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A B S T R A C T

The capability of cropping system models of depicting the crop and soil-related processes implies a high number
of parameters. The aim of this work was to detect the key parameters, and the associated processes, of the
ARMOSA cropping system model, considering two target outputs, crop yield and nitrogen leaching. A global
sensitivity analysis (SA) was carried out in two steps: (1) the Morris method considering the whole set of
parameters; (2) Sobol analysis was applied to the Morris outcome. The simulation was run on winter wheat
in four soil types in Marchfeld (Austria, 2010–2018). Parameters affecting crop yield was the critical nitrogen
concentration, the potential CO2 assimilation rate, and the drought sensitivity parameter. Nitrogen leaching
was mainly affected by the decomposition of litter and the early aboveground biomass growth. The parameters
ranking did not appreciably change across soil types. This study offers a quick and replicable methodology for
model calibration.
1. Introduction

Adequate management and preservation of natural resources is a
current challenge in agriculture, also due to the impact of climate
change. The need to maintain good yield productions complicates
this challenge since agriculture is regarded as the main driver of
environmental degradation in Europe (Chukalla et al., 2018; Young
et al., 2021; Bancheri et al., 2022). Indeed, agricultural intensification
is often regarded as a key driver of global warming (Wezel et al.,
2015), along with biodiversity and ecosystem services loss (Díaz et al.,
2019). To tackle this issue, the scientific community has been study-
ing and developing strategies to support multiple ecosystem services,
among which the yield production, soil fertility and water quality
improvement (Schulte et al., 2014; Gagic et al., 2017; Meena et al.,
2020; Montanarella and Panagos, 2021). With this regard, site-specific
strategies have been applied in experimental field trials to test the effect
of single practices, or a combination of them, on a restricted set of
variables, in short, and long-term perspectives.

In this context, mathematical models that depict cropping systems
are powerful instruments to evaluate the long-time effect of agronomic
management strategies on different crops, soil types, and pedoclimatic
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conditions, without performing costly and time-consuming field tests.
Therefore, cropping system models allow for overcoming the limited
temporal and spatial conditions of the experimental trials (Deytieux
et al., 2016). Given the great potential of the mathematical models,
depicting the effect of the pedoclimatic conditions and of the agri-
cultural practices on target variables is strictly required for a reliable
representation of the cropping system (Keating and Thorburn, 2018).
While most of the cropping systems models adequately simulate crop
growth, fertilization, and irrigation (e.g., STICS (Brisson et al., 2009),
APSIM (Holzworth et al., 2014) and EPIC (Izaurralde et al., 2006)), the
effect of tillage on soil state variables is rarely addressed and, when
present, it is not linked to carbon and nitrogen cycling. Such an aspect
is pivotal when the aim of the modeling analysis is the quantification of
the effect of contrasting farming systems (e.g., conventional vs conser-
vation agriculture) on soil and crop-related variables (Valkama et al.,
2020). To do that, it is strictly required to mathematically describe
the effects of soil tillage (e.g., ploughing and sod seeding) in detail,
especially when it interacts with the management of the crop residues.

ARMOSA (Analysis of cRopping systems for Management Optimiza-
tion and Sustainable Agriculture) is a process-based model that has
vailable online 22 December 2023
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been developed to quantify the effects of crop management practices
on soil nitrogen and carbon cycles, on nitrogen leaching, and on soil
carbon sequestration (Perego et al., 2013). ARMOSA has the peculiarity
to dynamically quantify the effect of tillage and soil organic carbon
evolution, on the soil water retention curve and the bulk density, for a
consistent representation of the field practices; this aspect enables the
model application in decision support systems. The model simulates
crop growth and development by including soil water dynamics, car-
bon and nitrogen cycling and evapotranspiration. These complex and
interconnected processes, which take place in the soil-crop–atmosphere
continuum, are described at such a detailed level of representation that
ARMOSA relies on a large number of parameters (approximately 100).

The calibration of the ARMOSA model was performed in many
applications by considering contrasting pedoclimatic conditions and
cropping systems with specific purposes, i.e., the quantification of
nitrogen leaching (Groenendijk et al., 2014; Perego et al., 2014), net
ecosystem exchange (Sandor et al., 2017), soil organic carbon evo-
lution (Valkama et al., 2020), and crop yield (Pirttioja et al., 2015;
Fronzek et al., 2018; Puig-Sirera et al., 2022; Kimball et al., 2023).
To set the values of the model parameters for a given situation with
a selected purpose, information and data are usually retrieved from
specific experiments which are time and money-consuming. Moreover,
an important aspect is that the number of parameters considered in a
robust calibration must be low to ensure valid values also for further
model applications (Confalonieri et al., 2009). In fact, optimizing a high
number of parameters might well fit the data of the calibration dataset,
but often fail to represent other datasets (Seidel et al., 2018), typically
the one used in the validation step. It is therefore useful to identify
strategies to help users to apply the model in different situations.

In this perspective, an effective strategy is based on the evaluation
of the influence of each input parameter, and possibly of combinations
of them, on the target state variables of interest. In fact, this indicates
which are the most important input parameters that therefore require
an accurate estimate, and which are almost not influential ones that
can be thus neglected in the calibration phase (Razavi et al., 2021).
Moreover, it provides useful information about the formalism used to
model the cropping system: i.e., it highlights which parameter values
change according to crop or soil type, and which are instead generally
valid being characteristic of physical, chemical or biological processes.
Such a knowledge of the model is therefore crucial to decide either
which time and money-consuming data collections are needed, or how
the calibration phase can be optimized according to the purpose of the
study.

With this regard, global sensitivity analysis methods (Iooss and
Lemaître, 2014; Saltelli et al., 2004; Saltelli, 2008) are developed to
estimate the influence of input parameters on the state variable of
interest, and thus identify the most influencing ones, by considering
all the admissible values of the input parameters and combinations of
them (Richter et al., 2010; Saltelli et al., 2019). In other words, global
sensitivity analysis methods allow the understanding of the model be-
havior (Confalonieri et al., 2012) spotting the key parameters for which
admissible range results in the highest variability of the output (Monod
et al., 2006; Diel and Franko, 2020). In this context, this work aimed
to gain insight into the ARMOSA model, to understand the parameter
effects and the possible interactions between parameters. Specifically,
a global sensitivity analysis of the model was carried out to identify
the key parameters (and the relative processes) affecting the variability
of the mean annual yield and the average annual nitrogen leaching at
1m depth, being good indicators of productivity and environmental
mpact, respectively. The analysis was performed on winter wheat
Triticum aestivum L.), in four soil types in an intensive agriculture area
Marchfeld, eastern Austria), from 2010 to 2018. Dealing with a large
umber of input parameters, the sensitivity analysis was conducted
y following a two-step approach. The screening method of Morris
with the improvement proposed in Campolongo et al. (2007)) was
2

irst applied to obtain a ranking of the majority of parameters without
extensive computations (Paleari et al., 2021). Then, as already done
in DeJonge et al. (2012), Confalonieri et al. (2013), Bregaglio et al.
(2020) and Xiang et al. (2022), the more accurate and CPU-expensive
Sobol method (Sobol, 2001; Homma and Saltelli, 1996) was applied
to the top parameters resulting from the first screening. In addition,
the top-down correlation coefficient between the parameter rankings
returned by the Morris method was used (i) to verify that the two target
outputs are mainly regulated by different parameters/processes, and
(ii) to evaluate the contribution of the pedological conditions on each
output target.

2. Material and methods

In this section, the ARMOSA model and the case study of our interest
are described, then the statistical methods used to perform our analysis
is stated.

2.1. The ARMOSA model

The ARMOSA model (Perego et al., 2013; Valkama et al., 2020)
is a process-based model that depicts the cropping system with a
modular approach. This enables the progressive inclusion of new mod-
ules (e.g., intercropping, mulch decomposition on the soil surface,
agroforestry) to enrich the model. The description of the complex
system implies the simulation of many processes whose algorithms
include over 100 parameters. The three main modules daily simu-
late the water dynamics, the crop growth and development, and the
carbon and nitrogen cycling. The water dynamic is simulated with
the bucket approach with travel time (Savabi and Williams, 1995).
In this respect, the soil characteristics required for each pedological
horizon are sand, silt and clay percentages; bulk density; soil organic
carbon and nitrogen contents in stable, litter, and manure fractions;
and van Genuchten equation parameters (which can be either set a
priori or internally derived from HYPRES Pedotransfer Function). In
addition, the soil horizons are further split into 5 cm layers for the daily
estimation of the soil-related variables. Crop growth and development
are implemented according to the WOFOST approach (Van Diepen
et al., 1989) but including two improvements presented in Valkama
et al. (2020): i.e., (i) the canopy is divided into 5 layers with a
different light interception, and (ii) the phenology is described with the
BBCH scale (Biologische Bundesanstalt, Bundessortenamt and Chemis-
che Industrie). This allows a detailed simulation of the development
(i.e., crop phenology) and the thermal time required to reach the
stages. The reference evapotranspiration (ET0) can be estimated using
the Penman–Monteith, Priestley–Taylor, or Hargreaves equation. Crop
evapotranspiration (ETc) is estimated using the FAO 56 approach (Allen
et al., 1998). Actual evapotranspiration (ETa) is calculated as the
product of ET0, crop coefficient at a given theological stage and the
water stress factor (Sinclair et al., 1987), which also directly influences
crop-related processes such as carbohydrate production and photosyn-
thate partitioning. Carbon and nitrogen cycling is simulated following
the approach of the SOILN model (Johnsson et al., 1987) with the
difference that the organic and inorganic input of nitrogen are as-
sumed independent by considering distinct decomposition rates and
fates. This applies also to the application of organic matter inputs
(e.g., slurry, dung, compost, green manure, crop residue), which are
described by the carbon and nitrogen contents, decomposition rates and
burial depths. Regarding the drivers affecting the soil processes, tillage
operations affect mineralization (Rádics et al., 2014), hydrological
parameters and bulk density and are simulated as a function of tillage
depth, timing, degree of soil layers mixing and perturbation. This was
implemented following the WEPP model (Flanagan et al., 2007). The
mixing of two or more consecutive soil layers (e.g., the first two in the
topsoil, involved in the tillage operation) determines pool mixing and
the recalculation of pools (e.g. mass or volumetric variables, such as
C-litter and soil water content). Bulk density is daily computed based

on tillage and the soil organic carbon content.
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Fig. 1. Soil units and the associated representative soil types (triangles) in the Marchfeld area.
Table 1
Main characteristics, USDA soil classification, classification according to the World Reference Base for Soil Resources (WRB, https://www.isric.org/explore/wrb, last accessed on
28 November 2023) and properties of the four soil types considered in the sensitivity analysis.

USDA WRB Horizon Depth Clay Silt Sand Bulk density O. M.
classification classification (cm) (%) (%) (%) ( gcm−3) (%)

loam Stagnic Ap 0–35 17 45 38 1.44 2.4
Phaeozem A 35–55 15 42 43 1.55 0.7

A/Cg 55–75 17 35 48 1.59 0.2
Cg 75–200 11 39 50 1.62 0.1

clay-loam Stagnic Ap 0–25 33 49 18 1.22 5.8
Phaeozem A 25–55 37 46 17 1.28 3.6
Clayey C1k 55–90 23 47 30 1.52 0.4

C2g 90–150 1 14 85 1.70 0.2

sandy-loam Chernozem Ap 0–20 13 28 59 1.47 2.0
A 20–60 13 30 57 1.48 2.0
C 60–200 12 29 59 1.64 0.8

silt-loam Anthrosol Ap 0–30 20 67 13 1.45 2.2
A 30–200 20 61 19 1.46 1.8
Input parameters and initialization. Besides daily weather data and soil
parameters (texture, bulk density, SOC), with the option to insert the
observed values of the water retention curve parameters, the model
setting requires information related to (i) the cropping system, i.e., crop
sequences, sowing and harvesting dates, residues management; (ii) the
irrigation, i.e., water amount, timing, possibly automatic irrigation as
a function of water depletion threshold; (iii) the nitrogen fertilization,
i.e., mineral or organic, amount, timing, application depth, carbon
over nitrogen ratio, ammonia nitrogen over total nitrogen; and (iv) the
tillage operations, i.e., depth, timing, degree of soil layers mixing and
perturbation.

Output state variables. The main model outputs are above-ground
biomass, grain yield, gross primary production, nitrogen crop recovery,
soil water content, water percolation, nitrogen leaching, ammonia
volatilization, carbon dioxide as the result of soil respiration, nitrous
oxide emissions, and soil organic carbon in the three pools (i.e., stable,
litter, and manure). Outputs are simulated on a daily basis. Moreover,
soil-related outputs are computed by the model for all the soil 5 cm
layers.

2.2. Case study

The global sensitivity analysis was carried out to identify the most
important parameters (and thus the relative processes) affecting the
variability of the mean annual yield of winter wheat, i.e., Triticum
aestivum L., and of the average annual nitrogen leaching at 1m depth,
3

in the region of Marchfeld in Austria, i.e., an area of about 1000 km2,
located at the North-Eastern border of Vienna (Lat. 48.20 ◦N, Long.
16.72 ◦E), see Fig. 1. This area is one of the primary sources of
agricultural products in Austria, and winter wheat is one of the main
cultivated crops in Europe.

The considered region is characterized by a flat topography, an
altitude within 160−180m a.s.l. In particular, the dominant soil types
in Marchfeld are Chernozem and Para-Chernozem, Stagnic Phaeozem,
Fluvisol and Anthrosol, characterized by humus-rich surface horizons
and sandy deep horizons, followed by fluvial gravel from the former
river bed of the Danube. In this respect, our analysis was performed on
four distinct soils largely representative of the 205 soil mapping units
recognized in the area, as shown in Fig. 1. The main characteristics
and properties of these four selected soils are reported in Table 1.
In particular, the main differences between the two selected Stagnic
Phaeozem soils are due to the clay content and, for clarity, their
classification according to USDA is added. Therefore, from now on, the
four considered soils would be named loam, clay-loam, sandy-loam and
silt-loam soils, as reported in Table 1.

Concerning the meteorological data, the Marchfeld region is char-
acterized by a temperate continental climate with cold winters and
dry summers, with a mean annual precipitation of around 550mm. The
average annual temperature is 10 ◦ C and the mean annual reference
evapotranspiration is around 800mm. Data from four representative
weather stations (Zwerndorf, Gross-Enzersdorf, Wolkersdorf, and Bad
Deutsch Altenburg, whose position is shown in Fig. 1) highlight a low
spatial variability of the climatic and weather conditions. A standard
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deviation of 31.17 mm year−1 in the mean annual precipitation of
70 mm year−1; of 0.30 ◦C in the mean maximum temperature of
5.20 ◦C; of 0.73 ◦C in the mean minimum temperature of 6.45
C; and of 21.98 mm year−1 in the mean annual reference evapo-
ranspiration of 890.00 mm year−1 were calculated between the four
tations, as reported in the Supplementary Material file named Syntesis.
lsx (available with the ARMOSA software in the repository https:
/unimibox.unimi.it/index.php/s/pnJ9rRxWfwLT9a3, last accessed on
December 2023). Therefore, homogeneous in-space meteorological

ata was assumed, considering the Wolkersdorf station, which showed
o be the most representative in terms of annual cumulative and mean
emperatures. In particular, the meteorological data over a period of
ine years (i.e., from 2010 to 2018) were used.

Referring to the model description in Section 2.1, in all the forth-
oming numerical simulations, the reference evapotranspiration was
stimated through the Hargreaves equation by considering the mini-
um, maximum temperature and the extraterrestrial radiation, while
ater dynamic was reproduced with the bucket approach with travel

ime. Finally, the crop management is set as follows:

• sowing time in early October and harvesting time in early July;
• inorganic fertilization of 180 kgNha−1, which was partially applied

as urea at sowing and then applied twice during stem elongation;
• ploughing at 30 cm soil depth after the harvesting;
• crop residues were retained in the field after harvesting and

incorporated into soil with ploughing.

.3. Statistical methods

Among the many parameters of the model, our global sensitivity
nalysis focused on the 70 parameters related to the output variables
f our interest, i.e., the mean annual yield and the average annual
itrogen leaching at 1m depth. In particular, they consist in:

• 18 parameters related to the carbon–nitrogen cycle, accounting
for mineralization, immobilization, nitrification, denitrification,
volatilization, water and temperature effect on microbial activity,
and atmospheric deposition;

• 52 parameters related to the photosynthetic activity, crop main-
tenance, leaf area growth and duration, vernalization, photope-
riod, dry matter partitioning, nitrogen dilution, root growth, and
sensitivity to drought.

pecifically, in Table A.1, the parameters are grouped according to
he process they are mainly involved in. For each parameter, a short
escription as well as the range of values considered in the analysis is
rovided. These ranges of values have been either retrieved from the
iterature or calibrated through previous applications of the ARMOSA
odel.

In order to identify the most important processes affecting the
ariability of the mean annual yield (Mg ha−1) or the average annual
itrogen leaching at 1m depth ( kgNO3-N ha−1), a two-step global sen-
itivity analysis is performed as it follows. Firstly, the screening method
f Morris (1991), with the improvement proposed in Campolongo
t al. (2007), was adopted to rank the 70 model parameters listed in
able A.1 from the more to the less affecting the variability of the
utput variables. In particular, for each output variable, the Morris
ethod is applied four times, i.e., once for each soil type defined in
able 1. The top-down correlation coefficient is then used to state

f the resulting parameter rankings depend on the considered output
ariable and/or on the soil properties. Lastly, the more accurate (but
lso computationally expensive) method of Sobol (Sobol, 2001; Homma
nd Saltelli, 1996) was applied to the parameters that mostly affect the
ariability of each output variable. For reader’s convenience, details
bout the application of the methods of Morris and Sobol, and the
omputation of the top-down correlation coefficient was summarized
n Appendix B. The Morris and Sobol analysis was performed by using
he SALIB Python library (Herman and Usher, 2017; Iwanaga et al.,
4

022). n
Table 2
Top-down correlation coefficients between the parameter rankings obtained by applying
the Morris method to evaluate the effect of model parameters on mean annual yield
by considering different soil types, see Fig. 4, to highlight the contribution of soil
characteristics.

loam clay-loam sandy-loam silt-loam

loam 1.0 0.79 0.99 0.78
clay-loam 0.79 1.0 0.77 0.99
sandy-loam 0.99 0.77 1.0 0.78
silt-loam 0.78 0.99 0.78 1.0

3. Results

3.1. Morris’ sensitivity analysis

For each soil type, the screening method of Morris modified by Cam-
polongo et al. (2007), was applied to qualitatively rank the 70 parame-
ters in Table A.1 according to the importance of their mean elementary
effect 𝜇∗ (see Appendix B) on the variability of either the mean annual
yield of winter wheat or the average annual nitrogen leaching at 1m
depth.

Before analyzing the Morris sensitivity measures, Figs. 2 and 3 show
the distributions of the mean annual yield and of the average annual
nitrogen leaching at 1m depth, respectively, obtained with the 1420
combinations of parameters used for the Morris analysis. Interestingly,
all the considered combinations of parameters result in admissible val-
ues of both the output variables of our interest. In addition, differences
in soil properties mainly affect the distribution of the average annual
nitrogen leaching at 1m depth (see Fig. 3) rather than mean annual
yield (see Fig. 2).

In order to investigate the elementary effects of the parameters in
Table A.1, for each target output and for each soil type, the Morris’
sensitivity measures related to the input parameters were displayed in
the (𝜇∗, 𝜎) plane, see Figs. 4 and 5. According to the considerations
eported in Campolongo et al. (2007), the 70 input factors were then
anked according to the sensitivity measure 𝜇∗. The complete param-
ter rankings obtained for each soil type were reported in Tables S1
nd S2 in the Supplementary Material.

Regarding the mean annual yield, Fig. 4 shows that the vari-
bility of the grain yield is mainly affected by aCrit, followed by
CO2 and WSPar, for all soil types. A slightly less relevant effect was
etected for DeathLeavesStart, kc50, LAITHMin, MaintenanceStorage,
O2compensation25 and maxRootsDepth.

On the other hand, Fig. 5 shows that the variability of the an-
ual leaching was most influenced by CmicrobEfficiencyL and LAI0,
ollowed by TGLAI, kStable, kCstableFractionLM, MicrobialWCbase,
axRootsDepth, NstemHarvest, TBaseLAI, NleavesHarvest, PCO2, aCrit,

nd SLA. It is further worth noticing that the elementary effects of the
arameters LAI0, TGLAI, and TBaseLAI are also characterized by very
igh variance 𝜎 (so that 𝜎 > 𝜇∗), suggesting that these inputs have large
on-linear and/or interaction effects.

The top-down correlation coefficient (Iman and Conover, 1987) was
pplied to the results of the Morris analysis to quantify the agreement
etween the parameters ranking obtained for the two target variables
i.e., crop yield and nitrate leaching) for each soil type. The analysis
esulted in a weak correlation index, ranging from 0.29 to 0.4 (data
ot shown). Conversely, high values of correlation coefficients were
btained when comparing the rankings obtained with different soil
ypes for crop yield (Table 2) and nitrate leaching (Table 3).

.2. Sobol’ sensitivity analysis

In order to apply the Sobol method for each of the output variables
f our interest (i.e., mean annual yield of winter wheat and annual

itrogen leaching at 1m depth), a subgroup of the most influential
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Fig. 2. Distribution of the values of annual yield obtained with the combinations of parameters used for the Morris analysis.
Table 3
Top-down correlation coefficients between the parameter rankings obtained by applying
the Morris method to evaluate the effect of model parameters on the annual nitrogen
leaching at 1m depth by considering different soil types, see Fig. 5, to highlight the
contribution of soil characteristics.

loam clay-loam sandy-loam silt-loam

loam 1.0 0.55 0.99 0.55
clay-loam 0.55 1.0 0.56 0.96
sandy-loam 0.99 0.56 1.0 0.56
silt-loam 0.55 0.96 0.56 1.0

parameters detected by the Morris method is first selected. Specifically,
as recalled in Appendix B.1, the most important parameters are those
displayed in the right region of the (𝜇∗, 𝜎)-plane in Figs. 4 and 5,
respectively, (see those represented with colored markers) that thereby
appear in the top positions of the parameter rankings in Table S1 or
Table S2 in the Supplementary Material. This provided a group of
9 parameters affecting the variability of the mean annual yield, and
a group of 13 parameters for the variability of the average annual
leaching at 1m depth. The selected parameters are listed in Table 4.
These subgroups of parameters are thus investigated by applying the
Sobol method to estimate how they affect the variance of the respec-
tive output variable. The resulting Sobol’ indices (i.e., main and total
effects) are plotted in Figs. 6 and 7.
5

Fig. 6 points out that all the parameters listed in the left column
of Table 4 are influential parameters that affect at least 1% of the
variability of the mean annual yield of winter wheat (having both
main and total effects larger than 0.01, see Section 2). In addition, it
emerges that the variability of the mean annual yield is mainly due to
the parameter aCrit, followed by WSPar and PCO2, as they affect at
least 10% of the output variance (having both main and total effect
larger than 0.1) regardless the soil type. Other parameters that have
an important effect on the mean annual yield variance are maxRoots-
Depth, except in the case of the clay-loam soil, and kc50, only on
sandy-loam soil. It is further remarkable that in the soil type having a
high concentration of clay in the layers explored by the roots (i.e., clay-
loam), the contribution of aCrit is lower than in the other cases, while
that of PCO2 is higher than in other soil types. This behavior can be
likely due to the no-limiting water and nitrogen availability in a clay
soil such as the clay-loam one (see soil characteristics in Table 1) in
which the effect of the genetic crop potential increases (Peng et al.,
2020). Lastly, for all soil types, interactions involving aCrit and WSPar
have an important effect on the mean annual yield variance (as 0.01 <
𝑆𝑇
𝑖 − 𝑆𝑖 < 0.1). Referring to Fig. 4, these parameters in fact fall in the

top-right region of the (𝜇∗, 𝜎) plane for all soil types.
The Sobol’ sensitivity measures plotted in Fig. 7 indicate that all

the parameters listed in the right column of Table 4 have an important
effect on the variance of the annual nitrogen leaching at 1m depth,
having both main and total effects larger than 0.01 for all soil types.
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Fig. 3. Distribution the values of average annual leaching at 1m depth obtained with the combinations of parameters used for the Morris analysis.
Table 4
Lists of input parameters considered in the sensitivity analysis
performed by applying the Sobol’ method. According to the Morris
method, they are the parameters that mainly affect the variability
of the mean annual yield (left column) and of the average annual
nitrogen leaching at 1m depth (right column).

Mean annual yield
of winter wheat

aCrit
PCO2
WSPar
DeathLeavesStart
kc50
LAITHMin
MaintenanceStorage
CO2compensation25
maxRootsDepth

Average annual nitrogen
leaching at 1m depth

CmicrobEfficiencyL
LAI0
TGLAI
kStable
kStableFractionLM
MicrobialWCbase
maxRootsDepth
NstemHarvest
TbaseLAI
NleavesHarvest
PCO2
aCrit
SLA
The key input parameters affecting more than 10% of the annual
nitrogen leaching variance are CmicrobEfficiencyL and TGLAI for all
soil types. In addition, other parameters that have an important effect
6

on the variance of the nitrogen leaching are LAI0 and maxRootsDepth
in the case of the silt-loam soil, and kStable in the case of the clay-
loam soil. Moreover, consistently with the results in Fig. 5, interactions
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Fig. 4. Plot of the Morris’ sensitivity measures indicating how the input parameters affect the variability of the annual yield, in the (𝜇∗ , 𝜎)-plane. In each panel, the line denotes
the threshold 𝜎 = 𝜇∗ and colored circles denote the sensitivity measures of most important parameters. The complete rankings are reported in Table S1 in the Supplementary
Material. As a remark: (i) inputs with low 𝜇∗ and 𝜎 have negligible effects; (ii) inputs with high 𝜇∗ and low 𝜎 have large linear effects with negligible interaction effects; and (iii)
inputs with high 𝜇∗ and high 𝜎 have large non-linear and/or interaction effects (see Appendix B for further details).
involving LAI0, TGLAI, and TBaseLAI have a not negligible effect on
the annual nitrogen leaching variance (as 0.01 < 𝑆𝑇

𝑖 − 𝑆𝑖 < 0.1) in the
four soils.

4. Discussion

4.1. Discrepancy between the parameter rankings

The top-down correlation coefficient quantified the discrepancy be-
tween the parameter rankings returned by the Morris method for crop
yield and nitrate leaching. These low values indicate that elementary
effects strongly changed for the two target outputs. This is consistent
with the fact that the annual yield and the leaching reflect different
process domains, which involve different groups of model parameters.
Moreover, this result reflects the complexity of the model, in which the
processes are described with detailed mechanisms. In particular, the pa-
rameter rankings related to the yield, which is a crop-related variable,
indicate that the process mostly relies on genetic-based processes rather
than on water and nitrogen dynamics. Therefore, the low correlation
7

between the ranking of parameters governing the two output variables
confirms that the choice of running the sensitivity analysis to estimate
the variability of either the crop yield or the nitrogen leaching allows
for exploring different aspects of the ARMOSA model. When studying
the correlation between the elementary effects of the four soils, high
values were returned, with a larger extent for the crop yield. In the
case of the mean annual leaching, the highest agreement was obtained
when comparing the Morris outcomes obtained with soils having a
similar clay concentration in the top layers (i.e., loam and sandy-loam
soils). Looking at the correlation results reported in Tables 2 and 3,
it results that the hydro-pedological properties of the soil types have
little impact on the sensitivity rank of influential variables on the
crop yield. This result was obtained in sub-optimal conditions with no
limiting N fertilizer rate in a limiting climate, which is characterized by
limited annual rainfall (i.e., 500mm) with dry summer. Results of low
plasticity in yield were also reported by Richter et al. (2010) on durum
wheat in two Mediterranean sites having water-limiting climates and
contrasting soils with the resulting differences in water and nitrogen
availability. The scarce effect on parameters ranking the different soil
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Fig. 5. Plot of the Morris’ sensitivity measures indicating how the input parameters affect the variability of the average annual leaching at 1m depth, in the (𝜇∗ , 𝜎)-plane. In each
panel, the line denotes the threshold 𝜎 = 𝜇∗ and colored circles denote the sensitivity measures of most important parameters. The complete rankings are reported in Table S2
in the Supplementary Material. As a remark: (i) inputs with low 𝜇∗ and 𝜎 have negligible effects; (ii) inputs with high 𝜇∗ and low 𝜎 have large linear effects with negligible
interaction effects; and (iii) inputs with high 𝜇∗ and high 𝜎 have large non-linear and/or interaction effects (see Appendix B for further details).
conditions suggests that the ARMOSA model is characterized by low
plasticity, which is the model’s tendency to change behavior when
applied to different conditions (Confalonieri et al., 2012). Regarding
the nitrate leaching, a lower correlation resulted when comparing the
results of the coarse soils (loam and sandy-loam) with the fine soils
(clay-loam and silt-loam). However, these correlations were signifi-
cant and this was confirmed by a generally similar pattern (Fig. 7).
Only two discrepancies resulted due to the effect of the organic mat-
ter. In particular, for clay-loam soil kStable was highly significant
due to the very high organic matter content, and in silt-loam soil
maxRootsDepth resulted in high sensitivity because of the high organic
matter at a deeper soil depth. A general low sensitivity of the model
to hydro-pedological conditions is likely due to the method by which
the parameters of the water retention curve were estimated. In our case
study, as in many other cropping system models, the parameters of the
van Genuchten function were derived from applying a Pedo-Transfer
Function, due to the difficulty of having measured data of hydraulic
properties, especially for large-scale studies. This estimation method, as
8

well-known, tends to smooth out the differences between soils (Basile
et al., 2019).

4.2. The relevant parameters and processes of yield and leaching simulation

Crop yield. The two combined sensitivity analysis methods highlighted
that the variability of the annual yield is mainly affected by the parame-
ters that regulate five processes: (i) the nitrogen dilution, i.e., aCrit; (ii)
the potential dry matter assimilation, i.e., PCO2; (iii) the susceptibility
to drought, i.e., WSPar; (iv) the crop coefficient for the maximum
crop ET estimation during the stem elongation stage, i.e., kc50; and
(v) the potential root depth, i.e., maxRootsDepth. The similar pat-
tern of the results observed between the four soils having contrasting
properties indicates that all these five processes have a key role in
yield simulation. It means that an adequate selection of the parameters
related to these processes allows for depicting the growth of the crops
in different pedoclimatic conditions. In particular, among the studied
parameters, aCrit and WSPar have the largest difference between the
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Fig. 6. Sobol’ main and the total effects on the variance of the mean annual yield of the input parameters in the left column in Table 4. As a remark, influential parameters are
characterized by 𝑆𝑖 or 𝑆𝑇

𝑖 higher than 0.01 (see the red dashed line); while key parameters have 𝑆𝑖 or 𝑆𝑇
𝑖 higher than 0.1 (see the black dashed line).
Fig. 7. Sobol’ main and the total effects on the variance of the annual leaching of the input parameters in the left column in Table 4. As a remark, influential parameters are
characterized by 𝑆𝑖 or 𝑆𝑇

𝑖 higher than 0.01 (see the red dashed line); while key parameters have 𝑆𝑖 or 𝑆𝑇
𝑖 higher than 0.1 (see the black dashed line).
main effect and the total effect, regardless of the soil type. It is then
likely that the effect of these parameters significantly depends on the
value assumed by the other ones. In particular, aCrit is the leading
parameter in the critical nitrogen dilution curve (see Table A.1). Each
point of the curve corresponds to the nitrogen concentration at which
the dry matter accumulation does not increase, despite rises in nitrogen
availability and root nitrogen uptake (Justes et al., 1994). It thus guides
the fertilization plan, as matching the fertilizer rate with the nitrogen
concentration allows for the maximization of nitrogen use efficiency.
Moreover, the present ranking analysis found the parameter of the
sensitivity to drought as an important function in different soils, also
in combination with other crop parameters. In addition, the key role of
the sensitivity to drought is pivotal in possible simulations under future
climate scenarios, being characterized by more severe drought (Fronzek
et al., 2018). In this study, maxRootsDepth had a higher response
in soils with higher sand content, in which water availability can be
limiting. The crop yield estimation strongly depends on the water avail-
ability and water consumption and this agrees with the high sensitivity
of maxRootsDepth and kc50, respectively. In modeling studies, these
two parameters were addressed while designing in silico ideotypes of
maize to reduce water loss in drought-prone environments (Lynch,
2013; Perego et al., 2014).

Annual nitrogen leaching. The present analysis highlighted that the
variability of the annual nitrogen leaching at 1m depth is mainly
9

affected by two main processes: (i) the decomposition of the litter
and the immobilization of the organic matter coming from the crop
residues decomposition into the stable fraction, i.e., CmicrobEfficicen-
cyL; and (ii) the leaf area index growth in the early stages of the
crop development, i.e., LAI0 and TGLAI. The first result fully agrees
with previous studies which identified the key role of crop residue
retention in the soil as a driver of the mineral nitrogen availability
and, in turn, of nitrogen leaching. In particular, a review highlighted
the effectiveness of estimating nitrogen in soil accounting for different
forms of plant residue carbon and nitrogen, and for soil characteristics,
rather than dealing with indexes using the carbon-to-nitrogen ratio
of crop residues (Chen et al., 2014). Other authors found that crop
residue retention allows for a decrease in nitrogen leaching (Wang
et al., 2018). A recent work by Tadiello et al. (2023) highlighted the
strong interaction between carbon and nitrogen cycling while sim-
ulating the crop residue decomposition on the soil surface. In this
respect, improvements of the ARMOSA model should consider such
an aspect for a closer representation of the complexity of the agro-
ecosystem especially when the simulation aims at estimating the effect
of the conservation agriculture practices on nitrogen leaching and other
environmental variables. The importance of the process related to the
growth of the aboveground biomass at the early stages and the related
nitrogen demand, which was indicated by the significant effect of the
parameters related to the LAI growth, emphasizes that the crop uptake
has a higher impact on nitrogen leaching than the soil organic matter
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mineralization. The earlier the growth of the LAI, which is mainly
driven by air and soil temperature, the lower the risk of leaching during
the autumn rainfall (Lemon, 2007). With the same regard, in a recent
experimental and modeling study (Vogeler et al., 2022), the authors
found decreasing nitrogen leaching with early sowing when nitrogen
leaching derives from nitrogen mineral fertilizer and the nitrogen that
is mineralized from the soil organic matter pool. When the content of
organic matter is large (i.e., clay-loam), kStable is a key parameter due
to the high nitrogen rate that can be mineralized and made available for
both crop uptake and leaching. The calibration of this parameter can
benefit from the availability of soil organic matter over time, especially
in the topsoil layer (Valkama et al., 2020). Moreover, maxRootsDepth
had a large response in silt-loam soil in which the high organic matter
in the deeper layer caused a varying nitrate leaching depending on the
maximum roots depth because the crop N uptake reduces the N loss
downwards.

4.3. The reliable use of the two-step sensitivity analysis in crop modeling

The application of the Morris method to screen the more relevant
parameters affecting the outcome of crop models, followed by the
estimation of the Sobol indices of the most important parameters is a
consolidated practice already used in different works as, for instance,
in DeJonge et al. (2012), Confalonieri et al. (2013), Bregaglio et al.
(2020), Xiang et al. (2022), Specka et al. (2015), Silvestro et al. (2017).
For the sake of clarity, among these works, only in DeJonge et al.
(2012), Confalonieri et al. (2013), Bregaglio et al. (2020) and Xi-
ang et al. (2022) the Morris screening method was coupled with the
variance-decomposition based Sobol method. Conversely, in Specka
et al. (2015) and Silvestro et al. (2017), the Sobol indices of the
most important parameters detected by the Morris method were then
analyzed by using the Extended Fourier Amplitude Sensitivity Test
(eFAST) method, i.e. a robust and computationally efficient method
to estimate the Sobol indices (Cukier et al., 1973; Saltelli, 1999). In
this respect, in our case, the extremely high computational performance
of the ARMOSA code allowed to directly compute the total and main
effects with the Sobol method based on the Saltelli sampling, which
allows, differently from the eFAST method, a progressive increase of
the sample size to reach the convergence.

Going into details, in DeJonge et al. (2012) the two-step sensitiv-
ity analysis combining the Morris screening and Sobol methods was
performed on CERES-Maize crop model with the aim to evaluate the
effect of input parameters regulating water balance and crop growth
on different outputs and scenarios, as in our work. Specifically, they
consider: anthesis date, maturity date, leaf number per stem, maximum
leaf area index, yield, and cumulative ET, under both full and limited
irrigation treatments. Instead, Confalonieri et al. (2013) reports the
first multi-year spatially distributed sensitivity analysis executed on two
complex agroecological models, i.e. CropSyst and WOFOST. Focusing
on the production of wheat production in Morocco, the Morris and
Sobol methods highlighted that, differently from other crop models,
photosynthesis parameters are more relevant than those related to
leaf area expansion, under the explored conditions. In Bregaglio et al.
(2020) the two-step sensitivity analysis based on the subsequent ap-
plication of the Morris and Sobol methods, was carried out on a
process-based hazelnut simulation model by considering four orchards
located in Italy, Chile, and Georgia. The peculiarity of this work is
the formalization of a methodological workflow that integrate different
sensitivity analysis techniques to support an automatic calibration of
the model able to enhance prediction accuracy. In this respect, having
a three-year experimental dataset, the sensitivity was performed on
the relative root mean square error between the predicted and the
estimated quantities, to evaluate the influence of parameter changes on
model predictions of fruit yield, leaf area index, and soil water content.
It would be surely interesting to adopt this approach in future works to
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calibrate ARMOSA on proper dataset. Conversely, in Xiang et al. (2022)
the Morris screening followed by the Sobol variance-based method
were conversely used to determine the governing environmental and
management factors that control the groundwater storage and crop
yield predicted by the linked DSSAT-MODFLOW modeling system, in an
intensively irrigated groundwater region basin. Specifically, they focus
on Finney County, southwest of Kansas (USA), in the Ogallala Aquifer,
where the main crops are corn, winter wheat, soybeans, sorghum, and
triticale. Results indicate that climatic parameters importantly affects
crop yields (e.g., 40% for winter wheat), with differences among crops;
while hydrogeologic parameters have relatively limited influence on
crop yield, as in our case.

Concerning the works where the Sobol’s indices were computed
with the eFAST method, in Specka et al. (2015), a sensitivity analysis
was carried out on the agro-ecosystem model MONICA for six differ-
ent crops (i.e., winter wheat, spring barley, silage maize, sugar beet,
clovergrass ley and winter rape) to identify model parameters that
mainly regulate the above-ground biomass. The analysis highlighted
that parameters related to photosynthesis and plant development had
a dominant effect for all crops, despite the set of important parameters
differed for each crop. Lastly, in Silvestro et al. (2017), the Morris
and eFAST methods were used to compare the crop models Aquacrop
and SAFYE, both describing yield response to water, with the aim
to quantify their complexity and plasticity. Specifically, the global
sensitivity analysis was carried out on the response of winter wheat
yield with a wide range of water limited conditions. Moreover, as in the
present work, the top-down correlation coefficient was used to compare
the rankings. It was found that SAFYE has a lower complexity and
plasticity than Aquacrop.

5. Conclusion

The applied two-step approach identifies only few key parameters of
the model due to the constitutive properties of the selected sensitivity
analysis methods. While the Morris method handles large amounts
of parameters, by providing qualitative information about how much
they affect a state variable, the Sobol method is suited to give reliable
qualitative estimates of the contribution of a moderate number of pa-
rameters on the output variability. It means that this two-step approach
is effective in the understanding of the model uncertainty.

The application of a two-step sensitivity analysis pointed out that
the variability of the annual yield is mainly affected by five param-
eters, i.e., aCrit, PCO2, WSPar, kc50, and maxRootsDepth, which are
respectively related to the critical nitrogen concentration, the potential
carbon assimilation, the drought sensitivity, the maximum crop ET dur-
ing the stem elongation stage, and the potential root growth. For crop
yield, the top down correlation showed a very low level of plasticity.

The variability of the annual nitrogen leaching is mainly impacted
by three parameters, i.e., CmicrobEfficiencyL, LAI0 and TGLAI, which
regulate the litter decomposition and the crop growth in the early
stages. The effect of kStable and maxRootsDepth was detected in soils
with high organic matter content. Moreover, the top-down correlation
coefficient highlighted that the variability of the two target outputs is
regulated by different processes, with a limited effect of soil type on
nitrogen leaching. The sensitivity analysis highlighted the complexity
of the model and the interaction of crop, nitrogen and carbon processes.
The limited plasticity of the model ensures possible applications in
varying soil conditions.
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Appendix A. Statistical methods for the sensitivity analysis

See Table A.1

Appendix B. Statistical methods for the sensitivity analysis

B.1. Morris method

The Morris method (Morris, 1991), also called Elementary Effects
(EE) method, is a screening method based on the one-at-a-time (OAT)
design, i.e., it is specifically designed to evaluate the effect of changes
in one input parameter at a time on a given target output. The Morris
method, as revised in Campolongo et al. (2007), returns three sensitiv-
ity measures for each input parameter. Specifically, 𝜇 and 𝜇∗ describe
the overall importance of the parameter on the variability of the model
output; while 𝜎 indicates the presence of non-linear effects and/or
arameter interactions. This method results particularly well-suited to
andle models with a large amount of parameters (as in our case)
nd/or that require expensive numerical simulations. In fact, it returns
ood qualitative information about the model from a quite low number
f realizations.

In more detail, the Morris method is based on the assumption
hat the model parameters under investigation are independent and
niformly distributed so that the space of the input parameter of our
nterest is a 𝑘-dimensional hypercube, with 𝑘 = 70, defined by the

ranges of values reported in Table A.1. For each output variable and
for each soil type, the ranking of the input parameters results from the
following procedure. The 𝑘-dimensional hypercube of the input param-
ters is discretized into a 𝑘-dimensional 𝑝-level grid, and 𝑟(𝑘+1) points

of this 𝑝-level grid are selected (see Morris (1991), Campolongo et al.
(2007), Iooss and Lemaître (2014) for further details). In summary,
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following the optimized strategy proposed in Campolongo et al. (2007),
the 𝑟(𝑘 + 1) points are obtained by first generating a large amount
𝑀 of trajectories in the 𝑘-dimensional 𝑝-level grid. Each trajectory is
obtained starting from a randomly given point in the grid, and then
performing 𝑘 steps, one for each dimension, and whose lengths are
random multiples of the grid size. The above 𝑟(𝑘 + 1) points are those
constituting the 𝑟 trajectories that maximize the coverage of the space
of parameters. In this work, this sampling of the space of parameters
is performed by setting 𝑘 = 70, 𝑀 = 500, 𝑝 = 16 and 𝑟 = 20.
Each of the forthcoming experiments thus consists in 𝑟(𝑘 + 1) = 1420
different setting of the input parameters (each corresponding to one
of the selected points in the 𝑘-dimensional hypercube) and the same
number of realizations of the ARMOSA model: i.e., for each one of the
selected 𝑟(𝑘+1) points, the mean annual yield of winter wheat and the
average annual nitrogen leaching at 1m depth were calculated. Then,
for each output variable, the Morris’ sensitivity measures (𝜇, 𝜇∗ and 𝜎)
are statistics of the distributions of the Elementary Effects EE𝑖 of the
parameter 𝑖 (with 𝑖 = 1,… , 𝑘) defined as

EE𝑖(𝐱) =
𝑌 (𝐱 + 𝛥𝐞𝑖) − 𝑌 (𝐱)

𝛥
, (B.1)

where 𝐱 and 𝐱 + 𝛥𝐞𝑖 are two of the 𝑟(𝑘 + 1) selected points in the
space of the input parameters; 𝐞𝑖 is a 𝑘-dimensional vector with the
𝑖th component equal to 1 and all the others equal to 0; 𝛥 is the
distance between 𝐱 and 𝐱 + 𝛥𝐞𝑖; 𝑌 (𝐱) denotes the value of the output
variable of interest obtained when the parameter setting 𝐱 is assumed.
In particular, for any input parameter 𝑗, 𝜇 is the mean, 𝜇∗ is the
mean of the absolute values, and 𝜎 is the standard deviation of the
distribution of the Elementary Effects EE𝑖. According to Morris (1991)
and Campolongo et al. (2007), these measures allow the classification
of the input parameters into three groups: (i) inputs having negligible
effects (with low 𝜇∗ and 𝜎); (ii) inputs having large linear effects
without interaction effects (with high 𝜇∗ and low 𝜎); and (iii) inputs
having large non-linear and/or interaction effects (with high 𝜇∗ and
high 𝜎). For each output variable and soil type, the input parameters
are then ranked according to the value of 𝜇∗.

B.2. Top-down correlation coefficient

The top-down correlation coefficient proposed by Iman and Conover
(1987) is a concordance measure to compare different rankings. Specifi-
cally, this measure is highly sensitive to agreements in the top positions
and neglects disagreements at the bottom of the rankings. In this work,
it was used to highlight if the rankings resulting from the Morris
method are strongly related to either the soil properties or the con-
sidered output variable. In detail, let 𝑟𝑝𝑖 be the rank assigned to the 𝑖th
parameter, with 𝑖 = 1,… , 𝑘, as achieved in a given test said 𝑝. The top-
down correlation coefficient 𝐶𝑝𝑞 between the rankings obtained in two
different tests, said 𝑝 and 𝑞 respectively, is computed as the ordinary
Pearson correlation coefficient on the Savage scores (Savage, 1956). If
there are no ties among the variables being ranked, the Savage scores
of the 𝑖th parameter, related to the rankings obtained from test 𝑝, is
given by

𝑆𝑝
𝑖 =

𝑘
∑

𝑗=𝑟𝑝𝑖

1
𝑗
, (B.2)

and the top-down correlation coefficient writes

𝐶𝑝𝑞 =

(

∑𝑘
𝑖=1 𝑆

𝑝
𝑖 𝑆

𝑞
𝑖 − 𝑘

)

𝑘 − 𝑆1
, (B.3)

where 𝑆𝑝
𝑖 and 𝑆𝑞

𝑖 are the Savage scores of the 𝑖th parameter, related
to the rankings obtained from tests 𝑝 and 𝑞, respectively; while 𝑆1 ∶=
∑𝑘 1∕𝑗.
𝑗=1
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Table A.1
Model parameters considered in our sensitivity analysis. SWC means Soil Water Content. SWCSat is SWC at Saturation. ‘‘Fraction’’ denotes constants in the range [0, 1]. 𝑑 denotes
ay. The reported values have been retrieved from literature or identified with the ARMOSA application (the latter are denoted by ‘‘ ∗ ’’).
Process Parameter Description Values&Units References

Immobilization of C
and N from litter
and manure

kCstableFractionLM Humification fraction of litter and
manure

0.2–0.6 [–] Perego et al. (2013)*, Valkama
et al. (2020)*

Mineralization kStable Mineralization rate of humus (stable
pool)

0.00005–0.0001
[ d−1]

Perego et al. (2013)*, Valkama
et al. (2020)*

Denitrification kHalfSatDenitr Half-saturation constant for
denitrification

5–20 [ mgL−1] Perego et al. (2013)*

kDenitrPotential Potential denitrification rate 0.1–0.4
[ kg ha−1 d−1]

ThetaDenitrLimited SWC threshold below which no
denitrification occurs

0.15–0.25
[ m3 m−3]

Water effect on
microbial activity

MicrobialWaterCoeff Microbial response to water
availability

0.1–2 [−] Johnsson et al. (1987), Perego
et al. (2013)*

MicrobialSaturation Microbial activity at saturation 0.4–0.8 [−]
MicrobialWCbase Fraction of SWCSat below which

there is no microbial activity
0.1–0.5 [−]

Temperature effect
on microbial
activity

MicrobialTemp Temperature at which microbial
efficiency is maximum

18–22 [◦C] Johnsson et al. (1987)

Nitrification kNitrification Nitrification rate 0.3–0.8 [ d−1] Johnsson et al. (1987)
NitrateAmmRatio NO3 over NH4 ratio at equilibrium 5–10 [−]

Volatilization kVolatilization Volatilization rate 0.1–0.3 [ d−1] Johnsson et al. (1987)

N athmospheric
deposition

AtmDryNH4 Atmosferic dry deposition 0.005–0.015
[ kg ha−1 d−1]

Perego et al. (2013)*

AtmWetNH4 Atmosferic wet deposition (amount
of NH4 in 1 mm of rain)

0.005–0.015
[ kgmm−1]

AtmDryNO3 Atmosferic dry deposition 0.005–0.015
[ kg ha−1 d−1]

AtmWetNO3 Atmosferic wet deposition (amount
of NO3 in 1 mm of rain)

0.005–0.015
[ kgmm−1]

Mineralization of
organic matter due
to tillage

fOx Mineralization adjustment coefficient
during the tillage consolidation
process

1–2 [−] Valkama et al. (2020)*

Photosynthetic
activity

EarTmin BBCH stage after which the ear
photosynthetic activity starts

55-65 [−]
Ritchie (1985), Van Diepen et al.
(1989), Richter et al. (2010),
Perego et al. (2013)*

EarTmax BBCH stage after which the ear
photosinthetic activity stops

80-90 [−]

EarRelativeSurface Ear area/weight ratio 0.0005–0.0007
[ m2 g−1]

EAIfactor Percentage of EAI that contributes to
photosynthesis

0.4–1 [−]

MaxCO2net Max photosynthetic rate capacity 1200–2200
[μgm−2 s−1]

CO2compensation25 CO2 compensation point at 25 ◦ C 0–50 [ mg kg−1]
DarkRespiration20 Dark respiration at 20 ◦ C 10–50

[μgm−2 s−1]
PCO2 CO2 potential assimilation rate at

light saturation
0.001–0.003
[ gm−2 s−1]

EffPot Initial light conversion factor 15–17 [μg J−1]
TbaseCO2 Temperature below which CO2 is not

absorbed
0–10 [◦C]

Root growth RootsElongationC Roots elongation rate 0.009–0.015
[ mmd−1]

Ritchie (1985), Van Diepen et al.
(1989), Richter et al. (2010),
Perego et al. (2013)*maxRootsDepth Maximum roots depth 0.5–1 [mm]

Dry matter
partitioning

FromStemToStorage Fraction stem weight possibly
translocated to storage organ

0.05–0.25 [−] Ritchie (1985), Van Diepen et al.
(1989), Richter et al. (2010),
Perego et al. (2013)*BeginTranslocation Start BBCH stage of translocation 60–70 [−]

FDMshoot9 Fraction of total dry matter allocated
to shoot at BBCH stage 9

0.3–0.5 [−]

FDMshoot21 Fraction of total dry matter allocated
to shoot at BBCH stage 21

0.3–0.5 [−]

FDMshoot30 Fraction of total dry matter allocated
to shoot at BBCH stage 30

0.4–0.6 [−]

FDMshoot45 Fraction of total dry matter allocated
to shoot at BBCH stage 45

0.6–0.8 [−]

FDMshoot60 Fraction of total dry matter allocated
to shoot at BBCH stage 60

0.7–0.9 [−]

FDMshoot97 Fraction of total dry matter allocated
to shoot at BBCH stage 97

0.9–1 [−]

(continued on next page)
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Table A.1 (continued).
Process Parameter Description Values&Units References

Leaf area growth LAI0 Initial leaf area index 0.01–0.1
[ m2 m−2]

Ritchie (1985), Van Diepen et al.
(1989), Richter et al. (2010),
Perego et al. (2013)*LAIexp Threshold above which LAI increases

exponentially
0.7–0.9 [ m2 m−2]

SCP Scattering coefficient of leaves for
PAR

0.03–0.2 [−]

SLA Specific leaf area 0.015–0.025
[ m2 g−1]

TGLAI Relative LAI growth rate in response
to temperature

0.005–0.025
[◦Cd−1]

TBaseLAI Base temperature for juvenile leaf
area growth

0–5 [◦C]

Leaf area duration LAITHMin Value of LAI when relative death
rate due to self-shading starts

3–5 [ m2 m−2] Ritchie (1985), Van Diepen et al.
(1989), Richter et al. (2010),
Perego et al. (2013)*LAITHMax Max value of relative death rate due

to self-shading
0.035–1 [−]

ParAgeDLAI Tuning coefficient for relative leaves
death rate due to ageing

0.3–2 [−]

DeathLeavesStart Start BBCH stage for leaves ageing
death

75–90 [−]

Canopy type KDF Extinction coefficient for diffuse PAR
flux

0.3–0.7 [ m2 ha−1] Ritchie (1985), Van Diepen et al.
(1989), Richter et al. (2010),
Perego et al. (2013)*

Crop physiological
maintenance

MaintenanceLeaves Maintenance respiration of leaves 0.01–0.035
[ g g−1 d−1]

Ritchie (1985), Van Diepen
et al. (1989), Richter et al.
(2010), Perego et al.
(2013)*

MaintenanceRoots Maintenance respiration of roots 0.01–0.015
[ g g−1 d−1]

MaintenanceStem Maintenance respiration of stem 0.01–0.015
[ g g−1 d−1]

MaintenanceStorage Maintenance respiration of storage 0.01–0.035
[ g g−1 d−1]

Vernalization EAIstart Minimum optimum temperature for
vernalization

2–5 [◦C] Ritchie (1985), Van Diepen et al.
(1989), Richter et al. (2010),
Perego et al. (2013)*EAIstop Maximum optimum temperature for

vernalization
8–10 [◦C]

VernBBCHStart BBCH stage after which the
vernalization process can start

1–10 [−]

VernBBCHEnd BBCH stage after which the
vernalization process stops

25–31 [−]

Crop ET kc50 Crop coefficient at BBCH stage 50 0.9–1.2 [−] Allen et al. (1998)

N uptake NUPmax Maximum nitrogen uptake coefficient 3–6 [ kg kg−1] Ritchie (1985), Van Diepen et al.
(1989), Richter et al. (2010),
Perego et al. (2013)*

Crop residues
mineralization

kleaves Leaves mineralization rate 0.01–0.02 [ d−1] Sandor et al. (2017)*, Valkama
et al. (2020)*kstem Stem mineralization rate 0.01–0.02 [ d−1]

kstorage Storage mineralization rate 0.01–0.02 [ d−1]
kroots Roots mineralization rate 0.0001–0.001

[ d−1]
NleavesHarvest Nitrogen concentration fraction in

leaves at harvest
0.5–1 [−]

NstorageHarvest Nitrogen concentration fraction in
storage at harvest

0.5–1 [−]

CNroot carbon–nitrogen ratio in roots at
harvest

60–90 [−]

NstemHarvest Nitrogen concentration fraction in
stem at harvest

0.5–1 [−]

Photoperiod PhotoPeriodCritical Photoperiod critical hours 9–12 [h] Ritchie (1985), Van Diepen et al.
(1989), Richter et al. (2010),
Perego et al. (2013)*

N dilution curve aCrit Critical value of nitrogen for dilution
curve

0.013–0.04 [−] Justes et al. (1994)

Immobilization and
mineralization due
to microbial activity

CmicrobEfficiencyL Microbial efficiency in C-litter
utilization

0.2–0.7 [−] Perego et al. (2013)*, Valkama
et al. (2020)*

Sensitivity to
drought

WSPar Water stress factor tuning coefficient 6–14 [−] Richter et al. (2010)
B.3. Sobol method

The Sobol method is a form of global sensitivity analysis based
on the decomposition of the variance of a model output into sums of
13
conditional variances. Being computationally expensive, the method of
Sobol has been not applied by considering all the input parameters
in Table A.1, but rather, taking advantage of the screening method
of Morris, by dealing only with a selection of the most influential
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parameters detected by the Morris method. Specifically, for each output
variable of our interest, we consider the subgroup of input parameters
that appear in the top positions of the Morris’ rankings for at least a
soil type.

Going into details, let 𝑌 be the output variable of our interest, and
𝑘𝑌 the number of most influential parameters detected with the Morris
method. Denoting by 𝑋𝑖 the 𝑖-th input parameter, and assuming again
the independence between the input parameters, the output variance
decomposition writes

Var(𝑌 ) =
𝑘𝑌
∑

𝑖=1
𝐷𝑖(𝑌 ) +

𝑘𝑌
∑

𝑖<𝑗
𝐷𝑖𝑗 (𝑌 ) +⋯ +𝐷12…𝑘𝑌 (𝑌 ), (B.4)

where 𝐷𝑖(𝑌 ) ∶= Var[E(𝑌 |𝑋𝑖)], 𝐷𝑖𝑗 (𝑌 ) ∶= Var[E(𝑌 |𝑋𝑖, 𝑋𝑗 )] − 𝐷𝑖(𝑌 ) −
𝐷𝑗 (𝑌 ) and so on for higher order interactions (refer, among others,
to Saltelli and Sobol (1995), Sobol (2001), Iooss and Lemaître (2014)
for further details). The method then returns the so-called Sobol’ indices
or variance-based sensitivity indices

𝑆𝑖(𝑌 ) =
𝐷𝑖(𝑌 )
Var(𝑌 ) , 𝑆𝑖𝑗 (𝑌 ) =

𝐷𝑖𝑗 (𝑌 )
Var(𝑌 ) , 𝑆𝑖𝑗ℎ(𝑌 ) =

𝐷𝑖𝑗ℎ(𝑌 )
Var(𝑌 ) , … (B.5)

and so on, which quantify the fraction of the output variance that is
due to either an individual factor 𝑖 only (i.e., 𝑆𝑖, thereby said first-order
indices or main effects) or to a combination of factors. Additionally, as
the number of indices grows exponentially with the number of input
parameters under investigation, Homma and Saltelli introduced the so-
called total indices or total effects to assess the impact of parameter 𝑖
ncluding all possible interactions with the other factors (Homma and
altelli, 1996). These indices write as it follows

𝑇
𝑖 = 𝑆𝑖 +

∑

𝑖<𝑗
𝑆𝑖𝑗 +

∑

𝑗≠𝑖,ℎ≠𝑖,𝑗<ℎ
𝑆𝑖𝑗ℎ +⋯ =

∑

𝑔∈#𝑖
𝑆𝑔 , (B.6)

here #𝑖 denotes all the subsets of {1,… , 𝑘𝑌 } including 𝑖. Moreover,
he total effects allow the estimate of the so-called interaction indices
defined as the difference 𝑆𝑇

𝑖 − 𝑆𝑖) which represent the fraction of the
utput variance due to parameters interactions. In practice, especially
hen the number of parameters is large, it is sufficient to compute the
ain effects and the total effects to have good information about the
odel. The Sobol indices can be then interpreted as proposed by Liu

t al. (2020): (i) only parameters affecting more than 1% of the output
ariance, having 𝑆𝑖 > 0.01 or 𝑆𝑇

𝑖 > 0.01, are influential factors, i.e., they
ave a not negligible effect; (ii) parameters influencing more than 1%
f Var(𝑌 ), having 𝑆𝑖 > 0.1 or 𝑆𝑇

𝑖 > 0.1, are key/important input factors.
In the present work, for each experiment (i.e., for each pair of target

utput and soil type), the main and the total effects was computed
y applying the quasi-Monte Carlo sampling-based method described
n Saltelli (2002) with a sample size of 𝑁(𝑘𝑌 + 2) model input sets,

where 𝑘𝑌 is the number of input parameters considered to quantify the
variability of the output 𝑌 , while N has to be taken large enough to
assure the convergence of both the Sobol indices (Saltelli, 1999). As
specified in Section 3, taking into account the results that emerged by
the Morris method and the top-down correlation coefficients, the Sobol
method was applied by considering 𝑘𝑌 = 9 parameters to estimate the
variability of the mean annual yield, and 𝑘𝑌 = 13 parameters in the case
of the average annual nitrogen leaching at 1m depth. These parameters
are listed in Table 4. The value of N used for each experiment is
specified in Section 3.2.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
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at https://doi.org/10.1016/j.envsoft.2023.105932.
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