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Abstract—In this paper, we study the user scheduling prob-
lem in a Low Earth Orbit (LEO) Multi-User Multiple-Input-
Multiple-Output (MIMO) system. We propose an iterative graph-
based maximum clique scheduling approach, in which users
are grouped together based on a dissimilarity measure and
served by the satellite via space-division multiple access (SDMA)
by means of Minimum Mean Square Error (MMSE) digital
beamforming on a cluster basis. User groups are then served in
different time slots via time-division multiple access (TDMA). As
dissimilarity measure, we consider both the channel coefficient
of correlation and the users’ great circle distance. A heuristic
optimization of the optimal cluster size is performed in order to
maximize the system capacity. To further validate our analysis,
we compare our proposed graph-based schedulers with the well-
established algorithm known as Multiple Antenna Downlink
Orthogonal clustering (MADOC). Results are presented in terms
of achievable per-user capacity and show the superiority in
performance of the proposed schedulers w.r.t. MADOC.

Index Terms—LEO, MU-MIMO, User Scheduling, Beamform-
ing, MMSE

I. INTRODUCTION

Future 6G communication networks are expected to be
able to provide connectivity to an extremely large number of
devices at high throughput with minimal delay. LEO Non-
Terrestrial Networks (NTN) systems are expected to be a
game changer thanks to their less stringent requirements in
terms of power consumption and propagation delay w.r.t. the
Geostationary Earth Orbit (GEO) counterpart. Also, Massive
MIMO has emerged as a key enabler for NTN. It has the
ability to boost the spectral efficiency, increase the available
degrees of freedom, and achieve high data speeds. With the
application of cutting-edge digital beamforming algorithms, a
LEO satellite with an antenna array and a large number of
antenna elements can provide service to many user terminals
(UTs) in full frequency reuse (FFR) schemes. Both GEO and
LEO NTN systems have received substantial attention with
regard to the application of such approaches. The objective
has been to increase the total throughput in unicast or multi-
cast systems while solving other crucial problems for NTN-
based beamforming, such as user scheduling or user grouping
and retrieval of Channel State Information (CSI) [1]–[5].
Specifically, Minimum Mean Square Error (MMSE) digital
beamforming, also known as Regularized Zero Forcing [6], is
a common pre-processing technique for real systems because
of its low complexity as well as its capability to completely
mitigate interference.

Given the extremely large number of UTs on the ground
w.r.t. the antennas available on the satellite, the design of a
proper user scheduling strategy becomes crucial. Scheduling
can be accomplished by grouping users into different clusters:
i) users within the same cluster are multiplexed and served to-
gether via space-division multiple access (SDMA), i.e., digital
beamforming or Multi-User MIMO (MU-MIMO) techniques;
ii) the different clusters of users are then served on different
time slots via time-division multiple access (TDMA) [2], [3].
The design of an optimal user grouping strategy is known to
be an NP-complete problem which can be solved only through
exhaustive search [7]. In [3], a greedy user scheduling strategy
for downlink MU-MIMO has been proposed. The authors take
into account heterogeneous users and suggest two hybrid user
scheduling algorithms that can capture user fairness while
maximizing sum-rate capacity in a greedy manner. Multiple
antenna downlink orthogonal clustering (MADOC), a well es-
tablished low complexity algorithm introduced in [8], expands
on the work in [3] and considers user fairness and group
number minimization into account.

In this paper, we extend our work in [9] by proposing a
low-complexity graph-based framework for user scheduling
for MU-MIMO LEO NTN systems aiming at maximizing
the sum-rate capacity of the system while preserving fairness
among the users. We model the clustering problem as an
undirected and unweighted graph: each vertex represents a
UT, while the edges of the graph are based on one of the
two possible dissimilarity measures:

1) an edge in the graph between 2 users exists if their
channel coefficient of correlation (CoC), as defined in [8]
is below a certain threshold,

2) an edge in the graph between 2 users exists if their great-
circle distance is above a certain threshold.

It is clear that the first scheduling method requires CSI
availability at the transmitter during the scheduling phase,
while the second method requires only the knowledge of
users’ positions. Once defined the graph, at each step, the
procedure searches for the maximum clique, i.e., the largest
fully connected subgraph in the graph through the efficient
MaxCliqueDyn algorithm [10]. The vertices belonging to that
clique are assigned to a cluster, removed from the graph
and the procedure is repeated until there are no more users
to schedule. For each cluster, SDMA is accomplished by



means of feed space MMSE beamforming, furthermore, we
consider two different types of power normalization of the
beamforming matrix: Sum Power Constraint (SPC) and Max-
imum Power Constraint (MPC) [11]. A heuristic optimization
of the graph thresholds is performed for both approaches so
that the system’s overall capacity is maximized. With the aim
of validating our analysis, the results are compared with the
MADOC algorithm and with a position-based scheduler, in
which a beam lattice is generated on-ground and one user per
beam is randomly selected to form a cluster.

II. SYSTEM MODEL

A Single Multi-beam (MB) LEO satellite equipped with
an on-board planar antenna array is considered here. The
antenna array consists of N radiating elements which pro-
vide connectivity to a total of K single-antenna uniformly
distributed on-ground users by means of S ≤ N beams.
Our further assumptions are based on the system architecture
comprehensively explained in [2], [9]. The on-ground gNB
is responsible for the user grouping, i.e., Radio Resource
Management (RRM) and computation of the beamforming
coefficients. Both scheduling and beamforming require the
estimation of CSI which is provided by the UTs. The CSI
values are computed by the users at time instant t0; the
scheduling and the beamforming matrices for every group
of users are then computed at the gNB and, finally, actually
used to transmit the beamformed symbols to the users at time
t0+∆t. The latency ∆t between the channel estimation phase
and the transmission phase introduces a misalignment between
the channel on which the scheduling and the beamforming ma-
trices are computed and the actual channel through which the
transmission occurs, which impacts the system performance.
The latency is due to

∆t = tut,max + 2tfeeder + tp + tad (1)

where i) tut,max is the maximum propagation delay for the
UTs requesting connectivity in the coverage area; ii) tfeeder
is the propagation delay on the feeder link, considered twice
since the estimates are to be sent to the GW on the return link
and then the beamformed symbols are sent on the forward
link to the satellite; iii) tp is the processing delay needed to
compute the beamforming matrix; and iv) tad includes any
additional delay. The antenna array model assumed here is
based on ITU-R Recommendation M.2101 [13] illustrated in
Fig. 1.

By default, the antenna boresight direction is defined by
the direction of the Sub-Satellite Point (SSP). The point P
is the position of the user terminal on the ground. The user
directions are identified by (ϑ, φ) angles where the boresight
direction is (0,0). We can now derive the direction cosines for
the considered user as u =

Py

∥P∥ sinϑ sinφ, and v = Pz

∥P∥ cosϑ.
The total array response of the Uniform Planar Array (UPA)
in the generic direction (ϑi, φi) can be expressed as the
Kronecker product of the array responses of the 2 Uniform
Linear Arrays (ULAs) lying on the y- and z-axis [14], [15].
We first define the 1 ×NH steering vector (SV) of the ULA

Fig. 1: Multi-beam Antenna Array Model from ITU-R
M.2101-0. [13]

along the y-axis aH(θi, φi) and the 1 ×NV SV of the ULA
along the z-axis aV (θi):

aH(ϑi,φi)=

[
1, ejk0dH sinϑi sinφi , . . . , ejk0dH(NH−1) sinϑi sinφi

]
(2)

aV (ϑi)=

[
1, ejk0dV cosϑi , . . . , ejk0dV (NV −1) cosϑi

]
. (3)

Where k0 = 2πλ is the wave number, NH , NV denotes
the number of array elements on the horizontal (y-axis) and
vertical (z-axis) directions with N = NH · NV and dH , dV
denote the distance between adjacent array elements on the y-
and z-axis respectively. We assume that the array is equipped
with directive antenna elements, whose radiation pattern is
denoted by gE(ϑi, φi). Finally, we can express the 1×N SV
of the UPA at the satellite targeted for the i-th user as the
Kronecker product of the 2 SV’s along each axis multiplied
by the element radiation pattern:

a(ϑi, φi) = gE(ϑi, φi)aH(ϑi, φi)⊗ aV (ϑi) (4)

The CSI vector at feed level ĥi represents the channel between
the N radiating elements and the generic i-th on-ground UT,
with i = 1, . . . ,K, can be written as:

ĥi = G
(rx)
i

λ

4πdi

√
Li

κBTi
e−j 2π

λ dia(ϑi, φi) (5)

in which, di is the slant range between the generic i-th user and
the satellite, λ is the wavelength, κBTi denotes the equivalent
thermal noise power, with κ being the Boltzmann constant,
B the user bandwidth (assumed to be the same for all users),
and Ti the equivalent noise temperature of the i-th UT. G(rx)

i

denotes the receiving antenna gain for the i-th UT, while Li

denotes all the additional losses per user, such as for example
atmospheric, antenna, and cable losses. More in detail, the
additional losses are computed based on 3GPP TR 38.821 [12]
as

Li = Lsha,i + Latm,i + Lsci,i (6)

where Lsha,i represents the log-normal shadow fading term,
Latm,i the atmospheric loss, and Lsci,i the scintillation. Col-
lecting all of the K CSI vectors, it is possible to build
a K × N complex channel matrix at system level Ĥ =[
ĥ⊺
1 , ĥ

⊺
2 , . . . , ĥ

⊺
K

]⊺
, where the generic k-th row contains the



CSI vector of the k-th user and the generic n-th column
contains the channel coefficients from the n-th on-board feed
towards the K on-ground users.

Given the set of all users to be scheduled, denoted
with U = {U1, U2, . . . , UK}, the Radio Resource Manage-
ment (RRM) algorithm defines a possible users’ partitioning
{C1, C2, . . . , CP } where Cp ⊆ U is defined as cluster and
|Cp| = Kp is defined as the cardinality of the p-th cluster
with p = 1, . . . , P . Clusters are not necessarily disjoint sets
of users, clearly |C1 ∪ C2 ∪ . . . ∪ CP | = K. In each time
slot, users belonging to cluster Cp are selected, leading to
a Kp × N complex scheduled channel matrix Ĥp ⊆ Ĥ,
which contains only the rows of the scheduled users in the
p-th cluster. The selected beamforming algorithm computes
for each cluster a N × Kp complex beamforming matrix
Wp = [w

(p)
1 ,w

(p)
2 , . . . ,w

(p)
Kp

] , where w
(p)
i denotes the

N × 1 beamformer designed for the i-th user in the p-th
cluster. The matrix Wp projects the Kp dimensional column
vector sp = [s1, s2, . . . , sKp ]

⊺ containing the unit-variance
user symbols onto the N -dimensional space defined by the
antenna feeds. Thus, in the feed space, the computation of the
beamforming matrix allows for the generation of a dedicated
beam towards each user direction. The signal received by the
i-th user in the p-th cluster can be expressed as follows [9]:

y
(p)
k = hkw

(p)
k sk +

Kp∑
i=1
i ̸=k

hkw
(p)
i si + z

(p)
k (7)

where z
(p)
k is a circularly symmetric Gaussian random variable

with zero mean and unit variance. The Kp-dimensional vector
of received symbols in the p-th cluster is:

yp = HpWpsp + zp (8)

It shall be noted that, as previously discussed, the estimated
channel matrix Ĥ at time t0 is used to compute the scheduling
and the beamforming matrices Wp in the estimation phase,
while the beamformed symbols are sent to the users at a time
instant t0 +∆t, in which the scheduled channel matrices and
vectors are different and denoted as Hp and hk, respectively.

The Signal-to-Interference-plus-Noise ratio (SINR) for user
k belonging to cluster p can be computed as

SINR(p)
k =

∥∥∥hkw
(p)
k

∥∥∥2
1 +

Kp∑
i=1
i̸=k

∥∥∥hkw
(p)
i

∥∥∥2
(9)

Given a TDMA time frame TF , each cluster is assigned a
time slot Tp. In order to design a fair-proportional scheduler,
we assume that we can adjust the duration of each time slot
Tp to be proportional to the cardinality of each cluster Kp,
i.e.,

Tp = γp TF

γp =
Kp∑P
p=1 Kp

(10)

Therefore, in order to take into account the duty cycle associ-
ated with each cluster, we can define the per-user achievable
capacity as:

Ck = B
∑
p

Uk∈Cp

γp log2

(
1 + SINR(p)

k

)
(11)

where γp denotes the cluster weight. The beamforming matrix
Wp, which is computed on a cluster basis, is based on the
linear Minimum Mean Square Error (MMSE) equation:

Wp = ĤH
p (ĤpĤ

H
p + αIKp

)
−1

(12)

where IKp indicates the Kp×Kp identity matrix and α = N
Pt

is the regularisation factor with Pt the total on-board power.
Finally, as detailed in [1], [9], the power normalization is a
fundamental step for beamforming so as to properly take into
account the power that can be emitted both by the satellite and
per antenna. We consider the following two options for power
normalization i.e. Sum Power Constraint (SPC), Maximum
Power Constraint (MPC) defined as:

SPC −→ W̃p =

√
PtWp√

tr(WpWH
p )

(13)

MPC −→ W̃p =

√
PtWp√

N maxj
[
WpWH

p

]
j,j

(14)

III. GRAPH-BASED USER SCHEDULING

We denote with G = (V, E) an undirected and unweighted
graph with vertex set V and edge set E . A clique Q of G is
a subset of the vertices, Q ⊆ V , such that every two distinct
vertices are adjacent, i.e., Q is a complete subgraph. In our
LEO NTN MIMO scenario, the set of vertices V coincides
with the set of users U and the edge set is constructed based
on a dissimilarity measure, which can be one of the following:

1) In case of CSI availability at the transmitter at the
scheduling phase, we can adopt as a dissimilarity measure
the channel CoC [16], defined as:

[Ψ]i,j =

∣∣∣ĥiĥ
H
j

∣∣∣∥∥∥ĥi

∥∥∥∥∥∥ĥj

∥∥∥ (15)

where [Ψ]i,j ∈ [0, 1]. The set of edges E of the G graph is
completely determined by its adjacency matrix A, whose
entries are defined as:

[A]i,j =

{
1, [Ψ]i,j ≤ δC

0, [Ψ]i,j > δC
(16)

where δC denotes a properly designed threshold. If an
element of A is equal to 0, hi and hj are considered
to be co-linear and there is no edge between Ui and Uj ,
while if an element of A is equal to 1, hi and hj are
considered to be orthogonal, i.e., there is an edge between
Ui and Uj and they can belong to the same cluster.

2) In case of no CSI availability at the transmitter at the
scheduling phase, when only users’ positions are known,



we can adopt as dissimilarity measure the users’ great
circle distance. Given the latitudes, ϕi and ϕj of the
users i and j, respectively, and λi and λj their respective
longitudes, their great circle distance can be computed
through the haversine formula. We first define:

h = sin2
(
ϕj − ϕi

2

)
+ cosϕi · cosϕj · sin2

(
λj − λi

2

)
(17)

then
[Γ]i,j = 2r arcsin

(√
h
)

(18)

We can define now the corresponding adjacency matrix
A as:

[A]i,j =

{
1, [Γ]i,j ≥ δD

0, [Γ]i,j < δD
(19)

where δD is again a properly designed threshold. If an
element of A is equal to 1, the great-circle distance and
therefore the angular distance between Ui and Uj is such
that their directions (ϑi, φi) and (ϑj , φj) can be spatially
separated by means of MMSE digital beamforming, and
they can belong to the same cluster (or they can be co-
scheduled), while if an element of A is equal to 0, the
directions of Ui and Uj are considered to be too close to
be spatially distinguished by the beamformer.

The threshold determines an upper bound on the size of a
clique and therefore the optimal number of users that can
be efficiently multiplexed in the space domain by MMSE
beamforming within a cluster.

A maximum clique Qmax ⊆ V is a clique, such that there is
no clique with more vertices. The proposed user scheduling al-
gorithm is a greedy iterative procedure that aims at minimizing
the total number of clusters P , given an optimized threshold
δC for the CSI-based case or δD for the distance-based case.
This is accomplished by:

1) maximizing the size of each cluster by iteratively finding
the maximum clique of the updated graph;

2) creating disjoint sets of scheduled users, i.e., Ci ∩ Cj =
∅, ∀i, j, which also minimizes the total number of
clusters P .

The maximum clique problem has been widely investigated
in literature [17]. Several algorithms have been proposed for
the exact solution of the problem, but also various efficient
heuristic algorithms have been developed, which allow to
solve the problem in polynomial time [18], [19]. In this
work, we adopted MaxCliqueDyn [10], an efficient branch-
and-bound algorithm for finding the maximum clique. An
extensive computational analysis on MaxCliqueDyn and its
variants can be found in [17].

As illustrated in Algorithm 1, the iterative procedure
searches for the maximum clique Qmax in the graph and
declares it as a cluster; at each step, the nodes in Qmax and any
edges connected to them are removed, the graph is updated
after pruning. The procedure is repeated until there are no
more vertices in the graph. Fairness is guaranteed among users
by setting the cluster weight γp =

Kp

K , which defines the

duration of the time slot Tp assigned to cluster Cp within the
total TDMA time frame TF .

Algorithm 1 Iterative Graph-based user scheduling algorithm

Input: Adjacency matrix A associated to graph G(U , E)
Output: Cluster sets Cp and cluster weights γp for p = 1, . . . , P

1: Initialize p = 1
2: while U ̸= ∅ do
3: Qmax = MaxCliqueDyn(G)
4: Cp ← Qmax and Kp ← |Cp|
5: Remove all edges E associated with vertices Qmax
6: U ← U −Qmax and update G
7: p← p+ 1
8: end while
9: for p:=1 to P do

10: γp ← Kp∑P
p=1 Kp

11: end for

IV. BENCHMARK ALGORITHMS: MADOC AND
POSITION-BASED RANDOM SCHEDULER

MADOC is an efficient CSI-based scheduler presented
in [8], which uses the same channel CoC in (15) as a grouping
indicator. The key idea in the MADOC procedure is to use the
channel CoC as a group policy and to assemble so-called ϵ-
orthogonal user groups, this means that the CoC calculated for
all combinations of users inside a cluster does not exceed a
certain threshold ϵ. The optimal value for the threshold ϵ of
MADOC depends on the scenario characteristics and hence,
it has been newly identified w.r.t. [8].

A position-based scheduler is also used as a benchmark
algorithm for comparison. It is a simple scheduling procedure
in which a beam lattice is generated on-ground and one user
per beam is randomly selected to form a cluster.

V. SIMULATION SETUP AND RESULTS

TABLE I: Simulation parameters.

Parameter Value
Carrier frequency 2 GHz

System band S (30 MHz)
Beamforming space feed

Receiver type VSAT
Receiver antenna gain 39.7 dBi

Noise figure 1.2 dB
Propagation scenario Line of Sight

System scenario urban
Total on-board power density, Pt,dens 4 dBW/MHz

Number of tiers 5
User density 0.1 user/km2

Cluster size for position-based scheduler 91
Number of transmitters N 1024 (32× 32 UPA)

Monte Carlo iterations 100

In this section, we present the outcomes of the extensive
numerical simulations with the parameters specified as in
Tab. I. The assessment has been performed in full buffer
conditions. A single LEO satellite is considered at a distance
of 600 Km from the Earth. On average the total number of



(a) CSI-based Max Clique Scheduler. (b) CSI-based MADOC Scheduler. (c) Distance-based Max Clique Scheduler.

Fig. 2: Threshold optimization for graph-based and MADOC schedulers.

users are KT = 5700. The satellite is equipped with a UPA of
32× 32 feeds. The user terminals are fixed and their receiver
antenna gain G

(rx)
max is set to 39.7 dBi. The propagation scenario

is the Line of Sight model based on TR 38.811 [12] and TR
38.821 [13].

Aiming at maximizing the average per-user capacity, we
performed a heuristic optimization of thresholds δC , ϵ and
δD for CSI-based maximum (Max) clique, MADOC, and
distance-based Max clique schedulers, respectively, as illus-
trated in Fig. 2 for both MMSE with SPC and MPC power
normalizations. In particular, we investigate the trade-off be-
tween the maximization of the cluster size Kp (minimization
of the number of clusters), and the maximization of the average
per-cluster SINR, 1

Kp

∑Kp

k=1 SINR(p)
k , which depends on the

interference rejection capability of the per-cluster MMSE
beamforming matrix Wp, i.e., the ability to separate users
only in the spatial domain. Tab. II reports for each scheduler
the obtained optimal threshold, the mean cluster size and the
average per-user capacity, which has been computed with a
per-cluster MMSE beamforming matrix with SPC and MPC
normalizations. We recall that in the simulated scenario, with
a Tier 5 beam lattice, the cluster size for the position-based
random scheduler remains constant Kp = 91, ∀p. Fig. 3
shows the average per-user capacity as a function of the
mean cluster size, it can be noticed that both graph-based
schedulers outperform MADOC and that in general SPC
normalization can offer a larger user group size w.r.t. MPC.
It is worth remarking that also a non-CSI-based technique,
i.e., the distance-based Max clique scheduler, can be highly
competitive, although CSI knowledge at the transmitter will
be required at the transmission phase on a cluster level only.

TABLE II: Simulation Results for Threshold Optimization

Parameters CSI-based CSI-based Distance-based Position-based
Max clique MADOC Max clique random

Optimized SPC 0.32 0.55 26.50 -
threshold MPC 0.24 0.47 28.50 -

Mean SPC 51 59.4 52.3 91
cluster size MPC 44 50 46 91

Capacity SPC 3.92 3.85 3.90 2.58
(Mbps) MPC 3.41 3.32 3.38 1.77

Fig. 3: Mean cluster size vs. capacity for graph-based and
MADOC schedulers.

Fig. 4: CDF of users’ capacity.



Fig. 5: CDF of users’ SINR.

In Fig. 4 we show the Cumulative Distribution Function
(CDF) of the user’s capacity for all the considered schedulers.
The CSI-based (distance-based) Max clique scheduler shows
an improvement w.r.t. MADOC in terms of the average per-
user capacity of approximately 0.15 (0.14) Mbps for SPC and
0.12 (0.1) Mbps for MPC. The improvement of both graph-
based schedulers w.r.t. the position-based random scheduler
is above 1.6 Mbps for SPC and above 1.8 Mbps for MPC.
Finally, Fig 5 shows the CDF of users’ SINR and further
demonstrates the very high performance of both graph-based
schedulers w.r.t position-based, with a slight improvement also
w.r.t. to MADOC.

VI. CONCLUSION

We have proposed an iterative user scheduling procedure
based on the maximum clique algorithm. As a grouping
indicator, we have presented the channel CoC in case of
CSI availability at the scheduling phase, or the users’ great
circle distance in case only users’ locations are known. For
each cluster, a digital MMSE beamforming matrix allows to
spatially separate the scheduled users and we have considered
two power normalizations for the MMSE matrix: SPC and
MPC. We have found the optimal threshold values for both
graph-based schedulers and for MADOC. The results have
been presented in terms of achievable per-user capacity and
SINR and show an improvement in the performance of both
graph-based schedulers w.r.t. MADOC.
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