number of heterogeneous

data, is expanding quickly, needing new methods for data storage, organisation, performance, and

analysis. Due to the difficulty traditional relational databases have managing this enormous volume of

data, Big Data Analytics and NoSQL systems have been developed for better decision-making and

business value [44].

The mainstays of structured data storage for years have been SQL databases, which provide

high data consistency and powerful querying capability. Conversely, NoSQL databases, with

MongoDB at the forefront, have emerged as dynamic, flexible alternatives capable of managing

significant amounts of unstructured or semi-structured data while offering horizontal scalability. In

our study, we compared the performance of SQL and NoSQL (MongoDB) database systems in terms

of time spent (elapsed time) performing a variety of typical database operations, including insert,

select, update, delete, and aggregate (average). Our study's main goal is to provide a thorough

assessment of these two different database technologies' performance capabilities when managing

massive datasets. We used the T-Test, a statistical approach well known for determining significant

differences between two supplied samples, to analyse the data obtained from Apache JMeter. T-

 90

statistics are the results of this statistical process. We hope that the research's findings will provide

insightful information that will help businesses, data analysts, and software developers make wise

adoption decisions.

5.2 METHODOLOGY

5.2.1 Research Problem and Purpose of Study

By implementing and comparing five fundamental database operations (Insert, Select,

Update, Delete, and Aggregate, specifically average) in both SQL and NoSQL environments, the

research problem aims to understand the subtle efficiency differences between SQL and NoSQL

(MongoDB) database management systems (DBMS). This research study's main purpose is to

examine the performance and efficiency differences between SQL and NoSQL (MongoDB) DBMS,

with a particular emphasis on five crucial database operations: Insert, Select, Update, Delete, and

Aggregate (average).

5.2.2 Performance Goal, Statement of Research Objectives and Research Questions

5.2.2.1 Performance Goal

The goal of the study is to provide empirical data and thorough insights into the performance

differences between SQL and NoSQL databases, especially regarding important database operations.

This research equips decision-makers to make well-informed decisions about database technology

selection and setup, thereby improving operational efficiency and resource utilization. It does this by

identifying when and why one DBMS performs better than the other in particular scenarios.

5.2.3 Research Objectives: In this research, our objectives are as follows

I. To thoroughly compare the effectiveness of SQL and NoSQL (MongoDB) DBMS in carrying

out the essential database operations, revealing differences in latencies, elapsed times,

execution times, resource usage, and general effectiveness.

II. To compare the relative performance of SQL and NoSQL databases across various activities,

it is necessary to consider variations in workload size, query complexity, and concurrent user

access patterns.

III. To examine the responsiveness and efficiency of both SQL and NoSQL databases as data

volume and user concurrency grow to determine their respective scalability constraints.

 91

IV. To provide database managers and developers with useful advice, it is necessary to define

optimization techniques and best practices for improving the performance of SQL and

NoSQL databases for processes.

V. To assist practitioners in making intelligent technological decisions by identifying which

database system (SQL or NoSQL) displays superior performance for specific database

activities and under which contextual settings.

VI. To offer organizations, developers, and data professionals’ useful information and

suggestions for selecting the best DBMS for their unique operational needs, enhancing system

performance, and maximizing resource allocation.

5.2.3.1 Research Questions

What are the performance differences for the key database operations (Insert, Select, Update,

Delete, and Aggregate - average) in the context of database management systems, specifically SQL

and NoSQL (MongoDB), and under what circumstances does one outperform the other, thus

providing crucial insights into the choice between SQL and NoSQL for specific database operations in

various real-world scenarios?

• RQ1 – which of SQL and NoSQL is faster in Insert, Select, Delete, Update and Aggregate

database operations?

• RQ2 – Under which conditions is SQL vs NoSQL experience higher performance?

5.2.3.2 Description of Research Design, SQL & NoSQL, DBMS used, and Performance Metrics.

The dispute between SQL and NoSQL has persisted in the world of database management

systems (DBMS), with each having certain benefits and limitations. This study used a well-structured

design, Apache JMeter as the performance testing tool, and important performance metrics to reveal

their relative efficacy. We give a thorough explanation of the research methodology, DBMS selection,

and performance indicators used in the study below.

 92

Figure 5.1: Apache JMeter

5.2.3.3 Research Design

The research methodology was carefully developed to compare the performance of SQL and

NoSQL databases for five essential database operations: Insert, Select, Update, Delete, and Aggregate

(more particularly, computing the average). To facilitate a thorough comparison, these operations were

carried out under carefully monitored circumstances.

Insert Operation: Apache JMeter was used in the research with a setup of 100 users and a ramp-up

time of 10 seconds for this operation. 10,000 rows of data were inserted into each database. To verify

statistical reliability, this procedure was repeated 30 times.

 93

Figure 5.2: Apache JMeter showing the INSERT OPERATION thread group

Select Operation: Apache JMeter was set up for the Select operation with a single user and a one-

second ramp-up time. To choose 300,000 rows of data from each database was the goal. This was

performed 30 times, much as the Insert procedure, for full examination.

Figure 5.3: Apache JMeter showing the SELECT OPERATION thread group.

 94

Update Operation: JMeter was set up with a single user and a ramp-up time of one second for

updating data. 50 rows of data were added to the databases at once. To identify performance trends,

this procedure was performed 30 times.

Figure 5.4: Apache JMeter showing the UPDATE OPERATION thread group

Delete Operation: JMeter was used for the delete operation, which had a ramp-up time of one second

and only one user. It was designed to remove a sizable dataset—300,000 entries—from each database

all at once.

Figure 5.5: Apache JMeter showing the DELETE OPERATION thread group

 95

Aggregate (Average) Operation: Lastly, JMeter was set up with a single user and a ramp-up time of

one second for the aggregate operation (calculating the Population Average). The aim was to calculate

the average for each database's 3,000,000 cities.

Figure 5.6: Apache JMeter showing the AGGREGATE OPERATION thread group

5.2.3.4 Choice of SQL & NoSQL DBMS

The relational and document-oriented database paradigms were represented in the study by

the SQL and NoSQL (MongoDB) databases, respectively. SQL was represented by a well-liked

DBMS, which is notable for its ability to store structured and tabular data. Because of its famed

flexibility and scalability, MongoDB, a leading example of NoSQL databases, is an excellent choice

for the comparison study.

5.2.3.5 Performance Metrics with an Emphasis on "Elapsed"

Performance metrics are essential for evaluating a DBMS's effectiveness across a range of

operations. The "Elapsed" metric, which measures the overall amount of time required to complete an

operation, was the focus of this study. Elapsed time, which includes the time needed for query

processing, data retrieval, and system response, is a crucial metric of system effectiveness. Better

performance is indicated by a shorter elapsed time.

 96

5.2.3.5.1 Elapsed Time's Relevance to DBMS Performance

Insertion Operation: A faster elapsed time shows that the DBMS handles data insertion effectively,

reducing the time used to add new records to the database. Lower elapsed periods suggest greater

effectiveness in this situation for both SQL and NoSQL.

Figure 5.7: VS Code showing NoSQL and SQL queries for INSERT operations

Select Operation: Lower elapsed durations for the Select procedure indicate that the DBMS can

quickly retrieve data from substantial datasets. Better database performance is indicated by faster

query response times.

Figure 5.8: VS Code showing NoSQL and SQL queries for SELECT operations.

Update Operation: Shorter update times show that the DBMS can efficiently change existing entries.

Lower times indicate that the system properly manages data revisions.

 97

Figure 5.9: VS Code showing NoSQL and SQL queries for UPDATE operations.

Delete Operation: Shorter elapsed periods during the Delete operation signify effective data removal,

reducing system downtime during bulk deletion operations.

Figure 5.10: VS Code showing NoSQL and SQL queries for UPDATE operations.

Aggregate (Average) Operation: For the Aggregate operation, shorter elapsed times signal efficient

data aggregation and calculation of the average. Lower times indicate that the DBMS can process

large volumes of data swiftly.

Figure 5.11: VS Code showing NoSQL and SQL queries for Aggregate (Average) operations.

 98

5.2.4 Data Collection Process, Testing Procedures

5.2.4.1 Collection Process

We successfully collected data in real-time as the load test was being run by using the "View

Results Tree" listener in our load testing with Apache JMeter. This listener gave us the opportunity to

concentrate on important performance data, particularly "elapsed time."

The "View Results Tree" listener offered a thorough view of each sample request that was

executed, showing specific details about response times, response data, response headers, and other

pertinent information. We focused primarily on the "elapsed time" metric, which counts the time

between sending a request and receiving a response.

This method gave us the ability to carefully monitor and evaluate each request's performance

in terms of "elapsed time," which is an important sign of a system's responsiveness and effectiveness

during load testing. Focusing on this measure under the "View Results Tree" listener allowed us to

obtain important understanding of how our system handled various loads. By enabling us to export

this data, including the "elapsed time," into a CSV file, Apache JMeter significantly aided our

investigation. The detailed statistical analysis we conducted using this CSV file afterwards allowed us

to base our decisions and optimizations on the real-time performance indicators acquired during our

load testing.

 99

Figure 5.12: Apache JMeter showing the ‘View Results Tree’ Listener

5.2.4.2 Procedure

Our testing approach involves right-clicking on the chosen database operation (insert, update,

select, delete, or average) first, then selecting 'Start' to start the test load run. This ensures that we are

only doing targeted load tests.

Figure 5.13 Running targeted algorithm in Apache JMeter

5.2.4.3 Data Analysis Process & Statistical Techniques, Hypothesis Testing

5.2.4.4 Analysis Process

In our research, the performance testing analysis procedure entails carefully evaluating the

data gathered during the load test to learn more about how the sorting algorithms and backend

scripting technologies behave under various loads (array sizes). The primary purpose of our analysis

is still to determine which backend programming is more effective. In the paragraphs that follow, we'll

break down the analysis procedures. The data gathered during the test were organized so that we

could simply analyze them. After organizing and formatting our data, we determined the average

‘elapsed time’ of each simulated user throughout the course of the 30 test runs.

5.2.4.5 Statistical Technique

The T-TEST, a type of hypothesis test used to determine whether two groups are significantly

different, was adopted because our research involves a moderately large amount of data, and we

aimed to analyze the data to draw conclusions so that we can make reasonable inferences. See

equation below:

 100

Equation 5.1: T-Test Equation

𝑇 =
𝜇1 − 𝜇2

√ 1
𝑛1 +

1
𝑛2

𝑆𝑝

Where:

𝑇 represents the t-statistics

𝜇1, 𝜇2 represents the means of distributions.

n1, n2 represents the degrees of freedom

5.2.4.6 Hypothesis Testing

Hypothesis testing is the process of making a statement and verifying it with data. During this

process, it is typically assumed that two samples are not different from each other. This assumption

helps to create two hypotheses: a null hypothesis (H0) and an alternative hypothesis (Ha) for each of

our five tests. The outcomes of a hypothesis test can either reject the null hypothesis and accept the

alternative hypothesis (indicating that there is a difference between two samples), or not reject the null

hypothesis. In a scenario where the null hypothesis states that the population means of two unrelated

groups are equal (H0: u1=u2) and the alternative hypothesis states that the population means are not

equal (Ha: u1≠u2), it is determined whether to reject or accept the alternative hypothesis based on a

significance level of p<0.05.

In relation to database management systems (DBMS), we hypothesized that SQL databases

perform better in reporting operations like SELECT and aggregate operations like AVERAGE,

whereas NoSQL databases perform better in data operations, especially in the areas of data creation,

updates, and deletions. According to this theory, we believe that NoSQL databases are purposefully

made to maximize speedy data updates.

This hypothesis is supported by our observation of statistically significant decreases in the

amount of time (elapsed time) it takes to perform operations like create, update, and delete in NoSQL

 101

databases as well as read and aggregate (average) operations in SQL databases. Our theoretical

perspective was that NoSQL databases are optimized for fast insert and markup operations whereas

SQL-based databases are optimized for general operations such as select and aggregate functions.

NoSQL is employed to support rapid insertion of data and SQL is utilized to support all data

operations for RDBMS. Based on this, we expect data markup to be faster on NoSQL (Create, Insert,

Update, Delete) while Read/Select and Aggregate operations will be faster on SQL.

The following paragraph shows all our five null hypotheses (H0-H4) and the corresponding

alternative hypotheses (H0-a – H4-a)

• H0: There is no significant difference in the elapsed time for INSERT operations between

SQL and NoSQL

• H0-a: The elapsed time of INSERT operations will be less (faster) in NoSQL than in SQL

• H1: There is no significant difference in the elapsed time for UPDATE operations between

SQL and NoSQL

• H1-a: The elapsed time of UPDATE operations will be less (faster) in NoSQL than in SQL

• H2: There is no significant difference in the elapsed time for DELETE operations between

SQL and NoSQL

• H2-a: The elapsed time of DELETE operations will be less (faster) in NoSQL than in SQL

• H3: There is no significant difference in the elapsed time for SELECT operations between

SQL and NoSQL

• H3-a: The elapsed time of SELECT operations will be more (slower) in NoSQL than in SQL

• H4 : There is no significant difference in the elapsed time for AGGREGATE(AVERAGE)

operations between SQL and NoSQL

• H4-a: The elapsed time of AGGREGATE(AVERAGE) operations will be more (slower) in

NoSQL than in SQL.

5.3 RESULT

5.3.1.1 Overview

In this study, our main research question is whether there is a significant performance

difference between SQL (a relational database management system) and NoSQL (a non-relational

database management system) for a variety of database operations, such as Insert, Select, Update,

Delete, and Aggregate (Average). We implemented these operations in both SQL and NoSQL, and

then we ran tests with Apache JMeter to get performance information. As the T-Test statistical method

is best suited for determining whether there is a statistically significant difference between the means

 102

of two groups, in our instance, SQL and NoSQL, it was used to analyze the data that had been

gathered.

5.3.1.2 Descriptive Statistics

To offer a clear and comprehensive picture of the performance of SQL and NoSQL, including

metrics like the mean, we compiled and described the obtained data in terms of central tendency.

Figure 5.14: INSERT operation result for 30 runs showing the elapsed time average.

 103

Figure 5.15: UPDATE operation result for 30 runs showing the elapsed time average.

 104

Figure 5.16: DELETE operation result for 30 runs showing the elapsed time average.

Figure 5.17: SELECT operation result for 30 runs showing the elapsed time average.

 105

Figure 5.18: AGGREGATE(Average) operation result for 30 runs showing the elapsed time average.

5.3.1.3 Inferential Statistics

Based on the data we had collected; we used these techniques to build inferences and come to

conclusions. Our inferential statistical method for determining whether there is a significant

performance difference between SQL and NoSQL was the t-test.

Figure 5.19: INSERT operation results for t-test

 106

Figure 5.20: UPDATE operation results for t-test

Figure 5.21: DELETE operation results for t-test

Figure 5.22: SELECT operation results for t-test

Figure 5.23: AGGREGATE (AVERAGE) operation results for t-test

As seen in figure 5.19 above, the p-value (p=0.1422) which is greater than 0.05. We there

accept the null hypothesis H0 which states that there is no significant difference in the elapsed time

for INSERT operations between SQL and NoSQL. However, looking at the figures 5.20-5.23, we can

 107

see that the p-value for each of our t-test is less than 0.05 which statistically give us substantial

reasons to reject the null hypotheses H1, H2, H3 and H4 and accept the alternative hypotheses H1-a,

H2-a, H3-a and H4-a which states that the elapsed time of UPDATE, DELETE, SELECT and

AGGREGATE(AVERAGE) operations will be less (faster) in NoSQL than in SQL.

5.3.1.4 Limitations

Although the research on SQL and NoSQL databases in the report is admirable, it has certain

drawbacks. Future research should include a wider range of databases because this study concentrated

on just one SQL and NoSQL database. Although the study used simplified workloads, real-world

circumstances are more complex, necessitating future research into resource restrictions, varied data

quantities, and various benchmarking techniques. Although the study focused mostly on "elapsed

time," other factors also affect database performance, and real-time data monitoring and operational

aspects should be included in subsequent studies for a more thorough analysis.

5.3.1.5 Future Research

The performance differences between SQL and NoSQL databases will be further investigated

in future studies, with an emphasis on key database operations including but not limited to Insert,

Select, Update, Delete, and Aggregate (Average). Our goal is to discover the situations in which one

of these two categories of database management systems (DBMS) surpasses the other and to provide

empirical insights into the efficiency differences between them.

Along with these fundamental research tasks, we understand how critical it is to solve the

shortcomings identified in our earlier work. Future studies will consider a wider variety of databases,

challenging workloads, resource limitations, varying data sizes, and various benchmarking

methodologies. To conduct a more thorough analysis, we will additionally investigate performance

measures besides "Elapsed Time" and take operational aspects and real-time data monitoring into

account. Our future research will focus on these areas to offer useful recommendations for choosing

the best DBMS for particular use cases, ultimately optimizing system performance and resource

allocation.

 108

5.4 CONCLUSION

In conclusion, our study compares SQL and NoSQL performance across five key database

operations. To compare the performance of SQL and NoSQL, this study used Apache JMeter for

performance testing and real-time data collecting. The results of our analysis provide valuable insights

into the performance differences between SQL and NoSQL for specific database operations. While

NoSQL exhibited superior performance in Insert, Update, Delete operations compared to SQL, the

study uncovered that SQL databases excel in reporting operations like Select and Aggregate

(Average). Our findings support the notion that NoSQL databases are optimized for rapid data

manipulation, whereas SQL databases excel in data retrieval and complex querying.

Despite the useful knowledge this study has provided, it is important to recognize its limits.

Future studies should look at a wider range of databases, considering different workloads, resource

limitations, different data quantities, and benchmarking techniques. Additionally, a more thorough

analysis should consider elements other than "Elapsed Time" to provide a comprehensive picture of

database performance. Finally, this research offers empirical evidence to guide judgements about

database technology and adds to the ongoing discussion over SQL vs NoSQL databases. Our study

establishes the groundwork for more informed decisions as organizations strive for maximum

performance in a constantly changing data landscape and opens the door for further research into

improving database management system effectiveness.

 109

CHAPTER 6

CONCLUSIONS

We examined and contrasted several aspects of full-stack development, including frontend

frameworks, backend scripting technologies, and database management systems, in this extensive

research study. Our research provides insightful information that developers and organizations may

use to guide important technological decisions. In order to better understand the JavaScript frontend

frameworks React.js and Angular.js, we painstakingly created comparable web apps and put them

through a rigorous performance testing process. Using Google Chrome's Task Manager and

Lighthouse, among other technologies, we were able to replicate real-world online situations in our

test environments. Our findings highlight the distinct advantages of both frameworks and show that

React.js performs better than Angular.js in terms of overall efficiency. Our work provides developers

and organizations looking for help in choosing the best frontend framework for their projects with a

solid base, and we continue to strive for improvement in future research, including more robust

performance measures.

Turning our attention to backend scripting tools, we thoroughly compared Node.js and PHP's

performance. utilizing Apache JMeter and the T-Test statistical approach, we collected and analyzed

data utilizing heap and complicated sorting algorithms across different array sizes. Based on

statistically significant performance differences between these two backend scripting systems, our

results clearly favor Node.js. In order to help developers and organizations match the best backend

scripting technology for their projects, this research adds to the body of knowledge already available

about backend technologies.

Furthermore, we examined the continuous discussion between SQL and NoSQL databases in the

context of data management, comparing and contrasting their effectiveness in five essential database

functions. By employing Apache JMeter for both performance evaluation and real-time data

gathering, we were able to highlight the various advantages of different database systems. NoSQL

databases—MongoDB in particular—performed exceptionally well when it came to data processing,

 110

whereas SQL databases performed better when it came to reporting procedures like Select and

Aggregate (Average). In addition to offering a useful tool for making informed selections regarding

database technology, our analysis also identifies the particular use cases for each.

 111

REFERENCES

[1] W. Xu, "Benchmark Comparison of JavaScript Frameworks React, Vue, Angular and Svelte,"

2021.

[2] M. Levlin, "DOM benchmark comparison of the front-end JavaScript frameworks React,

Angular, Vue, and Svelte," 2020.

[3] D. Verma, "A comparison of web framework efficiency: performance and network analysis of

modern web frameworks," 2022.

[4] Vukelić, "Comparison of front-end frameworks for web applications development," Zbornik

Veleučilišta u Rijeci, vol. 6, no. 1, pp. 261-282, 2018.

[5] Yorulmaz, "JavaScript Frameworks A qualitative evaluation and comparison of the dominant

factors in Angular and React Abdul Kadir Yorulmaz," 2020.

[6] E. Wohlgethan, "Supportingweb development decisions by comparing three major javascript

frameworks: Angular, react and vue. js," Hochschule für Angewandte Wissenschaften

Hamburg, 2018.

[7] R. Mohammadi, "Performance, and Efficiency based Comparison of Angular and React in a

case study of Single page application (SPA)."

[8] J. KEPLER, "Comparing Modern Front-End Frameworks," 2022.

[9] S. Mousavi, "Maintainability evaluation of single page application frameworks: Angular2 vs.

react," ed, 2017.

[10] E. Saks, "JavaScript Frameworks: Angular vs React vs Vue," 2019.

[11] A. Kumar and R. K. Singh, "Comparative analysis of angularjs and reactjs," International

Journal of Latest Trends in Engineering and Technology, vol. 7, no. 4, pp. 225-227, 2016.

[12] K. Peguero, N. Zhang, and X. Cheng, "An empirical study of the framework impact on the

security of javascript web applications," in Companion Proceedings of the The Web

Conference 2018, 2018, pp. 753-758.

[13] M. Sultan, "Angular and the Trending Frameworks of Mobile and Web-based Platform

Technologies: A Comparative Analysis," in Proc. Future Technologies Conference, 2017, pp.

928-936.

[14] S. Guan, W. Hu, and H. Zhou, "Front-end and back-end separation-react based framework for

networked remote control laboratory," in 2018 37th Chinese Control Conference (CCC),

2018: IEEE, pp. 6314-6319.

[15] Y. Xing, J. Huang, and Y. Lai, "Research and analysis of the front-end frameworks and

libraries in e-business development," in Proceedings of the 2019 11th International

Conference on Computer and Automation Engineering, 2019, pp. 68-72.

[16] A. Prayogi, M. Niswar, and M. Rijal, "Design and implementation of REST API for academic

information system," in IOP Conference Series: Materials Science and Engineering, 2020,

vol. 875, no. 1: IOP Publishing, p. 012047.

[17] I. K. Chaniotis, K.-I. D. Kyriakou, and N. D. Tselikas, "Is Node. js a viable option for

building modern web applications? A performance evaluation study," Computing, vol. 97, pp.

1023-1044, 2015.

[18] W. S. Raharjo, "Performance and Scalability Analysis of Node. js and PHP/Nginx Web

Application," Informatika: Jurnal Teknologi Komputer dan Informatika, vol. 9, no. 2, p.

67762, 2014.

[19] K. Lei, Y. Ma, and Z. Tan, "Performance comparison and evaluation of web development

technologies in php, python, and node. js," in 2014 IEEE 17th international conference on

computational science and engineering, 2014: IEEE, pp. 661-668.

[20] R. Jain, A. Sen, and K. Paliwal, "A Comparative Analysis of New Cow Concept of Node. Js

With Php."

[21] H. K. Dhalla, "A Performance Analysis of Native JSON Parsers in Java, Python, MS. NET

Core, JavaScript, and PHP," in 2020 16th International Conference on Network and Service

Management (CNSM), 2020: IEEE, pp. 1-5.

 112

[22] L. Nkenyereye and J.-W. Jang, "Performance evaluation of server-side javascript for

healthcare hub server in remote healthcare monitoring system," Procedia Computer Science,

vol. 98, pp. 382-387, 2016.

[23] T. Crawford and T. Hussain, "A comparison of server side scripting technologies," in

Proceedings of the International Conference on Software Engineering Research and Practice

(SERP), 2017: The Steering Committee of The World Congress in Computer Science,

Computer …, pp. 69-76.

[24] A. H. Odeh, "Analytical and Comparison Study of Main Web Programming Languages‒ASP

and PHP," TEM Journal, vol. 8, no. 4, pp. 1517-1522, 2019.

[25] Z. Ahmed, F. J. Kinjol, and I. J. Ananya, "Comparative Analysis of Six Programming

Languages Based on Readability, Writability, and Reliability," in 2021 24th International

Conference on Computer and Information Technology (ICCIT), 2021: IEEE, pp. 1-6.

[26] O. M. Adebukola and O. B. Kazeem, "Performance Comparison of dynamic Web scripting

Language: A case Study of PHP and ASP .NET," International Journal of Scientific &

Engineering Research, 2014.

[27] H. Brar, T. Kaur, and Y. Rajoria, "The better comparison between PHP, python-web & Node.

js," Int. J. Res. Eng. Sci., vol. 9, no. 7, pp. 29-37, 2021.

[28] S. S. N. Challapalli, P. Kaushik, S. Suman, B. D. Shivahare, V. Bibhu, and A. D. Gupta,

"Web Development and performance comparison of Web Development Technologies in

Node. js and Python," in 2021 International Conference on Technological Advancements and

Innovations (ICTAI), 2021: IEEE, pp. 303-307.

[29] S. Jamal, M. V. Cruz, S. Chakravarthy, C. Wahl, and H. Wimmer, "Integration of EEG and

Eye Tracking Technology: A Systematic Review," SoutheastCon 2023, pp. 209-216, 2023.

[30] S. Bjeladinovic, Z. Marjanovic, and S. Babarogic, "A proposal of architecture for integration

and uniform use of hybrid SQL/NoSQL database components," Journal of Systems and

Software, vol. 168, p. 110633, 2020.

[31] J. Antas, R. Rocha Silva, and J. Bernardino, "Assessment of SQL and NoSQL Systems to

Store and Mine COVID-19 Data," Computers, vol. 11, no. 2, p. 29, 2022.

[32] S. Sicari, A. Rizzardi, and A. Coen-Porisini, "Security&privacy issues and challenges in

NoSQL databases," Computer Networks, p. 108828, 2022.

[33] W. Khan, T. Kumar, Z. Cheng, K. Raj, A. Roy, and B. Luo, "SQL and NoSQL Databases

Software architectures performance analysis and assessments—A Systematic Literature

review. arXiv 2022," arXiv preprint arXiv:2209.06977.

[34] T. N. Khasawneh, M. H. AL-Sahlee, and A. A. Safia, "Sql, newsql, and nosql databases: A

comparative survey," in 2020 11th International Conference on Information and

Communication Systems (ICICS), 2020: IEEE, pp. 013-021.

[35] K. S. Kumar and S. Mohanavalli, "A performance comparison of document oriented NoSQL

databases," in 2017 International Conference on Computer, Communication and Signal

Processing (ICCCSP), 2017: IEEE, pp. 1-6.

[36] S. Padhy and G. M. M. Kumaran, "A quantitative performance analysis between Mongodb

and Oracle NoSQL," in 2019 6th international conference on computing for sustainable

global development (INDIACom), 2019: IEEE, pp. 387-391.

[37] J. Kepner et al., "Associative array model of SQL, NoSQL, and NewSQL Databases," in 2016

IEEE High Performance Extreme Computing Conference (HPEC), 2016: IEEE, pp. 1-9.

[38] J. M. A. Araujo, A. C. E. de Moura, S. L. B. da Silva, M. Holanda, E. de Oliveira Ribeiro,

and G. L. da Silva, "Comparative performance analysis of NoSQL Cassandra and MongoDB

databases," in 2021 16th Iberian Conference on Information Systems and Technologies

(CISTI), 2021: IEEE, pp. 1-6.

[39] K. Mahmood, K. Orsborn, and T. Risch, "Comparison of nosql datastores for large scale data

stream log analytics," in 2019 IEEE International Conference on Smart Computing

(SMARTCOMP), 2019: IEEE, pp. 478-480.

[40] S. Rautmare and D. Bhalerao, "MySQL and NoSQL database comparison for IoT

application," in 2016 IEEE international conference on advances in computer applications

(ICACA), 2016: IEEE, pp. 235-238.

 113

[41] S. Jamal and H. Wimmer, "Performance Analysis of Machine Learning Algorithm on Cloud

Platforms: AWS vs Azure vs GCP," in International Scientific and Practical Conference on

Information Technologies and Intelligent Decision Making Systems, 2022: Springer, pp. 43-

60.

[42] S. Cuk, H. Wimmer, L. M. Powell, and C. M. Rebman Jr, "ELECTRONIC EMERGENCY

MEDICAL TECHNICIAN REPORTS-TESTING A PERCEPTION OF A PROTOTYPE,"

Issues in Information Systems, vol. 19, no. 3, 2018.

[43] A. Gupta, S. Tyagi, N. Panwar, S. Sachdeva, and U. Saxena, "NoSQL databases: Critical

analysis and comparison," in 2017 International conference on computing and

communication technologies for smart nation (IC3TSN), 2017: IEEE, pp. 293-299.

[44] B. Jose and S. Abraham, "Performance analysis of NoSQL and relational databases with

MongoDB and MySQL," Materials today: PROCEEDINGS, vol. 24, pp. 2036-2043, 2020.

	Comparative Analysis of Fullstack Development Technologies: Frontend, Backend and Database
	Recommended Citation

	docs-internal-guid-93c4367d-7fff-7729-de

