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Abstract
This technical note proves analytically how the exact equivalence of the Newton-Euler and Euler-Lagrange modeling for-
mulations as applied to multirotor UAVs is achieved. This is done by deriving a correct Euler-Lagrange multirotor attitude
dynamics model. A review of the published literature reveals that the commonly adopted Euler-Lagrange multirotor dynamics
model is equivalent to the Newton-Euler model only when it comes to the position dynamics, but not in the attitude dynamics.
Step-by-step derivations and calculations are provided to show how modeling equivalence to the Newton-Euler formulation
is proven. The modeling equivalence is then verified by obtaining identical results in numerical simulation studies. Simula-
tion results also illustrate that when using the correct model for feedback linearization, controller stability at high gains is
improved.

Keywords Multirotor · Modeling · Control

1 Introduction

Derivation of an accurate mathematical model is essential
and prerequisite to model-based control of complex dynamic
systems in general, and of multirotor UAVs in particular. For
example, when considering dynamic inversion control, an
accurate mathematical model of the system under consid-
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eration should allow for compensation of (any) nonlinear
effects, and for linearization of the system dynamics. How-
ever, as it happens in almost all cases, it is not realistic to
expect complete ‘capture’ of all nonlinear system dynam-
ics effects through a mathematical model, even though the
derived model itself does contribute to achieving desirable
performance.

When focusingonmultirotorUAVs, theNewton-Euler (N-
E) and Euler-Lagrange (E-L) formulations are the two main
modeling approaches, albeit following different principles;
that is, balancing of forces, and the principle of least action,
respectively. Regardless, the N-E and E-L formulations are
equivalent, and when applied and implemented onmultirotor
UAVs, they should return identical results.

However, after a thorough literature review, this work
reveals that when it comes to the published E-L formula-
tions, when substituting the transformation matrix from the
body-fixed frame angular velocity to Euler angle derivatives,
the N-E and E-L attitude models are not equivalent - this is
shown in detail in Section 3. Hence, the motivation and main
objective of this paper is twofold: First, derive a correct E-L
(c-E-L) attitude dynamics model for multirotors, registering
at the same time the main differences with the E-L formula-
tions used in literature. The proposed c-E-L model is based
on the one presented in [1]. Second, prove analytically the
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c-E-L model’s equivalence to the N-E formulation (position
and attitude dynamics). Then, to show the implementation
improvements with the adoption of the c-E-L, the modeling
equivalence is demonstrated through numerical simulations
on quadrotors.

The quadrotor is studied because it is themost widely used
configuration of a multirotor UAV. Its mathematical model
description may be found in [2–4], where both formulations
are detailed. To be specific, the first E-L formulations may
be found in [5–10], while details of the N-E formulation are
presented in [11, 12]. Both formulations have been widely
used and have been implemented for model-based control
and navigation.

State of the art E-L quadrotor models with global validity
[13–15] are not affectedby thefindings in this paper due to the
coordinate-free nature of their formulations. Nevertheless,
the Euler angle variant of the E-L quadrotor model is still
adopted in literature work [16, 17], which supports further
the correction proposed in this paper. The findings of this
work are coherent to the general attitude E-L formulation of
[18], which was published at the time of writing this paper.
Although following different approaches, both papers arrive,
independently, at the same result.

The rest of the paper is organized as follows. Section 2
introduces the required notation, and the N-E and E-L
quadrotor dynamics models as found in the related litera-
ture. Section 3 details the proposed c-E-L model and proves
its equivalence to the existing N-E model found in the lit-
erature. Section 4 includes simulation results. Controller
performance comparisons between the proposed and exist-
ing models verify and illustrate the equivalence between the
two modeling approaches as presented in this paper. Lastly,
in Section 5, conclusions are offered.

2 Notation and Background Information

2.1 Notation

Let In denote the n × n identity matrix. Moreover, given
vectors a, b ∈ R

3, denote S(a)b = a × b, where

S(a) =
⎡
⎣

0 −a3 a2
a3 0 −a1

−a2 a1 0

⎤
⎦ (1)

is the 3×3 skew symmetricmatrix composed of the elements
of a. In addition, consider the unit vector e3 = [0, 0, 1]T .
The notation da

dt and ȧ is used interchangeably throughout
the paper.

In what follows, for clarity purposes, the N-E and E-L
quadrotor dynamics are considered, which may be easily
generalized to any multirotor UAV dynamics.

2.2 Quadrotor Nonlinear Dynamics

The N-E quadrotor dynamics, as presented in [2], are
described by the following equations

J ω̇ = M − S(ω)Jω , (2)

v̇ = 1

m
T e3 − S(ω)v − gRT (η)e3 , (3)

where S(ω) ∈ R
3×3 is the skew symmetric matrix of

the angular velocities, ω, defined in the body-fixed frame,
J ∈ R

3×3 is the constant diagonal inertia matrix, M is the
external torque induced by the quadrotor propellers in the
body-fixed frame, v is the quadrotor linear velocity vector
in the body-fixed reference frame, m is the total mass of the
quadrotor, g is the gravitational acceleration, and T is the
total produced thrust. The matrix R(η) ∈ R

3×3 represents
the rotation from the body-fixed frame to the inertial frame.
Note that the choice of R(η) is not unique since the quadrotor
dynamics are invariant to any choice of Euler angles con-
figuration that may be used to represent the attitude of the
quadrotor.

The E-L formulation, as introduced in [19], is represented
by the following two equations

η̈ = J−1
R (η)(M − C(η, η̇)η̇) , (4)

p̈ = 1

m
T R(η)e3 − ge3 , (5)

where η = [φ, θ, ψ]T is the vector of any choice of Euler
angles configuration, and p = [x, y, z]T is the inertial refer-
ence frame position vector. JR(η) is the rotated inertia matrix
andC(η, η̇) is thematrix accounting for centrifugal andCori-
olis effects.

3 Equivalence of the N-E and E-L Modeling
Formulations

To verify if the E-L and N-E models are equivalent, a coordi-
nate transformation should lead from one formulation to the
other. Starting from the position dynamics, the linear veloc-
ity expressed in the body-fixed frame is related to the inertial
frame velocity by the following equation

v = RT (η) ṗ (6)

Thus, by substituting Eqs. 6 in 3, the following equation is
derived (with all steps shown in detail)

d(RT (η) ṗ)

dt
= −S(ω)RT (η) ṗ − gRT (η)e3 + 1

m
T e3
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˙RT (η) ṗ + RT (η) p̈ = −S(ω)RT (η) ṗ − gRT (η)e3 + 1

m
T e3

������
S(ω)T RT (η) ṗ + RT (η) p̈ = ������−S(ω)RT (η) ṗ − gRT (η)e3 + 1

m
T e3

p̈ = −ge3 + 1

m
T R(η)e3 (7)

The resulting equation is the same as Eq. 5, thus, the
equivalence between the N-E and E-L position dynamics for-
mulations (as found in the literature) is proven.

However, the relationship between the Euler angles
derivatives η̇ and the angular velocitiesω is less intuitive. This
relationship may be derived by considering the rotation from
the inertial reference frame (IF) to the body-fixed frame (BF)
as the composition of three elementary rotations. To achieve
this, two intermediate reference frames are defined, F1 and
F2, respectively. Following [20], without loss of generality,
to show how this relationship is derived, the Tait-Bryan 321
sequence of rotations is employed as shown in Fig. 1, and it
is detailed next.

• IF−→F1
F1 is obtained from the elementary rotation of an angleψ

with respect to the z-axis of the IF, defined as R3(ψ)T =
R3(−ψ). The related angular velocity in the IF isωψ,I =[
0, 0, ψ̇

]T
. It follows that the angular velocity in F1 is

given by ωψ,1 = R3(−ψ)ωψ,I = ωψ,I .
• F1−→F2
F2 is obtained from the elementary rotation of an angle
θ with respect to the y1-axis of F1, defined as R2(θ)T =
R2(−θ). The related angular velocity in F1 is ωθ,1 =[
0, θ̇ , 0

]T
. It follows that the angular velocity in F2 is

given by ωθ,2 = R2(−θ)ωθ,1 = ωθ,1. Moreover, in F2,
the angular velocity related to the angle ψ is ωψ,2 =
R2(−θ)ωψ,1 = R2(−θ)ωψ,I .

• F2−→BF
BF is obtained from the elementary rotation of an angle
φ with respect to the x2-axis of F2, defined as R1(φ)T =
R1(−φ). The related angular velocity in F2 is ωφ,2 =

Fig. 1 Tait-Bryan 321 Sequence of Elementary Rotations from IF to
BF

[
φ̇, 0, 0

]T
. It follows that the angular velocity in BF is

given by ωφ,B = R1(−φ)ωφ,2 = ωφ,2. Moreover, in
BF, the angular velocity related to the angle θ is ωθ,B =
R1(−φ)ωθ,2 = R1(−φ)ωθ,1. Finally, in BF, the angular
velocity related to the angleψ isωψ,B = R1(−φ)ωψ,2 =
R1(−φ)R2(−θ)ωψ,I .

Therefore, the angular velocity as expressed in the BF is

ω = ωφ,B + ωθ,B + ωψ,B = ωφ,2 + R1(−φ)ωθ,1

+R1(−φ)R2(−θ)ωψ,I =

=
⎡
⎣

φ̇

0
0

⎤
⎦+ R1(−φ)

⎡
⎣
0
θ̇

0

⎤
⎦ + R1(−φ)R2(−θ)

⎡
⎣

0
0
ψ̇

⎤
⎦ =

= I31 φ̇ + A2θ̇ + B3ψ̇ = [
I31 , A2, B3

]
︸ ︷︷ ︸

=W (η)

⎡
⎣

φ̇

θ̇

ψ̇

⎤
⎦

(8)

where I31 is the first column of the 3× 3 identity matrix, A2

is the second column of A = R1(−φ), and B3 is the third
column of B = R1(−φ)R2(−θ).
Thus, in more compact form

ω = W (η)η̇ (9)

η̇ = W−1(η)ω (10)

whereW depends on the choice of the Euler angle sequence.
One example, for clarification purposes, may be found in
[21]. Kinematic relations Eqs. 9 and 10 are invariant to the
choice of the Euler angles, but the configuration needs to
be consistent with the choice of R. However, different Euler
angles configurations will result in a different W , and so,
given Eq. 10, it is recommended to choose a configuration in
whichW is invertible for the whole flight envelope, see [19],
except when the pitch angle is equal to π (an uncommon
state outside acrobatic manoeuvres).

When substituting Eq. 9 in the N-E attitude model Eq. 2,
this leads to

M = d(J (W (η)η̇))

dt
+ S(W (η)η̇)JW (η)η̇

M = J Ẇ (η)η̇ + JW (η)η̈ + S(W (η)η̇)JW (η)η̇

M = JW (η)η̈ + (J Ẇ (η) + S(W (η)η̇)JW (η))η̇

(11)

where S(W η̇) is the skew symmetric matrix of W (η)η̇.
When compared to the literature E-L model shown in

Eq. 4, which can be rewritten as

M = JR(η)η̈ + C(η, η̇)η̇ (12)
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it leads to the following inequalities

JR(η)η̈ = WT (η)JW (η)η̈ �= JW (η)η̈ (13)

C(η, η̇)η̇ =
(
J̇R− 1

2

∂(η̇T JR)

∂η

)
η̇ �=(

J Ẇ (η)+S(W (η)η̇)JW (η)
)
η̇ (14)

and, in general, contrary to what should be expected, the
multirotor attitude dynamics following the E-L and N-E for-
mulations found in the literature do not produce an equivalent
result given that

J ω̇ − S(ω)Jω �= JR(η)η̈ + C(η, η̇)η̇ (15)

However, this shortcoming may be rectified based on the
approach introduced in [1], in which a proof is provided for
the equivalence of the projective N-E equations and the E-L
equations of second kind for spatial rigid multibody systems.
Considering the proof in [1], it is shown that for multiro-
tor UAVs (including quadrotors), the attitude dynamics E-L
equations should be written in the following form

d

dt

∂L

∂η̇
− ∂L

∂η
= WT (η)M (16)

instead of the one presented in [2], that is

d

dt

∂L

∂η̇
− ∂L

∂η
= M (17)

with the Lagrangian, L = 1
2ω

T Jω, which, in the case of atti-
tude dynamics, is equivalent to the rotational kinetic energy.

An intuitive reason for writing the c-E-L form as Eq. 16 is
given by noticing that a premultiplication ofWT would result
in Eqs. 13 and 14 being equalities. Moreover, this approach
is similar to the quaternion variant of the E-L formulation as
shown in [22]. Building on the above observation, it is now
shown that the same steps presented in [1] may be followed
to model multirotor UAVs / quadrotors.

Since it is considered that the forces are applied to
the center of mass of the quadrotor (multirotor), the posi-
tion and attitude dynamics can be analyzed independently.
Hence, only the E-L equations for the angular dynamics are
derived.

To prove the equivalence of the c-E-L model, to the N-E
model, the following relations are defined first. For bet-
ter readability, W is written without explicit dependence
on η.

Relation 1 ConsiderW (η)−1, the rows of which are given by
winv,1, winv,2, winv,3, as follows

W−1 =
⎛
⎝

winv,1

winv,2

winv,3

⎞
⎠ (18)

Next, define the matrix

	(W−1)=

⎛
⎜⎜⎜⎝

∂wT
inv,1
∂η

W−1

∂wT
inv,2
∂η

W−1

∂wT
inv,3
∂η

W−1

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎜⎝

(
∂wT

inv,1
∂η

W−1)T

(
∂wT

inv,2
∂η

W−1)T

(
∂wT

inv,3
∂η

W−1)T

⎞
⎟⎟⎟⎠=

⎛
⎝
S(winv,1)

S(winv,2)

S(winv,3)

⎞
⎠ (19)

This matrix, for any Euler angle sequence, is composed of
the skew symmetric matrices of S(winv,i ) with i = 1, 2, 3.

Relation 2 Note that the time derivative of W−1 can be
expressed as

dW−1

dt
=

⎛
⎜⎜⎜⎝

∂wT
inv,1
∂η

η̇

∂wT
inv,2
∂η

η̇

∂wT
inv,3
∂η

η̇

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

η̇T (
∂wT

inv,1
∂η

)T

η̇T (
∂wT

inv,2
∂η

)T

η̇T (
∂wT

inv,3
∂η

)T

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

ωT (
∂wT

inv,1
∂η

W−1)T

ωT (
∂wT

inv,2
∂η

W−1)T

ωT (
∂wT

inv,3
∂η

W−1)T

⎞
⎟⎟⎟⎠(20)

Relation 3 The following is obvious

∂η

∂η
= ∂η̇

∂η̇
= ∂(W−1ω)

∂η̇
= W−1 ∂ω

∂η̇
= I (21)

Relation 4 From Relation 3, the following holds

∂W−1

∂η
ω=

⎛
⎜⎜⎜⎝

ωT (
∂wT

inv,1
∂η

)

ωT (
∂wT

inv,2
∂η

)

ωT (
∂wT

inv,3
∂η

)

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

ωT (
∂wT

inv,1
∂η

)W−1

ωT (
∂wT

inv,2
∂η

)W−1

ωT (
∂wT

inv,3
∂η

)W−1

⎞
⎟⎟⎟⎠

∂ω

∂η̇
(22)

Relation 5 In addition, using Relation 3, it is true that

(
∂W−1ω

∂η

)
= ∂η̇

∂η
= d

dt

(
∂η

∂η

)
= d

dt

(
W−1 ∂ω

∂η̇

)
(23)

that leads to the following

(
∂W−1ω

∂η

)
= d

dt

(
W−1

) ∂ω

∂η̇
+ W−1 d

dt

(
∂ω

∂η̇

)
(24)
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Relation 6 Rearranging Relation 5 and substituting Eqs. 20,
22, and 19, the following equality is obtained

d

dt

(
∂ω

∂η̇

)
= W

(
∂W−1ω

∂η
− d

dt

(
W−1

) ∂ω

∂η̇

)
=

= W

(
W−1 ∂ω

∂η
+ ∂W−1

∂η̇
ω− d

dt

(
W−1

) ∂ω

∂η̇

)
=

=∂ω

∂η
+ W

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

ωT (
∂wT

inv,1
∂η

)W−1

ωT (
∂wT

inv,2
∂η

)W−1

ωT (
∂wT

inv,3
∂η

)W−1

⎞
⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎝

ωT (
∂wT

inv,1
∂η

W−1)T

ωT (
∂wT

inv,2
∂η

W−1)T

ωT (
∂wT

inv,3
∂η

W−1)T

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

∂ω

∂η̇
=

=∂ω

∂η
+ W

⎛
⎝

ωT S(winv,1)

ωT S(winv,2)

ωT S(winv,3)

⎞
⎠ ∂ω

∂η̇
=

= ∂ω

∂η
+ W

⎛
⎝

−winv,1S(ω)

−winv,2S(ω)

−winv,3S(ω)

⎞
⎠ ∂ω

∂η̇
=

=∂ω

∂η
− WW−1︸ ︷︷ ︸

=I3

S(ω)
∂ω

∂η̇
(25)

leading to

d

dt

(
∂ω

∂η̇

)
= ∂ω

∂η
− S(ω)

∂ω

∂η̇
(26)

Relation 7 Considering Eq. 9 it is easy to show that

(
∂ω

∂η̇

)T

= (∂η̇T WT )

∂η̇
= WT (27)

Given the relationships above, it is shown next that the c-
E-L formulation leads to an equivalent result with the N-E
attitude model.

Proof Themultirotor c-E-L formulationEq. 16 can be rewrit-
ten as

d

dt
(
∂ 1
2ω

T Jω

∂η̇
) − ∂ 1

2ω
T Jω

∂η
= WT M (28)

Since J is a constant symmetric matrix, this is equivalent to

d
dt

[(
∂ω
∂η̇

)T
Jω

]
−

(
∂ω
∂η

)T
Jω = WT M

d
dt

[(
∂ω
∂η̇

)T
]
Jω +

(
∂ω
∂η̇

)T
J ω̇ −

(
∂ω
∂η

)T
Jω = WT M (29)

From Eq. 29, by using Relations 6 and 7 one obtains

[

�
�

��(
∂ω

∂η

)T
+

(
∂ω

∂η̇

)T
S(ω)

]
Jω+

(
∂ω

∂η̇

)T
J ω̇ −

�����(
∂ω

∂η

)T
Jω=WT M

WT S(ω)Jω + WT J ω̇ = WT M (30)

And, for W having full rank, Eq. 30 is rewritten as

J ω̇ + S(ω)Jω = M (31)

This corresponds to the N-E quadrotor model formulation.
This equivalence does not hold when using the E-L formu-
lation from the literature Eq. 17. This concludes the proof.

Therefore, the proposed attitude c-E-L model is

WT M = JR η̈ + C η̇ (32)

which rectifies the literature E-L model of Eq. 12 and this
result reconfirms and agrees with findings in [18] for the
general attitude dynamics.

4 Comparison with Previous Formulations

Given the proof of the mathematical equivalence of the c-E-
L and N-E, it is straightforward to state that the presented
formulation leads to improved performance with respect to
the E-L quadrotor model found in literature. This section
shows the difference in performance considering the model
employed in Sections 4.1 and 4.2, as simulation platform,
and in Section 4.3, for model-based control.

4.1 Implementation Comparison Between
the Different Models

In this section, it is shown that the error between the c-E-L
and N-E formulations is lower compared to the one between
the E-L and N-E formulations. To do so, the same rotor input
velocity, u = [475.9+0.1 sin t, 476.2+0.1 sin t, 476, 476.1]
is applied to the (N-E, E-L, c-E-L) quadrotor models for
a period of 60s, and the root mean square error (RMSE)
is computed for the generalized coordinates (p, η, ṗ, η̇).
The choice of these rotor inputs is such that the quadrotor
will cover a long range in x, y, z, while having non constant
attitude and not reaching any singular configuration. From
Table 1, which illustrates results with an integration step of
10ms, it is evident that the c-E-L has a RMSE of 3 to 6 orders
of magnitude smaller than the literature E-L.
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Table 1 Comparison with E-L model from literature (10ms)

E-L c-E-L

RMSEp 1.853 67.976 × 10−6

RMSEη 8.135 × 10−3 496.720 × 10−9

RMSE ṗ 160.833 × 10−3 6.210 × 10−6

RMSEη̇ 4.416 × 10−3 21.692 × 10−9

Moreover, Table 2 shows that by further decreasing the
integration step to 1ms, the error of the correct model
decreases even more, while this is not true for the E-L model
found in literature E-L, leading to an error of 6 to 9 order of
magnitude smaller.

Note that, even though they are studied independently, the
position dynamics are affected by the attitude dynamics due
to the influence of the rotation matrix. For this reason it is
worth considering the RMSE for p and ṗ as well.

4.2 Comparison with Multibody Dynamic Simulator

Now, the comparison of these mathematical models with
respect to a multibody dynamic simulator such as Math-
works’s Simacape Multibody is considered. Note that Sim-
scape Multibody uses its own dynamic engine to solve the
equation of motions, while only the structure and the iner-
tia of the quadrotor is provided by the user. As shown in
Table 3, providing the same input as before to all models,
the N-E and the c-E-L state dynamics are almost identical
to the one of a multibody dynamic simulator, while the lit-
erature E-L model has a much larger error. Again, as shown
in Table 4, this becomes even more evident when decreasing
the simulation step to 1ms.

It is essential to state that in order to achieve these error
magnitudes, all mathematicalmodels (N-E, E-L, c-E-L) need
to account for the gyroscopic effect, which is automatically
computed in the dynamic simulator. The gyroscopic effect is
modeled as in [19], and since it depends on the external input
u, for the c-E-L model, it is pre multiplied by WT .

Table 2 Comparison with E-L model from literature (1ms)

E-L c-E-L

RMSEp 1.853 68.297 × 10−9

RMSEη 8.135 × 10−3 499.466 × 10−12

RMSE ṗ 160.828 × 10−3 6.240 × 10−9

RMSEη̇ 4.436 × 10−3 21.821 × 10−12

Table 3 Comparison with multibody dynamic simulator (10ms)

N-E E-L c-E-L

RMSEp 130.785 × 10−6 1.853 149.865 × 10−6

RMSEη 255.423 × 10−6 8.338 × 10−3 255.868 × 10−6

RMSE ṗ 6.535 × 10−6 160.833 × 10−3 9.841 × 10−6

RMSEη̇ 461.558 × 10−6 4.354 × 10−3 461.559 × 10−6

4.3 Effect onModel Based Control

By implementing a PID controller with feedback lineariza-
tion on the multibody dynamic simulator quadrotor the
different effects of the E-L and c-E-L are analyzed. The helix
trajectory to track is displayed in Fig. 2, along the resulting
in the attitude trajectory.

The attitude errors resulting from the numerical simula-
tions with different PID gain configurations are shown in
Fig. 3. While at some gain values the controller performance
is identical, it is shown that by increasing the controller gains,
the controller that uses the c-E-L for dynamic compensation
has bigger margin of stability. The feedback linearization
using the literature E-L model leads to unstable behaviour
with smaller gain compared to the c-E-L.

5 Conclusions

A correct E-L attitude dynamics model of quadrotors / multi-
rotor UAVs has been presented and derived. The equivalence
to the N-E formulation has been demonstrated through ana-
lytical steps andnumerical simulations.Compared to existing
E-L formulations found in literature, the c-E-L model is
equivalent to the N-E model and therefore, when exploited
for dynamic compensation, it provides better stability of the
closed loop controlled system. Building on this work, previ-
ously presented feedback linearization controllers using E-L
formulation (including the ones from the authors) could be
improved.

Table 4 Comparison with multibody dynamic simulator (1ms)

N-E E-L c-E-L

RMSEp 130.965 × 10−6 1.853 130.968 × 10−6

RMSEη 25.550 × 10−6 8.155 × 10−3 25.551 × 10−6

RMSE ṗ 6.550 × 10−6 160.828 × 10−3 6.551 × 10−6

RMSEη̇ 46.303 × 10−6 4.429 × 10−3 46.303 × 10−6
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Fig. 2 3D Trajectory (left) & attitude trajectory (right)

Fig. 3 Closed loop system
attitude error eη. (a),(c),(e) use
literature E-L for dynamic
compensation, (b),(d),(f) use
c-E-L for dynamic
compensation. Controller gain
Ki =
8 × 103, 15.5 × 103, 16 × 103

respectively
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