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In aggregation theory, there exists a large number of aggregation functions that are defined 
in terms of rearrangements in increasing order of the arguments. Prominent examples are the 
Ordered Weighted Operator and the Choquet and Sugeno integrals. Following a probability 
approach, ordering random variables by means of stochastic orders can be also a way to define 
aggregations of random variables. However, stochastic orders are not total orders, thus pairs of 
incomparable distributions can appear. This paper is focused on the definition of aggregations 
of random variables that take into account the stochastic ordination of the components of the 
input random vectors. Three alternatives are presented, the first one by using expected values 
and admissible permutations, then a modification for multivariate Gaussian random vectors and 
a third one that involves a transformation of the initial random vectors in new ones whose 
components are ordered with respect to the usual stochastic order. A deep theoretical study of 
the properties of all the proposals is made. A practical example regarding temperature prediction 
is provided

1. Introduction

Aggregation theory is devoted to the fusion of information of different sources in an unique element that summarizes all the 
available information. Working with real numbers, an aggregation function takes a tuple of dimension 𝑛 of a real interval and returns 
another value in the same interval, fulfilling monotonicity and some boundary conditions over the ends of the interval [12].

Aggregation functions are widely used in the context of Data Analysis [3,16,23]. The most classical approach to model data is 
to see them as realizations of a collection of random variables, as considered is Statistics [24]. Then, it is reasonable to combine 
Aggregation Theory and Probability Theory to study the aggregation of data. In this direction, the concept of aggregations of random 
variables was defined in [1], as functions that take random vectors and return random variables. The monotonicity and boundary 
conditions are redefined by using stochastic orders.

In classical Aggregation Theory, ordering the values of the input vector is a quite common way to define aggregation functions. 
Prominent examples are the OWA operator [30], the IOWA operator [31] and the Choquet and Sugeno integrals [12]. Moving to the 
stochastic setting, to generalize such operators it is reasonable to define an aggregation of random variables that takes into account 
the order of the input random variables. However, as pointed out by Yager in [32], the usual stochastic order (whose definition is 
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recalled below) is not a total order in the set of probability distributions (see [25]), thus pairs of incomparable random variables may 
appear.

We devote this paper to the definition of aggregation of random variables based on the stochastic ordination of the components 
of the input random vector. With this approach, the whole distribution of the random variables can be used to order them, while in 
classical aggregation theory only the observations of realizations are used for such ordination.

The definition of aggregation functions based on partial orders has been studied in detail in the literature in the case of aggre-
gation of vectors of real numbers [22]. Here we consider the same problem but dealing with random variables, approaching at the 
incomparability problem by two different techniques. Firstly, we order the random variables in terms of their means and considering 
admissible permutations (see [21]) in the case of ties. A slight modification of this approach has good properties when working 
with multivariate Gaussian random vectors. The second technique transforms the initial random vector in a new one in which its 
components are ordered in the usual stochastic order, following a similar approach as the one proposed by Yager in [32].

The remainder of the paper is organized as follows. The basic concepts about stochastic orders, copulas, aggregation of random 
variables and ordination of arguments in Aggregation Theory are presented in Section 2. Section 3 is devoted to the definition and 
the study of the Mean Ordered Weighted Averaging Operator and its modification for multivariate Gaussian random vectors. The 
Stochastically Ordered Aggregation Operator is presented in Section 4, as well as several results characterizing its properties. A 
practical example that illustrates its benefits when used in a problem of prediction is provided in Section 5, and the conclusions are 
discussed in Section 6.

2. Preliminaries

We devote this section to introducing the basic concepts needed for the development of the paper. In particular, we will focus on 
stochastic orders, copulas, aggregation of random variables and, finally, we will discuss some examples of ordered aggregations in 
the literature.

2.1. Stochastic orders and copulas

Comparing probability distributions is a common problem in several areas such as Reliability Theory, Queuing Theory or Statis-
tics [25]. A huge amount of relations between distributions, known as stochastic orders, have been defined in this regard. These 
orders can be extended to random vectors straightforwardly, since any random vector induces a probability distribution. Different 
stochastic orders will be considered in this paper, mainly defined in terms of expectations of particular type of functions. In the 
following, we assume that all random vectors are of dimension 𝑛. In addition, we will use increasing in a non strict sense.

Definition 1. [25] Let �⃗� and 𝑌 be two random vectors. Then, if 𝐸[𝜑(�⃗�)] ≤ 𝐸[𝜑(𝑌 )] for any measurable increasing [convex, 
increasing convex] function 𝜑 ∶ ℝ𝑛 → ℝ such that 𝐸[𝜑(�⃗�)] and 𝐸[𝜑(𝑌 )] exist, �⃗� is said to be smaller than or equal to 𝑌 in 
the usual [convex, increasing convex] stochastic order and it is denoted as �⃗� ≤𝑠𝑡 [≤𝑐𝑥, ≤𝑖𝑐𝑥]𝑌 .

For the cases in which �⃗� ≤𝑠𝑡 [≤𝑐𝑥, ≤𝑖𝑐𝑥]𝑌 and 𝑌 ≤𝑠𝑡 [≤𝑐𝑥, ≤𝑖𝑐𝑥]�⃗� are both true, we will use the notation �⃗� =𝑠𝑡 [=𝑐𝑥, =𝑖𝑐𝑥]𝑌 . In all 
these cases, equality in the stochastic orders is equivalent to equality in distribution, that is, 𝑃 (�⃗� ∈𝐴) = 𝑃 (𝑌 ∈𝐴) for any measurable 
set 𝐴 ⊆ℝ𝑛.

The usual stochastic order has the following characterization in terms of random vectors defined in the same probability space, 
which will be useful later. Here and in the rest of the paper the inequality between vectors means that all components of the two 
vectors �⃗� and 𝑦 are ordered accordingly.

Theorem 2. [25] Let �⃗� and 𝑌 be two random vectors. �⃗� ≤𝑠𝑡 𝑌 if and only if there exist two random vectors ̂⃗𝑋 and ̂⃗𝑌 defined in the same 
probability space such that ̂⃗𝑋 =𝑠𝑡 �⃗�, ̂⃗𝑌 =𝑠𝑡 𝑌 and 𝑃 ( ̂⃗𝑋 ≤ ̂⃗

𝑌 ) = 1.

The property 𝑃 (�⃗� ≤ 𝑌 ) = 1 is known as to be almost surely smaller than or equal and will be denoted as �⃗� ≤𝑎.𝑠. 𝑌 . As a consequence 
of the latter result, whenever �⃗� and 𝑌 are defined in the same probability space, �⃗� ≤𝑎.𝑠. 𝑌 ⟹ �⃗� ≤𝑠𝑡 𝑌 .

In the univariate case, the usual stochastic order is equivalent to the pointwise ordination of the cumulative distribution functions, 
that is, 𝑋 ≤𝑠𝑡 𝑌 ⟺ 𝐹𝑋 (𝑡) ≥ 𝐹𝑌 (𝑡) ∀𝑡 ∈ℝ (see [25]).

We want to recall that �⃗� ≤𝑠𝑡 [≤𝑐𝑥, ≤𝑖𝑐𝑥]𝑌 implies 𝑋𝑖 ≤𝑠𝑡 [≤𝑐𝑥, ≤𝑖𝑐𝑥]𝑌𝑖 ∀𝑖 ∈ {1, … , 𝑛} but in general the other implication does not 
hold [25]. The equivalence holds in special cases, see Proposition 7.

In the case of multivariate Gaussian distributions, the latter stochastic orders can be easily characterized. These characterizations 
will be of interest in Subsection 3.2.

Theorem 3. [25] Let �⃗� and 𝑌 be two random vectors having multivariate Gaussian distributions with, respectively, mean vectors 𝜇𝑋 and 
𝜇𝑌 and covariance matrices Σ𝑋 and Σ𝑌 . Then:
2

• �⃗� ≤𝑠𝑡 𝑌 if and only if 𝜇𝑋 ≤ 𝜇𝑌 and Σ𝑋 = Σ𝑌 .
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• �⃗� ≤𝑐𝑥 𝑌 if and only if 𝜇𝑋 = 𝜇𝑌 and Σ𝑌 −Σ𝑋 is a positive semi-definite matrix.

• �⃗� ≤𝑖𝑐𝑥 𝑌 if and only if 𝜇𝑋 ≤ 𝜇𝑌 and Σ𝑌 −Σ𝑋 is a positive semi-definite matrix.

We want to recall that a matrix 𝑀 of dimension 𝑛 × 𝑛 is positive semi-definite if 𝑣𝑇𝑀𝑣 ≥ 0 for any vector 𝑣 ∈ℝ𝑛. We will denote 
the set of positive semi-definite matrices as  .

Definition 4. [29] Let 𝑀1 and 𝑀2 be two positive semi-definite matrices. Then, is said that 𝑀1 is smaller than or equal to 𝑀2 in 
the Loewner order if 𝑀2 −𝑀1 is positive semi-definite. It will be denoted as 𝑀1 ≤𝐿𝑜 𝑀2.

In addition to these orders, the case of just considering the mean vectors, i.e. 𝐸[�⃗�] ≤ 𝐸[𝑌 ] (component-wise), will be used in 
Section 3. It will be denoted as �⃗� ≤𝐸 𝑌 .

The concept of copulas will be also very useful in the development of the paper. The distribution of any random vector can 
be separated in two parts, the marginal distributions and the copula. The marginals are the distributions of the components of the 
random vector and the copula describes the information about the dependence between them. The class of copula functions is defined 
as follows:

Definition 5. [20] A function 𝐶 ∶ [0, 1]𝑛 → [0, 1] is an 𝑛-copula if the following conditions are fulfilled:

• For every �⃗� ∈ [0, 1]𝑛, 𝐶(�⃗�) = 0 if there exists 𝑖 ∈ {1, … , 𝑛} such that 𝑥𝑖 = 0.
• For every �⃗� ∈ [0, 1]𝑛, 𝐶(�⃗�) = 𝑥𝑖 if 𝑥𝑗 = 1 for every 𝑗 ≠ 𝑖.
• For every �⃗�, ⃗𝑦 ∈ [0, 1]𝑛 such that �⃗� ≤ 𝑦 it holds,∑

𝑣∈𝑃[�⃗�,𝑦]

sgn(𝑣)𝐶(𝑣) ≥ 0 ,

where [�⃗�, ⃗𝑦] is the 𝑛-dimensional prism with corner vertices �⃗� and 𝑦, 𝑃[�⃗�,𝑦] denotes the set of vertices of [�⃗�, ⃗𝑦] and

sgn(𝑣) =

{
1 if 𝑣𝑘 = 𝑥𝑘 for an even number of 𝑘’s

−1 if 𝑣𝑘 = 𝑥𝑘 for an odd number of 𝑘’s.

Specifically, it is always possible to represent any multivariate distribution function as a composition of a copula and the distri-
bution functions of the components of the random vectors. This outcome is formally recognized as Sklar’s Theorem, and it will be 
recalled in Theorem 3. Throughout this work, for the sake of brevity, we will use the term copula in place of 𝑛-copula when the 
dimension 𝑛 is clear.

Theorem 6. [26] Let �⃗� be a random vector with marginals distributions 𝐹1, … , 𝐹𝑛 and joint distribution function 𝐹 . Then, it exists a copula 
𝐶 ∶ [0, 1]𝑛 → [0, 1] such that

𝐹 (𝑥1,… , 𝑥𝑛) = 𝐶
(
𝐹1(𝑥1),… , 𝐹𝑛(𝑥𝑛)

)
.

Prominent examples of copulas are the product copula and the minimum copula which are associated, respectively, with inde-
pendent and comonotone (perfectly positive dependent) random variables. Two random vectors are said to have the same copula if 
the copula of Theorem 6 can be chosen to be the same.

It must be recalled that whenever the marginal distributions 𝐹1, … , 𝐹𝑛 are continuous then the copula 𝐶 is unique, while in the 
other cases there exists a unique subcopula 𝐶 ′ defined on Ran𝐹1 ×⋯ × Ran𝐹𝑛 such that the equation in Theorem 6 holds, where 
Ran𝐹𝑖 denotes the range of 𝐹𝑖 (see, for instance, [8,11]).

It is well known and easy to verify that in the first case the vector (𝑈1, … , 𝑈𝑛) = (𝐹1(𝑋1), … , 𝐹𝑛(𝑋𝑛)) has the unique copula and 
its joint distribution has uniform marginals, while in the second case the distribution of the vector (𝑈1, … , 𝑈𝑛), which assume values 
in Ran𝐹1 ×⋯ × Ran𝐹𝑛, is entirely defined by the subcopula 𝐶 ′.

Example 1. Let �⃗� = (𝑋1, 𝑋2) be a random vector assuming values {(𝑎1, 𝑏1), (𝑎1, 𝑏2), (𝑎2, 𝑏1), (𝑎2, 𝑏2)} such that 𝑎1 < 𝑎2 and 𝑏1 < 𝑏2
with probabilities, respectively, 𝑝11, 𝑝12, 𝑝21 and 𝑝22. In this case, 𝐹1(𝑡) takes the values 0 if 𝑡 < 𝑎1, 𝑝11 + 𝑝12 if 𝑎1 ≤ 𝑡 < 𝑎2 and 1
otherwise. Similarly, 𝐹2(𝑡) takes the values 0 if 𝑡 < 𝑏2, 𝑝21 + 𝑝22 if 𝑏1 ≤ 𝑡 < 𝑏2 and 1. Then, the vector (𝐹1(𝑋1), 𝐹2(𝑋2)) takes the 
values {(𝑝11 + 𝑝12, 𝑝21 + 𝑝22), (1, 𝑝21 + 𝑝22), (𝑝11 + 𝑝12, 1), (1, 1)} with probabilities, respectively, 𝑝11, 𝑝12, 𝑝21 and 𝑝22.

Proposition 7. [25] Let �⃗� and 𝑌 be two random vectors with the same copula. Then, �⃗� ≤𝑠𝑡 𝑌 if and only if 𝑋𝑖 ≤𝑠𝑡 𝑌𝑖 for all 𝑖 ∈ {1, … , 𝑛}.
3

We end this section by defining a stronger version of the usual stochastic order that will be specially relevant in Section 4.
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Definition 8. Let �⃗� and 𝑌 be two random vectors with joint distribution functions 𝐹 and 𝐺 and marginal distributions 𝐹1, … , 𝐹𝑛
and 𝐺1, … , 𝐺𝑛. It is said that �⃗� is smaller than or equal to 𝑌 in the same dependence structure stochastic order, denoted by 
�⃗� ≤𝑠𝑑−𝑠𝑡 𝑌 if �⃗� ≤𝑠𝑡 𝑌 and they share the same unique subcopula 𝐶 ′ defined over Ran𝐹1 ×⋯ × Ran𝐹𝑛 such that

𝐹 (𝑥1,… , 𝑥𝑛) = 𝐶 ′(𝐹1(𝑥1),… , 𝐹𝑛(𝑥𝑛)), 𝐺(𝑥1,… , 𝑥𝑛) = 𝐶 ′(𝐺1(𝑥1),… ,𝐺𝑛(𝑥𝑛))

for any �⃗� ∈ℝ𝑛.

Note that, because of the previous remarks, if �⃗� ≤𝑠𝑑−𝑠𝑡 𝑌 then

(𝐹1(𝑋1),… , 𝐹𝑛(𝑋𝑛)) =𝑠𝑡 (𝐺1(𝑌1),… ,𝐺𝑛(𝑌𝑛))

Example 2. Let (𝑋1, 𝑋2) be defined as in Example 1. Consider now a vector (𝑌1, 𝑌2) similarly defined but assuming values in 
(�̃�1, ̃𝑏1), (�̃�1, ̃𝑏2), (�̃�2, ̃𝑏1) and (�̃�2, ̃𝑏2) such that �̃�1 < �̃�2 and �̃�1 < �̃�2. Both random vectors share the unique subcopula 𝐶 ′ as considered 
in Definition 8 and it holds that �⃗� ≤𝑠𝑑−𝑠𝑡 𝑌 if and only if 𝑎𝑖 ≤ �̃�𝑖 and 𝑏𝑖 ≤ �̃�𝑖 for all 𝑖 ∈ {1, 2}.

2.2. Aggregation of random variables

An aggregation function is typically referred to as a function that summarizes the information of a tuple of values. Formally, 
given a real interval 𝐼 (which can be unbounded), an aggregation function is defined as a monotone increasing function 𝐴 ∶ 𝐼𝑛 → 𝐼

which satisfies that the infimum and the supremum of its image are, respectively, the infimum and the supremum of the considered 
interval.

Definition 9. [12] Let 𝐼 be an interval in the real line ℝ. An aggregation function is a function 𝐴 ∶ 𝐼𝑛 → 𝐼 satisfying:

• It is increasing (in each variable).
• The following boundary conditions are fulfilled:

inf
�⃗�∈𝐼𝑛

𝐴(�⃗�) = inf 𝐼, sup
�⃗�∈𝐼𝑛

𝐴(�⃗�) = sup𝐼.

Aggregation functions are widely used in applied problems associated with Data Analysis [3,16,23]. If we follow the usual 
approach made by Statistics, we can consider the data to be observations of random variables [24]. In this direction, the concept 
of aggregation of random variables has been introduced in [1]. This type of functions takes a random vector with support over the 
Cartesian product of an interval and returns a random variable whose image is the same interval. The properties of monotonicity 
and boundary conditions are defined using a stochastic order. Considering a probability space (Ω, 𝑆, 𝑃 ), let us first introduce the 
following notation:

𝐿𝑛
𝐼
(Ω) =

{
�⃗� ∶ Ω→ 𝐼𝑛 | �⃗� is measurable

}
.

If 𝑛 = 1, we will denote 𝐿1
𝐼
(Ω) just as 𝐿𝐼 (Ω).

For the monotonicity, we need to use a stochastic order. To this aim, we can consider a generic stochastic order ≤𝑆𝑂 which is, in 
general, reflexive, transitive and defined between random vectors of the same dimension 𝑛, for any 𝑛 ∈ ℕ.

Since stochastic orders are not antisymmetric, the infimum and the supremum of 𝐿𝐼 , needed for the boundary conditions, have to 
be defined carefully. If 𝐼 has an infimum equal to 𝑎, we consider the infimum of 𝐿𝐼 to be the set of random variables having support 
contained in 𝐼 that are minimal with respect to the order ≤𝑆𝑂 . For the stochastic orders ≤𝑠𝑡, ≤𝑖𝑐𝑥 and ≤𝑠𝑑−𝑠𝑡, mentioned above, for 
example, this is the set of variables 𝑋 such that 𝑃 (𝑋 = 𝑎) = 1. If 𝐼 has not a lower bound, then we should apply the same procedure 
as the one considered in [12], using as infimum a new element −∞ that is smaller than any other element of 𝐿𝐼 . The definition of 
the supremum is made analogously.

Then, the definition of an aggregation of random variables is the following

Definition 10. [1] Let (Ω, Σ, 𝑃 ) be a probability space, ≤𝑆𝑂 be a stochastic order and 𝐼 be a real non empty interval. An aggregation 
function of random variables (with respect to ≤𝑆𝑂) is a function 𝐴 ∶𝐿𝑛

𝐼
(Ω) →𝐿𝐼 (Ω) which satisfies:

• For any �⃗�, 𝑌 ∈𝐿𝑛
𝐼
(Ω) such that �⃗� ≤𝑆𝑂 𝑌 , 𝐴(�⃗�) ≤𝑆𝑂 𝐴(𝑌 ).

• The following boundary conditions with respect to ≤𝑆𝑂 are fulfilled:

inf 𝐴(�⃗�) = inf 𝐿𝐼 (Ω), sup 𝐴(�⃗�) = sup𝐿𝐼 (Ω).
4

�⃗�∈𝐿𝑛
𝐼
(Ω) �⃗�∈𝐿𝑛

𝐼
(Ω)
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Let us discuss the boundary conditions. If 𝑎 is the infimum or the supremum of 𝐼 , and ≤𝑆𝑂 is anyone of the stochastic orders 
≤𝑠𝑡, ≤𝑖𝑐𝑥 or ≤𝑠𝑑−𝑠𝑡 mentioned above, if �⃗� = (𝑎, … , 𝑎) almost surely, then 𝐴(�⃗�) =𝑎.𝑠 𝑎. If 𝐼 does not have upper or lower bound, then 
the image of 𝐴 should not have an upper or lower bound with respect to ≤𝑆𝑂 .

In the rest of the paper, we will consider a standard probability space (see [15]) if not specified. Moreover, we will simplify the 
notation by just writing 𝐿𝑛

𝐼
instead of 𝐿𝑛

𝐼
(Ω).

From the wide number of stochastic orders that can be considered in the latter definition, the usual stochastic order which was 
introduced in Definition 1, has good properties since it allows the composition of measurable aggregation functions and random 
vectors to be aggregation of random variables. In fact, the following holds.

Proposition 11. [1] Let 𝐼 be a real interval and let 𝐴 ∶ 𝐼𝑛 → 𝐼 be a measurable aggregation function. Consider the function �̂� ∶ 𝐿𝑛
𝐼
→𝐿𝐼

such that for any random vector �⃗� ∈𝐿𝑛
𝐼
, it holds �̂�(�⃗�) =𝐴◦�⃗�. Then, �̂� is an aggregation function of random variables with respect to the 

usual stochastic order (≤𝑠𝑡).
The function �̂� is referred to as the aggregation function of random variables induced by the aggregation function 𝐴. Notice that, in 

general, an aggregation of random variables does not have to be induced by any aggregation function. The most remarkable example 
is when the construction of the aggregated random variable is made by considering a mixture of the distributions of the components 
of the initial random vector (see, for example, [7]).

2.3. Ordering the arguments in aggregation theory

In deterministic aggregation theory, ordering the arguments is a common way to define aggregation operators. The most promi-
nent example is the Ordered Weighted Averaging (OWA) operator, that makes a convex linear combination of the ordered values.

Definition 12. [30] Let �⃗� ∈ [0, 1]𝑛 be a weighting vector such that 
∑𝑛
𝑖=1𝑤𝑖 = 1 and 𝐼 a real interval. The Ordered Weighted 

Averaging Operator 𝑂𝑊𝐴�⃗� ∶ 𝐼𝑛 → 𝐼 associated to �⃗� is defined by:

𝑂𝑊𝐴�⃗�(�⃗�) =
𝑛∑
𝑘=1
𝑤𝑘𝑥𝜎(𝑘) , �⃗� ∈ 𝐼𝑛

where 𝜎 is a permutation of the 𝑛-tuple (1, 2, ..., 𝑛) such that 𝑥𝜎(1) ≥ 𝑥𝜎(2) ≥ ... ≥ 𝑥𝜎(𝑛).
The aggregation of random variables induced by an OWA operator is equivalent to consider a convex L-estimator [14], which is 

a convex linear combination of the order statistics. Recall that, given a random vector �⃗� , the order statistics 𝑋(1), … , 𝑋(𝑛) are the 
sorted observations of �⃗�, from the smallest to the biggest. We want to clarify that in aggregation theory usually the order is from 
the biggest to the smallest, although both approaches are equivalent.

The ordering of the arguments is also important in other aggregation functions such as the IOWA operator [31], in which 
the arguments are sorted by using a secondary vector, or the Choquet and Sugeno integrals [12], in which more complicated 
computations are made before the ordination.

However, defining ordered aggregation operators become more difficult when dealing with that lack a complete order. The most 
illustrative example is the aggregation of vectors, where there are cases where it is unclear which vector is the largest (for instance, 
consider �⃗�1 = (1, 2) and �⃗�2 = (2, 1)).

Several methods have been defined in the literature in order to avoid the incomparability problem, see [9,17,21]. For the case 
of multivariate data, we refer to the survey by Pérez-Fernández [22] for more information in this regard. A particular technique 
introduced in these papers that will be relevant in Section 3 is the use of admissible permutations.

Definition 13. [21] Let (𝑆, ≤) be a partially ordered set and let 𝐵 = {𝑏1, ..., 𝑏𝑛} be a finite sequence in 𝑆 . A permutation 𝜎 ∶
{1, … , 𝑛} → {1, … , 𝑛} is said to be an admissible permutation for 𝑆 if it holds:

1. 𝑏𝑖 < 𝑏𝑗 ⟹ 𝜎−1(𝑖) < 𝜎−1(𝑗).
2. The set {𝜎−1(𝑗) ∶ 𝑗 ∈ {1, … , 𝑛} with 𝑏𝑗 = 𝑏} consists of consecutive numbers for any 𝑏 ∈ 𝐵.

Notice that, if we have repeated elements in the finite sequence 𝐵, we can treat them as two different elements such that 𝑏𝑖 = 𝑏𝑗
in the considered pre-order and the resulting admissible permutations will be the same.

Example 3. Consider a pre-ordered set {𝑏1, 𝑏2, 𝑏3} such that 𝑏2 < 𝑏1 and 𝑏2 < 𝑏3. Then, two admissible permutations are

1 → 2 1 → 2
𝜎1 ∶ 2 → 1 and 𝜎2 ∶ 2 → 3

3 → 3 3 → 1 ,
5

and no other admissible permutation exists.
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In this work a similar problem is presented since stochastic orders are also not complete, thus it is not clear how we can order the 
random variables before the aggregation. A similar problem has already been considered in the paper by Yager [32], dealing with 
discrete probability distributions. In there, as an alternative for the stochastic comparison, a point-wise ordination of the distribution 
functions (called the Probabilistic Exceedance Method) was proposed. We want to remark that our aim is to consider random variables 
instead of finite discrete probability distributions, but this idea will be revisited in Section 4.

3. A first approach: mean ordered weighted averagings

The most naive comparison of the location of two random variables is to compare their expected values. In this direction, we 
define in this section an aggregation of random variables that initially order the random variables by their mean and then apply a 
convex linear combination. Since two different random variables can have the same mean, we will consider an average over the set 
of admissible permutations if there are any ties. In the following, we will consider the order from the smallest to the largest. Given a 
finite set 𝑆 , the number of elements of 𝑆 will be denoted as #𝑆 .

Definition 14. Let 𝐼 be a real interval and �⃗� ∈ [0, 1]𝑛 a weighting vector such that 
∑𝑛
𝑖=1𝑤𝑖 = 1. Then, a Mean Ordered Weighted 

Averaging (MOWA) is a function 𝑀𝑂𝑊𝐴�⃗� ∶𝐿𝑛
𝐼
→𝐿𝐼 defined as

𝑀𝑂𝑊𝐴�⃗�(�⃗�) = 1
#𝐴𝑃

∑
𝜎∈𝐴𝑃

𝑛∑
𝑖=1
𝑤𝑖𝑋𝜎(𝑖) ,

with 𝐴𝑃 being the set of admissible permutations with respect to {𝐸[𝑋1], … , 𝐸[𝑋𝑛]} and the usual order of real numbers.

The last operator is symmetric, i.e. a change in the order of the components of the random vector does not alter the output. Let 
us give a very simple example of application of the operator:

Example 4. Consider a weighting vector �⃗� = (0.2, 0.6, 0.2). Let �⃗� = (𝑋1, 𝑋2, 𝑋3) be a random vector such that their components are 
independent, and 𝑃 (𝑋1 = 0) = 𝑃 (𝑋1 = 1) = 0.5, 𝑃 (𝑋2 = 0) = 𝑃 (𝑋2 = 2) = 0.5 and 𝑃 (𝑋3 = 1) = 1. The means of the variables are 
𝐸[𝑋1] = 0.5, 𝐸[𝑋2] = 1 and 𝐸[𝑋3] = 1. Therefore, the admissible permutations are

1 → 1 1 → 1
𝜎1 ∶ 2 → 2 and 𝜎2 ∶ 2 → 3

3 → 3 3 → 2 .

Doing the necessary computations one has,

𝑀𝑂𝑊𝐴�⃗�(�⃗�) = 1
2
(
0.2𝑋1 + 0.6𝑋2 + 0.2𝑋3

)
+ 1

2
(
0.2𝑋1 + 0.6𝑋3 + 0.2𝑋2

)
=

= 0.2𝑋1 + 0.4𝑋2 + 0.4𝑋3,

which takes the values 0.4, 0.6, 1.2 and 1.4 with equal probability.

3.1. Monotonicity properties

Although the MOWA seems a natural and easy way to define an ordered operator with respect to the distribution of the random 
variables, it lacks the monotonicity property. In particular, the only order that can be considered is the one based on the comparison 
of the expected values. Let us first prove that the mean of the MOWA operator equals to the associated OWA operator applied over 
the mean vector. We want to remark again that we are considering the order from the smallest one to the greatest one.

Proposition 15. Let �⃗� ∈ [0, 1]𝑛 be a weighting vector with 
∑𝑛
𝑖=1𝑤𝑖 = 1 and �⃗� a random vector. Then, 𝐸[𝑀𝑂𝑊𝐴�⃗�(�⃗�)] =

𝑂𝑊𝐴�⃗�(𝐸[�⃗�]).

Proof. Considering a particular permutation �̂� ∈ 𝐴𝑃 and using the linearity of the expectation, it holds that 𝐸[𝑀𝑂𝑊𝐴�⃗�(�⃗�)] =∑𝑛
𝑖=1𝑤𝑖𝐸

[
𝑋�̂�(𝑖)

]
=𝑂𝑊𝐴�⃗�(𝐸[�⃗�]). □

Corollary 16. 𝑀𝑂𝑊𝐴�⃗� is an aggregation of random variables with respect to ≤𝐸 for any weighting vector.

Proof. The monotonicity with respect to ≤𝐸 is a consequence of Proposition 15. The boundary conditions are straightforward to 
prove recalling that, if 𝐼 is bounded, for the ≤𝐸 order, the set of minimal random variables with support 𝐼 is the set of variables 𝑋
such that 𝑃 (𝑋 = inf 𝐼) = 1 (and similarly for the supremum). If 𝐼 is not bounded, then trivially the expectation is not bounded over 
6

the image of 𝑀𝑂𝑊𝐴�⃗�. □
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The expectation order is a weak stochastic order. Unfortunately, the latter result is not true for the usual stochastic order, as 
illustrated in the following example.

Example 5. In the conditions of Example 4, consider a second random vector 𝑌 such that 𝑌1 = 𝑋1, 𝑌2 = 𝑋2 and 𝑃 (𝑌3 = 1.1) = 1. 
Trivially, it holds that �⃗� ≤𝑠𝑡 𝑌 . However,

𝑀𝑂𝑊𝐴�⃗�(𝑌 ) = 0.2𝑌1 + 0.6𝑌2 + 0.2𝑌3,

which takes the values 0.22, 0.42, 1.42 and 1.62 with the same probability. If we compute the expected value of the square root, 

which is an increasing function, we have that 𝐸
[√

𝑀𝑂𝑊𝐴�⃗�(�⃗�)
]
≈ 0.921 and 𝐸

[√
𝑀𝑂𝑊𝐴�⃗�(𝑌 )

]
≈ 0.895, thus 𝑀𝑂𝑊𝐴�⃗�(�⃗�) ≰𝑠𝑡

𝑀𝑂𝑊𝐴�⃗�(𝑌 ).

Another option may be to impose strongest conditions on the initial random vectors. In particular, let us define the max-min 
stochastic relation as �⃗� ≤𝑚𝑎𝑥−𝑚𝑖𝑛 𝑌 if and only if max �⃗� ≤𝑠𝑡 min𝑌 , where max �⃗� =𝑋(𝑛) and min𝑌 = 𝑌(1) are the greatest and smallest 
order statistics of, respectively, �⃗� and 𝑌 .

Proposition 17. Given a weighting vector �⃗� ∈ [0, 1]𝑛 with 
∑𝑛
𝑖=1𝑤𝑖 = 1, 𝑀𝑂𝑊𝐴�⃗�(�⃗�) ≤𝑠𝑡 𝑀𝑂𝑊𝐴�⃗�(𝑌 ) for any pair of random vectors 

�⃗� and 𝑌 such that �⃗� ≤𝑚𝑖𝑛−𝑚𝑎𝑥.
Proof. Any convex linear combination of 𝑛 values takes values between the maximum and the minimum. Therefore, since 
�⃗� ≤𝑚𝑎𝑥−𝑚𝑖𝑛 𝑌 , then 𝑀𝑂𝑊𝐴�⃗�(�⃗�) ≤𝑎.𝑠. max �⃗� ≤𝑠𝑡 min𝑌 ≤𝑎.𝑠. 𝑀𝑂𝑊𝐴�⃗�(𝑌 ). □

We want to remark that the max-min relation is not reflexive (thus is not a stochastic order), since in general one has min �⃗� <𝑠𝑡
max �⃗�. In addition, it is a very strong order and most of random vectors are incomparable in this sense.

3.2. An alternative for the multivariate Gaussian distribution

The MOWA has weak monotonicity properties. We devote this section to propose a slight modification of the MOWA operator for 
Multivariate Gaussian distributions that has a better behavior in this regard. In particular, we aggregate the means of the components 
and then we normalize the variance in order to allow comparability with respect to the usual stochastic order.

In the following, we will denote as (𝑛) the set of n-dimensional Gaussian random vectors. For 𝑛 = 1, we will use the shortcut 
(1) = . We recall that their distribution is parameterized by a mean vector 𝜇 and a covariance matrix Σ, which is positive semi-
definite. As introduced before, the set of positive semi-definite matrices is denoted as  . The definition of the operator is as follows.

Definition 18. Consider a weighting vector �⃗� ∈ [0, 1]𝑛 such that 
∑𝑛
𝑖=1𝑤𝑖 = 1 and a function 𝑓 ∶  → ℝ+. The Gaussian Mean 

Ordered Weighted Averaging (GMOWA) 𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 is a function 𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 ∶ (𝑛) →  such that for any �⃗� ∼ 𝑁(𝜇, Σ) it 
holds

𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (�⃗�) = 1
#𝐴𝑃

∑
𝜎∈𝐴𝑃

𝑛∑
𝑖=1
𝑤𝑖

(
𝜇𝜎(𝑖) +

(
𝑋𝜎(𝑖) − 𝜇𝜎(𝑖)

)
𝐾
)
,

where

𝐾 =
√
𝑓 (Σ)#𝐴𝑃√

Var
[∑

𝜎∈𝐴𝑃
∑𝑛
𝑖=1𝑤𝑖𝑋𝜎(𝑖)

] ,
with 𝐴𝑃 being the set of admissible permutations with respect to {𝜇1, … , 𝜇𝑛} and the usual order between real numbers.

The constant 𝐾 is defined in order to let the variance of the resulting random variable be only dependent on the covariance 
matrix of the initial random vector (see subsequent Lemma 19). In general, a reasonable function should preserve the Loewner order, 
i.e. to be such that if Σ1 ≤𝐿𝑜 Σ2 then 𝑓 (Σ1) ≤ 𝑓 (Σ2). Before studying the properties of GMOWA, let us illustrate this type of operators 
with a simple example.

Example 6. Let us compute the operator when �⃗� ∼𝑁(𝜇, Σ) with 𝜇 = (2, 1) and Σ =
(
1 1
1 2

)
, 𝑓 (Σ) = 1

4 1⃗
𝑇Σ1⃗ and �⃗� = (0.2, 0.8).

Firstly, notice that the only admissible permutation is given by 𝜎(1) = 2 and 𝜎(2) = 1, since the mean of 𝑋1 is greater than the 
mean of 𝑋2. The variance of the associated linear combination is[ ]
7

Var 0.2𝑋2 + 0.8𝑋1 = 0.22 × 2 + 2 × 0.2 × 0.8 + 0.82 = 1.04.



International Journal of Approximate Reasoning 166 (2024) 109110J. Baz, F. Pellerey, I. Díaz et al.

On the other hand, 𝑓 (Σ) = 2+1+1+1
4 = 1.25, so that 𝐾 =

√
1.25
1.04 ≈ 1.096. Therefore, the GMOWA operator has the expression

𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (�⃗�) ≈ 0.2 × (1 + (𝑋2 − 1) × 1.096) + 0.8 × (2 + (𝑋1 − 2) × 1.096)

≈ 0.219𝑋2 + 0.877𝑋1 − 0.173.

Our main objective is to prove that the GMOWA operator satisfies the properties of aggregations of random variables over the set 
of Gaussian random vectors. We will start with a lemma that gives its distribution.

Lemma 19. The 𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 fulfill the following properties for any �⃗� ∈𝑁(𝜇, Σ):

1. 𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (�⃗�) has Gaussian distribution.

2. 𝐸[𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (�⃗�)] =𝑂𝑊𝐴�⃗�(𝜇).
3. Var[𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (�⃗�)] = 𝑓 (Σ).

Proof. 1. From the definition, the 𝐺𝑀𝑂𝑊𝐴 is a linear combination of the components of a multivariate Gaussian random vector, 
thus it has Gaussian distribution.

2. Using well-known properties of the expectation one has

𝐸

[
1

#𝐴𝑃
∑
𝜎∈𝐴𝑃

𝑛∑
𝑖=1
𝑤𝑖

(
𝜇𝜎(𝑖) +

(
𝑋𝜎(𝑖) − 𝜇𝜎(𝑖)

)
𝐾
)]

=

= 1
#𝐴𝑃

∑
𝜎∈𝐴𝑃

𝑛∑
𝑖=1
𝑤𝑖𝜇𝜎(𝑖) +

1
#𝐴𝑃

∑
𝜎∈𝐴𝑃

𝑛∑
𝑖=1
𝑤𝑖

(
𝐸[𝑋𝜎(𝑖)] − 𝜇𝜎(𝑖)

)
𝐾 =

= 1
#𝐴𝑃

∑
𝜎∈𝐴𝑃

𝑛∑
𝑖=1
𝑤𝑖𝜇𝜎(𝑖) =𝑂𝑊𝐴�⃗�(𝜇),

where the last equality holds since for all the admissible permutations the ordered mean vector is the same.
3. Using well-know properties of the variance it follows

Var

[
1

#𝐴𝑃
∑
𝜎∈𝐴𝑃

𝑛∑
𝑖=1
𝑤𝑖

(
𝜇𝜎(𝑖) +

(
𝑋𝜎(𝑖) − 𝜇𝜎(𝑖)

)
𝐾
)]

=

= Var

[
𝐾

#𝐴𝑃
∑
𝜎∈𝐴𝑃

𝑛∑
𝑖=1
𝑤𝑖𝑋𝜎(𝑖)

]
=

= 𝐾2

(#𝐴𝑃 )2
Var

[ ∑
𝜎∈𝐴𝑃

𝑛∑
𝑖=1
𝑤𝑖𝑋𝜎(𝑖)

]
= 𝑓 (Σ) ,

where the last equality holds just by replacing the expression of 𝐾 . □

If we compute the moments of the GMOWA associated with Example 6, we can verify that the points 2. and 3. of Lemma 19 hold.

Example 7. Considering the latter example, we can compute easily the mean and the variance as

𝐸
[
𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (�⃗�)

]
≈ 0.219𝐸[𝑋2] + 0.877𝐸[𝑋1] − 0.173 = 1.8

𝑂𝑊𝐴�⃗�(𝜇) = 0.2 × 1 + 0.8 × 2 = 1.8

and

Var
[
𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (�⃗�)

]
= 0.2192 × 2 + 2 × 0.219 × 0.877 + 0.8772 = 1.25 = 𝑓 (Σ).

The next result proves the monotonicity of the GMOWA operator with respect to the usual stochastic order (when considering 
Gaussian random vectors). Moreover, if 𝑓 is increasing with respect to the Loewner order, then it is also monotone with respect to 
the convex and the increasing convex orders.

Theorem 20. Let �⃗�, 𝑌 two multivariate Gaussian random vectors. Then, �⃗� ≤𝑠𝑡 𝑌 implies 𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (�⃗�) ≤𝑠𝑡 𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (𝑌 ). In 
addition, if for any Σ1, Σ2 ∈  such that Σ1 ≤𝐿𝑜 Σ2 it holds 𝑓 (Σ1) ≤ 𝑓 (Σ2), then �⃗� ≤𝑐𝑥 [≤𝑖𝑐𝑥]𝑌 implies 𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (�⃗�) ≤𝑐𝑥 [≤𝑖𝑐𝑥
8

]𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (𝑌 ).
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Fig. 1. Three different cumulative distribution functions (left) and the cumulative distribution functions obtained by a pointwise ordination (right).

Proof. Consider two random vectors �⃗� ∼𝑁(𝜇𝑥, Σ𝑥) and 𝑌 ∼𝑁(𝜇𝑦, Σ𝑦). Applying Lemma 19, 𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (�⃗�) has Gaussian dis-

tribution with mean 𝑂𝑊𝐴�⃗�(𝜇𝑥) and variance 𝑓 (Σ𝑥) (analogously for 𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (𝑌 )). Recalling the conditions for the stochastic 
comparison of two Multivariate Gaussian distributions given in Theorem 3, the following hold.

• For the usual stochastic order. If �⃗� ≤𝑠𝑡 𝑌 , then Σ𝑥 = Σ𝑦 and 𝜇𝑥 ≤ 𝜇𝑦. On the one hand, we have Var[𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (�⃗�)] =
𝑓 (Σ𝑥) = 𝑓 (Σ𝑦) = Var[𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (𝑌 )]. The OWA operator is monotone. Then we have 𝑂𝑊𝐴�⃗�(𝜇𝑥) ≤𝑂𝑊𝐴�⃗�(𝜇𝑦) and therefore 
𝐸[𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (�⃗�)] ≤𝐸[𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (𝑌 )].

• For the convex order. If �⃗� ≤𝑐𝑥 𝑌 , then Σ𝑥 ≤𝐿𝑜 Σ𝑦 and 𝜇𝑥 = 𝜇𝑦. Then, Var[𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (�⃗�)] = 𝑓 (Σ𝑥) ≤ 𝑓 (Σ𝑦) =
Var[𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (𝑌 )]. Trivially, the mean of 𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (�⃗�) and 𝐺𝑀𝑂𝑊𝐴�⃗�,𝑓 (𝑌 ) is the same.

• For the increasing convex order. For the means, proceed as for the usual stochastic order. For the variances, proceed as for the 
convex order. □

4. Stochastically ordered aggregation operators

The first approach given in Section 3 has several drawbacks. In the general case, ordering the random variables with respect 
to their means only allows us to prove the monotonicity for very weak orders under very strong comparison assumptions among 
the original random vectors. If the variation for the Multivariate Gaussian distribution is considered, we obtain good properties by 
restricting the aggregation to a particular family of random vectors.

We introduce in this section a set of operators that rely on a transformation, which generates a random vector from any given 
random vector, ensuring that its components are arranged according to the usual stochastic order. This transformation is based on 
the idea by Yager in [32], in which several distribution functions are pointwise ordered.

Example 8. Consider three random variables, the first having a uniform distribution over the interval [0, 1], the second exponentially 
distributed with parameter 𝜆 = 1 and the third having a Chi-Squared distribution with 1 degree of freedom. On the left side of Fig. 1, 
it can be seen that their distribution functions intersect, indicating that they are not ordered according to the usual stochastic order. 
Ordering pointwise the distribution functions, we obtain three new distributions which are ordered in ≤𝑠𝑡, as shown on the right side 
of Fig. 1.

In the following, starting with some distribution functions 𝐹1, … , 𝐹𝑛, we will denote as 𝐹[1], … , 𝐹[𝑛] the distribution functions 
obtained as the pointwise ordination of 𝐹1, … , 𝐹𝑛, being 𝐹[1] the greatest distribution function, which is associated with smaller 
values. They are distribution functions since we can construct them by applying OWA operators (with one of the weights equal to 1
and the rest equal to 0) to the original distribution functions. OWA operators are increasing and continuous [2], therefore we have a 
composition of increasing functions, which is increasing, and a composition of continuous and right continuous functions, which is 
9

right continuous.
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With this construction, we obtain a set of ordered distribution functions. However, our objective is to work with random variables 
and their realizations, not with their distributions. In this direction, we will consider the behavior of random variables by means of 
the transformation by their distribution functions.

On this aim recall that any random variable 𝑋 can be expressed as 𝑋 =𝑎.𝑠. 𝐹−1
𝑋

(𝑈𝑋 ), where 𝐹−1
𝑋

is its quantile function and 𝑈𝑋
is a random variable uniform over [0, 1] (see [20]). Therefore, the outcome of 𝑋 can be totally explained by 𝑈𝑋 in the sense that the 
value of 𝑋 is completely determined by the value of 𝑈𝑋 .

For continuous random variables, the uniform distribution is almost surely unique and equals 𝐹𝑋 (𝑋). In the discrete or mixed 
case, the decomposition 𝑋 = 𝐹−1

𝑋
(𝑈𝑋 ) is not unique, different random variables 𝑈𝑋 can be chosen. Moreover, choosing a uniform 

random variable will not allow conditional monotonicity (see subsequent Definition 25). A natural election in this case can be, again, 
to consider 𝐹𝑋 (𝑋) as a random variable that captures the outcome of 𝑋. In this case, the distribution is not longer uniform, 𝐹𝑋(𝑋)
follows a subuniform distribution, see [27,28].

In conclusion, given a set of random variables, we can first build the ordered distributions 𝐹[1], … , 𝐹[𝑛] and then assign to them 
the associated 𝐹1(𝑋1), … , 𝐹𝑛(𝑋𝑛) in order to obtain a new random vector whose components are stochastically ordered. The resulting 
random vector will be called the rearrangement increasing stochastically ordination of the initial one.

Definition 21. Let �⃗� be a random vector and 𝜎 a permutation. Then, the rearrangement increasing stochastically ordered 
random vector, denoted as �⃗�𝑠𝑜,𝜎 , is defined as

�⃗�𝑠𝑜,𝜎 =
(
𝐹−1
[1]

(
𝐹𝜎(1)(𝑋𝜎(1))

)
,… , 𝐹−1

[𝑛]
(
𝐹𝜎(𝑛)(𝑋𝜎(𝑛)

))
,

where 𝐹[1], … , 𝐹[𝑛] are the distribution functions obtained by the pointwise ordering of 𝐹1, … , 𝐹𝑛, the distribution functions of 
𝑋1, … , 𝑋𝑛.

Let us explain in detail the semantic of the permutation 𝜎. If 𝜎(𝑖) = 𝑗, we are associating the outcome of 𝑋𝑗 to the distribution 
𝐹−1
[𝑖] (which is the i-th smallest). It allows �⃗�𝑠𝑜,𝜎 to be totally determined by �⃗� in the sense that the conditional distribution of �⃗�𝑠𝑜,𝜎

given a value of �⃗� is degenerate. This will be relevant in applied problems (see Section 5) since any observation of the random 
vector will have an associated value of the rearrangement increasing stochastically ordered random vector.

A Stochastically Ordered Aggregation is a function that takes a random vectors and returns a random variable that is obtained as 
the composition of a usual aggregation function and the rearrangement increasing stochastically ordered random vector. Formally, 
the following is its definition.

Definition 22. Let 𝐼 be a real interval, 𝐴 ∶ 𝐼𝑛 → 𝐼 a measurable aggregation function and 𝜎 a permutation. Then, the Stochastically 
Ordered Aggregation (SOA) is a function 𝑆𝑂𝐴𝐴,𝜎 ∶𝐿𝑛𝐼 →𝐿𝐼 such that for any random vector �⃗� ∈𝐿𝑛

𝐼
, 𝑆𝑂𝐴𝐴,𝜎(�⃗�) =𝐴◦�⃗�𝑠𝑜,𝜎 .

We can see the Stochastically Ordered Aggregations as induced aggregations applied over rearrangement increasing stochastically 
ordered random vectors. Before studying its properties, let us illustrate its definition with an example.

Example 9. Let �⃗� = (𝑋1, 𝑋2) be a random vector with independent components such that 𝑋1 ∼𝐸𝑥𝑝(1.5), 𝑋2 ∼ 𝑈 [0, 1]. It is easy to 
see that for 𝐹1 and 𝐹2 it holds 𝐹2(𝑡) ≤ 𝐹1(𝑡) if 𝑡 ≤ 𝑡0 and 𝐹1(𝑡) ≤ 𝐹2(𝑡) if 𝑡 ≥ 𝑡0, with 𝑡0 ≈ 0.583. Considering the permutation 𝜎 such 
that 𝜎(1) = 2 and 𝜎(2) = 1 and 𝐴 the arithmetic mean, we have the following expression for the 𝑆𝑂𝐴𝐴,𝜎 (�⃗�) operator:

𝑆𝑂𝐴𝐴,𝜎(�⃗�) =

⎧⎪⎪⎨⎪⎪⎩

1
2

(
𝑋2 +𝑋1

)
, if 1 − 𝑒−1.5𝑋1 > 𝑡0,𝑋2 ≤ 𝑡0

1
2

(
𝑋2 +

(
1 − 𝑒−1.5𝑋1

))
, if 1 − 𝑒−1.5𝑋1 ≤ 𝑡0,𝑋2 ≤ 𝑡0

1
2

(
−𝑙𝑛(1 −𝑋2) +𝑋1

)
, if 1 − 𝑒−1.5𝑋1 > 𝑡0,𝑋2 > 𝑡0

1
2

(
−𝑙𝑛(1 −𝑋2) +

(
1 − 𝑒−1.5𝑋1

))
, if 1 − 𝑒−1.5𝑋1 ≤ 𝑡0,𝑋2 > 𝑡0

4.1. Monotonicity properties

The main desirable property of our operator is the monotonicity with respect a stochastic order. We will start showing a prelimi-
nary result regarding the rearrangement increasing stochastically ordered random vector. For it, recall the definition of ≤𝑠𝑑−𝑠𝑡 order 
provided in Definition 8.

Theorem 23. Let �⃗� and 𝑌 be two random vectors such that �⃗� ≤𝑠𝑑−𝑠𝑡 𝑌 and let 𝜎 be any permutation. Then, �⃗�𝑠𝑜,𝜎 ≤𝑠𝑡 𝑌𝑠𝑜,𝜎 .

Proof. Denote as 𝐹1, … , 𝐹𝑛 and 𝐺1, … , 𝐺𝑛 the marginal distribution functions of �⃗� and 𝑌 respectively. Since �⃗� ≤𝑠𝑑−𝑠𝑡 𝑌 implies 
�⃗� ≤𝑠𝑡 𝑌 and therefore 𝑋𝑖 ≤𝑠𝑡 𝑌𝑖 for any 𝑖 = {1, … , 𝑛}, we have that 𝐹𝑖(𝑡) ≥ 𝐺𝑖(𝑡) for any 𝑖 = {1, … , 𝑛} and 𝑡 ∈ℝ. Then, it holds that 
𝐹[𝑖](𝑡) ≥𝐺[𝑖](𝑡) for any 𝑖 = {1, … , 𝑛} and 𝑡 ∈ℝ and also 𝐹−1

[𝑖] (𝑡) ≤𝐺−1
[𝑖] (𝑡) for any 𝑖 = {1, … , 𝑛} and 𝑡 ∈ [0, 1]

As remarked after Definition 8, (𝐹1(𝑋1), … , 𝐹𝑛(𝑋𝑛)) and (𝐺1(𝑌1), … ,𝐺𝑛(𝑌𝑛)) have the same distribution. Consider a random 
10

vector �⃗� with the same distribution as (𝐹1(𝑋1), … , 𝐹𝑛(𝑋𝑛)) and (𝐺1(𝑌1), … , 𝐺𝑛(𝑌𝑛)). Then,
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Fig. 2. Simulated cumulative distribution functions of a Stochastically Ordered Aggregation of two ordered random vectors with sample size 𝑛 = 106 .

�⃗�𝑠𝑜,𝜎 =𝑠𝑡
(
𝐹−1
[1]

(
𝑍𝜎(1)

)
,… , 𝐹−1

[𝑛]
(
𝑍𝜎(𝑛)

)) ≤𝑎.𝑠.
≤𝑎.𝑠.

(
𝐺−1
[1]

(
𝑍𝜎(1)

)
,… ,𝐺−1

[𝑛]
(
𝑍𝜎(𝑛)

))
=𝑠𝑡 𝑌𝑠𝑜,𝜎 ,

which implies the usual stochastic order by using Theorem 2. □

As a consequence of the latter result, it can be proved that the Stochastically Ordered Aggregations are aggregation of random 
variables with respect to the same dependence structure stochastic order.

Corollary 24. Any Stochastically Ordered Aggregation 𝑆𝑂𝐴𝐴,𝜎 is an aggregation of random variables with respect to ≤𝑠𝑑−𝑠𝑡 for any 
aggregation function 𝐴 ∶ 𝐼𝑛 → 𝐼 and any permutation 𝜎.

Proof. Let �⃗� ≤𝑠𝑑−𝑠𝑡 𝑌 . Using Theorem 23, we have that �⃗�𝑠𝑜,𝜎 ≤𝑠𝑡 𝑌𝑠𝑜,𝜎 for any permutation 𝜎. Since 𝑆𝑂𝐴𝐴,𝜎(�⃗�) = 𝐴◦�⃗�𝑠𝑜,𝜎 and 
𝑆𝑂𝐴𝐴,𝜎(𝑌 ) = 𝐴◦𝑌𝑠𝑜,𝜎 , applying Proposition 11, it is concluded that 𝑆𝑂𝐴𝐴,𝜎(�⃗�) ≤𝑠𝑡 𝑆𝑂𝐴𝐴,𝜎(𝑌 ). The usual stochastic order and the 
same copula usual stochastic order are equivalent for random variables, thus the monotonicity holds. The boundary conditions are 
straightforward to prove. □

Example 10. Consider the same conditions as in Example 9 and let 𝑌 be a random vector with independent components such that 
𝑌1 ∼ 𝑈 [0.5, 1.5] and 𝑌2 ∼ 𝐸𝑥𝑝(1). Trivially, �⃗� ≤𝑠𝑡 𝑌 and both random vectors have the same and unique copula, thus �⃗� ≤𝑠𝑑−𝑠𝑡 𝑌 . 
If we simulate the distribution of 𝑆𝑂𝐴𝐴,𝜎(�⃗�) and 𝑆𝑂𝐴𝐴,𝜎(𝑌 ), plotting their empirical distributions one can observe that they are 
ordered, see Fig. 2. Therefore, we can see that 𝑆𝑂𝐴𝐴,𝜎(�⃗�) ≤𝑠𝑡 𝑆𝑂𝐴𝐴,𝜎(𝑌 ).

Another interesting monotonicity property that is specially relevant in applied problems, see Section 5, is the conditional mono-
tonicity. Given a fixed random vector �⃗�, we wonder if 𝑆𝑂𝐴(�⃗�, 𝐴, 𝜎) is degenerate and, moreover, if it increases when the value of 
�⃗� increases.

Definition 25. Let 𝐼 be a real interval and 𝐴 ∶ 𝐿𝑛
𝐼
→ 𝐿𝐼 an aggregation of random variables. Then, 𝐴 is said to be conditional 

increasing if, for any �⃗� ∈𝐿𝑛
𝐼

with support 𝑆 :

• [𝐴(�⃗�) | �⃗� = �⃗�] has degenerate distribution for any �⃗� ∈ 𝑆 .
• The function �̂� ∶ 𝑆→ 𝐼 defined as �̂�(�⃗�) = 𝜆, being 𝜆 the value such that 𝑃 ([𝐴(�⃗�) | �⃗� = �⃗�] = 𝜆) = 1, is an increasing function.

We can see this property as a sort of comonotonicity property of the initial random vector and the output random variable. 
Another interpretation is that conditional increasing aggregations applied over observations of the random vectors are increasing 
functions from vectors to real numbers. The 𝑀𝑂𝑊𝐴 and 𝐺𝑂𝑊𝐴 operators are trivially conditional increasing. Let us prove the 
same statement for the 𝑆𝑂𝐴 operator.
11

Proposition 26. Any Stochastically Ordered Aggregation 𝑆𝑂𝐴𝐴,𝜎 is conditional increasing.
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Fig. 3. Representation of the function �̂� as defined in Definition 25 for Example 9.

Proof. Consider a Stochastically Ordered Aggregation 𝑆𝑂𝐴𝐴,𝜎 ∶ 𝐿𝑛𝐼 → 𝐿𝐼 and a random vector �⃗� ∈ 𝐿𝑛
𝐼

with support 𝑆 . For any 
�⃗� ∈ 𝑆 , we have that

𝑆𝑂𝐴(�⃗�,𝐴, 𝜎) =𝐴
(
𝐹−1
[1]

(
𝐹𝜎(1)(𝑥𝜎(1))

)
,… , 𝐹−1

[𝑛]
(
𝐹𝜎(𝑛)(𝑥𝜎(𝑛)

))
.

From the latter expression, we have that [𝑆𝑂𝐴(�⃗�, 𝐴, 𝜎) | �⃗� = �⃗�] has degenerate distribution for any �⃗� ∈ 𝑆 . In addition, the 
function �̂� ∶ 𝑆 → 𝐼 of Definition 25 is increasing since it is a composition of the increasing functions 𝐹−1

[1] , … , 𝐹−1
[𝑛] , 𝐹1, … , 𝐹𝑛 and 

𝐴. □

Let us illustrate this property with an example.

Example 11. Consider the SOA operator considered in Example 9. If we represent the function �̂� as defined in Definition 25, we 
obtain the surface represented in Fig. 3. As it can be seen, the function is increasing, thus the value of the Stochastically Ordered 
Operator increases with the values assumed by the aggregated variables. Note also that the boundary condition on (0, 0) is satisfied.

Leaving aside the monotonicity properties, we want to end this section by stating a lemma that links the Stochastically Ordered 
Operators with aggregation functions applied over the order statistics.

Lemma 27. Let �⃗� be a random vector with continuous comonotone components. Then 𝑆𝑂𝐴𝐴,𝜎(�⃗�) =𝑎.𝑠. 𝐴◦ 
(
𝑋(1),… ,𝑋(𝑛)

)
.

Proof. Since �⃗� has comonotone components, then there exists a uniform random variable 𝑈 such that

�⃗� =𝑎.𝑠.
(
𝐹1(𝑈 ),… , 𝐹𝑛(𝑈 )

)
.

By construction, we have that the random vector 
(
𝐹−1
[1] (𝑈 ),… , 𝐹−1

[𝑛] (𝑈 )
)

is a random vector in which, with probability one, the 
components are ordered. Therefore, we have that(

𝑋(1),… ,𝑋(𝑛)
)
=𝑎𝑠

(
𝐹−1
[1] (𝑈 ),… , 𝐹−1

[𝑛] (𝑈 )
)
=𝑎.𝑠. �⃗�𝑠𝑜,𝜎
12

for any permutation 𝜎, since the components are continuous. Then, the result holds by noting that 𝑆𝑂𝐴𝐴,𝜎 (�⃗�) =𝐴◦�⃗�𝑠𝑜,𝜎 . □
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4.2. The stochastically ordered weighting averaging

This section is devoted to the study of a particular case of Stochastically Ordered Aggregations for which the considered aggre-
gation function is a weighted averaging. From a theoretical point of view, this particular choice is interesting because additional 
theoretical properties can be proved. From a practical one, it is a family of aggregations of random variables that are parameterized 
by a permutation and a weighting vector, which can be optimized easily when working with data (see Section 5). Let us start by 
defining the concept itself.

Definition 28. Let �⃗� ∈ [0, 1]𝑛 be a weighting vector such that 
∑𝑛
𝑖=1𝑤𝑖 = 1 and 𝐼 a real interval. The Stochastic Ordered Weighting 

Averaging (SOWA) Operator 𝑆𝑂𝑊 𝐴�⃗�,𝜎 ∶𝐿𝑛𝐼 →𝐿𝐼 associated to �⃗� is defined by

𝑆𝑂𝑊𝐴�⃗�,𝜎(�⃗�) =
𝑛∑
𝑘=1
𝑤𝑘

(
�⃗�𝑠𝑜,𝜎

)
𝑘
, �⃗� ∈𝐿𝑛

𝐼
.

This operator is specially relevant, since it allows to give more or less importance to each of the distributions 𝐹[1], … , 𝐹[𝑛]. For 
instance, we can give small weights to the extreme distributions, giving less importance to them. This can be seen as a similar 
procedure as when using the OWA operator with greater middle weights (see [10]), but instead of reducing the impact of extreme 
observations (outliers), we are minimizing the impact of extreme distributions.

In the following result we prove several linearity properties of the SOWA operator.

Proposition 29. The 𝑆𝑂𝑊 𝐴�⃗�,𝜎(�⃗�) operator fulfills the following properties for any weighting vector �⃗� and permutation 𝜎:

• 𝑆𝑂𝑊𝐴�⃗�,𝜎(𝜆�⃗�) = 𝜆𝑆𝑂𝑊𝐴�⃗�,𝜎(�⃗�) for any random vector �⃗� and 𝜆 ∈ℝ+.

• 𝑆𝑂𝑊𝐴�⃗�,𝜎(�⃗� + 𝜆1⃗) = 𝑆𝑂𝑊𝐴�⃗�,𝜎(�⃗�) + 𝜆 for any random vector �⃗� and 𝜆 ∈ℝ.

• 𝑆𝑂𝑊𝐴�⃗�,𝜎(�⃗� + 𝑌 ) = 𝑆𝑂𝑊𝐴�⃗�,𝜎(�⃗�) +𝑆𝑂𝑊𝐴�⃗�,𝜎(𝑌 ) for any pair of random vectors such that there exists a permutation �̂� for which 
𝑋�̂�(1) ≤𝑠𝑡 ⋯ ≤𝑠𝑡 𝑋�̂�(𝑛) and 𝑌�̂�(1) ≤𝑠𝑡 ⋯ ≤𝑠𝑡 𝑌�̂�(𝑛) are satisfied and the random variables 𝑋𝑖 and 𝑌𝑖 are comonotone for any 𝑖 ∈ {1, … , 𝑛}.

Proof. The first two statements are straightforward to prove from the definition of 𝑆𝑂𝑊𝐴. For the third one, let us denote as 
𝐹1, … , 𝐹𝑛, 𝐺1, … , 𝐺𝑛 and 𝐻1, … , 𝐻𝑛 the distribution functions of, respectively, �⃗�, 𝑌 and �⃗� + 𝑌 . Note that, by hypothesis, 𝑋𝑖 and 
𝑌𝑖, and therefore 𝑋𝑖 with 𝑋𝑖 + 𝑌𝑖 and 𝑌𝑖 with 𝑋𝑖 + 𝑌𝑖, are comonotone for any 𝑖 ∈ {1, … , 𝑛}. Thus, there exists a standard uniform 
random variable such that 𝑋𝑖 =𝑎.𝑠 𝐹−1

𝑖 (𝑈𝑖), 𝑌𝑖 =𝑎.𝑠 𝐺−1
𝑖 (𝑈𝑖) and 𝑋𝑖 + 𝑌𝑖 =𝑎.𝑠 𝐻−1

𝑖 (𝑈𝑖) for any 𝑖 ∈ {1, … , 𝑛}. From the equivalence 
between the two expressions for 𝑋𝑖 + 𝑌𝑖, it holds that 𝐻−1

𝑖 (𝑈𝑖) =𝑎.𝑠. 𝐹−1
𝑖 (𝑈𝑖) +𝐺−1

𝑖 (𝑈𝑖) and 𝐻−1
𝑖 = 𝐹−1

𝑖 +𝐺−1
𝑖 (almost everywhere) 

for any 𝑖 ∈ {1, … , 𝑛}.
Keeping in mind the latter considerations about comonotonicity of the marginals, consider the random vector �⃗� with standard 

uniform marginal distributions such that:

�⃗� =𝑎.𝑠
(
𝑋1,… ,𝑋𝑛

)
=𝑎.𝑠.

(
𝐺1(𝑌1),… ,𝐺𝑛(𝑌𝑛)

)
=𝑎.𝑠.

=𝑎.𝑠.
(
𝐻1(𝑋1 + 𝑌1),… ,𝐻𝑛(𝑋𝑛 + 𝑌𝑛)

)
.

In addition, since the components of �⃗� and 𝑌 are ordered in the same order according to ≤𝑠𝑡, we have 𝐻−1
[𝑖] = 𝐹−1

[𝑖] +𝐺−1
[𝑖] for any 

𝑖 ∈ {1, … , 𝑛}. Then

𝑆𝑂𝑊𝐴�⃗�,𝜎(�⃗� + 𝑌 ) =
𝑛∑
𝑖=1
𝑤𝑖𝐻

−1
[𝑖]

(
𝑈𝜎(𝑖)

)
=

=
𝑛∑
𝑖=1
𝑤𝑖

(
𝐹−1
[𝑖]

(
𝑈𝜎(𝑖)

)
+𝐺−1

[𝑖]
(
𝑈𝜎(𝑖)

))
= 𝑆𝑂𝑊𝐴�⃗�,𝜎(�⃗�) +𝑆𝑂𝑊𝐴�⃗�,𝜎(𝑌 ). □

In addition, for continuous random vectors, its expected value has the same value as the one defined by the linear combination 
of the order statistics.

Proposition 30. Let �⃗� be a random vector with continuous components. Then 𝐸[𝑆𝑂𝑊𝐴�⃗�,𝜎(�⃗�)] =
∑𝑛
𝑖=1𝑤𝑖𝐸

[
𝑋(𝑖)

]
.

Proof. Noting that the components are continuous, denote as 𝑈1, … , 𝑈𝑛 the standard uniform random variables such that 𝑈𝑖 = 𝐹𝑖(𝑋𝑖)
with 𝑖 ∈ {1, … , 𝑛}. Then,

⃗

[
𝑛∑

−1

]
𝑛∑ [

−1
]

13

𝐸[𝑆𝑂𝑊𝐴�⃗�,𝜎(𝑋)] =𝐸
𝑖=1
𝑤𝑖𝐹(𝑖) (𝑈𝜎(𝑖)) =

𝑖=1
𝑤𝑖𝐸 𝐹(𝑖) (𝑈𝜎(𝑖)) =
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=
𝑛∑
𝑖=1
𝑤𝑖

1

∫
0

𝐹−1
(𝑖) (𝑡)𝑑𝑡 =

1

∫
0

(
𝑛∑
𝑖=1
𝑤𝑖𝐹

−1
(𝑖) (𝑡)

)
𝑑𝑡.

This expression does not depend on the copula of the random vector. The result holds since, using Lemma 27, for the case of 
comonotone components we have 𝑆𝑂𝑊 𝐴�⃗�,𝜎(�⃗�) =𝑎.𝑠.

∑𝑛
𝑖=1𝑤𝑖𝑋(𝑖). □

We want to remark that the expression 
∑𝑛
𝑖=1𝑤𝑖𝑋(𝑖) can be seen as the aggregation of random variables induced by an 𝑂𝑊𝐴

operator (but ordering from the smallest to the greatest).

5. A practical example regarding temperature prediction

We devote this section to illustrate the advantages of the use of the presented aggregation operators in predictions problems. In 
the following, we will consider a scenario in which a random vector �⃗� is used to predict the value of a random variable 𝑌 . The 
prediction will be denoted as 𝑌 . The first three alternatives will be the following,

(1) WAM: 𝑌 =
∑𝑛
𝑖=1𝑤𝑖𝑋𝑖,

(2) OWA: 𝑌 =
∑𝑛
𝑖=1𝑤𝑖𝑋(𝑖),

(3) SOWA: 𝑌 = 𝑆𝑂𝑊𝐴�⃗�,𝜎(�⃗�),

which are convex linear combination of, respectively, the random variables (WAM), the order statistics (OWA) and the components 
of the rearrangement increasing stochastically ordered random vector (SOWA). Leaving aside our proposal, we have chosen these 
alternatives since they are the most used aggregation functions that involve, as well as the SOWA operator, a weight vector and, in 
the case of the OWA operator, a permutation of the observed values, therefore we can compare the resulting parameters.

Notice that the use of a MOWA operator in this context is equivalent to the use of a weighted mean. The possible permutation of 
the components of the initial random vector can be undone by permuting in the same way the weighting vector.

In particular, we have used the database Appliances Energy Prediction, which can be found in [4]. The considered data consists 
in the value of the temperature (in Celsius) in different locations of a house, measured in 19735 different times. We refer to [5] for 
more details about the dataset. If we dismiss the values associated with outside locations (since its temperature is quite different 
of the temperature inside the house), we have the temperatures for the kitchen, living room, laundry room, bathroom, teenager room, 
ironing room, parents room and office room. Our aim is to predict the temperature in the office room using the values in the rest of 
indoors locations, by considering the models (1-3). The variables are ordered in the vector in the order in which they have been 
enumerated above.

We have carried on two studies, one of them using a fixed training and test samples and focused on the semantics and interpreta-
tion of the optimal parameters and a second one using cross-validation and focused on the performance of the different models and 
including more involved prediction methods.

In the first one, we divided the dataset in a 75%, the training dataset, which is used to optimize the parameters of the models and 
the test dataset, which is reserved for testing the behavior of the models. The optimization criterion is the usual minimization of the 
Mean Squared Error. For the models (1) and (2), this process is quite simple, the feasible region is the set of weighting vectors.

For the case of the Stochastically Ordered Weighting Averaging, we first need to build the rearrangement increasing stochastically 
ordered random vector. Since we do not know the population distributions of the variables, we have used empirical distribution 
functions (see [24]) of the random variables as the 𝐹1, … , 𝐹𝑛 in Definition 21. Then, the optimization is made in the set of all 
possible permutations 𝜎 (which are 7! = 5040) and the set of weighting vectors. The obtained optimal parameters for all the models 
are the following:

�⃗�(1) =
(
0.36, 0.09, 0.09, 0.04, 0, 0.20, 0.21

)
,

�⃗�(2) =
(
0.02, 0.20, 0.24, 0.017, 0.43, 0.09, 0

)
,

�⃗�(3) =
(
0.04, 0.25, 0.12, 0.27, 0.17, 0.16, 0

)
,

𝜎 =
(
4, 7, 2, 6, 1, 3, 5

)
.

For the weighted mean, the variables with more importance are kitchen, parents room and ironing room. In the combination of the 
order statistics, it can be seen that the extreme values, the maximum and the minimum, do not have much importance, since the 
associated weights are almost 0. Something similar happens in the case of the 𝑆𝑂𝑊 𝐴 operator, the extreme distributions are given 
less importance. Note also that, as can be seen in the optimal permutation, the outcome of the temperature in the teenager room is 
associated with the greatest distribution, and therefore, with a null weight. This coincides to the weight associated to the teenager 
room in model (1).

The Mean Squared Error, Mean Absolute error and Percent error (see [19]) of the three models in the test sample are provided in 
Table 1. As it can be seen, the 𝑆𝑂𝑊𝐴 has a better behavior than the other alternatives.

Latter study is useful for illustrating the semantic of the parameters of the 𝑆𝑂𝑊𝐴 operator in a applied example, as well as 
14

the relation of them with the weights of the 𝑊𝐴𝑀 and 𝑂𝑊𝐴 operators. However, a deeper study of the accuracy of the proposed 
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Table 1

Mean Squared Error (MSE), Mean Abso-
lute Error (MAE) and Percent Error (PE) 
for the considered prediction models in 
the test sample.

Model MSE MAE PE (%)

WAM 0.28 0.44 1.93
OWA 0.31 0.46 1.97
SOWA 0.22 0.38 1.66

Table 2

Average Mean Squared Error (MSE), 
Mean Absolute Error (MAE) and Per-
cent Error (PE) for the considered pre-
diction models in the cross-validation 
procedure.

Model MSE MAE PE (%)

WAM 0.86 0.73 3.61
OWA 0.67 0.65 3.17
SOWA 0.58 0.58 2.83
NN 0.72 0.67 3.24
LR 0.62 0.61 3.00
RF 0.75 0.69 3.39

method should be done, since the results are sensitive to the election of the training and test samples and more involved prediction 
models should be considered.

Therefore, the sample has been divided in 10 blocks of the same size and a cross-validation procedure (see [6]) has been applied. 
In particular, 9 of the blocks have been used as the training sample and the remaining one as the test sample, for each possible 
combination. Moreover, three additional prediction models have been considered as follows.

(4) NN: A neural network consisting on a input layer of 7 neurons, a hidden layer of 3 neurons and an output layer of 1 neuron 
has been considered. As algorithm, we have chosen resilient backpropagation with weight backtracking. MSE was chosen as the 
error function and the logistic function as the activation function. The learning rate has been considered as 0.5, the stopping 
criterion threshold as 0.5 and 10 repetitions of the training. We have used the R package neuralnet, we refer to [13] for more 
information.

(5) LR: The usual linear regression procedure, see Chapter 12 in [24].
(6) RF: A random forest consisting of 100 trees with maximum depth. For the implementation, the R package randomForest has been 

used, see [18].

The average of the errors can be found in Table 2. It can be seen that the average errors are greater than in the first study and 
that the SOWA operator has the better behavior among all alternatives.

The 𝑆𝑂𝑊𝐴 operator, as constructed in this section, only can take values between the minimum and the maximum of the inputs 
in the training data. Therefore, it is adequate to use it only when the predicted variables have the same order of magnitude as the 
explanatory variables.

The here-presented results are just particular example that serves as an illustration of the potential use of the 𝑆𝑂𝑊𝐴 operator. 
In general, for other databases or for more involved prediction models, one cannot expect the 𝑆𝑂𝑊 𝐴 operator to have the best 
behavior, in particular with respect to neural networks and random forests.

Note that other aggregations, not only weighted averages, may be considered in prediction problems. In those cases, the Stochas-
tically Ordered Aggregation associated to the particular aggregation can be always considered. We want also remark that if the 
dimension of the aggregated vectors is too big, the optimization over the set of permutations can be unaffordable.

6. Conclusions

The definition and properties of aggregation of random variables that consider a stochastic comparison of the input random 
variables has been studied. This approach permits to consider the whole distribution, not just the value of a particular observation, 
in the ordination of the arguments of the aggregation.

Firstly, the Mean Ordered Weighted Averaging, which orders the variables considering their means are defined. The value of 
its mean has been obtained and the monotonicity with respect to the expectation order and the min-max stochastic order has been 
15

proved.
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A variation for multivariate Gaussian distribution has been also explored. In this case, the operator is monotonic with respect 
to the usual stochastic order, and, under additional conditions, is also monotonic with respect to the convex and increasing convex 
orders. Its distribution has been derived.

Following a similar idea as Yager in [32], the Stochastically Ordered Aggregations have been defined. The monotonicity with 
respect the same dependence structure stochastic order has been proved, as well as the conditional increasing property. For the 
particular case of the Stochastically Ordered Weighting Averaging, some linear properties and its expectation are provided.

Finally, the behavior of the Stochastically Ordered Weighted Averaging is compared with the Weighted Averaging and the Ordered 
Weighted Averaging in a practical example involving the prediction of the temperature in a house. The here-proposed method has a 
better behavior in all the considered error measures.

We expect this work to open up the possibility of more definitions of aggregations that take into account not only particular ob-
servations of variables but also their probabilistic behavior by means, for instance, of their moments or their cumulative distribution 
functions.
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