
11 February 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

FPGA-based Low-Latency Audio Coprocessor for Networked Music Performance / Bert, Diego; Domini, Nicola; Peloso,
Riccardo; Severi, Leonardo; Sacchetto, Matteo; Bianco, Andrea; Rottondi, Cristina. - ELETTRONICO. - (2023), pp. 1-8.
(Intervento presentato al convegno 4th International Symposium on the Internet of Sounds tenutosi a Pisa (Italy nel
October 26-27, 2023) [10.1109/IEEECONF59510.2023.10335333].

Original

FPGA-based Low-Latency Audio Coprocessor for Networked Music Performance

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/IEEECONF59510.2023.10335333

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2984718 since: 2023-12-26T13:09:13Z

IEEE

1

FPGA-based Low-Latency Audio Coprocessor for
Networked Music Performance

Diego Bert, Nicola Domini, Riccardo Peloso, Leonardo Severi, Matteo Sacchetto, Andrea Bianco,
Cristina Rottondi

Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
{diego.bert,nicola.domini}@studenti.polito.it

{riccardo.peloso,leonardo.severi,matteo.sacchetto,andrea.bianco,cristina.rottondi}@polito.it

Abstract—Networked Music Performance (NMP) applications
are acknowledged to be a particularly challenging field due to
their stringent latency requirements and their demand for high
audio quality. Most solutions developed in the last decades tried
to overcome these obstacles by leveraging software approaches,
that can introduce excessive time delays as a consequence of the
general-purpose nature of the architectures on which they are
implemented. Alternatively, a dedicated audio processor can be
employed to minimize the mouth-to-ear latency.

This paper presents the ongoing development of an hardware
system that exploits an Application-Specific Instruction set Pro-
cessor (ASIP) implemented on a Field-Programmable Gate Array
(FPGA) to accelerate audio sample management. Specifically, a
Transport Triggered Architecture (TTA) is being investigated as
a processor design that aligns well with the required application
domains. Preliminary empirical results indicate that the proposed
solution has the potential to achieve extremely low latency,
compatible with NMP requirements. Further optimizations and
enhancements are actively being pursued to address the yet open
challenges posed by NMP applications.

Index Terms—Networked Music Performance, audio latency,
audio processing, Field-Programmable Gate Array

I. INTRODUCTION

A Networked Music Performance (NMP) is a real-time
musical interaction that allows musicians to play together
from remote locations. Its main purpose is to link different
performers who are not physically in the same room, making
them feel like they are playing close to each other. This
is usually done by leveraging an ultra-low latency audio
stream over a telecommunication network. However, in this
scenario, one of the most problematic and crucial challenges
is the necessity of maintaining stable real-time communication
between users. As confirmed by a large number of studies,
the mouth-to-ear delay recognized to be acceptable for NMP
is approximately around 20-30 ms [1]. Since there are several
bottlenecks in the communication, it is not straightforward to
meet this kind of requirement.

To reduce latency, different software and hardware solutions
have been proposed. However, since latency requirements are
very severe, a purely software-based approach is not always
the best option. An alternative solution, described also in [1],
is the use of a system based on a Field-Programmable Gate
Array (FPGA), where audio packets are completely handled
by dedicated hardware. In this way, the sources of additional
latency that exist in a general-purpose architecture can be
bypassed or accelerated.

The solution considered in this paper is based on the
preliminary work presented in [2] and [3]. It consists of a
dedicated hardware system designed to ensure extremely low
latency and is created by combining a software approach and a
FPGA-based one. In particular, the design of an Application-
Specific Instruction set Processor (ASIP) implemented by
taking advantage of a Transport Triggered Architecture (TTA)
is proposed. This architecture is particularly suitable for the
NMP application domain, as it can be exploited to process
audio samples with a reduced amount of added latency.

To understand the possible advantages of this kind of ap-
proach, some other solutions will be first examined in Sec. II.
In Sec. III, an introduction to the TTA processor architecture
and the toolset exploited for its design is provided. The
proposed system is described in detail in Sec. IV, providing an
overview of its components and the interfaces between them,
with a particular focus on the FPGA-based audio coprocessor
and its firmware. Then, in Sec. V, the results obtained so
far from a theoretical and an empirical point of view are
summarized, focusing in particular on the performance of the
FPGA. In that section, also some key future research directions
are pointed out. Finally, conclusions are presented in Sec. VI.

II. RELATED WORK

During the last two decades, the interest in NMP has
considerably increased, as witnessed by a large number of
solutions that have been proposed both in literature and by
companies. State-of-the-art NMP solutions consist mainly of
software frameworks, but also some hardware approaches
have recently gained attention. For a thorough comparison of
existing NMP solutions, the reader can refer to [1] and [4]. In
the following, we provide a brief overview of the most widely
adopted ones.

One of the first software solutions, developed in the early
2000s, is Jacktrip [5], an open-source software that runs on
most general-purpose Operative Systems (OSs). To achieve a
real-time musical interaction, it transmits uncompressed audio
samples through the network leveraging the User Datagram
Protocol (UDP) at transport layer.

Instead, SoundJack [6] is an NMP software application that
employs a compressed audio format. This enables integra-
tion of Packet Loss Concealment (PLC) techniques directly
incorporated in audio codecs, at the price of increasing the

2

mouth-to-ear latency as a consequence of the time overhead
introduced by compression algorithms.

Another first-generation NMP framework is DIAMOUSES
[7]. This is again an open-source software that streams un-
compressed audio signals, which also incorporates live video
streaming. However, this introduces further latency issues,
since video acquisition and encoding delays are typically
higher than those required by audio signals, thus leading to
misalignment between the two streams. To overcome such
issue, LOLA [8] resorts to uncompressed video streaming, at
the price of increasing the required bit-rate to a few Gbps.

In 2020, video streaming features were incorporated in
Jacktrip and Soundjack as well, as a consequence of the
massive hype on NMP applications generated by the social dis-
tancing measures enforced during the breakout of the SARS-
CoV-2 pandemic. To do so, the low-latency audio streaming
features enabled by the novel WebRTC paradigm [9] were
also exploited to enrich those applications with web-based
interfaces.

An almost completely different approach is the one adopted
by the Elk Audio company [10]. The main difference with
respect to the solutions described so far is that Elk offers a
complete setup for real-time remote performances, consisting
of both a hardware and a software environment. In particular,
Elk Audio designed a hardware audio interface called Elk
Bridge, optimized for low latency audio applications and con-
ceived to be used with a proprietary software called Elk LIVE.
With this kind of solution, the time delay introduced by the
sound acquisition and processing chain is further decreased.

A similar approach was pursued in [11], where they propose
a software running on a single-board computer (BeagleBone
Black), leveraging the Xenomai kernel extensions, to imple-
ment real-time Digital Signal Processing (DSP) functionalities.
Its performances were benchmarked in [12], which shows that
this is the only tested solution able to meet the stringent jitter
and latency requirements.

Several approaches to exploit FPGAs for real-time au-
dio processing have already been investigated in [13]–[15].
Though, to the best of our knowledge, apart from some
preliminary attempts appeared in 2013 [16], [17], this study
proposes for the first time an implementation of an ultralow-
latency audio streaming coprocessor based on FPGA, specifi-
cally designed for NMP applications.

III. BACKGROUND

As mentioned in Sec. I, the proposed system makes use
of a custom Transport Triggered Architecture processor. The
datapath of this architecture comprises several Functional
Units (FUs), register files and interconnecting buses.

The instruction set philosophy for the TTA processor re-
volves around a single type of instruction, namely the “move"
operation. In this system, more complex operations can be ac-
complished by orchestrating a sequence of “move" instructions
between different FUs, which then actually process data. As a
consequence, at compile time, each user program is mapped
to a discrete set of operations, moving data from one FU to
another via the interconnected buses. This compilation process

ensures the efficient execution of higher-level tasks using the
fundamental “move" operation as a building block. The length
of each instruction is usually very long because it is divided
into several move slots, each one dedicated to one of the
available transport buses. For this reason, a TTA processor
enables a natural parallelism in the execution of instructions.

A picture of a simple TTA architecture is shown in Fig. 1.
Due to its characteristics, TTA processors are particularly
suitable to implement ASIPs, enabling designers to create
custom units to accelerate specific tasks. Given the focus of
this paper on NMP, a TTA proves to be a valuable choice to
reduce the latency of audio data handling. Specifically, tasks
like audio playback, audio source mixing, and audio stream
processing (e.g., effects, equalization) can be efficiently sped
up using the TTA architecture. To achieve this acceleration,
dedicated FUs can be designed for each of these functions.
The TTA’s inherent parallelism allows these specialized FUs
to work simultaneously, enabling efficient and concurrent
execution of multiple NMP tasks. This approach harnesses
the power of parallel processing to meet the stringent latency
requirements and demanding audio processing needs of NMP
applications.

To facilitate the creation of a custom TTA processor, TTA-
based Co-design Environment (TCE), now known as Ope-
nAsip [18], was adopted in this project. Developed by the Cus-
tomized Parallel Computing group at Tampere University, this
environment offers a comprehensive set of tools to aid users in
co-designing the Register Transfer Level (RTL) architecture of
a TTA processor and the high-level software running within it.
Thanks to TCE, users can seamlessly design and interconnect
transport buses, register files, and basic FUs, forming the
foundation of the TTA processor. Furthermore, custom FUs
described by means of a Hardware Description Language
(HDL), like those discussed in this paper, can be integrated
into the system. To enable high-level programming for the
generated architecture, a custom LLVM/CLANG compiler is
employed. Users can write their high-level code in C/C++
programming languages, which the compiler then translates
into instructions compatible with the custom processor. This
cohesive ecosystem ensures efficient co-design and implemen-
tation of custom TTA processors, empowering developers to
effectively tailor their solutions for specific tasks.

IV. SYSTEM DESCRIPTION

The system proposed in this paper is an initial hybrid
solution combining a software and a custom digital hardware
approach. In particular, as shown in Fig. 2, it consists of three
main components, each of them implemented on a different
hardware support: an audio board, an audio processor and a
Raspberry Pi.

The three main components of the system exploit different
communication protocols to interface with each other (see
Fig. 2):

• the Inter-IC Sound (I2S) protocol, between the audio
board and audio processor.

• the Musical Instrument Digital Interface (MIDI) protocol,
between the audio board and audio processor.

3

Fig. 1. Simple TTA architecture

• the Serial Peripheral Interface (SPI) protocol, between the
audio processor and Raspberry Pi.

Internally, the audio processor and the audio board can handle
up to 24-bit samples, even if at this moment the Raspberry Pi
host machine works with 16-bit samples.

Fig. 2. System block diagram

A. Audio board

The custom audio board (Fig. 3) serves as a hardware
circuit designed specifically to function as a sound card within
the system. Its conception revolves around meeting stringent
low-latency requirements and addressing issues commonly
associated with common consumer-grade sound cards based
on USB 2.0.

The Universal Serial Bus (USB) 2.0 is a widely adopted
half-duplex serial interface known for its versatility and ease of
use. It is commonly utilized for connecting various peripherals
and devices to computers and other host systems. USB is
designed to be flexible and support a wide range of functional-
ities, making it suitable for tasks such as data transfer, power
supply and device control. However, USB is not inherently
optimized for low-latency applications, such as real-time audio
processing in the context of NMP. The USB protocol was
originally designed to cater to various devices with different
data transfer requirements, including keyboards, mice, printers,
and storage devices. As a result, the USB protocol includes a
complex control software stack that introduces some inherent
overhead. This software stack, while necessary for managing
the various devices and their functionalities, can introduce ad-
ditional processing delays, which may impact real-time audio
processing in NMP scenarios. The overhead introduced by
the USB software stack can result in unpredictable variations
in data transfer times and latency, making it challenging to
achieve the precise and consistent timing required for real-
time audio processing.

To ensure optimal performance, the developed audio board
is engineered to efficiently acquire and play sound samples
using multiple audio interfaces. It seamlessly exchanges data
with the processor via the I2S protocol, employing minimal
buffering and filtering. This reduction in buffering and filtering
helps minimize added delays and optimize latency perfor-
mance. The board is equipped with readily available com-
mercial audio Analog-to-Digital Converters (ADCs), specif-
ically two PCM1803 [19], and a Digital-to-Analog Converters
(DAC), the PCM1771 [19], which can be directly employed
as a headphone amplifier. MIDI [21] interfaces are derived by
converting UART messages through commonly used optically-
isolated circuits.

The custom audio board is designed to accept input DC
voltages ranging from 3V to 18V. It efficiently derives the
necessary power supplies for both the digital and analog
sections through a combination of switching and low-noise
linear regulators. Additionally, the board has the capability
to generate a 48V Phantom power supply to facilitate the
operation of condenser microphones directly on board.

Furthermore, the audio board assumes the critical role of
directly interfacing with users for control purposes. It provides
user controls, such as volume adjustment for each input
audio channel, enabling smooth and intuitive interaction for
performers and participants in an NMP session.

B. Audio processor

The second and most crucial component of the developed
system is the audio processor, implemented as a custom TTA
ASIP. Its goal is to create a communication channel between
the audio board and the Raspberry Pi device, introducing
the lowest possible amount of latency, as well as providing
custom audio processing and manipulation, thus removing the
computational load from the Raspberry Pi and accelerating
these tasks. To host the processor, an FPGA-based board
was chosen because of its flexibility in implementing digital

4

Fig. 3. Custom audio board

circuits and its possibility to be completely reconfigurable.
The choice for the development board fell on the development
board Arty A7-100T produced by Digilent, featuring the Artix-
7 XC7A100TCSG324-1 FPGA chip from Xilinx [22]. This
FPGA model boasts an abundance of digital resources that can
be harnessed for future advancements in the audio processor’s
capabilities.
Fig. 4 depicts a block diagram of the top module of the
processor. Several components are shown:

• TTA core, the actual processor, hosting the different FUs.
• Instruction memory, containing the instructions obtained

by compiling the user code.
• Data memory, used to store data and global variables.
• I2S clock generator, needed since the developed archi-

tecture acts as the master device for the I2S protocol. It
generates the required clocks, namely the bit clock (bclk)
and the left-right clock (lrclk).

• Phase-locked loop (PLL), generating the master clock
running at 11 MHz.

Fig. 4. Audio processor top-level block diagram

It is possible to observe in Fig. 5 that the developed TTA
processor is composed of several FUs connected together by
means of four 32-bit transport buses. Some of these units are
common to most architectures, such as Arithmetic Logic Unit
(ALU), Global Control Unit (GCU), Load-Store Unit (LSU),
two register files (“bool" and “REG_FILE_0" in the figure) and
a timer (“TIMER_0" in the figure). Then, some custom units
were developed in order to deal with the Light Emitting Diodes

(LEDs) and switches of the FPGA board but, most importantly,
to create peripherals that interface the system components and
provide some processing on the audio data:

• I2S_LJ_master_TX_x: I2S transmitter with Left-Justified
format and 24-bit audio samples on 32-bit frames.

• I2S_LJ_master_RX_x: I2S receiver. Its behavior is sym-
metrical to that of the I2S transmitter.

• UART_TX_x: UART transmitter, working at 31250 Hz
rate. It sends 8-bit MIDI messages.

• UART_RX_x: UART receiver, working at 31250 Hz rate.
It is used to receive 8-bit MIDI messages.

• SPI_slave_x: an SPI transmitter/receiver, working with 8-
bits frames.

• MIXER_0: performs the mixing operation on multiple
audio sources. It features gain and left-right panning
controls for each source.

• REVERB_0: applies a reverb effect on an audio source.
It features a dry/wet control.

The last two units of the list, as well as other possible future
ones, can be exploited to accelerate time-consuming audio
processing tasks typically required by musicians. Moreover,
the introduction of a reverb unit can have a positive impact
on the way users interact, leading to more synchronized
performances [23].
All the functional units are linked together with a fully
connected structure, i.e., each one of them has access to all
the available buses. In this way, the compiler is free to choose
how to route the data and how to organize the move operations,
depending on the required tasks.

Fig. 5. TTA core: FUs and interconnections

For what concerns the uploaded firmware routine, the FPGA
processor’s task is to collect data coming from the audio
board peripherals (I2S and MIDI) and route them to the SPI
peripheral connected to Raspberry Pi, and vice versa.

SPI was selected as the interconnection protocol between
the FPGA and the Raspberry Pi due to its widespread
availability as a standard interface for prototyping purposes.
This synchronous and dependable interface is well-suited for
transmitting versatile data payloads, encompassing both audio
data and command signals. For this task, I2S has not been
employed as it is primarily designed for the transmission of
stereo audio streams and incorporates an embedded clock sig-
nal. One advantage of the custom-designed TTA I2S interface

5

is its internal buffering, which eliminates the need for a master
clock. Sample re-synchronization occurs only when audio data
is sent to the Digital-to-Analog Converter (DAC), ensuring
precise timing and synchronization. DSP tasks are executed
asynchronously at the FPGA’s system clock frequency. This
design approach is geared towards minimizing latency, thereby
ensuring that audio processing tasks are carried out with the
lowest possible latency.

Support for two different operating modes has been con-
sidered, depending on whether the mixing is done at the
Raspberry Pi or FPGA level. The latter option accelerates the
mixing task and so speeds up the system, but will likely ex-
perience limitations for what concerns the maximum number
of sources it can handle, due to the bandwidth of the SPI link
(more details in Sec. V-D).

Fig. 6. Flow diagram of the firmware routine

During operation, the FPGA processor waits for a command
coming from the Raspberry Pi, that is acting as an SPI master
device. Three possible commands can be issued:

a) Command 1: is used to change the environment
configuration variables, such as the number of audio samples
bitwidth, the number of enabled input channels on the audio
board, the number of sources coming from the Raspberry and
others.

b) Command 2: starts the streaming of a packet of sam-
ples and MIDI messages from the audio board to the Raspberry
Pi and vice versa. The mixing operation is performed by the
Raspberry Pi.

c) Command 3: starts the streaming of a packet of audio
samples and MIDI messages from the audio board to the
Raspberry Pi and vice versa. In this case, the mixing operation
is done at the FPGA level.

Furthermore, an analysis has been carried out regarding the
effects of errors that can potentially occur in the SPI channel.
While the impact of sporadic errors in random audio samples,
resulting in occasional audio glitches, can be deemed tolerable,
keeping the error rate as low as possible is crucial when
issuing commands, in particular command 1. In fact, if one or
more of the configuration variables are not correctly received
by the FPGA side, the whole communication could fail. To

address this problem, a custom communication protocol has
been developed. First of all, each command is preceded by a
preamble sequence informing that the Raspberry Pi is asking
to start the communication. Then, the transmission continues
with an ACK/NACK mechanism. Moreover, redundancy in the
preamble and commands is intentionally introduced, guaran-
teeing that the correct information is exchanged.

In the final implementation, SPI communication packets will
incorporate Error-Correcting Codes (ECCs) such as Cyclic
redundancy checks (CRCs) to enhance the reliability of the
communication channel. The ECC scheme will be supported
by firmware or hardware during the packet encoding and
decoding processes, thereby providing an additional layer of
assurance for data transmission integrity.

Fig. 6 represents a flow diagram of the firmware routine,
devised as a Finite State Machine (FSM) consisting of the
following states:

• MEVO_WAIT_PREAMBLE: during this state, the pro-
cessor waits for the preamble sequence coming from the
SPI side.

• MEVO_WAIT_COMMAND: when the preamble se-
quence has been identified, the processor enters this state
expecting a command to be issued.

• MEVO_CONFIG: in this state, command 1 is executed.
• MEVO_STREAM: in this state, command 2 is executed.
• MEVO_STREAM_MIX: in this state, command 3 is

executed.
Currently, the processor does not perform many operations

and is clearly underused. Anyway, its real potential is still to
be exploited in enhanced versions of our architecure, that are
forseen as future work. Transferring tasks from the Raspberry
Pi to the FPGA offers several advantages, particularly in terms
of speed. Consider, for instance, a reverb effect. In software,
processed samples must continually shuttle back and forth
between the processor and memory. Conversely, hardware
implementation allows for efficient utilization of parallelism
and pipelines, resulting in a notable reduction in computational
overhead. It is true that developing hardware solutions entails
higher upfront costs, but in a latency-critical context like NMP,
the investment is worth the effort.

C. Raspberry Pi

In the proposed system, the Raspberry Pi 4 model B [24]
plays a crucial role in managing the transmission and reception
of audio packets over the network through its full gigabit
Ethernet port. Given the stringent latency requirements of
NMP, the choice of an appropriate device was crucial, and
the Raspberry Pi 4 specifications proved to be a fitting option.
It boasts a 1.5 GHz Quad-core 64-bit ARM Cortex-A72
processor and 8 GB of RAM, providing ample processing
power and memory capacity for real-time audio processing
tasks.

Moreover, the Raspberry Pi 4 offers 28 General Purpose
Input/Output (GPIO) pins, providing various interface options
and including support for multiple concurrent SPI communi-
cation lines. These capabilities make it a versatile platform
for handling audio data efficiently. To ensure a robust and

6

flexible system, the Linux operating system was deployed on
the Raspberry Pi, benefiting from its stability and adaptability
within the Raspberry Pi framework.

From a networking perspective, two crucial design choices
were made. Firstly, UDP was chosen as transport protocol
for communication. UDP’s lack of handshake techniques for
connection setup enables faster data transmission, making it
well-suited for time-critical applications like NMP. However,
it is important to acknowledge that UDP communications
are not reliable and may require PLC methods to address
missing data packets. Secondly, a peer-to-peer architecture
was implemented among the users of the NMP environment.
This choice further reduces perceived latency compared to
a client-server solution, facilitating direct and low-latency
communication between participants.

V. RESULTS

The following sub-sections present the results obtained so
far for the proposed system. It is worth mentioning that,
since the architecture design is still ongoing, most of the
experimental evaluations cannot yet be assessed, especially
the ones related to the Raspberry Pi component. For the same
reason, a thorough evaluation of the impact of network delay
and of the overall system performance will be possible only
once the design phase is completed.

A. FPGA utilization

The proposed TTA processor was implemented on FPGA
leveraging the Vivado IDE by Xilinx to evaluate the efficiency
of the design and the resource consumption. The reported
utilization results, shown in Fig. 7, indicate how the ASIP
makes use of the FPGA resources. Specifically, approximately
21% (13479 out of 63400) of the available logic elements, i.e.
Lookup Tables (LUTs), were employed, while only 8% (20 out
of 240) of the DSP cells were used. These outcomes emphasize
that many signal processing operations on sound samples can
still be handled by means of specific units, performing tasks
which are recognized to be particularly time consuming in a
general-purpose environment.

Regarding memory blocks, it can be noticed that 10% (13
out of 135) of the available Block RAMs (BRAMs) and 38%
(7193 out of 19000) of the Lookup Table RAMs (LUTRAMs)
were used, mainly to store instruction and data memories of
the TTA processor and to address the need for long delay
lines in the reverb unit. This results indicates that the design
made efficient use of the FPGA, leaving room for potential
inclusion of additional functionalities which require to store
data. Thanks to this available programmable logic, several
features can be taken into account for future developments
as custom FUs, such as new audio effects and hardware PLC
techniques to cope with missing data packets.

B. FPGA power consumption

Power consumption is a critical factor, especially in portable
or energy-constrained systems. To assess the power efficiency
of the proposed FPGA-based processor, the Vivado static

Fig. 7. FPGA resource utilization

power consumption estimator has been used. The power
consumption of the developed TTA architecture was found to
be significantly lower compared to traditional software-based
approaches, with a total estimated power of approximately
350 mW. In particular, in Fig. 8, the different power con-
tributions are reported. The main ones are those related to the
PLL circuit (indicated as “MMCM” in the figure) and to the
static power consumption of the ASIP (indicated as “PL static”
in the figure).

The power consumption results obtained so far are accept-
able estimations provided by Vivado. However, to understand
the real power dissipation of the processor, future empirical
evaluations will be considered by exploiting FPGA power
monitoring capabilities.

Fig. 8. FPGA power consumption contributions

C. Local system latency

The primary performance metric for NMP applications is
the total system latency, which directly impacts the real-time
musical interaction between remote performers. To evaluate
the effectiveness of the proposed solution, latency measure-
ments were carried out with a local audio loopback test on
the system composed of the audio board and the FPGA-
based processor (the Raspberry Pi was not considered in this
initial analysis). Tests were conducted without involving the
audio mixing unit, since this process was assumed to be

7

performed by the Raspberry Pi. Moreover, the reverb effect
was excluded from the analysis, because it could alter the
time delay evaluation. The experimental setup consisted of
a software tool capable of generating a chirp sound and
collecting it after the audio loopback to measure the latency
introduced by the system. Since the sampling time of the
exploited measurement tool is equal to 192 kHz, empirical
results are affected by an uncertainty of 0.005 ms.

From a theoretical point of view, the overall latency con-
sidered can be summarized as:

Tlat = TADC + TI2S + Tproc + TI2S + TDAC

where TADC and TDAC are the time delays associated with
audio conversions on the audio board, TI2S is the data transfer
delay (considered two times since data are transferred back and
forth) and Tproc refers to the latency introduced by the TTA
processor. By performing this computation, it was possible
to estimate a theoretical value for the loopback test of 0.89
ms, which was then confirmed by empirical results, showing
a 0.859 ms delay.

D. SPI bandwidth and protocol overhead

The required bandwidth to link the FPGA to the Raspberry
Pi through the SPI interface is primarily determined by the
number of audio channels being utilized. With a fixed audio
sample rate of fs = 44.1 kHz and ws = 16 bits per sample,
each channel demands the following bandwidth

BWchann = fs · ws = 705.6 kbps

However, it is essential to consider the overhead introduced
by the communication protocol introduced in Sec. IV-B, as
it affects the effective data rate. For instance, when dealing
with command 2 (Raspberry Pi mixing mode), the protocol
introduces redundancy that needs to be accounted for in the
bandwidth calculation. To quantify the overhead, a formula
can be used, taking into account the samples bit width (ws),
the number of channels sent by the FPGA through the com-
munication link (nCHF), and the number of samples inside
an audio data packet (sn). For example, with ws = 16 bits,
nCHF = 4, and sn = 112, the total overhead introduced in a
packet of samples can be computed as

OH =
8

(ws

8 · nCHF · sn) + 8
≈ 0.88%

where the number 8 at the numerator represents the number
of bytes required by the preamble+command sequence, while
the denominator term represents the total number of bytes
transferred during one occurrence of command 2.
Another interesting figure is the number of audio sources that
can be streamed through the SPI link, especially when the
mixing operation is performed at the FPGA level. To be sure
to work in “safe" conditions, BWchann can be increased to a
higher value, for instance BW ′

chann = 750 kbps. According
to the datasheet of the chip BCM2711, which implements
the SPI communication on the Raspberry Pi device [25], the
maximum speed the link can reach is BWRPI = 125MHz.
Thus, supposing that the electrical connection between the

Raspberry Pi and the FPGA board permits to reach this
speed, the theoretical maximum amount of sources that can
be streamed through the SPI link is

NSRCMAX
=

BWRPI

BW ′
chann

=
125MHz

750 kbps
≈ 166

Moreover, Raspberry Pi features two SPI peripherals, that can
potentially be used in parallel to increase the throughput and/or
to spread the bandwidth requirement on both of them.

VI. CONCLUSIONS

This paper presents the ongoing design and implementation
of a hardware audio streaming system designed for Networked
Music Performance applications. This system employs an
Application-Specific Instruction set Processor (ASIP) imple-
mented on a Field-Programmable Gate Array (FPGA). The
focus of this research is the exploration and design of a
Transport Triggered Architecture (TTA) coprocessor, as its
characteristics align well with the specific requirements of
NMP applications.

The results obtained so far demonstrated that the proposed
ASIP-based solution achieved remarkably low latencies in
local loopback tests, meeting optimal requirements for NMP
communication. Additionally, lossless audio processing leads
to high quality input and output sound streams, ensuring a
seamless musical interaction among remote performers. Even
if the results achieved are mostly focusing on the FPGA
performances up to now, the overall system can be deemed
as a novel and promising approach to NMP.

The combination of software and FPGA-based hardware
solutions offers an alternative approach to tackle the challenges
of NMP applications, providing a significant advancement in
the field of NMP. Future work could explore further optimiza-
tions and refinements in the hardware design to enhance its
efficiency and versatility, opening up possibilities for wider
adoption in various real-time audio applications, even beyond
NMP.

ACKNOWLEDGMENTS

This work has been supported by the Italian Ministry for
University and Research under the PRIN program (grant n.
2022CZWWKP).

Leonardo Severi’s PhD Programme is funded by the Euro-
pean Union in the framework of the Resiliency and Recovery
Plan (RRP), within the NextGenerationEU initiative.

REFERENCES

[1] Cristina Rottondi, Chris Chafe, Claudio Allocchio, and Augusto Sarti.
“An Overview on Networked Music Performance Technologies". In:
IEEE Access (2016).

[2] Nicola Domini. “Ultralow Latency Audio Processing Via FPGA For
Networked Music Performance Applications", Master thesis, 2022.

[3] Diego Bert. “FPGA-based implementation of audio effects for ultralow-
latency Networked Music Performance applications", Master thesis,
2023.

[4] Comparison of Remote Music Performance Software. URL:
https://en.wikipedia.org/wiki/Comparison_of_Remote_Music_Performa
nce_Software (accessed: 2023/07/29).

[5] Juan-Pablo Cáceres and Chris Chafe. “JackTrip: Under the Hood of an
Engine for Network Audio". In: Journal of New Music Research (2010).

https://en.wikipedia.org/wiki/Comparison_of_Remote_Music_Performance_Software
https://en.wikipedia.org/wiki/Comparison_of_Remote_Music_Performance_Software

8

[6] Alexander Carôt, Alain B. Renaud, and Bruno Verbrugghe. “Network
Music Performance (NMP) with Soundjack". In: Proceedings of the 6th
NIME Conference (2006).

[7] Chrisoula Alexandraki, Panayotis Koutlemanis, Petros Gasteratos, Niko-
las Valsamakis, Demosthenes Akoumianakis, and Giannis Milolidakis.
“Towards the implementation of a generic platform for networked music
performance: The DIAMOUSES approach". In: Proceedings of the 2008
International Computer Music Conference (2008).

[8] Carlo Drioli, Claudio Allocchio, and Nicola Buso, “Networked perfor-
mances and natural interaction via LOLA: Low latency high quality A/V
streaming system". In: International conference on information technolo-
gies for performing arts, media access, and entertainment (2013).

[9] Matteo Sacchetto, Paolo Gastaldi, Chris Chafe, Cristina Rottondi, and
Antonio Servetti, “Web-based networked music performances via We-
bRTC: a low-latency PCM audio solution". In: Journal of the Audio
Engineering Society, 70(11), 926-937, (2022).

[10] Elk Audio. URL: https://www.elk.audio/ (accessed: 2023/07/29).
[11] Andrew Mcpherson and Victor Zappi, “An Environment for

Submillisecond-Latency Audio and Sensor Processing on BeagleBone
Black". In: Journal of The Audio Engineering Society, (2015).

[12] McPherson, Andrew P and Jack, Robert H and Moro, Giulio, “Action-
sound latency: Are our tools fast enough?". In: Proceedings of the
International Conference on New Interfaces for Musical Expression,
(2016).

[13] Wegener, Clemens and Stang, Sebastian and Neupert, Max, “Fpga-
accelerated real-time audio in pure data". In: Proceedings of the 19th
Sound and Music Computing Conference, (2022).

[14] Popoff, Maxime and Michon, Romain and Risset, Tanguy and Orlarey,
Yann and Letz, Stéphane, “Towards an fpga-based compilation flow for
ultra-low latency audio signal processing". In: Proceedings of the 19th
Sound and Music Computing Conference, (2022).

[15] Tanguy Risset, Romain Michon, Yann Orlarey, Stéphane Letz, Gero
Müller and Adeyemi Gbadamosi “Faust2FPGA for Ultra-Low Audio
Latency: Preliminary work in the Syfala project". In: IFC2020 - Inter-
nationnal Faust Conference (2020).

[16] George Xylomenos, Christos Tsilopoulos, Yannis Thomas, and George
C. Polyzos, “Reduced switching delay for networked music perfor-
mance” in Proceedings of Packet Video Workshop (Poster Session),
(2013).

[17] George Baltas and George Xylomenos, “Ultra low delay switching for
networked music performance” in Proceedings of the 5th International
Conference on Information, Intelligence, Systems and Applications
(IISA), (2014).

[18] Pekka Jääskeläinen, Timo Viitanen, Jarmo Takala, and Heikki Berg.
“HW/SW Co-design Toolset for Customization of Exposed Datap-
ath Processors". In: Computing Platforms for Software-Defined Radio
(2017).

[19] PCM1803 reference page. URL: https://www.ti.com/product/PCM1803
(accessed: 2023/07/29).

[20] PCM1771 reference page. URL: https://www.ti.com/product/PCM1771
(accessed: 2023/07/29).

[21] MIDI specification page. URL: https://www.midi.org/specifications (ac-
cessed: 2023/07/29).

[22] Arty A7 Reference Manual. URL: https://digilent.com/reference/progra
mmable-logic/arty-a7/reference-manual (accessed: 2023/07/29).

[23] Snorre Farner, Audun Solvang, Asbjørn Sæbø, and U. Peter Svensson.
“Ensemble Hand-Clapping Experiments under the Influence of Delay
and Various Acoustic Environments". In: Journal of the Audio Engi-
neering Society (2009)

[24] Raspberry Pi 4 Model B datasheet. URL: https://datasheets.ra
spberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf (accessed:
2023/07/29).

[25] BCM2711 datasheet. URL: https://datasheets.raspberrypi.com/bcm2711/
bcm2711-peripherals.pdf (accessed: 2023/07/29).

https://www.elk.audio/
https://www.ti.com/product/PCM1803
https://www.ti.com/product/PCM1771
https://www.midi.org/specifications
https://digilent.com/reference/programmable-logic/arty-a7/reference-manual
https://digilent.com/reference/programmable-logic/arty-a7/reference-manual
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf
https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf

