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Neural combinatorial optimization beyond the TSP:
Existing architectures under-represent graph structure
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Abstract
Recent years have witnessed the promise that reinforcement
learning, coupled with Graph Neural Network (GNN) archi-
tectures, could learn to solve hard combinatorial optimization
problems: given raw input data and an evaluator to guide the
process, the idea is to automatically learn a policy able to
return feasible and high-quality outputs. Recent work have
shown promising results but the latter were mainly evalu-
ated on the travelling salesman problem (TSP) and similar
abstract variants such as Split Delivery Vehicle Routing Prob-
lem (SDVRP). In this paper, we analyze how and whether re-
cent neural architectures can be applied to graph problems of
practical importance. We thus set out to systematically “trans-
fer” these architectures to the Power and Channel Allocation
Problem (PCAP), which has practical relevance for, e.g., ra-
dio resource allocation in wireless networks. Our experimen-
tal results suggest that existing architectures (i) are still inca-
pable of capturing graph structural features and (ii) are not
suitable for problems where the actions on the graph change
the graph attributes. On a positive note, we show that aug-
menting the structural representation of problems with Dis-
tance Encoding is a promising step towards the still-ambitious
goal of learning multi-purpose autonomous solvers.

1 Introduction
Graphs are well-studied objects used to represent a plethora
of practical combinatorial problems. Solving such graph-
related combinatorial problems represents an everyday chal-
lenge for vital tasks such as logistics, resource allocation or
scheduling. Many of these problems are NP-hard and opti-
mal solutions are attainable only for trivial graph size, so that
in practice problem relaxation, or approximation algorithms
or various search heuristics are used.

Recent years have seen the rise of deep learning models
aimed at replacing such handcrafted heuristics, by leverag-
ing advances in two areas of machine learning. First, graph
representation learning extracts rich features from raw in-
put graph data. Second, deep reinforcement learning allows
agents to “navigate” in a search space and find an optimal
strategy to maximize a given objective. Most existing mod-
els employ jointly these two strategies and train agents that
(i) take a graph with node and edge features as input, (ii) en-
code it, often using a graph neural network (iii) sequentially
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obtain an action for each node/edge using a decoder and (iv)
guide the agent with a simple environment evaluating the
agent’s strategy. However, looking more closely at the liter-
ature applying graph neural network (GNNs) and reinforce-
ment learning to practical combinatorial problems, two ob-
servations arise. Existing solutions are either (i) admittedly
tailored to specific problem instances (e.g. extensively us-
ing expert-based feature engineering or neural network de-
sign (Iacoboaiea et al. 2021), or not transferring to graphs
of different sizes (Nakashima et al. 2020)) or are (ii) generic
by design, but limitedly evaluated on the very same problem,
namely the Travelling salesman problem (TSP) and variants
thereof (Bello et al. 2016).

Although we agree it is useful to compare architectural
solutions on the same ground, we argue that this may lead
to over-fitting the design to a single problem. In practice, it
is today unclear whether all the recent advances applied and
evaluated on the TSP (Vinyals, Fortunato, and Jaitly 2015;
Bello et al. 2016; Dai et al. 2017; Deudon et al. 2018; Kool,
van Hoof, and Welling 2018; Ma et al. 2019; Nowak et al.
2017), are useful for other graph combinatorial problems
of practical interest. We thus set out to first systematically
“transfer” these architectures from the TSP to other prob-
lems with high practical relevance, related to radio resource
allocation in wireless networks. There, the input is a graph
representing the access points (APs) and the user stations
(STAs) connected to them, the output is the allocation of
frequency channels and power levels to each AP. The goal is
to achieve both low interference and good signal quality.

When adapting existing “out of the box” architectures,
we observe subtle yet crucial differences between TSP (and
similar variants) and the practical problem we consider
(Sec. 3). First, unlike the Euclidean TSP graph, where node
features encode graph structure in the form of Euclidean co-
ordinates of each node, our input graph contains mainly dis-
tances between nodes (in the form of radio path losses). Sec-
ond, while in TSP, algorithmic actions have no impact on the
graph structure and attributes (cities will not move), in radio
resource allocation, assigning frequencies or power levels to
certain nodes affects the attributes of other nodes (such as
signal quality or interference). As we shall see, these two
differences are the root of poor performance exhibited by
state of the art architectures, questioning their generality and
relevance beyond the TSP.
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The rest of this paper is organized as follows. Sec. 2
overviews related work. Sec. 3 adapts existing solutions to
our problem. Evaluations in Sec. 4 confirm our two observa-
tions, and Sec. 5 points to distance encoding as a promising
direction to overcome limitations of current architectures.

2 Related work
The foundations for using deep learning to solve combina-
torial problems are Pointer Networks (Vinyals, Fortunato,
and Jaitly 2015) which enhance pre-existing sequence-to-
sequence approaches, enabling them to learn solutions to
the TSP on variable-sized instances. A pointer network is an
encoder-decoder Recurrent Neural Network (RNN) in which
the problem inputs are converted into codes by an encoder,
before being fed to the following generative model or de-
coder. The latter applies a content-based attention using the
hidden-state of each decoding block to point back at each
node in the encoded input. When applied on a combinato-
rial problem like the TSP, the attention mechanism helps
the neural network to generate pointers towards the input
sequence, thus providing the order in which the nodes are
visited. Since this seminal work, almost all of the follow-up
architectures adopted a similar philosophy with an encoder-
decoder design where the encoder learns representations of
the input graph, and the decoder uses those representations
to sequentially generate an action for each node or edge.

Next, while the first pointer networks (Vinyals, Fortunato,
and Jaitly 2015) learn in a supervised manner (using opti-
mal solutions as labels), (Bello et al. 2016) later leverage
a similar model but adopt Reinforcement Learning instead.
This design choice is sensible since optimal solutions are
often not available for large enough instances and since it
is often easier to define a reward or regret that reflects so-
lution quality. For example, in the case of the TSP, the tour
length can be used as a regret. Many others have used re-
inforcement learning since then. A notable example is the
work of (Nazari et al. 2018), which represents an important
milestone for Deep Learning applications to graph combina-
torial problems: firstly, following the line of (Vinyals, Ben-
gio, and Kudlur 2016), the authors observe that the prob-
lems of interest do not necessarily need sequential order.
This means that the so-far used RNN-encoder-decoder mod-
els might actually be unnecessary and could easily be substi-
tuted by less computationally demanding architectures, per-
haps even simple linear projections. Secondly, facing the Ve-
hicle Routing Problem (VRP), a problem similar but slightly
more complex than the TSP, they are the first to deal with
what we call in this paper the distinction between dynamic
action-dependent and static node features, the former of
which previous architectures could not deal with. As we will
see in Sec. 3, this issue is highly important in the context
of our work. After an unsuccessful encoding attempt using
Graph Convolutional Networks (GCNs) proposed by (Kipf
and Welling 2017), (Nazari et al. 2018) opted to only encode
node-specific information (i.e. coordinates and demand val-
ues), with a 1-dimensional convolution layer, and did not
include any adjacency information.

Later, building on the work of (Vaswani et al. 2017) and
(Veličković et al. 2018), (Kool, van Hoof, and Welling 2018)

were able to tackle problems like the TSP and the VRP us-
ing an attention-based GNN model as encoder, namely the
Graph Attention Network (GAT). This, coupled with a se-
quential decoder that keeps track of the current context (e.g.
which nodes have been visited so far), greatly improved
results. As already mentioned, Graph Convolutional Net-
works are an alternative to GATs for problem encoding,
leveraged by (Joshi, Laurent, and Bresson 2019) when tack-
ling the TSP. Similarly to the GAT model chosen by (Kool,
van Hoof, and Welling 2018), nodes become aware of their
surroundings through a message passing procedure. How-
ever, the concept of distance can be applied directly as edge
weights here, while the GAT needs to learn these features
through its attention mechanism.

Very recently, (Joshi et al. 2021) proposed to create a
unified benchmark to systematically test the generalization
capability of several existing design choices. Focusing on
the importance of transferring models trained on smaller in-
stances to larger ones, the authors check whether and how
much past design choices favour such transfer. Their system-
atic work pinpointed some limitations and stressed the im-
portance of taking generalization into account, both during
design and evaluation. In this paper, we extend their work
to another dimension: while they attempted to scale “verti-
cally” to networks of larger sizes, we want to assess whether
the latest neural network design choices are of interest to
practical problems that are structurally different from the
TSP. Given a topology with some node and edge features
and actions to apply to nodes or edges, how difficult it is to
adopt current architectures? And how well would they per-
form compared to a well-thought heuristic?

Answering these questions, we conclude that existing ar-
chitectures are inadequate to our use case. As per the recent
studies of (Gilmer et al. 2017), (Chen et al. 2019) and (Zhu
et al. 2021), we found that all existing models, even if they
are efficiently handling node information for tasks such as
node classification (You et al. 2018) or node property pre-
diction (Kipf and Welling 2017), fail to capture edge features
well. Following recent works, e.g. (Li et al. 2020) and (Yin,
Wang, and Li 2020) that point out that current GNN models
suffer from similar shortcomings, we implement their pro-
posed novel approach distance encoding and evaluate it.

Finally, it is worth mentioning that our work, and related
work accordingly, focus on learning an end-to-end solution
or heuristic to the problem. We refer the reader to the re-
cent survey of (Cappart et al. 2021) for a broader perspective
about learning for combinatorial optimization in general.

3 Problem transfer

In this section, we qualitatively describe the process of
adapting existing architectures from well-studied problems
to our practical radio resource allocation one. We first de-
scribe the problems (Sec. 3.1) and overview existing archi-
tectures (Sec. 3.2). We then highlight novelties introduced
by our problem (Sec. 3.3) and conclude with some imple-
mentation and evaluation considerations (Sec. 3.4).



3.1 Use cases
We now present three combinatorial problems relevant for
this paper: the Traveling Salesman Problem (TSP), the Split
Delivery Vehicle Routing Problem (SDVRP), and our Power
and Channel Allocation Problem (PCAP). While the neural
combinatorial optimization literature has limitedly studied
the first two, we here contrast the first and the third.

TSP The well known TSP (Christofides 1972) asks for the
shortest tour a salesman can take, visiting each of a given set
of cities once before returning home. More formally, the ob-
jective is to find the shortest Hamiltonian cycle in a graph
with given edge lengths. In the Euclidean TSP, the edge
lengths are the Euclidean distances between the nodes. Ex-
isting architectures trained with reinforcement learning on
this problem use the tour length as regret.

SDVRP The SDVRP is a generalization of the Capacitated
Vehicle Routing Problem (CVRP) (Toth and Vigo 2014).
There, a number of delivery vehicles depart from a desig-
nated depot, visit all customers and then return to the de-
pot. Each customer has a specific demand, and each vehicle
a capacity. The sum of customer demands are not allowed
to exceed the assigned vehicle’s capacity. The objective is
to serve all customers while minimizing the sum of the cy-
cle lengths, defined again as Euclidean distances. Note that
CVRP with one vehicle and infinite capacity is equivalent to
the TSP. In the SDVRP, the nodes can be visited by multiple
vehicles, each satisfying a part of the demand. Unlike the
TSP, for which we perform empirical analysis, we present
the SDVRP mainly for illustrative purposes as it represents
an interesting property which we discuss later in Sec. 3.3.

PCAP While the two previously mentioned problem
classes are well-known abstractions of real world applica-
tions, the PCAP is directly derived from the radio resource
management (RRM) of IEEE 802.11 Wireless Local Area
Networks (WLANs). In large-scale WLANs consisting of
fleets of APs, choosing adequate levels of AP channels,
bandwidths and transmission powers is a vital task to man-
age scarce radio resources. Broadly speaking, WLAN RRM
has three objectives: (i) optimal coverage for the users STAs
served by the network; (ii) minimizing interference among
both APs and STAs; (iii) load-balancing of associated STAs
among APs. The PCAP is challenging mainly due to the fact
that power, channel and bandwidth allocation are discrete
configurations, making PCAP a combinatorial optimization
problem. In fact, the channel allocation problem alone is NP-
complete (Audhya et al. 2011).

The inputs to solve PCAP are, pathloss measurements
among APs/STAs, available channels and power levels, and
STA demands, whereas coordinates of APs and STAs are
generally not available. The underlying structure of PCAP
is a graph, in which transceivers (APs and STAs) represent
the nodes, connected via edges representing channel inter-
ference, where the weight of each edge depends on radio
conditions (pathloss, antenna gains, etc.). A reward metric
evaluating the quality of any allocation can be then com-
puted based on STA coverage, interference, and AP loads.
Given that PCAP is a graph-based combinatorial optimiza-

tion problem for which the objective value of a solution can
be evaluated efficiently, it is a good use case for application
of Deep Learning architectures originally designed for TSP.

3.2 Overview of existing architectures
Our goal in this work is to systematically assess to what ex-
tent existing neural architectures, evaluated on abstract prob-
lems such as TSP and VRP, are applicable to other problems
such as PCAP. We now provide a schematic overview of ex-
isting design choices used in this paper.

As mentioned earlier, state-of-the-art solutions rely on
encoder-decoder architectures, where the encoder learns a
representation of the input problem and the decoder uses
that to output a solution. (Joshi et al. 2021) provide a modu-
lar implementation and useful abstractions to synthetically
summarize existing approaches for the TSP. Building on
their work, we show the generic pipeline shared by many
such recent work in Fig. 1. We first show in Fig. 1(a) the
pipeline for the TSP problem. We then mirror it for the SD-
VRP (Fig. 1(b)) and our PCAP problem (Fig. 1(c)).

The encoder, a GNN, first receives as input problem in-
stances or graphs of various sizes in the shape of node and
edge features. Node features are, for example, coordinates
in the TSP case, while edge features comprise the adjacency
matrix of the underlying graph. The GNN learns fixed-size
representations (embeddings) which mirror each input and
its surroundings. (Kool, van Hoof, and Welling 2018) pro-
pose to leverage the aforementioned GAT, while (Joshi,
Laurent, and Bresson 2019) later introduced the GCN en-
coder. Finally, (Joshi et al. 2021) include the two options in
their common modular benchmark and demonstrate that the
latter is capable of obtaining more faithful representations.
In our work, we evaluate both options. However, unless oth-
erwise mentioned, the GNN of (Joshi, Laurent, and Bresson
2019) is our default choice for the encoder; we refer to it as
TSP state-of-the-art in later sections.

Next, the graph and node embeddings are passed to the
decoder. A popular (Dai et al. 2017; Kool, van Hoof, and
Welling 2018; Ma et al. 2019; Deudon et al. 2018; Bello
et al. 2016; Vinyals, Fortunato, and Jaitly 2015) design
choice is to use a decoding loop that sequentially picks an
action for each node, until a stopping condition (i.e. all nodes
visited) is reached. This means that the decoder needs to
handle partial solutions. Conversely, the research of (Joshi,
Laurent, and Bresson 2019) adopted a one-shot decoding
strategy in which the entire solution (path) is computed once
and for all nodes, with no intermediate decisions. However,
since (Joshi et al. 2021) include both options in their modu-
lar framework and prove that the sequential option has bet-
ter performance, we adopt the sequential attention-based de-
coder used by (Kool, van Hoof, and Welling 2018).

Solving the TSP, the decoder is run iteratively, generating
at each step a learned probability distribution over all possi-
ble next nodes. Sampling from this probability distribution
picks the next node to visit, appending it to the current par-
tial solution. The selected node is then masked so that it is
not visited in the next iterations of the decoder. This way, the
decoder outputs a probability over only the remaining nodes
each time. Note that at each step, the decoder receives also



an updated context vector describing the current state of the
partial solution: in the case of TSP, it contains the embed-
dings of the first and last visited nodes.

A very similar architecture has been used to solve other
problems such as the SDVRP, the Orienteering Problem
and the Prize Collecting TSP (Kool, van Hoof, and Welling
2018; Nazari et al. 2018). In Fig. 1(b) we illustrate how the
same architecture is adapted for the SDVRP problem. Com-
pared to TSP, node features are augmented to account for
demands. This also has consequences on the context as we
will see later. Finally, as illustrated in Fig. 1(c), we adapt the
same architecture for the PCAP, first with as few changes as
possible: the node features are the power levels and chan-
nels, and edge features contain path losses between the var-
ious transceivers. The action is taken as well per node, and
the decoder learns to generate a probability distribution of
shape #APs×#power levels×#channels, that is the prob-
abilities of assigning power levels and channels to each AP.
One single action is then taken at each step in the decoder
loop by sampling from the learned distribution. The chosen
AP is masked for the next decoder iteration, such that only
the remaining available options remain. More generally, the
decoder loop may also iterate over edges as well in case that
actions are edge specific rather than node specific.

3.3 Differences between the problems
The three use cases mentioned in Sec. 3.1 are combinatorial
optimization problems that can be represented with graphs,
i.e. a set of node and edge features. The respective actions
are all related to nodes1. However, looking more closely,
there are differences that affect the “transfer” of architec-
tures from one problem to another.

Node vs. Edge features Generally, a graph G = (V,E) is
characterized by the node set V and the edge set E, together
with their respective features. The former represent entities
and their characteristics: cities with their coordinates in TSP,
customers with their locations and demands in SDVRP, and
APs with e.g. antenna gains and configurations as well as
STAs with e.g. their demands for PCAP. The latter encode
relationships between these entities, in terms of their mere
existence (e.g. possibility to travel from city A to city B in
TSP), the distance (e.g. between two cities), or various char-
acteristics of links (e.g. shadowing between transceivers).

In some real-life examples, there is a direct dependency
between node and edge features: for instance, if we provide
geographic coordinates, we can easily compute the straight-
line distances. In other cases, such conversion can only be
approximated: for example, given the geolocations of two
APs, the pathloss between them is subject to different types
of attenuation not obvious from their positions only. Finally,
some conversions, are highly complex or impossible: it is
very difficult to determine a STA’s meter-exact geolocation
from pathloss data. This fact leads us to the first major dif-
ference between the TSP/SDVRP and PCAP: unlike the TSP
where node features (coordinates) convey also information

1In other combinatorial optimization problems such as the net-
work design problem, the actions affect foremost the edges.

about edge features (distances between nodes), the “dis-
tances” between nodes in the PCAP is contained only in the
edge features in the form of path losses. This puts stress on
encoders that must capture well both node and edge features.

Static vs. action-dependent graph features As discussed
in Sec. 3.2, during each iteration of the decoder loop, the
agent increments the current partial solution with the new
action and modifies the context for the next iteration accord-
ingly. For TSP, this means masking already visited nodes,
and tracking the two end nodes of the current partial path.
For SDVRP, the residual demands need to be included “man-
ually”. The picture becomes even more complex for PCAP,
since a partial action has consequences on the current STA
coverage, AP loads, and interference between nodes.

Adopting a sequential decoder, we identify different types
of problems that depend on the consequences of partial so-
lutions on the features of yet unassigned nodes: (i) problems
where incremental actions do not change input features: this
is the TSP where the partial solution does not impact the
coordinates of the yet unvisited nodes. We speak of static
features only. (ii) Intermediate actions change some input
features while others remain unaffected. This is the case of
SDVRP where the residual demand is affected, but the geo-
coordinates (and consequently distances) are not. We speak
of a problem that has both static and dynamic features. (iii)
The partial solution affects all node features. This is the case
for PCAP where we have dynamic features only.

As illustrated in Fig 2(a), for “static features only” and
“static and dynamic features”, we can operate as follows:
First, obtain fixed embeddings hL

i of the problem, which are
immutable and independent from the agent’s actions. Then,
during decoding, simply include in the decoding context the
representation of (the consequences of) the current partial
solution (e.g. the residual demands for the SDVRP or the last
node visited in the TSP). This is not possible for our prob-
lem where keeping track of the current context becomes a
challenge for two reasons: (i) When the agent picks an incre-
mental action in iteration t, it also modifies the graph char-
acteristics (e.g. changes the initial power level from “low”
to “high”); thus, at the next decision at time t+ 1, the agent
should not rely anymore on the “old embeddings”, since they
might be not consistent with the current state of the graph.
Even (ii) keeping track of the recent “trajectory” (e.g. last
configured APs) becomes hard, since, as shown in Fig 2(b):
once an AP is modified, due to the GNN message passing,
the entire set of the embeddings change and the “new his-
tory” is no longer coherent with the past one.

To counter problem (i), in our adaptation, we implement
a re-embedding procedure: every time an action is taken,
the encoder computes again the updated embeddings before
proceeding with the next decoding iteration. However, re-
embedding does not solve (ii). In the absence of remedies,
we track the last three configured APs as decoder context
and test this issue empirically.



(a) TSP adaptation (b) SDVRP adaptation (c) PCAP adaptation

Figure 1: Abstraction of the generic pipeline used in recent literature. Red highlights indicate changes from the TSP.

(a) TSP (b) PCAP

Figure 2: Impact of agent’s intermediate decisions during
decoding loop: static and action-dependent features

3.4 Implementation and evaluation details
We build on the modular implementation released by (Joshi
et al. 2021)2. It consists of a framework to train TSP in-
stances of various sizes using different encoders (e.g. GAT
vs. GGCN) activating and deactivating on-demand certain
features (e.g. with vs. without decoder), using various hy-
perparameters etc. Our new study extends their work as we
adapt the encoder and decoder inputs and outputs to the
PCAP, and then we train the resulting model.

Our learning agent learns with the help of a custom
WLAN simulator that is able to compute STA coverage, in-
terference and AP load based on channel and power configu-
ration (actions). As our reward for the learner we use a vari-
ant of the objective function defined by (Ahmed and Keshav
2006). It is proportional to coverage, inversely proportional
to interference, and inversely proportional to the AP load.

We tested on scenarios with varying numbers of APs,
ranging from 9 to 32 APs. Whenever possible, exact results
were obtained by complete enumeration. Since this is ex-
tremely costly in terms of time resources, it was feasible
only for the network sizes of 9, 14 an 16 APs. This is why
a local search heuristic was employed to find solutions for
larger instances. Roughly, the heuristic outputs a locally op-

2https://github.com/chaitjo/learning-tsp

timal power configuration with respect to the reward func-
tion. Given an initial configuration, it varies the power level
for each AP separately within a specified range, while keep-
ing the remaining configuration constant. The best individ-
ual power level for each AP, together with its overall reward
gain, are recorded. After an iteration over all APs, the best
improvement is compared with a simultaneous change of
all APs into their individual directions, and the process is
repeated for the best configuration found. If no further im-
provement can be achieved, the algorithm terminates.

The metrics we used to validate the results are: (i) the op-
timality gap whenever we could exhaustively compute the
optimal solution, or the heuristic gap which is the gap to
the best solution found by our local-search based heuristic.
The gap is described as gapi =

r(x∗
i )−r(x̂i)
r(x∗

i )
, where x̂i is the

model’s solution for batch i and x∗
i the exact/heuristic one,

and r is the reward; (ii) reward difference, which measures
the difference between the rewards of the two competing so-
lutions when applied on the same graph instance. An interval
of confidence around the mean is also computed to ensure
the difference is significant.

APs and STAs were randomly distributed in the plane for
each scenario: this resulted in 32 different instances for each
scenario. We used 50 different seeds for training and valida-
tion in order to ensure robustness of results: 50×32 = 1600
attempts were evaluated per scenario so that the results in
Fig. 7 alone represent about 300 GPU-hours.

4 Transfer results
We first evaluate whether the current state-of-the-art archi-
tectures, valid for the TSP, perform well on PCAP. Firstly,
on Sec. 4.1, we evaluate the existing architectures introduc-
ing “as few changes as possible”, only adapting the inputs
and outputs of both the encoder and the decoder. Then, in
Sec. 4.3 and Sec. 4.2, we empirically test to what extent the
overall behaviour is influenced by the problem differences
highlighted in Sec. 3.3.

4.1 Transfer “as it is”
Fig 3 shows the optimality gaps, and gaps from heuristic,
achieved by the state-of-the-art model, compared to a ran-

https://github.com/chaitjo/learning-tsp


Figure 3: Best TSP architecture vs Random Decision Maker

dom decision maker. Each approach is given 100 attempts
to find the best solution for each scenario, and only the best
guess is ultimately kept. As can be seen, the best random
guesses outperform those of the TSP solver in many sce-
narios: otherwise stated, we gather that current state-of-the-
art choices which are valid for the TSP, are not necessar-
ily transferable to other combinatorial graph problems. To
shed further light on the reasons behind this poor perfor-
mance, and having in mind the differences we highlighted
in Sec. 3.3, in the remainder of this section, we drill down
further on the root causes of the above observation.

4.2 The encoder under-represents structure
As pinpointed in Sec. 3.3, edge features are highly impor-
tant for PCAP while they can be derived from node features
for TSP. We now determine whether and how current archi-
tectures handle such information. To this end, we compare
in Fig 4 the behavior of a blind model, from which edge
weights are deliberately hidden, and the state-of-the-art ver-
sion, which we name edge-aware here.

Quite surprisingly, both the optimality gap and the abso-
lute difference between rewards indicate that the blind coun-
terpart is achieving better performance on most occasions:
overall, this suggests that design-choices in the current state
of the art cannot deal with edge features effectively. Even
worse, edge weights seem to be a source of noise that limits
the agent’s ability to learn the simplest policies. As an ex-
ample of a simple policy, we noticed that using our reward
function, solutions with mostly minimum power levels per-
formed better than random assignments.

We further confirm this shortcoming by performing a sim-
ilar comparison on the TSP. We evaluate a TSP version with-
out coordinates as node features, but with distances between
cities as edge features. Intuitively, removing node coordi-
nates from the input should force the model to use edge
weights instead to solve the problem. We compare, in Fig. 6
(ignore distance-encoder for now) , such edge-aware version
to a blind TSP model and a model that uses coordinates. We
observe that edge-aware architecture does not zero the gap
with the one based on coordinates. Even though they per-
form better than blind models, their representations appear

Figure 4: Blind vs Edge-aware models

Figure 5: Encoder-only vs Encoder-decoder

to be less useful than when coordinates are available. This
confirms that the encoding behaviour of this architecture is
tainted by a poor handling of edge features, hinting to the
need for alternative solutions.

4.3 The decoder does not help
The other possible issue we discussed in Sec. 3.3 and Fig.2
relates to static and action-dependent features. Since PCAP
mainly has action-dependent features, it may prove partic-
ularly challenging for current decoding schemes. The latter
expect a context that is consistent through the decoding steps
but obtain one that is continuously altered by intermediate
decisions. To further investigate this, we test the same archi-
tecture ablating the decoder. Fig 5 compares an encoder-only
model to the state-of-the-art encoder-decoder architecture.
In the ablated architecture, the decoder context is removed
and only a simple manipulation of the encoder’s embeddings
(e.g. linear transformation) is performed.

The results show that removing the decoder benefits all
models, confirming our intuition that the decoder is prob-
ably confused, adding noise rather than benefiting the ar-
chitecture. Not shown in the figure, the encoder-only model
is the first attempt so-far that outperforms the 100-random-
attempts baseline for the PCAP in four out of six scenarios.



Figure 6: Confirmation on TSP

Overall, this result calls for better decoders that can handle
problems with action-dependent features.

5 Distance Encoding to the rescue
As introduced in Sec. 2, Distance Encoding has been pro-
posed recently as a way to enhance the representational abil-
ities of GNNs. After briefly introducing distance encoding,
we empirically evaluate its impact on solving PCAP.

5.1 Qualitative analysis
Since existing models are unable to capture the relationships
between nodes contained in graph edges, distance encoding
attempts to transfer edge information to nodes directly. Us-
ing a “edge2node transformation”, a novel artificial feature
is added to node features which GNNs are more readily able
to process. In practice, the algorithm (i) obtains a distance
matrix D exploiting a certain definition of “distance” (e.g.
shortest path, personalized PageRank score etc) (ii) apply
some learnable transformations on the matrix (e.g. a simple
dense NN layer) (iii) aggregates the information such that
the N × N distance matrix D becomes an N × 1 vector.
As a result, the latter is not only representative of the node
itself, but also of its surroundings, allowing the use of all the
available graph information and strengthening the structural
representation of the problem.

Note that distance encoding creates a novel action-
independent feature, making it possible to leverage the work
of (Kool, van Hoof, and Welling 2018). It becomes in theory
possible to first use this new static information to build the
encoded representation of the problem; then, with fixed and
action-independent embeddings, add the dynamic informa-
tion as a context, solving some of the decoder’s shortcom-
ings mentioned in Sec. 3.3.

5.2 Quantitative analysis
Fig. 7 shows our results when comparing a blind model, an
edge-aware one, the usual random-based baseline and finally
a model using Distance Encoding, first on the power allo-
cation problem. We observe that distance encoding reduces
the results’ variance in almost all scenarios. The benefits of
distance encoding are even more visible when considering
larger and more challenging scenarios such as networks with
32 nodes. Among the alternatives that we tested, distance
encoding seems to consistently enhance the PCAP represen-
tation, as it is the only one that always outperforms the best
choices of the random decision maker: e.g., notice especially

Figure 7: Distance Encoding and PCAP

for network size 28 that blind and edge-aware are outper-
formed by best of random choices.

Similar observations concerning Distance Encoding are
also valid for the TSP problem shown in Fig. 6. Although
not spectacular, a significant improvement is brought by the
Distance Encoding compared to the classic GNN counter-
parts (blind and edge-aware). At the same time, the fact that
the distance encoding still under-performs compared to the
coordinates version suggests clearly that, although it is a
promising direction, more effort is needed to improve cur-
rent encoders to successfully tackle problems where edge-
features are of primary importance.

6 Conclusions
This paper evaluates whether state-of-the-art neural combi-
natorial optimization architectures, often evaluated on the
TSP problem and similar variants, are useful for other graph
problems of practical relevance, taking the power and chan-
nel radio allocation problem as a concrete example. Unfor-
tunately, our results show that finding neural models capa-
ble of extracting good features from any input graph is still
an unsolved problem: existing options we evaluated fail to
properly exploit edge features. We also showed that the ab-
sence of immutable node features (such as coordinates for
TSP) prevents existing decoders from leveraging a graph
representation context that is coherent through the steps of
the decoding loop: our experiments testify indeed that mod-
els using only the encoder’s representations perform better
than more sophisticated encoder-decoder counterparts.

To enhance the encoder’s representation power, we evalu-
ate distance encoding, a recent proposal that transforms edge
features into node ones. On the one hand, we find that both
our PCAP and a TSP variant without coordinates benefit
from its use. On the other hand, we also find that distance
encoding does not attain the performance of coordinates-
based counterpart. Ultimately, if building generic solvers for
a variety of graph problems is the goal, our results call for
carefully rethinking the neural combinatorial optimization
pipeline along two axes: (i) encoders that better represent
the inputs, and (ii) new ways to handle action-dependent
features, which we believe to be interesting and important



problems for the scientific community.
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