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Abstract—In the expanding realm of computational biology,
Reinforcement Learning (RL) emerges as a novel and promising
approach, especially for designing and optimizing complex syn-
thetic biological circuits. This study explores the application of
RL in controlling Hopf bifurcations within ODE-based systems,
particularly under the influence of molecular noise. Through
two case studies, we demonstrate RL’s capabilities in navigating
biological systems’ inherent non-linearity and high dimensional-
ity. Our findings reveal that RL effectively identifies the onset
of Hopf bifurcations and preserves biological plausibility within
the optimized networks. However, challenges were encountered
in achieving persistent oscillations and matching traditional
algorithms’ computational speed. Despite these limitations, the
study highlights RL’s significant potential as an instrumental
tool in computational biology, offering a novel perspective for
exploring and optimizing oscillatory dynamics within complex
biological systems. Our research establishes RL as a promising
strategy for manipulating and designing intricate behaviors in
biological networks.

Index Terms—reinforcement learning, optimization, synthetic
biology, biological oscillator, bifurcation analysis, computational
biology

I. INTRODUCTION

Synthetic biology represents the convergence of biology and
engineering, aiming to design and construct novel biological
entities or reconfigure existing ones for specific purposes [1].
A key application in this field is biological computing. Unlike
traditional silicon-based computing systems, biological ones
use cells, proteins, and DNA to engineer biological motifs for
computational tasks [2]. With their small size and energy foot-
print, these bio-based systems present unique advantages over
silicon-based computation [3]. They also hold the potential
for self-replication and self-assembly [4]. However, design-
ing large, intricate, and scalable synthetic biological systems
presents considerable challenges [5], especially in maintaining
a consistent temporal framework [6]. In this context, synthetic
oscillators Figure 1, bioengineered to produce periodic signals
through molecular concentration fluctuations [7], are vital.
They mirror natural rhythmic processes using genes and, just
as quartz crystal clocks underpin time operations in silicon-
based computers, they are essential for timing [7]–[9] and in-
formation representation [10] in biological computing. Despite

significant progress in understanding these systems, linking the
complex behaviors of naturally occurring oscillators to their
efficient and robust analogous in synthetic biology remains a
challenging area of investigation [11], [12].

Natural rhythms have been studied for a long time, and
much has been understood about the behavior of simple units
of biological computation. Historically, feedback loops have
been recognized as central to the dynamics of biological
systems [13], [14]. Both negative and positive feedback loops
play crucial roles in oscillations and adaptability [15]–[17].
While negative feedback loops are vital for oscillations [15],
[18], robust positive feedback loops are essential to period
adaptability [19]. A straightforward way to produce persistent
oscillations has also been demonstrated by employing a neg-
ative feedback loop with a time delay [20], [21].

Although oscillations can occur even in systems comprising
only a tiny number of proteins [22], oscillatory dynamics
in nature usually arise from the intricate interplay of many
feedback loops [23] that produce complex qualities such
as transients, history-dependence and after-effects, frequency
scaling, temperature dependency [24].

The diversity and complexity of natural oscillators, from
calcium oscillations in cells to neural oscillations at macro-
scopic scales, underscore the rich dynamical behavior of these
systems [11], [25]. However, understanding and harnessing
these oscillations in synthetic networks is challenging due to
their non-linearity, high dimensionality, and potential discon-
tinuities [23].

Traditional methods for the design and analysis of such
networks can be computationally intensive, as the inherent
characteristics of larger networks do not offer easy mathemat-
ical characterization [12] nor a smooth landscape, generating
a vast design space of possible structures and parameter
values [11], [26].

This work introduces an Optimization via Simulation (OvS)
approach using Reinforcement Learning (RL) [28] (RL-OvS)
for designing synthetic biological oscillators, addressing the
challenges posed by molecular noise and system complexity.

RL is particularly suited for this task because it navigates
complex, high-dimensional spaces without explicit gradient



Fig. 1. Synthetic gene network containing three genes and generating
oscillations. Each gene is translated into a protein product, repressing the
activity of another gene in the network (as indicated by the arrows) [27].

information. This significantly differs from traditional com-
putational methods, which often rely on predefined rules and
strategies. RL not only adapts and learns from the system’s
feedback but also builds a mathematical model representing
the relationship between design parameters and system be-
havior. This capability of learning and adapting in real-time
to dynamic inputs, such as molecular noise, positions RL as a
novel and efficient tool in the computational biology domain,
particularly for exploring and optimizing oscillatory dynamics.
Our approach aims to demonstrate the potential of RL in
this field, offering a new perspective compared to traditional
algorithms and underscoring its relevance and applicability in
synthetic biology and biocomputing.

II. BACKGROUND

The pursuit of automated design and optimization in syn-
thetic biology represents a frontier in integrating engineering
principles with biological complexity. Traditional efforts have
primarily focused on leveraging empirically established de-
sign principles to confirm experimental viability and propose
potential structures. However, such approaches often limit
the diversity and number of constituent devices they can
effectively manage. Furthermore, a critical gap in these studies
is the lack of predictive modeling capable of facilitating more
efficient Design Space Exploration (DSE) and uncovering
novel design principles and motifs.

In genetic oscillatory circuit design, a spectrum of tech-
niques has been employed. These range from exhaustive
searches and optimization-based techniques to more sophisti-
cated control theory and rule-based methods. These advanced
methods necessitate a deep understanding of circuit properties
and their relationship to network topology [29].

For instance, one approach in this area has involved integrat-
ing rule-based design with Monte Carlo simulated annealing
algorithms to optimal topologies from a library of standard
biological components [30]. This approach, while versatile,
relies heavily on a predetermined set of rules and is limited

by the static nature of these rules. Similarly, evolutionary
algorithms have been explored to create circuits exhibiting
rhythmic or switching behaviors [31], [32]. These methods,
although effective, tend to face scalability issues and become
computationally intensive as the complexity of the circuits in-
creases. The Mixed-Integer Nonlinear Programming (MINLP)
framework, as proposed in various studies [33]–[36], also
suffers from high computational demands, particularly when
dealing with complex circuit designs.

Evolutionary algorithms have also been used, as seen
in [31], which focuses on identifying optimal circuits exhibit-
ing specific rhythmic or switching behaviors, and in [32],
where evolutionary algorithms are used in conjunction with
multiobjective optimization. Despite their effectiveness, these
algorithms face scalability challenges, mainly when applied
to more complex circuit designs. The MINLP framework, as
proposed in various studies [33]–[36], also suffers from high
computational demands, mainly when dealing with complex
circuit designs. In particular, the choice in [34]–[36] of syn-
thesizing biological oscillators among those combinatorially
obtained using three devices from a library of 44 [37], severely
limits from the start the complexity of the designs.

In [38], an attempt is made to integrate classical optimiza-
tion methods with Machine Learning (ML) to accelerate the
discovery of gene circuits. This approach, which models net-
works as systems of coupled Ordinary Differential Equations
(ODEs), proved more efficient than evolutionary algorithms
and scalable for networks with up to nine nodes [29]. Nonethe-
less, this methodology, like the others, does not inherently
capture the causal relationships within the network.

Bifurcation analysis, a technique employed to optimize
parameters for inducing Hopf bifurcations or turning point
bifurcations, offers insights into the dynamic behavior of
oscillatory and bi-stable circuits [39]. In [40], this approach is
used with an evolutionary algorithm that progressively tunes
randomly generated network structures. While both methods
can be rapidly executed, they still do not facilitate learning
causal relations.

This overview of the existing methods underscores the
need for approaches that can not only navigate the complex
parameter space of synthetic oscillatory systems but also learn
and adapt based on system behavior. RL stands out as a
promising candidate due to its ability to interact with and
learn from the system iteratively, a feature critically missing in
most traditional methods. The potential of RL to understand
and leverage the causal relationships in biological networks
presents a novel approach to the challenges of designing robust
and efficient synthetic oscillators.

III. METHODS

A. Materials

This study focuses on selecting and optimizing biological
networks structured as oscillators. The primary objective is to
adjust the system parameters to achieve sustained oscillations
despite molecular noise. These parameters encompass the ini-
tial concentrations of both floating and boundary species and



their rate constants. To realistically simulate molecular noise,
we initialize these parameters by drawing from a uniform
distribution that spans a wide range of values that reflect
biological variability.

Central to our approach is optimizing floating species,
targeted for their oscillatory potential, as opposed to boundary
species that typically act as molecular sources or sinks. This
distinction is vital in our strategy to harness and control
oscillatory dynamics within these networks.

The biological networks we optimize are sourced from
existing literature, where they are represented in two primary
forms: as systems of stoichiometric equations or through
Systems Biology Markup Language (SBML) notation [41].
These representations are then converted into ODE systems,
forming the basis for our optimization process. The optimiza-
tion is conducted via simulation, where the RL algorithm
iteratively adjusts parameters to improve the system’s oscil-
latory behavior. This process is rigorously evaluated using
principles from bifurcation analysis, focusing on identifying
and reinforcing the conditions that lead to sustained and stable
oscillations.

Further details on these tools and concepts and the specific
methodologies employed in our optimization process will be
elaborated in the following sections. The efficacy and out-
comes of our approach are demonstrated through two distinct
case studies, which are discussed in section IV.

B. Modeling and analysis

This section outlines the formalism used to represent and
analyze models of oscillators, which forms the basis for
our evaluation and scoring algorithm as described in subsec-
tion III-C-Reward.

Biochemical networks are modeled using systems of sto-
ichiometric equations or ODEs. These mathematical repre-
sentations are crucial for capturing the dynamic interplay of
multiple biological processes and states. ODEs, in particular,
provide a powerful tool for describing how the concentrations
of different species in a biological system evolve.

Stoichiometry refers to the relationship between the re-
actants and products in a reaction, presented in a balanced
equation that reflects the conservation of mass. For instance,
consider a simple biological reaction represented by the fol-
lowing stoichiometric equations:{

2A + B
k1−−→ 3 A

A
k2−−→ 0

(1)

In this system (Equation 1), the first equation describes
a reaction converting species B into A with a rate constant
k1, while the second represents the degradation of A with a
rate constant k2. This can be equivalently described by the
following ODE system:

δ[A]

δt
= k1[A]2[B]− k2[A]

δ[B]

δt
= −k1[A]2[B]

(2)

Equation 2 describes the rate of change in the concentrations
of compounds [A] and [B] over time, where [A] and [B]
represent the concentration of species A and B in the system,
respectively. The coefficients k1 and k2 dictate how fast these
reactions occur. In the first equation, the first term implies that
the reaction rate depends on the square of [A] and linearly
on [B], while the second term is directly proportional to [A].
Similarly, for the second equation.

The core of our analysis lies in understanding how these
systems exhibit oscillatory behavior, often characterized by a
Hopf bifurcation. A Hopf bifurcation marks a critical transition
from a steady state to a periodic oscillating state, depending
on the values of specific parameters in the system. This is
determined by analyzing the eigenvalues of the Jacobian ma-
trix of the ODE system, which provides insights into the local
stability of the system around a fixed point. For example, if
the real parts of a complex pair of eigenvalues of the Jacobian
cross the imaginary axis, a Hopf bifurcation occurs, indicating
the onset of limit cycle behavior or sustained oscillations
in the system. Furthermore, the eigenvalues’ imaginary parts
correspond to the oscillations’ frequency. The imaginary axis’
crossing marks where these inherent oscillations manifest in
the system’s dynamics [42], [43].

Consider a biological system described by N nonlinear,
coupled, ordinary differential equations, whose state is de-
scribed by N variables Xi, i = 1 : N , and by the parameters
pk, k = 1 : m,

δXj

δt
= fj(Xi, pk) (3)

where fj(Xi, pk) are, in general, nonlinear functions of all the
Xi, pk. The eigenvalues of the Jacobian (∂fi/∂Xj) determine
the system’s stability at a steady state. If λi = λR

i + i ∗ λI
i

are the complex eigenvalues of the Jacobian for a particular
steady state, then instability will result if any of λR

i > 0. If a
complex pair of eigenvalues becomes purely imaginary, then
we get a Hopf bifurcation, and the system will exhibit limit
cycle behavior [39].

In our RL algorithm, this understanding of Hopf bifurcations
plays a pivotal role. The reward computation described in
subsection III-C-Reward is directly influenced by the system’s
proximity to a Hopf bifurcation, as it signifies the achievement
of desired oscillatory dynamics. Thus, the RL algorithm is
designed to manipulate the system parameters in a way that
drives the system towards or maintains it in this critical
oscillatory state. This approach allows the algorithm to learn
strategies that effectively tune the biological networks towards
stable, sustained oscillations, a key objective in our study of
synthetic biological oscillators.

C. Optimization via simulation

Our proposed Reinforcement Learning Optimization via
Simulation (RL-OvS) framework, as depicted in Figure 2, is
designed to automate exploring the design space for synthetic
biological oscillators.
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Fig. 2. RL-OvS framework. The agent selects actions based on observations
and rewards, while the environment provides feedback and updates the state.

This framework (Figure 2) comprises two interacting com-
ponents, an agent and an environment, each playing a crucial
role in the optimization process.

The agent is tasked with exploring the design space and
identifying optimal configurations of biological networks, i.e.,
the initial concentration of floating and boundary species in
the ODE system, by observing the systems’ behavior and
acting upon it, mediated by the environment. It operates by
receiving and interpreting data about the current state of the
system, known as observation, and a reward that quantifies
the system’s performance. Based on these inputs and its
evolving policy, the agent makes decisions, or actions, aimed
at optimizing the system’s oscillatory behavior.

Conversely, the environment is responsible for implementing
the actions taken by the agent. It modifies the underlying
ODE system according to the agent’s directives, simulates the
resulting dynamics, and evaluates the outcome. The evaluation
is based on bifurcation analysis, specifically focusing on the
system’s proximity to a Hopf bifurcation, a critical juncture
where the system transitions between different dynamic behav-
iors. The outcome of this evaluation is fed back to the agent
as a reward, along with updated observation data, informing
the agent’s subsequent decisions.

These enable the agent to update its policy and choose the
following action. The iteration of these steps lets the agent
learn an optimal policy, a strategy for solving the problem.

This interactive process is structured into discrete steps,
each constituting a part of an episode. Within each episode, the
agent iteratively refines its policy, balancing the exploration
of new actions with the exploitation of known beneficial
strategies. This process is crucial for the agent to learn and
adapt its approach to maximize the cumulative reward and
discover an optimal policy. The episodic nature of this learning
process also ensures that the agent gains experience from a
wide range of scenarios, contributing to the robustness and
generalization of the learned policy. Indeed, multiple episodes
are essential in RL to let agents try different strategies. During
early episodes, the agent might make suboptimal decisions
that lead to undesirable outcomes. By experiencing the con-
sequences of its actions over multiple episodes, the agent
can adjust its policy to make better decisions in the future.
Multiple episodes are also needed to ensure robustness and
generalization through various experiences. As with biological

systems, this aspect is essential in dynamic and potentially
noisy environments. By averaging the learning across multiple
episodes, the agent can mitigate these aspects and learn a more
stable policy [28].

RL ’s capability to explore and exploit the action space
allows it to navigate the vast possible configurations of bi-
ological networks, balancing the discovery of novel control
strategies with the refinement of known beneficial actions.
This adaptive learning process aligns closely with biological
systems’ inherent variability and adaptability.

The core of our RL-OvS framework is a highly interactive
environment that challenges and guides the RL agent’s learn-
ing process. Implemented in Python, this environment utilizes
Gymnasium [44] for a standardized RL interface, facilitating
integration with various RL algorithms. Our environment
specifically models the biological network as an ODE system,
simulating and evaluating its behavior to provide targeted
feedback to the agent.

For simulating oscillatory models, we leverage Tel-
lurium [45], a versatile tool that supports both SBML and
Antimony formats. This allows us to handle a range of
computational models, from simple stoichiometric systems
to more complex dynamic networks, and to conduct both
deterministic and stochastic simulations. This flexibility is
crucial for accurately capturing biological oscillators’ diverse
dynamics.

State and observation. Within our framework, the state
of the environment encapsulates the current conditions of the
modeled biological system. This includes the concentrations
of various species and additional parameters indicative of the
system’s dynamic state. The observation that the agent receives
is a distilled version of this state, containing all essential
information needed to make informed decisions. This could
range from current species concentrations to system stability
or instability indicators.

Action space. An action is an agent’s specific decision or
move that affects the environment’s state, aiming to maximize
its cumulative reward over time. The agent’s actions directly
influence the biological system’s parameters, with options to
increment, decrement, or multiply these parameters within a
predefined range. This range is carefully chosen to ensure
biological relevance while allowing sufficient parameter space
exploration.

Agent’s Learning Process. Employing the Proximal Policy
Optimization (PPO) algorithm [46] from the Stable Baselines3
library [47], our agent iteratively refines its policy based
on the feedback received. PPO, a policy gradient method,
operates by optimizing a surrogate objective function to ensure
that the new policy does not divert too drastically from the
old policy, thus preventing overly aggressive policy updates
that can destabilize learning. PPO ’s advantage thus lies in
its ability to balance exploration with exploitation, ensuring
stable and consistent learning even in the complex and often
unpredictable landscape of biological systems.

Reward mechanism. The reward mechanism is central to
the agent’s learning and is designed to guide the agent towards



desirable system states. Based on a bifurcation analysis of
the system’s eigenvalues, the reward computation serves two
primary purposes. Firstly, it provides positive reinforcement
for states approaching or achieving a Hopf bifurcation (Equa-
tion 4), indicative of desired oscillatory behavior. Secondly,
it penalizes states that either deviate significantly from this
behavior or lead to system instability (Equation 5). This dual
mechanism ensures that the agent is consistently nudging the
system towards stable and sustained oscillations, which are
hallmarks of functional biological oscillators.

Given a system with n eigenvalues, Equation 4 assigns a
positive score for each nth eigenvalue indicating the presence
of a putative Hopf bifurcation, that is when the real part
(Reλn

) of the eigenvalues goes to zero. If at the same time that
nth eigenvalue has an imaginary part (Imλn ), the assigned
score is 1. The latter condition is to differentiate systems
having no imaginary components, thus presenting a turning
point or a static bifurcation point [39], [40], and awarding
them a penalty (Equation 5). Otherwise, when Reλn

< 0
(subsection III-B), the assigned score is 0.1, weighted by the
gap between the real and imaginary parts of the eigenvalue
to take into account dominance. This smaller score is meant
to encourage approaching the bifurcation. Ideally, a system
with no damping would have purely imaginary eigenvalues
(Reλn

= 0).
Equation 5 computes penalties. It assigns a large negative

score (−100) when a steady state (ss) solution does not
exist, the Jacobian matrix is non-invertible, or the systems’
eigenvalues have no imaginary parts. Otherwise, it assigns −10
for each Reλn

̸= 0.
Finally, the reward (Equation 6) is the sum of these two

contributions, one encouraging the approach to an oscillating
state, the other penalizing configurations that deviate from it,
making the system unstable or too far from a Hopf bifurcation.

oscillating =
∑
n


1, Reλn

= 0, Imλn
̸= 0,

0.1(|Imλn
| − |Reλn

|),
Reλn

< 0, |Imλn
| > |Reλn

| ,
0, otherwise

(4)

penalty =


−100, ∄ss ∨ Imλn

= 0 ∀n,∑
n

−10, Reλn
̸= 0 (5)

reward = oscillating + penalty (6)

IV. RESULTS

Our investigation into the capabilities of the RL-OvS
framework in optimizing biological oscillators was conducted
through two distinct case studies. These case studies were cho-
sen to highlight the versatility and potential of our approach
in navigating the dynamics typical of biological oscillator
models.

A. Setup

The setup for our experiments was carefully designed to
provide an effective testbed for the PPO learning algorithm
(see section III). To this end, the following key parameters
were carefully chosen [46], [47]:

• Minibatch size: number of episodes used in one iteration
of the gradient descent update. Smaller values can lead to
noisier gradient updates, while larger ones provide more
stable updates but require more memory.

• Rollout buffer size: number of time steps for an agent
to interact with the environment before the data is used
for learning. The data collected is stored in a buffer.
The buffer size can impact the quality and diversity of
experiences for each update.

• Learning rate: step size at each iteration while moving
towards a minimum of the loss function. A high learning
rate can cause the algorithm to converge faster but might
overshoot the optimal solution or oscillate. A low learning
rate can make the convergence slower but might be more
precise.

• Total timesteps: The total number of samples (i.e., envi-
ronment steps) to train on.

As with most RL algorithms, tuning these parameters appro-
priately is crucial for PPO to balance computational efficiency
with the quality of learning. We adopted a batch size of 32, a
rollout buffer of 640 steps, a learning rate of 0.001, and 100
timesteps per episode, spanning 400 iterations.

Furthermore, we incorporated random initialization of
model parameters at the beginning of each episode. This
approach encouraged diverse exploration of the parameter
space and mirrored the variability and unpredictability inherent
in biological systems, enhancing the robustness and general-
izability of the learning outcomes.

The computational resources and time required to run the
RL algorithm for each case study varied notably, reflecting
the distinct complexities of the biological models. The first
case study, which involved the Edelstein relaxation oscillator
(Edelstein relaxation oscillator), ran for approximately 6 hours
on an HP 855 G8 laptop equipped with an AMD Ryzen 7
5700U CPU @ 1.8 GHz and 32 GB RAM. This duration
was primarily due to a significant proportion of unfeasible
solutions that were filtered out, such as those lacking a steady
state. In contrast, the second case study, focusing on the
Otero repressilator (Otero repressilator), ran for approximately
8 hours on the same laptop configuration. This difference in
execution time between the two case studies highlights the
diverse computational needs relative to the biological models’
complexity. It suggests a potential area for future refinement
in simulation length and computational efficiency.

B. Case study 1 - Edelstein Relaxation Oscillator

The first case study focused on the
Edelstein relaxation oscillator model, as outlined by Seno et
al. in 1978 [48]. This model describes biological systems that
undergo rapid transitions between two states, with a slow
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Fig. 3. Edelstein relaxation oscillator. Evolution over time (from A to F) of the optimized circuits, showcasing the progression from non-oscillatory to
oscillatory yet damped behavior (F).

evolution in one state and a rapid relaxation or transition
to the other. This behavior can be likened to neuron firing,
where an immediate discharge follows a slow buildup of
electrical potential. Besides its relevance in biology, through
this example, we are positioning our study to make direct
comparisons with other research, such as [40].

We observed a clear progression in the learning process
through a series of simulations (synthetically illustrated in
Figure 3 A-F). Early stages of the learning process (panels
A and B) demonstrated a lack of sustained oscillations, in-
dicating initial challenges in system tuning. However, as the
learning progressed, the algorithm gradually guided the system
towards more regular oscillatory behavior (panels C, D, and
E), culminating in panel F, where three out of four species ex-
hibited oscillatory patterns, albeit with some damping. While
indicative of our approach’s potential, this progression also
highlights areas for further refinement, particularly in tuning
hyperparameters and improving reward allocation strategies.

C. Case study 2 - Otero repressilator

The second case study involved the Otero repressilator, an
oscillator model presented in [35]. Its structure, depicted in
Figure 4, was found by the authors using a library of biological
parts augmented with the degradation of the bound repressor
and has a similar topology to the original repressilator system
by Elowitz [7].

As shown in Figure 5, the results were
particularly promising and more encouraging than the
Edelstein relaxation oscillator case study.

The upper-left panel in Figure 5 shows a line chart
of the evolution of the average episode reward over 8000

learning algorithm update steps, with the episode reward mean
computed at the same time as the update for each one of
the rollout buffer size/batch size = 640/32 = 20 mini-
batches, times 400 iterations. The darker line is a moving
average of 20 such updates. This panel shows that the mean
reward hovers around a low value of approximately -2000 for
an extended initial period.

However, a marked improvement in the reward pattern was
observed after 2000 learning steps, indicating a significant shift
in the system’s dynamics towards more favorable states. This
favorable trajectory sustains throughout the remainder of the
iterations, with a gentle yet persistent ascent observed. On
the top right, a zoomed-in section of the last 2000 updates
highlights the rewards’ consistency above zero, with only a
few deviations.

Fig. 4. Case study 2 - Structure of the Otero repressilator [35].

The lower section in Figure 5 shows simulation results of
the oscillator networks. On each chart (A-C), the horizontal
axis represents simulation time, and the vertical axis represents
species concentration. The species under optimization in this
oscillator are the three proteins araC, lacI , and tetR. These
three panels capture the oscillator’s state around 2000 (A),
4000 (B), and 8000 (C) learning updates. Their corresponding



Fig. 5. Edelstein relaxation oscillator. Episode reward average over the learning updates and three networks corresponding to different optimization stages.
The average reward changes through exploration steps, hovering around -2000 for 2000 iterations, then reaches 0 and keeps growing slowly but steadily.

position is marked with red dots on the reward curve on the
top-left chart.

Detailed analysis of the oscillator’s behavior at these stages
reveals a progressive shift towards a synchronized oscillatory
state among all involved species. As expected from the episode
reward mean, the circuit simulated in panel A lacks oscilla-
tions. In contrast, the middle image (panel B) captured around
4000 iterations shows explicit oscillatory behaviors in two of
the three species, i.e., araC, and lacI proteins. After an initial
spike, these species exhibit sustained oscillations that do not
appear to dampen over time. However, the third species –
namely, tetR – remains non-oscillatory to casual observation.
By the final stage, around 8000 learning updates, the third
circuit (panel C) portrays all three species in synchronized
oscillation without pronounced spikes and damping. This
synchronization, particularly evident in the later stages, not
only validated the capability of our algorithm to adapt and
learn but also underscored its potential in steering complex
biological systems toward specific dynamic states.

V. CONCLUSIONS

This study investigated the potential of RL in optimizing
synthetic biological networks’ dynamic behavior, specifically
focusing on oscillatory dynamics and controlling Hopf bifur-
cations in ODE-based systems. Our findings reveal that RL
demonstrates adaptability to biological systems modeled as
ODEs, albeit with challenges in achieving persistent oscilla-
tions. While promising, the Edelstein relaxation oscillator case
study indicated areas for refinement. Additionally, our RL-

based approach for bifurcation analysis shows computational
efficiency, although with longer execution times than tradi-
tional methods. This highlights opportunities for optimization
and speed enhancements in future iterations, emphasizing RL’s
potential in dynamic systems.

In conclusion, our study reinforces the notion that RL holds
significant potential as a tool in computational biology, par-
ticularly for addressing the multifaceted challenges presented
by complex biological systems. As we move forward, a clear
pathway exists for applying RL in designing biological net-
works with more precise dynamic behaviors. Future research
will focus on refining the reward computation mechanisms
and exploring the use of multiple RL agents working collab-
oratively within an environment. This collaborative approach
could facilitate the assembly of more complex systems from
basic biological motifs, pushing the boundaries of what can
be achieved in synthetic biology.

VI. DATA AND CODE AVAILABILITY

The source code and data to reproduce the results presented
in this paper and to apply the same procedure to other datasets
are available from the Open Access repository https://github.
com/smilies-polito/RLoscillators.
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optimization framework to obtain model-based guidelines for tuning
biological synthetic devices: an adaptive network case,” BMC systems
biology, vol. 10, no. 1, pp. 1–19, 2016.

[33] M. S. Dasika and C. D. Maranas, “Optcircuit: an optimization based
method for computational design of genetic circuits,” BMC systems
biology, vol. 2, no. 1, pp. 1–19, 2008.

[34] I. Otero-Muras and J. R. Banga, “Multicriteria global optimization for
biocircuit design,” BMC Systems Biology, vol. 8, no. 1, pp. 1–12, 2014.

[35] ——, “Design principles of biological oscillators through optimization:
forward and reverse analysis,” PLoS One, vol. 11, no. 12, p. e0166867,
2016.

[36] I. Otero-Muras, D. Henriques, and J. R. Banga, “Synbadm: a tool
for optimization-based automated design of synthetic gene circuits,”
Bioinformatics (Oxford, England), vol. 32, no. 21, pp. 3360–3362, 2016.

[37] M. Pedersen and A. Phillips, “Towards programming languages for
genetic engineering of living cells,” Journal of the Royal Society
Interface, vol. 6, no. suppl 4, pp. S437–S450, 2009.

[38] T. W. Hiscock, “Adapting machine-learning algorithms to design gene
circuits,” BMC bioinformatics, vol. 20, pp. 1–13, 2019.

[39] V. Chickarmane, S. R. Paladugu, F. Bergmann, and H. M. Sauro,
“Bifurcation discovery tool,” Bioinformatics, vol. 21, no. 18, pp. 3688–
3690, 2005.

[40] V. L. Porubsky and H. M. Sauro, “Application of parameter optimization
to search for oscillatory mass-action networks using python,” Processes,
vol. 7, no. 3, p. 163, 2019.

[41] S. M. Keating, D. Waltemath, M. König, F. Zhang, A. Dräger,
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