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Statistical estimation of fatigue design curves from datasets involving 
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A B S T R A C T   

In the present paper, two methodologies for the estimation of the design curves of datasets with failures origi-
nating from defects are proposed. With the first methodology, the Likelihood Ratio Confidence Bound of a 
specific quantile P-S-N curve is considered. The second method is based on the bootstrap approach, with a large 
number of datasets simulated starting from the stress life and the defect size distributions estimated from the 
experimental data. The two approaches have been validated on literature datasets covering also the Very High 
Cycle Fatigue (VHCF) life region, proving their effectiveness.   

1. Introduction 

The design of components against fatigue failures is generally carried 
out with a safe life approach, i.e., the allowable stress that must be 
considered to withstand the applied loads for the required number of 
cycles is assessed starting from the stress life relationship (S-N curves) 
estimated from experimental tests carried out according to International 
Standards [1,2]. Due to the stochastic nature of the fatigue phenome-
non, which is affected by many factors [3–6] like microstructure, type of 
loads, surface conditions, and manufacturing defects, statistical meth-
odologies [7–12] are employed to model and account for the experi-
mental variability and the related uncertainty in the estimation process, 
mainly related to the sample numerosity [4]. The Lognormal [9,13,14] 
or the Weibull distributions [13,15–17] are commonly assumed for the 
fatigue life distribution and to estimate the Probabilistic-S-N curves (P-S- 
N curves in the following), with high-reliability quantiles considered for 
the design of components. However, depending on the specific appli-
cation, the industrial needs and safety requirements [4], different ap-
proaches are employed to estimate the fatigue design curves, i.e., the P- 
S-N curves to be used for the design of components [4,10,18]. The basic 
idea is to account also for the uncertainty associated with the estimation 
process, i.e., rather than considering a deterministic P-S-N curve quan-
tile, the range of uncertainty around it is considered. This uncertainty 
range tends to increase for datasets with limited amount of data, which 
is a quite common condition for fatigue data. The design curve generally 

corresponds to the lower one-sided confidence interval, computed at a 
confidence level generally equal to 90%, of a quantile P-S-N curve with a 
high-reliability level, generally above 90% [4,10]. The estimation of 
design curves ensuring a safe margin also for datasets characterized by 
large variability is therefore fundamental for the design of components 
and of utmost interest among the scientific and industrial community. 

Depending on the manufacturing process or on the investigated life 
range, the origin of the fatigue failure and the site where the crack forms 
and starts propagating can be different and can affect the variability of 
fatigue data in the S-N plot. For example, the fatigue response of com-
ponents produced through Additive Manufacturing (AM) processes is 
mainly controlled by manufacturing defects, like lack of fusion defects 
or pores, which lower the fatigue response [19–21], if compared to that 
of components produced with conventional manufacturing processes. 
Similarly, defects or impurities are responsible for the crack formation in 
failures occurring in the Very High Cycle Fatigue (VHCF) life range, but 
with peculiar mechanisms and with the formation of the so-called Fine 
Granular Area (FGA), around the initial defect. Datasets covering the 
Low Cycle Fatigue (LCF)-VHCF life range show a so-called duplex trend 
on the S-N plot [22,23], with two failure modes, surface and internal 
failure modes, depending on the life range. The distribution of the defect 
size within the loaded volume strongly affects the fatigue response, with 
datasets characterized by large variability in the S-N plot. For these 
datasets, the safe life approach must be combined with the damage- 
tolerant approach to properly account for the influence of defects and 
their size on the fatigue response. In the literature, several models have 
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been proposed to model the influence of defects on the fatigue life 
[5,24–28] or to model the P-S-N curve of datasets covering the Low 
Cycle Fatigue (LCF) – VHCF life range with the duplex trend [10], but 
none of these focus on methodologies for the estimation of the design 
curves, to the Authors’ best knowledge. 

In the present paper, two methodologies for the estimation of the 
design curves of datasets with failures originating from defects are 
developed. The first methodology is based on the Maximum Likelihood 
Principle, with the design curve estimated as the lower Likelihood Ratio 
Confidence Bound of a high-reliability quantile P-S-N curve. The second 
method is based on the bootstrap approach, with a large number of 
datasets simulated starting from the stress life distribution estimated 
from the experimental data. Random defects are also simulated to model 
their influence on the fatigue response and, for failures originating in the 
VHCF region with FGA formation, the dependence between the defect 
size and the FGA size is also accounted for. The two approaches have 
been validated on several datasets that can be best-fitted with models 
describing a linear trend, a linear trend with fatigue limit and a duplex 
trend, proving their effectiveness and their potentialities. 

2. Design curve in presence of defects: Likelihood ratio 
confidence bound 

This section focuses on the methodologies for estimating the design 
P-S-N curves from datasets with failures originating from defects. In the 
following, the design curve is assumed as the R(1 − α)%CαC% S-N curve, 
according to the notation in [4,10,18]. Accordingly, the design curve is 
the lower bound, at the αC% confidence level, of the α% quantile P-S-N 
curve (Reliability level (1 − α)%). For example, the R95C90 design curve 
corresponds to the S-N curve obtained by estimating the 90% lower 
confidence bound (confidence C equal to 90%) of the 0.05-th quantile P- 
S-N curves (i.e., reliability R equal to 95%). Accordingly, the uncertainty 
associated with the α-th quantile P-S-N curve is also accounted for, 
increasing the safety margin with respect to failures, fundamental for 
datasets characterized by large variability and limited numerousness. 
Indeed, the scatter of the experimental data in the S-N plot tends to 

increase when fatigue failures originate from defects, due to their size 
variability and their random location within the loaded volume of parts 
subjected to non-uniform stress distributions [5,29,30]. 

Several models have been proposed by the Authors to assess the 
stress-life relationship of datasets with failures from defects. However, 
the issue concerning the estimation of the design P-S-N curves for 
datasets with defects at the origin of the fatigue failures has never been 
addressed and is the objective of the present work. 

Two methodologies will be exploited for the estimation of the design 
curve: this section focuses on the first methodology, based on the 
Likelihood Ratio Confidence Bound (LRCB). In Section 2.1, the general 
procedure developed for the estimation of the design curve with the 
LRCB is described. Sections from 2.1.1 to 2.1.4 provide details for the 
application of the proposed methodology to models proposed by the 
Authors in the literature (i.e., conditional and marginal linear models, 
marginal model with linear trend and fatigue limit and duplex model) 
[9,24,31–33]. 

In the following, the characteristic defect size is assumed as the 
square root of the area of the defect projected in a direction perpen-
dicular to the maximum applied stress according to [5]. 

2.1. Likelihood ratio confidence bound: Methodology 

The design curve as the lower LRCB of a specific quantile of the P-S-N 
curve is assessed starting from the estimation of the unknown material 
parameters of the considered fatigue life distribution. The parameter 
estimation is carried out by applying the Maximum Likelihood Principle, 
i.e., by maximizing the Likelihood function, L[θ], reported in Eq. (1): 

L[θ] =
∏n

if =1
fY|X=x

[
yif ; xif ; θ

]
•
∏nr

j=1

(
1 − FY|X=x

[
y*; xj; θ

] )
(1)  

being θ the set of unknown parameters to be estimated, fY|X=x the 
probability density function (pdf) of the fatigue life distribution, y* the 
logarithm of the runout number of cycles, y and x the logarithm of nf 

(number of cycles to failure) and sa (applied stress amplitude), respec-
tively. The subscript if (if = 1⋯. n) refers to failure if , whereas the 

Nomenclature 

̅̅̅̅̅̅̅̅ad,0
√ square root of the area of the defect, ad,0. 
α reliability level. 
C confidence. 
cdf cumulative distribution function. 
cY ,mY ,nY constant coefficients of the statistical distribution of the 

fatigue life. 
csl, cth and αth constant coefficients of the statistical distribution of 

the fatigue limit 
c ̅̅̅̅̅̅̅̅AFGA
√ , m ̅̅̅̅̅̅̅̅

AFGA
√ and n ̅̅̅̅̅̅̅̅

AFGA
√ , σ ̅̅̅̅̅̅̅̅

AFGA
√ parameter of the FGA statistical 

distribution. 
cY,surf ,mY,surf , σY,surf parameters of the cdf of the fatigue life for 

surface failures. 
DMLS Direct Metal Laser Sintering. 
FXl |

̅̅̅̅̅̅ad,0
√

(
x; ̅̅̅̅̅̅̅̅ad,0
√ )

cdf of the logarithm of the fatigue limit random 
variable,Xl|

̅̅̅̅̅̅̅̅ad,0
√

FY| ̅̅̅̅̅̅ad,0
√

(
y; x, ̅̅̅̅̅̅̅̅ad,0

√ )
cdf of the conditional fatigue life. 

F ̅̅̅̅̅̅̅̅
AFGA

√ cumulative distribution function of the Fine Granular Area 
random variable 

̅̅̅̅̅̅̅̅̅̅
AFGA

√

FY(y; x) cdf of the marginal fatigue life. 
FY|surf (y; x), FY|int(y; x), FXt (x) cdf of the fatigue life for surface, 

internal failures and of the transition stress. 
fY|X=x probability density function (pdf) of the fatigue life 

distribution. 

f ̅̅̅̅̅̅
Ad,0

√
( ̅̅̅̅̅̅̅̅ad,0
√ )

pdf of the LEVD. 

θ parameter to be estimated. 
θ̃ best fitting parameters. 
L[θ] Likelihood function. 
LEVD Largest Extreme Value Distribution 
LRCB Likelihood Ratio Confidence Bound. 
nd number of simulated datasets 
μXt

, σXt mean and standard deviation of the cdf of the transition 
stress. 

μY( • ) mean of the statistical distribution of the fatigue life 
μXl 

mean of the cdf of the fatigue limit 
pdf probability density function. 
PL
[
sa,α
]

Profile Likelihood function. 
R reliability. 
SIF Stress Intensity Factor 
sa,α α-th quantile of the fatigue strength at the investigated 

number of cycles to failure. 
σY , σXl standard deviation of the fatigue life and fatigue limit 
x logarithm of sa (applied stress amplitude). 
y* logarithm of the runout number of cycles. 
y logarithm of nf (number of cycles to failure). 
χ2(1; 1 − βth) (1 − βth)-th quantile of a Chi-square distribution with 1 

degree of freedom.  
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Fig. 1. general methodology for the assessment of the LRCB design curves of datasets with failures originating from defects: a) flow chart recalling the main steps of 
the procedure; b) examples of the Profile Likelihood function with respect to the quantile of the fatigue strength and estimated design curve. 
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subscript j refers to the j-th runout data (j = 1⋯. nr). In the following, 
the set of parameters maximizing Eq. (1), i.e., the best-fitting parame-
ters, is denoted with θ̃. The second step requires the estimation of the 
Profile Likelihood function, PL[ • ] for the investigated number of cycles 
to failures, according to Eq. (2): 

PL
[
sa,α
]
=

maxθ2

[
L
[
sa,α, θ2

] ]

L
[
θ̃
] ≥ e−

χ2(1;1− βth)
2 (2)  

being θ2 the set of the model parameters, according to [10], L
[
θ̃
]

the 

Likelihood function computed for θ̃, χ2(1;1 − βth) the (1 − βth)-th quan-
tile of a Chi-square distribution with 1 degree of freedom and sa,α is the 
α-th quantile of the fatigue strength at the investigated number of cycles 
to failure. Practically, by varying sa,α in a reasonable range, the PL

[
sa,α
]

function is built point by point. The sa,α values solving Eq. (2) are the 
lower and the upper bound of the (1 − βth)% Likelihood Ratio Confidence 
Interval for the investigated α quantile of the fatigue strength. However, 
since the lower bound of the confidence interval is to be assessed in the 
present work, the lower one-sided confidence bound is considered, i.e., 
1 − βth must be replaced with (2 • αC − 1), being αC the confidence level 
of interest [10]. According to Eq. (1) and [10], the Likelihood function 
must be expressed as a function of the quantile of the fatigue strength of 
interest, sa,α. This can be achieved by manipulating and rearranging the 
model for the statistical distribution of the fatigue life, as detailed in the 
following sections. The design curve is finally obtained by solving Eq. 
(2) for the range of y of interest. 

Fig. 1 helps clarifying the methodology followed for the estimation of 
the design curve with the LRCB: Fig. 1a is a flow chart recalling the main 
steps of the procedure developed for assessing the lower bound of the 
quantile of the fatigue strength. Fig. 1b shows an example of the Profile 
Likelihood function with respect to the quantile of the fatigue strength 
and a design curve for a dataset showing a linear decreasing trend. For 
further details on this procedure, the reader is referred to [10]. 

2.2. Linear decreasing trend: Conditional P-S-N curves 

The simplest statistical model proposed by the Authors for modelling 
the influence of defects on the fatigue response is the one reported in Eq. 
(3), to be used for datasets showing a linear decreasing trend in the S-N 
plot. According to Eq. (3), the cumulative distribution function (cdf) of 
the fatigue life, FY| ̅̅̅̅̅̅ad,0

√
(
y; x, ̅̅̅̅̅̅̅̅ad,0

√ )
, is conditioned to the logarithm of 

the applied stress amplitude (x = log10(sa)) and to the logarithm of the 
defect size, ̅̅̅̅̅̅̅̅ad,0

√ . The fatigue life is assumed to be Normally distributed, 
with constant standard deviation σY and mean μY

(
x, ̅̅̅̅̅̅̅̅ad,0
√ )

linearly 
dependent on x and on log10

( ̅̅̅̅̅̅̅̅ad,0
√ )

, according to [5,34]: 

FY| ̅̅̅̅̅ad,0
√

(
y; x, ̅̅̅̅̅̅̅ad,0

√ )
= Φ

(
y − μY

(
x, ̅̅̅̅̅̅̅ad,0
√ )

σY

)

= Φ
(

y −
(
cY + mY • log10(sa) + nY • log10

( ̅̅̅̅̅̅̅ad,0
√ ) )

σY

)

(3)  

The constant coefficients cY , mY and nY are estimated by applying the 
Maximum Likelihood Principle (Eq. (1)). By solving Eq. (3) for the α-th 
quantile of interest, the P-S-N curve conditioned to a defect with char-
acteristic size equal to ̅̅̅̅̅̅̅̅ad,0

√ can be estimated. 
To assess the design curve for the conditional linear P-S-N model, Eq. 

(3) should be rearranged to express the Profile Likelihood as a function 
of sa,α. For example, the constant coefficient cY can be obtained from the 
expression of the α-th quantile of the fatigue strength: 

cY = yα − Φ− 1(α) • σY − mY • log10
(
sa,α
)
− nY • log10

( ̅̅̅̅̅̅̅ad,0
√ )

(4)  

being yα = log10
(
nf ,α
)

the logarithm of the considered number of cycles 

to failure, nf ,α. By replacing Eq. (4) in Eq. (3), an expression for the fa-
tigue life distribution as a function of the α-th quantile of the fatigue 
strength, sa,α, can be obtained and exploited for the estimation of the 
design curve by solving Eq. (2) for different yα values, with θ2 =

(mY , nY , σY). 

2.3. Linear decreasing trend: Marginal P-S-N curves 

In [31–33], the Authors introduced the so-called “Marginal P-S-N 
curves”, i.e., the conditional P-S-N curves marginalized over the distri-
bution of the defect size, 

̅̅̅̅̅̅̅̅̅
Ad,0

√
, that is assumed to follow a Largest 

Extreme Value Distribution (LEVD), according to [5]. In this way, the 
dependence between the P-S-N curve and the defect size is eliminated, 
with the P-S-N curve “averaged” over the LEVD distribution. This model 
has been exploited for the analysis of the results of ultrasonic VHCF 
fatigue tests on specimens produced through traditional [31,33] and AM 
processes showing a linear decreasing trend [35] in the S-N plot. Eq.5 
reports the cdf of the marginal fatigue life model, FY(y; x): 

FY(y; x) =
∫∞

0

FY| ̅̅̅̅̅ad,0
√

(
y; x, ̅̅̅̅̅̅̅ad,0

√ )
f ̅̅̅̅̅̅

Ad,0
√

( ̅̅̅̅̅̅̅ad,0
√ )

• d ̅̅̅̅̅̅̅ad,0
√ (5)  

being f ̅̅̅̅̅̅
Ad,0

√
( ̅̅̅̅̅̅̅̅ad,0
√ )

the pdf of the random variable 
̅̅̅̅̅̅̅̅̅
Ad,0

√
. The set of 

unknown parameters for the marginal distribution of the fatigue life is 
the same involved in the conditional fatigue life, i.e., θ =

(cY , mY , nY σY). The location and scale parameters of the LEVD are 
estimated by analysing the fracture surfaces of specimens subjected to 
fatigue tests or through micro-CT inspections. In order to express the 
Profile Likelihood function as a function of sa,α, one of the unknown 
parameters, e.g., the cY parameter, should be expressed as a function of 
sa,α. However, differently from the conditional model (Eq. (3), the 
dependence between cY and sa,α cannot be expressed in a closed form. 
Accordingly, for given α, yα and sa,α values, the cY value can be estimated 
numerically by solving Eq. (5). The computed cY value can be inserted in 
Eq. (5) and then in Eq. (2), allowing for the estimation of the PL

[
sa,α
]

function. The steps described in Section 2.1 are then followed.

2.4. Linear decreasing trend and fatigue limit: Marginal P-S-N curves 

The marginal P-S-N curve can be exploited also for modelling the 
fatigue response of datasets showing a linear decreasing trend ending 
with a horizontal asymptote, i.e., with a fatigue limit. The model 
described in Section 2.3 should be modified by also considering the 
statistical distribution of the fatigue limit. Eq. (6) reports the cdf of the 
marginal fatigue life with a linear decreasing trend and a fatigue limit: 

FY(y; x) =
∫∞

0

FY| ̅̅̅̅̅ad,0
√

(
y; x, ̅̅̅̅̅̅̅ad,0

√ )
• FXl |

̅̅̅̅̅ad,0
√

(
x; ̅̅̅̅̅̅̅ad,0
√ )

• f ̅̅̅̅̅̅
Ad,0

√
( ̅̅̅̅̅̅̅ad,0
√ )

• d ̅̅̅̅̅̅̅ad,0
√ (6)  

being FXl |
̅̅̅̅̅̅ad,0

√
(
x; ̅̅̅̅̅̅̅̅ad,0
√ )

the cdf of the logarithm of the fatigue limit 
random variable, Xl|

̅̅̅̅̅̅̅̅ad,0
√ , which is assumed to follow a Normal distri-

bution with constant deviation σXl and mean μXl

( ̅̅̅̅̅̅̅̅ad,0
√ )

reported in Eq. 
(7): 

μXl

( ̅̅̅̅̅̅̅ad,0
√ )

=
csl • cth • (HV + 120)

( ̅̅̅̅̅̅̅ad,0
√ )0.5− αth

(7)  

being csl, cth and αth constant coefficients to be estimated from the 
experimental data and HV the material Vickers hardness. To summarize, 
the set of parameters to be estimated with the Maximum Likelihood 
Principle for this model is θ =

(
mY , cY , nY , σY , csl, cth, αth, σXl

)
. In order to 

compute the lower bound of the fatigue strength from Eq. (1), one of the 
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constant coefficients in the set of parameters included in θ should be 
expressed as a function of the α quantile of the fatigue strength. For 
example, the mY coefficient can be computed numerically for given α, yα 
and sa,α values. By replacing the computed mY value in Eq. (6) and then 
in Eq. (2), the Profile Likelihood as a function of sa,α is obtained. 
Accordingly, for this model, θ2 =

(
cY , nY , σY , csl, cth, αth, σXl

)
. 

2.5. Duplex P-S-N curves 

The last model is the one allowing to assess the P-S-N curves with 
failures in the LCF-VHCF life range and showing a duplex trend, ac-
cording to [23,36]. This is the most general model for the fatigue life, 
and it is characterized by a first slope in the LCF-HCF life region, with 
surface failures, a transition region with the curve assuming an almost 
horizontal trend, a second slope in the VHCF life region, with failures 
originating from defects, and a final asymptote, corresponding to the 
VHCF limit. In the VHCF life region, fatigue failures originate from de-
fects with the formation of the FGA, allowing for crack propagation from 
defects characterized by a Stress Intensity Factor (SIF) smaller than the 
SIF threshold. The stress-life relationship for datasets showing this trend 
is modelled by considering the statistical distribution of the transition 
stress, which discriminates between the surface and the internal failure 

mode, the statistical distribution of the fatigue life for surface failures in 
the LCF-HCF life region and the model for the marginal P-S-N curve with 
fatigue limit (Section 2.4). The cdf of the fatigue life modelling a duplex 
trend is reported in Eq. (8), according to [26]: 

FY(y; x) = FXt (x) • FY|surf (y; x)+ (1 − FXt (x) ) • FY|int(y; x) (8)  

being FY|int(y; x) the cdf of the fatigue life for internal failures in the 
VHCF region (corresponding to the cdf reported in Eq. (6), FY|surf (y; x)
the cdf of the fatigue life for surface failures in the LCF-HCF life region, 
and FXt (x) the cdf of the transition stress. FY|surf (y; x) is Normally 
distributed, with constant standard deviation σY,surf and mean μY,surf (x)
linearly dependent on x (μY,surf (x) = cY,surf + mY,surf • x, being cY,surf and 
mY,surf two constant coefficients). Similarly, FXt (x) is Normally distrib-
uted, with constant mean μXt 

and standard deviation σXt . Fig. 2 shows a 
representative duplex S-N curve, with the different life regions high-
lighted [37]. 

The model in Eq. (8) can properly describe the duplex trend, 
differentiating between the type of failure modes. The set of parameters 

to be estimated by applying the Maximum Likelihood Principle is θ =
(

μY,surf , σY,surf , μXt
, σXt , μY , σY , μXl

, σXl

)
. Following the procedure 

described in Sections 2.3 and 2.4, the μXt 
value is obtained numerically 

(solving Eq. (8) for given α, yα and sa,α values). By replacing the 
computed μXt 

value in Eq. (8) and then in Eq. (2), the Profile Likelihood 
as a function of sa,α is obtained, with θ2 =
(

μY,surf , σY,surf , σXt , μY , σY , μXl
, σXl

)
. The design curves are finally ob-

tained point by point for the investigated y, according to the procedure 
detailed in Section 2.1. 

3. Design curves with the bootstrap approach 

In this section, the second method developed for the estimation of 
the design curve of datasets failing from defects is described. With this 
approach, a large number of datasets is simulated starting from the 
statistical distribution of the fatigue life estimated from the experi-
mental data. For each simulated dataset, the P-S-N curves are estimated 
and thereafter exploited for the assessment of the design curve. In Sec-
tion 3.1, the procedure for assessing the design curve of datasets 
showing a linear decreasing trend (conditional and marginal) and a 

Fig. 2. example of duplex S-N curve, with the failure modes highlighted [37].  

Fig. 3. procedure for the estimation of the design curves (linear decreasing trend and linear decreasing trend and fatigue limit, marginal or conditional) with the 
bootstrap approach. 
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linear decreasing trend with a fatigue limit (marginal P-S-N curves) is 
described. Section 3.2, on the other hand, focuses on the steps followed 
to build the design curve with the bootstrap approach for datasets 
showing a duplex trend. 

3.1. Linear decreasing and linear decreasing trend with fatigue limit: 
Conditional and marginal model 

The flow chart shown in Fig. 3 summarizes the step to be followed for 
the estimation of the design curves with the bootstrap approach, for 
datasets showing a linear decreasing trend or a linear decreasing trend 
with a final asymptote. This procedure can be used regardless of the 
considered model, marginal or conditional, since the only difference is 
the statistical distribution considered for the parameter estimation and 
the simulation of random data, as detailed in the following. 

According to Fig. 3, the first step of the proposed procedure involves 
the estimation of the set unknown material parameters of the cdf of the 
fatigue life considered for fitting the experimental data. Secondly, a 
random defect size is simulated by considering the experimental LEVD, 
that is the LEVD whose parameters are estimated by considering the 
defects at the originating fatigue failures. Concurrently, a random fail-
ure probability is simulated. Starting from the simulated defect size and 
the random failure probability, for each experimental stress amplitude, 
the corresponding y is simulated from the cdf of the conditional fatigue 
life (Section 2.2) with θ = θ̃. For the linear decreasing trend, the model 
in Eq. (3) is to be considered. On the other hand, for the model with 
linear trend and fatigue limit, the model in Eq. (9) (conditional P-S-N 
curve describing a linear decreasing trend and the fatigue limit) must be 
considered: 

FY|int(y; x) = FY| ̅̅̅̅̅ad,0
√

(
y; x, ̅̅̅̅̅̅̅ad,0

√ )
• FXl |

̅̅̅̅̅ad,0
√

(
xl;

̅̅̅̅̅̅̅ad,0
√ )

(9) 

By repeating this procedure for the stress amplitudes of the original 
datasets, a dataset replicating the original one is simulated. It must be 
noted that the simulated y are limited to the runout number of cycles 
considered for the experimental tests. By iteratively repeating this 

operation, nd datasets are randomly simulated. For each of the nd 

datasets, the material parameters are estimated by applying the 
Maximum Likelihood Principle and the P-S-N curve at the investigated α 
quantile is obtained. For the marginal cdf model, the LEVD is moreover 
estimated for each nd dataset by considering the simulated defect sizes, 
thus accounting also for the variability of the defect size with the LEVD. 
Finally, the estimated fatigue strengths at each y are sorted in ascending 
order. The fatigue strength at the nd • (1 − αC/100) position corresponds 
to the lower bound fatigue strength, i.e., the design curve. 

3.2. Duplex P-S-N curves 

The procedure for the estimation of the duplex design curve with the 
bootstrap approach is more complex, since the random occurrence of 
surface and internal failures should be considered. Fig. 4 shows the flow 
chart of the procedure developed for the assessment of the bootstrap 
design curve. 

According to Fig. 4, the first step of the procedure involves the 
assessment of the Maximum Likelihood estimates from the experimental 
data. In this phase, the relationship between the square root of the FGA, 
̅̅̅̅̅̅̅̅̅̅aFGA

√ , the initial defect size, and y must be experimentally assessed 
[38]. A Normal distribution has been considered for the 

̅̅̅̅̅̅̅̅̅̅
AFGA

√
random 

variable, to model also its experimental variability, according to Eq. 
(10): 

F ̅̅̅̅̅̅̅
AFGA

√
( ̅̅̅̅̅̅̅̅̅

aFGA
√

; nf ,
̅̅̅̅̅̅̅ad,0

√ )
= Φ

( ̅̅̅̅̅̅̅̅̅aFGA
√

− μ ̅̅̅̅̅̅̅
AFGA

√
(
nf ,

̅̅̅̅̅̅̅ad,0
√ )

σ ̅̅̅̅̅̅̅
AFGA

√

)

(10)  

with μ ̅̅̅̅̅̅̅̅
AFGA

√
(
nf ,

̅̅̅̅̅̅̅̅ad,0
√ )

= c ̅̅̅̅̅̅̅̅AFGA
√ + m ̅̅̅̅̅̅̅̅

AFGA
√ • log10

(
nf
)
+

n ̅̅̅̅̅̅̅̅
AFGA

√ • log10
( ̅̅̅̅̅̅̅̅ad,0
√ )

, being c ̅̅̅̅̅̅̅̅AFGA
√ , m ̅̅̅̅̅̅̅̅

AFGA
√ and n ̅̅̅̅̅̅̅̅

AFGA
√ material parame-

ters to be estimated from the experimental data, and σ ̅̅̅̅̅̅̅̅
AFGA

√ corre-
sponding to the standard deviation. These unknown parameters are 
estimated through a multiple linear regression. Thereafter, a random 
failure probability and a random defect size, starting from the experi-
mental LEVD, are simulated. By considering the stress amplitude levels 

Fig. 4. procedure for the estimation of the duplex design curves with the bootstrap approach.  
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of failures originating from defects, the random y for each internal 
failure is simulated according to the conditional model reported in Eq. 
(9). 

The fatigue life for stress amplitudes inducing surface failures is, on 
the other hand, simulated starting from the cdf of the fatigue life for 
surface failures and by considering simulated random surface failure 
probabilities. The simulated fatigue life is limited to the experimental 
runout number of cycles to failure. 

By combining the applied stress amplitude and the simulated fatigue 
life for surface and internal failures, nd datasets replicating the experi-
mental one are simulated. According to [31], the relationship between 
the SIF associated with the FGA and the FGA size should be estimated for 
modelling the crack nucleation when the FGA forms and assessing the 
fatigue limit distribution. For each simulated dataset, this dependence is 
obtained by considering the ̅̅̅̅̅̅̅̅̅̅aFGA

√ values estimated with Eq. (10) for the 
simulated defect sizes and the experimental c ̅̅̅̅̅̅̅̅AFGA

√ , m ̅̅̅̅̅̅̅̅
AFGA

√ , n ̅̅̅̅̅̅̅̅
AFGA

√ and 
σ ̅̅̅̅̅̅̅̅

AFGA
√ . Thereafter, the unknown parameters for each simulated dataset 

can be obtained by applying the Maximum Likelihood Principle. Finally, 
the same steps described in Section 3.2 are followed. In particular, the P- 
S-N curves at the investigated α quantile are obtained for the simulated 
datasets and the fatigue strengths at each y are sorted in ascending order. 
The fatigue strengths at the nd • (1 − αC/100) position are the lower 
bound fatigue strengths, i.e., the P-S-N design curve. 

Fig. 5 shows an example of nd = 1000 datasets estimated for the 
duplex model, whereas Fig. 5b shows the estimated P-S-N curve for each 
simulated dataset, together with the design curve (green curve). 

4. Design curve: Experimental validation 

In this section, the methodologies described in Section 2 and Section 
3 for the estimation of the design curve from datasets with failures 
originating from defects are validated on experimental data obtained by 
the Authors or on literature datasets. The linear model (conditional and 
marginal) has been validated on AM AlSi10Mg data obtained by the 
Authors (Sections 4.1 and 4.2, respectively). The marginal P-S-N curve 
describing a linear trend ending with an asymptote is validated with the 
experimental data in [21] (Section 4.3). Finally, the experimental data 
for validating the design P-S-N curves with a duplex trend are obtained 
by combining literature data (in the LCF-HCF life regions, with surface 
failures) and experimental data obtained by the Authors, in the VHCF 
life region (Section 4.4). The validity of the two proposed approaches, 
their strength and weaknesses are finally discussed in Section 4.5. The 
design curve is assumed as the R90C90 P-S-N curves, according to the 
industrial practice [4]. 

The literature data considered for the validation have been digitized 
with the software ENGAUGE® by considering the S-N plot reported in 
the original paper, if not available in tabular form. Digitization error, 
even if limited, cannot be excluded or eliminated. However, it must be 
noted that the aim of this work is to qualitatively validate the proposed 
models and compare the design curves obtained with different ap-
proaches, thus digitization errors are not expected to have a significant 
influence on this analysis. 

Fig. 5. Bootstrap method applied to the duplex P-S-N curve model: a) simulated datasets; b) estimated P-S-N curves for each simulated dataset and design curve.  

Fig. 6. Validation of the model for the conditional P-S-N design curves by considering a defect with ̅̅̅̅̅̅̅̅ad,0
√

= 195μm: a) median, 0.1-th and 0.9-th quantiles P-S-N 
curves; b) 0.1-th and design P-S-N curves estimated with the LRCB and the bootstrap approach. 
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4.1. Conditional linear decreasing trend: Validation on AlSi10Mg data 

The model for the conditional P-S-N design curve has been validated 
on experimental data obtained by the Authors [35] by testing AlSi10Mg 
specimens with large risk-volume [5], V90 = 2300mm3, and produced 
through a Selective Laser Melting (SLM) process. The specimens have 
been built in horizontal direction and tested after mechanical polishing 
and without subsequent heat treatment. Ultrasonic fatigue ten-
sion–compression tests have been carried out up to 109 cycles (runout 
number of cycles to failure). The defects at the origin of the fatigue 
failures have been observed on the fracture surfaces and their charac-
teristic size has been assessed according to the indications provided in 
[5,21]. The conditional P-S-N curves have been estimated for the 
second-largest defect found experimentally and characterized by 
̅̅̅̅̅̅̅̅ad,0

√
= 195μm. This defect has induced a failure at an applied stress 

amplitude level (failure at about 9 • 108 cycles at 60MPa), significantly 
smaller than that of the other tested specimens (all failures above 
70MPa). Fig. 6a shows the conditional P-S-N curves (median, 0.1-th and 
0.9-th) estimated by considering the second largest defect, whereas 
Fig. 6b shows the 0.1-th quantile P-S-N curve and the design curves 
estimated with the LRCB and with the bootstrap approach. 

According to Fig. 6a, the failure originating from the investigated 
defect is not included within the 0.9-th and the 0.1-th P-S-N curves. The 
0.1-th quantile curve is non-conservatively above this anomalous fail-
ure. A P-S-N quantile curve with significantly higher reliability (e.g., 
0.01-th) should be therefore considered to ensure an appropriate safety 
margin. On the other hand, the R90C90 P-S-N curves estimated with the 
LRCB and the bootstrap method are below this experimental failure, 

showing the same trend and with limited differences. This analysis 
proves the importance of modelling the lower confidence bound of a 
specific quantile P-S-N curve, especially for design purposes and when 
reliable safety margins with respect to failures are required. Indeed, 
failures at unexpected low-stress amplitudes may occur when defects 
drive the fatigue response and high-reliability quantiles may not meet 
the safety standard requirement, depending on the application. 

4.2. Marginal linear decreasing trend: Validation on AlSi10Mg data 

The model for the design marginal P-S-N curves for datasets showing 
a linear decreasing trend has been validated on the AlSi10Mg data ob-
tained by the Authors [35] (horizontal mechanically polished specimens 
with large risk-volume and tests up to 109 cycles). Fig. 7a shows the 
median, the 0.1-th and the 0.9-th P-S-N curves, together with the 
experimental data. Fig. 7b shows the 0.1-th P-S-N curve and the R90C90 
P-S-N curves estimated with LRCB and with the bootstrap approach. 

According to Fig. 7a, the estimated marginal P-S-N curves are in good 
agreement with the experimental data, with the median curve almost 
equally subdividing the experimental failures. The 0.1-th P-S-N curve is 
below all the experimental failures, except for the experimental failure 
showing an anomalous behaviour and failing at low-stress amplitude 
due to a large defect (Section 4.1). The large experimental scatter and 
the possible occurrence of anomalous failures are, on the other hand, 
accounted for by the design P-S-N curves. Indeed, the design curves 
estimated with LRCB and bootstrap approaches are conservatively 
below all the experimental failures and show similar trends. The boot-
strap design curve is however more conservative and below the LRCB 

Fig. 7. validation of the model for marginal P-S-N design curves for datasets showing a linear decreasing trend: a) median, 0.1-th and 0.9-th quantile P-S-N curves; b) 
0.1-th and design P-S-N curves estimated with the LRCB and the bootstrap approach. 

Fig. 8. validation of the model for marginal P-S-N design curves for datasets showing a linear decreasing trend and a fatigue limit: a) median, 0.1-th and 0.9-th 
quantiles P-S-N curves; b) 0.1-th and design P-S-N curves estimated with the LRCB and the bootstrap approach. 
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design curves. By comparing Fig. 6b and 7b, the marginal design curves 
are more conservative, since they provide a larger safety margin with 
respect to the anomalous failure at 60MPa. 

The conditional and the marginal P-S-N design curves have proven to 
be effectively used for a reliable fatigue design, ensuring an appropriate 
safety margin with respect to failures, even if originating from unex-
pected large defects. 

4.3. Marginal linear decreasing trend and fatigue limit: Validation on 
Ti6Al4V data 

The marginal P-S-N curve model describing a linear decreasing trend 
and a fatigue limit is validated in this section. The experimental data in 
[21], obtained by testing Ti6Al4V specimens produced through a Direct 
Metal Laser Sintering (DMLS) process, have been considered for the 
validation. In [21], rotating bending tests have been carried out up to 
107 cycles tests on specimens built in vertical direction, mechanically 
polished with fine-grain sandpaper and subjected after the DMLS pro-
cess to a stress relief heat treatment. Fig. 8a shows the median, the 0.1-th 
and the 0.9-th P-S-N curves, together with the experimental data. Fig. 8b 
shows the 0.1-th P-S-N curve and the R90C90 P-S-N curves estimated 
with the LRCB and with the bootstrap approach. 

According to Fig. 8a, the marginal model describing a linear 
decreasing trend and fatigue limit is in agreement with the experimental 
data, with the median P-S-N curve being above about 50% of the 
experimental failures. The experimental scatter tends to increase with 
the number of cycles to failure, with the stress amplitude difference 
between the 0.1-th and the 0.9-th being larger at 107 cycles than at 104 

cycles. This can be ascribed to the different failure numerosity in the 
investigated life regions, with failures mainly concentrated below 105 

cycles and only one failure above 106 cycles. Two failures are below the 
0.1-th quantile P-S-N curve. According to Fig. 8b, the estimated LRCB 
and the bootstrap design curves are below the 0.1-th P-S-N curve, as 
expected. All experimental failures, except one, are below the design 
curves estimated with the two investigated approaches. Accordingly, for 
this dataset even the R90C90 design curve does not ensure the proper 
safety level and larger reliability, or confidence levels should be 
considered to account for the experimental variability caused by defects. 
The LRCB and the bootstrap design curves show the same trend and are 
very close in the finite life region where the data show a linear 
decreasing trend. On the other hand, the difference increases in the 
infinite life region, with the fatigue limit estimated with LRCB being 
more conservative. The larger distance between design curves and 
failures in the infinite life region is due to the limited amount of data in 
this life range, with the design curves moving downward to account for 
the estimation uncertainty. 

4.4. Duplex P-S-N curves: Validation on H13 data 

The duplex P-S-N design curve model has been finally validated on 
datasets obtained by testing an H13 tool steel. For the LCF-HCF life re-
gion, the experimental data in [39], with failures originating from the 
specimen surface, have been considered. On the other hand, the 
experimental data collected by the Authors in [40] with ultrasonic fa-
tigue tests have been considered for the VHCF life region. Within this life 
range, all fatigue failures originated from internal defects, mainly 
spherical inclusions, surrounded by the FGA. The initial defect and the 
FGA have been observed and measured with the Scanning Electron 
Microscope (SEM). It is worth noting that datasets obtained by testing 
specimens made of the same material but with different characteristics 
have been considered for this experimental validation. However, the 
objective of the present section is the validation of the duplex P-S-N 
curve model, rather than providing the best fitting of experimental data 
obtained through tests in controlled conditions. Fig. 9a shows the 
experimental data, together with the estimated P-S-N curves (0.1-th, 
median and 0.9-th). Fig. 9b plots the 0.1-th quantile P-S-N curve and the 
design curves estimated with the LRCB and the bootstrap approaches. 

According to Fig. 9a, the proposed model for the duplex P-S-N curve 
is in agreement with the experimental data, with the median curve 
almost equally subdividing surface and internal failures. The 0.1-th 
quantile P-S-N curve is below the experimental failures, apart from 
one surface failure and one internal failure. The LRCB design curve is 
below the experimental failures, being close to the experimental data in 
the LCF-HCF life region and farther from failures in the VHCF region. 
Moreover, it is close to the 0.1-th P-S-N curve between 108-109 cycles, 
since failures are significantly above the 0.1-th P-S-N curve. Above 1010 

cycles, the curve approaches an asymptotic trend, reaching the 
maximum distance from the 0.1-th P-S-N curve. The bootstrap design 
curve shows a different trend. In the LCF-HCF life region, the bootstrap 
design curve overlaps the LRCB design curve and is below all experi-
mental surface failures, as expected. On the other hand, it is close to the 
0.1-th quantile P-S-N curve in the region where the transition between 
surface and internal failures occurs, becoming finally very conservative 
in the VHCF life region and not approaching an asymptotic trend for the 
plotted life range of interest, with a large distance from the LRCB design 
curve. The trend in the “transition region” can be explained by consid-
ering the procedure for simulating the datasets. Indeed, for the analyzed 
dataset, the number of experimental data in the “transition region” is 
limited and the same occurs for the simulated datasets. Accordingly, the 
standard deviations of the transition stress distribution tend to be small 
for the majority of simulated datasets, with possible less conservative 
trends for the design curve in this life region. However, the design curve 
estimated with the bootstrap approach is below all experimental fail-
ures, as expected. 

Fig. 9. validation of the duplex P-S-N design curves for datasets showing a duplex in the LCF-VHCF life range: a) median, 0.1-th and 0.9-th quantile P-S-N curves; b) 
0.1-th and design P-S-N curves estimated with the LRCB and the bootstrap approach. 
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In general, it can be concluded that both approaches are effective, 
with the LRCB design curve properly following and adapting to the P-S- 
N curve trend and the bootstrap design curve being less conservative in 
the transition region and excessively conservative in the VHCF life 
region. 

5. Discussion 

The LRCB and bootstrap approaches have been applied to estimate 
the design curves of stress-life models developed by the Authors. The 
procedure for estimating the design curve with the LRCB has been 
proven effective, with the estimated design curves in good agreement 
with experimental failures and runout data, even for the dataset showing 
a duplex trend. The estimated design curves followed the trend of the 
quantile P-S-N curve of interest, ensuring a reliable safety margin, as 
expected, and being conservative also for failures originating from un-
expected large defects (Figs. 6 and 7). The main drawback in the 
application of the proposed approach is its implementation complexity. 
Indeed, an iterative process based on repeated optimizations is required 
to solve Eq. (2) and to obtain the Profile Likelihood in function of sa,α. 
Moreover, optimization algorithms strongly depend on the initial guess 
of the unknown parameters, i.e., θ2, which, if not properly chosen, may 
provide non-physical estimations of the Profile Likelihood values, 
especially for the more complicated models (i.e., linear with the fatigue 
limit and duplex). Accordingly, for each dataset, the initial unknown 
parameters and the optimization parameters (e.g., type of algorithms, 
number of iterations, tolerance limits) should be reliably chosen, for 
example with a trial-and-error strategy, to obtain feasible solutions and 
reliable estimations. 

The methodology based on the bootstrap approach is simpler than 
that based on the LRCB, since in the first phase random datasets are 
simulated and in the second phase the quantile of interest P-S-N curve is 
estimated for each simulated dataset. Differently from [10], in presence 
of defects at the origin of the fatigue failure, a random defect size is also 
simulated starting from the experimental LEVD of 

̅̅̅̅̅̅̅̅̅
Ad,0

√
. Accordingly, 

the variability associated to the defect size is also modelled and 
accounted for. Furthermore, when fatigue failures originate from defects 
with FGA formation in the VHCF life region, the experimental depen-
dence between the number of cycles, the FGA size and the initial defect 
has been also experimentally assessed and considered for each simulated 
dataset, taking into account also the weakening mechanisms allowing 
for the crack initiation in the VHCF life region. With this approach, no 
assumptions are to be made on the characteristics of confidence in-
tervals of the investigated quantile (e.g., Normal assumption). The 
fundamental step for the application of this approach is a proper esti-
mation of the initial parameters θ̃ of the fatigue life distribution. This 
means that the fatigue life distribution estimated from the experimental 
sample should be as close as possible to the statistical distribution of the 
original population. However, this is not ensured when datasets with a 
limited number of data are available. Bias in the original dataset can 
lead to large errors in the estimation of the P-S-N curves and, accord-
ingly, of the design curves. Moreover, depending on the distribution of 
failures in the original dataset, the estimated design curve can be more 
or less conservative in different life regions, as in the duplex model of 
Section 4.4 (Fig. 9b). The easier implementation procedure is compen-
sated by the larger computational time, if compared to that required for 
the LRCB design curve. 

It must be noted that in the present research a log-normal distribu-
tion for the fatigue life has been considered. However, the proposed 
approach is general and not dependent on the statistical distribution 
assumed for the fatigue life. Accordingly, different statistical distribu-
tions (e.g., the Weibull distribution) can be also reliably employed. 

In general, it can be concluded that the proposed approaches are 
effective and can be employed for the assessment of the design curves for 
datasets with failures originating from defects. However, differently 

from the methodologies which do not model the defect influence, the 
analysis of the experimental results is more complex. The defect at the 
origin of the fatigue failures should be observed with the SEM to mea-
sure its equivalent size. In addition, for failures in the VHCF life region, 
the FGA size should be also measured. Accounting for the defect size 
ensures a reliable assessment of the source of the experimental vari-
ability and can guarantee a reliable safety margin also with respect to 
anomalous failures from rare defects (Figs. 6 and 7). The experimental 
validation has also shown that, for datasets with failures originating 
from defects, the R90C90 design curve, which is commonly considered 
for industrial applications, may not ensure an appropriate safety margin, 
suggesting that higher reliability and confidence levels are necessary. 
However, as suggested in the International Standards (e.g., ASTM E739 
– 10) the reliability and confidence levels should not exceed the 95% 
value. It must be noted that the Weibull distribution can be also 
considered for the distribution of the fatigue life, according to the ISO 
12107:2012, with literature works [15,16,41] proving that it should be 
used when the lower bound of the design curve is estimated. However, 
for the investigated datasets with failures originating from defects, the 
log-normal distribution has been preferred for its versatility, simplicity, 
and fitting capabilities and has proven to be reliably employed also for 
the lower bound of the P-S-N curves [10,37,42], with a thorough vali-
dation on experimental data in different testing conditions and life 
ranges. Accordingly, the choice of the log-normal distribution is not 
considered critical, even for the estimation of the lower bound of the P- 
S-N curves at high reliability and confidence levels, and the assumption 
of a Weibull distribution is not expected to provide significantly 
different results. 

6. Conclusions 

In the present paper, two approaches for the estimation of the fatigue 
design P-S-N curves of datasets failing from defects have been proposed. 
Indeed, manufacturing defects strongly affect the fatigue response of 
parts produced through specific manufacturing processes, e.g., through 
Additive Manufacturing processes, or in a specific fatigue life region, 
like the Very High Cycle Fatigue (VHCF) life range. The experimental 
datasets with fatigue failures originated from manufacturing and inter-
nal defects generally exhibit large scatter, which must be properly 
accounted for to ensure the structural integrity of components in service 
conditions. Accordingly, an approach based on the Likelihood Ratio 
Confidence Bound (LRCB) and one based on the bootstrap method have 
been proposed to model the design P-S-N curves and have been validated 
on literature data. The square root of the area of the defect has been 
considered as the characteristic defect size. 

The following conclusions can be drawn:  

1. Both approaches have been proven to model the influence of defects 
in the S-N plot, with the design curves ensuring a safety margin with 
respect to failures.  

2. The LRCB approach has been found to be flexible and to follow the P- 
S-N curve trend for all the investigated models, even for the duplex 
model, with the safety margin depending on the dataset numerosity 
and its scatter. On the other hand, its implementation is rather 
complex, requiring an iterative procedure based on repeated opti-
mizations for each considered number of cycles to failure.  

3. The bootstrap approach is less complex, even if the random defect 
size should be also simulated by considering the Large Extreme value 
Distribution (LEVD) followed by the defect size random variable. The 
simulation and the following estimation phase, on the other, can be 
computationally expensive, depending on the model complexity. 
Moreover, depending on the distribution of failures in the original 
dataset, the estimated design curve can be more or less conservative 
in different life regions, as highlighted in the duplex model close to 
the transition stress. 
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4. The R90C90 design curve (reliability and confidence levels equal to 
90%), which is generally employed in industrial practice, may not be 

sufficient to ensure a reliable safety margin in datasets with failures 
originating from defects, characterized by large variability. Larger 
reliability and confidence levels, not exceeding the 95% levels, ac-
cording to the International Standards, are therefore suggested for a 
reliable design of components for which defects control the fatigue 
response. 
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Appendix 1 

The experimental data in Section 4.1, 4.2 are available in Tabular form in [43]. The experimental data in Section 4.3 are available in tabular form 
in [21]. The experimental data considered for the validation of th duplex model are available in Table A1 (runout number of cycles to failure 1010 

cycles). [39,40]. 
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