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ABSTRACT 

This paper presents relevant results achieved during the NAVISP-

EL1-035.02 project funded by the European Space Agency, which 

aimed to investigate the possible uses of Machine Learning (ML) 

based techniques for the processing of data in the field of Global 

Navigation Satellite Systems (GNSSs). For this purpose, we 

explored different kind of data present in the entire chain of the 

positioning process and different kind of ML approaches. In 

particular, this paper presents the system architecture and 

technologies adopted for developing the GNSS ML Demonstrator 

(GMLD), as well as the approaches and the results obtained for one 

of the most promising GNSS implemented applications, which is 

the prediction of daily maps of the ionosphere. Results show how, 

based on the historical data and the time correlation of the values, 

ML methods outperformed benchmark methods for the majority of 

the applications approached, improving the positioning 

performance at GNSS user level. Since the GMLD has been 

designed and implemented providing the general data management 

and ML capabilities as part of the framework, it can be easily 

reused to execute further investigation and implement new 

applications. 

Index Terms— Machine-learning, MLOps, GNSS, 

Demonstrator, Ionosphere, Positioning, GSSC 

1. INTRODUCTION 

The GNSS ML Demonstrator (GMLD) is a modular software tool, 

developed to investigate possible applications in the Global 

Navigation Satellite System (GNSS) domain that could benefit 

from ML capabilities, thus improving some elements of the entire 

GNSS process to provide better positioning, navigation, and timing 

(PNT) services. Since, GNSS-based PNT has become fundamental 

for a wide range of applications, comes out the need to access 

correct GNSS values. Therefore, being Machine Learning (ML) 

methods powerful tools demonstrating their value when dealing 

with large amount of data, the exploitation of GNSSs historical 

data by means of the implementation of AI based models has come 

to assume particular importance. 

ML-based techniques have already been investigated for 

GNSSs and also proved their effectiveness on the receiver side [1], 

[2]. Instead, this study aimed at investigating and demonstrating 

the use of ML in the broader area of the GNSS domain. In 

particular, our major goal was to improve the GNSS data that 

affect the quality of the GNSS measurements used for the position 

estimation. Such data might be either included in the navigation 

message or coming from external sources, and be needed for the 

construction of the pseudorange or to correct the latter from 

predictable error contributions. When such pieces of information 

are either missing - due to communication or demodulation issues - 

or outdated, the impact on the estimation of the position, velocity 

and time (PVT) could be disruptive. The investigated solutions aim 

at mitigating the impact of these issues by predicting some 

parameters, when missing, or implementing proper 

countermeasures at receiver level when the presence of errors in 

the data or in the  measurements is detected/predicted (e.g. 

excluding some pseudoranges from the PVT computation or 

adapting the receiver tracking loops parameters). To this purpose, 

we investigated a set of case-studies of applications that implement 

ML models able to predict missing information or the presence of 

possible error sources, and also designed and implemented a 

modular software tool, the GMLD, which provides the general data 

management and ML capabilities as part of the framework itself. 

2. THE GNSS ML DEMONSTRATOR 

The GMLD consists of the software modules implementing four 

selected applications plus other shared modules that are used 

across applications. The shared modules provide capabilities to 

read and write GNSS data and manage ML model definition, 

training, validation and run. Fig. 1 represents the logical software 

architecture showing the data sources to be interfaced by the 

system, the identified software components, the main data flows 

intra the GMLD software system, the data stores providing storage 

services and the two different application pipeline configurations. 

They are the development and production configurations needed to 

build the application ML models and to run them inside the 

applications, respectively.  

The input of the GMLD are files of GNSS data products 

stored in several repositories (MinIO as object storage system and 

InfluxDB as timeseries database) accessed to retrieve historical 

datasets. Data are stored in raw format and then pre-processed to 

feed the ML application pipelines, which consist of the following 

three stages. The Feature Extraction is dedicated to the extraction 

of information which is provided as input to the ML based models. 

Of course, the feature selection is strictly dependent by the 

application. The Machine Learning Module implements training 

and validation, in the development pipeline, and prediction, in the 

production pipeline. It is built using algorithm implementations 

available in open source ML frameworks and libraries (e.g. 

TensorFlow, Keras, etc.), whose architectures were properly 

instantiated, configured and tuned to reach the expected application 

performance. The GMLD integrates a ML Registry, based on an 

instance of MLFlow, in order to record all the experiments of the 

training and validation activities and to catalog the trained models. 
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The Flow Engine orchestrates the applications: it allows defining, 

coordinating, and monitoring both the application pipelines and the 

other data management flows. It is based on Apache Airflow, so 

the pipelines are represented by Airflow Direct Acyclic Graphs. 

The Post-processing Module consists of a data product generator 

and other tools needed to support the GNSS performance 

assessment. It is in charge of reading the output returned by the 

ML models and generating the data products according to the 

GNSS data products format. This step makes the output data ready 

to be explored and analysed by means external tools that are 

common in the GNSS domain. Finally, the GMLD has a front-end 

based on the notebook technologies (Jupyter Notebook). It is used 

for data exploration, ML models development from preprocessing 

to model validation, and production application execution. The 

above mentioned technologies allow to scale the amount of data to 

be managed and processed by the GMLD, e.g. by increasing the 

number of data store nodes, the number of processing workers or 

the computation power granted by the GPUs cluster. 

In addition to the standalone software, the applications 

have been deployed into the GNSS Science Support Centre 

(GSSC) platform [3]. For this purpose, each application has been 

refactored in order to be independent from the GMLD software 

components and integrated as GSSC DataLab tool. In particular, a 

docker container for each application has been prepared and 

delivered to the GSSC team that was in charge of the integration. 

3. SELECTED GNSS APPLICATIONS 

All the identified applications accomplish the purpose of the 

GMLD, which is the investigation of the use of ML techniques into 

the GNSS domain to reduce the impacts of the different error 

sources or the data lack. They are completely developed and live 

inside the Demonstrator, starting from different type of data 

source, and explore different factors impacting the navigation 

message performance. Also, they were selected to cover several 

classes of ML techniques. They are developed as integration of 

both generic data modules and specific application modules and 

their integration is based on data flow control realized through 

DAG pipeline definition and implementation.   

In the following, the four selected applications: 

 improving orbit prediction by means of the prediction of 

ephemeris parameters based on historical data; 

 prediction of daily maps of the ionosphere, that is the 

global Total Electron Content (TEC) map sequences 

given the previous states of the ionosphere; 

 estimation of the SBAS (Satellite-based Augmentation 

System) correction parameters in the missed messages; 

 disturbances and outlier detection (e.g. early scintillation 

and satellite signals suffering from the multipath effect). 

Each application could be seen as a portion or a simplistic 

case of an extended application that may affect or involve the 

whole GNSS processing chain. As example, the first application 

could be extended to the development of an algorithm embedded in 

a GNSS receiver that can be able to estimate satellites positions 

when the broadcasted ephemeris are not available, based on the 

observations and processing the received broadcasted ephemeris.   

In the rest of the paper we report the description and results 

of one of those applications that turned out to be the most 

promising in terms of performance assessment. Details about other 

implemented applications can be found in [4], more focused on the 

applications and their scientific results. 

4. TEC MAPS PREDICTION 

The Total Electron Content in ionosphere corresponds to the total 

number of electrons integrated along the path from each GNSS 

satellite to the receiver. It is one of several indicators of 

ionospheric variability that impacts GNSS signals traveling 

through this layer of the atmosphere and interacting with the free 

electrons. The objective of the application is to predict global TEC 

map sequences given the previous states of the ionosphere. When 

looking at the temporal evolution of TEC maps, they represent a 

time series of image frames, and the current status map can be 

inferred from the ionosphere previous states. Temporal prediction 

Fig. 1. High level schema of the GMLD. 

AI for Enhanced Information Extraction

Proc. of the 2023 conference on
Big Data from Space (BiDS’23) doi:10.2760/46796

130 6–9 November 2023

http://doi.org/10.2760/46796


of TEC maps is analogous to the well-studied problem of future 

frame prediction in video. This topic has recently received great 

attention as it is a challenging problem that substantially benefits 

from the powerful representation learning capabilities of 

Convolutional Neural Networks (CNN). TEC maps have a simpler 

content and smoother evolution than arbitrary video sequences, so 

it is possible to leverage the knowledge and architectures recently 

developed for video frame prediction ([5], [6]) to solve this task. In 

the approach proposed, TEC map is treated as a whole and the goal 

is to predict the entire map, exploiting the spatial and temporal 

correlation among the different points of the map grid. 

4.1. Model Implementation 

The ResNet backbone architecture was chosen for the application, 

as it is used in a wide variety of regression problems concerning 

images/videos: they are known to perform better than architectures 

without skip connections, as they enable each layer to learn just 

what is not already present in the input, rather than learning a 

model of the whole data [7]. Different solution were tested in order 

to exploit the temporal correlation; in this paper the final 

configuration of the model is reported. It concatenates the past 

TEC maps from T to T-K hours, therefore even maps at hours-of-

the-day that are different from the target one are exploited. This 

choice allows better exploitation of short-term spatial and temporal 

correlation patterns thanks to the smooth evolution of TEC over 

temporally subsequent maps. The ResNet based model, shown in 

Fig. 2 is composed of alternating a 3D convolutional layer (C), 

batch normalization (N), and ReLU (R) non-linearity. Two residual 

blocks of C, N, R are used to build a deeper model. Convolution 

over the time dimension allows to track the smooth temporal 

evolution of the features extracted by spatial convolution. The 

output is an image with 2 channels, which are summed with the 

image representing the TEC map at T-22 and T-20 hours (H), 

respectively, to generate the outputs that are the predictions for 

time T+2H and T+4H. The scope of this global skip connection is 

the exploitation of the strong correlation between the map of 24 

hours before and the future maps. The filters in the convolutional 

layers ensure that a sufficiently large receptive field is available to 

extract meaningful spatial and temporal features. The model was 

trained by minimizing the mean squared error (MSE) between the 

predictions and the ground truth (GT) TEC maps at T+2H and 

T+4H. The model has a lot less trainable parameters than what is 

typical for video sequences, so more sophisticated models in the 

video frame prediction literature cannot be reliably trained or 

would not provide significant advantages due to overfitting. 

In addition, we explored the possibility to use also different 

geomagnetic indices, providing additional information on the 

ionosphere status. In particular, Sunspot number and Kp-index 

time series were added to the TEC map time series, so that the NN 

can exploit the correlation of the indices over time. Several tests 

were conducted in order to estimate the best subset of features 

among all these parameters. The final model manages the presence 

of these additional parameters, i.e. the sunspot number in our final 

case. Input data are prepared by creating additional layers of 

repeated values to be stacked with the TEC maps, according to the 

scheme in Fig. 3. Nx = 71 and Ny = 73 are the dimensions of the 

TEC map, K is the number of previous TEC maps to be used as 

input for the model. At each time step, a map containing the 

repeated values of the series is created and added as an additional 

layer. Combined data have thus input size (Nx, Ny, K, m) where m 

= 2 is the number of features of the ML model in the channels-last 

convention, i.e. TEC and sunspot number. Following this 

approach, it is easy to scale the input size when more features are 

considered. 

 
Fig. 3. Input data preparation 

4.2. Results 

Dataset selection for the experiment was realized by considering 

the maximum period of the Solar Cycles 23 (November 2001) and 

4-year datasets (i.e., 2001-2004) have been created by processing 

downloaded data. Datasets were divided into training (70%), 

validation (20%), and test (10%) sets.  

The numbers of the past (K) and future observations are 

customizable, but the tests executed focused on 24 and 36 hours of 

past data. The majority of tests focused on the prediction of T+2H 

and T+4H, since we concluded to focus on short term predictions, 

which are more meaningful. The different model architectures, 

together with the hyperparameters values, have been compared by 

considering the values of the functional metrics, the Root Mean 

Square Error (RMSE) and the Mean Absolute Error (MAE). The 

metrics were computed on the whole validation and test datasets 

but also on each step forward of the prediction, in order to have a 

look on the mean model performance, but also to see how different 

the models behave when more hours in advance are predicted. 

In Fig. 4 it is shown a comparison among three models 

with same configuration, apart the different data input: only TEC 

map, TEC and Kp-index, TEC and Sunspot number. In the first 

two graphs, we see that the Loss function (MSE) has always a 

good trend, both the training and validation cases. In the latter one, 

green and orange lines show that the errors on validation set are 

lesser when an additional parameter is considered, and the Kp-

index seems to be the more meaningful. At the same time, on the 

last graph, we have the time to train on the abscissa: the green line 

reaches a convergence in less than the half time of the orange line 

(based on a GPU usage). Fig. 5 reports the comparison among the 

errors obtained for each step ahead of the prediction and for dataset 

(validation and test). It can be observed that the error at T+4H is 

double with respect to T+2H and that the validation results are 

confirmed by the metrics calculation on test dataset. 

The analysis of the overall TEC prediction performance 

has been carried out with respect to the ground truth TEC maps in 

the test set. The estimated maps provided by the ML model have 

been used to compute the average vertical ionospheric bias error 

(AVIBE) affecting the pseudorange. This error has been computed 

for each latitude and longitude pair, on a grid of 71x73 points, 

averaging over 4279 subsequent observations of the TEC map. The 

resulting AVIBE was drawn onto an Eckert map projection. Fig. 6 

shows the AVIBE values for a T+2H prediction of the TEC map. 

The whole error map can be aggregated into a mean absolute error 

Fig. 2. Neural network architecture, channel last convention. 
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Fig. 5. RMSE values computed on validation and test datasets. 

of 2.5105 TECU, equals to a 40.8cm of vertical ionospheric bias. 

 Moreover, GMLD implements a second level of 

performance assessments for each application. In this case it is 

based on the comparison with two benchmark methods. The first 

one consists in using the last available map, which is the map at 

time T, as prediction of the future ones. The second method 

consists in using the map at 24H before, e.g. the map at time T-

22H as prediction of map at T+2H. The errors evaluated when the 

GT data are predicted with ML models are compared with the ones 

evaluated when a benchmark method is used. Errors are shown 

through the front-end, both per map and per map points, to see 

which regions have worse predictions. 

In order to explore further the benefit from the usage of 

the predicted data, in addition to these comparison outputted by the 

GMLD itself, the assessment of the performance has been extended 

evaluating the impact on the slant TEC computation within the 

grid. We considered different user positions on Earth, in order to 

fulfill the analysis of diverse use cases. The method provided 

satisfactory results compared to the input data complexity. Other 

methods in literature aimed at predicting the different variables 

used to build TEC maps, but the difficulty in finding historical time 

series of needed data makes the ML based approach here presented 

worthy of interest. More details about results are reported in [4]. 

5. CONCLUSIONS 

The GMLD, presented in this paper through its architecture and 

one of its applications, turned out to accomplish the main goal of 

enabling the data scientists and domain experts to investigate 

possible applications in the GNSS domain that could benefit from 

ML capabilities. Thanks to its modularity, to the data management 

capability, to the integration of useful tools to manage ML dev-ops, 

and to the pipeline execution and monitoring engine, it enables the 

users to train deep models, validate them through customized data 

analysis and benchmark methods comparison, and finally to release 

full GNSS applications. Moving to these latter, the investigation 

has provided evidences that the usage of the ML techniques in 

several GNSS contexts can contribute to improve the data products 

reducing the impact of the different error sources or data lack. 

Results presented in the previous chapter about the TEC map 

prediction show the capability to forecast at different time steps  

 
Fig. 6.  Average vertical ionospheric bias error, T+2H, 

performed over consecutive snapshots. 

ahead, thus making this method applicable in a potential GNSS 

service, or in a receiver unable to get updated information neither 

from a SBAS satellite nor from a third party service. 
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