# Quantification Of Rigidity And Synthesis Of Cyclobutane Bisimide Building Blocks 

Joseph Earl Mcgilligan Robertson

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://commons.und.edu/theses

## Recommended Citation

Robertson, Joseph Earl Mcgilligan, "Quantification Of Rigidity And Synthesis Of Cyclobutane Bisimide Building Blocks" (2023). Theses and Dissertations. 5696.
https://commons.und.edu/theses/5696

This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

# QUANTIFICATION OF RIGIDITY AND SYNTHESIS OF CYCLOBUTANE BISIMIDE BUILDING BLOCKS 



JOSEPH EARL MCGILLIGAN ROBERTSON
BACHELOR OF SCIENCE IN CHEMISTRY
Grand Valley State University, 2017
A dissertation
submitted to
The School of Graduate Studies of the
University of North Dakota
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
Grand Forks, North Dakota
December 2023

Copyright 2023 Joseph Earl McGilligan Robertson

Cover artwork copyright 2023 Elizabeth Kathlyn DeForest

This dissertation, submitted by Joseph Earl McGilligan Robertson in partial fulfillment of the requirements for the Degree of Doctor of Philosophy from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved.

Dr. Qianli Rick Chu

Dr. Guodong Du

Dr. Evguenii Kozliak

Dr. Ayush Asthana

Dr. Beth Klemetsrud
This dissertation is being submitted by the appointed advisory committee as having met all requirements of the School of Graduate Studies at the University of North Dakota and is hereby approved.

[^0]
## Date

## PERMISSION

Title Quantification of Rigidity and Synthesis of Cyclobutane Bisimide Building Blocks

| Department | Chemistry |
| :--- | :--- |
| Degree | Doctor of Philosophy |

In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my dissertation work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies. It is understood that any copying or publication or other use of this dissertation or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my dissertation.

## Table of Contents

Indexes ..... X
Figures .....
Schemes ..... xiii
Tables ..... xiii
Appendix Figures ..... xiv
Appendix A ..... xiv
Appendix B ..... xvii
Appendix C ..... xvii
Appendix D ..... xviii
No table of figures entries found. Error! Bookmark not defined.
Acknowledgments ..... XX
Abstract ..... 1
Chapter 1: Quantification of Rigidity for Small Organic Molecules ..... 4
Introduction ..... 4
Methods ..... 6
Construction of Rotamer Ensemble. ..... 6
Calculation of Volume ..... 8
Results and Discussion ..... 10
Verification of method with hydrocarbons ..... 10
Correlation of $\mathrm{Rg}_{\mathrm{f}}$ to Conformational Entropy ..... 13
Applications ..... 16
Composite $\mathrm{Rg}_{f}$ ..... 21
Limitations ..... 23
Conclusions and Future Work ..... 23
Chapter 2: Synthesis and Characterization of Bisimide building blocks ..... 26
Introduction ..... 26
Synthetic approach ..... 29
Experimental ..... 31
Synthesis of N -(2-hydroxyethyl)-1,2-dimethylmaleimide (protoCBDO-2) ..... 31
Synthesis of N -(ethyl ethanoate)-1,2-dimethylmaleimide (protoCBDE-6) ..... 32
Synthesis of N-((S)-methyl 1-methylethanoate)-1,2-dimethylmaleimide (protoCBDE-7) ..... 33
Synthesis of N -allyl-1,2-dimethylmaleimide (protoCBDV-1) ..... 34
Synthesis of N -(ethyl-2-acetate)-maleimide (protoCBDAc-1) ..... 35
Synthesis of N-dihydroxy-1,2-dimethylmaleimide (protoCBDH-1) ..... 36
Maleimide (protoCBBI-2) ..... 37
Syntheses of N,N'-di(2-hydroxyethyl)-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4-c']bisimide
(CBDO-2) ..... 38
Syntheses of N,N'-di(ethyl ethanoate)-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4-c']bisimide
(CBDE-6) ..... 39
N,N’-di((S)-methyl 1-methylethanoate)-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4-c']bisimide
(CBDE-7) ..... 40
Synthesis of $\mathrm{N}, \mathrm{N}^{\prime}$-di(ethyl-2-acetate)-cyclobuta[1,2-c:3,4-c']bisimide (CBDAc-1) ..... 40
Synthesis of N,N'-diallyl-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4-c']bisimide (CBDV-1) ..... 41
Synthesis of $N, N^{\prime}$-dihydro-cyclobuta[1,2-c:3,4-c']bisimide (CBBI-2) ..... 42
Synthesis of N,N’-dihydro-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4-c']bisimide (CBBI-1) ..... 42
Synthesis of N,N'-dihydroxy-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4-c']bisimide (CBDH-1). ..... 43
Synthesis of N,N'-di(2-hydroxyethyl)cyclobuta[1,2-c:3,4-c']bisimide (CBDO-3) ..... 44
Synthesis of $\mathrm{N}, \mathrm{N}^{\prime}$-di(n-propanoic acid)-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4-c']bisimide
(CBDA-6) ..... 44
Synthesis of $\mathrm{N}, \mathrm{N}^{\prime}$-di(ethanoic acid)-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4-c']bisimide
(CBDA-7) ..... 45
Synthesis of poly(hexamethylene N,N'-di(ethanoate)-1,2,3,4-tetramethylcyclobuta[1,2-
c:3,4-c']bisimide) (PCBBI-1) ..... 46
Synthesis of N,N'-di(2-hydroxyethyl)-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4-c']bisimide
hexanoate) (PCBBI-2) ..... 47
Results and Discussion ..... 47
Description of a model CBBI ..... 47
Synthesis of model compound ..... 49
Versatility of CBBI synthesis ..... 50
Thermal properties of select CBBIs ..... 56
Syntheses of CBBI-based polymers ..... 62
Conclusions and Future work ..... 64
Chapter 3: Optimization of [2+2] Photocycloaddition using Solution Phase Ethylene ..... 66
Introduction ..... 66
History of CBAn-1 and CBeAn-1 syntheses ..... 69
Methods and Materials ..... 72
Synthesis of CBAn-1 ..... 72
Synthesis of CBeAn-1 and CPDAn-1 ..... 76
Synthesis of imide from CBAn-1 ..... 76
Experimental ..... 77
cis-1,2-cyclobutanedicarboxylic anhydride (CBAn-1) ..... 77
cis-3,4-cyclobutenedicarboxylic anhydride (CBeAn-1) ..... 77
bis-1,1'-(cyclopropane-2,3-dicarboxylic acid anhydride) (CPDAn-1) ..... 78
cis-(n-phenyl)cyclobutane-1,2-carboximide ..... 78
Results and Discussion ..... 79
Synthesis of CBAn-1 ..... 79
Purification of CBAn-1 by distillation ..... 80
Synthesis and Distillation of CBeAn-1 and CPDAn-1 ..... 81
Appendices ..... 83
Appendix A: Selected NMR Spectra ..... 83
Appendix B: Crystallographic Data ..... 150
Appendix C: Selected HRMS spectra ..... 161
Appendix D: Selected IR spectra ..... 175
Appendix E: Rigidity Data ..... 189
References ..... 197

## Indexes

## Figures

Figure 1: Rotamer ensemble for hydroquinone aligned to minimize RMSD for all atoms (left) and excluding hydrogens (right)................................................................................... 8

Figure 2: Comparison of Van der Waals volume calculations using Monte Carlo volume approximation in this work to published values using geometric sum of spheres calculations. ${ }^{16}$ Series consists of straight chain hydrocarbons with backbone \#C of 4-22

Figure 3: The Rgf for two series of alkanes, straight chain and cyclic, with two different $\mathrm{E}_{\text {win }}$ compared, to the natural log of the number of carbons in the chain.

Figure 4: Conformational entropy, $\mathrm{S}_{\text {conf }}$, as a function of $\mathrm{Rg}_{\mathrm{f}}$ for 110-115 structures. Complete data can be found in the appendix

Figure 5: Global minimum rotamers for adipic acid (a) and sebacic acid (b) compared with the the highest energy rotamer in the respective ensembles when $\mathrm{E}_{\text {win }}=6.0 \mathrm{kcal} / \mathrm{mol}$. . 19

Figure 6: $\mathrm{Rg}_{\mathrm{f}}$ values for polyester repeat units showing good agreement between the calculated and composite methods. 22

Figure 7: Structure of a Kapton repeat unit (top) and sheets of the material which show its color ${ }^{22}$
$\qquad$
Figure 8: The general skeletal core of cyclobutane-containing bisimides. 28

Figure 9: The crystal structure of CBDA-7 where the central bisimide core is displayed using the space-fill model to emphasize its bulky skeleton. 29

Figure 10: Poly(cyclobutanebisimide)-1, PCBBI-1 and poly(cyclobutanebisimide)-2, PCBBI-2, synthesized as part of this work. ......................................................................... 29

Figure 11: The four major portions of a CBBI. 30

Figure 12: Retrosynthetic analysis of a generic CBBI showing the many ways to assemble the 4 core portions and achieve the desired skeletal core. ........................................... 31

Figure 13: A model CBBI compound, cyclobutane diol 2, or CBDO-2........................................... 48
Figure 14: The crystal structure of CBDO-2 which shows the angle between the imide rings (blue) and the cyclobutane ring (red) to be $110.7^{\circ}$......................................................... 49

Figure 15: Crystals of CBDO-2 which exhibit no color. ................................................................. 49
Figure 16: Cyclobutane diacid product, CBDA-7, obtained via oxidation of CBDO-2. .................. 51

Figure 17: Three protoCBBI structures, protoCBDE-6 (top left), protoCBDE-7 (top middle), and protoCBDV-1 (top right). Below each is the corresponding CBBI monomer, CBDE-6 (bottom left), CBDE-7 (bottom middle), and CBDV-1 (bottom right).................... 51

Figure 18: TGA (black line) and DSC (red line) of CBDO-2 from $25^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$ with ramp rate $20^{\circ} \mathrm{C} / \mathrm{min}$. 56

Figure 19: Detail of Figure 18 showing concurrent melt and dehydration of CBDO-2.57

Figure 20: CBDO-2 and the possible thermal dehydration product formed at $317^{\circ} \mathrm{C}$. ................. 57

Figure 21: TGA (black line) and DSC (red line) of CBDE-6 from $25^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$ with ramp rate


Figure 22: Detail of 7 showing concurrent melt and degradation of CBDE-6, likely to CBDA-6. .. 59

Figure 23: General mechanism for a retro-ene reaction of the type observed in the degradation
$\qquad$

Figure 24: CBDE-6 and the likely thermal degradation product formed at $299^{\circ} \mathrm{C}$
Figure 25: TGA (black line) and DSC (red line) of CBDV-1 from $25^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$ with ramp rate $20^{\circ} \mathrm{C} / \mathrm{min}$.

Figure 26: TGA (black line) and DSC (red line) of CBDO-3 from $25^{\circ} \mathrm{C}$ to $700^{\circ} \mathrm{C}$ with ramp rate $15^{\circ} \mathrm{C} / \mathrm{min}$.

Figure 27: PCBBI-2 solid showing score marks after being stabbed with a spatula (left); the same sample, crumbled due to handling, in better lighting to showcase superb colorless clarity (right). 63

Figure 28: The 3 major oligomeric constituents of PCBBI-1 and their mono- and dipropyl substituted forms 64

Figure 29: The multiple pathways to construct the cyclobutane bisimide (CBBI) monomer building block from the common starting material, maleic anhydride derivative. 65

Figure 30: A typical Hanovia medium-pressure mercury photochemical reactor lamp (left) and a typical photochemical reaction vessel with the quartz cooling jacket in place (right). It's placed in a stand which facilitates sumbersion of the vessel into a heating or cooling bath. 67

Figure 31: The four products of the reaction between maleic anhydride and acetylene. From left to right: cis-3,4-cyclobutenedicarboxylic anhydride (CBeAn-1), trans,trans-bis-1,1'-(cyclopropane-2,3-dicarboxylic acid anhydride), cis,trans-bis-1,1'-(cyclopropane-2,3-dicarboxylic acid anhydride), and cis,cis-bis-1,1'-(cyclopropane-2,3dicarboxylic acid anhydride). The isomeric cyclopropanes are collectively referred
$\qquad$

Figure 32: Simplified reaction apparatus for synthesis of CBAn-1 known as the Light Array for Photochemical Reactions Apparatus or LAPRA. Left: LAPRA in open position for easy access to mixture. Right: LAPRA in closed position. ..................................... 74

Figure 33: A typical UV-B bulb used in the synthesis of CBAn-1 74

Figure 34: Vacuum jacketed, short path distillation head used for the purification of CBAn-1. Adapters installed to prevent overflow in the case of bumping.

## Schemes

Scheme 1: Synthesis of protoCBDO-2 ............................................................................................ 50
Scheme 2: a) Synthesis of CBDH-1 showing that while the synthesis of protoCBDH-1 was successful, the key step of [2+2] photocycloaddition was not. b) Synthesis of CBDH1 showing that swapping the order of the reactions results in success.53
Scheme 3: Synthesis of CBDAc-1 ..... 54
Scheme 4: Synthesis of CBDA-6 via halo-imide coupling ..... 55
Tables
Table 1: Volume approximation measurements and error analysis for cyclopropane. ..... 16
Table 2: Rgf values for several diol species commonly found in polyesters ..... 18
Table 3: Rgf values for several diacid species commonly found in polyesters. ..... 18
Table 4: Rgf values for repeat units of common polyesters ..... 21
Appendix Figures
Appendix A
Figure A $1:{ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathrm{CBBI}-1$ at room temperature ..... 84
Figure $\mathrm{A} 2:{ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathrm{CBBI}-1$ at room temperature ..... 85
Figure $\mathrm{A} 3:{ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathrm{CBBI}-2$ at room temperature. ..... 86
Figure $\mathrm{A} 4:{ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathrm{CBBI}-2$ at room temperature. ..... 87
Figure A 5: ${ }^{1} \mathrm{H}$-NMR of CBDA-6 at room temperature. ..... 88
Figure A 6: ${ }^{13} \mathrm{C}$-NMR of CBDA-6 at room temperature. ..... 89
Figure A 7: DEPT135 of CBDA-6 at room temperature. ..... 90
Figure A 8: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of CBDA-7 at room temperature. ..... 91
Figure A 9: ${ }^{13} \mathrm{C}$-NMR of CBDA-7 at room temperature. ..... 92
Figure A 10: HSQC of CBDA-7 at room temperature. ..... 93
Figure A 11: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of CBDAc-1 at room temperature ..... 94
Figure $\mathrm{A} 12:{ }^{13} \mathrm{C}-\mathrm{NMR}$ of CBDAc-1 at room temperature. ..... 95
Figure A 13: DEPT135 of CBDAc-1 at room temperature. ..... 96
Figure A 14: HSQC of CBDAc-1 at room temperature ..... 97
Figure A 15: HMBC of CBDAc-1 at room temperature ..... 98
Figure A 16: COSY of CBDAc-1 at room temperature. ..... 99
Figure A 17: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of CBDE-6 at room temperature ..... 100
Figure A 18: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of CBDE-6 at room temperature ..... 101
Figure A 19: DEPT135 of CBDE-6 at room temperature. ..... 102
Figure A 20: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of CBDE-7 at room temperature ..... 103
Figure A $21:{ }^{13} \mathrm{C}-\mathrm{NMR}$ of CBDE-7 at room temperature ..... 104
Figure A 22: DEPT135 of CBDE-7 at room temperature. ..... 105
Figure A 23: H-C correlation of CBDE-7 at room temperature. ..... 106
Figure $\mathrm{A} 24:{ }^{13} \mathrm{C}$-NMR of $\mathrm{CBDH}-1$ at room temperature. ..... 107
Figure A 25 : ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of CBDO-2 at room temperature using synthetic method 1 ..... 108
Figure A 26: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of CBDO-2 at room temperature using synthetic method 2 ..... 109
Figure A 27: ${ }^{13} \mathrm{C}$-NMR of CBDO-2 at room temperature using synthetic method 1 ..... 110
Figure A $28:{ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathrm{CBDO}-3$ at room temperature ..... 111
Figure A 29: ${ }^{13} \mathrm{C}$-NMR of CBDO-3 at room temperature ..... 112
Figure A 30: HSQC of CBDO-3 at room temperature ..... 113
Figure A 31: HMBC of CBDO-3 at room temperature ..... 114
Figure A 32: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathrm{CBDV}-1$ at room temperature ..... 115
Figure A $33:{ }^{13} \mathrm{C}-\mathrm{NMR}$ of CBDV-1 at room temperature ..... 116
Figure A 34: DEPT135 of CBDV-1 at room temperature ..... 117
Figure A 35: HSQC of CBDV-1 at room temperature ..... 118
Figure A 36: HMBC of CBDV-1 at room temperature ..... 119
Figure A 37: COSY of CBDV-1 at room temperature ..... 120
Figure A $38:{ }^{1} \mathrm{H}-\mathrm{NMR}$ of protoCBBI-2 (maleimide) at room temperature ..... 121
Figure A 39: ${ }^{13} \mathrm{C}$-NMR of protoCBBI-2 (maleimide) at room temperature ..... 122
Figure A 40: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of protoCBDAc-2 at room temperature ..... 123
Figure $\mathrm{A} 41:{ }^{13} \mathrm{C}-\mathrm{NMR}$ of protoCBDAC-2 at room temperature ..... 124
Figure $\mathrm{A} 42:{ }^{1} \mathrm{H}-\mathrm{NMR}$ of protoCBDE-6 at room temperature ..... 125
Figure $\mathrm{A} 43:{ }^{13} \mathrm{C}$-NMR of protoCBDE-6 at room temperature ..... 126
Figure A 44 : ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of protoCBDE-7 at room temperature ..... 127
Figure $\mathrm{A} 45:{ }^{13} \mathrm{C}$-NMR of protoCBDE-7 at room temperature ..... 128
Figure $\mathrm{A} 46:{ }^{1} \mathrm{H}-\mathrm{NMR}$ of protoCBDH-1 at room temperature ..... 129
Figure A 47: ${ }^{13} \mathrm{C}$-NMR of protoCBDH-1 at room temperature ..... 130
Figure $\mathrm{A} 48:{ }^{1} \mathrm{H}-\mathrm{NMR}$ of protoCBDO-2 at room temperature ..... 131
Figure A 49: ${ }^{13} \mathrm{C}$-NMR of protoCBDO-2 at room temperature ..... 132
Figure A 50: DEPT135 of protoCBDO-2 at room temperature ..... 133
Figure A 51: HSQC of protoCBDO-2 at room temperature ..... 134
Figure A 52: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of protoCBDV-1 at room temperature ..... 135
Figure $\mathrm{A} 53:{ }^{13} \mathrm{C}$-NMR of protoCBDO-2 at room temperature ..... 136
Figure $\mathrm{A} 54:{ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathrm{CBAn}-1$ at room temperature ..... 137
Figure $\mathrm{A} 55:{ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathrm{CBAn}-1$ in $\mathrm{CDCl}_{3}$ at room temperature. ..... 138
Figure $\mathrm{A} 56:{ }^{13} \mathrm{C}$-NMR of $\mathrm{CBAn}-1$ in $\mathrm{CDCl}_{3}$ at room temperature ..... 139
Figure $\mathrm{A} 57 \mathrm{~S}^{1} \mathrm{H}-\mathrm{NMR}$ of powder containing mixture of CPDAn-1. ..... 140
Figure $\mathrm{A} 58:{ }^{13} \mathrm{C}-\mathrm{NMR}$ of powder containing mixture of CPDAn-1 ..... 141
Figure A 59: DEPT135 of powder containing mixture of CPDAn-1 ..... 142
Figure A 60: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of crystal of CPDAn-1which was coated in powder ..... 143
Figure A 61: ${ }^{13} \mathrm{C}$-NMR of crystal of CPDAn-1 which was coated in powder ..... 144
Figure A 62: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathrm{CBI}-1$ ..... 145
Figure A 63: ${ }^{13} \mathrm{C}$-NMR of CBI-1 ..... 146
Figure A 64: DEPT135 of CBI-1 ..... 147
Figure A 65: HSQC of CBI-1 ..... 148
Figure A 66: HMBC of CBI-1 ..... 149
Appendix B
Figure B 1: Crystal data and structure for CBDA-7 ..... 151
Figure B 2: Crystal data and structure for CBDE-6 ..... 152
Figure B 3: Crystal data and structure for CBDE-7 ..... 153
Figure B 4: Crystal data and structure for CBDH-1 ..... 154
Figure B 5: Crystal data and structure for CBDO-1 ..... 155
Figure B 6: Crystal data and structure for protoCBDAc-1 ..... 156
Figure B 7: Crystal data and structure for protoCBDE-6 ..... 157
Figure B 8: Crystal data and structure for protoCBDH-1 ..... 158
Figure B 9: Crystal data and structure for CBeAn-1 ..... 159
Figure B 10: Crystal data and structure for CPDAn-1 ..... 160
Appendix C
Figure C 1: Full high resolution mass spectrum for CBDE-6 ..... 162
Figure C 2: Predicted [ $\mathrm{M}+\mathrm{Na}$ ] peaks for CBDE-6 (top) and measured (bottom) ..... 163
Figure C 3: Full high resolution mass spectrum for PCBBI-1 ..... 164
Figure C 4: Predicted [M+Na] peaks for a-b-a oligomer of PCBBI-1 (top) and measured (bottom)165

Figure C 5: Predicted [ $\mathrm{M}+\mathrm{Na}$ ] peaks for monopropyl-substituted a-b-a oligomer of PCBBI-1 (top)
$\qquad$ and measured (bottom) 166

Figure C 6: Predicted [ $\mathrm{M}+\mathrm{Na}$ ] peaks for dipropyl-substituted a-b-a oligomer of PCBBI-1 (top) and measured (bottom) 167

Figure C 7: Predicted [ $\mathrm{M}+\mathrm{Na}$ ] peaks for cyclic dimer of PCBBI-1 (top) and measured (bottom) 168
Figure C 8: Predicted $[\mathrm{M}+\mathrm{Na}]$ peaks for $a-b-a-b-a$ oligomer of PCBBI-1 (top) and measured (bottom)

169
Figure C 9: Predicted [ $\mathrm{M}+\mathrm{Na}$ ] peaks for monopropyl-substituted a-b-a-b-a oligomer of PCBBI-1 (top) and measured (bottom)

170

Figure C 10: Predicted [ $\mathrm{M}+\mathrm{Na}$ ] peaks for dipropyl-substituted $\mathrm{a}-\mathrm{b}-\mathrm{a}-\mathrm{b}-\mathrm{a}$ oligomer of PCBBI-1 (top) and measured (bottom) ....................................................................................... 171

Figure C 11: Predicted [ $\mathrm{M}+\mathrm{Na}$ ] peaks for $a-b-a-b-a-b-a$ oligomer of PCBBI-1 (top) and measured (bottom) 172

Figure C 12: Predicted [ $\mathrm{M}+\mathrm{Na}$ ] peaks for monopropyl-substituted a-b-a-b-a-b-a oligomer of PCBBI1 (top) and measured (bottom) 173

Figure C 13: Predicted [ $\mathrm{M}+\mathrm{Na}$ ] peaks for monopropyl-substituted $a-b-a-b-a-b-a$ oligomer of PCBBI1 (top) and measured (bottom) 174

## Appendix D

Figure D 1: IR spectra for CBBI-1 ................................................................................................. 176
Figure D 2: IR spectra for CBBI-2 ................................................................................................ 177
Figure D 3: IR spectra for CBDO-2 ............................................................................................... 178
Figure D 4: IR spectra for CBDE-6............................................................................................... 179
Figure D 5: IR spectra for CBDE-7 ..... 180
Figure D 6: IR spectra for CBDV-1 ..... 181
Figure D 7: IR spectra for protoCBDAc-1 ..... 182
Figure D 8: IR spectra for protoCBDE-6 ..... 183
Figure D 9: IR spectra for protoCBDE-7 ..... 184
Figure D 10: IR spectra for protoCBDH-1 ..... 185
Figure D 11: IR spectra for protoCBDO-2 ..... 186
Figure D 12: IR spectra for protoCBDV-1 ..... 187
Figure D 13: IR spectra for (N-phenyl)-cis-1,2-cyclobutancarboximide ..... 188
Appendix E
Figure E 1: Data for Figure 3 ..... 190
Figure E 2: Data for Figure 4 when $\mathrm{E}_{\text {win }}=2.5 \mathrm{kcal} / \mathrm{mol}$ ..... 191
Figure E 3: Data for Figure 4 when $\mathrm{E}_{\text {win }}=6.0 \mathrm{kcal} / \mathrm{mol}$ ..... 194

## Acknowledgments

A couple pages of typed words is a woefully inadequate way to express the gratitude I have for all those who played a part in my development as a scientist, but it is my duty to try so that they may feel even a glimmer of that thanks.

I would like to thank Dr. Qianli Rick Chu who believed in me, even at the times which I could not believe in myself. His enthusiasm and excitement as an educator, researcher, and scientist will serve me as a model for how to truly love and enjoy the work I do in the laboratory. His encouragement for me to try new things to which I'd never been exposed was invaluable in developing my confidence as a researcher. My success would have been impossible without his guidance and support.

I would like to collectively thank my current committee members Dr. Guodong Du, Dr. Jenya Kozliak, Dr. Ayush Asthana, and Dr. Beth Klemetsrud for their support and guidance as I approached the end of my degree. I would also like to thank them individually; Dr. Du, for always knowing how to navigate the graduate school paperwork and for training me on the NMR; Dr. Kozliak, for bringing his experience as a researcher and helping me focus my efforts; Dr. Asthana, for discussing with me and helping me understand the conventions of quantum chemists; and Dr. Klemetsrud, for keeping me focused on the impact of my research.

I would also like to thank my past committee members Dr. Irina Smoliakova, Dr. Jerome Delhommelle, and Dr. Min Wu for their willingness to serve as a guiding voice. Specifically, to Dr. Smoliakova, I would like to extend my appreciation for her guidance while I served as a Teaching

Assistant for her courses. I will consider myself lucky to glean even a portion of the tenacity and earnestness with which she confronts teaching, research, and life.

I'm eternally grateful to the University of North Dakota Chemistry Department and its chair, Dr. Alena Kubatova, for allowing me the opportunity to pursue my graduate studies and providing a space wonderfully suited to do so. I would also like to recognize and thank Kim Myrum who is incredibly capable and willing to handle any problem I bring to her, even if it is not her job, which given the array of questions I've brought to her, I'm sure has been the case.

I would like to thank current and former members of Dr. Chu's research group for their examples, assistance, or being a great partner for discussion. These include former members Drs. Rahul Shahni, Dominic Nkemnong, Houssein Amjour; current graduate members Solmaz Asadi, Mostafa Manjahi, Sierra Ward, and Diane Tangmi; and current undergraduate members Erica Nguon, Tyler Yanez, and Ian Lin. Additionally, I have many thanks for other graduate students and friends who left the department before me, Muneer Shaik, Wen Sun, Audrey Lavallie, Sarah Reagan, Jess Emond, Soléne Bechelli, Ali Sepehri, and many more.

I want to express my thanks to Dr. Angel Ugrinov of NDSU for his help with X-ray crystallography and mass spectrometry, both in collecting and interpreting data and helping me refine my techniques.

I also want to give a special thanks to my mentors in the Computational Research Center at UND, Aaron Bergstrom and Dave Apostal, for their guidance and compassion during my assistantship and for helping me build my skills in coding and computation.

I want to thank those closest to me in life. First, my parents John and Rose, for always believing in me and for teaching me everything you need to know to be a human, I only wish I paid more attention. To my brother, James, for his enthusiasm and interest in my studies at every stage, I miss you every day. And to my girlfriend and partner, Liz, whose sacrifice in moving with me 900 miles from our home and supporting me throughout the best and worst moments is a gesture of love and kindness which I struggle to capture in words. I love you all so much.

Finally, I want to say that this is not an exhaustive list of those who have helped me along the way, there are simply too many kind hands to list. Please know that if you, even for a moment, think you belong here, you do.

In memory of my brother James who taught me
that the mechanics of universe
need not be mysterious

## Abstract

The quantification of a molecule's conformational rigidity was achieved via development of a new measure called the Rigidity Factor, $\mathrm{Rg}_{\mathrm{f}}$. This value is a unit interval wherein molecules with corresponding $\mathrm{Rg}_{f}$ values closer to 1 are rigid and values closer to 0 are more flexible. The value is determined as a ratio between the molecule's Van der Waals volume, $\mathrm{V}_{\mathrm{w}}$, and it's Van der Waals potential volume, $\mathrm{V}_{\text {wpot }}$. The $\mathrm{V}_{\mathrm{W}_{\text {pot }}}$ was defined as the minimum total volume occupied by a rotamer ensemble of the molecule which has been aligned according to the RMSD for all heavy atoms to achieve a minimum volume. The rotamer ensembles were constructed using CREST (a tool in the xtb suite of programs) or Gromacs. The volumes were calculated using a custom Python script written for this project which uses a Monte Carlo volume approximation method. The script was written to take advantage of parallel computing architecture when present.

The $\operatorname{Rg}_{f}$ was calculated for several series of similarly structured molecules. These series include straight-chain alkanes, cycloalkanes, diols, diacids, and polymer repeat groups. The values for each series fit the expected trend of longer backbones having a greater flexibility and thus lower Rg. It was observed that rotamer ensembles which represented a molecule with the capability of intramolecular hydrogen bonding, these rotamers dominate the ensemble. This gives a higher $\mathrm{Rg}_{\mathrm{f}}$ than expected and is more similar to a cyclic isomer of similar length. In one case, the repeat unit for polybutylene succinate, PBS, the H-bond donors were replaced with methyl groups. This destroyed intramolecular H -bond potential and the $\mathrm{Rg}_{f}$ of the molecule more closely resembled the expected value.

Conformational entropy, $\mathrm{S}_{\text {conf, }}$ for each compound was calculated using CREST. These values were plotted against $\mathrm{Rg}_{\mathrm{f}}$ for each compound and found to have a general correlation, i.e. structures
with lower $\mathrm{Rg}_{f}$ have higher $\mathrm{S}_{\text {conf. }}$ Several compounds were identified which had a higher-thanexpected $\mathrm{S}_{\text {conf }}$ despite having a very high $\mathrm{Rg}_{\mathrm{f} .}$ It was theorized that degenerate rotamers born from the rotation of methyl groups provide this entropy. Since these structures are spatially and volumetrically equivalent, this rotation is not reflected in $\mathrm{Rg}_{\mathrm{f}}$ calculations.

A series of new cyclobutane-containing, difunctional monomers (CBDx) was developed for the intention of being used in polymeric materials. Two polymers were synthesized using two different CBDxs and were shown to be colorless and very lightweight. The monomers were built on a maleic anhydride skeletal core and each contain a central cyclobutane moiety created in the key [2+2]photocycloaddition step between two maleic anhydride or imide olefins. This key step was achieved using low power, fluorescent UV-A light sources. By using these sources, the syntheses were much more efficient and safer than traditional photochemical reactions which often necessitate the use of specialized glassware to mitigate the dangers of the broad-spectrum UV bulbs employed.

A poly(cyclobutanebutanebisimide), or PCBBI-1, was synthesized using a cyclobutane-containing diester (CBDE-6) and 1,7-heptandiol. The polymer was confirmed via NMR and HRMS of the soluble oligomeric components. The bulk material had a foamy texture with a very low density. The polymer was colorless.

A second polymer, PCBBI-2, was synthesized using a cyclobutane-containing diol (CBDO-2) and adipic acid. The extremely poor solubility of the material precluded NMR or HRMS analysis. Polymerization was assumed based on physical characteristics of bulk material which was extremely similar to PCBBI-1.

A classic [2+2] photocycloaddition reaction between maleic anhydride and dissolved ethylene gas was improved on the measures of safety, efficiency, and reduced complexity. This was achieved by using a UV source which targeted the absorption of the maleic anhydride starting material. In doing so, the use of high-power UV photoreaction bulbs can be avoided. This eliminates the need for specialized cooling glassware thus reducing apparatus complexity. An isolated yield of 70\% was achieved via vacuum distillation after 5 days reaction time.

A similar reaction using acetylene gas was performed but did not provide the same high efficiency. However, the reaction was a success as a crystal structure of the desired product was collected for the first time. Additionally, a new polymorph of a side product of the reaction, biscyclopropanedicarboxylic anhydride, CPDAn-1, was collected.

In total, 21 compounds are presented here. Aside from maleimide and its photo dimer, all of these compounds are either not present or virtually ignored in literature for various reasons as discussed. Eleven of these compounds are novel and initial characterizations are presented herein. Further characterizations are provided for the remainder. Characterization includes 10 initial crystal structures reported for both novel and extant species.

## Chapter 1: Quantification of Rigidity for Small Organic Molecules

Introduction

Rigidity and flexibility are terms most applicable in the field of structural engineering, however they receive wide use among chemists when discussing molecular structure. ${ }^{1-4}$ The rigidity of a molecule can have a variety of impacts on its properties and researchers continue to study its effect in areas such as drug ${ }^{5,6}$ or polymer ${ }^{7-9}$ development. Despite the frequency with which these terms are encountered, they elude a universally accepted quantitative chemical definition. It can be trivial to define molecules as flexible or rigid when contrasted with one another, but a system that is able to broadly quantify a molecule's rigidity, absent this type of explicit comparative analysis, has not adequately been developed.

In recent decades, methods have been published which seek to measure the rigidity or flexibility of a molecule. ${ }^{10-12}$ Generally, these systems limit their focus to the capability of measuring the authors' molecules of interest. More often, the output of the method is qualitative rather than quantitative, i.e. a molecule or portion thereof is rigid or nonrigid. This binary scale experiences similar limitations as comparative analysis.

Irrespective of these limitations, much of the work has focused on biological macromolecules such as proteins. ${ }^{12}$ By and large, the favored method of defining the rigidity of proteins is through the qualitative identification of rigid regions. This is acceptable when the structure may be partitioned into secondary or tertiary structures, as proteins ubiquitously are, or when only portions thereof are of interest, such as active sites. However, this approach is applicable neither
to the repetitive nature of typical synthetic polymers, where the structure is expected to behave similarly along its entire length, nor to smaller organic molecules, where the structure lacks higher degrees of order and must be considered as a whole.

Here, we outline a method that describes a molecule's rigidity according to the newly defined property called rigidity factor, $\mathrm{Rg}_{\mathrm{f} .}$ This value is defined as the ratio of the Van Der Waals volume ${ }^{13}$, $V_{w}$, to the minimum possible total volume occupied by the molecule when all rotamers below a set energy threshold are overlapped onto one another. This ensemble volume is likewise newly defined and called the Van der Waals potential volume, $\mathrm{V}_{\mathrm{W}_{\text {pot }}}$. A similar approximation of total volume, the hydrodynamic radius, is presently used in a variety of applications such as DOSY, however since this value is a spherical approximation of total volume, its application to small molecules is limited.

The simple relationship is shown in Equation 1. The volumes are calculated using a Monte Carlo (MC) volume approximation program written for this purpose. Accordingly, this method describes a molecule which may be colloquially considered rigid (e.g., Benzene) to have an $\mathrm{Rg}_{f}$ near or equal to 1 . This is because the space occupied by the rotamer ensemble is very near or the same as that of its Van Der Waals volume. Likewise, a molecule which has a flexible structure will be able to potentially occupy a much larger volume, thus reducing the $\mathrm{Rg}_{\mathrm{f}}$.

$$
R g_{f}=\frac{V_{W}}{V_{W p o t}}
$$

## Equation 1

The first of two data sets presented here is for a series of saturated, single-chain hydrocarbons and saturated, monocyclic hydrocarbons. The second data set is the calculation of $\mathrm{Rg}_{\mathrm{f}}$ for monomers used in polymers, primarily polyesters. The methods are general enough to be adapted to molecules or coordination complexes of any type, but these specific sets were chosen for their generality and real-world application, respectively.

## Methods

Methods for constructing rotamer ensembles vary. Because $\mathrm{V}_{\text {wpot }}$ is intrinsically tied to the rotamer ensemble, specifying the method used in the construction of rotamer ensembles is crucial to the repeatability of the $\mathrm{V}_{\text {Wpot }}$ measurements and should be described when reporting $\mathrm{Rg}_{\mathrm{f}}$ values. As such, much of the methodology discussed herein will focus on the methods used for rotamer ensemble construction and the determination of the Van der Waals potential volume,
$\mathrm{V}_{\text {wpot }}$.

## Construction of Rotamer Ensemble

Although the concept of conformer ensembles is quite common in literature, the similar concept of rotamer ensembles is much less so. The conformer ensemble and rotamer ensemble are similar concepts in that they are both ensembles of rotational isomers for a compound. The difference between the two is that members of a conformer ensemble are determined purely on an energetic basis whereas members of a rotamer ensemble are determined based on spatial occupancy difference regardless of energetic degeneracy. Ideally, in either case, each member of the ensemble represents an achievable local energetic minimum for the structure. In the work presented here, a rotamer ensemble is defined as the ensemble which contains all energetic
minimum rotamers beneath a specific window above the global minimum ( $\mathrm{E}_{\text {win }}$ ) and which have an energy difference greater than a threshold ( $E_{\text {thr }}$ ). This definition closely mirrors the accepted definition of a conformer ensemble but is explicitly provided to eliminate ambiguity.

To further illustrate the differences between a conformer and a rotamer ensemble, n -butane may be considered as a model structure. The rotamer ensemble for butane contains three structures, staggered butane (the global minimum) and two enantiomeric gauche conformations achieved by rotation of the dihedral $60^{\circ}$ or $120^{\circ}$. In the generation of a conformer ensemble, one of the gauche conformations will be energetically degenerate and discarded. This is often ideal for applications regarding thermodynamic properties, but in the case of $\mathrm{V}_{\mathrm{W}_{\text {pot }}}$, this will not accurately reflect the motion of the molecule as it rotates about the dihedrals. Therefore, the rotamer ensemble must be used.

Rotamer ensembles for a large series of molecules with differing properties were constructed using Conformer-Rotamer Ensemble Sampling Tool (CREST) ${ }^{14}$ which is part of a larger package of semi-empirical methods, eXtended Tight-Binding (xtb). ${ }^{15}$ The first dataset included 115 structures at $2.5 \mathrm{kcal} / \mathrm{mol}$ above the global minimum with a differentiation threshold of $0.1 \mathrm{kcal} / \mathrm{mol}$. The second dataset included 110 structures at $6.0 \mathrm{kcal} / \mathrm{mol}$ above the global minimum with a differentiation threshold of $0.1 \mathrm{kcal} / \mathrm{mol}$. All other properties were left at default values.

Because $\mathrm{Rg}_{\mathrm{f}}$ is sensitive to the size and alignment of the rotamer ensemble, the methods used should always be reported. An important consideration when aligning the rotamer ensemble is whether to include hydrogens in the calculation of the RMSD. In the presented work, hydrogens were not considered so as to exclude ensemble "jittering" due to hydrogen rotation (Figure 1).

Additionally, this keeps consistency with conventional uses of RMSD such as its broad use in biochemistry when comparing proteins. However, it is recognized that their inclusion in alignment can be readily accommodated when such hydrogen rotations are of interest.


Figure 1: Rotamer ensemble for hydroquinone aligned to minimize RMSD for all atoms (left) and excluding hydrogens (right).

## Calculation of Volume

The geometric summation of overlapping spheres method for the calculation of $\mathrm{V}_{\mathrm{w}}$ as described by Bondi ${ }^{13}$ is encompassing and well-suited for singular structures. Though methods have been published which allow the simplified approximation of the method for larger molecules, ${ }^{16}$ modern computing hardware allows for direct application of Bondi's method with remarkable efficiency on even very large scales. Given the widely accepted accuracy of values determined this way, this method was chosen as the basis by which subsequent methods were compared.

Despite the robustness of Bondi's method, it becomes inordinately complicated when applied to ensembles of overlapped rotamers such as those constructed in the determination of $\mathrm{V}_{\mathrm{w}_{\text {pot }}}$. For
this reason, a 3D Monte Carlo volume approximation method was used instead as this method is well suited for the determination of volume of irregular shapes.

The software and scripts for this process were written specifically for this project in Python. The steps the script takes to calculate the volume of the ensemble follow standard Monte Carlo volume approximation methods. For completeness, the steps are presented here as follows:

1. Receive input from user detailing input file (multi-frame .xyz), output file name (.txt), and number of points ( $n$ ) to be used.
2. Load each rotamer from input file into memory as sets of atoms. Atoms are described using 3D cartesian coordinates in Å and atom element, which automatically defines Bondi radius also in $\AA$.
3. Determine bounding box dimensions. Default is $2 \AA$ beyond the furthest atom center in each of the six cartesian directions. This bounding box is always a cuboid.
4. A point within that box is generated then checked to see if it intersects with any atom as determined by the atom's Bondi radius. This step is terminated at first instance of intersection $\left(n_{i}\right)$ to save computation time. Repeat for $n$ points.
5. The ratio of $n_{i}$ to $n$ is determined.
6. This ratio is multiplied by the calculated volume of the bounding box to give the approximate volume of the ensemble (Equation 2).
7. A file is created which contains the output in $\AA^{3}$ as well as several computational and file creation details.

$$
V=V_{b o x}\left(\frac{n_{i}}{n}\right)
$$

## Equation 2

Given the random nature of Monte Carlo methods, it is possible that the test points may be generated unequally thus giving the artificial appearance of a higher or lower volume. To be assured that the $V_{w_{\text {pot }}}$ calculated was repeatable and not subject to such random variation, each volume calculation was conducted in triplicate. For the comparison of $\mathrm{Rg}_{f}$ with $\mathrm{S}_{\text {conff }} \mathrm{n}=500,000$ and the rotamer ensemble used for $\mathrm{V}_{\mathrm{W}_{\text {pot }}}$ was the one generated in the first trial of $\mathrm{S}_{\text {conf }}$. For all other calculations, $n=100,000$, unless otherwise noted.

## Results and Discussion

## Verification of method with hydrocarbons

In order to verify the accuracy of the volume calculation, several of the results for $\mathrm{V}_{\mathrm{w}}$ produced by the Monte Carlo (MC) volume approximation script were compared to published values which used the standard summation of spheres methods ${ }^{16}$ and it was found to agree within statistical limits (Figure 2). Both MC and a summation of spheres (geometric) methods were conducted and are presented in the figure. As expected, the geometric method was identical to literature values whereas the MC method trended slightly lower as molecular weight increased, but it was still within an acceptable range. The $M C$ method was used in calculation of both $V_{w}$ and $V_{w_{\text {pot }}}$ to avoid any systemic error between volume calculations. Therefore, it may be confidently said that for the purpose of calculating molecular volumes, the Monte Carlo volume approximation is adequate.


Figure 2: Comparison of Van der Waals volume calculations using Monte Carlo volume approximation in this work to published values using geometric sum of spheres calculations. ${ }^{16}$ Series consists of straight chain hydrocarbons with backbone \#C of 4-22.

After confidence in the method was established, calculation of $\operatorname{Rg}_{f}$ values for series of structurally similar molecules was carried out. Figure $\mathbf{3}$ presents data for a series of straight chain alkanes and a series of monocyclic alkanes, each with the same number of carbon atoms in the backbone. The trends observed conform to the expected behavior in that a molecule with more conformational constraints, i.e. a cycloalkane, will have an $\mathrm{Rg}_{\mathrm{f}}$ value closer to 1 and a molecule with more unrestrained rotation, such as a straight chain alkane, will have an $\mathrm{Rg}_{\mathrm{f}}$ value approaching 0 . Also as expected, within each series, $\mathrm{Rg}_{f}$ decreases as chain length increases. $\mathrm{Rg}_{f}$ of both series exhibits a linear relationship with the natural log of the number of carbons in the chain or cycle.


Figure 3: The Rgf for two series of alkanes, straight chain and cyclic, with two different $E_{\text {win }}$ compared, to the natural log of the number of carbons in the chain.

Because of this predictability, it was shown that it may be possible to predict the rigidity of a molecule when the $\mathrm{Rg}_{f}$ for others in a series or of similar structure have been calculated. However, addition or removal of atoms may have a large impact on the associated volumes. For instance, the $\mathrm{Rg}_{\mathrm{f}}$ for butane found in the appendix is 0.744 while a structurally similar compound such as 1,2-ethanediol found in Table $\mathbf{2}$ is 0.591 . It reasonable to postulate that the lower $\operatorname{Rg}_{f}$ of 1,2 ethanediol is the rotation of the hydroxyl groups, which may account for significant volume in the rotamer ensemble. The manner in which terminal groups, namely methyl groups, contribute is discussed in the next section.

## Correlation of $\mathrm{Rg}_{f}$ to Conformational Entropy

To ground $\mathrm{Rg}_{\mathrm{f}}$ in first principles chemistry, effort was made to determine correlations with fundamental properties of molecules. Given that $\mathrm{Rg}_{f}$ is a measure of conformational disorder, the obvious choice was to investigate its relationship with conformational entropy, $\mathrm{S}_{\text {conf }}$.

The determination of conformational entropy is still an active area of research. ${ }^{17}$ Typical energy calculations used in vibrational frequency simulations (in programs such as Gaussian09, GAMESS, etc) conform to the Born-Oppenheimer approximation in that the entropy of a molecular system may be separated into three distinct terms each representing a discrete contribution to the absolute entropy of the molecule (Equation 3).

## Equation 3

$$
S=S_{\text {vib }}+S_{\text {trans }}+S_{\text {rot }}
$$

These three contributions are the vibrational, translational, and rotational entropies. Explicitly, there is a final term for the contribution from electronic motion, Selec , though in most cases it is equivalent to zero due to an additional approximation that the first and higher excited states are inaccessible.

Svib can then be further split into terms representing the harmonic oscillator, its anharmonic correction, and conformational entropy, $\mathrm{S}_{\text {conf. }}$ It is by this method that CREST extrapolates conformational entropy its "entropy mode"18 and is an application of an earlier method ${ }^{19}$

## (Equation 4).

$$
S_{\text {vib }}=S_{H O}+S_{\text {anharm }}+S_{\text {conf }}
$$

Specifics for the methods may be found in the associated references. Simply put, $\mathrm{S}_{\text {conf }}$ is the contribution to total entropy due to a molecules capability to assume different conformational isomers. This "entropy mode" was the method used to determine conformational entropy for all studied compounds.

In Figure 4, the $\mathrm{S}_{\text {conf }}$ is plotted as a function of $\mathrm{Rg}_{f}$ and shows the general correlation between the two values for both $\mathrm{E}_{\text {win }}$. The data points in the figure represent the varied collection of molecules investigated thus far in this work including straight-chain alkanes, cycloalkanes, aliphatic diols, aliphatic diacids, aromatic diols, aromatic diacids, representations of polymer repeat groups, and some special cases such as water. The data used may be found in the appendix.


Figure 4: Conformational entropy, $S_{\text {conf, }}$, as a function of $R g_{f}$ for 110-115 structures. Complete data can be found in the appendix.

A compound with $\mathrm{S}_{\mathrm{conf}}=0.0 \mathrm{cal} / \mathrm{molK}$ may initially indicate a completely rigid structure. This was often the case with structures such as cyclopropane, water, CBDAn-1, dimethylmaleic anhydride,
which each also had an Rgf $\approx 1$. However, by definition, $\mathrm{S}_{\text {conf }}$ is the entropy of the conformer ensemble, which is constructed based on energetic criteria, and not the rotamer ensemble, which is constructed based on spatial criteria. It was possible for a compound to produce a conformer ensemble with a single structure but a rotamer ensemble with more than one, e.g. cyclohexane, or for the energy differences to be so small that they are excluded from the rotamer ensemble, e.g. p-phthalic acid. For the latter, it was simply a matter of rotamer ensemble construction parameters, in this case, setting $\mathrm{E}_{\mathrm{thr}}=0.1 \mathrm{kcal} / \mathrm{mol}$ caused rotamers formed by the rotation of the carboxylic acids to be discarded. This may be "corrected" if desired. However, in the former, when a conformer ensemble was constructed for cyclohexane with $\mathrm{E}_{\text {win }}=2.5 \mathrm{kcal} / \mathrm{mol}$, a single structure was produced, cyclohexane chair conformation. Any conformer ensemble which contains a single structure will have a $\mathrm{S}_{\mathrm{conf}}=0$. The analogous rotamer ensemble contained two structures, the chair and its ring flip enantiomer, thus giving cyclohexane a $\operatorname{Rg}_{f}=0.860$. This disparity of Sconf $\approx$ 0 with a Rgf < 1 was also observed in other highly symmetric molecules such as cyclopentane, cycloheptane, and tetramethylbutane. Since these molecules are not considered rigid by any definition, it may be concluded that $\mathrm{S}_{\text {conf }}$ of these structures is a poor indicator of rigidity.

Some notable outliers are values with $\operatorname{Rg}_{f}>1$. By definitions presented here, this is impossible and so may initially be a cause for concern. However, this anomaly is due to the random nature of the Monte Carlo volume approximation. When a rotamer ensemble has a volume very near or exactly the same as its reference structure, any small deviations from the mean can have an outsized impact on the $\mathrm{Rg}_{\mathrm{f}}$. The largest error observed due to this is found in cyclopropane ( $\mathrm{Rg}_{f}$ : 1.024 Sconf: $0.0 \mathrm{cal} / \mathrm{molK})$. The Monte Carlo volume approximation values and associated error are presented in Table 1.

|  | MC appx 1 | MC appx 2 | MC appx 3 | mean | sd |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Vw | 54.745 | 53.418 | 54.163 | 54.108 | 0.665 |
| Vwpot | 52.922 | 53.198 | 52.468 | 52.863 | 0.369 |
|  |  |  | Rgf | 1.024 | 0.014 |

Table 1: Volume approximation measurements and error analysis for cyclopropane.

The relationship between the number of rotors in a molecule and its $\mathrm{S}_{\text {conf }}$ has been investigated in literature ${ }^{17}$ and is very similar to the conformation ensemble size estimates presented above. In the reference, Chan et al. consider rotatable bonds rather than chain length. For example, in the case of butane, there are 3 rotatable bonds, including rotations about terminal carbon axes. Rotation about these bonds gives rise to 27 rotamers when all atoms are in staggered conformations. By this relationship, the number of rotamers grows exponentially according to $3^{n}$ where n is the number of rotatable bonds. However, as discussed here and in the reference, as the number of rotatable bonds grows, steric effects quickly hinder the assumption of many expected conformations.

## Applications

The method was used to calculate the $\mathrm{Rg}_{\mathrm{f}}$ for a collection of common difunctional monomers primarily used in the synthesis of polyesters. The compounds examined were diols and diacids and their associated $\mathrm{Rg}_{\mathrm{f}}$ are found in Table $\mathbf{2}$ and Table 3, respectively. When the structures were arranged in order of $\mathrm{Rg}_{\mathrm{f}}$, it became clear that $\mathrm{Rg}_{\mathrm{f}}$ generally correlated with colloquial descriptors of rigidity, i.e. structures that would be described as rigid have a higher $\operatorname{Rg}_{f}$ and structures that would be called flexible have a lower $\mathrm{Rg}_{\mathrm{f}}$.

An exception to these trends was found in Table $\mathbf{3}$ where sebacic acid had $\mathrm{Rg}_{f}$ values far greater than would be expected, especially when compared to shorter diacids. When these ensembles were inspected in a 3D molecular visualization program, it became clear that the energy of the global minimum was greatly reduced due to extensive hydrogen bonding between the carboxylic acid groups. This caused the structures to behave more like cyclic structures than linear. Figure 5 contains the highest and lowest energy rotamers for each ensemble to illustrate that even at energies close to $6.0 \mathrm{kcal} / \mathrm{mol}$ above the global minimum, sebacic acid still exhibited intramolecular hydrogen bonding. This intramolecular hydrogen bonding thus induced a degree of rigidity to the structure and gave a larger than expected $\mathrm{Rg}_{\mathrm{f}}$.

| Name | $\begin{aligned} & \operatorname{Rg}_{\mathrm{f}} \\ & \text { Ens. } \mathrm{E}_{\text {win }}=2.5 \\ & \mathrm{kcal} / \mathrm{mol} \end{aligned}$ | $\begin{aligned} & \operatorname{Rg}_{f} \\ & \text { Ens. Ewin }=6.0 \\ & \mathrm{kcal} / \mathrm{mol} \end{aligned}$ | Structure |
| :---: | :---: | :---: | :---: |
| hydroquinone | 0.953 | 0.917 | $\mathrm{HO}-\mathrm{OH}$ |
| 2,2,4,4-Tetramethyl-1,3cyclobutanediol* | 0.884 | 0.850 |  |
| 1,4-cyclohexanediol* | 0.740 | 0.648 |  |
| bisphenol A | 0.624 | 0.652 |  |
| 1,2-ethanediol | 0.612 | 0.617 | $\mathrm{HO} \mathrm{OH}^{\mathrm{O}}$ |
| para-xylylene glycol | 0.603 | 0.611 |  |
| 1,3-propanediol | 0.602 | 0.544 | $\mathrm{HO} \bigcirc \mathrm{OH}$ |
| 1,4-cyclohexanedimethanol* | 0.616 | 0.524 | $\mathrm{HOH}_{3} \mathrm{C}-\square-\mathrm{CH}_{3} \mathrm{OH}$ |


| 1,4-butanediol | 0.549 | 0.491 |  |
| :--- | :--- | :--- | :--- |
| 1,6-hexanediol | 0.416 | 0.391 | $\mathrm{HO}^{( }$ |

Table 2: Rgf values for several diol species commonly found in polyesters.

| Name | $\mathrm{Rg}_{\mathrm{f}}$ <br> Ens. Ewin $=2.5$ <br> $\mathrm{kcal} / \mathrm{mol}$ | $\begin{aligned} & \hline \mathrm{Rg}_{\mathrm{f}} \\ & \mathrm{Ens.}^{\mathrm{E} \text { Ewin }}=6.0 \\ & \mathrm{kcal} / \mathrm{mol} \end{aligned}$ | Structure |
| :---: | :---: | :---: | :---: |
| 2,6- <br> naphthalenedicarboxylic acid | 0.963 | 0.954 |  |
| m-phthalic acid | 0.955 | 0.961 |  |
| p-phthalic acid | 0.953 | 0.955 | $\mathrm{HOOC}-\mathrm{COOH}$ |
| o-phthalic acid | 0.694 | 0.690 | $\begin{aligned} & \mathrm{HOOC} \\ & \mathrm{HOOC} \end{aligned}$ |
| oxalic acid | 0.652 | 0.599 |  |
| 1,4- <br> cyclohexanedicarboxylic acid* | 0.596 | 0.492 |  |
| succinic acid | 0.464 | 0.457 | $\mathrm{HOOC} \mathrm{COOH}^{\text {c }}$ |
| p-phenylenediacetic acid | 0.554 | 0.472 | $\mathrm{HOOCH}_{3} \mathrm{C}-\mathrm{CH}_{3} \mathrm{COOH}$ |
| sebacic acid | 0.574 | 0.444 | $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COOH}$ |
| adipic acid | 0.393 | 0.389 | $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$ |
| suberic acid | 0.592 | 0.341 | $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COOH}$ |

Table 3: Rgf values for several diacid species commonly found in polyesters.


Figure 5: Global minimum rotamers for adipic acid (a) and sebacic acid (b) compared with the the highest energy rotamer in the respective ensembles when $E_{\text {win }}=6.0 \mathrm{kcal} / \mathrm{mol}$.

Besides this, the main contributions to larger $\mathrm{Rg}_{f}$ values appear to be a greater aromatic character and smaller molecular weight. Both these observations are in line with what is expected. First, it's widely accepted that aromatic rings impart a large degree of rigidity to a structure, so this observed trend is not surprising. Second, a smaller molecule is predicted to have a higher rigidity due to the consequence of an inherently smaller rotamer ensemble. It's tempting here to liken molecular rigidity to macroscale structural rigidity, but since the definition of $\mathrm{Rg}_{f}$ is independent of external forces and relies only on the number and variability of a structure's rotamers, such a comparison would be disingenuous. Although it should be noted that comparison to macroscale properties such as this is a convenient method for the rationalization of molecular rigidity.

Furthermore, $\mathrm{Rg}_{f}$ values were determined for a varied series of repeat units of common, simple polymers which are composed of two monomers (Table 4). Again, they largely follow the same trends as monomers wherein aromatic character and longest chain length are the most important factors for their placement on the scale. As in the diacid values, a major exception is observed with the polybutylene succinate (PBS) repeat unit which has an $\mathrm{Rg}_{\mathrm{f}}$ of 0.674 and 0.412 with $\mathrm{E}_{\text {win }}$ $=2.5$ and $6.0 \mathrm{kcal} / \mathrm{mol}$, repsectively. In the case of the lower $\mathrm{E}_{\text {win }}$, it is even the most rigid structure in the series. As it contains no aromatic structure, it was expected to have a much lower $\mathrm{Rg}_{\mathrm{f}}$. The reason for this is the same as with sebacic acid in that intramolecular hydrogen bonding imparts a dominating cyclic structure to the ensemble. To verify this, the hydrogen bond donating sites on the carboxylic acid and hydroxyl group were both replaced with a methyl group and the $\mathrm{Rg}_{\mathrm{f}}$ of the new structure was measured. The $\mathrm{Rg}_{f}$ with $\mathrm{E}_{\text {win }}=2.5 \mathrm{kcal} / \mathrm{mol}$ of the new structure was found to be a more expected 0.285 and was the lowest of the range. The $\mathrm{V}_{\mathrm{W}_{\text {pot }}}$ for methylated PBS with $\mathrm{E}_{\text {win }}=6.0 \mathrm{kcal} / \mathrm{mol}$ could not be measured because the rotamer ensemble constructed was fair too large to analyze in a reasonable timeframe with current methods and hardware.

| Name | $\mathrm{Rg}_{\mathrm{f}}$ <br> $\mathrm{Ens.}_{\mathrm{win}}=$ <br> $2.5 \mathrm{kcal} / \mathrm{mol}$ | $\mathrm{Rg}_{\mathrm{f}}$ <br> $\mathrm{Ens} Ewin$. <br> $6.0 \mathrm{kcal} / \mathrm{mol}$ | Structure |
| :--- | :--- | :--- | :--- |
| Polyethylene <br> naphthalate (PEN) | $\mathbf{0 . 5 4 3}$ | $\mathbf{0 . 4 9 2}$ | HOOC |
| Polyethylene <br> terephthalate (PET) | $\mathbf{0 . 4 4 7}$ | $\mathbf{0 . 4 2 0}$ | HOOC |
| Polybutylene succinate <br> (PBS) | $\mathbf{0 . 6 7 4}$ | $\mathbf{0 . 4 1 2}$ | $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}$ |
| Polytrimethylene <br> terephthalate $(P T T)$ | $\mathbf{0 . 4 3 1}$ | $\mathbf{0 . 3 6 1}$ | HOOC |


| Polycyclohexane- <br> dimethylene <br> terephthalate (PCT) | $\mathbf{0 . 3 2 3}$ | $\mathbf{0 . 3 0 2}$ | HOOC-COCO |
| :--- | :--- | :--- | :---: |
| Polybutylene <br> terephthalate (PBT) | $\mathbf{0 . 3 8 4}$ | $\mathbf{0 . 2 8 3}$ | $\mathrm{HOOC}-\mathrm{COO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}$ |
| Methylated <br> polybutylene succinate | $\mathbf{0 . 2 8 5}$ | - | $\mathrm{H}_{3} \mathrm{COOC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{3}$ |

Table 4: Rgf values for repeat units of common polyesters.

## Composite $\mathrm{Rg}_{f}$

As the length and complexity of a polymer repeat unit increases, the size of the rotamer ensemble also increases. In addition, the amount of possible comonomer pairs is functionally infinite. Given that the calculation of so many comonomer pairs could be prohibitively computationally expensive, a method was developed to quickly produce a rough, predictive $\mathrm{Rg}_{f}$ for polymer repeat units. This was achieved by simply calculating the product of the $\mathrm{Rg}_{f}$ of each monomer and that of the linker structure. This relationship is illustrated in Equation $\mathbf{2}$ where $\mathrm{Rg}_{\mathrm{f} 1}$ and $\mathrm{Rg}_{\mathrm{f} 2}$ are the $\mathrm{Rg}_{\mathrm{f}}$ for each monomer and $\mathrm{Rg}_{f \mathrm{~L}}$ is the $\mathrm{Rg}_{f}$ for the linker. This method allows for the fast and easy examination of general trends when looking at the rigidity of repeat units without having to construct rotamer ensembles and calculate the $\mathrm{Rg}_{f}$ for every possible combination of monomers.

$$
\begin{equation*}
\text { composite } R g_{f}=R g_{f 1} * R g_{f 2} * R g_{f L} \tag{Equation 2}
\end{equation*}
$$

The obtained composite $\operatorname{Rg}_{f}$ values for repeat units of several polyesters are presented in Figure 6 alongside calculated $\mathrm{Rg}_{\mathrm{f}}$ values of the entire structure. The figure shows that the piecemeal
composite $\mathrm{Rg}_{f}$ is a good approximation of the wholesale calculated $\mathrm{Rg}_{\mathrm{f}}$. A notable exception is PBS which exhibits a higher-than-expected $\mathrm{Rg}_{\mathrm{f}}$. Examination of the ensemble shows that, like in previous similar cases, this is due to extensive intramolecular hydrogen bonding. In this case, a model structure in which all hydrogens participating in hydrogen bonding were replaced with methyl groups. The $\operatorname{Rg}_{f}$ was much lower than that of the non-methylated version and was more similar to the expected value for a structure with such high aliphatic character.


Figure 6: $R g_{f}$ values for polyester repeat units showing good agreement between the calculated and composite methods.

A limitation of this method was encountered when it was used to describe very large molecules which may be more appropriately described as random coils. Since such molecules statistically exist almost entirely as a coil, the inclusion of non-coiled conformers gave a final $\mathrm{Rg}_{\mathrm{f}}$ that does not appropriately describe the molecule. In such a case, the hydrodynamic radius of a structure may be used as a similar, spherical approximation of total volume. It was also recognized that it may be possible to statistically weight structures in the calculation of $\mathrm{V}_{\mathrm{W}_{\text {pot }}}$ according to the probability of their existence.

As discussed, the method with which the rotamer ensemble was aligned has a large impact on the resulting $\mathrm{V}_{\text {wpot }}$ and consequently the $\mathrm{Rg}_{\mathrm{f} .}$ The most significant consideration was whether to consider hydrogens in the calculation of the RMSD. In the work presented here, hydrogens were not considered.

## Conclusions and Future Work

In summary, a method of quantifying the rigidity of small molecules was developed. To do so, two new properties were defined, the Van der Waals potential volume, $\mathrm{V}_{\mathrm{Wpot}}$, and rigidity factor, $\mathrm{Rg}_{f}$. $\mathrm{V}_{\text {Wpot }}$ is the minimum total volume occupied by the overlapped local minimum energy conformers of a compound. $\mathrm{Rg}_{\mathrm{f}}$ is the ratio of the Van der Waals volume, $\mathrm{V}_{\mathrm{w}}$, to the $\mathrm{V}_{\mathrm{Wpot}}$ ensuring that the rigidity of a molecule is described on a unit scale.

To carry out this work and calculate the newly defined $\mathrm{V}_{\text {Wpot, }}$ a purpose-built Python script was used. This script calculated the volume of single molecules and ensembles using Monte Carlo volume approximation methods and was written to take advantage of parallel computing
architecture when available. The accuracy of volumes calculated by the Python script was verified by comparing the outputs for single molecules to accepted values from literature.
$\mathrm{Rg}_{f}$ values for all compounds presented here were compared to the conformational entropy, $\mathrm{S}_{\text {conf, }}$ of the same compound. $S_{\text {conf }}$ was calculated using the CREGEN stand-alone module included in xtbCREST. The ensemble for the calculation was the rotamer ensemble provided as output from the initial CREST simulation and is the same ensemble used for the calculation of $\mathrm{V}_{\text {Wpot }}$. The $\mathrm{Rg}_{\mathrm{f}}$ and $\mathrm{S}_{\text {conf }}$ were generally correlated. Some notable exceptions were likely due to freely rotatable, terminal methyl groups which contribute to the $\mathrm{S}_{\text {conf }}$ but are overlapped in the $\mathrm{V}_{\text {Wpot. }}$. This general correlation may suggest that $\mathrm{Rg}_{\mathrm{f}}$ is an inherent reflection of conformational disorder in a molecule.

Using this method, it was shown that the $\mathrm{Rg}_{f}$ of small organic molecules correlates with the colloquial designation on the rigid-to-flexible scale. Several series of similarly structured molecules were analyzed, and their trends allow for predictive analysis of molecules not directly studied.

It should be stressed that $\mathrm{Rg}_{f}$ is not meant as a predictor of macroscale properties. Instead, this work seeks to give a more framed definition to the concept of rigidity, one that is lacking in current literature. In doing so, chemists, materials scientists, and all others who take molecular rigidity into consideration may have a better working language with which to describe these properties quantitatively. It is our hope that the definition of rigidity in this manner may be used as a descriptive tool when examining molecules for specific applications such as use in polymer development.

# Chapter 2: Synthesis and Characterization of Bisimide building blocks 

Introduction

A necessary component of condensation polymers (i.e. polyesters, polyamides, polyimides, etc) is the backbone consisting of difunctional monomers. The properties of the discrete monomers have a great impact on the properties of the macroscale materials. A classic example of this can be found when comparing two polyamides, Nylon 66 and Kevlar. Although the amide linkages between monomers and repeat units are identical and ostensibly allow for the same degree of hydrogen bonding between chains, the properties of the materials vary greatly. For instance, Nylon 66 is a strong, highly stretchable material which is often spun into fiber for use in textiles. Conversely, Kevlar is an extremely strong, highly resilient material which does not stretch. It's most often used in applications which require high impact resistance and low weight such as highperformance tire reinforcement and personal body armor. One major explanation for these differences in the materials is the differences in the properties of the monomers. Nylon 66 is composed of flexible, saturated carbon chains between linkages whereas Kevlar is composed of rigid, aromatic rings. In this case, it is the rigidity of the Kevlar which leads to the high strength and low flexibility of the material. Thus, the modification of these monomers is of great interest due, in large part, to giving researchers the capability of affecting properties of the material from the molecular scale.

Color is an extremely important aspect of polymer development. Colorless polymers are ideal not only because they can be used in applications where visual acuity through the material is essential, but impurities or imperfections are easier to identify. Additionally, in cases where color
is desired, they can be more easily colored during processing. Polyimides, such as Kapton ${ }^{\circledR}$ (Figure 7), are a class of high performance polymers, but often there is extensive conjugation about the imide linkage which gives the bulk material a color that ranges from bright yellow to deep brown. Thus, colorless bisimide monomers have been of interest in literature. ${ }^{21}$ These colorless bisimides monomers break the conjugation around the imide by substituting the aromatic core with aliphatic moieties.



Figure 7: Structure of a Kapton repeat unit (top) and sheets of the material which show its color ${ }^{22}$ (bottom)

Here, we addressed this desire for colorless polyimides and have presented a novel class of cyclobutane-containing bisimide (CBBI) building blocks for use in polymer synthesis. The general structure of these CBBIs (Figure 8) consisted of the nominal cyclobutane rings with symmetric imide groups. The cyclobutane moiety has been demonstrated in the past as an interesting
component of semi-rigid monomer building blocks. ${ }^{20,23}$ In the structures developed thus far, the imide groups were exclusively trans.


Figure 8: The general skeletal core of cyclobutane-containing bisimides.

The CBBI monomers presented here could be of interest to researchers and in industry for several key reasons. First, the unique, aliphatic "knot" that exists between the imide units (Figure 9) breaks the conjugation through the imide groups. Consequently, polymers synthesized thus far with CBBIs have been colorless (Figure 10). Groups $\mathrm{R}^{1}$ and $\mathrm{R}^{2}$ may help further stabilize the imide group by sterically hindering nucleophilic attack, a facet not true with aromatic bisimides. Additionally, the versatility of $R^{3}$ allows for incorporation into many kinds of step-growth polymers. In the case that $\mathrm{R}^{3}$ contains a vinyl group, the CBBI may potentially be used as a cross linker in addition polymers. Present work also shows that side chains on $\mathrm{R}^{3}$ may impact solubility and state of matter for the monomer.


Figure 9: The crystal structure of CBDA-7 where the central bisimide core is displayed using the space-fill model to emphasize its bulky skeleton.


Figure 10: Poly(cyclobutanebisimide)-1, PCBBI-1 and poly(cyclobutanebisimide)-2, PCBBI-2, synthesized as part of this work.

## Synthetic approach

Previous work within our group focused on the synthesis of dianhydrides. ${ }^{24}$ These dianhydrides were then hydrolyzed to the analogous tetracarboxylic acids. Some of the dianhydride compounds were used in the synthesis of polyimides via the classic polyamic acid imidization
route. However, the structure cyclobutanedianhydride-5 (CBDAn-5), exhibited little to no tetracarboxylic acid product, even when subjected to harsh conditions.

On the outset of this work, it was hypothesized that hydrolysis was indeed taking place, but the methyl groups on the cyclobutane ring forced the carboxylic groups close together and that the energy of the molecule would be reduced by the recondensation of the ring. This would explain why the product could not be isolated. If this were true, then CBDAn-5 would be able to form a bisimide via a standard condensation reaction. Ultimately, this was indeed proven to be correct by the synthesis of CBDH-1.

The modular nature of the symmetric bisimide core exhibits four discrete portions (Figure 11). First, the functional site, $\mathrm{R}^{3}$ (red). Second, the conjugated 5 atom network which makes up the imide (blue). Third, the aliphatic cyclobutane core (green). Fourth and final are the $R^{1}$ and $R^{2}$ groups which sit as pendants to the direction of the polymer backbone (yellow).


Figure 11: The four major portions of a CBBI.

Because of this, the synthesis of CBBIs was analyzed from a retrosynthetic standpoint (Figure 12). Direct imidization is shown on the left. The second path, through the middle, was the synthesis of an imide from the maleic anhydride derivative. The third path, on the right, begins with a
maleimide derivative onto which the desired $\mathrm{R}^{3}$ group is installed via $N$-alkylation. All synthetic pathways here may begin with a maleic anhydride derivative.









Figure 12: Retrosynthetic analysis of a generic CBBI showing the many ways to assemble the 4 core portions and achieve the desired skeletal core.

## Experimental

Synthesis of $N$-(2-hydroxyethyl)-1,2-dimethylmaleimide (protoCBDO-2)
12.0702 g of dimethyl maleic anhydride (DMMAn) and 13.0063 g (2.2eq) of 1-aminoethanol were placed in a 500 mL round bottom flask with 300 mL of toluene and a stir bar. The flask was fitted with a Dean-Stark trap and a Vigreux column. The mixture was set to reflux while stirring for 6 hours at which time the flask was removed from heat and covered in foil to protect from exposure to light. No liquid was observed in the Dean-Stark trap. The mixture was extracted with $1 \times 100 \mathrm{~mL}$
$1 \mathrm{M} \mathrm{HCl}, 1 \times 50 \mathrm{~mL} \mathrm{NaHCO} 3$, and $2 \times 50 \mathrm{~mL} \mathrm{NaCl}$. The organic layer had little to no product so the aqueous layer was extracted with EtOAc which also resulted in little to no product in the organic layer. The aqueous layer was evaporated to dryness. 20 mL of $\mathrm{DI} \mathrm{H}_{2} \mathrm{O}$ was placed in the flask to dissolve the solids and the solution was extracted with $3 \times 50 \mathrm{~mL}$ EtOAc. The organic layer was evaporated and left on high vac overnight. 7.9163 g ( $49 \%$ yield) of yellow, oily product were collected in a vial. Upon sitting in the storage vial for a few hours, the oil solidified to a hard, yellowish solid.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{~Hz}\right.$, DMSO-d6) $\delta 4.75(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 4 \mathrm{H}), 1.90(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}$, DMSOd6) $\delta 172.26,137.05,58.49,40.53,8.87$. FT-IR $\left(v_{\max }, \mathrm{cm}^{-1}\right)$ : 3503 ( $\mathrm{m}, \mathrm{OH}$ stretching ), 2888-2981 ( $\mathrm{w}, \mathrm{CH}$ stretches), 1689 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ stretching), 1675 ( $\mathrm{w}, \mathrm{C}=\mathrm{C}$ stretching), 1436 (CH bending), 1403 (OH bending), 1362 (m, CH bending), 1336 (m, CH bending), 1242 ( $\mathrm{w}, \mathrm{CN}$ stretching), 1024 (m, CN stretching), 730 (s, $\mathrm{C}=\mathrm{C}$ bending).

Synthesis of $N$-(ethyl ethanoate)-1,2-dimethylmaleimide (protoCBDE-6)
2.0260 g of DMMAn and $2.8781 \mathrm{~g}(1.25 \mathrm{eq})$ of glycine ethyl ester hydrochloride were added to a 100 mL round bottom flask with 50 mL toluene and a stir bar. 1.2175 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added to the solution. The flask was fitted with a Vigreux column and left to reflux for 18 hours. The organic layer was washed with $1 \times 20 \mathrm{~mL} 1 \mathrm{M} \mathrm{HCl}, 1 \times 10 \mathrm{~mL} 1 \mathrm{M} \mathrm{HCl}$, and $2 \times 10 \mathrm{~mL}$ brine. The organic layer
was evaporated under reduced pressure and left in an oil bath at $40^{\circ} \mathrm{C}$ under a high vac overnight. 2.8691 g of white solid product was obtained. Structure was determined unambiguously via SCXRD.

${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{~Hz}$, DMSO-d6) $\delta 4.22(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{q}, \mathrm{J}=7.07 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{t}, \mathrm{J}=7.08$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6) \delta 171.45,168.24,137.87,61.73,39.16,14.43,8.96$. FT-IR ( $\mathrm{v}_{\mathrm{max}}$, $\mathrm{cm}^{-1}$ ): 2981 ( $\mathrm{w}, \mathrm{CH}$ stretching), 1733 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ stretching from ester), 1699 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ stretching from imide), 1669 ( $\mathrm{m}, \mathrm{C}=\mathrm{C}$ stretching), 1429 (CH bending), 1390 (m, CH bending), 1374 (m, CH bending), 1215 (CN stretching), 1099 (m, CO stretching), 1019 (m, CO stretching), 974 (s, CH bending), 741 ( $\mathrm{C}=\mathrm{C}$ bending).

Synthesis of $N$-((S)-methyl 1-methylethanoate)-1,2-dimethylmaleimide (protoCBDE-7)
0.9998 g DMMAn, $1.2957 \mathrm{~g}(1.2 \mathrm{eq})$ L-alanine methyl ester hydrochloride, and 1.4 g (1.3eq) were placed in a 100 mL round bottom flask with 50 mL toluene. The flask was fitted with a water-cooled Liebig condenser and refluxed in an oil bath for 18 hours. The reaction was washed with $2 \times 20 \mathrm{~mL}$ 1 M HCl , and $2 \times 20 \mathrm{~mL}$ brine. The organic layer was dried over $\mathrm{CaCl}_{2}$ and set in an oil bath at $50^{\circ} \mathrm{C}$ under high vac overnight. 0.4492 g ( $27 \%$ yield) of pure product was obtained and verified via ${ }^{1} \mathrm{H}$ NMR. Pure compound was liquid at room temperature.

${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{~Hz}$, DMSO-d6) $\delta 4.78(\mathrm{q}, \mathrm{J}=7.10 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 6 \mathrm{H}), 1.46$ (d, J = 7.16, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6) \delta 171.27,170.67,137.64,52.94,47.11,15.44,8.92$. FT-IR ( $\mathrm{v}_{\text {max }}$, $\mathrm{cm}^{-1}$ ): 2954 ( $\mathrm{w}, \mathrm{CH}$ stretching), 1746 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ stretching from ester), 1702 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ stretching from imide), 1436 ( $w$, CH bending), 1399 (m, CH bending), 1229 (br, CN stretching), 1078 (m, CO stretching), 1030 ( $\mathrm{m}, \mathrm{CO}$ stretching), 733 ( $\mathrm{C}=\mathrm{C}$ bending).

## Synthesis of N -allyl-1,2-dimethylmaleimide (protoCBDV-1)

6.4857 g of DMMAn and 8 mL (2eq) of allylamine added to 250 mL round bottom flask with 200 mL toluene and stir bar. The solution became cloudy immediately upon combination of the starting materials and a large amount of white precipitate could be seen in the bottom of the flask. The flask was fitted with a Vigreux column and set in an oil bath with a temperature of $110^{\circ} \mathrm{C}$. After 15 minutes, the solids redissolved but the solution remained cloudy. By 2.75 hours, the solution was no longer cloudy and droplets of insoluble material were visible suspended in solution. After 3.5 hours, the reaction was removed from heat, stoppered, and covered in foil to protect it from light. The reaction was washed with $1 \times 10 \mathrm{~mL} \mathrm{H} 2 \mathrm{O}$ and $2 \times 10 \mathrm{~mL}$ brine. The reaction was then placed under reduced pressure in a water bath around $40-50^{\circ} \mathrm{C}$ by use of a rotary evaporator to remove solvent. This was unsuccessful because the product evaporated with the toluene. Yield could not be determined due to loss of product and lack of isolated product. Structure
determined via ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis with comparison to subsequent [2+2]photocycloaddition dimerization.

${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{~Hz}$, DMSO-d6) $\delta 5.78(\mathrm{td}, \mathrm{J}=16.88,5.23 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=11.65 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}$, $\mathrm{J}=18.87 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, \mathrm{~J}=3.80 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}$, DMSO-d6) $\delta 171.78$, 137.24, 133.20, 116.47, 39.78, 8.89. FT-IR ( $\mathrm{V}_{\text {max }}, \mathrm{cm}^{-1}$ ): 2922 ( $\mathrm{w}, \mathrm{CH}$ stretching), 1699 ( $\mathrm{s}, \mathrm{C}=0$ ), 1432 ( $\mathrm{w}, \mathrm{CH}$ bending), 1399 ( $\mathrm{m}, \mathrm{CH}$ bending), 926 ( $\mathrm{br}, \mathrm{C}=\mathrm{C}$ from allyl), 733 ( $\mathrm{s}, \mathrm{C}=\mathrm{C}$ bending from ring).

## Synthesis of N -(ethyl-2-acetate)-maleimide (protoCBDAc-1)

2.4441 g ethanolamine was placed in 50 mL round bottom flask with 30 mL glacial acetic acid. 4.3678 maleic anhydride (MAn) was added in small batches to the solution with a stir bar. The reaction was stirred at room temperature for 10 minutes, then 5 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added. The flask was then fitted with a Vigreux column and lowered into an oil bath at $65^{\circ} \mathrm{C}$ for 1 hour while stirring. Afterwards, the reaction was then neutralized using a saturated solution of $\mathrm{NaHCO}_{3}$ then extracted using EtOAc. The organic layer was washed with saturated $\mathrm{NaHCO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. Evaporation of the solvent afforded white solids which showed likely product with AcOH contamination. The flask was placed in an oil bath at $50^{\circ} \mathrm{C}$ under high vac over night to afford 0.1484 g ( $3 \%$ yield*) of product as confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. Structure was determined unambiguously via SCXRD.
*The extremely low yield was due to having spilled a large portion of the reaction mixture during initial neutralization and is not indicative of reaction efficiency.

${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{~Hz}$, DMSO-d6) $\delta 7.05(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{t}, \mathrm{J}=5.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{t}, \mathrm{J}=5.02,2 \mathrm{H}), 1.94(\mathrm{~s}$, $3 H) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6) \delta 171.31,170.71,135.11,61.48,36.89,20.99$. FT-IR ( $\mathrm{v}_{\mathrm{max}} \mathrm{cm}^{-}$ ${ }^{1}$ ): 3096 ( $\mathrm{m}, \mathrm{CH}$ stretching from alkene), 2981-2958 ( $\mathrm{w}, \mathrm{CH}$ stretches), 1772 ( $\mathrm{w}, \mathrm{C}=\mathrm{O}$ stretching from ester), 1699 (s, C=O stretching from imide), 1432 ( $\mathrm{w}, \mathrm{CH}$ bending), 1399 ( $\mathrm{m}, \mathrm{CH}$ bending), 1338 ( $\mathrm{w}, \mathrm{CN}$ stretching), 1102 (m, CO stretching), 1068 (m, CO stretching), 968-926 (br, CH bending from alkene), 735 ( $\mathrm{C}=\mathrm{C}$ bending).

## Synthesis of N -dihydroxy-1,2-dimethylmaleimide (protoCBDH-1)

3.1525 g of DMMAn, 8.4541 g (4.8eq) of hydroxylamine hydrochloride, and 9.9820 g (4.8eq) of sodium acetate were placed in a 200 mL round bottom flask with 100 mL of $1: 1 \mathrm{H}_{2} \mathrm{O} /$ ethanol solution with a stir bar. The flask was fitted with a water-cooled Liebig condenser. The reaction was refluxed in an oil bath for $\sim 20$ mins then removed from heat. The mixture was extracted using $3 \times 50 \mathrm{~mL}$ EtOAc. The organic layers were combined and washed with $1 \times 50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and $1 \times 50 \mathrm{~mL}$ brine. The organic layer was concentrated under reduced pressure to afford a yellow liquid. Trituration with hexanes was attempted but was not successful. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the product showed the product was contaminated with $\mathrm{EtOAc}, \mathrm{EtOH}, \mathrm{AcOH}$, and hexanes. The product was
left under high vac overnight to afford 2.2583 g ( $64 \%$ yield) of white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ analysis showed this was pure product. Structure was determined unambiguously via SCXRD.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{~Hz}\right.$, DMSO-d6) $\delta 10.24(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}$, DMSO-d6) $\delta 168.82$, 134.91, 9.08. FT-IR ( $\mathrm{v}_{\max }, \mathrm{cm}^{-1}$ ): 3223 ( s br, OH stretching), 2981 ( $\mathrm{w}, \mathrm{CH}$ stretching), 1708 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ stretching), 1663 (m, C=C stretching), 1457 (m, NO stretching), 1383 ( $m$, CH bending), 1334 ( w , CN stretching), 1137 (m, CO stretching), 1091 ( m , NO bending), 1021 ( $\mathrm{br}, \mathrm{CH}$ bending) 708 ( $\mathrm{C}=\mathrm{C}$ bending).

Maleimide (protoCBBI-2)

Maleimide was used as purchased and is presented here for the sake of completeness.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{~Hz}\right.$, DMSO-d6) $\delta 10.88(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}$, DMSO-d6) $\delta 173.21$, 135.73.

Synthetic Route 1:
1.1917 g of protoCBDO-2 was placed in a 25 mL round bottom flask with 30 mL EtOAc. The solution was slightly cloudy. The flask was placed in between 4 UV-A bulbs. After 3 days of reaction time, crystals formed on the inner walls of the flask and the solution was clear and colorless. The crystals were knocked loose and collected via vacuum filtration to afford 0.9853 g ( $83 \%$ yield) of pure CBDO-2. This was confirmed via ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ analysis. Structure was determined unambiguously via SCXRD. The supernatant was placed back into the lights to afford a second crop of product.

Synthetic Route 2:
0.0185 g of protoCBDO-2 was crushed with a spatula and spread on the inner walls of a 4 mL vial (Alternatively, the starting material was crushed between two glass plates). The vial was capped and placed in between 2 UV-A lights. After 3 days of reaction time, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis showed complete conversion to CBDO-2.

${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6) \delta 4.91(\mathrm{t}, \mathrm{J}=4.88 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~d}, \mathrm{~J}=4.44 \mathrm{~Hz}, 4 \mathrm{H}), 3.55(\mathrm{~d}, \mathrm{~J}=4.66$ $\mathrm{Hz}, 4 \mathrm{H}), 1.10(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}$, DMSO-d6) $\delta 178.23,57.36,49.18,41.64,12.65$. FT-IR ( $\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$ ): 3488 (m, OH stretching), 2984-2949 (w, CH stretches), 1689 (s, C=O stretching), 1413
( $\mathrm{m}, \mathrm{CH}$ bending), 1413 ( $\mathrm{m}, \mathrm{OH}$ bending), 1335 ( $\mathrm{s}, \mathrm{CH}$ bending), 1336 ( $\mathrm{m}, \mathrm{CH}$ bending), 1048 ( m , CN stretching).

Syntheses of $N, N^{\prime}$-di(ethyl ethanoate)-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4-c']bisimide (CBDE-6)

Synthetic Route 1:
Same procedures as CBDO-2: Synthetic Route 1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis showed $\sim 50 \%$ conversion of protoCBDE-6 to CBDE-6 after 3 days reaction time. Structure was determined unambiguously via SCXRD.

Synthetic Route 2:

Same procedures as CBDO-2: Synthetic Route 2 to produce CBDE-6 from protoCBDE-6 in quantitative yield.

${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6) \delta 4.30(\mathrm{~s}, 4 \mathrm{H}), 4.19(\mathrm{q}, \mathrm{J}=7.11 \mathrm{~Hz}, 4 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.11,6 \mathrm{H}), 1.18(\mathrm{~s}$, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6) \delta 177.30,167.48,62.17,49,78,14.41,12.56$. FT-IR ( $\mathrm{v}_{\mathrm{max}} \mathrm{cm}^{-}$ ${ }^{1}$ ): 2981 ( $\mathrm{w}, \mathrm{CH}$ stretching), 1744 (s, C=O stretching from ester), 1705 (s, C=O stretching from imide), 1412 (CH bending), 1383 ( $\mathrm{m}, \mathrm{CH}$ bending), 1333 ( $\mathrm{m}, \mathrm{CH}$ bending), 1220 ( $\mathrm{s}, \mathrm{CN}$ stretching), 1151 (m, CO stretching), 1008 (m, CO stretching), 796 (s, CH bending).
0.1252 g of protoCBDE-7 was placed in a 4 mL vial with 4 mL EtOAc. The vial was capped and placed between 2 UV-A bulbs. After 3 days reaction time, no precipitates had formed but ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis showed $100 \%$ conversion to product. Evaporation of solvent afforded 0.1106 ( $88 \%$ yield) of white solid. Structure was determined unambiguously via SCXRD using crystals recrystallized in EtOH.

${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6) \delta 4.93(\mathrm{q}, \mathrm{J}=7.07 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.17$ ( $\mathrm{s}, 6 \mathrm{H}$ ) , $1.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}$, DMSO-d6) $\delta 177.35,176.71,169.94,53.06,50.00,49.20$, 48.20, 14.29, 12.58, 12.44. FT-IR ( $\mathrm{v}_{\max }, \mathrm{cm}^{-1}$ ): 2981-2953 ( $\mathrm{w}, \mathrm{CH}$ stretches), 1745 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ stretching from ester), 1704 (s, C=O stretching from imide), 1456 ( $w, C H$ bending), 1380 (m, CH bending), 1224 (br, CN stretching), 1168 ( $\mathrm{m}, \mathrm{CO}$ stretching), 1077 ( $\mathrm{m}, \mathrm{CO}$ stretching), 841 ( $\mathrm{m}, \mathrm{CH}$ bending). Synthesis of N,N'-di(ethyl-2-acetate)-cyclobuta[1,2-c:3,4-c']bisimide (CBDAc-1) 0.0586 g of protoCBDAc-1 was placed in a 4 mL vial with 4 mL EtOAc. The solids were sparingly soluble and required sonication to fully dissolve. The vial was placed between 4 UV-A lights. After 3 hours of reaction time, crystalline precipitate was observed in the bottom of the vial. The solids
were collected via vacuum filtration to afford $0.0471 \mathrm{~g}(80 \%$ yield) of pure product as determined via ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.

${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{~Hz}$, DMSO-d6) $\delta 4.20(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.70(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.32(\mathrm{~s}, 4 \mathrm{H}), 1.98(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6) \delta 176.28,171.07,60.73,41.73,38.58,21.02$.

## Synthesis of $N, N^{\prime}$-diallyl-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4-c']bisimide (CBDV-1)

20 mL of the remaining reaction mixture from synthesis of protoCBDV-1 was placed in a 20 mL glass vial. The vial was placed between 4 UV-A bulbs. After 1 day of reaction time, solid precipitate was observed at the bottom of the vial. Upon cooling, more solids precipitated. All solids were collected via vacuum filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$ to afford 0.1827 g of pure product. Structure determined via ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$-NMR, DEPT135, HSQC, HMBC, and COSY.

${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{~Hz}$, DMSO-d6) $\delta 5.82(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~d}, \mathrm{~J}=19.45 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~d}, \mathrm{~J}=10.85,2 \mathrm{H}), 4.07$ (d, J = 5.67, 4H), 1.06 (s, 12H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6) ~ \delta 177.41,131.74,119.10,49.41,41.31$,
12.82. FT-IR ( $\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$ ): 2980 ( $\mathrm{w}, \mathrm{CH}$ stretching), 1699 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ stretching), 1625 ( $\mathrm{w}, \mathrm{C}=\mathrm{C}$ stretching), 1424 ( $\mathrm{w}, \mathrm{CH}$ bending), 1387 ( $\mathrm{m}, \mathrm{CH}$ bending), 926 ( $\mathrm{w}, \mathrm{C}=\mathrm{C}$ bending).

Synthesis of $N, N^{\prime}$-dihydro-cyclobuta[1,2-c:3,4-c']bisimide (CBBI-2)

Procedure adapted from literature. ${ }^{25,26} 0.1560 \mathrm{~g}$ of maleimide was placed in a 200 mL round bottom flask with 150 mL ACN with a stir bar. The solution was degassed for several minutes with $N_{2}$. A cold finger was placed in the flask and cold tap water was allowed to flow through. The reaction was placed between 4 UV-A bulbs while stirring. After 18 hours reaction time, the suspended solids were collected via vacuum filtration to afford 0.1217 g ( $78 \%$ yield) of slightly yellow, off-white pure product as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{~Hz}\right.$, DMSO-d6) $\delta 11.63(\mathrm{~s}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}$, DMSO-d6) $\delta$ 178.13, 42.97. FT-IR ( $\mathrm{v}_{\mathrm{max}}, \mathrm{cm}^{-1}$ ): 3150-3072 (br, NH stretches), 3002-2981 (w, CH stretches), 1690 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ stretching), 1350 ( $\mathrm{w}, \mathrm{CH}$ bending), 1201 (m, CN bending), 828 (s, CH bending).

Synthesis of N,N'-dihydro-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4-c']bisimide (CBBI-1)
0.2988 g CBDAn- 5 was placed in a 50 mL round bottom flask. 4 mL DI $\mathrm{H}_{2} \mathrm{O}$ and 20 mL of $\mathrm{NH}_{4} \mathrm{OH}(23 \%$ $\mathrm{NH}_{3}$ ) was added to the flask along with a stir bar. The starting material was not immediately soluble. Reaction refluxed for 2 hours and removed from heat. Flask was stoppered and left to
cool overnight. The resulting crystalline solids were collected via vacuum filtration to afford 0.1865 g ( $63 \%$ yield) of pure product as determined via ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{~Hz}\right.$, DMSO-d6) $\delta 11.67(\mathrm{~s}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6) \delta 179.49$, 50.26, 12.87. FT-IR ( $\mathrm{v}_{\max }, \mathrm{cm}^{-1}$ ): 3206 (br, NH stretches), 2982 ( $\mathrm{w}, \mathrm{CH}$ stretches), 1689 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ stretching), 1374 ( $\mathrm{w}, \mathrm{CH}$ bending), 1316 (m, CN bending), 802 (s, CH bending).

Synthesis of $N, N^{\prime}$-dihydroxy-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4-c']bisimide (CBDH-1)
0.1340 g of CBDAn $-5,0.4886 \mathrm{~g}$ hydroxylamine hydrochloride, and 0.6425 g NaOAc were placed in a 10 mL round bottom flask with $6.5 \mathrm{~mL} 1: 1 \mathrm{H}_{2} \mathrm{O}$ :ethanol and stir bar. The flask was fitted with a water cooled Liebig condenser and refluxed for 30 minutes. After cooling, product was extracted with EtOAc. Bulk isolated product not obtained but success determined via ${ }^{13} \mathrm{C}$-NMR. Structure was determined unambiguously via SCXRD from crystals recrystallized in ethanol.

${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6) \delta 173.34,47.11,12.61$.

## Synthesis of N,N'-di(2-hydroxyethyl)cyclobuta[1,2-c:3,4-c']bisimide (CBDO-3)

0.8538 CBDAn-1 placed in a 25 mL round bottom flask with 15 mL ethanol. It did not dissolve. 0.7633 ( $\sim 2 e q$ ) was transferred to the flask using 5 mL ethanol. The flask was fitted with an air condenser and lowered into an oil bath at $100^{\circ} \mathrm{C}$. After refluxing for 2.5 hours, most solids had dissolved and the solution was a translucent brown color. After an additional 2.5 hours of reflux (total 5 hours), the solution was milky and opaque. Solution was left to reflux overnight and 0.4307 g ( $35 \%$ yield) of pure product precipitate was collected. The structure was determined via Structure determined via ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HSQC}$, and HMBC .

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{~Hz}\right.$, DMSO-d6) $\delta 4.81$ ( s br, 2H), $3.52(\mathrm{~s}, 8 \mathrm{H}), 3.32(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}$, DMSOd6) $\delta 176.54,57.59,41.92,41.44$.

Synthesis of N, N'-di(n-propanoic acid)-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4-c']bisimide (CBDA-6)
0.1006 g CBBI-1, 0.1466 g of 3 -bromopropionic acid, and $0.2194 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ were placed in a 25 mL round bottom flask with 20 mL DMF along with a stir bar. Solids did not completely dissolved even under vigorous stirring. Flask placed in oil bath at $160^{\circ} \mathrm{C}$ and left to reflux for 24 hours. The reaction was removed from heat and placed in the fridge for 2 days after which it was diluted with $250 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and acidified with 1 M HCl . It was then extracted with $\sim 100 \mathrm{~mL}$ EtOAc. The initial organic layer was washed with $4 \times 50 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. The initial aqueous layer was washed with $2 \times 25 \mathrm{~mL}$

EtOAc. The organic layers were combined and the solvent evaporated to afford an off-white solid.
${ }^{1} \mathrm{H}$-NMR analysis determined it was mostly desired product contaminated with DMF and small amounts of starting material. After several more similar washes to remove DMF, pure product was obtain as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ analysis. Yield was not determined due to significant product loss during extraction.

${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{~Hz}$, DMSO-d6) $\delta 12.49(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{t}, \mathrm{J}=6.75 \mathrm{~Hz}, 4 \mathrm{H}), 2.61(\mathrm{t}, \mathrm{J}=6.72 \mathrm{~Hz}, 4 \mathrm{H}), 1.05$ (s, 12H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}, \mathrm{DMSO-d6}) \delta 177.86,172.68,49.22,35.50,31.85,12.69$.

Synthesis of $N, N^{\prime}$-di(ethanoic acid)-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4-c']bisimide (CBDA-7)
0.0033 g CBDO-2 placed in 4 mL vial with 1 mL ACN and 1 mL pyridine. The vial was shaken and sonicated to dissolve the starting material. $0.0492 \mathrm{~g} \mathrm{KMnO}_{4}$ was added which did not entirely dissolve. A stir bar was added and the solution was set to stir for 20 hours. $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ was added to the solution to remove excess $\mathrm{KMnO}_{4}$ until no more reaction was observed. Concentrated HCl was then added until the solution was colorless. The reaction was then extracted with $2 \times 40 \mathrm{~mL}$ EtOAc. The organic layer was washed with brine then evaporated under reduced pressure to afford a very small amount of solids. These solids were dried under high vac for 2 days. Product determined via ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and HSQC though ${ }^{13} \mathrm{C}-\mathrm{NMR}$ is inconsistent with expected spectra. Nonetheless, structure was determined unambiguously via SCXRD as a monohydrate.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{~Hz}\right.$, DMSO-d6) $\delta 13.37(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 4 \mathrm{H}), 1.17(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}$, DMSOd6) $\delta 177.48,49.72,31.17,12.54$.

Synthesis of poly(hexamethylene $N, N^{\prime}$-di(ethanoate)-1,2,3,4-tetramethylcyclobuta[1,2-c:3,4c']bisimide) (PCBBI-1)

Polymerization procedure adapted from literature ${ }^{27}$ and previous work by the Chu Research Group. ${ }^{23} 0.1059 \mathrm{~g}$ of CBDE-6 was placed in a 10 mL round bottom flask. $40 \mu \mathrm{~L}$ of 1,7 -heptandiol placed in vial with 2 mL toluene and 2 drops $\mathrm{Ti}(\mathrm{OiPr}) 4$. This mixture was placed in the flask containing the CBDE-6. The vial used to weigh the diol was rinsed with 3 mL and added to the reaction flask. An amount of the $\mathrm{Ti}(\mathrm{OiPr})_{4}$ appeared to react with residual water present as evidenced by the appearance of bright white precipitate presumed to be $\mathrm{TiO}_{2}$. The flask was fitted with a Liebig condenser and the top of the condenser was fitted with a balloon filled with nitrogen gas. The flask was placed in an oil bath at $120^{\circ} \mathrm{C}$ and left to reflux for 18 hours. 5 mL of DMF was added to the reaction and it was allowed to reflux $\left(\sim 135^{\circ} \mathrm{C}\right)$ for 3.5 hours. After cooling, the reaction was washed with $\mathrm{H}_{2} \mathrm{O}$ which caused precipitation of a slightly off-white solid. 0.0660 g of this solid was collected via vacuum filtration. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis provided confirmation of CBBIterminated monomeric repeat unit. HRMS analysis provided confirmation of mono-, di-, cycloidand trimeric repeat units.

Polymerization procedure adapted from literature ${ }^{27}$ and previous work by the Chu Research Group. ${ }^{23} 0.2585 \mathrm{~g}$ adipic acid and 0.5045 g CBDO-2 placed in 25 mL round bottom flask with 16 mL DMF. 10 drops of $\mathrm{Ti}_{\mathrm{i}}(\mathrm{iOPr})_{4}$ placed in solution, a portion of which formed a bright white precipitate presumed to be $\mathrm{TiO}_{2}$. The flask was fitted with a Vigreux condenser and placed in an oil bath at $110^{\circ} \mathrm{C}$ while stirring for 18 hours. The oil was turned up and the reaction was refluxed for several hours. Upon cooling, $\mathrm{H}_{2} \mathrm{O}$ was added to the solution and the resulting precipitate was collected via vacuum filtration to afford 0.4677 of very light, off-white polymer. Structure is not yet confirmed except for physical comparison to PCBBI-1.

## Results and Discussion

Description of a model CBBI

The model CBBI structure, CBDO-2 (Figure 13), consists of the described core with $R^{1}$ and $R^{2}$ being methyl groups and $\mathrm{R}^{3}$ being 2-hydroxyethyl functional groups. The nomenclature for this compound and all others follow the format established in previous work published by the Chu Research Group. In this format, multifunctional cyclobutane containing monomers are named with the format of $C B x-n$; where x is a one to three letter code signifying functional multiplicity (when greater than one) and the functional group identity, and n is the its sequence based on publication chronology. ${ }^{20,23,28}$


Figure 13: A model CBBI compound, cyclobutane diol 2, or CBDO-2.

According to the crystal structure (Figure 14), each ring within the CBBI skeleton, the two 5member imide rings and the cyclobutane core, is planar. Previous studies have shown that the cyclobutane core of some CBs exists as a "puckered" ring which may assume more than one ringflip conformation. ${ }^{23}$ However, these planar rings themselves exist at $110.7^{\circ}$ from one another. This creates a 3-dimensional, aliphatic "knot" within the polymer backbone. This is unique in that generally, bisimides exist as part of aromatic planes. As such, the imides are conjugated within these systems. The aliphatic cyclobutane core, in concert with aliphatic $\mathrm{R}^{3}$ groups, has the effect of breaking these electronic networks, isolating the conjugation to just the imide proper. Of particular note, this has the consequence of effecting no color in the compound (Figure 15), a property often sought in polymer chemistry. Since the bisimide skeleton is not altered in the prospective polymerizations, the resulting polymeric materials are likewise colorless. This is discussed in more detail later.


Figure 14: The crystal structure of CBDO-2 which shows the angle between the imide rings (blue) and the cyclobutane ring (red) to be $110.7^{\circ}$.


Figure 15: Crystals of CBDO-2 which exhibit no color.

## Synthesis of model compound

$N$-(2-hydroxyethyl)-2,3-dimethylmaleimide (protoCBDO-2) was synthesized using a literature procedure. ${ }^{29}$ This procedure is analogous to the first step of the central path in Figure 12. 1,2-
dimethylmaleic anhydride (DMMAn) was stirred with ethanolamine in toluene at reflux (Scheme 1). Purification was achieved via column chromatography as per the reference.


Scheme 1: Synthesis of protoCBDO-2

Solutions of protoCBDO-2 were prepared in ethyl acetate, acetonitrile, and acetone at approximately 40 mM . A sample of solid protoCBDO-2 was crushed and smeared on the inside walls of a vial identical to those used for the solutions. The three solutions and the solid-state reaction were all placed between 2 UV-A bulbs (15W). After 3 days, colorless crystalline precipitate was observed in ethyl acetate and acetone. The precipitate was confirmed to be CBDO-2 via ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR and SCXRD. The solid-state proceeded to product in $100 \%$ yield as confirmed via ${ }^{1} \mathrm{H}$-NMR. It was also observed that residual solids of protoCBDO-2 had dimerized to CBDO-2 in the ambient light of the lab over the course of about 1 week. It should be noted that the bench where this flask was located is very near a window that gets ample sun exposure.

## Versatility of CBBI synthesis

CBDO-2 was then stirred in a solution of ACN saturated with $\mathrm{KMnO}_{4}$ for 18 hours. Hydrogen peroxide was added to the solution until no more gas evolved upon addition. This was followed by addition of 1 M HCl until the solution was colorless. Finally, the product was isolated via a
solvent extraction. After evaporation of solvent, product was allowed to sit under high vac for 48 hours. The resulting crystals were the oxidated product, CBDA-7 (Figure 16).


Figure 16: Cyclobutane diacid product, CBDA-7, obtained via oxidation of CBDO-2.

The efficiency of the [2+2] photocycloaddition step in the synthesis of CBDO-2 was surprising. Due to this, the generality of the process was explored and produced an additional 3 CBBI building blocks (Figure 17) using very a similar procedure. Two cyclobutane diesters, CBDE-6 and CBDE-7, were synthesized from glycine ether ester HCl and L-alanine methyl ester HCl , respectively. Although CBDE-7 was a solid at room temperature, protoCBDE-7 was a liquid and remained liquid even when placed in a refrigerator. Both CBDE-6 and protoCBDE-6 were solids at room temperature. This suggests that sidechains on $\mathrm{R}^{3}$ interrupt packing of the molecules which may increase solubility, an important aspect of polymer processibility.


Figure 17: Three protoCBBI structures, protoCBDE-6 (top left), protoCBDE-7 (top middle), and protoCBDV-1 (top right). Below each is the corresponding CBBI monomer, CBDE-6 (bottom left), CBDE-7 (bottom middle), and CBDV-1 (bottom right).
$N$-hydroxy-2,3-dimethylmaleimide (protoCBDH-1) was synthesized from DMMAn and hydroxylamine. These were stirred together for 20 min in a 1:1 solution of water/ethanol at reflux (Scheme 2a). ${ }^{30}$ The product was isolated via solvent extraction and characterized via ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$ NMR, and SCXRD. Samples of solid protoCBDH-1 were placed between 4 UV-A bulbs (15W), but even after several days, no product was observed. Initial inspection of the crystal structure showed that the molecule assumes a helical structure networked by hydrogen bonds. This packing does conform to the Schmidt principles ${ }^{31}$ and thus the fact that protoBDH-1 does not undergo dimerization is surprisingly. To circumvent the possibility of other solid-state limitations, solution phase dimerization was attempted. Solutions of protoCBDH-1 were made in EtOAc, acetone, and ACN. After sitting between 4 UV-A bulbs (15W) for 2 days, no reaction was observed as monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. Because of this, protoCBDH-1 was unique in the series of protoCBs in that it was completely photo-inert. It was also unique in the series in that it was the only CBBI with an $\mathrm{N}-\mathrm{O}$ bond. Investigations are currently underway to understand if and how this moiety inhibits the $[2+2]$ photocycloaddition.



Scheme 2: a) Synthesis of CBDH-1 showing that while the synthesis of protoCBDH-1 was successful, the key step of [2+2] photocycloaddition was not. b) Synthesis of CBDH-1 showing that swapping the order of the reactions results in success.

Initial attempts to recreate the success of the previous with maleic anhydride (MAn) were unsuccessful. This is likely the case because maleic acid and fumaric acid, the products to which MAn readily hydrolyzes, are much less reactive to amines to produce the amic acid precursor necessary for imidization. For a similar reason, when an amic acid does form, the cyclization to the imide is not favored.

Considering this, an alternative route was adapted from literature. ${ }^{32}$ MAn was gently heated in a solution of glacial acetic acid with ethanolamine. After about 30 minutes, concentrated sulfuric acid was added and the temperature increased. Purification was performed via solvent extraction after neutralization. While the imidization did take place, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ showed that the hydroxyl group was unintentionally acetylated. This product, protoCBDAc-1, readily dimerized to CBDAc-1 in 3 hours at 80\% yield (Scheme 3).



Scheme 3: Synthesis of CBDAc-1

To avoid the deactivation of the key photochemical step and explore the synthesis of CBBIs via dianhydrides, trans-cyclobutane-1,2,3,4-tetracarboxylic dianhydride (CBDAn-1) was synthesized as a starting material. This was done using a procedure developed by our group which directly irradiates MAn in ethyl acetate using 4 UV-A bulbs (15W). Trans-cyclobutane-1,2,3,4-tetramethyl-1,2,3,4-tetracarboxylic dianhydride (CBDAn-5) was similarly synthesized by direct irradiation of DMMAn in ethyl acetate using 4 UV-A bulbs (15W). In both cases, a small amount of crystalline product precipitated after a couple hours; but the reaction was allowed to proceed over 3 days for CBDAn-1 to afford 70\% yield and 4 days for CBDAn-5 to afford a $95 \%$ yield. The lower comparative yield in the former was likely due to the aforementioned labile hydrolysis of the starting material into maleic acid and fumaric acid, neither of which is photoactive in solution.

CBDH-1 was successfully synthesized using similar conditions to the synthesis of protoCBDH-1, except using CBDAn-5 in place of DMMAn (Scheme 2b). Similarly, CBDO-3 was synthesized by
stirring CBDAn-1 with ethanolamine in ethanol at reflux. By using an alternate synthetic pathway, it was possible to achieve a desired product that was difficult or impossible to synthesize via the previous method.

Finally, in preparation for the final synthetic route, the halo-imide coupling (Scheme 4), two unsubstituted bisimides were synthesized. First, trans-1,2,3,4-tetramethylcyclobutanebisimide (CBBI-1) was synthesized by stirring CBDAn-5 in an aqueous solution of ammonium hydroxide (19\% $\mathrm{NH}_{3}$ ) at reflux for 2 hours. Upon cooling, CBBI-1 precipitates out in about $60 \%$ yield. More product may be recovered by concentrating the reaction and washing the solids to remove any residual amic acid intermediates. Trans-cyclobutanebisimide (CBBI-2) was synthesized by direct photodimerization of maleimide in ACN in accordance with literature procedures ${ }^{25,33}$ with the exception of using 6 UV-A bulbs (15W) in lieu of a photoreactor lamp. The solution was prepared at about 0.01 M concentration of maleimide. The flask was fitted with a cold finger through which cold tap water was circulated. It was found that higher concentrations and omission of the cold finger, thereby allowing the solution to heat to ${ }^{\sim} 40^{\circ} \mathrm{C}$, caused a significant formation of maleimide homopolymer. This was identified by the presence of strong, broad peaks in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ which overlapped those for the desired product. By following these criteria, CBBI-2 precipitates as a slightly off-white solid which may be easily collected via filtration and the ACN may be recycled for subsequent reactions.





Scheme 4: Synthesis of CBDA-6 via halo-imide coupling.

CBBI-1 was stirred with 3-bromopropionic acid and potassium carbonate in a solution of DMF at reflux overnight. After allowing the solution to cool, precipitate was collected. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ showed product with DMF impurity. After several washes to remove DMF, pure CBDA-6 was obtained.

## Thermal properties of select CBBIs

Initial melting point measurement of several CBBIs were inconclusive due to having melting points higher than the maximum of the melting point apparatus $\left(260^{\circ} \mathrm{C}\right)$. Melting points for select CBBIs were determined via TGA/DSC measurements as part of routine thermochemical property analysis.

The full TGA/DSC data for CBDO-2 is found in Figure 18. Typically, the shape of the step around $175^{\circ} \mathrm{C}$ indicates a glass transition temperature in polymeric materials. Here, it is likely a shift in the crystal packing to a polymorph more stable at elevated temperatures.


Figure 18: TGA (black line) and DSC (red line) of CBDO-2 from $25^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$ with ramp rate $20^{\circ} \mathrm{C} / \mathrm{min}$.

Close inspection of the graph (Figure 19), shows that melting of the material at $312^{\circ} \mathrm{C}$ is concurrent with dehydration of the hydroxy functional groups on either side of the CBBI core. The inflection point at $\sim 11.1 \%$ mass loss is consistent with 2 eq of water loss $(36 \mathrm{~g} / \mathrm{mol})$ to produce a cyclobutane divinyl (Figure 20). No attempts at isolating this product were attempted.


Figure 19: Detail of Figure 18 showing concurrent melt and dehydration of CBDO-2.


Figure 20: CBDO-2 and the possible thermal dehydration product formed at $317^{\circ} \mathrm{C}$.

TGA/DSC of CBDE-6 show very similar thermal events (Figure 21). The presence of a similar endothermic step at ${ }^{\sim} 175^{\circ} \mathrm{C}$ suggests that this polymorphic shift may be related to the common CBBI core of each compound. However, CBDE-6, shows a multistep shift absent in CBDO-2.


Figure 21: TGA (black line) and DSC (red line) of CBDE-6 from $25^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$ with ramp rate $20^{\circ} \mathrm{C} / \mathrm{min}$.

As in the previous example, the TGA for CBDE-6 has an inflection point at $299^{\circ} \mathrm{C}$ which coincides with the melting point of the material at $295^{\circ} \mathrm{C}$ (Figure 22). However, this is not a dehydration of the CBBI unit, but degradation of the ethyl ester moieties.


Figure 22: Detail of 7 showing concurrent melt and degradation of CBDE-6, likely to CBDA-6.

At such elevated temperatures, esters with $\beta$-hydrogens can undergo a retro-ene reaction giving an alkene and carboxylic acid as products (Figure 23). The mechanism proceeds through a sixmember transition state in which the carbonyl abstracts the $\beta$-hydrogen from the alkyl ester. This allows the pericyclic cascade resulting in the net formation of $1 \pi$-bond and loss of a $\sigma$-bond. In the case of CBDE-6, these products are ethylene and, curiously, another novel product presented here, CBDA-7.


Figure 23: General mechanism for a retro-ene reaction of the type observed in the degradation of CBDE-6.

The inflection point at $13.2 \%$ mass loss is consistent with the loss of 2 eq of ethylene ( $56.11 \mathrm{~g} / \mathrm{mol}$ ) to produce CBDA-7 ().


CBDE-6
$422.43 \mathrm{~g} / \mathrm{mol}$


CBDA-7
366.32

Figure 24: CBDE-6 and the likely thermal degradation product formed at $299^{\circ} \mathrm{C}$.

To investigate the hypothesis that the mass loss observed in CBDO-2 was water, the thermal properties of CBDV-1 were studied. This compound was chosen due to its similarities to the theorized dehydration product of CBDO-2. No mass loss with an inflection point should be observed because there are no moieties which are susceptible to dehydration. As shown in Figure 25, this is what was observed. Additionally, CBDV-1 showed a much lower melting point which is likely due to the absence of hydrogen bond donors. Despite this, the compound is still remarkable stable. It was hypothesized that the material may polymerize at high temperatures, but there were no obvious indications of this. The melting peak shows a two-step process. It is possible that a step at ${ }^{\sim} 175^{\circ} \mathrm{C}$, similar to previous CBBIs, is present here, but is obfuscated by the melting point. This may explain the comparatively complex onset.


Figure 25: TGA (black line) and DSC (red line) of CBDV-1 from $25^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$ with ramp rate $20^{\circ} \mathrm{C} / \mathrm{min}$.

Finally, the thermal properties of CBDO-3 were investigated to study the thermal effect of substituents on the CB core (Figure 26). Like all previous CBs , there is a step around $175^{\circ} \mathrm{C}$. This would suggest that if it is indicative of a polymorphic rearrangement, then it is not unique to the tetramethylated CBBI core. The melting point of $277^{\circ} \mathrm{C}$ is also only slightly lower than that of CBDO-2, which may be explained simply by the reduction in molar mass. Last, it is of note that this is the only CBBI studied in which the mass did not degrade to $0 \%$. Whether this is a phenomenon of the material or an artifact of the different method used is not currently known.


Figure 26: TGA (black line) and DSC (red line) of CBDO-3 from $25^{\circ} \mathrm{C}$ to $700^{\circ} \mathrm{C}$ with ramp rate $15^{\circ} \mathrm{C} / \mathrm{min}$.

## Syntheses of CBBI-based polymers

Two polyesters were synthesized using novel CBBIs produced as part of this work. The first, PCBBI1, was synthesized using CBDE-6 and 1,7-heptandiol according to procedures in the experimental section. The second, PCBBI-2, was synthesized in the same manner using CBDO-2 and adipic acid. Several methods were attempted, with the reported $\mathrm{Ti}(\mathrm{iOPr})_{4}$ determined to be the most effective. Alternative methods each faced insurmountable technical hurdles.

The first difficulty faced in the polymerization of these compounds was the high melting point for each CBBI component. TGA/DSC analysis of CBDO-2 (Figure 19) shows the degradation of the compounds coincides with its melting point at $311^{\circ} \mathrm{C}$. This precludes all melt polymerization techniques, not only because the compound degrades as it melts, but because most comonomers would likewise evaporate or degrade prior to reaching the melting point of CBDO-2 or CBDE-6.

Secondly, the compounds are insoluble or sparingly soluble in most solvents except for DMSO and DMF. This limits the choice of solvents for solution phase polymerizations. Though to the benefit of the methods, the chosen solvent DMF can reach temperatures appropriate for the removal of polymerization byproduct, in these cases, water or ethanol. This helps drive the reaction forward according to Le Chatelier's principle.

Both polymers were extremely lightweight, off-white foamy solids. After drying on vacuum filtration, they formed airy pucks (Figure 27). The pucks were very brittle and stabbing them with a spatula produced a crunch sound. As the polymer was handled and placed into the storage vial, powder broke off and floated around.


Figure 27: PCBBI-2 solid showing score marks after being stabbed with a spatula (left); the same sample, crumbled due to handling, in better lighting to showcase superb colorless clarity (right).

HRMS of PCBBI-1 showed peaks which corresponded to three oligomers of CBDE-6 and 1,7heptandiol. These were the CB terminated mono- (a-b-a), di- (a-b-a-b-a), and trimeric (a-b-a-b-a-b-a) structures as well as the cyclodimer. The complex peak pattern is in part due to the exchange
of the terminal ethyl group with the propyl groups from the catalyst. This results in three peaks for each of the oligomeric structures observed (Figure 28).


Figure 28: The 3 major oligomeric constituents of PCBBI-1 and their mono- and dipropyl substituted forms.

## Conclusions and Future work

In the course of this work, 10 novel CBBI compounds were synthesized. In addition, six protoCBBI compounds were synthesized. Altogether, eight novel crystal structures were collected. By identifying multiple synthetic pathways to the desired product through careful retrosynthetic
analysis, it was shown that difficulties in one method may be circumvented by use of another
(Figure 29).


Figure 29: The multiple pathways to construct the cyclobutane bisimide (CBBI) monomer building block from the common starting material, maleic anhydride derivative.

Two polyesters, PCBBI-1 and PCBBI-2, were synthesized using CBBIs as one of two comonomers. The former was synthesized using CBDE-6 and 1,7-heptandiol to afford an extremely lightweight, foamy solid polymer. The presence of polymer was confirmed using ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and HRMS . The latter was synthesized using CBDO-2 and adipic acid. The structure of PCBBI-2 is not yet elucidated, in part due to the difficulty in its solubilization. The method of polymerization used a titanium catalyst which is reported in the literature to produce high molecular weights, a fact which has not yet been confirmed for these polymers. Notably, these polymers were colorless.

# Chapter 3: Optimization of [2+2] Photocycloaddition using Solution Phase Ethylene. 

Introduction

Cis-cyclobutane-1,2-dicarboxylic anhydride (CBAn-1) is an important platform molecule to consider when studying other, substituted cyclobutane anhydrides and diacids. Presented here is an optimization of that synthesis first reported in 1971. ${ }^{34}$ The optimizations focus on reducing apparatus complexity and minimizing risk to the researcher from exposure to dangerous UV radiation or high temperature reaction conditions.

Processes by which a chemical change is brought to a substance by the absorption of light have been known since antiquity, using the sun as the light source. However, it wasn't until the $18^{\text {th }}$ century that photochemical experimentation as we know it today began. Even then, it was around 100 years later that [2+2] photocycloaddition reactions, the mechanism by which CBAn-1 is synthesized, were described and their products were properly elucidated. ${ }^{35}$

As our understanding of chemistry and photochemistry grew through these stages, and in the time since, so has the desire to miniaturize the light source. Currently, much of the UV-absorption photochemical work in literature uses traditional, specialized photoreactor lamps. These lamps are generally a medium pressure mercury lamp which emit in a very broad-spectrum including UV and visible light. They may be found in a variety of power outputs, from 100-1000W. Common lamps in literature are usually somewhere in the middle, around 450W (Figure $\mathbf{3 0}$ left). Despite the growing prevalence of light emitting diode (LED) array light sources, these lamps remain a favorite among researchers due to their broad-spectrum emission and familiarity.


Figure 30: A typical Hanovia medium-pressure mercury photochemical reactor lamp (left) and a typical photochemical reaction vessel with the quartz cooling jacket in place (right). It's placed in a stand which facilitates sumbersion of the vessel into a heating or cooling bath.

Because of the high-power output, the bulbs are extremely bright and can get extremely hot. Thus, precautions must be made to protect the researcher, the reaction, and the equipment. This is achieved by housing the bulb in a double-walled quartz jacket through which water is cycled. The primary purpose of water cooling is to prevent the bulb from self-destructing (though modern bulbs are manufactured with a fuse that will trip prior to destruction of the bulb itself) or igniting its surroundings. Additionally, this has the effect of maintaining reactions at reasonable
temperatures. ${ }^{36}$ Here, quartz is employed to allow the full UV spectrum to transmit through the glass cooling jacket. Use of standard borosilicate glass in this role is uncommon since it strongly absorbs UV radiation < 320nm. ${ }^{37}$ Quartz is much more expensive than borosilicate glass and so it is not typically found in labs. Needing to purchase specialized glassware can greatly increase the cost for a reaction. These cooling jackets are often fitted for use in specific photochemical reaction vessels (Figure $\mathbf{3 0}$ right). The immutability of reaction volume severely limits the ability of the researcher to scale a reaction up or down.

Additionally, reactions must be kept behind opaque shielding to protect the researcher from exposure to the bulb's emissions. Even in a case where the reaction vessel itself is not UV transparent, the intensely bright visible light can pose a threat to the eyesight of anyone who looks at them.

Finally, most of the energy output from traditional photoreactor lamps is wasted as either heat or emitted as wavelengths which are not absorbed by the molecule of interest. A common method to circumvent this issue is by use of photosensitizers such as acetophenone. Work by previous members of the Chu Research Group has shown that use of these broad emission spectrum lamps or photosensitizers is not necessary when the molecule of interest absorbs strongly in a region that overlaps with the peak emission of the UV source. ${ }^{24,28,38-40}$ This has allowed for the use of lower power bulbs which do not emit such intensely bright light and may not emit the more dangerous UV-B (280-315nm) and UV-C (100-280nm). This benefits the researcher by being much safer and easier to handle than traditional photoreactor bulbs at the cost of reaction time.

## History of CBAn-1 and CBeAn-1 syntheses

The initial procedure reported by Owsley and colleagues for the synthesis of CBAn-1 in 1971 made use of extremely low temperatures, $-65^{\circ} \mathrm{C}$, a 450 W medium-pressure mercury arc lamp, and $5 \%$ w/w acetophenone as a photosensitizer under an inert atmosphere of nitrogen. They note reaction times at low temperatures are on the order of 1-2 days whereas room temperature reactions are closer to 7 days. Additionally, they report ethyl acetate as the ideal solvent since other solvents (acetone, acetonitrile, and ether) produce a greater number and amount of sideproducts. Concentrations of starting material varied from $35-75 \mathrm{~g} / \mathrm{L}$. At $35 \mathrm{~g} / \mathrm{L}$ in EtOAc, they report a yield of $71 \%$, however, this number is based on unrecovered maleic anhydride. The overall yield based on initial starting material is $57 \%$. Isolation was achieved via fractional distillation of product with a variable take-off head.

In the decades since, some improvements have been made. In 2006, ${ }^{41}$ Faure and colleagues achieved much faster reaction times (5 hours) by greatly reducing the initial concentration of maleic anhydride in ACN to $2 \mathrm{~g} / \mathrm{L}$. They report $75 \%$ yield, but again, this is not based on theoretical yield of CBAn-1. Actual yield is 60\%, which is comparable to Owsley. This work also made use of acetophenone and a 400W medium-pressure mercury lamp fitted with a Pyrex filter. The specificity of including a Pyrex (borosilicate) filter suggests that they intentionally excluded deeper UV wavelengths, however that is not discussed in the publication. Isolation achieved via recrystallization of crude product from cyclohexane/ether.

In 2016, ${ }^{36}$ the synthesis conducted by Mercer and colleagues was very similar to the original Owsley synthesis in terms of concentration, solvent (ACN), and UV source (450W mercury lamp).

The notable difference is that they do not cool the reaction down to such low temperatures. Their reaction time was 7 days, which is in line with the observations of Owsley. Work up was removal of maleic anhydride via sublimation under strong vacuum for 2 days for a total reaction time of 9 days. The yield after this process was $73 \%$ crude product and was used without further purification.

More recent literature ${ }^{42-44}$ has used this classic [2+2]photocycloaddition as a model for the development of flow chemistry apparatuses with gaseous reactants. UV sources vary from 1000W medium pressure mercury lamps to 365 nm LED arrays of varied wattage. These reactions were all performed at elevated pressures (6-12 bar). Given the nature of flow reactor set-ups, yield is difficult to compare but ranged from $0.1-22 \mathrm{~g}$ per hour of reactor run time.

An early synthesis for cis-3,4-cyclobutenedicarboxylic anhydride (CBeAn-1) and bis-1,1'-(cyclopropane-2,3-dicarboxylic acid anhydride) (CPDAn-1) was published in $1969^{45}$ by Willy Hartmann. In his work, Hartmann determined that the photosensitized [2+2]photocycloaddition between maleic anhydride and acetylene will result in CBeAn-1 and three isomers of CPDAn-1 (Figure 31) in $36 \%$ and $48 \%$ yield, respectively. However, he discusses the disparity of molar ratio of yields in his work with that from an earlier synthesis, ${ }^{46}$ with the conclusion that the yield ratio is likely temperature dependent. As in the work by Faure et al., Hartmann specifies using a Pyrex cooling jacket, again suggesting the purposeful exclusion of deeper UV radiation.





Figure 31: The four products of the reaction between maleic anhydride and acetylene. From left to right: cis-3,4-cyclobutenedicarboxylic anhydride (CBeAn-1), trans,trans-bis-1,1'-(cyclopropane-2,3-dicarboxylic acid anhydride), cis,trans-bis-1,1'-(cyclopropane-2,3-dicarboxylic acid anhydride), and cis,cis-bis-1,1'-(cyclopropane-2,3-dicarboxylic acid anhydride). The isomeric cyclopropanes are collectively referred to as CPDAn-1.

In 1976, ${ }^{47}$ Bloomfield and Owsley published the first version of this synthesis optimized to obtain CBeAn-1. In doing so, they built a custom photochemical reactor that appears to be a prototype of those commercially available today. Their work made use of extremely low temperature cooling baths to keep the reaction at $-60^{\circ} \mathrm{C}$ and a very powerful, 1000 W photoreactor bulb. They also specify that their immersion cooling jacket was made from Pyrex.

In 1999, ${ }^{48}$ Gauvry and colleagues published an alternative, two step synthesis of CBeAn-1 as an alternative to the work by Owsley and Hartmann. A major motivator was the acute danger posed by the previous syntheses which all involved bubbling acetylene, an extremely flammable gas, through a solution of flammable solvent in very close contact with an intense heat source (the UV photoreactor lamp). This is a very real concern considering that even in their paper, Gauvry reports having ignited their reaction twice while synthesizing CBeAn-1 with classic methods. To avoid this, they elevate previous work ${ }^{49}$ in which a solution of maleic anhydride and 1,2-
dichloroethene in EtOAc was irradiated to afford 1,2-dichlorocyclobutane-3,4-dicarboxylic anhydride as a mixture of isomers. Gauvry found that the yield is actually improved by the elimination of photosensitizers. The second step is a reductive chlorine elimination in the presence of activated zinc to afford CBeAn-1 in 68\% overall yield.

Here, the optimizations to photochemical reactions developed by previous members of the Chu Research Group, in concert with various optimizations gleaned from the literature, were applied to the synthesis of CBAn-1 to achieve isolated yields of $70 \%$ at $\sim 1$ week of reaction time. The major contribution is the significant reduction in apparatus complexity and in the risk imposed by it to the researcher. It is hoped that by making the synthesis safer and simpler, this important molecule may receive more interest. Attempts at using the same optimizations to afford CBeAn1 did not yield isolated product but were successful as determined by NMR. Unambiguous confirmation of CBeAn-1 synthesis was achieved by SCXRD, a first for this product. Additionally, a new polymorph of the side product, CPDAn-1, was obtained.

## Methods and Materials

Synthesis of CBAn-1

A solution of maleic anhydride in ACN with a concentration of $75 \mathrm{~g} / \mathrm{L}$ was made in a 50 or 250 mL quartz round bottom flask. No additional photosensitizer was added at any point in the reaction. A hypodermic needle was extended through the entire length of a rubber septum or stopper which fit the opening of the flask. A small diameter hosing suitable for use in acetonitrile was then likewise extended through the entire length of the septum or stopper. The end of the hose was affixed with a Bubblemac Aeration Products gas dispersion stone model \#1111. The septum
or stopper was then fitted on the flask and the hosing was adjusted so the stone was fully submerged in the solution. Ethylene was delivered to the reaction through this stone with the needle acting as the outlet. Ethylene was delivered vigorously for 5-10 minutes to degas the solution and saturate it with dissolved ethylene. After this saturation period, the ethylene is turned down to a very gentle flow. The reaction mixture was then placed in the custom light array for photochemical reactions apparatus (LAPRA) and irradiated using eight (8) 14.7W Ushio G15T8E UV-B fluorescent bulbs (Figure 33) which were each powered by Intertek SLE15-BL fixtures.

Reaction progress was monitored by ${ }^{1} \mathrm{H}$-NMR. Samples were collected with a syringe by poking a long needle through the septum. In cases where more solvent had to be added, it was added in the same way.


Figure 32: Simplified reaction apparatus for synthesis of CBAn-1 known as the Light Array for Photochemical Reactions Apparatus or LAPRA. Left: LAPRA in open position for easy access to mixture. Right: $\operatorname{LAPRA}$ in closed position.


Figure 33: A typical UV-B bulb used in the synthesis of CBAn-1.

Upon completion of the reaction, the mixture was transferred to a Pyrex round bottom flask and solvent was gently distilled using a standard distillation apparatus with a fractional column. The
solvent was collected and stored for reuse in subsequent reactions. Distillation proceeded until no more solvent was observed condensing in the column. At this time, while the reaction mixture was still liquid, it was transferred to a smaller Pyrex round bottom flask for subsequent purifying distillation. A stir bar was added to help smooth the boil.

The flask was fitted with a vacuum jacketed, short-path distillation head to which a series of adapters had been affixed (Figure 34). The adapters were used primarily to prevent overflow in the case of bumping or sudden boil, but also served as a makeshift extension of the fractional column.


Figure 34: Vacuum jacketed, short path distillation head used for the purification of CBAn-1. Adapters installed to prevent overflow in the case of bumping.

The distillation head was fitted with an analogue thermometer. No coolant was used in the condensation column. The mixture was then distilled under a vacuum at $\sim 3 \mathrm{~mm} \mathrm{Hg}$ maintained using a Welsh Chemstar 1400 N vacuum pump.

The collected product was placed in a vial fitted with a septum and the atmosphere inside the vial was purged with nitrogen to prevent hydrolysis during storage. In this manner, minimal hydrolysis was observed after 5 weeks. Hydrolysis may be further inhibited by storage of the solid in pellets or chunks rather than as a powder.

## Synthesis of CBeAn-1 and CPDAn-1

The methods used in the synthesis of CBeAn-1 were the same general methods as those used for CBAn-1 except ethyl acetate was used as solvent and acetophenone was added as a photosensitizer. In cases where a large amount of CPDAn-1 polymer was formed, this was separated by centrifuge. The supernatant was then decanted and collected for work up.

Isolation was attempted using vacuum distillation prior to obtaining vacuum jacketed apparatus and was only marginally successful. Positive confirmation of product identity was obtained via SCXRD of crystals grown from concentrated reaction mixtures. NMR data in the following section are obtained from crude spectra where all other peaks can be accounted for and by comparison to published spectra when possible. ${ }^{48}$

## Synthesis of imide from CBAn-1

An imide, cis-( $N$-phenyl)-1,2-cyclobutanecarboximide (CBI-1), was synthesized from CBAn-1 as a proof of concept for the functionalization of CBAn-1. The reaction was successful and the desired product was obtained in $82 \%$ yield. This shows that CBAn-1 is thermally stable enough for efficient
imidization of the anhydride. Subsequent reactions will focus on the installation of R groups with existing functionalization. For example, if similar reactions are likewise achievable, reacting CBAn1 with dimethyl aspartate will afford a cyclobutanecarboximide product with a diester on the R group. This diester can be incorporated into a polymer chain and the resulting structure will have a pendant CBI group.

## Experimental

cis-1,2-cyclobutanedicarboxylic anhydride (CBAn-1)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta 3.53(\mathrm{brt}, \mathrm{J}=4.02 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 2.41(\mathrm{br} \mathrm{m}, 2 \mathrm{H}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400$ Hz, DMSO-D6) $\delta 3.52$ (br t, J=4.32 Hz, 2H), 2.61 (br m, 2H), 2.22 (br m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{~Hz}$, $\left.\mathrm{CDCl}_{3}\right)$ ( 173.4, 38.73, 23.13.
cis-3,4-cyclobutenedicarboxylic anhydride (CBeAn-1)


[^1]bis-1,1'-(cyclopropane-2,3-dicarboxylic acid anhydride) (CPDAn-1)

*Mixture of 3 isomers
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{D} 6) \delta 3.24-3.17$ ( $\left.\mathrm{s} / \mathrm{m}, 4 \mathrm{H}\right), 2.20-1.93(\mathrm{~s} / \mathrm{m}, 2 \mathrm{H})$
cis-(n-phenyl)cyclobutane-1,2-carboximide
0.7696 g of CBAn-1 and 0.6327 (1.1 eq) was added to a 50 mL round bottom flask with 40 mL toluene and stir bar. Upon refluxing overnight, partial conversion to product was observed by ${ }^{1} \mathrm{H}-$ NMR. The reaction was placed in a 100 mL round bottom flask and 0.5 mL concentrated sulfuric acid was added. The reaction was placed back in the oil bath to reflux. Initially the reaction appeared cloudy but quickly became clear one more and a brown, oily precipitate formed. The reaction was allowed to reflux overnight again. The reaction was washed with $1 \times 50 \mathrm{~mL}$ DI water, $1 \times 40 \mathrm{ml} \mathrm{NaHCO} 3$, and $1 \times 20 \mathrm{ml}$ brine. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed in vacuo to afford 1.0129 g of $\tan$ solid ( $82 \%$ yield).

${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{~Hz}$, DMSO-D6) $\delta 7.53(\mathrm{t}, \mathrm{J}=7.58 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=7.26 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=7.92 \mathrm{~Hz}$, $2 \mathrm{H}), 3.40(\mathrm{br} \mathrm{t}, \mathrm{J}=3.99 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{br} m, \mathrm{~J}=6.08 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{br} \mathrm{q}, \mathrm{J}=7.42 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{Hz}, \mathrm{CDCl}_{3}\right) \delta 179.45,133.24,129.29,128.73,127.67,38.70,22.68$. FT-IR $\left(\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}\right): 2959(\mathrm{w}, \mathrm{CH}$ stretching), 1691 (s, C=O stretching), 1378 (m, CN from aromatic), 1171 (s, CO stretching).

## Results and Discussion

Synthesis of CBAn-1

On average, reactions proceeded to $\sim 80 \%$ conversion at 5 days and $92-95 \%$ conversion at 10 days as estimated by peak integration of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of crude reaction mixture. The increase in yield from days 6 to 10 is only $2-10 \%$ and so the products were usually harvested at 5-6 days of reaction time. Two major side products are identified in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$. First is the [2+2]photocycloaddition dimer of maleic anhydride (CBDAn-1 ${ }^{24}$ ) and its singly and doubly hydrolyzed analogues. The second is fumaric acid, which is the more stable, trans geometric isomer of maleic acid. Maleic acid itself is formed from the hydrolysis of maleic anhydride starting material. CBDAn-1 has moderate solubility in ACN but a small amount of crystalline precipitate was still observed to form in the bottom of the flask and in the gas sparger stone. Because of this, the percentage conversion estimates above are not indicative of true conversion to product. However, since maleic anhydride is the limiting reactive species and since it is also consumed in all side-products, reduction in the integration of its peak is still an effective way to gauge when to stop the reaction.

The flow of ethylene was kept as low as possible, gauged by the formation of small bubbles about once every second. This low rate was chosen because it still kept a sufficient amount of ethylene
dissolved in solution and did not severely increase the rate of solvent evaporation. Initial trials used higher flows which greatly increased the amount of solvent lost to evaporation. Some instances were so severe that upon returning to the lab after leaving it overnight, the level was reduced to levels below the gas dispersion stone. The solution to this problem was found by decreasing the outlet size using a hypodermic needle and lowering the flow of gas. These two modifications reduced the amount of solvent loss (and thus replacement) for a 200 mL reaction to only 20 mL over the course of 1 week.

## Purification of CBAn-1 by distillation

Maleic anhydride was observed to have deposited on the inner walls of the column and distillation head beginning at ${ }^{\sim} 90^{\circ} \mathrm{C}$. In cases where there is a large amount of unreacted maleic anhydride, it may be collected in the first fraction and saved for subsequent reactions. However, in most cases, the maleic anhydride did not travel to the collection flask and the small amount in the distillation head made it extremely difficult to collect. In these scenarios, the distillation head was removed and rinsed with acetone to remove all the maleic anhydride residue. The distillation head was then replaced, and the distillation continued. The desired product, CBAn-1, was observed to boil at ${ }^{\sim} 120^{\circ} \mathrm{C}$ at 3 mm Hg . Because of the high boiling and melting points of the product at atmospheric pressure, it is possible that it may solidify elsewhere in the system, such as in the condensation column or receiving channel. When this happens, the channel can become blocked, quickly destroying the vacuum in the distillation flask and causing the boil to cease. A heat gun may be used to clear the blockage by melting it, but it can be difficult to deliver the heat effectively when the blockage is at the tip of the receiving channel (thus is it shielded by the vacuum formed in the receiving adapter). Additionally, as observed in initial trials, when this
blockage is eventually cleared, the distillation flask immediately begins to boil vigorously, and overflow is almost certain to happen. This can be prevented by using a distillation head with a short receiving channel and by keeping all parts of the distillation head hot during the distillation.

## Synthesis and Distillation of CBeAn-1 and CPDAn-1

Due to the success of the synthesis of CBAn-1 with the modified procedure, it was decided to adapt it for the synthesis of a more synthetically useful material, cis-3,4-cyclobutenedicarboxylic anhydride (CBeAn-1). CBeAn-1, similar to CBAn-1, is a known reaction, but has not received much attention, likely due to its complicated and dangerous synthesis. It is also of interesting note that CBeAn-1 was synthesized before CBAn-1, a surprising fact given the relative difficulties between the two reactions.

Initial attempts using ACN as solvent resulted in a large formation of a poorly soluble, tan solid with a silt-like consistency and CBeAn-1 as the minor product. Given the poor solubility of the tan solid, it was assumed to be polymeric CPDAn-1 as reported by Owsley. ${ }^{47}$ This was supported by SCXRD analysis of crystals from these reactions which provided the trans,trans isomer CPDAn-1. Additionally, this polymorph was different than the one previously reported. ${ }^{50}$ The crystals were difficult to separate from the bulk powder which contained all three isomers multiple isomers, and thus the collected ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were messy and inconclusive.

Subsequent attempts used EtOAc which provided a significantly reduced polymer yield. Isolation of the product via distillation was difficult because of the stepwise hydrolytic then thermal degradation of CBeAn-1. First, CBeAn-1 undergoes hydrolysis, to which it is highly sensitive. Second, the hydrolyzed product, cis-3,4-cyclobutenedicarboxylic acid, readily undergoes thermal
conrotatory ring-opening to afford cis,trans-muconic acid. This was also observed when attempting to extract CBeAn-1 with hexane. After concentration, the resulting solid is almost entirely cis,trans-muconic acid. Although disappointing to lose the cyclobutene product, the presence of cis,trans-muconic acid could only be explained if it were present, furthering the proof of the success of the synthesis.

Because of the difficulties with isolation, yields for CBeAn-1 could not be determined because pure samples were not obtained. Additionally, since it was not a desired product, yields for CPDAn-1 were not calculated.

## Appendices

Appendix A: Selected NMR Spectra


Figure A 1: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of CBBI-1 at room temperature.


Figure A 2: ${ }^{13}$ C-NMR of CBBI-1 at room temperature.


Figure A $3:{ }^{1} \mathrm{H}-\mathrm{NMR}$ of CBBI-2 at room temperature.


Figure A 4: ${ }^{13}$ C-NMR of CBBI-2 at room temperature.


Figure A 5: ${ }^{1} \mathrm{H}$-NMR of CBDA-6 at room temperature.


Figure A 6: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of CBDA-6 at room temperature.


Figure A 7: DEPT135 of CBDA-6 at room temperature.


Figure A 8: ${ }^{1} \mathrm{H}$-NMR of CBDA-7 at room temperature.


Figure A 9: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of CBDA-7 at room temperature.


Figure A 10: HSQC of CBDA-7 at room temperature.


Figure A 11: ${ }^{1} \mathrm{H}$-NMR of CBDAc-1 at room temperature.


Figure A 12: ${ }^{13} \mathrm{C}$-NMR of CBDAC-1 at room temperature.


Figure A 13: DEPT135 of CBDAc-1 at room temperature.


Figure A 14: HSQC of CBDAC-1 at room temperature.


Figure A 15: HMBC of CBDAC-1 at room temperature.


Figure A 16: COSY of CBDAc-1 at room temperature.


Figure A 17: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of CBDE-6 at room temperature.


Figure A 18: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of CBDE-6 at room temperature.


Figure A 19: DEPT135 of CBDE-6 at room temperature.


Figure A 20: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of CBDE-7 at room temperature.


Figure $A$ 21: ${ }^{13} C-N M R$ of CBDE-7 at room temperature.


Figure A 22: DEPT135 of CBDE-7 at room temperature.


Figure A 23: H-C correlation of CBDE-7 at room temperature.


Figure $A$ 24: ${ }^{13} \mathrm{C}$-NMR of CBDH-1 at room temperature.


Figure A 25: ${ }^{1} \mathrm{H}$-NMR of CBDO-2 at room temperature using synthetic method 1


Figure A 26: ${ }^{1} \mathrm{H}$-NMR of CBDO-2 at room temperature using synthetic method 2


Figure A 27: ${ }^{13}$ C-NMR of CBDO-2 at room temperature using synthetic method 1
5-75 - precip isolate



Figure A 29: ${ }^{13} \mathrm{C}$-NMR of CBDO-3 at room temperature


Figure A 30: HSQC of CBDO-3 at room temperature


Figure A 31: HMBC of CBDO-3 at room temperature


Figure A 32: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of CBDV-1 at room temperature


Figure A 33: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of CBDV-1 at room temperature


Figure A 34: DEPT135 of CBDV-1 at room temperature


Figure A 35: HSQC of CBDV-1 at room temperature


Figure A 36: HMBC of CBDV-1 at room temperature


Figure A 37: COSY of CBDV-1 at room temperature


Figure A 38: ${ }^{1} \mathrm{H}$-NMR of protoCBBI-2 (maleimide) at room temperature


Figure $A 39:{ }^{13} C-N M R$ of protoCBBI-2 (maleimide) at room temperature


Figure A 40: ${ }^{1} \mathrm{H}$-NMR of protoCBDAc-2 at room temperature


Figure $A$ 41: ${ }^{13} \mathrm{C}$-NMR of protoCBDAc-2 at room temperature


Figure A 42: ${ }^{1} \mathrm{H}$-NMR of protoCBDE-6 at room temperature


Figure $A$ 43: ${ }^{13} C-N M R$ of protoCBDE-6 at room temperature


Figure $\mathrm{A} 44:{ }^{1} \mathrm{H}-\mathrm{NMR}$ of protoCBDE-7 at room temperature


Figure $A$ 45: ${ }^{13} C-N M R$ of protoCBDE-7 at room temperature


Figure A 46: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of protoCBDH-1 at room temperature


Figure A 47: ${ }^{13} \mathrm{C}$-NMR of protoCBDH-1 at room temperature


Figure A 48: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of protoCBDO-2 at room temperature


Figure $A$ 49: ${ }^{13} \mathrm{C}$-NMR of protoCBDO-2 at room temperature


Figure A 50: DEPT135 of protoCBDO-2 at room temperature


Figure A 51: HSQC of protoCBDO-2 at room temperature


Figure A 52: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of protoCBDV-1 at room temperature


Figure $A 53:{ }^{13} \mathrm{C}$-NMR of protoCBDO-2 at room temperature


Figure A 54: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $C B A n-1$ at room temperature


Figure $A 55:{ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathrm{CBAn-1}$ in $\mathrm{CDCl}_{3}$ at room temperature


Figure $A 56:{ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathrm{CBAn}-1$ in $\mathrm{CDCl}_{3}$ at room temperature


Figure A 57: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of powder containing mixture of CPDAn-1


Figure A 58: ${ }^{13} \mathrm{C}$-NMR of powder containing mixture of CPDAn-1


Figure A 59: DEPT135 of powder containing mixture of CPDAn-1


Figure A 60: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of crystal of CPDAn-1which was coated in powder


Figure A 61: ${ }^{13}$ C-NMR of crystal of CPDAn-1 which was coated in powder


Figure A 62: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathrm{CBI}-1$


Figure A 63: ${ }^{13} \mathrm{C}$-NMR of CBI-1


Figure A 64: DEPT135 of CBI-1


Figure A 65: HSQC of CBI-1


Figure A 66: HMBC of CBI-1

Appendix B: Crystallographic Data


Figure B 1: Crystal data and structure for CBDA-7


Figure B 2: Crystal data and structure for CBDE-6


Figure B 3: Crystal data and structure for CBDE-7


Figure B 4: Crystal data and structure for CBDH-1


Figure B 5: Crystal data and structure for CBDO-1


Figure B 6: Crystal data and structure for protoCBDAc-1

| Crystal parameters | protoCBDE-6 |
| :---: | :---: |
| Formula | $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}$ |
| MW (g/mol) | 211.21 |
| Crystal System | Monoclinic |
| Space Group | P $121 / \mathrm{c} 1$ |
| a (Å) | 7.7975(4) |
| b (Å) | 15.6353(6) |
| c (Å) | 8.8250(3) |
| $\alpha\left({ }^{\circ}\right)$ | 90 |
| $\beta\left({ }^{\circ}\right)$ | 100.236(3) |
| $\gamma\left({ }^{\circ}\right)$ | 90 |
| $V\left({ }^{3}{ }^{3}\right)$ | 1058.79(8) |
| Z | 4 |
| Temp. (K) | 111.14 |
| $\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | 1.325 |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 0.868 |
| Radiation type | CuKa ( $\lambda=1.54178$ ) |
| F(000) | 448.0 |
| \# of measured refl. | 9167 |
| \# of independent refl. | 1884 |
| \# of refl. ( $1 \geq \mathbf{2 \sigma}$ ) | 1650 |



Figure B 7: Crystal data and structure for protoCBDE-6


Figure B 8: Crystal data and structure for protoCBDH-1

| Crystal parameters | CBeAn-1 |
| :---: | :---: |
| Formula | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{3}$ |
| MW (g/mol) | 124.09 |
| Crystal System | Orthothombic |
| Space Group | Pnma |
| a (Å) | 5.0155(2) |
| b (Å) | 10.4273(5) |
| $c$ (Å) | 10.0627(5) |
| $\alpha\left({ }^{\circ}\right)$ | 90 |
| $\beta\left({ }^{\circ}\right)$ |  |
| $Y\left({ }^{\circ}\right)$ | 90 |
| $V\left(\AA^{3}\right)$ | 526.26(4) |
| Z | 4 |
| Temp. (K) | 296 |
| $\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | 1.566 |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 1.105 |
| Radiation type | CuK $\alpha$ ( $\lambda=1.54178$ ) |
| F(000) | 256.0 |
| \# of measured refl. | 2152 |
| \# of independent refl. |  |
| \# of refl. ( $1 \geq 2 \sigma$ ) | 452 |



Figure B 9: Crystal data and structure for CBeAn-1


Figure B 10: Crystal data and structure for CPDAn-1

Appendix C: Selected HRMS spectra


Figure C 1: Full high resolution mass spectrum for CBDE-6


Figure C 2: Predicted [M+Na] peaks for CBDE-6 (top) and measured (bottom)


Figure C 3: Full high resolution mass spectrum for PCBBI-1



Figure C 5: Predicted [M+Na] peaks for monopropyl-substituted a-b-a oligomer of PCBBI-1 (top) and measured (bottom)


Figure C 6: Predicted [M+Na] peaks for dipropyl-substituted $a$-b-a oligomer of PCBBI-1 (top) and measured (bottom)










Figure C 9: Predicted [M+Na] peaks for monopropyl-substituted $a-b-a-b-a$ oligomer of PCBBI-1 (top) and measured (bottom)














Figure C 12: Predicted [ $M+N a]$ peaks for monopropyl-substituted $a-b-a-b-a-b-a$ oligomer of PCBBI-1 (top) and measured (bottom)

 $\left.\right|^{\text {E }}$

Appendix D: Selected IR spectra


Figure D 1: IR spectra for CBBI-1


Figure D 2: IR spectra for CBBI-2


Figure D 3: IR spectra for CBDO-2


Figure D 4: IR spectra for CBDE-6


Figure D 5: IR spectra for CBDE-7


Figure D 6: IR spectra for CBDV-1


Figure D 7: IR spectra for protoCBDAc-1


Figure D 8: IR spectra for protoCBDE-6


Figure D 9: IR spectra for protoCBDE-7


Figure D 10: IR spectra for protoCBDH-1


Figure D 11: IR spectra for protoCBDO-2


Figure D 12: IR spectra for protoCBDV-1


Figure D 13: IR spectra for (N-phenyl)-cis-1,2-cyclobutancarboximide

Appendix E: Rigidity Data

Figure E 1: Data for Figure 3

| $\mathrm{E}_{\text {win }}$ | nC | $V_{w}$ mean | Chain |  |  | $V_{w}$ mean | Cyclic |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $V_{\text {wpot }}$ mean |  |  |  | $V_{\text {wpot }}$ mean |  |  |  |
|  |  | $\mathrm{Rg}_{\mathrm{f}}$ | Std dev | V ${ }_{\text {w }}$ | $\mathrm{V}_{\text {Wpot }}$ | $\mathrm{Rg}_{\mathrm{f}}$ | Std dev | V ${ }_{\text {w }}$ | $\mathrm{V}_{\text {Wpot }}$ |
| 2.5 | 4 | 79.756 | $\pm 0.769$ | 78.924 | 100.945 | 67.727 | $\pm 1.447$ | 67.204 | 78.836 |
|  |  | 102.524 | $\pm 4.990$ | 80.441 | 108.112 | 78.556 | $\pm 2.370$ | 66.614 | 80.773 |
|  |  | 0.778 | $\pm 0.039$ | 79.902 | 98.514 | 0.862 | $\pm 0.032$ | 69.363 | 76.058 |
|  | 5 | 94.414 | $\pm 0.877$ | 94.394 | 159.462 | 86.439 | $\pm 0.837$ | 86.410 | 109.030 |
|  |  | 157.557 | $\pm \quad 1.737$ | 95.301 | 156.061 | 109.540 | $\pm 0.578$ | 85.616 | 109.422 |
|  |  | 0.599 | $\pm 0.009$ | 93.547 | 157.149 | 0.789 | $\pm 0.009$ | 87.290 | 110.168 |
|  | 6 | 111.902 | $\pm 2.590$ | 109.209 | 208.914 | 100.709 | $\pm 2.456$ | 101.669 | 114.990 |
|  |  | 208.490 | $\pm 6.703$ | 114.376 | 201.586 | 117.117 | $\pm 1.928$ | 97.918 | 117.611 |
|  |  | 0.537 | $\pm 0.021$ | 112.121 | 214.971 | 0.860 | $\pm 0.025$ | 102.539 | 118.749 |
|  | 7 | 128.452 | $\pm 1.860$ | 130.498 | 272.920 | 116.838 | $\pm 2.671$ | 117.070 | 163.851 |
|  |  | 268.665 | $\pm 3.687$ | 127.993 | 266.403 | 166.276 | $\pm 2.481$ | 119.385 | 166.168 |
|  |  | 0.478 | $\pm 0.010$ | 126.864 | 266.673 | 0.703 | $\pm 0.019$ | 114.058 | 168.810 |
|  | 8 | 145.083 | $\pm \quad 1.329$ | 143.799 | 354.026 | 134.694 | $\pm 0.871$ | 133.827 | 203.622 |
|  |  | 352.689 | $\pm 3.065$ | 146.453 | 354.858 | 205.544 | $\pm 1.667$ | 135.569 | 206.423 |
|  |  | 0.411 | $\pm 0.005$ | 144.996 | 349.182 | 0.655 | $\pm 0.007$ | 134.687 | 206.588 |
|  | 9 | 159.940 | $\pm 3.078$ | 163.402 | 418.264 | 151.520 | $\pm 2.150$ | 150.817 | 241.636 |
|  |  | 429.025 | $\pm 9.481$ | 157.509 | 432.662 | 242.030 | $\pm \quad 5.771$ | 149.810 | 247.988 |
|  |  | 0.373 | $\pm 0.011$ | 158.909 | 436.150 | 0.626 | $\pm 0.017$ | 153.933 | 236.467 |
|  | 10 | 177.152 | $\pm 5.845$ | 182.984 | 581.641 | 166.493 | $\pm 3.637$ | 164.625 | 279.273 |
|  |  | 587.965 | $\pm 10.006$ | 177.178 | 599.501 | 280.183 | $\pm \quad 1.156$ | 164.169 | 281.484 |
|  |  | 0.301 | $\pm 0.011$ | 171.293 | 582.752 | 0.594 | $\pm 0.013$ | 170.684 | 279.792 |
| 6.0 | 4 | 78.371 | $\pm 0.835$ | 77.407 | 105.544 | 69.469 | $\pm 2.168$ | 69.469 | 75.912 |
|  |  | 105.343 | $\pm 1.019$ | 78.842 | 106.246 | 77.585 | $\pm 1.553$ | 71.636 | 78.982 |
|  |  | 0.744 | $\pm 0.011$ | 78.865 | 104.238 | 0.895 | $\pm 0.033$ | 67.301 | 77.860 |
|  | 5 | 95.700 | $\pm 2.052$ | 96.200 | 161.208 | 85.816 | $\pm \quad 1.772$ | 86.870 | 109.580 |
|  |  | 161.370 | $\pm 0.878$ | 97.456 | 160.584 | 110.822 | $\pm 1.287$ | 83.771 | 110.737 |
|  |  | 0.593 | $\pm 0.013$ | 93.444 | 162.317 | 0.774 | $\pm 0.018$ | 86.808 | 112.150 |
|  | 6 | 109.112 | $\pm 2.338$ | 107.901 | 224.880 | 99.129 | $\pm 1.930$ | 97.632 | 141.687 |
|  |  | 225.515 | $\pm 0.601$ | 111.807 | 225.590 | 139.276 | $\pm 2.623$ | 98.447 | 139.658 |
|  |  | 0.484 | $\pm 0.010$ | 107.628 | 226.075 | 0.712 | $\pm 0.019$ | 101.307 | 136.483 |
|  | 7 | 128.624 | $\pm 3.088$ | 129.606 | 293.829 | 117.281 | $\pm 0.858$ | 118.079 | 175.232 |
|  |  | 294.630 | $\pm 3.361$ | 131.102 | 298.319 | 173.390 | $\pm \quad 1.756$ | 116.373 | 171.735 |
|  |  | 0.437 | $\pm 0.012$ | 125.164 | 291.742 | 0.676 | $\pm 0.008$ | 117.390 | 173.202 |
|  | 8 | 144.808 | $\pm 3.626$ | 146.970 | 412.668 | 136.672 | $\pm 0.556$ | 136.341 | 202.211 |
|  |  | 406.651 | $\pm 5.255$ | 146.832 | 404.320 | 204.720 | $\pm 2.734$ | 136.362 | 207.633 |
|  |  | 0.356 | $\pm 0.010$ | 140.621 | 402.965 | 0.668 | $\pm 0.009$ | 137.314 | 204.315 |
|  | 9 | 161.443 | $\pm 1.996$ | 162.213 | 474.279 | 150.558 | $\pm 2.176$ | 148.753 | 249.426 |
|  |  | 489.517 | $\pm 18.860$ | 159.176 | 510.609 | 245.384 | $\pm \quad 5.779$ | 149.946 | 247.961 |
|  |  | 0.330 | $\pm 0.013$ | 162.939 | 483.661 | 0.614 | $\pm 0.017$ | 152.974 | 238.764 |
|  | 10 | 179.146 | $\pm 1.190$ | 178.897 | 644.237 | 168.008 | $\pm 4.266$ | 166.028 | 289.883 |
|  |  | 656.036 | $\pm 16.943$ | 180.441 | 648.420 | 286.350 | $\pm 6.190$ | 172.904 | 279.202 |
|  |  | 0.273 | $\pm 0.007$ | 178.101 | 675.450 | 0.587 | $\pm 0.020$ | 165.092 | 289.964 |

Figure E 2: Data for Figure 4 when $E_{\text {win }}=2.5 \mathrm{kcal} / \mathrm{mol}$

| Name | Rgf | $\begin{array}{r} \text { Rgf } \\ \text { error } \end{array}$ | Sconf <br> mean | Sconf sd | Sconf1 | Sconf2 | Sconf3 | $\begin{array}{r} \mathrm{Vw} \\ \text { mean } \end{array}$ | Vw sd | Vw1 | Vw2 | Vw3 | Vwpot mean | Vwpot <br> sd | Vwpot1 | Vwpot2 | Vwpot3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} (1 \alpha, 2 \alpha, 3 \alpha, 48)-2,4- \\ \text { dimethyl-1,3-diol } \end{array}$ | 0.764 | 0.039 | 2.225 | 0.001 | 2.224 | 2.225 | 2.225 | 117.599 | 5.460 | 112.090 | 117.698 | 123.009 | 153.987 | 3.375 | 157.159 | 154.362 | 150.441 |
| $\begin{array}{r} (1 \alpha, 2 \alpha, 38,4 \alpha)-2,4- \\ \text { dimethyl-1,3-diol } \end{array}$ | 0.788 | 0.010 | 4.087 | 0.143 | 3.922 | 4.170 | 4.170 | 117.199 | 1.497 | 116.465 | 116.211 | 118.922 | 148.662 | 0.287 | 148.938 | 148.366 | 148.681 |
| $\begin{array}{r} (1 \alpha, 2 \alpha, 38,48)-2,4- \\ \text { dimethyl-1,3-diol } \end{array}$ | 0.783 | 0.017 | 2.278 | 0.001 | 2.277 | 2.278 | 2.279 | 118.731 | 1.329 | 119.854 | 119.075 | 117.264 | 151.605 | 2.714 | 149.997 | 154.738 | 150.078 |
| $\begin{array}{r} (1 \alpha, 26,3 \alpha, 48)-2,4- \\ \text { dimethyl-1,3-diol } \end{array}$ | 0.864 | 0.026 | 1.327 | 0.000 | 1.327 | 1.327 | 1.327 | 117.263 | 1.582 | 116.116 | 116.605 | 119.067 | 135.668 | 3.707 | 131.900 | 139.311 | 135.792 |
| 1-(4-hydroxybutyl) hexanedioate | 0.666 | 0.018 | 4.440 | 0.485 | 4.144 | 5.000 | 4.176 | 209.813 | 1.723 | 210.298 | 211.242 | 207.899 | 314.936 | 8.301 | 319.208 | 305.369 | 320.231 |
| 1,3-propanediol | 0.602 | 0.020 | 2.739 | 0.000 | 2.739 | 2.739 | 2.739 | 79.193 | 1.866 | 79.886 | 77.079 | 80.614 | 131.486 | 3.196 | 135.158 | 129.980 | 129.321 |
| 1,4-butanediol | 0.549 | 0.008 | 5.310 | 0.133 | 5.233 | 5.233 | 5.463 | 95.756 | 0.949 | 96.472 | 94.679 | 96.115 | 174.514 | 1.997 | 172.213 | 175.787 | 175.544 |
| 1,6-hexanediol | 0.416 | 0.010 | 11.039 | 0.039 | 11.079 | 11.001 | 11.039 | 126.783 | 2.236 | 124.848 | 129.231 | 126.269 | 304.527 | 4.785 | 303.560 | 300.300 | 309.722 |
| 1,8-octanediol | 0.350 | 0.004 | 12.128 | 0.071 | 12.180 | 12.048 | 12.158 | 179.163 | 1.060 | 178.259 | 178.901 | 180.330 | 512.088 | 4.502 | 514.920 | 514.447 | 506.897 |
| 2,2,3,3-tetramethylbutane | 0.793 | 0.019 | 0.356 | 0.617 | 0.000 | 0.000 | 1.068 | 144.170 | 3.080 | 142.490 | 147.725 | 142.296 | 181.831 | 1.728 | 182.806 | 182.851 | 179.836 |
| 2,2,4-trimethylpentane | 0.614 | 0.021 | 2.919 | 0.001 | 2.918 | 2.919 | 2.919 | 146.794 | 4.075 | 143.690 | 145.282 | 151.409 | 239.240 | 4.945 | 237.622 | 244.791 | 235.307 |
| 2,2-dimethylhexane | 0.582 | 0.016 | 2.945 | 0.136 | 2.788 | 3.023 | 3.023 | 140.639 | 3.693 | 141.238 | 143.996 | 136.683 | 241.458 | 1.763 | 239.687 | 241.472 | 243.214 |
| 2,3,3-trimethylpentane | 0.624 | 0.023 | 4.714 | 0.000 | 4.714 | 4.714 | 4.714 | 145.971 | 3.860 | 143.712 | 143.774 | 150.429 | 233.871 | 6.033 | 238.095 | 236.556 | 226.962 |
| 2,3,4-trimethylpentane | 0.573 | 0.013 | 3.272 | 0.108 | 3.147 | 3.335 | 3.334 | 142.289 | 1.058 | 143.326 | 142.329 | 141.211 | 248.461 | 5.403 | 243.015 | 253.821 | 248.546 |
| 2,5-diemthylhexane | 0.543 | 0.010 | 5.460 | 0.000 | 5.460 | 5.460 | 5.460 | 147.003 | 1.132 | 145.930 | 148.186 | 146.892 | 270.810 | 4.429 | 275.878 | 268.866 | 267.685 |
| 2,6-naphthoic dicarboxylic acid | 0.963 | 0.025 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 180.582 | 3.404 | 183.253 | 176.750 | 181.744 | 187.514 | 3.327 | 188.527 | 190.215 | 183.798 |
| 2-Hydroxyethyl 4formylbenzoate | 0.447 | 0.011 | 4.456 | 0.047 | 4.429 | 4.510 | 4.428 | 168.383 | 1.886 | 169.193 | 166.228 | 169.729 | 377.002 | 8.329 | 377.697 | 384.961 | 368.347 |
| 2-methylheptane | 0.481 | 0.010 | 7.324 | 0.052 | 7.380 | 7.315 | 7.277 | 145.604 | 2.855 | 142.316 | 147.455 | 147.041 | 302.586 | 2.651 | 305.328 | 302.394 | 300.037 |
| 3,3-dimethylhexane | 0.603 | 0.009 | 4.703 | 0.030 | 4.686 | 4.686 | 4.738 | 146.339 | 1.289 | 145.720 | 147.821 | 145.478 | 242.731 | 2.987 | 239.454 | 243.436 | 245.302 |
| 3-ethyl-2-methylpentane | 0.566 | 0.014 | 4.428 | 0.155 | 4.256 | 4.556 | 4.471 | 144.095 | 1.730 | 144.874 | 145.298 | 142.112 | 254.476 | 5.340 | 248.602 | 255.789 | 259.037 |
| 3-ethyl-3-methylpentane | 0.553 | 0.017 | 3.150 | 0.061 | 3.087 | 3.210 | 3.152 | 144.070 | 3.336 | 145.451 | 146.495 | 140.266 | 260.643 | 5.374 | 266.821 | 258.059 | 257.049 |
| 3-ethylhexane | 0.507 | 0.011 | 6.626 | 0.201 | 6.562 | 6.851 | 6.466 | 142.601 | 1.526 | 144.206 | 142.428 | 141.169 | 281.098 | 4.981 | 285.980 | 276.024 | 281.289 |
| 4-methoxy-1-butanol | 0.532 | 0.017 | 4.971 | 0.000 | 4.971 | 4.971 | 4.971 | 111.718 | 2.667 | 110.219 | 114.797 | 110.139 | 209.815 | 4.723 | 206.096 | 208.219 | 215.129 |
| 4-methylheptane | 0.509 | 0.011 | 8.333 | 0.067 | 8.410 | 8.303 | 8.286 | 144.277 | 3.157 | 141.900 | 143.072 | 147.859 | 283.296 | 1.471 | 282.106 | 284.941 | 282.842 |
| adipic acid | 0.393 | 0.011 | 8.134 | 0.057 | 8.091 | 8.113 | 8.198 | 131.871 | 1.963 | 132.927 | 129.606 | 133.080 | 335.238 | 8.421 | 336.023 | 326.452 | 343.239 |
| adipic acid mono(ethylene glycol) ester | 0.675 | 0.017 | 3.154 | 0.670 | 3.757 | 3.273 | 2.433 | 170.918 | 2.432 | 173.635 | 170.175 | 168.944 | 253.225 | 5.251 | 249.076 | 251.471 | 259.128 |
| aspartic acid mono(ethylene glycol) ester | 0.505 | 0.010 | 7.220 | 0.045 | 7.253 | 7.238 | 7.169 | 153.607 | 2.858 | 152.222 | 156.893 | 151.705 | 303.938 | 1.606 | 302.142 | 304.436 | 305.235 |
| BPA | 0.624 | 0.004 | 2.830 | 0.046 | 2.803 | 2.883 | 2.803 | 220.607 | 1.336 | 221.029 | 219.111 | 221.680 | 353.585 | 1.242 | 354.485 | 354.102 | 352.168 |
| butane | 0.778 | 0.039 | 1.938 | 0.000 | 1.938 | 1.938 | 1.938 | 79.756 | 0.769 | 78.924 | 80.441 | 79.902 | 102.523 | 4.990 | 100.945 | 108.112 | 98.514 |
| CBBl-1 | 1.006 | 0.019 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 148.773 | 1.778 | 150.617 | 147.069 | 148.634 | 147.922 | 2.128 | 150.234 | 147.487 | 146.046 |
| CBBI-2 | 0.975 | 0.027 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 209.839 | 4.685 | 211.327 | 213.599 | 204.591 | 215.287 | 3.648 | 211.159 | 216.623 | 218.079 |
| CBDA-1 | 0.616 | 0.020 | 2.511 | 0.257 | 2.363 | 2.807 | 2.363 | 268.315 | 7.338 | 266.291 | 276.452 | 262.201 | 435.346 | 7.160 | 440.933 | 427.275 | 437.830 |
| CBDA-4 | 0.556 | 0.019 | 4.919 | 0.467 | 4.439 | 5.373 | 4.945 | 265.023 | 7.532 | 259.745 | 261.674 | 273.649 | 476.447 | 9.014 | 472.890 | 486.697 | 469.753 |
| CBDA-6 | 0.552 | 0.018 | 2.480 | 0.000 | 2.480 | 2.480 | 2.480 | 333.623 | 3.426 | 332.473 | 330.920 | 337.477 | 604.646 | 18.599 | 625.599 | 590.087 | 598.252 |
| CBDA-7 | 0.711 | 0.017 | 0.365 | 0.000 | 0.365 | 0.365 | 0.365 | 300.934 | 6.927 | 296.470 | 297.419 | 308.914 | 423.279 | 3.411 | 424.810 | 425.657 | 419.371 |
| CBDAc-1 | 0.622 | 0.015 | 2.323 | 0.247 | 2.180 | 2.608 | 2.180 | 307.518 | 5.777 | 314.175 | 304.561 | 303.818 | 494.304 | 7.331 | 492.437 | 502.388 | 488.088 |
| CBDAn-1 | 1.035 | 0.027 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 143.440 | 2.530 | 145.000 | 144.799 | 140.521 | 138.588 | 2.732 | 141.721 | 137.349 | 136.695 |
| CBDAn-5 | 0.989 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 205.662 | 2.902 | 204.264 | 203.724 | 208.999 | 207.915 | 2.235 | 208.229 | 205.539 | 209.975 |
| CBDE-6 | 0.507 | 0.008 | 6.432 | 0.007 | 6.431 | 6.439 | 6.426 | 370.711 | 1.810 | 370.278 | 369.157 | 372.699 | 730.986 | 10.571 | 722.417 | 727.742 | 742.799 |
| CBDE-7 | 0.620 | 0.012 | 1.611 | 0.476 | 1.986 | 1.075 | 1.771 | 372.471 | 5.769 | 372.989 | 377.963 | 366.461 | 600.319 | 6.836 | 607.746 | 594.290 | 598.923 |


| СВDH-1 | 0.936 | 0.037 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 228.467 | 1.087 | 229.688 | 227.602 | 228.112 | 244.216 | 9.521 | 253.947 | 243.779 | 234.920 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CBDO-2 | 0.615 | 0.008 | 2.712 | 0.183 | 2.697 | 2.902 | 2.538 | 300.342 | 3.050 | 302.496 | 296.852 | 301.677 | 488.324 | 4.558 | 484.098 | 487.722 | 493.154 |
| CBDO-3 | 0.529 | 0.013 | 4.790 | 0.000 | 4.790 | 4.790 | 4.790 | 227.659 | 1.934 | 226.321 | 226.780 | 229.877 | 430.584 | 9.786 | 434.609 | 437.715 | 419.428 |
| CBDV-1 | 0.568 | 0.013 | 3.802 | 0.152 | 3.744 | 3.974 | 3.688 | 303.488 | 4.424 | 305.604 | 298.403 | 306.457 | 534.646 | 9.940 | 523.618 | 542.915 | 537.405 |
| cis-1,4-cyclohexane dicarboxylic acid | 0.575 | 0.018 | 3.242 | 0.172 | 3.137 | 3.148 | 3.440 | 155.359 | 3.411 | 151.922 | 158.744 | 155.411 | 270.037 | 6.244 | 262.832 | 273.890 | 273.388 |
| cis-1,4- <br> cyclohexanedimethanol | 0.598 | 0.015 | 5.364 | 0.002 | 5.363 | 5.365 | 5.363 | 151.542 | 3.333 | 147.850 | 152.445 | 154.331 | 253.495 | 2.856 | 250.502 | 256.191 | 253.792 |
| cis-1,4-cyclohexanediol | 0.679 | 0.023 | 2.411 | 0.000 | 2.411 | 2.411 | 2.411 | 115.775 | 2.854 | 119.070 | 114.147 | 114.108 | 170.495 | 3.967 | 165.918 | 172.630 | 172.937 |
| cis-2,2,4,4-tetramethyl- <br> 1,3-diol | 0.899 | 0.019 | 1.087 | 0.000 | 1.087 | 1.087 | 1.087 | 152.175 | 1.558 | 153.964 | 151.120 | 151.441 | 169.246 | 3.059 | 172.151 | 169.533 | 166.053 |
| cyclobutane | 0.862 | 0.032 | 1.377 | 0.000 | 1.377 | 1.377 | 1.377 | 67.727 | 1.447 | 67.204 | 66.614 | 69.363 | 78.556 | 2.370 | 78.836 | 80.773 | 76.058 |
| cyclodecane | 0.594 | 0.013 | 3.085 | 0.000 | 3.085 | 3.085 | 3.085 | 166.493 | 3.637 | 164.625 | 164.169 | 170.684 | 280.183 | 1.156 | 279.273 | 281.484 | 279.792 |
| cycloheptane | 0.703 | 0.019 | 0.283 | 0.490 | 0.849 | 0.000 | 0.000 | 116.838 | 2.671 | 117.070 | 119.385 | 114.058 | 166.276 | 2.481 | 163.851 | 166.168 | 168.810 |
| cyclohexane | 0.860 | 0.025 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 100.709 | 2.456 | 101.669 | 97.918 | 102.539 | 117.117 | 1.927 | 114.990 | 117.611 | 118.749 |
| cyclononane | 0.626 | 0.017 | 1.995 | 0.000 | 1.996 | 1.995 | 1.995 | 151.520 | 2.150 | 150.817 | 149.810 | 153.933 | 242.030 | 5.771 | 241.636 | 247.988 | 236.467 |
| cyclooctane | 0.655 | 0.007 | 2.575 | 0.681 | 2.969 | 1.789 | 2.969 | 134.694 | 0.871 | 133.827 | 135.569 | 134.687 | 205.544 | 1.667 | 203.622 | 206.423 | 206.588 |
| cyclopentane | 0.789 | 0.009 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 86.439 | 0.837 | 86.410 | 85.616 | 87.290 | 109.540 | 0.578 | 109.030 | 109.422 | 110.168 |
| cyclopropane | 0.968 | 0.030 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 54.337 | 0.699 | 54.464 | 53.583 | 54.964 | 56.105 | 1.572 | 55.705 | 54.771 | 57.838 |
| decane | 0.301 | 0.011 | 11.486 | 0.081 | 11.445 | 11.580 | 11.434 | 177.152 | 5.845 | 182.984 | 177.178 | 171.293 | 587.965 | 10.006 | 581.641 | 599.501 | 582.752 |
| difluorobenzophenone | 0.599 | 0.023 | 1.438 | 0.105 | 1.377 | 1.377 | 1.558 | 180.675 | 4.342 | 177.208 | 179.273 | 185.545 | 301.553 | 9.294 | 293.119 | 300.025 | 311.516 |
| dimethylmaleic anhydride | 0.993 | 0.020 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 209.756 | 3.846 | 207.879 | 214.180 | 207.210 | 211.132 | 1.873 | 211.209 | 209.222 | 212.965 |
| ethylene glycol | 0.612 | 0.023 | 4.347 | 0.000 | 4.347 | 4.347 | 4.347 | 61.563 | 1.782 | 61.845 | 59.657 | 63.187 | 100.587 | 2.449 | 102.442 | 101.507 | 97.811 |
| fumaric acid mono(ethylene glycol) ester | 0.467 | 0.015 | 5.064 | 0.000 | 5.064 | 5.064 | 5.064 | 132.993 | 3.381 | 135.224 | 129.102 | 134.652 | 284.779 | 5.478 | 281.938 | 281.306 | 291.094 |
| glutaric acid | 0.491 | 0.010 | 4.238 | 0.129 | 4.189 | 4.140 | 4.383 | 114.692 | 1.465 | 113.043 | 115.844 | 115.188 | 233.792 | 3.725 | 231.791 | 231.496 | 238.090 |
| glutaric acid mono(ethylene glycol) ester | 0.557 | 0.015 | 6.398 | 0.058 | 6.431 | 6.431 | 6.331 | 153.647 | 3.104 | 150.980 | 152.907 | 157.054 | 275.982 | 4.939 | 272.500 | 273.812 | 281.634 |
| heptane | 0.478 | 0.010 | 5.824 | 0.000 | 5.824 | 5.824 | 5.824 | 128.452 | 1.860 | 130.498 | 127.993 | 126.864 | 268.665 | 3.687 | 272.920 | 266.403 | 266.673 |
| hexane | 0.537 | 0.021 | 4.640 | 0.000 | 4.640 | 4.640 | 4.640 | 111.902 | 2.590 | 109.209 | 114.376 | 112.121 | 208.490 | 6.703 | 208.914 | 201.586 | 214.971 |
| hydroquinone | 0.953 | 0.028 | 1.358 | 0.000 | 1.358 | 1.358 | 1.358 | 99.083 | 2.715 | 96.247 | 101.659 | 99.343 | 103.977 | 1.056 | 102.933 | 103.955 | 105.044 |
| isophthalic acid | 0.955 | 0.033 | 1.995 | 0.000 | 1.995 | 1.995 | 1.995 | 134.823 | 4.452 | 131.135 | 133.566 | 139.769 | 141.204 | 1.637 | 141.333 | 142.773 | 139.507 |
| isophthalic acid mono(ethylene glycol) ester | 0.578 | 0.023 | 5.509 | 0.033 | 5.471 | 5.528 | 5.529 | 176.779 | 6.227 | 183.964 | 172.939 | 173.433 | 305.897 | 5.320 | 299.758 | 309.145 | 308.788 |
| maleic acid mono(ethylene glycol) ester | 0.516 | 0.013 | 5.028 | 0.193 | 5.000 | 4.850 | 5.233 | 135.284 | 2.407 | 135.321 | 132.858 | 137.673 | 261.938 | 4.485 | 262.259 | 257.301 | 266.254 |
| malic acid mono(ethylene glycol) ester | 0.526 | 0.011 | 5.579 | 0.031 | 5.574 | 5.612 | 5.551 | 147.215 | 1.541 | 146.460 | 148.989 | 146.197 | 279.979 | 5.000 | 285.425 | 278.918 | 275.596 |
| malonic acid | 0.520 | 0.015 | 5.007 | 0.145 | 5.150 | 5.010 | 4.860 | 82.555 | 1.440 | 82.037 | 84.183 | 81.446 | 158.799 | 3.515 | 160.842 | 154.741 | 160.815 |
| malonic acid mono(ethylene glycol) ester | 0.523 | 0.013 | 6.560 | 0.272 | 6.500 | 6.324 | 6.857 | 126.822 | 3.009 | 125.936 | 124.356 | 130.175 | 242.536 | 1.994 | 244.191 | 243.094 | 240.322 |
| meso-3,4-dimethylhexane | 0.508 | 0.008 | 3.595 | 0.073 | 3.511 | 3.637 | 3.637 | 145.178 | 1.453 | 144.256 | 146.852 | 144.425 | 285.645 | 3.346 | 289.433 | 284.413 | 283.090 |
| monomethyl succinate | 0.442 | 0.013 | 7.673 | 0.267 | 7.953 | 7.645 | 7.422 | 118.092 | 2.595 | 118.235 | 115.427 | 120.612 | 267.298 | 5.076 | 264.540 | 273.156 | 264.197 |
| nonane | 0.373 | 0.011 | 9.573 | 0.118 | 9.594 | 9.680 | 9.446 | 159.940 | 3.078 | 163.402 | 157.509 | 158.909 | 429.025 | 9.481 | 418.264 | 432.662 | 436.150 |
| octane | 0.411 | 0.005 | 7.647 | 0.078 | 7.737 | 7.605 | 7.600 | 145.083 | 1.329 | 143.799 | 146.453 | 144.996 | 352.689 | 3.065 | 354.026 | 354.858 | 349.182 |
| oxalic acid | 0.652 | 0.015 | 3.016 | 0.000 | 3.016 | 3.016 | 3.016 | 66.725 | 0.372 | 66.790 | 66.325 | 67.061 | 102.353 | 2.256 | 104.796 | 100.347 | 101.917 |
| para-phenylenediacetic acid | 0.554 | 0.012 | 3.744 | 0.206 | 3.543 | 3.954 | 3.736 | 169.516 | 0.537 | 170.031 | 169.559 | 168.960 | 305.824 | 6.773 | 302.552 | 301.309 | 313.612 |
| para-xylyene glycol | 0.603 | 0.022 | 5.486 | 0.029 | 5.461 | 5.519 | 5.478 | 132.870 | 2.968 | 136.141 | 130.350 | 132.119 | 220.362 | 6.234 | 225.788 | 213.553 | 221.747 |
| pentane | 0.599 | 0.009 | 2.866 | 0.074 | 2.823 | 2.823 | 2.952 | 94.414 | 0.877 | 94.394 | 95.301 | 93.547 | 157.557 | 1.737 | 159.462 | 156.061 | 157.149 |
| phosgene | 1.017 | 0.021 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 59.640 | 1.059 | 58.822 | 59.261 | 60.836 | 58.632 | 0.606 | 57.932 | 58.999 | 58.964 |
| phthalic acid | 0.694 | 0.013 | 3.124 | 0.389 | 3.349 | 3.348 | 2.674 | 135.689 | 1.005 | 135.562 | 136.752 | 134.754 | 195.569 | 3.277 | 193.344 | 199.333 | 194.031 |


| phthalic acid mono(ethylene glycol) ester | 0.549 | 0.017 | 5.296 | 0.167 | 5.198 | 5.489 | 5.201 | 176.369 | 5.159 | 173.671 | 173.118 | 182.318 | 321.358 | 3.174 | 320.671 | 324.820 | 318.584 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pimelic acid | 0.401 | 0.012 | 6.303 | 0.050 | 6.339 | 6.246 | 6.323 | 147.181 | 3.383 | 147.592 | 150.341 | 143.612 | 367.344 | 7.197 | 374.929 | 366.493 | 360.610 |
| poly(cis-1,6dimethoxyxcyclohexane)te rephthalate model | 0.323 | 0.008 | 8.878 | 0.204 | 8.967 | 9.022 | 8.644 | 267.632 | 6.278 | 268.540 | 273.407 | 260.949 | 829.216 | 6.461 | 834.904 | 822.191 | 830.552 |
| polyBPA terephthalate model | 0.386 | 0.007 | 7.197 | 0.111 | 7.072 | 7.283 | 7.238 | 337.863 | 6.065 | 334.161 | 344.862 | 334.567 | 875.954 | 4.717 | 881.261 | 874.361 | 872.239 |
| polybutylenesuccinate model | 0.674 | 0.016 | 5.074 | 0.032 | 5.037 | 5.085 | 5.098 | 172.914 | 2.322 | 171.995 | 175.555 | 171.193 | 256.569 | 5.213 | 262.334 | 255.188 | 252.187 |
| polybutylenesuccinate model, methylated | 0.285 | 0.005 | 12.738 | 0.391 | 12.528 | 12.497 | 13.190 | 205.008 | 2.188 | 205.670 | 202.565 | 206.789 | 718.822 | 9.914 | 729.794 | 710.506 | 716.167 |
| polybutyleneterephthalate model | 0.384 | 0.010 | 5.651 | 0.071 | 5.732 | 5.607 | 5.613 | 212.105 | 4.888 | 212.903 | 206.867 | 216.545 | 551.652 | 7.033 | 548.312 | 559.733 | 546.912 |
| polycarbonate model | 0.505 | 0.022 | 7.276 | 0.050 | 7.221 | 7.290 | 7.318 | 244.291 | 10.362 | 254.644 | 244.309 | 233.919 | 483.709 | 2.630 | 483.278 | 481.321 | 486.527 |
| polyether ether ketone <br> model | 0.354 | 0.010 | 6.424 | 0.532 | 6.956 | 6.426 | 5.891 | 269.918 | 6.341 | 272.381 | 262.716 | 274.658 | 763.030 | 13.607 | 747.352 | 771.772 | 769.965 |
| polyethylene naphthalate <br> model | 0.543 | 0.018 | 4.119 | 0.000 | 4.119 | 4.118 | 4.119 | 225.200 | 5.977 | 228.508 | 218.300 | 228.792 | 414.693 | 7.757 | 408.292 | 423.319 | 412.468 |
| polyethyleneterephthalate model | 0.458 | 0.018 | 2.995 | 0.001 | 2.994 | 2.995 | 2.995 | 180.861 | 5.880 | 183.893 | 174.084 | 184.606 | 395.162 | 8.710 | 399.487 | 385.137 | 400.863 |
| polypropyleneterephthala te model | 0.431 | 0.008 | 4.155 | 0.025 | 4.183 | 4.136 | 4.146 | 195.463 | 3.058 | 195.882 | 198.289 | 192.217 | 453.501 | 4.243 | 449.776 | 458.119 | 452.606 |
| propane | 0.993 | 0.032 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 60.865 | 0.388 | 61.267 | 60.834 | 60.494 | 61.293 | 1.936 | 63.524 | 60.043 | 60.314 |
| R,R-3,4-dimethylhexane | 0.492 | 0.011 | 5.132 | 0.034 | 5.119 | 5.107 | 5.171 | 144.319 | 2.331 | 146.329 | 144.866 | 141.764 | 293.312 | 4.285 | 298.192 | 290.170 | 291.573 |
| R-2,2,3-trimethylpentane | 0.595 | 0.020 | 2.278 | 0.000 | 2.278 | 2.278 | 2.278 | 143.341 | 2.583 | 141.967 | 141.735 | 146.320 | 241.020 | 6.816 | 248.748 | 235.865 | 238.446 |
| R-2,3-dimethylhexane | 0.545 | 0.013 | 6.779 | 0.079 | 6.716 | 6.868 | 6.753 | 144.810 | 2.657 | 141.993 | 145.167 | 147.270 | 265.881 | 4.285 | 265.694 | 261.692 | 270.256 |
| R-2,4-dimethylhexane | 0.526 | 0.009 | 6.719 | 0.119 | 6.765 | 6.583 | 6.808 | 144.742 | 1.614 | 142.954 | 145.182 | 146.091 | 274.931 | 3.276 | 278.423 | 274.445 | 271.926 |
| $R$-3-methylheptane | 0.499 | 0.015 | 8.591 | 0.037 | 8.549 | 8.610 | 8.615 | 146.337 | 1.714 | 144.750 | 146.106 | 148.154 | 293.104 | 8.365 | 302.304 | 291.053 | 285.956 |
| S,5-3,4-dimethylhexane | 0.506 | 0.014 | 5.146 | 0.128 | 4.998 | 5.213 | 5.226 | 147.270 | 3.266 | 146.267 | 144.623 | 150.919 | 290.772 | 4.311 | 295.125 | 290.686 | 286.504 |
| s-2,2,3-trimethylpentane | 0.606 | 0.021 | 2.278 | 0.000 | 2.278 | 2.278 | 2.278 | 145.992 | 4.190 | 150.757 | 144.334 | 142.885 | 240.953 | 4.786 | 243.929 | 243.497 | 235.432 |
| s-2,3-dimethylhexane | 0.544 | 0.007 | 6.844 | 0.091 | 6.935 | 6.842 | 6.754 | 144.224 | 1.587 | 145.788 | 144.270 | 142.615 | 264.882 | 1.856 | 266.333 | 265.523 | 262.791 |
| s-2,4-dimethylhexane | 0.531 | 0.010 | 6.669 | 0.092 | 6.598 | 6.773 | 6.635 | 146.982 | 2.441 | 146.811 | 149.504 | 144.631 | 276.588 | 2.678 | 279.651 | 274.686 | 275.429 |
| S-3-methylheptane | 0.490 | 0.015 | 8.619 | 0.008 | 8.611 | 8.626 | 8.621 | 142.495 | 3.992 | 138.043 | 143.686 | 145.756 | 290.842 | 3.496 | 290.239 | 287.687 | 294.600 |
| sebacic acid | 0.574 | 0.015 | 6.135 | 0.180 | 5.966 | 6.114 | 6.325 | 192.961 | 4.296 | 197.914 | 190.235 | 190.735 | 339.460 | 4.505 | 330.025 | 338.823 | 336.103 |
| suberic acid | 0.592 | 0.014 | 3.523 | 0.090 | 3.575 | 3.575 | 3.418 | 164.188 | 2.324 | 166.585 | 161.945 | 164.034 | 277.344 | 5.079 | 271.549 | 281.024 | 279.458 |
| succinic acid | 0.464 | 0.009 | 5.762 | 0.300 | 6.011 | 5.429 | 5.846 | 98.147 | 1.494 | 98.170 | 99.629 | 96.642 | 211.494 | 2.460 | 213.125 | 212.692 | 208.665 |
| succinic acid mono(ethylene glycol) ester | 0.451 | 0.010 | 6.951 | 0.161 | 7.077 | 7.008 | 6.770 | 140.692 | 2.501 | 142.706 | 141.477 | 137.892 | 311.772 | 3.584 | 310.864 | 315.723 | 308.729 |
| terephthalic acid | 0.953 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 136.481 | 0.990 | 137.126 | 136.976 | 135.341 | 143.281 | 1.412 | 144.889 | 142.710 | 142.243 |
| trans-1,4-cyclohexane dicarboxylic acid | 0.616 | 0.023 | 4.040 | 0.370 | 3.652 | 4.079 | 4.389 | 153.761 | 4.797 | 150.036 | 159.174 | 152.072 | 249.452 | 5.295 | 244.991 | 248.061 | 255.304 |
| trans-1,4cyclohexanedimethanol | 0.634 | 0.017 | 4.970 | 0.016 | 4.951 | 4.979 | 4.979 | 151.279 | 3.080 | 149.404 | 149.600 | 154.834 | 238.794 | 4.194 | 235.460 | 243.503 | 237.420 |
| trans-1,4-cyclohexanediol | 0.801 | 0.021 | 1.055 | 0.000 | 1.055 | 1.055 | 1.055 | 118.013 | 0.215 | 118.199 | 118.062 | 117.777 | 147.329 | 3.811 | 143.072 | 148.491 | 150.423 |
| trans-2,2,4,4-tetramethyl-1,3-diol | 0.869 | 0.003 | 0.686 | 0.000 | 0.686 | 0.686 | 0.686 | 152.448 | 0.302 | 152.365 | 152.784 | 152.197 | 175.368 | 0.614 | 176.067 | 174.916 | 175.122 |

Figure E 3: Data for Figure 4 when $\mathrm{E}_{\text {win }}=6.0 \mathrm{kcal} / \mathrm{mol}$

| Name | Rgf | $\begin{aligned} & \text { Rgf } \\ & \text { error } \end{aligned}$ | Sconf mean | $\begin{array}{r} \text { Sconf } \\ \text { sd } \end{array}$ | Sconf1 | Sconf2 | Sconf3 | $\begin{array}{r} \mathrm{Vw} \\ \text { mean } \end{array}$ | Vw sd | Vw1 | Vw2 | Vw3 | Vwpot mean | Vwpot sd | Vwpot1 | Vwpot2 | Vwpot3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ( $1 \alpha, 2 \alpha, 3 \alpha, 48)-2,4-$ dimethyl-1,3-diol | 0.755 | 0.013 | 2.296 | 0.006 | 2.293 | 2.293 | 2.303 | 118.203 | 1.397 | 116.605 | 119.191 | 118.812 | 156.638 | 1.889 | 157.557 | 154.465 | 157.892 |
| $\begin{array}{r} (1 \alpha, 2 \alpha, 38,4 \alpha)-2,4- \\ \text { dimethyl-1, } 3 \text {-diol } \end{array}$ | 0.809 | 0.014 | 4.006 | 0.155 | 4.185 | 3.914 | 3.920 | 119.821 | 1.267 | 120.642 | 120.459 | 118.362 | 148.063 | 2.080 | 150.443 | 146.597 | 147.148 |
| $\begin{array}{r} (1 \alpha, 2 \alpha, 36,46)-2,4- \\ \text { dimethyl-1,3-diol } \end{array}$ | 0.778 | 0.019 | 2.517 | 0.162 | 2.432 | 2.703 | 2.415 | 120.108 | 1.685 | 118.306 | 120.374 | 121.645 | 154.373 | 3.047 | 156.827 | 150.963 | 155.329 |
| $\begin{array}{r} (1 \alpha, 26,3 \alpha, 46)-2,4- \\ \text { dimethyl-1,3-diol } \end{array}$ | 0.909 | 0.032 | 1.419 | 0.000 | 1.419 | 1.419 | 1.419 | 121.206 | 1.003 | 120.325 | 120.995 | 122.297 | 133.270 | 4.487 | 134.102 | 128.426 | 137.283 |
| 1-(4-hydroxybutyl) hexanedioate | 0.447 | 0.013 | 6.753 | 0.076 | 6.669 | 6.772 | 6.818 | 202.743 | 2.314 | 204.836 | 200.258 | 203.134 | 453.115 | 11.641 | 464.479 | 453.650 | 441.215 |
| 1,3-propanediol | 0.544 | 0.007 | 3.362 | 0.003 | 3.364 | 3.364 | 3.358 | 77.251 | 0.944 | 76.330 | 77.207 | 78.216 | 141.957 | 0.711 | 141.151 | 142.220 | 142.499 |
| 1,4-butanediol | 0.491 | 0.017 | 6.019 | 0.004 | 6.021 | 6.020 | 6.014 | 94.682 | 0.898 | 95.602 | 94.636 | 93.808 | 192.764 | 6.401 | 185.375 | 196.596 | 196.322 |
| 1,6-hexanediol | 0.391 | 0.010 | 11.693 | 0.009 | 11.685 | 11.692 | 11.703 | 125.151 | 2.946 | 127.263 | 121.785 | 126.405 | 319.686 | 2.541 | 319.733 | 322.203 | 317.122 |
| 2,2,3,3-tetramethylbutane | 0.780 | 0.032 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 142.747 | 2.251 | 141.560 | 145.343 | 141.338 | 183.070 | 7.034 | 178.090 | 180.002 | 191.117 |
| 2,2,4-trimethylpentane | 0.599 | 0.022 | 2.939 | 0.003 | 2.936 | 2.940 | 2.941 | 144.035 | 3.952 | 139.472 | 146.316 | 146.316 | 240.348 | 6.025 | 247.148 | 235.673 | 238.223 |
| 2,2-dimethylhexane | 0.573 | 0.014 | 2.932 | 0.083 | 2.884 | 3.027 | 2.884 | 144.914 | 0.550 | 145.354 | 145.089 | 144.297 | 252.717 | 6.178 | 252.458 | 259.021 | 246.674 |
| 2,3,3-trimethylpentane | 0.614 | 0.021 | 4.758 | 0.023 | 4.734 | 4.779 | 4.760 | 144.000 | 2.929 | 147.044 | 143.754 | 141.202 | 234.427 | 6.304 | 241.158 | 233.463 | 228.660 |
| 2,3,4-trimethylpentane | 0.562 | 0.009 | 3.354 | 0.015 | 3.370 | 3.350 | 3.341 | 147.559 | 0.780 | 147.936 | 148.079 | 146.662 | 262.657 | 3.890 | 266.253 | 258.527 | 263.191 |
| 2,5-diemthylhexane | 0.525 | 0.017 | 5.519 | 0.086 | 5.422 | 5.548 | 5.587 | 145.448 | 3.802 | 142.682 | 143.877 | 149.784 | 277.230 | 5.001 | 271.569 | 279.080 | 281.043 |
| 2,6-naphthoic dicarboxylic acid | 0.954 | 0.033 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 179.148 | 3.619 | 177.030 | 183.327 | 177.086 | 187.778 | 5.388 | 183.659 | 185.801 | 193.875 |
| 2-Hydroxyethyl 4formylbenzoate | 0.420 | 0.014 | 4.743 | 0.042 | 4.719 | 4.718 | 4.792 | 172.935 | 4.173 | 168.198 | 174.538 | 176.068 | 411.894 | 9.824 | 422.538 | 403.177 | 409.967 |
| 2-methylheptane | 0.452 | 0.021 | 7.816 | 0.032 | 7.809 | 7.788 | 7.851 | 145.817 | 6.648 | 150.250 | 149.028 | 138.172 | 322.501 | 1.616 | 321.375 | 321.776 | 324.353 |
| 3,3-dimethylhexane | 0.567 | 0.014 | 5.136 | 0.120 | 5.050 | 5.085 | 5.273 | 145.140 | 3.475 | 144.726 | 148.803 | 141.890 | 256.159 | 1.981 | 257.294 | 257.311 | 253.872 |
| 3-ethyl-2-methylpentane | 0.553 | 0.020 | 4.606 | 0.101 | 4.644 | 4.684 | 4.491 | 146.639 | 4.499 | 151.763 | 143.335 | 144.820 | 264.969 | 4.997 | 264.367 | 260.300 | 270.240 |
| 3-ethyl-3-methylpentane | 0.555 | 0.015 | 3.172 | 0.035 | 3.212 | 3.154 | 3.148 | 143.487 | 3.377 | 141.205 | 141.889 | 147.367 | 258.375 | 3.184 | 260.683 | 259.698 | 254.743 |
| 3-ethylhexane | 0.510 | 0.011 | 6.972 | 0.045 | 7.017 | 6.927 | 6.973 | 147.687 | 2.503 | 146.911 | 150.486 | 145.665 | 289.426 | 3.527 | 285.538 | 290.320 | 292.420 |
| 4-methoxy-1-butanol | 0.446 | 0.007 | 6.329 | 0.029 | 6.361 | 6.307 | 6.318 | 109.870 | 1.187 | 108.719 | 111.090 | 109.801 | 246.504 | 2.677 | 243.495 | 247.397 | 248.621 |
| 4-methylheptane | 0.482 | 0.012 | 8.458 | 0.152 | 8.313 | 8.615 | 8.446 | 144.774 | 2.587 | 145.024 | 147.227 | 142.071 | 300.378 | 5.065 | 304.610 | 301.758 | 294.766 |
| adipic acid | 0.389 | 0.004 | 8.328 | 0.115 | 8.241 | 8.286 | 8.458 | 131.616 | 0.878 | 132.630 | 131.130 | 131.088 | 338.579 | 3.039 | 340.262 | 335.070 | 340.403 |
| adipic acid mono(ethylene glycol) ester | 0.469 | 0.015 | 4.297 | 0.001 | 4.297 | 4.296 | 4.298 | 172.642 | 4.543 | 173.648 | 176.598 | 167.681 | 368.425 | 7.144 | 365.465 | 363.236 | 376.573 |
| aspartic acid mono(ethylene glycol) ester | 0.362 | 0.008 | 8.115 | 0.190 | 8.330 | 7.969 | 8.045 | 152.011 | 2.574 | 149.183 | 154.216 | 152.635 | 419.730 | 6.524 | 427.208 | 415.201 | 416.780 |
| BPA | 0.652 | 0.019 | 2.811 | 0.074 | 2.735 | 2.883 | 2.816 | 219.843 | 6.402 | 213.959 | 226.660 | 218.908 | 337.256 | 0.320 | 336.913 | 337.545 | 337.309 |
| butane | 0.744 | 0.011 | 2.037 | 0.086 | 2.087 | 1.938 | 2.087 | 78.371 | 0.835 | 77.407 | 78.842 | 78.865 | 105.343 | 1.019 | 105.544 | 106.246 | 104.238 |
| CBBI-1 | 0.982 | 0.022 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 146.805 | 1.779 | 147.270 | 148.306 | 144.840 | 149.513 | 2.846 | 147.581 | 148.178 | 152.781 |
| CBBI-2 | 0.959 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 210.355 | 2.946 | 213.513 | 209.871 | 207.682 | 219.317 | 2.155 | 221.665 | 218.858 | 217.429 |
| CBDA-6 | 0.411 | 0.012 | 2.764 | 0.007 | 2.767 | 2.769 | 2.756 | 330.193 | 6.289 | 337.036 | 324.664 | 328.880 | 802.637 | 17.322 | 805.283 | 784.143 | 818.484 |
| CBDA-7 | 0.621 | 0.013 | 0.438 | 0.001 | 0.439 | 0.437 | 0.439 | 302.581 | 2.040 | 303.524 | 300.240 | 303.978 | 487.187 | 9.919 | 496.034 | 476.465 | 489.063 |
| CBDAc-1 | 0.333 | 0.015 | 2.606 | 0.059 | 2.652 | 2.540 | 2.628 | 301.238 | 12.197 | 299.762 | 289.845 | 314.106 | 903.887 | 15.807 | 906.459 | 918.250 | 886.951 |
| CBDAn-1 | 0.997 | 0.019 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 141.793 | 1.102 | 140.766 | 141.658 | 142.957 | 142.243 | 2.547 | 144.879 | 139.794 | 142.057 |
| CBDAn-5 | 0.995 | 0.031 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 209.908 | 1.724 | 210.048 | 208.118 | 211.557 | 210.892 | 6.251 | 209.285 | 205.601 | 217.789 |
| CBDE-7 | 0.475 | 0.020 | 2.062 | 0.395 | 1.717 | 1.976 | 2.493 | 368.873 | 9.052 | 362.450 | 379.225 | 364.943 | 776.142 | 26.741 | 806.925 | 758.655 | 762.846 |


| CBDH-1 | 0.942 | 0.006 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 232.966 | 0.967 | 232.771 | 234.015 | 232.112 | 247.411 | 1.023 | 246.274 | 247.704 | 248.256 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CBDO-2 | 0.534 | 0.017 | 3.550 | 0.615 | 3.194 | 4.260 | 3.194 | 299.535 | 9.139 | 304.032 | 289.019 | 305.554 | 561.077 | 5.029 | 556.702 | 559.959 | 566.571 |
| CBDO-3 | 0.472 | 0.018 | 4.968 | 0.002 | 4.966 | 4.970 | 4.968 | 230.774 | 8.575 | 223.934 | 227.994 | 240.394 | 489.388 | 4.825 | 493.783 | 484.225 | 490.155 |
| CBDV-1 | 0.583 | 0.009 | 3.828 | 0.127 | 3.974 | 3.766 | 3.744 | 309.205 | 4.031 | 309.572 | 305.003 | 313.039 | 530.358 | 4.242 | 533.745 | 531.730 | 525.600 |
| cis-1,4-cyclohexane dicarboxylic acid | 0.500 | 0.009 | 3.344 | 0.453 | 2.889 | 3.349 | 3.795 | 153.527 | 1.959 | 151.351 | 155.151 | 154.079 | 307.098 | 3.889 | 310.832 | 307.393 | 303.070 |
| cis-1,4- <br> cyclohexanedimethanol | 0.515 | 0.013 | 5.563 | 0.007 | 5.557 | 5.570 | 5.563 | 152.543 | 2.517 | 151.371 | 150.826 | 155.433 | 296.477 | 5.882 | 302.677 | 295.781 | 290.974 |
| cis-1,4-cyclohexanediol | 0.627 | 0.019 | 2.482 | 0.002 | 2.482 | 2.484 | 2.481 | 118.644 | 2.748 | 117.099 | 121.817 | 117.016 | 189.086 | 3.520 | 193.119 | 186.632 | 187.507 |
| cis-2,2,4,4-tetramethyl-1,3-diol | 0.861 | 0.022 | 1.197 | 0.000 | 1.197 | 1.197 | 1.197 | 152.430 | 3.683 | 148.639 | 152.656 | 155.994 | 177.043 | 1.351 | 176.651 | 175.932 | 178.547 |
| cyclobutane | 0.895 | 0.033 | 1.377 | 0.000 | 1.377 | 1.377 | 1.377 | 69.469 | 2.168 | 69.469 | 71.636 | 67.301 | 77.585 | 1.553 | 75.912 | 78.982 | 77.860 |
| cyclodecane | 0.587 | 0.020 | 3.273 | 0.065 | 3.210 | 3.269 | 3.341 | 168.008 | 4.266 | 166.028 | 172.904 | 165.092 | 286.350 | 6.190 | 289.883 | 279.202 | 289.964 |
| cycloheptane | 0.676 | 0.008 | 0.040 | 0.000 | 0.040 | 0.040 | 0.040 | 117.281 | 0.858 | 118.079 | 116.373 | 117.390 | 173.390 | 1.756 | 175.232 | 171.735 | 173.202 |
| cyclohexane | 0.712 | 0.019 | 0.002 | 0.000 | 0.002 | 0.002 | 0.002 | 99.128 | 1.930 | 97.632 | 98.447 | 101.307 | 139.276 | 2.623 | 141.687 | 139.658 | 136.483 |
| cyclononane | 0.614 | 0.017 | 2.016 | 0.000 | 2.016 | 2.016 | 2.016 | 150.558 | 2.176 | 148.753 | 149.946 | 152.974 | 245.384 | 5.779 | 249.426 | 247.961 | 238.764 |
| cyclooctane | 0.668 | 0.009 | 1.738 | 0.050 | 1.710 | 1.796 | 1.708 | 136.672 | 0.556 | 136.341 | 136.362 | 137.314 | 204.720 | 2.734 | 202.211 | 207.633 | 204.315 |
| cyclopentane | 0.774 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 85.817 | 1.771 | 86.870 | 83.771 | 86.808 | 110.823 | 1.287 | 109.580 | 110.737 | 112.150 |
| cyclopropane | 1.024 | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 54.108 | 0.665 | 54.745 | 53.418 | 54.163 | 52.863 | 0.369 | 52.922 | 53.198 | 52.468 |
| decane | 0.273 | 0.007 | 71.504 | $\begin{array}{r} 145.62 \\ \hline \end{array}$ | 12.419 | $\begin{array}{r} 239.66 \\ 1 \end{array}$ | 12.731 | 179.146 | 1.190 | 178.897 | 180.441 | 178.101 | 656.036 | 16.943 | 644.237 | 648.420 | 675.450 |
| difluorobenzophenone | 0.621 | 0.019 | 1.438 | 0.104 | 1.377 | 1.377 | 1.558 | 182.265 | 3.455 | 183.056 | 185.256 | 178.483 | 293.464 | 6.820 | 299.077 | 295.441 | 285.875 |
| dimethylmaleic anhydride | 0.765 | 0.010 | 0.053 | 0.092 | 0.159 | 0.000 | 0.000 | 204.309 | 0.988 | 203.657 | 205.446 | 203.824 | 266.897 | 3.062 | 264.592 | 270.371 | 265.729 |
| ethylene glycol | 0.617 | 0.019 | 4.470 | 0.156 | 4.380 | 4.380 | 4.651 | 62.601 | 1.554 | 62.673 | 64.117 | 61.011 | 101.416 | 1.879 | 101.933 | 102.982 | 99.333 |
| fumaric acid mono(ethylene glycol) ester | 0.392 | 0.008 | 5.495 | 0.046 | 5.536 | 5.503 | 5.445 | 134.229 | 2.620 | 131.511 | 134.435 | 136.740 | 342.484 | 1.899 | 344.391 | 340.594 | 342.469 |
| glutaric acid | 0.464 | 0.023 | 4.918 | 0.273 | 5.065 | 5.086 | 4.604 | 116.873 | 4.169 | 115.880 | 121.448 | 113.290 | 252.007 | 9.039 | 242.982 | 261.060 | 251.980 |
| glutaric acid mono(ethylene glycol) ester | 0.364 | 0.010 | 6.756 | 0.030 | 6.728 | 6.753 | 6.787 | 158.133 | 2.398 | 160.833 | 157.317 | 156.250 | 434.906 | 9.640 | 438.928 | 423.907 | 441.885 |
| heptane | 0.437 | 0.012 | 6.314 | 0.021 | 6.311 | 6.296 | 6.337 | 128.624 | 3.089 | 129.606 | 131.102 | 125.164 | 294.630 | 3.361 | 293.829 | 298.319 | 291.742 |
| hexane | 0.484 | 0.010 | 4.872 | 0.030 | 4.855 | 4.907 | 4.854 | 109.112 | 2.338 | 107.901 | 111.807 | 107.628 | 225.515 | 0.601 | 224.880 | 225.590 | 226.075 |
| hydroquinone | 0.917 | 0.018 | 1.358 | 0.000 | 1.358 | 1.358 | 1.358 | 96.800 | 0.967 | 95.937 | 97.845 | 96.616 | 105.527 | 1.827 | 105.859 | 107.165 | 103.556 |
| isophthalic acid | 0.961 | 0.022 | 1.995 | 0.000 | 1.995 | 1.995 | 1.995 | 138.679 | 3.078 | 138.424 | 135.737 | 141.878 | 144.377 | 0.711 | 145.147 | 144.239 | 143.745 |
| isophthalic acid mono(ethylene glycol) ester | 0.521 | 0.015 | 5.890 | 0.066 | 5.859 | 5.845 | 5.965 | 180.769 | 3.710 | 183.985 | 176.710 | 181.612 | 346.837 | 6.606 | 339.210 | 350.800 | 350.500 |
| maleic acid mono(ethylene glycol) ester | 0.398 | 0.011 | 6.233 | 0.042 | 6.233 | 6.274 | 6.190 | 133.550 | 2.636 | 135.962 | 133.951 | 130.736 | 335.949 | 6.237 | 329.153 | 337.286 | 341.409 |
| malic acid mono(ethylene glycol) ester | 0.372 | 0.017 | 6.676 | 0.054 | 6.733 | 6.668 | 6.627 | 148.967 | 6.428 | 149.599 | 142.247 | 155.055 | 400.187 | 6.938 | 392.232 | 403.344 | 404.984 |
| malonic acid | 0.525 | 0.009 | 5.205 | 0.205 | 5.425 | 5.171 | 5.019 | 83.176 | 0.794 | 82.370 | 83.958 | 83.199 | 158.550 | 2.214 | 160.695 | 156.272 | 158.682 |
| malonic acid mono(ethylene glycol) ester | 0.429 | 0.017 | 7.903 | 0.657 | 8.618 | 7.327 | 7.763 | 127.052 | 3.524 | 125.739 | 124.373 | 131.043 | 296.174 | 8.295 | 298.410 | 286.990 | 303.122 |
| meso-3,4-dimethylhexane | 0.491 | 0.006 | 3.933 | 0.126 | 3.954 | 3.798 | 4.047 | 146.505 | 1.565 | 144.908 | 148.035 | 146.571 | 298.286 | 1.180 | 299.615 | 297.883 | 297.361 |
| monomethyl succinate | 0.430 | 0.011 | 7.769 | 0.079 | 7.851 | 7.693 | 7.762 | 114.706 | 1.955 | 115.445 | 116.183 | 112.488 | 267.056 | 4.764 | 271.915 | 262.393 | 266.859 |
| nonane | 0.330 | 0.013 | 10.479 | 0.037 | 10.510 | 10.488 | 10.439 | 161.443 | 1.996 | 162.213 | 159.176 | 162.939 | 489.517 | 18.860 | 474.279 | 510.609 | 483.661 |
| octane | 0.356 | 0.010 | 8.108 | 0.260 | 7.814 | 8.198 | 8.310 | 144.808 | 3.626 | 146.970 | 146.832 | 140.621 | 406.651 | 5.255 | 412.668 | 404.320 | 402.965 |
| oxalic acid | 0.599 | 0.018 | 3.279 | 0.000 | 3.279 | 3.279 | 3.279 | 66.485 | 1.694 | 68.431 | 65.334 | 65.690 | 110.932 | 1.582 | 110.225 | 112.745 | 109.826 |
| para-phenylenediacetic acid | 0.472 | 0.015 | 4.304 | 0.401 | 4.378 | 3.870 | 4.662 | 168.814 | 1.992 | 170.313 | 169.575 | 166.554 | 357.693 | 10.160 | 368.016 | 357.359 | 347.704 |
| para-xylyene glycol | 0.611 | 0.006 | 5.509 | 0.234 | 5.510 | 5.273 | 5.742 | 134.208 | 1.142 | 134.807 | 132.890 | 134.925 | 219.544 | 1.208 | 219.517 | 218.348 | 220.765 |
| pentane | 0.593 | 0.013 | 2.968 | 0.027 | 2.998 | 2.949 | 2.956 | 95.700 | 2.052 | 96.200 | 97.456 | 93.444 | 161.369 | 0.878 | 161.208 | 160.584 | 162.317 |


| phosgene | 1.006 | 0.041 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 58.701 | 1.179 | 60.062 | 58.030 | 58.010 | 58.342 | 2.093 | 59.383 | 55.933 | 59.711 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| phthalic acid | 0.690 | 0.018 | 2.964 | 0.380 | 2.749 | 2.740 | 3.403 | 138.157 | 2.370 | 139.094 | 135.462 | 139.916 | 200.261 | 3.778 | 203.800 | 200.701 | 196.282 |
| phthalic acid mono(ethylene glycol) ester | 0.433 | 0.015 | 5.971 | 0.060 | 6.000 | 5.902 | 6.012 | 182.059 | 2.556 | 184.436 | 179.356 | 182.386 | 420.842 | 13.488 | 405.295 | 429.428 | 427.801 |
| pimelic acid | 0.353 | 0.010 | 8.140 | 0.060 | 8.209 | 8.102 | 8.109 | 148.325 | 4.004 | 150.619 | 143.701 | 150.655 | 420.048 | 3.939 | 415.521 | 422.699 | 421.924 |
| poly(cis-1,6dimethoxyxcyclohexane)te rephthalate model | 0.302 | 0.005 | 9.185 | 0.139 | 9.077 | 9.135 | 9.342 | 266.559 | 3.992 | 262.136 | 267.650 | 269.892 | 883.579 | 9.135 | 889.326 | 888.366 | 873.045 |
| polyBPA terephthalate model | 0.283 | 0.004 | 7.290 | 0.192 | 7.074 | 7.441 | 7.356 | 338.603 | 4.180 | 335.770 | 343.404 | 336.634 | $\begin{array}{r} 1196.75 \\ 4 \end{array}$ | 6.081 | $\begin{array}{r} 1201.26 \\ 2 \end{array}$ | $\begin{array}{r} 1199.16 \\ 0 \end{array}$ | $\begin{array}{r} 1189.83 \\ 8 \end{array}$ |
| polybutylenesuccinate model | 0.412 | 0.007 | 5.528 | 0.078 | 5.439 | 5.584 | 5.561 | 175.367 | 2.112 | 177.392 | 173.177 | 175.532 | 426.060 | 5.259 | 430.218 | 427.815 | 420.149 |
| polybutyleneterephthalate model | 0.283 | 0.006 | 9.063 | 0.069 | 9.079 | 8.987 | 9.123 | 209.635 | 4.072 | 213.832 | 209.371 | 205.701 | 740.697 | 8.872 | 743.508 | 747.824 | 730.760 |
| polycarbonate model | 0.507 | 0.010 | 7.282 | 0.076 | 7.251 | 7.226 | 7.369 | 247.586 | 2.669 | 247.681 | 250.206 | 244.871 | 488.651 | 7.654 | 480.658 | 495.915 | 489.379 |
| polyether ether ketone model | 0.356 | 0.016 | 6.575 | 0.206 | 6.370 | 6.783 | 6.573 | 269.441 | 6.649 | 269.116 | 276.247 | 262.961 | 755.824 | 27.700 | 723.926 | 773.813 | 769.732 |
| polyethylene naphthalate <br> model | 0.492 | 0.015 | 4.443 | 0.031 | 4.447 | 4.472 | 4.410 | 220.842 | 4.228 | 216.852 | 220.400 | 225.274 | 449.123 | 10.190 | 439.372 | 448.297 | 459.701 |
| polyethyleneterephthalate model | 0.419 | 0.010 | 3.527 | 0.018 | 3.516 | 3.518 | 3.548 | 182.633 | 2.063 | 184.060 | 180.268 | 183.571 | 436.278 | 9.411 | 442.232 | 441.173 | 425.428 |
| polypropyleneterephthala te model | 0.361 | 0.009 | 5.198 | 0.060 | 5.175 | 5.266 | 5.152 | 196.310 | 3.857 | 192.207 | 196.864 | 199.860 | 544.186 | 8.687 | 550.710 | 547.523 | 534.325 |
| propane | 0.954 | 0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 59.673 | 0.162 | 59.782 | 59.750 | 59.487 | 62.548 | 0.980 | 63.581 | 61.631 | 62.433 |
| R,R-3,4-dimethylhexane | 0.453 | 0.019 | 5.291 | 0.098 | 5.267 | 5.399 | 5.208 | 143.538 | 5.307 | 138.077 | 148.678 | 143.860 | 317.066 | 6.659 | 322.887 | 309.805 | 318.507 |
| R-2,2,3-trimethylpentane | 0.567 | 0.022 | 2.368 | 0.025 | 2.384 | 2.381 | 2.339 | 142.791 | 3.054 | 140.260 | 141.929 | 146.184 | 251.879 | 8.112 | 253.569 | 259.013 | 243.055 |
| R-2,3-dimethylhexane | 0.525 | 0.007 | 7.111 | 0.263 | 6.904 | 7.023 | 7.407 | 145.010 | 1.132 | 143.770 | 145.987 | 145.273 | 275.988 | 3.267 | 277.680 | 272.222 | 278.061 |
| R-2,4-dimethylhexane | 0.506 | 0.006 | 6.861 | 0.050 | 6.808 | 6.869 | 6.907 | 144.205 | 0.891 | 145.097 | 144.202 | 143.315 | 284.823 | 2.943 | 287.640 | 281.768 | 285.061 |
| $R$-3-methylheptane | 0.483 | 0.008 | 8.776 | 0.084 | 8.792 | 8.685 | 8.850 | 149.166 | 2.513 | 150.401 | 146.275 | 150.823 | 308.947 | 1.250 | 307.69 | 308.97 | 310.19 |
| S,S-3,4-dimethylhexane | 0.457 | 0.013 | 5.294 | 0.094 | 5.358 | 5.339 | 5.186 | 145.790 | 3.579 | 144.189 | 149.891 | 143.291 | 319.071 | 5.186 | 324.887 | 317.394 | 314.930 |
| s-2,2,3-trimethylpentane | 0.588 | 0.014 | 2.368 | 0.049 | 2.339 | 2.341 | 2.425 | 144.471 | 3.363 | 145.474 | 147.219 | 140.720 | 245.555 | 1.118 | 244.916 | 246.845 | 244.902 |
| s-2,3-dimethylhexane | 0.535 | 0.017 | 6.994 | 0.065 | 7.069 | 6.948 | 6.966 | 146.544 | 1.569 | 148.217 | 145.106 | 146.310 | 273.741 | 8.161 | 275.366 | 280.967 | 264.890 |
| s-2,4-dimethylhexane | 0.500 | 0.013 | 6.861 | 0.061 | 6.854 | 6.804 | 6.924 | 142.095 | 1.407 | 143.641 | 141.757 | 140.888 | 284.444 | 6.747 | 282.254 | 279.064 | 292.015 |
| s-3-methylheptane | 0.462 | 0.012 | 8.722 | 0.032 | 8.717 | 8.755 | 8.692 | 145.033 | 3.081 | 141.863 | 145.219 | 148.016 | 314.202 | 4.122 | 309.797 | 314.845 | 317.965 |
| sebacic acid | 0.444 | 0.005 | 6.511 | 0.031 | 6.546 | 6.489 | 6.497 | 196.734 | 1.908 | 195.972 | 198.906 | 195.324 | 443.579 | 3.221 | 446.735 | 440.297 | 443.706 |
| suberic acid | 0.341 | 0.005 | 4.043 | 0.174 | 3.866 | 4.050 | 4.213 | 165.032 | 1.099 | 164.524 | 166.293 | 164.278 | 483.724 | 6.716 | 475.979 | 487.947 | 487.244 |
| succinic acid | 0.457 | 0.014 | 5.882 | 0.158 | 5.701 | 5.991 | 5.954 | 95.468 | 2.667 | 97.976 | 92.665 | 95.763 | 208.747 | 2.716 | 211.868 | 206.922 | 207.451 |
| succinic acid mono(ethylene glycol) ester | 0.380 | 0.006 | 8.219 | 0.119 | 8.348 | 8.112 | 8.198 | 139.342 | 0.610 | 140.027 | 138.858 | 139.140 | 366.311 | 5.958 | 368.084 | 359.668 | 371.181 |
| terephthalic acid | 0.955 | 0.033 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 135.578 | 1.193 | 134.461 | 136.834 | 135.440 | 142.008 | 4.749 | 137.037 | 142.486 | 146.500 |
| trans-1,4-cyclohexane dicarboxylic acid | 0.484 | 0.008 | 4.179 | 0.196 | 4.185 | 4.372 | 3.980 | 154.730 | 1.434 | 153.208 | 154.924 | 156.057 | 319.943 | 4.030 | 315.642 | 323.631 | 320.557 |
| trans-1,4cyclohexanedimethanol | 0.532 | 0.014 | 5.092 | 0.000 | 5.092 | 5.092 | 5.092 | 151.824 | 3.955 | 149.170 | 156.369 | 149.932 | 285.121 | 1.804 | 286.531 | 283.089 | 285.744 |
| trans-1,4-cyclohexanediol | 0.668 | 0.010 | 1.349 | 0.037 | 1.327 | 1.327 | 1.391 | 117.696 | 1.559 | 116.052 | 119.153 | 117.882 | 176.296 | 1.080 | 177.540 | 175.600 | 175.747 |
| trans-2,2,4,4-tetramethyl- <br> 1,3-diol | 0.840 | 0.026 | 0.898 | 0.000 | 0.898 | 0.898 | 0.898 | 152.856 | 1.543 | 152.369 | 154.584 | 151.616 | 181.982 | 5.326 | 177.843 | 180.114 | 187.991 |

## References

(1) Rabinovich, A. L.; Dashevskii(dec.), V. G. The Study of Structural Non-Rigidity of Molecules with Double Bonds in the Main Chain. Polym. Sci. USSR 1984, 26 (9), 2133-2147. https://doi.org/10.1016/0032-3950(84)90457-X.
(2) Huyskens, P.; Vandevijvere, P.; Siegel, G. The Influence of Molecular Rigidity on Enthalpy and Entropy. J. Mol. Struct. THEOCHEM 1989, 200, 555-563. https://doi.org/10.1016/0166-1280(89)85078-X.
(3) Karshikoff, A.; Nilsson, L.; Ladenstein, R. Rigidity versus Flexibility: The Dilemma of Understanding Protein Thermal Stability. FEBS J. 2015, 282 (20), 3899-3917. https://doi.org/10.1111/febs. 13343.
(4) Ni, Y.; Gordillo-Gámez, F.; Peña Alvarez, M.; Nan, Z.; Li, Z.; Wu, S.; Han, Y.; Casado, J.; Wu, J. A Chichibabin's Hydrocarbon-Based Molecular Cage: The Impact of Structural Rigidity on Dynamics, Stability, and Electronic Properties. J. Am. Chem. Soc. 2020, 142 (29), 1273012742. https://doi.org/10.1021/jacs.0c04876.
(5) Lawson, A. D. G.; MacCoss, M.; Heer, J. P. Importance of Rigidity in Designing Small Molecule Drugs To Tackle Protein-Protein Interactions (PPIs) through Stabilization of Desired Conformers: Miniperspective. J. Med. Chem. 2018, 61 (10), 4283-4289. https://doi.org/10.1021/acs.jmedchem.7b01120.
(6) Meng, X.-Y.; Zhang, H.-X.; Mezei, M.; Cui, M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr. Comput. Aided-Drug Des. 2011, 7 (2), 146-157. https://doi.org/10.2174/157340911795677602.
(7) Wolfe, J. F.; Arnold, F. E. Rigid-Rod Polymers. 1. Synthesis and Thermal Properties of ParaAromatic Polymers with 2,6-Benzobisoxazole Units in the Main Chain. Macromolecules 1981, 14 (4), 909-915. https://doi.org/10.1021/ma50005a004.
(8) Roberts, M. F.; Jenekhe, S. A. Molecular Composites of Rigid-Rod Polymers in the Matrix of Flexible-Coil Polymers. Preparation of Thin-Film Nonlinear Optical Materials via Soluble Complexes. Chem. Mater. 1990, 2 (6), 629-631. https://doi.org/10.1021/cm00012a003.
(9) Casanova, R. D. J. P.; González, W. E. S.; Loría, J. D. C. Z.; García, A. N.; Cervantes, M. A. Y.; Vega, M. D. J. A.; López, L. A. D. Structure and Kinetic Rigidity of Polymers as Related to Chain Relaxations. J. Thermoplast. Compos. Mater. 2021, 34 (5), 596-613. https://doi.org/10.1177/0892705719847517.
(10) Luisi, P. L. Molecular Conformational Rigidity: An Approach to Quantification. Naturwissenschaften 1977, 64 (11), 569-574. https://doi.org/10.1007/BF00450635.
(11) Jacobs, D. J.; Hendrickson, B. An Algorithm for Two-Dimensional Rigidity Percolation: The Pebble Game. J. Comput. Phys. 1997, 137 (2), 346-365. https://doi.org/10.1006/jcph.1997.5809.
(12) Budday, D.; Leyendecker, S.; van den Bedem, H. Geometric Analysis Characterizes Molecular Rigidity in Generic and Non-Generic Protein Configurations. J. Mech. Phys. Solids 2015, 83, 36-47. https://doi.org/10.1016/j.jmps.2015.06.006.
(13) Bondi, A. Van Der Waals Volumes and Radii. J. Phys. Chem. 1964, 68 (3), 441-451. https://doi.org/10.1021/j100785a001.
(14) Full Text PDF. https://pubs.rsc.org/en/content/articlepdf/2020/cp/c9cp06869d (accessed 2023-12-03).
(15) Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB - An Accurate and Broadly Parametrized SelfConsistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15 (3), 16521671. https://doi.org/10.1021/acs.jctc.8b01176.
(16) Zhao, Y. H.; Abraham, M. H.; Zissimos, A. M. Fast Calculation of van Der Waals Volume as a Sum of Atomic and Bond Contributions and Its Application to Drug Compounds. J. Org. Chem. 2003, 68 (19), 7368-7373. https://doi.org/10.1021/jo034808o.
(17) Chan, L.; Morris, G. M.; Hutchison, G. R. Understanding Conformational Entropy in Small Molecules. J. Chem. Theory Comput. 2021, 17 (4), 2099-2106. https://doi.org/10.1021/acs.jctc.0c01213.
(18) Pracht, P.; Grimme, S. Calculation of Absolute Molecular Entropies and Heat Capacities Made Simple. Chem. Sci. 2021, 12 (19), 6551-6568. https://doi.org/10.1039/D1SC00621E.
(19) Suárez, D.; Díaz, N. Direct Methods for Computing Single-molecule Entropies from Molecular Simulations. WIREs Comput. Mol. Sci. 2015, 5 (1), 1-26. https://doi.org/10.1002/wcms.1195.
(20) Wang, Z.; Miller, B.; Mabin, M.; Shahni, R.; Wang, Z. D.; Ugrinov, A.; Chu, Q. R. Cyclobutane-1,3-Diacid (CBDA): A Semi-Rigid Building Block Prepared by [2+2] Photocyclization for Polymeric Materials. Sci. Rep. 2017, 7 (1), 13704. https://doi.org/10.1038/s41598-017-13983-z.
(21) Hasegawa, M.; Horiuchi, M.; Kumakura, K.; Koyama, J. Colorless Polyimides with Low Coefficient of Thermal Expansion Derived from Alkyl-Substituted Cyclobutanetetracarboxylic Dianhydrides: Low-CTE Colorless Polyimides. Polym. Int. 2014, 63 (3), 486-500. https://doi.org/10.1002/pi. 4532.
(22) Kapton ${ }^{\circledR}$ Film Sheets (No adhesive) | 12" x12" | CS Hyde Company | USA. CS Hyde Company. https://catalog.cshyde.com/viewitems/plastic-film-tape-sheets/kapton-film-sheets-12x12 (accessed 2023-10-18).
(23) Shahni, R. K.; Mabin, M.; Wang, Z.; Shaik, M.; Ugrinov, A.; Chu, Q. R. Synthesis and Characterization of BPA-Free Polyesters by Incorporating a Semi-Rigid Cyclobutanediol Monomer. Polym. Chem. 2020, 11 (37), 6081-6090. https://doi.org/10.1039/DOPY01098G.
(24) Nkemngong, D. N. Exploring [2+2] Photoreaction To Synthesize Cyclobutane Di- And Tetracarboxylic Acid Building Blocks From Biomass-Derived Precursors. Dissertation, University of North Dakota, Grand Forks, North Dakota, 2022. https://commons.und.edu/theses/4364.
(25) Song, M.; Ma, H.; Ren, M.; Ai, Z.; Li, M. Diacetylene-Based C 2 h-Symmetric Monomers for Two-Dimensional-Polymer Synthesis. Synlett 2016, 28 (04), 445-450. https://doi.org/10.1055/s-0036-1588664.
(26) Tedaldi, L. M.; Aliev, A. E.; Baker, J. R. [2 + 2] Photocycloadditions of Thiomaleimides. Chem. Commun. 2012, 48 (39), 4725. https://doi.org/10.1039/c2cc31673k.
(27) Parcheta, P.; Datta, J. Influence of Chemical Structure on Physicochemical Properties and Thermal Decomposition of the Fully Bio-Based Poly(Propylene Succinate-Co-Butylene Succinate)s. Polym. Test. 2020, 83, 106337. https://doi.org/10.1016/j.polymertesting.2020.106337.
(28) Wang, Z.; Scheuring, M.; Mabin, M.; Shahni, R.; Wang, Z. D.; Ugrinov, A.; Butz, J.; Chu, Q. R. Renewable Cyclobutane-1,3-Dicarboxylic Acid (CBDA) Building Block Synthesized from

Furfural via Photocyclization. ACS Sustain. Chem. Eng. 2020, 8 (24), 8909-8917. https://doi.org/10.1021/acssuschemeng.0c00708.
(29) Abdelaty, M. S. A. The Influence of Vanillin Acrylate Derivative on the Phase Separation Temperature of Environmental Photo-Cross-Linked N-Isopropylacrylamide Copolymer and Hydrogel Thin Films. J. Polym. Environ. 2020, 28 (10), 2599-2615. https://doi.org/10.1007/s10924-020-01793-w.
(30) Sati, G. C.; Crich, D. Facile Synthesis of 3- $N$-Alkyl Pyrimidin-2,4-Diones from $N$-Sulfonyloxy Maleimides and Amines. Org. Lett. 2015, 17 (16), 4122-4124. https://doi.org/10.1021/acs.orglett.5b02079.
(31) Schmidt, G. M. J. 385. Topochemistry. Part III. The Crystal Chemistry of Some Trans-Cinnamic Acids. J. Chem. Soc. Resumed 1964, 2014. https://doi.org/10.1039/jr9640002014.
(32) Patil, S. V.; Mahale, K. A.; Gosavi, K. S.; Deshmukh, G. B.; Patil, N. S. Solvent-Mediated OnePot Synthesis of Cyclic $N$-Substituted Imides. Org. Prep. Proced. Int. 2013, 45 (4), 314-320. https://doi.org/10.1080/00304948.2013.798569.
(33) Von Sonntag, J.; Knolle, W.; Naumov, S.; Mehnert, R. Deprotonation and Dimerization of Maleimide in the Triplet State: A Laser Flash Photolysis Study with Optical and Conductometric Detection. Chem. - Eur. J. 2002, 8 (18), 4199-4209. https://doi.org/10.1002/1521-3765(20020916)8:18<4199::AID-CHEM4199>3.0.CO;2-H.
(34) Bloomfield, J. J.; Owsley, D. C. Photochemical [2 + 2] Cycloaddition Reactions at Low Temperatures. Synthesis of Bridgehead Substituted Bicyclo [n.2.0]Dicarboxylates from Maleic Acid Derivatives and Ethylene. J. Org. Chem. 1971, 36 (24), 3768-3773. https://doi.org/10.1021/jo00823a023.
(35) Roth, H. D. The Beginnings of Organic Photochemistry. Angew. Chem. Int. Ed. Engl. 1989, 28 (9), 1193-1207. https://doi.org/10.1002/anie.198911931.
(36) Mercer, J. A. M.; Cohen, C. M.; Shuken, S. R.; Wagner, A. M.; Smith, M. W.; Moss, F. R.; Smith, M. D.; Vahala, R.; Gonzalez-Martinez, A.; Boxer, S. G.; Burns, N. Z. Chemical Synthesis and Self-Assembly of a Ladderane Phospholipid. J. Am. Chem. Soc. 2016, 138 (49), 15845-15848. https://doi.org/10.1021/jacs.6b10706.
(37) Lukes, P.; Clupek, M.; Babicky, V.; Sunka, P. Ultraviolet Radiation from the Pulsed Corona Discharge in Water. Plasma Sources Sci. Technol. 2008, 17 (2), 024012. https://doi.org/10.1088/0963-0252/17/2/024012.
(38) Wang, Z. Polycyclobutanes Constructed From Biomass-Based Building Blocks. Dissertation, University of North Dakota, Grand Forks, North Dakota, 2017. https://commons.und.edu/theses/2153.
(39) Wang, Z. D. Synthesis And Applications Of Symmetric Building Blocks In Supramolecular, Single-Stranded, And Double-Stranded Polymers. Dissertation, University of North Dakota, Grand Forks, North Dakota, 2016. https://commons.und.edu/theses/2085.
(40) Shahni, R. K. Synthesis Of A Gemini Monomer And Cyclobutane-Containing Bifunctional Building Blocks For Novel Materials. Dissertation, University of North Dakota, Grand Forks, North Dakota, 2021. https://commons.und.edu/theses/4102.
(41) Faure, S.; Jensen, A. A.; Maurat, V.; Gu, X.; Sagot, E.; Aitken, D. J.; Bolte, J.; Gefflaut, T.; Bunch, L. Stereoselective Chemoenzymatic Synthesis of the Four Stereoisomers of L-2-(2Carboxycyclobutyl)Glycine and Pharmacological Characterization at Human Excitatory

Amino Acid Transporter Subtypes 1, 2, and 3. J. Med. Chem. 2006, 49 (22), 6532-6538. https://doi.org/10.1021/jm060822s.
(42) Beaver, M. G.; Zhang, E.; Liu, Z.; Zheng, S.; Wang, B.; Lu, J.; Tao, J.; Gonzalez, M.; Jones, S.; Tedrow, J. S. Development and Execution of a Production-Scale Continuous [2 + 2] Photocycloaddition. Org. Process Res. Dev. 2020, 24 (10), 2139-2146. https://doi.org/10.1021/acs.oprd.0c00185.
(43) Williams, J. D.; Nakano, M.; Gérardy, R.; Rincón, J. A.; de Frutos; Mateos, C.; Monbaliu, J.-C. M.; Kappe, C. O. Finding the Perfect Match: A Combined Computational and Experimental Study Towards Efficient and Scalable Photosensitized [2+2] Cycloadditions in Flow. Org Process Res Dev 2019, 23, 78-87. https://doi.org/10.1021/acs.oprd.8b00375.
(44) Corcoran, E. B.; Lévesque, F.; McMullen, J. P.; Naber, J. R. Studies Toward the Scaling of GasLiquid Photocycloadditions. ChemPhotoChem 2018, 2 (10), 931-937. https://doi.org/10.1002/cptc. 201800098.
(45) Hartmann, W. Photosensibilisierte Addition von Maleinsäureanhydrid an terminale Alkine. Chem. Ber. 1969, 102 (12), 3974-3984. https://doi.org/10.1002/cber. 19691021204.
(46) Koltzenburg, G.; Fuss, P. G.; Leitich, J. Die photsensibilisierte cycloaddition von maleinsäureanhydrid und einigen seiner derivate an acetylen und an 3-cyclobuten-1.2dicarbonsäureannhydrid. Darstellung von derivaten des bicyclopropyls und des Bicyclo [2.2.0] hexans. Tetrahedron Lett. 1966, 7 (29), 3409-3414. https://doi.org/10.1016/S0040-4039(01)82802-1.
(47) Bloomfield, J. J.; Owsley, D. C.; Srinivasan, R. Cis-3,4-Cyclobutenedicarboxylic Acid Anhydride. Org. Photochem. Synth. 1976, 2, 36-40.
(48) Gauvry, N.; Comoy, C.; Lescop, C.; Huet, F. A New Synthesis of Cis-Cyclobut-3-Ene-1,2Dicarboxylic Anhydride. Synthesis 1999, 1999 (04), 574-576. https://doi.org/10.1055/s-1999-3441.
(49) Schenck, G. O.; Hartmann, W.; Mannsfeld, S.; Metzner, W.; Krauch, C. H. Vierringsynthesen durch photosensibilisierte symmetrische und gemischte Cyclo-Additionen. Chem. Ber. 1962, 95 (7), 1642-1647. https://doi.org/10.1002/cber. 19620950711.
(50) Suzuki, H.; Tamura, T.; Ohmori, K. POLYAMIC ACID AND POLYIMIDE. 7,906,611 B2, March 15, 2011.


[^0]:    Chris Nelson
    Dean of the School of Graduate Studies

[^1]:    ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{~Hz}$, DMSO-D6) $\delta 6.59$ (s, 2H), 4.08 (s, 2H)

