
Doctoral Dissertation

Doctoral Program in Energy Engineering (35thcycle)

Architectures for Code-based
Post-Quantum Cryptography

Exploration of architectures efficient for QC-MPDC
codes multiplication and approaches for generic

Post-Quantum cryptographic primitives

By

Kristjane Koleci

Supervisor(s):
Prof. Maurizio Martina, Supervisor
Prof. Guido Masera, Co-Supervisor

Doctoral Examination Committee:
Prof. Sergio Saponara, Referee, Università degli Studi di Pisa
Prof. William Fornaciari, Referee, Politecnico di Milano
Prof. E.F, University of...
Prof. G.H, University of...
Prof. I.J, University of...

ii

Politecnico di Torino

2023

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Kristjane Koleci
2023

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

I would like to dedicate this thesis to my brother, my mum and my dad who has
always been there for me.

Abstract

Post-Quantum Cryptography has become popular in recent years due to overcoming
the threat posed by Quantum Computers; the field is a branch of Cryptography
and aims to provide algorithms that can secure communication even if a quantum
computer is employed.

In Post-Quantum Cryptography, the research focuses on algorithms for Asymmet-
ric Cryptography, where the Public Key and a Secret Key pair are employed to secure
our data. The main focus of this thesis is Code-based Post-Quantum Cryptographic
schemes; the security of such schemes is based on the NP-hardness of decoding a
general linear code. The algorithms considered are LEDAcrypt and BIKE; they adopt
a variant of the Classic McEliece cryptosystems based on Quasi-Cyclic Moderate
Density Parity Check Codes. The scheme has three primitives for Key Generation,
Encryption, and Decryption.

The Encryption and Decryption algorithms have been implemented in this thesis;
exploring the efficient design of such schemes is fundamental since they require more
computational capabilities than preexisting algorithms. In LEDAcrypt and BIKE, the
implementation exploits the Quasi-Cyclic structure and sparsity of the matrices to
accelerate the decoding while simultaneously trying to keep the total area bounded.
The fundamental component of Encryption and Decryption is the multiplier for cyclic
matrices. Initially, the direction of the research has been dedicated to designing an
efficient multiplier with sparse cyclic matrices. The decoder and encoder have been
designed such that they can adapt to the updates on the parameters and the algorithm.

The architecture that has been developed targeted both Field Programmable Gate
Arrays (FPGA) and Application Specific Integrated Circuits (ASIC); the design is
scalable and thus can adapt to both low-end and high-end applications. The FPGA
results for the Artix-7 200 device obtained a decoder latency of 0.6 ms and resource
utilization of at most 30%. The ASIC design has been synthesized for the STM

vi

FDSOI 28 nm technological node and achieved a latency of 0.15 ms and a total area
of 0.0 9µm2.

The decoder is the most critical unit for the security of the whole system since
the Secret Key is fundamental in the inner computations. In the present work, a
Side-channel attack that exploits the dynamic power consumption is applied to
the multiplier in the decoder; the target is the Secret Key which is employed in the
multiplication and results in the complete disclosing of the key. The method is applied
to real and simulated measurements (from the netlist) to validate a methodology that
aims to include a preliminary study of the security during the design phase.

In the last study, the multiplier is implemented as a Number Theoretic Transform-
based multiplier due to the analogy between the cyclic matrix product and the cyclic
convolution. The unit is fundamental for both the encryption and decryption stage of
Code-based Post-Quantum schemes; in this work, has optimized it for both sparse
and dense vectors to fully benefit from using the Number Theoretic Transform based
multiplier. The result of such an approach has been provided for Field Programmable
Gate Arrays (FPGA) and Application Specific Integrated Circuits (ASIC). In the end,
it has been showing its flexibility when applied to both encryption and decryption
since if we consider as a metric the product of latency and area; it is 3 to 10 times
more efficient than other proposals. Moreover, such an approach’s flexibility also
extends to generic PQC primitives, where such a multiplier is employed.

Contents

List of Figures x

List of Tables xiv

1 Introduction 1

2 Cryptography 6

2.1 Asymmetric Cryptography . 7

2.1.1 Modern Cryptography Schemes 9

2.2 Symmetric Cryptography . 11

2.3 Post-Quantum Cryptography . 12

2.3.1 Lattice-based Schemes . 13

3 Code-Based Post Quantum Cryptography 15

3.1 Notations and definitions . 16

3.1.1 Constants, vector and matrices 16

3.1.2 Polynomials . 18

3.1.3 Operators . 18

3.2 McEliece Cyrptosystem . 19

3.2.1 Scheme algorithms . 20

3.2.2 Niederreiter Cyrptosystem 21

viii Contents

3.2.3 Limitations and attacks . 23

3.3 Low-Density Parity Check Codes 23

3.3.1 Structured Codes: QC-LDPC/MDPC 27

3.4 Code-based QC-LDPC schemes 28

3.4.1 LEDAcrypt . 29

3.4.2 BIKE . 35

3.5 Arithmetic in Code-based PQC . 38

3.5.1 Polynomial Sum . 38

3.5.2 Polynomial Inversion . 39

3.5.3 Polynomial Multiplication 39

4 Fast Polynomial Multiplication 41

4.1 Polynomial Multiplication Overview 41

4.1.1 Schoolbook Multiplication 42

4.1.2 Karatsuba Multiplication 44

4.1.3 Schönhage Stressen Multiplication 45

4.2 Polynomial Multiplication with QC-MDPC/LDPC Matrices 46

4.2.1 Large and Binary/Integer Polynomial Multiplication 46

4.2.2 Sparse Polynomial multiplication in Schoolbook Multiplier 48

5 Architectures for Large Polynomial Multiplication 51

5.1 Schoolbook architecture . 53

5.1.1 VectorByCirculant . 53

5.1.2 VectorByCirculant Pipelined 68

5.1.3 SparseVectorByCirculant 73

5.2 Schönhage Stressen Architecture 78

5.2.1 Number Theoretic Transform Computation 78

Contents ix

5.2.2 Number Theoretic Transform parameters 79

5.2.3 Number Theoretic Transform Architecture 82

5.2.4 NTT-based multiplier for Code-based PQC 90

5.2.5 Architecture . 91

5.3 Results . 97

5.3.1 ASIC Results . 97

5.3.2 FPGA Results . 98

5.3.3 Latency . 99

5.4 Side-Channel Attack on VectorByCirculant 100

5.4.1 Results validation and conclusions 106

6 Decryption and Encryption in QC-MDPC Codes for PQC 107

6.1 Encryption and encapsulation . 108

6.1.1 Implementation and Comparison 108

6.2 Decryption and decapsulation . 109

6.2.1 Decoder analysis . 109

6.2.2 Decoder Architecture . 112

6.2.3 Implementation Results 117

6.3 Flexible-NTT in Code based Post Quantum Cryptography 120

6.3.1 Encoder . 121

6.3.2 Decoder . 121

7 Conclusions 125

References 127

List of Figures

2.1 Message ubfuscation by means of a cryptographic function 7

2.2 Block Diagram of the Key Encapsulation Mechanism schemes . . . 9

2.3 Block Diagram of the Public Key Cryptography schemes 9

2.4 Block Diagram of a Symmetric Cryptosystem 11

2.5 The example of a two dimensional lattice with the basis, b1 and b2

basis vector highlighted and the shortest vector c, 14

3.1 Block scheme for McElice-like crytosystem 20

3.2 The example of a codeword of length n with the different sections
highlighted: the message is in yellow, with n− k bit, the redundant
part with k bits, the t error bit. 21

3.3 Block scheme for Niederreiter-like crytosystem 22

4.1 Time Complexity . 47

4.2 Time Complexity with sparse Schoolbook 49

5.1 Memories format with the sizes specified. 56

5.2 Memories in input to VectorByCirculant 57

5.3 Shift Register content to rotate MEMa by b2 58

5.4 Shift Register loaded with the complete row with nb reads from REGA

and REGB . 58

5.5 Register with the new row loaded in parallel. 59

List of Figures xi

5.6 Memories of VectorByCirculant with Input, Output and addressed
highlighted. 60

5.7 VectorByCirculant Data Path with the control signal form MEMb,
the consecutive rows from MEMa stored in REGA and REGB and the
first row of MEMc evaluated. 61

5.8 Memories of VectorByCirculant with Input, Output and addressed
highlighted for the writing of MEMc at ADXc = 1. 61

5.9 Memories of VectorByCirculant with Input, Output and addressed
highlighted for a1 computation. 62

5.10 VectorByCirculant Data Path with the control signal form MEMb,
the consecutive rows from MEMa stored in REGA and REGB and the
first row of MEMc evaluated. 63

5.11 MEMa with a vector of length n = 13 and padded with zeros 63

5.12 VectorByCirculant Data Path with the control signal form MEMb,
the consecutive rows from MEMa stored in REGA and REGb and the
first row of MEMc evaluated. 64

5.13 Control Unit of VectorByCirculant 64

5.14 The time evolution of the Control Unit to compute a single row in
MEMb after the initialization steps. 65

5.15 Logarithmic approach for the Barrel Shifter 67

5.16 VectorByCirculant alternatives 68

5.17 The time evolution of the Control Unit for the coarse grain pipelined
architecture to compute a single row in MEMc after the initialization
steps. 69

5.18 The time evolution of the Control Unit for the fine grained pipelined
architecture to compute a single row in MEMc after the initialization
steps. 71

5.19 VectorByCirculant Pipelined Data Path with the control signal
form MEMb, the consecutive rows from MEMa stored in REGA and REGB

and the first row of MEMc evaluated. 72

xii List of Figures

5.20 The Data Path of SparseVectorByCirculant multiplier. The mod-
ular sum is in the orange box. 75

5.21 Time evolution of SparseVectorByCirculant 76

5.22 Time evolution of Pipelined SparseVectorByCirculant 76

5.23 Memories of SparseVectorByCirculant with sparse Input, and
Output with highlighted position of the asserted bits from the input. 77

5.24 Butterfly Unit with one multiplier (MPY), adder (ADD), subtractor (SUB). 83

5.25 NTT structure with n = 8 . 84

5.26 8-points NTT with a dense input 85

5.27 8.points NTT with sparse input, asserted elements: v0(3) and v0(2). 87

5.28 8.points NTT with sparse input, asserted elements: v0(3) and v0(6). 88

5.29 The DataPath shared between the 92

5.30 Control Unit hierarchy. The Multiplier is the master CU, while
the sub-CU communicate independently with the Twiddle Factor
Management CUs. 92

5.31 Input memory for the Sparse NTT execution 93

5.32 Twiddle Factors Management Units 96

5.33 Shared resources in NTT-based multiplier 97

5.34 The Power Trace derived with Synopsys Prime time during the
execution of a complete product [1]. 102

5.35 The netlist, .sdf and technological node files are the inputs of both
QuestaSim and Prime Time, the .vdc file, containing the information
on the switching activity, is derived from a random input provided
in the test bench. 103

5.36 Correlation trace corresponding to asserted value11 in the SK. The
dashed box highlights the correlation peak[1]. 103

5.37 The plot shows the value for correlation peaks associated to correct
key value, in blue, and the average value that is assume by the
correlation associated to wrong keys. 105

List of Figures xiii

6.1 Implementation of the Encryption 109

6.2 Version0:The first version implements LEDAcrypt Decoder submit-
ted to Round 1 of the PQC Competition. the evaluation of Syndrome,
Unsatisfied Parity Check and the Syndrome Update is computed
with two distinct modules for binary and integer output, the addi-
tional elements are in charge of computing the threshold and correct
the errors. 113

6.3 Version1:The Round 3 Decoder computes the Syndrome, Unsatisfied
Parity Check and the Syndrome Update by means of a single matrix,
thus the input matrix is H. The other modules remains unchanged. . 114

6.4 Version2:The total area occupation is reduced by implementing the
Syndrome, Unsatisfied Parity Check computation with a single unit,
the additional modules are kept unchanged. 115

6.5 The total area occupation of the Version0 Decoder with the partial
area occupation of the main units[2]. 119

6.6 The comparison of latency in Version0 Decoder with and without
the the use of VectorByCirculant to update the Syndrome 119

6.7 Latency of the Q-Decoder comparison. 120

List of Tables

3.1 Considered LEDAcrypt parameters for KEM. 31

3.2 Considered LEDAcrypt parameters for KEM and PKE submitted for
Round 3. 32

3.3 BIKE parameters submitted to Round 4 and Round 3. 35

5.1 QC-MDPC Code-based PQC crytopsystems parameters. 52

5.2 The synthesis results of VectorByCirculant with linear unit barrel
shifter. 66

5.3 The synthesis results of VectorByCirculant with logarithmic bar-
rel shifter. 66

5.4 The synthesis results of VectorByCirculant with logarithmic bar-
rel shifter and pipelined execution. 73

5.5 The synthesis results of VectorByCirculant with logarithmic bar-
rel shifter and fine grain pipelining. 73

5.6 The synthesis results of SparseVectorByCirculant with and with-
out pipelining. 77

5.7 ASIC synthesis results for the UMC 65 nm technology. dv = 10. Per-
centage delay and area values are given with respect to the reference
synthesis with constraint tcp = 5 ns. 98

5.8 FPGA resource utilization with Artix-7 200. The operating fre-
quency is set to 100 MHz and dv = 10. 99

List of Tables xv

5.9 The execution time with different length N′ and density (dv). The
results are provided in terms of both number of clock cycles and ms,
assuming the largest achievable clock frequency. 99

6.1 ASIC synthesis of the whole decoder with the UMC 65 nm technol-
ogy, the results refers to a block length of m = 27,779 (LEDAcrypt
parameters submitted to Round 1). The reference architecture is in [3].118

6.2 QC-MDPC encoding latency in terms of number of cycles vs LUTs
utilization. 121

6.3 The clock cycles required in each iteration of the decoder. 123

6.4 LC figure of merit for combined encoder and decoder: comparison
between the proposed solution and state-of-the-art solutions. 124

Chapter 1

Introduction

Quantum computing is considered the next big revolution in the area of computing;
the concept of Quantum Computers was introduced in 1981 by the physicists Richard
Feynman [4]. It was considered a method that could improve simulations of quantum
systems, but recently it has become clear that its impact could be more profound
on our everyday lives, since it can reduce the simulation time of complex physical
systems, enabling new stages of our knowledge of the world. Despite the theoretical
background that has been developed in the 80s and 90s, from a technological point
of view. Quantum computing is at its early stages. However, Quantum Computing
has encountered rapid advancement in recent years[5–8], thanks to contributions
from a number of companies, research institutions, and governments interested in
this topic.

However, the advent of quantum computers also raises significant concerns
regarding the security of our data. Traditional cryptographic algorithms, such as
those used in Public Key Cryptography (PKC) (or Asymmetric Cryptography), rely
on the difficulty of certain mathematical problems to ensure the confidentiality
and integrity of sensitive information. Quantum computers possess the ability
to solve these problems exponentially faster than classical computers, rendering
many conventional encryption schemes vulnerable to attacks. One of the security
requirements upon which an asymmetric cryptosystem is built is the NP hardness of
discovering the Secret Key (SK) from the Public Key (PK): the PK is computed by
applying a one-way function to the SK, and inverting this function is computationally
infeasible. One of the most widespread one-way functions used in current PKC

2 Introduction

is based on integer factorization. Factorizing large integers is believed to be a
Non-Polynomial (NP) problem with classical computers.

However, it has been demonstrated that by using Shor’s algorithm [9] on a
Quantum Computing, the problem reduces to polynomial time complexity. Similarly,
the security of cryptographic schemes based on Elliptic Curve Cryptography (ECC)
relies on the difficulty of discovering the discrete logarithm of a random elliptic
curve, but this easily be solved by means of quantum computers and Shor’s algorithm
[9]. Quantum Computers breaks the security of all the asymmetric cryptosystems,
that have been adopted to secure our data or communications.

The above threats have motivated governments and institutions to begin a mi-
gration to quantum-resistant asymmetric algorithms. The research area is known as
Post-Quantum Cryptography (PQC), the field was first described by Bernstein [10].
In recent years, by recognizing the urgency and importance of this endeavor, the
National Institute of Standards and Technology (NIST) initiated a comprehensive
selection process in December 2016 to define new standards for Post-Quantum PKC
[11]. Initially, 69 candidate cryptographic schemes were submitted, based on various
approaches arising from different families of hard mathematical problems. This
concerted effort underscores the pressing need to develop cryptographic schemes that
can effectively mitigate the vulnerabilities introduced by quantum computers while
ensuring the continued security of our communications and sensitive information,
the possible issues of underlying problems has to be carefully researched since they
can break the schemes.

One of these problems is that of decoding an arbitrary linear code, which in
[12] has been proven to be NP-hard. The most remarkable and oldest example of
cryptosystems based on such a problem, is the Classic McEliece[13], which is among
the schemes admitted to the fourth round of the NIST competition [14], and is widely
recognized as one of the most secure and promising solutions to the threats posed by
Quantum Computers. The McEliece Cryptosystem remained unbroken for decades.
Classic McEliece [15] is the cryptographic scheme submitted to the competition
is based on the work of McEliece[13] and the key pair size have been adapted to
the current security requirements. The work is the first-ever proposed code-based
cryptosystem. The choice of the error correcting code for this purpose, McElice
chose binary Goppa codes as secret keys. Despite its largely recognized security, the

3

McEliece scheme relying on Goppa codes has a major drawback with its very large
public keys (hundreds of kilobytes).

In response to the aforementioned issues, researchers have put significant effort
into the goal of reducing the public key size of McEliece-like cryptosystems. One
solution in this respect consists of replacing the underlying secret error correcting
code employed in the original McEliece system with a Quasi-Cyclic (QC) random
or pseudorandom code [16].

The idea is that by using codes that admit a compact geometric construction,
results in the implementation using less memory, with respect to unstructured large
linear codes. Indeed, such an approach has been used in different NIST submissions,
like LEDAcrypt [17], BIKE [18] and HQC [19], with BIKE [18] scheme still running
as a finalist in the NIST competition.

In this work, we focus on the implementation of the LEDAcrypt/BIKE cryptosys-
tem, which uses a class of state-of-the-art error correcting codes, named Moderate-
Density Parity-Check (MDPC) codes. These are similar to Low-Density parity-Check
codes described in [20] and [21], as the Secret Key of the asymmetric cryptographic
scheme.

The secret MDPC code used in LEDAcrypt is defined by a sparse Quasi-Cyclic
parity-check matrix. which was the the result of product of two sparse quasi-cyclic
matrices. The additional structure enabled the use of a very efficient decoding
algorithm, named Q-decoder, which derives from the classical Bit Flipping (BF)
decoder [20]. However, the scheme was discovered to be insecure, thus the approach
of BIKE has been preferred. The Q-decoder in LEDAcrypt and the BFG-Decoder
in BIKE, are specifically tailored for the code structure of LEDAcrypt/BIKE, and
they are significantly faster than original BF decoding on unstructured LDPC codes.
LEDAcrypt was successfully admitted to the first two selection rounds of the NIST
PQC competition, but it was not admitted to the third round due to the discovery a
families of weak keys [22].

In this thesis, we refer to two schemes submitted to the NIST competition:
LEDAcrypt and BIKE with their submission to the four round of the PQC call. It is
important to remark that the initial implementation that has been provided is scalable,
and adapts to all versions of LEDAcrypt and BIKE.

4 Introduction

In LEDAcrypt and BIKE, the decoder is a fundamental component of crypto-
graphic functions based on error-correcting codes. For this thesis, we focus on
implementing the Bit Flipping-based Decoder, one of the LEDAcrypt/BIKE peculiar-
ities since its design is fundamental to have a scheme which is secure and with a low
latency. The interest in such a decoder goes beyond its cryptographic application,
since efficient decoders are also required in conventional coded transmissions.

The BF decoder is implemented with an efficient polynomial multiplier, since
this is the main processing unit for both encryption and decryption primitives of QC-
MDPC cryptosystems. The polynomial product is fundamental in all PQC primitives,
including one of the winner of the selection process in Public Key Encryption
[23, 24].

The design of the architecture of LEDAcrypt/BIKE considers the parameters that
affect both hardware complexity and latency in polynomial multiplication. These are
the length of polynomials, the number of non-zero elements, and the ring/field on
which the operations are carried on.

The algorithms known in the literature for polynomial product calculation are: the
Schoolbook, the Karatsuba [25] and the Schönhage-Strassen [26] methods. Because
the polynomial product in LEDAcrypt/BIKE involves very large binary polynomials,
the two use the aforementioned methods as follows:

• The Schoolbook algorithm is adopted in implementations of schemes based on
QC-LDPC/MDPC codes [27–29]. The results showed that the reduced area
and latency of the implementation of this approach strongly depends on the
density of the involved matrices: the latency is low for the sparse matrix in the
decoder, it becomes rather poor when the density of the matrix is increased, as
in the encoder.

• The Karatsuba algorithm achieves a the lowest latency, if used to compute the
polynomial products required in the encryption [30].

• The Schönhage-Strassen algorithm [31], with the Number Theoretic transform
(NTT), has the lowest time complexity among the algorithms with all tyoe
of vectors. Therefore, has the flexibility to be applied to both encoder and
decoder.

5

The thesis describes a Schoolbook architecture that implement polynomial prod-
uct optimized for LEDAcrypt/BIKE encoder/decoder. In addition, the security of
the Schoolbook approach is studied by applying a side-channel attack to retrieve the
secret key. The encoder and decoder architectures are described and compared with
state-of-the-art designs. Moreover, the Schönhage-Strassen approach, despite not
being the most efficient solution, is more flexible among PQC primitives.

The work is organized as follows: in Chapter II, general concepts on cryptography
are presented, while in Chapter III describes the Code-based PQC in details, in
Chapter IV and V the algorithms for polynomial multiplication and the architectures
are described, Chapter VI presents the implementation of the decoder and encoder
and finally the Conclusions are provided.

Chapter 2

Cryptography

The security of private messages exchanged between two parties or the integrity of a
received stream of data, are ensured by Cryptography. The field of Cryptography
offers methods to establish secure communication channels, safeguarding secret in-
formation from third-party access, and expose potential threats that may compromise
the reliability of communication.

To protect a secret message, this is transformed into an obfuscated text, known as
ciphertext. The transformation of plaintext into ciphertext, represented in Figure 2.1,
relies on specific cryptographic functions with provable security through mathemati-
cal theorems. Although in theory, the message could be derived from the ciphertext
through brute force or known attacks, the computational cost of such tasks renders
them infeasible given current and foreseeable computing capabilities.

The study of secure cryptosystem extends beyond Mathematics and encompasses
contributions from Computer Science, Electronics and Physics (Quantum Mechanics)
to ensure data protection. The methods and their implementations are continuously
adapted into different requirements, and their security is regularly studied to find
unexpected issues.

The methods, or protocols, used to secure information between two parties can
be classified into two groups of algorithms: Symmetric Cryptography, which utilizes
a single Secret Key for establishing a communication between trusted parties over a
secure channel, and Asymmetric Cryptography, with a Secret Key and a Public Key,
to establish communication between trusted parties over an insecure channel. It also
provides a secure channel or prove the identity and integrity of a message or party

2.1 Asymmetric Cryptography 7

plaintext ciphertext

𝑚 𝑥
𝑓(𝑚,…)

Fig. 2.1 Message ubfuscation by means of a cryptographic function

involved in the communication, together with Cryptographic Hash Functions. These
methods evolved over time, with the increasing size of the keys implemented to align
with the computational capabilities of computers. Recently, the advent of Quantum
Computers and their potential to break the currently employed Asymmetric Schemes,
has prompted research into new algorithms that can provide security in the coming
decades. This has led to the emergence of Post-Quantum Cryptography.

This chapter aims to provide a comprehensive overview of the current standard-
ized cryptographic methods that have been developed over the past decades and rely
on mathematically proven secure problems. The impact of Quantum Computers on
these algorithms will also be examined.

2.1 Asymmetric Cryptography

Asymmetric Cryptography, also known as Public-Key Cryptography (PKC), is a
pivotal field in cryptography, as it enables the sharing of a common secret between
two unknown parties, using a pair of Secret Keys (SK) and Public Keys (PK).

For example, the exchange of a secret message between Alice and Bob using
PKC operates as follows: Bob wishes to share a secret with Alice, so he selects
Alice’s Public Key and encrypts the message, transforming it into ciphertext. Alice
receives the ciphertext and decrypts it using her Secret Key to retrieve the message
sent by Bob. The asymmetry in the use of the Secret Key and the Private Key is
inherited from functions, these are computationally easy to solve in one direction,
but difficult to invert.

The security of the communication is guaranteed by the asymmetry inherent
in the selected mathematical function: the encryption of a message into a secret
using the Public Key is "easy", while making it computationally difficult to invert

8 Cryptography

or decrypt without the Secret Key. As a result, disclosing the secret message is
infeasible without the Secret Key. However, careful consideration must be given
to the choice of the underlying problem, as the strength of the decryption process
without the Secret Key can be compromised by the availability of more powerful or
efficient methods.

The most common application of an Asymmetric Cryptosystem is to share the
Secret Key of a Symmetric Systems, in order to establish a communication through
a symmetric secure channel. In general, symmetric cryptosystems are more efficient
due to their reduced latency and are referred to as Key Encapsulation Mechanism
(KEM) schemes. The second main application is in Signature Schemes that are
employed to prove the identity of the parties involved in a communication. The
schemes that establish an asymmetric secure channel are referred as Public Key
Encryption (PKE) schemes.

The schemes are a set of primitives that are in charge of generating the key pair
(Key Generation). The block diagrams for KEM and PKC are in Figures 2.2 and 2.3.
Encrypt and Decrypt for PKE, Encapsulate and Decapsulate for KEM and Sign and
Verify for the Signature Schemes.

The above applications result in schemes that can build on algorithms that are
resistant to classical or quantum threads. Modern Cryptography researches the
state-of-the-art of methods that considers only classical threats, these come from
classical computer (laptops) or supercomputers. More recently, the threads posed
by Quantum Computers and quantum algorithms required an additional effort to
find the algorithms and protocol that best suite to achieve security. In the following
sections, the most common mathematical problems and the protocols are described
in order to provide and overview of the cryptosystems.

The examples of mathematical problems that are the basis of PKC schemes are
briefly described to have an overview of the different algorithms that are available.
In addition, KEMs/PKCs and Signature scheme are detailed in order to understand
how they apply a mathematical problem to encrypt messages.

Security level The security of a cryptosystem is given as n-bit of security. This is
referred to the 2n number of operations that an attacker has to perform, in order to
retrieve the Secret Key from the Public Key. The security level is defined assuming
that the best known attack is applied. The estimate is computed by different agencies

2.1 Asymmetric Cryptography 9

Symmetric
key

ciphertext

𝑺𝑲𝑠𝑦𝑚 𝑥
𝑓(𝑺𝑲𝑠𝑦𝑚, 𝑷𝑲,…) 𝑔(𝑥, 𝑺𝑲,…)

DecapsulationEncapsulation

Symmetric
key

𝑺𝑲𝑠𝑦𝑚

Fig. 2.2 Block Diagram of the Key Encapsulation Mechanism schemes

plaintext ciphertext

𝑚 𝑥
𝑓(𝑚,𝑷𝑲,…)

plaintext

𝑚
𝑔(𝑥, 𝑺𝑲,…)

DecryptionEncryption

Fig. 2.3 Block Diagram of the Public Key Cryptography schemes

across the world and result in the suggested parameters of the selected scheme. The
recommendations require to have at least 128 bit of security.

2.1.1 Modern Cryptography Schemes

In Modern Cryptography, Asymmetric schemes depend on two problems: the in-
efficiency of factoring a large number, which is the product of two large primes
(RSA[32]) and the inefficiency to solve the discrete logarithm problem, referred as
Elliptic Curve Cryptography[33, 34]. The functions has been adopted for decades to
secure our data.

The methods that can recover the secret message from the ciphertext are ineffi-
cient to run on a classical computer, but methods to speed-up them up are known if a
quantum computer with a sufficient number of bits is available.

RSA Cryptosystem

The RSA cryptosystem firstly appeared in 1977 and its name derived from the
inventors of the scheme: Ron Rivest, Adi Shamir and Leonard Adleman[32].

In RSA, Alice would start the Key Generation, as mentioned above, with the
extraction of two large prime numbers with different length, these are p and q,
which has not to he disclosed. The product of these numbers, n = pq, is part
of the Public Key (PK), which will be transmitted to Bob. The second number

10 Cryptography

of PK is e, this is selected such that 1 < e < λ (n) and coprime with λ (n), with
lλ (n) = lcm(p−1,q−1) (lcm is the least common multiple). The value of SK is
d = e−1.

The Encryption, on Bob’s side, has in input the secret message m that becomes
the ciphertext c = me (mod n).

The Decryption, which only Alice can perform, is m = cd (mod n).

The method is based on a specific group of functions referred as trapdoor one-
way, which are very popular in PKC: the one-way property is useful in the encryption
since it refers to a problem that is hard to invert, while the trapdoor is useful in the
decryption because it can efficiently invert the function. Obviously, the trapdoor has
to be only one otherwise the method is not suitable for cryptography.

Elliptic Curve Cryptography

The use of Elliptic Curve in cryptographic systems has been firstly studied in the 80’s
and then applied to existing schemes to build algorithms public key cryptography.

Elliptic Curves are described with the equation:

y3 = x3 +ax+b (2.1)

The Elliptic Curve in Cryptography are defined over finite fields, thus, the
equation becomes:

y3 = x3 +ax+b mod p (2.2)

The representation of the elliptic curves changes when only the integer (mod p)
coordinates are considered, Secret and Public Key, are points selected by Alice on
such a curve. The search of the point associated to the Secret key is referred as the
the discrete logarithm problem.

The advantage of ECC over RSA is that the size of the keys is reduced.

Elliptic Curve Diffie-Hellman The Diffie-Hellman Key Exchanged Protocol
(DH)[35] paired with Elliptic Curves ensures that the secret cannot be found since
it requires to solve the Discrete Logarithm Problem, there are no known methods

2.2 Symmetric Cryptography 11

that can efficiently solve it. The idea is that Alice and Bob combines PK and SK and
then derived a secret value which is the same between the two parties.

2.2 Symmetric Cryptography

The Symmetric Cryptography provides a set of algorithms that ensure a secure and
efficient communication over a channel by adopting a single shared key, the Secret
Key, in Figure 2.4.

plaintext ciphertext

𝑚 𝑥
𝑓(𝑚, 𝑺𝑲𝑠𝑦𝑚) plaintext

𝑚
𝑔(𝑥, 𝑺𝑲𝑠𝑦𝑚)

DecryptionEncryption

Fig. 2.4 Block Diagram of a Symmetric Cryptosystem

The communication between Alice and Bob consists in ciphering (encrypting) a
secret message with SK and then de-cipher (decrypting) it with the same key. The
algorithms available are divided into:

• Stream Ciphers, the encryption is applied digit by digit to the secret message;

• Block Ciphers, the encryption is applied to a block of digits of the secret
message.

There is a number of algorithms that has been developed for symmetric cryptogra-
phy, the most popular and adopted is the Advanced Encryption Standard (AES)[36].

The AES algorithm performs a set of operations that combines matrices with the
secret message and matrices with the Secret Key to perform the encryption which
are then reverted in order to decrypt the message.

The algorithm security is not affected by Quantum Computers since it is enough
to double the size of the keys to have a equivalent security level on Quantum
Computers.

12 Cryptography

2.3 Post-Quantum Cryptography

Shor’s Algorithm[9] running on Quantum computers can break the RSA and ECC
schemes, in such a way that is not enough to increase the size of the key to have a
secure system. In Post-Quantum Cryptography researches schemes that are called
quantum-safe, which guarantees the ’n-bit security’ of RSA and ECC, but against
quantum algorithms, such as Shor’s[9] and Grover’s[37] Algorithms.

The field of Post-Quantum Cryptography aims to provide algorithms for Asym-
metric Cryptography and Signature scheme that relies on problems that are infeasible
on both Classic and Quantum Computers.

The topic has become relevant in recent years, but quantum resistant schemes
have been known for years ago and rediscovered recently. In 2015, the National
Institutes for Standards and Technology (NIST)[38] launched a Call for Submission
for Post-Quantum Schemes and different agencies across the world warned about
the need of a transition towards quantum safe algorithms.

The selection process has encountered 4 Rounds and in the end selected a winner
for the PKC/KEMs and Signature schemes.

Round 1, 2 and 3 The story of the NIST PQC Standardization process started with
in 2015 with the call for proposal. The first set of submission for Round 1, which
included in the competition 69 schemes [39], but a set of these has been broken in
the very first days and hours after being made publicly available. In the next months,
the remaining schemes has been carefully studied and a subset of them admitted to
Round 2.

The PKE schemes admitted to Round 2 where 17 among the initial 69, further
reduced to 9 at Round 3. The schemes admitted are based on four problems that
were considered the most promising ones for PQC, one can find schemes based
on Lattices, Code-based schemes, Isogeny based schemes and Multivariate ones.
Despite that, in the end, the Isogeny-based and Multivariate-based turned out to be
insecure, while Code-based and Lattice based schemes has been admitted to the last
Round[14].

2.3 Post-Quantum Cryptography 13

Round 4: selected algorithms and finalists The final phase of the competition
is Round 4. The selected candidate to be standardized for KEMs has been found in
Crystals-Kyber[40], while Dilithium[41], Falcon[42] and SPHINCS+[43] have been
the selected as Signatures schemes[44]. The selection process is still open for both
KEMs and Signature schemes, while for KEMs there are Code-based schemes, for
signatures the proposals are not diversified, a specific competition has been launched
[45].

The algorithms that are still running in the NIST competition for KEMs are:

• BIKE[18]: a Code-based scheme with Moderate Density Parity Check codes,
this is reduced density variant of the McEliece Cryptosystem;

• Classic Mceliece[15]: a Code-based scheme that the original MceEliece Cryp-
tosystem, with parameters which makes it quantum safe;

• HQC[19]: a Code-based cryptosystems that proposes a different model for
code-based KEMs;

• SIKE [46]: a Isogeny-based cryptosystem which appeared to be a promising
candidate, but has been found that is insecure by its inventors as states in the
note published on NIST website [47].

The Code-based and Lattice based schemes are the oldest and most valid options
for quantum safe algorithms, they have been both described decades ago with the
McEliece Cryptosystems [13] and NTRU [48].

The Code-based cryptosystem history, details and implementations are discussed
in the next chapter, in the following a brief description of Lattice-based schemes is
provided.

2.3.1 Lattice-based Schemes

The Lattice-based schemes has been developed to consider two NP-hard problems
that can be described on a given lattice, this is the set of points described over a
n-dimensional space, the example is in Figure 2.5, which are linear combination of
the base vectors, over this space one can define:

• the Shortest Vector Problems, aims to find the shortest vector on the lattice;

14 Cryptography

𝑏1

𝑏2

𝑐

𝑣

Fig. 2.5 The example of a two dimensional lattice with the basis, b1 and b2 basis vector
highlighted and the shortest vector c,

• the Closest Vector Problem, aims to find in the lattices the closest vector to
another vector.

The Shortest Vector Problem is the basis of Lattice-based cryptography, but
recently a variant of the original problem has been developed, these are referred to
as Learning With Error (LWE) schemes, since the proposal is the search of a vector
on a lattice which has been perturbed by noise.

Despite the LWE schemes has been selected for standardization, the Code-based
schemes are still considered as an alternative method to build a secure cryptosystem.

Code-based Schemes

The Code-based schemes are based on the NP-hard problem of decoding a general
linear code. The NP-hardness has been adopted in the McEliece Cryptosystem,
which has selected Goppa Codes to encrypt and decrypt the secret message. More
recently, families of error correcting codes has been researched in order to lower the
memory footprint of such schemes.

The detail of the Code-based schemes are described in Chapter III.

Chapter 3

Code-Based Post Quantum
Cryptography

Error correcting codes, which are a tool in information theory, have been used for
decades to transmit information over noisy channels by adding redundancy through
encoding, which is later utilized by decoders to remove errors.

The first example of error correcting codes was proposed by Richard Hamming
in the 1940s, the code developed is known as the Hamming code. Subsequently,
several error correcting codes with varying structures, complexities, and correction
capabilities have been developed, such as Reed-Solomon Codes, BCH Codes, Polar
Codes, LDPC Codes, and Goppa Codes. These codes find wide applications in
satellite communication, data storage, digital television protocols, and cryptography.
More recently, error correcting codes have gained significance in securing data, with
the rediscovery of McEliece Cryptosystems[49] based on Goppa Codes, and the
successful application of LDPC[20] Codes in Quantum Key Distribution (QKD)
protocols[50].

In the field of cryptography, the secret message, the plaintext, is encoded using
a generator matrix into codeword, errors are intentionally introduced to obtain the
ciphertext. The Decoding algorithm is then applied to recover the secret message.
The security of such schemes is based on the NP-harness of the decoding a general
linear code[12].

16 Code-Based Post Quantum Cryptography

The oldest Code-based proposal iw the McEliece[49] and Niederreiter[51] Cryp-
tosystems, and recently, variants of the method have been proposed and demonstrated
promising results.

The description of Code-based Post-Quantum Cryptography (PQC) involves
matrices, vectors, and notation specific to this chapter, which will be defined in
dedicated sections in this and subsequent chapters.

3.1 Notations and definitions

The present section is dedicated to describe the notations and to define some concepts
that are used in the present manuscript.

3.1.1 Constants, vector and matrices

The constants and integers are referred by letters a, vectors of size 1×m are defined
in bold with a the row vector is:

a =
h
a0 a1 . . . am−1

i
(3.1)

the row vector has length m, the column vector, of size m×1,is the transpose of aT

is:

aT =


a0

a1
...

am−1

 (3.2)

The elements of the vector are indexed starts from 0. The vector can be a binary
vector, with elements ai (i ∈ [m−1,0]) that can be 0 or 1. The weight of a binary
vector is aw is the sum of the 1a in a.

3.1 Notations and definitions 17

The n×m matrix is defined with capital and bold letter A:

A =


a0,0 a0,1 . . . a0,m−1

a1,0 a1,1 . . . a1,m−1
...

...
an−1,0 an−1,1 . . . an−1,m−1

 (3.3)

The square matrix has size m×m, this is a circular matrix derived from vector a:

A =


a0 a1

... am−1

am−1 a0
... am−2

...
...

a1 a2
... a0

 (3.4)

The transpose of the matrix is AT :

AT =


a0 am−1

... a1

a1 a0
... a2

...
...

am−1 a1
... a0

 (3.5)

There is specific case of cyclic matrix, this is the identity matrix, it is referred as
I, it is a binary matrix with the first row

h
1 0 0 . . . 0

i
, the matrix is:

I =


1 0

... 0

0 1
... 0

...
...

0 0
... 1

 (3.6)

The binary matrices are associated to the weight of each column or row in matrix
A, these are a row vector, arow, and a column vector, acolumn,that counts the number
of 1s in each column and rows. The binary cyclic matrix A is regular since the
weight of rows and columns is constant, the row weight it referred as dA, the density
of the matrix (which is identical to aw of vector a).

18 Code-Based Post Quantum Cryptography

The block matrices with n0 ×m0 are is defined by:

B =


A0,0 A0,1 . . . A0,m0−1

A1,0 A1,1 . . . A1,m0−1
...

...
An0−1,0 An0−1,1 . . . An0−1,m0−1

 (3.7)

The size of B, considering the m×m matrix A, is n0m×m0m. the block matrix
can be ’cyclic’ too, since the property can apply to the block matrices.

The block matrix with cyclic matrices is defined as quasi-cyclic matrix, the matrix
is associated to a weight matrix w(B) with each elements (i, j) that corresponds to
the weight of each Ai, j.

3.1.2 Polynomials

The polynomials are referred in a similar way as vectors, polynomial a(x) of degree
m is:

a(x) = a0 +a1x1 + · · ·+am−1xm−1 (3.8)

The coefficients of a(x) are elements ai, these corresponds to the elements of
vector a of length m previously defined. Polynomials are referred by its coefficients.

3.1.3 Operators

addition or subtraction The addition (or subtraction) between constants, vectors
and matrices of proper size is straightforward. The present work makes use of the
sum between binary or integer vectors, the sum between vectors a and b is referred
in two ways:

• a+b, the result is an integer vector it is performed in the integer domain;

• a⊕b, the result is a binary vector it is performed in GF(2)

3.2 McEliece Cyrptosystem 19

multiplication and correlation The multiplication (or product) between constants
is c = ab, between vector is c = ab is the element wise product among the elements
of the vectors.

The matrix multiplication is referred to a matrix by matrix product and a vector
by matrix product, the product considered are:

• the row vector a with size 1×m by the square cyclic matrix B (or BT) with
size m×m

c = aB (3.9)

• the square cyclic matrix B (or BT) with size m×m by the column vector aT

c = Ba (3.10)

The same notation is used for multiplication that result in integer or binary
vectors, the domain of the output is specified.

The correlations, which is applied over two vectors is referred as: a⋆b.

transforms The transform of a vector a is referred with the capital letter A (despite
it is a vector it is not in bold to avoid confusion with matrix A). For example, the
Fourier transform of a signal store in vector a, is:

A = F (a) (3.11)

3.2 McEliece Cyrptosystem

The McEliece Cryptosystem was described by Robert McEliece in 1978 [49] based
on binary Goppa Codes, the scheme is suitable to exchange a secret between two
parties with an asymmetric cryptosystem, this is a Public-key Encryption scheme.

The cryptosystem, RSA[32] and ECC[34][33] has been proposed in 1977 and
1986, respectively. The RSA and ECC schemes have been selected as standards
for asymmetric cryptography because of their efficiency, compared to McEliece.
The overcoming thread of quantum computers has a milder effect on the McEliece
cryptosystem due to the NP-hardness of the decoding of a general linear code. The

20 Code-Based Post Quantum Cryptography

surprising aspect of McEliece cryptosystem is that since 1978 only one attack has
been discovered which improves brute force attack, but with an increase of the size
of the secret key the attack becomes infeasible.

The method establishes a secure channel between Alice and Bob, the general idea
of the scheme is in Figure 3.1, the main elements are the Encryption and Decryption,
these correspond to the encoder and decoder present in a telecommunication system,
the difference is that the errors are part of the encryption, thanks to the redundancy
of the codeword it is possible to recover the plaintext.

plaintext

Public
key

Encryption

* +

error

codeword ciphertext

Decryption

plaintext

Secret
key

Decoding

algorithm

Fig. 3.1 Block scheme for McElice-like crytosystem

The original method consists in three algorithms that run in polynomial time:
secret key pair generation, encryption, decryption.

The cryptosystem has a set of parameters for which the security is guaranteed,
these are:

• n: the length of the code, which is the length of the redundant message,

• k: the number redundant bit added to the message,

• t: the weight of the error added to the redundant message.

3.2.1 Scheme algorithms

Key Pair generation The Secret Key (SK) is the binary Goppa Code capable of
correcting t errors with and with dimensions n and k, the Public Key (PK) is the
Generator Matrix, G, the randomly selected S and P matrices which are the non-
singular matrix with dimensions k× k and the permutation matrix with dimensions
n×n respectively. The Private Key is Ĝ = SGP.

The Public Key is shared by Alice to Bob.

3.2 McEliece Cyrptosystem 21

𝑛 − 𝑘 𝑘

𝑛

𝑡

Fig. 3.2 The example of a codeword of length n with the different sections highlighted: the
message is in yellow, with n− k bit, the redundant part with k bits, the t error bit.

Encryption The secret message is m with length n− k, it is encrypt by Bob with
the error vector with length n and t asserted bits is derived, the ciphertext is:

c = mĜ+ e (3.12)

The ciphertext is a vector of length n that can be shared over an insecure channel.

Decryption The Decryption is performed by Alice in three steps:

• the inverses of P and S are computed;

• the decoding algorithm is applied to ĉ = c∗P−1 and m̂ is obtained;

• the message is: m = m̂S−1

The Decoder, with the parameters and algorithm, is designed to correct up to
t errors, then the failures of the decoder (referred as DFR, Decoding Failure Rate)
is guaranteed to be zero, this important to consider when designing a Code-based
cryptosystem since the failures of the decoder are adopted by an attacker to retrieve
information on the Secret Key.

3.2.2 Niederreiter Cyrptosystem

The Niederreiter Cryptosystem [51], with the general idea of the scheme in Figure
3.3, is variant of the McEliece Cryptosystem, the algorithm was originally based on

22 Code-Based Post Quantum Cryptography

generalized Reed-Solomon Codes and has been broken in [52], but the cryptosystem
is secure with binary Goppa Codes since they are both based on the NP-hardness
of linear codes (the equivalence of the two scheme is described in [53]), thus the
method is still valid if a suitable family of codes is employed. The original proposal
is based on the parity-check matrix of a linear code and not the generator matrix, as
in the original McEliece scheme.

plaintext

Public
key

Encryption

* +

error

codeword ciphertext

Decryption

plaintext

Secret
key

Decoding

algorithm

error

Public
key

Encryption

*
ciphertext

Decryption

error

Secret
key

Decoding

algorithm

Fig. 3.3 Block scheme for Niederreiter-like crytosystem

The cryptosystem is defined by the code length, n, the redundancy, k, and the
weight of the error vector, t.

Key Pair Generation The Secret Key is the parity check matrix of a Reed-Solomon
error correcting code, H, and the invertible matrix S. The Public Key is matrix
H′ = HS.

Encryption The encryption is performed in two steps:

• the secret message is encoded into a vector of weight t, the error vector e;

• the ciphertext is c = eH′, which is the Syndrome of the vector.

Decryption The decryption is carried on with a syndrome decoding algorithm that
recovers e from S−1c.

3.3 Low-Density Parity Check Codes 23

3.2.3 Limitations and attacks

The factor that limited the adoption of the McEliece cryptosystem, despite its out-
standing features, is the dimensions of the keys, the value of the parameters in its
original[49] form are: n = 1024 and k = 524 and t = 50, with the length of the
message n− k = 500. The Generator Matrix has form Ĝ = [G̃,I], which makes it a
systematic code, thus matrix G̃ has 524× (1024−524) binary values to be stored.
The sizes are increased for the McEliece Cryptosystem adapted to modern standards,
this is referred as Classic McEliece[54].

The choice of the parameters is fundamental to guarantee efficient decoding and
encoding, but most important the security. The attacks applied on McEliece to derive
the Secret key from the Public key are brute force kind of attacks and can be divided
in two categories: syndrome decoding and information set decoding [55], the latter
tries to find the low weight codewords and thus is able to reduce the complexity of
the Secret key recovery. Recently, the parameters of McEliece Cryptosystem have
been updated to make such algorithms infeasible, the proposal has been submitted
to NIST PQC Standardization competition as Classic McEliece for PKE, while the
Niederreiter scheme based on Goppa codes is considered for KEM.

The size of the key is a big limitation for McEliece adoption, thus new families
of codes have been used to derive variants of McEliece, but this requires additional
studies to discover new attacks and test the effect of know attacks to them. The
most promising options are LDPC/MDPC codes since they seem not affected by
structural attacks (as the original McEliece), while Reed Solomon codes turned out
to be insecure.

3.3 Low-Density Parity Check Codes

The Low-Density Parity Check (LDPC) had described by Gallager in its doctoral
thesis [20] with their encoding and decoding algorithm. The LDPC Codes have been
rediscovered in the past decade thanks to their outstanding correcting capabilities.

The binary Low-Density Parity Check Codes are linear codes defined by two
matrices: Parity Check Matrix, H, with dimensions n× k, and the Generator Matrix,
G.

24 Code-Based Post Quantum Cryptography

The code is constructed with the Parity Check Matrix, a binary sparse matrix (low
density) defined by a set of parity equations. The Generator Matrix, with dimensions
(n− k)×n), encodes the input message, m with length n− k, into a codeword, c of
length n.

c = mG (3.13)

The codewords of the code are the set of inputs that satisfy the parity check
equation, the Parity Check Matrix is a linear combination of codewords.

The parameters of the LDPC code are:

• n, the length of the codeword;

• k, the number of redundant bit;

• t, the maximum number of errors.

The LDPC codes have additional elements that characterizes the Parity Check
Matrix, this is dc (or dr) the weight of each column (or row), this is the number of
asserted bit over a column (or row). In LDPC Codes the value of dc (or dr) is << n.

Code Construction and Encoding The Parity Check Matrix, H, is a k×n matrix
generated randomly of with a construction algorithm. The Generator Matrix is
obtained from H by rearranging it as:

H = [A,B] (3.14)

Where the sub matrix A is a non singular square matrix of size k, thus B is a
matrix with size k× (n− k) then matrix G for a systematic code is [In−k,Gl]:

Gl = [A−1B]T (3.15)

The Identity Matrix, I, is a square matrix of size n− k and Gl is a (n− k)× k matrix.

The encoding, in details, is done as follows:

c = m[I,Gl] = [m,mGl] (3.16)

3.3 Low-Density Parity Check Codes 25

The encryption is an additional step in cryptosystems, since it requires to inten-
tionally flip a set of bits in the codeword, making it a ciphertext.

x = c+ e (3.17)

The codeword is encrypted into a ciphertext and the attacks that aims to decode
it without the parity-check matrix are infeasible for the parameters of the code.

Decoding The codewords are the set of vector with length n that satisfy the parity
equations of the code, with the errors added to the codeword the set of parity
equations have a different value. The result of the equation is the Syndrome, s, this
quantity is fundamental in the decoder side since it is used to correct the errors.

The LDPC Codes have a wide number of decoders depending on the type of
error that is introduced, the one employed in cryptography is Bit Flipping Decoder,
modified version of the one proposed by Gallager, since the errors are bit flips of the
codeword.

The Decoder with the Bit Flipping approach two variables have to be computed:

• The Syndrome vector is computed, this is a binary vector and each entry is the
result of the parity equation of the code, the vector has length n− k;

• The Unsatisfied Parity Check vector is computed, this is an integer vector and
it counts the number of wrong equations in each value of the ciphertext is
involved.

The search of the error bit to be flipped is done by looking at the Unsatisfied
Parity Check vector, upc, given a threshold value, the positions which are above that
threshold are more likely to be errors.

The Algorithm iteratively approximated the ciphertext to the codeword by reach-
ing a null Syndrome:

The evaluation of the threshold depends on the variant of the Bit Flipping al-
gorithm that is adopted, the number of errors bits in the encryption step and the
function that calculates the threshold at each iteration are critical parameters in the
security analysis, thus in the coding design phase they have to be considered while
testing attacks running on classic and quantum algorithm.

26 Code-Based Post Quantum Cryptography

Algorithm 1 Bit Flipping Decoder
Input: ciphertex x, vector with length n; Input:Parity Check Matrix H, with size
k×n
Output: error free message m, with size (n− k)

1: It = 0 ▷ Iterations counter
2: s(0) = xHT ▷ Syndrome
3: while It < Itmax or sIt = 0 do
4: upcIt = sH ▷ Unsatisfied Parity Check
5: bIt = f (sIt) ▷ Compute threshold
6: P = {i ∈ [0,n−1]|ρi > b} ▷ Collect the position of the errors
7: xIt+1(P) = xIt(P)⊕ cIt(P) ▷ Flipping of error position
8: s(It) = xItHT ▷ Update Syndrome
9: It = It +1 ▷ Increase iterations counter

10: end while
11: if s = 0 then
12: return m = c(1 : n− k) ▷ Decoding is successful
13: else
14: Report failure ▷ Decoding has failed
15: end if

Coding Design The design of LDPC Codes suitable for cryptography has to be
both secure and efficient, the parameters that are considered during the design are
the result of a trade off between the efficiency of the encoding/decoding. The most
critical parameters are the number of errors introduced in the codewords and the
function to evaluate the threshold since on it the correcting capabilities of the decoder
are affected: it is fundamental to correct the errors in Itmax iterations at most and
avoid decoding failures since the decoding failures give additional information to
discover the parity-check matrix from the generator matrix. The constraints imposed
on the coding design are different for PKEs and KEMs, the latter generates ephemeral
keys used only once, while PKE has long term keys, thus a statistical analysis that
exploits failures of the decoder or analysis of the power consumption/execution time
of the primitives can be applied.

The LDPC may have an additional structure that reduces the encoding and
decoding complexity, without deteriorating the security [18][17]: the Quasi-Cyclic
construction is adopted to further reduce the memory requirements of the scheme.

In cryptographic applications, impressively low error rates (in the order of 2−128

or less) must be achieved to avoid some types of attacks that gain information on the

3.3 Low-Density Parity Check Codes 27

secret key. The design of the codes, with its parameters and decoder, is fundamental
to reaching this requirement and avoid a phenomenon known as ’error floor’ [56, 57].

3.3.1 Structured Codes: QC-LDPC/MDPC

The variants of the McEliece and Niederreiter cryptosystem proposed for Post-
Quantum Cryptography are based on QC-LDPC/MDPC Codes, Quasi-Cyclic Low-
Density Parity-Check/Moderate-density Parity-Check Codes.

The Quasi-Cyclic matrices in LDPC Codes are referred to the structure of the
Parity-check and generator matrix. The cyclic or (circulant) matrices are square
matrices, the whole matrix is defined with the first row (or column) that are cyclically
shifted to obtain the following row (or columns), the binary matrix A with size
m×m:

A =


a0 a1 a2 . . . am−1

am−1 a0 a1 . . . am−2

am−2 am−1 a0 . . . am−2
...

...
...

a1 a2 a3 . . . a0

 (3.18)

The matrix is regular since the weight is constant across column (and rows), this
is referred as wA, the cyclic structures allows to stored only the first columnh
a0 a1 a2 . . . am−1

i
.

The parity-check matrix, H, is a block matrix which is assumed to have x× y
blocks:

H =


H0,0 H0,1 H0,2 . . . H0,y−1

H1,0 H1,1 H1,2 . . . H1,y−1

H2,0 H2,1 H2,2 . . . H2,y−1
...

...
...

Hx−1,0 H0,0 H0,0 . . . Hx−1,y−1

 (3.19)

The elements Hi, j is cyclic, thus H is quasi-cyclic (QC), the knowledge of the
firs row (or column) is enough to derive H.

The additional interesting property of quasi-cyclic codes, as we will see in the
next section, is its isomorphism with the polynomial ring F2[x]/(xm + 1). The
matrix A and the polynomials a(x) with coefficients in F2 (binary coefficients) are

28 Code-Based Post Quantum Cryptography

equivalent:
a(x) = a0 +a1x+a2x2 + · · ·+am−1xm−1 (3.20)

The property is important to improve in the computation and it successfully
applied in modern cryptosystems. The key generation involves a matrix inversion,
with the parameters of the cryptosystem it is simplified into a polynomial inversion,
the multiplications in the encoder and decoder are considered as polynomial mul-
tiplication and thus the techniques known in literature are adopted to speed-up the
computation.

The cryptosystems that have been proposed for Code-based Post-quantum Cryp-
tography are BIKE and LEDAcrypt, they are variants of McEliece with QC-LDPC/MDPC
Codes adopted to implement Public Key Encryption (PKE) and Key Encapsulation
Mechanisms (KEM) schemes.

3.4 Code-based QC-LDPC schemes

The NIST competition reached its final phases of the standardization process, with
Round 4, BIKE is still running to be a possible candidate for standardization, while
LEDAcrypt has been found vulnerable and did not made it to Round 3 of the
standardization process. The two schemes are very similar, but not identical. The
primitives and parameters of the schemes are described in the following and their
specifications are reported.

The primitive that implements the Key Generation, Encryption and Decryption
for PKE, Encapsulation and Decapsulation for KEMs, the methods are similar to the
algorithms explained before but the polynomial structure, the security requires some
additional elements to take care of.

The key pair are the Parity-Check matrix and Generator matrix of a QC-LDPC/MDPC
code, the parameters are the number of blocks, n0, the size of the blocks, p, the
density of the matrix as the number of asserted bits in the first row, dh, and the
number of errors, t. The code length and size of the message are derived from the
previous parameters.

3.4 Code-based QC-LDPC schemes 29

3.4.1 LEDAcrypt

The LEDAcrypt parameters are in Tables 3.1 and 3.2, these are referred to KEM
primitives submitted to Round 2 of the NIST competition, the parameters are grouped
per level of security.

The parity-check matrix in LEDAcrypt is matrix L, a quasi-cyclic matrix, the
result of the product HQ, which are again quasi-cyclic matrices. The cyclic matrices
are defined as:

•
H = [H0,H1, . . . ,Hn0−1], (3.21)

The matrix has n0 blocks, the density of the cyclic blocks is constant and set
to dH , which refers to the number of asserted bit in the first row of the matrix.

The matrix is calculated randomly extracting a set of dH distinct positions for
each n0 block.

•

Q =


Q0,0 Q0,1 . . . Q0,n0−1

Q1,0 Q1,1 . . . Q1,n0−1
...

...
Qn0−1,0 Qn0−1,1 . . . Qn0−1,n0−1

 . (3.22)

The matrix has n0 ×n0 blocks.

The matrix Q is associated to its density matrix, which is quasi-cyclic itself, the
matrix is:

D(Q) =


d0 d1 . . . dn0−1

dn0−1 d0 . . . dn0−2
...

...
d1 dn0−1 . . . d0

 (3.23)

The first row is
h
d0 d1 . . . dn0−1

i
, referred as dQ, the sum of these elements is

referred as dQ.

The matrix is calculated by extracting D(Q)(i, j) distinct position for the Q(i, j)
block, for each (i, j) block with i = 0 . . . n0 −1 and j = 0 . . . n0 −1.

30 Code-Based Post Quantum Cryptography

Decoder Efficiency and Security concerns The idea to split the parity-check
matrix into H and Q was proposed in Round 1 of the LEDAcrypt submission, this for
an efficient decoder: the cyclic matrix products are the core of the computation and,
as it will be shown later, is the execution time of such multiplication strictly depends
on the density of the matrices, with the ’factorized’ version of the parity-check
it is possible to compute the products with a reduced density. Unfortunately, the
optimization showed weaknesses from the security point of view and thus has been
dropped out from the NIST competition. The choice of the updated parameters is
close to the one selected in BIKE. The details on LEDAcrypt are reported in the
following since the initial study on the architectural implementation has been carried
on considering LEDAcrypt, but can be extended to BIKE by changing the sizes of
the parameters.

Parameters

The value of n0 for a given Security Level can be 2, 3 and 4, which is associated to
different code length (n0 p) and redundancy ((n0 −1)p), despite the security being
the same the length of the message to be encoded and the execution time of the
decoder, can change, this allows to have a decryption with different performances
but a given level of security.

The parameters referred to the submission to Round 2 of LEDAcypt for KEMs
are in Table 3.1, the maximum number of iterations of the decoder is set to 5 (Itmax

in Algorithm 1).

The parameters referred to the submission to Round 3 of LEDAcypt for PKE and
KEMs are in Table 3.2, the parity check matrix is H with its density dH .

It is important to point out that the size of the block is a prime number, this choice
is fundamental to have an efficient generation of the keys, but requires particular
attention when implementing an efficient decoder and encoder.

The list of parameters is provided since these have been considered in the first
implementation of the Decoder, the following parameters considered are derived
from BIKE.

3.4 Code-based QC-LDPC schemes 31

Table 3.1 Considered LEDAcrypt parameters for KEM.

Security Level n0 m dH dQ t
(in bits)

128
2 14,939 11 [4,3] 136
3 8,269 9 [4,3,2] 86
4 7,547 13 [2,2,2,1] 69

192
2 25,693 13 [5,3] 199
3 16,067 11 [4,4,3] 127
4 14,341 15 [3,2,2,2] 101

256
2 36,877 11 [7,6] 267
3 27,437 15 [4,4,3] 169
4 22,691 13 [4,3,3,3] 134

LEDAkem

The Key Encapsulation mechanism for Code-based PQC is the Niederreiter cryp-
tosystem with QC-LDPC Codes. The scheme is in charge of encapsulating a secret
string, which is later used as the key of a Symmetric Cryptosystem. The Secret Key
is the Parity-Check Matrix of a QC-LDPC Code, derived as L = HQ, and the Public
Key is the Generator Matrix of a QC-LDPC Code.

Key Generation The key generation has to calculate firstly the Parity-Check
Matrix L, given the parameters n0, m and dH /dQ, the steps are:

• Calculate the asserted position in each n0 block for matrix H, this corresponds
to calculating dH distinct position for each n0 block;

• Calculate the asserted position in each n0 ×n0 block for matrix Q, this corre-
sponds to calculating dQ distinct position for each block;

• Calculate the product HQ.

The result is the Quasi-Cyclic matrix L = [L0,L1, . . . ,Ln0−1], which has density
dH ∗dQ.

The Generator Matrix, G,is calculated in three steps:

32 Code-Based Post Quantum Cryptography

Table 3.2 Considered LEDAcrypt parameters for KEM and PKE submitted for Round 3.

Security Level n0 m dH t Itmax
(in bits)

128
2 10,853 71 133 6
3 8,237 79 84 5
4 7,187 83 67 4

192
2 20,981 103 198 6
3 15,331 117 125 5
4 13,109 113 99 4

256
2 35,117 137 263 4
3 25,579 155 166 4
4 21,611 163 132 4

• Computation of the inverse of a block in L

Linv = L−1
n0−1 (3.24)

• The matrix Ml is calculated

Ml = Linv ∗ [L0,L1, . . . ,Ln0−2] (3.25)

to obtain a (m×mn0 −2) matrix

Ml = [M0,M1, . . . ,Mn0−2] (3.26)

• Finally, the matrix G = [Ml,I], with identity matrix m×m.

The Secret key is L, the Public Key is G.

Encapsulation The encapsulation is in charge of encoding the a secret into an
error vector, e, with length mn0 and t asserted bits. The encryption computes the
syndrome, s :

s = eGT (3.27)

3.4 Code-based QC-LDPC schemes 33

Decapsulation The decapsulation is in charge of recovering the secret e with the
Secret Key, this is achieved with:

• the value s′ = Ln0−1s;

• the decoder subroutine, with L and s′, computes e

LEDApkc

The Public Key Cryptography scheme with Code-based PQC is the McEliece cryp-
tosystem with QC-LDPC Codes. The scheme is in charge of encrypting a secret
string. The Secret key is the Generator Matrix of a QC-LDPC Code and the Public
Key is the Parity-check Matrix of a QC-LDPC Code, L = HQ.

The algorithms of the scheme are very similar to the ones of LEDAkem.

Key Generation The Key Generation is carried on as in LEDAkem, the Secret
Key is the Parity Check matrix L = HQ, the Public Key is derived from Ml by
computing:

G = [I,MT
l] (3.28)

The dimension of the identity matrix is m(n0−1)×m(n0−1). The Generator Matrix
has systematic form.

Encryption The encryption of a secret message m, with length m(n0 − 1), is
carried out by computing the codeword:

c = [m,mMT
l] (3.29)

the Encryption is the sum of the codeword and an error vector e of weight t:

x = c+ e (3.30)

Decryption The Decryption is in charge of retrieving the secret vector m. The
same decoder subroutine of LEDAkem is run to remove the errors added to c, the
input is the secret vector L and the Syndrome s = xHT .

34 Code-Based Post Quantum Cryptography

Algorithm 2 Q-Decoder
Input: syndrome s, with length m(n0 −1), parity-check matrix H, with size m(n0 −
1)×mn0,
Input: sparse matrix Q,with size mn0 ×mn0, maximum number of
Input: iterations Itmax
Output: estimated error e or decoding result

1: It = 0 ▷ Iteration count
2: s(0) = s ▷ Save the initial syndrome in s(0)
3: e = 0, ẽ = 0 ▷ approximated error n0m
4: while It < Itmax or s = 0 do
5: σ = sT H
6: ρ = [ρ0, . . . ,ρn−1] = σQ
7: b = f (s) ▷ Compute threshold
8: P = {i ∈ [0,n−1]|ρi > b}
9: for i ∈ P do

10: ei = ei ⊕1 ▷ Update error vector estimate
11: ẽ = ẽ+qi
12: end for
13: s = s(0)+HẽT ▷ Update syndrome
14: It = It +1 ▷ Increase iteration count
15: end while
16: if s = 0 then
17: return e ▷ Decoding success
18: else
19: Report failure ▷ Decoding failure
20: end if

Q-Decoder

The Decoder applied in Round 2 submission of LEDAcrypt is referred as Q-Decoder
since it fully exploits the presence of H and Q. The Algorithm is in 2, the inputs are
the Syndrome, s, and the Parity-Check Matrix, H. The Decoder is a Bit Flipping
Decoder where the main quantities to be computed are the Syndrome and Unsatisfied
Parity Check that allows to compute the error vector applied to the codeword. The
presence of H and Q is employed to compute the Unsatisfied Parity Check in two
steps and it is referred to as ρ , instead of upc.

The function f (s), which evaluates the Threshold b, is performed with the use of
a Look Up table, provided as a parameter of LEDAcrypt. The LUT is structures as
follows, the value of the Syndrome weight points to a specific value of the threshold.

3.4 Code-based QC-LDPC schemes 35

The optimal values and the methods to derive the table have been widely described
in the documentation of the scheme [17].

The decoder submitted to Round 3 computes ρ = sT L.

3.4.2 BIKE

The BIKE scheme is a Key Encapsulation Mechanism based on QC-MDPC Codes,
the proposal successfully made to Round 4 and it is a possible candidate for the
standardization.

The scheme is Niederreiter-like, thus the secret key is encrypted into a syndrome,
similarly to LEDAcrypt there are three main algorithms, which are reported below
in their core part, that cryptosystem and a set of parameters that defines the code
length, density of the matrix and number of error.

The parity-check matrix is characterized by matrix H = [H0,H1], which is a
quasi-cyclic matrix with two blocks, the blocks of the matrix are referred by its first
row, then as vectors h0 and h1.

Parameters

The set of parameters submitted to Round 4 is in Table 3.3.

Table 3.3 BIKE parameters submitted to Round 4 and Round 3.

Security Level n0 m dH t Itmax
(in bits)

128 2 12,323 142 134 5
192 2 24,206 206 198 5
256 2 40,973 274 264 5

Key Generation The Secret Key and Public Key are derived as follows:

• the Secret Key consists in the vectors h0 and h1, these are derived by extracting
dH distinct position of each vector;

36 Code-Based Post Quantum Cryptography

• the Public Key is derived as h = h1h−1
0 , the inverse and the multiplication are

performed to the polynomials associated to hi.

It is worth to mention that the choice of m as a prime number reduces the
complexity of the polynomial inversion of h−1

1 , the same property is applied to the
matrix inversion (that has in general complexity O(n3)) to have an efficient inversion.

Encapsulation The encapsulation starts by encoding the secret m in the error
vector e = [e0,e1], with weight t. The cipertext is then obtained with:

c0 = e0 + e1h (3.31)

The result involves again a polynomial multiplication, where the polynomials are
associated to vectors e and h.

The ciphertext in the original description contains a term added by the has
function, this is skipped here since it is not part of the study which has been carried
on.

Decapsulation The decapsulation has in input the ciphertext and the Secret Key,
the main part of the primitives applied the decoding subroutine to the ciphertext and
retrieves the error vector and then the secret m.

the decoding algorithm is the Black-Gray-Flip.

BlackGrayFlip (BGF) Decoder

The decapsulation employs a Decoder referred as BlackGrayFlip (BGF) Decoder
with parameters from Table 3.3, this has been initially proposed in BIKE documenta-
tion that can be found in [18] with ’shades’ of the errors instead of a single threshold,
and applied to BIKE scheme. The Decoder is in charge of computing e, this is carried
out by means of two support binary vectors referred as black and gray with length
2m.

The decoder is an iterative bit flipping decoder, which computes the syndrome,
error approximation and syndrome update, the difference is in the evaluation of the
threshold and the presence of a ’gray’ are in the threshold, this is issued on the first

3.4 Code-based QC-LDPC schemes 37

iteration of the decoder which include a further mask in the decoder. The algorithms
have additional subroutines which are defined: ctr(H,s, j), ctr(H,s, j), this
computes each i element of upc and the syndrome updated and error approximation
are implicit in the definition; threshold(s, i), the function is a parameter of the
scheme and evaluates the threshold based on the syndrome weight and the value of
the iteration; functions BFIter and BFMaskedIter are defined in the following.

The algorithm in its original form from BIKE documentation appears different
from a Bit Flipping Decoder, it is important to mention that the relevant computations
performed in such a decoder are presented here, the Syndrome is updated with s+eHt

and Unsatisfied Parity Check is computed with the function ctr(), despite it is not
clearly expressed they are computed as polynomial multiplication.

LEDA and BIKE: differences and similarities

The LEDAcrypt and BIKE Cryptosystems, despite being both low-density variants
of the McEliece Cryptosystem, possess some differences that are summarized in the
following:

• BIKE adopts QC-MDPC Codes, while LEDAcryp adopts QC-LDPC Codes:
the structure of the matrices is Quasi-Cyclic, but MDPC Codes are slightly
more dense then LDPC Codes. This different existed up to Round 2, while in
Round 3 the Secret Key of LEDAcrypt and BIKE have similar densities.

• In LEDAcrypt more options of block lengths are proposed, introducing a
further flexibility in the cryptosystem.

• The Decryption is based for both on a Bit-Flipping Decoder, but BIKE intro-
duces a ’shade’ in the type of error that is detected introducing two thresholds,
while the Q-Decoder the threshold of the error detection is only one.

The similarity is in the choice of the length of polynomials, thus the blocks of the
Secret Key, they have both selected length equal to prime numbers, thus comparing
the Security Levels in Table 3.2 and 3.3 the value of m is similar.

38 Code-Based Post Quantum Cryptography

3.5 Arithmetic in Code-based PQC

The two main proposal that has been submitted for Code-based PQC scheme with
QC-MDPC codes has been widely described in the previous section. The scope of
the present work is to provide the implementation of such primitives, in particular of
the Encoder (Encryption/Encapsulation) and Decoder (Decryption/Decapsulation).

The calculation that involves QC-MDPC codes are carried on by applying the
arithmetic of polynomials, with sum, polynomial inversion and polynomial mul-
tiplication. The sum between Polynomials is a straightforward operation, while
Polynomial multiplication and inversion are the most time consuming section of the
computation.

The Polynomial multiplication and the proposal of an efficient decoder/encoder
is provided in the next chapters, while efficient algorithms for polynomial inversions
have been listed in the documentation of BIKE and LEDAcrypt.

In the following, the steps of the schemes are reported withe the arithmetic unit
required.

3.5.1 Polynomial Sum

The Polynomial Sum or the sum between two vectors is performed as an element
wise sum between the elements of the two inputs. The operation is performed for:

• Codeword Encryption with c+ e;

• Syndrome Update with eHT

The sum c = a+b with vectors of length m that corresponds to
a =

h
a0 a1 a2 . . . am−1

i
and b =

h
b0 b1 b2 . . . bm−1

i
is:

c =
h
b0 +a0 b1 +a1 b2 +a2 . . . bm−1 +am−1

i
(3.32)

The sum between bi +ai is a binary or integer sum.

3.5 Arithmetic in Code-based PQC 39

3.5.2 Polynomial Inversion

The Polynomial inversion is h−1
0 , in BIKE, and the cyclic matrix inversion LInv, in

LEDA. The step is fundamental to computing the key pair in McEliece or Niederreter
schemes.

The efficient computation of the inverse and the determinants is crucial to have
an efficient generation of the keys. The computation of determinants and inverses
with the conventional methods is avoided thanks to particular choices of block sizes.

The matrix inversion in LEDAcrypt is computed as a polynomial inversion for
QC-LDPC Codes by considering the isomorphism between circulant matrices and
finite fields. The choice of m as a prime number simplifies the computation of the
inverse, which is performed with Euclid’s Algorithm. The Key Generation in BIKE
is performed with the algorithm described in the documentation of [18].

3.5.3 Polynomial Multiplication

The polynomial multiplication is employed both in the encoder a decoder to perform
multiplication that involves a multiplication with a quasi-cyclic matrix and polyno-
mial multiplication. In general, three methods are known in literature to efficiently
perform such products, the detail of these algorithms is provided in the next chapter.

40 Code-Based Post Quantum Cryptography

Algorithm 3 BlackGrayFlip (BGF) Decoder
Input: syndrome s, with length m, parity-check matrix H, with size m×2m,
Input: maximum number of iterations Itmax, grey threshold τ

Output: estimated error e or decoding result
1: e = 0 ▷ Initialization of the error vector
2: for i = 0, . . . , Itmax do
3: b =threshold(s+ eHT , i)
4: [e,black,gray] =BFIter(s+ eHT ,e,b,H)
5: if i = 0 then
6: e =BFMaskedIter(s+ eHT ,e,black,(dH/2+1)/2+1,H))
7: e =BFMaskedIter(s+ eHT ,e,gray,(dH/2+1)/2+1,H))
8: end if
9: end for

10: if s = eHT then
11: return e ▷ Decoding success
12: else
13: Report failure ▷ Decoding failure
14: end if

1: function BFIter(s,e,b,H)
2: for j = 1, . . . ,2m−1 do
3: if ctr(H,s, j)≥ b then
4: e j = e j ⊕1
5: black j = 1
6: end if
7: if ctr(H,s, j)≥ b− τ then
8: gray j = 1
9: end if

10: end for
1: function BFMaskedIter(s,e,mask,b,H)
2: for j = 1, . . . ,2m−1 do
3: if ctr(H,s, j)≥ b then
4: e j = e j ⊕mask j
5: end if
6: end for

Chapter 4

Fast Polynomial Multiplication

The chapter is dedicated to the algorithms known in literature to compute Poly-
nomial Multiplication, this is widely present in cryptographic primitives for Post
Quantum Cryptography and in Code-based PQC is particularly interesting due to
the isomorphism between cyclic matrices, with block size m×m, and polynomial
ring F2[x]/(xm+1), such products involved large values of m has binary coefficients,
thus require a particular attention. The description of the most known algorithms
for polynomial multiplication is provided in the following, then the comparison
among the various methods are provided considering their effect on Code-based
Post-Quantum Cryptography, where the specific characteristics of the variables are
considered to find the best solution.

The description provides the time complexity of each algorithm, the detailed
description of the hardware complexity is extensively described in the next chapter.
Despite that, some consideration on this aspect can be made before looking at the
final results.

The algorithms that are described are the Schoolbook, Karastuba, Toom-Cook
and Schönhage Stressen algorithms.

4.1 Polynomial Multiplication Overview

The Multiplication Algorithms for integer and polynomials have been widely studied
in the past years for large integer multiplication, which are common in cryptosystems

42 Fast Polynomial Multiplication

such as RSA. The main feature to define the effectiveness of an algorithm is the
Time Complexity, which is the number of single digit addition/multiplication given
the length of two operands. The Time Complexity metric is defined with the Big-O
notation: gives the order of magnitude of such operation as function of the length
of the polynomial. The Space Complexity, which measures the cost in terms of
memory, thus the support variable to store during the computation.

The polynomial multiplication is as a carry-less integer multiplication. The
equivalence between polynomials, integer, cyclic matrices is shown, together with
matrix multiplication and convolution.

4.1.1 Schoolbook Multiplication

The Schoolbook multiplier is the simplest way to perform a multiplication, with
integers it is:

1 1 4 ×
5 2

2 2 8
5 6 0
5 8 2 8

(4.1)

The expression complicates for polynomial multiplication. The degree n poly-
nomials a(x) = a0 + a1x1 + · · ·+ an−1xn−1 and b(x) = b0 + b1x1 + · · ·+ bn−1xn−1,
results in a polynomial c(x) with degree 2n−1. The value of c(x), with the School-
book method, is:

an−1xn−1 a1x1 a0x0 ×
bn−1xn−1 b1x1 b0x0

b0an−1xn−1 b0a1x1 b0a0x0

b1an−1xn b1a1x2 b1a0x1 ...
...

bn−1an−1x2n−1 . . . bn−1a1xn bn−1a0xn−1

c2n−1x2n−1 . . . cnxn cn−1xn−1 . . . c2x2 c1x1 c0x0

(4.2)

The similarities between polynomials a(x) and b(x) and vectors a and b, defines
the convolution between a vectors a = [an−1, . . . , a1, a0] and b = [an−1, . . . , b1, b0]

4.1 Polynomial Multiplication Overview 43

is equivalent to the polynomial multiplication in 4.2. Then, the result is c equivalent
to c(x), c = [c2n−1, . . . , c1, c0].

In the description, we obtain a set of n polynomials referred as ppi = bixi ×a,
with i ∈ 0, . . . , n−1, these the partial products of the multiplication.

The cyclic convolution between vectors a and b, is a vector c with length n. The
result is evaluated as:

an−1 an−2 . . . a2 a1 a0 ×
bn−1 bn−2 . . . b2 b1 b0

b0an−1 b0an−2 . . . b0a2 b0a1 b0a0

b1an−2 b1an−3 . . . b1a1 b1a0 b1an−1
...

...
...

...
bn−1a0 bn−1an−1 . . . bn−1a3 bn−1a2 bn−1a1

cn−1 cn−2 . . . c2 c1 c0

(4.3)

The result is equivalent to the product among a vector a and a cyclic matrix
associated to vector b. The cyclic matrix, as described in the previous chapter, is B:

B =


b0 b1 . . . bn−1

bn−1 b0 . . . bn−2
...

...
b1 b2 . . . b0

 (4.4)

The result aB is the vector c in (4.3).

The Schoolbook multiplier evaluates the result by computing each aib j, with
i ∈ (0, . . . ,n− 1) and j ∈ (0, . . . ,n− 1), and by adding each element to obtain the
desired ck, with k ∈ (0, . . . ,n− 1) for the cyclic convolution or k ∈ (0, . . . ,2n− 1)
for the linear convolution.

The complexity of the method is the number of integer multiplications that are
going to be computed, in Schoolbook algorithm the complexity is: O(n2).

The Schoolbook Algorithm has the highest Time Complexity, but the Space
Complexity in terms of memory is O(n).

44 Fast Polynomial Multiplication

4.1.2 Karatsuba Multiplication

The Karatsuba Algorithm is an improvement of the Schoolbook method. The Time
Complexity is reduced to O(nlog23)≈ O(n1.585), while the Space complexity is O(n).

The multiplication between polynomials a(x) and b(x) with length n is computed
by firstly rewriting the two factors.


a(x) = (an−1xn−1 +an−2xn−2 + . . .a⌈n/2⌉x⌈n/2⌉)+

a(x) = (an−1xn−1++(a⌈n/2⌉−1x⌈n/2⌉−1 +a⌈n/2⌉−2x⌈n/2⌉−2 + . . .a0x0)

b(x) = (bn−1xn−1 +bn−2xn−2 + . . .b⌈n/2⌉x⌈n/2⌉)+

a(x) = (an−1xn−1++(b⌈n/2⌉−1x⌈n/2⌉−1 +b⌈n/2⌉−2x⌈n/2⌉−2 + . . .b0x0)

(4.5)

and then the polynomials are split in two intermediate polynomials, a0(x), a1(x)
and b0(x), b1(x):


a(x) = (an−1x⌈n/2⌉−1 +an−2x⌈n/2⌉−2 + . . .a⌈n/2⌉x⌈0⌉) · x⌈n/2⌉+

a(x) = (an−1xn−1++(a⌈n/2⌉−1x⌈n/2⌉−1 +a⌈n/2⌉−2x⌈n/2⌉−2 + . . .a0x0)

b(x) = (bn−1x⌈n/2⌉−1 +bn−2x⌈n/2⌉−2 + . . .b⌈n/2⌉x0) · x⌈n/2⌉+

a(x) = (an−1xn−1++(b⌈n/2⌉−1x⌈n/2⌉−1 +b⌈n/2⌉−2x⌈n/2⌉−2 + . . .b0x0)

(4.6)

The final form is:

a(x) = a1(x) · x⌈n/2⌉+a0(x)

b(x) = b1(x) · x⌈n/2⌉+b0(x)
(4.7)

The product is:


c(x) = a1(x)b1(x) · xn+

c(x) = a1(x)+(a1(x)b0(x)+a0(x)b1(x)) · x⌈n/2⌉+

c(x) = a1(x)b1(x) · xn++a0(x)b0(x)

(4.8)

4.1 Polynomial Multiplication Overview 45

The further improvement reduces two multiplications, a1(x)b0(x)+a0(x)b1(x),
to:

a1(x)b0(x)+a0(x)b1(x) = (a0 +a1)(b0 +b1)−a0(x)b0(x)−a1(x)b1(x) (4.9)

The method has a recursive form that computes the three multiplication applying
Karatsuba method.

The asymptotic Time Complexity with n is O(nlog23) and a Space Complexity of
O(n).

Toom-Cook Generalization

The Toom-Cook multiplication is a generalized formulation of the Karatsuba Algo-
rithm. The method is referred as Toom-k, where k is referred to the number of ’splits’
of the polynomials a and b, Karatsuba can be considered Toom-2. The additional
split of the polynomials can further reduce the number of multiplications.

The Time Complexity of the method is O(nlog(2k−1)/log(k)), for ’small’ k, with
Toom-3 the result is O(n1.46). The increase in the k-splits introduces an overhead
due to the increasing number of additions, which makes the method less efficient.
Moreover, due to its complexity to implement Toom-Cook with bigger k, it is
preferable to select methods that have a lower Time Complexity.

4.1.3 Schönhage Stressen Multiplication

The Schönhage Stressen Algorithm is for its lowest Time Complexity, it is O(nlog(n)∗
log(log(n))). The reduced complexity is obtained by taking advantage of the FFT
efficiency. The method for the multiplication of two polynomials a(x) and b(x)
of degree n. The resulting coefficients (c(x)) of multiplication, as it is clear from
Equation (4.2), are the result of a convolution among the two factors. Then, by
recalling the properties of the Fourier Transform, the convolution in time domain be-
comes an element-wise multiplication in frequency domain. The Fourier Transform
is computed with the DFT (Discrete Fourier Transform) algorithm and the inverse
transform is computed with the DFT (Inverse Discrete Fourier Transform) algorithm.

46 Fast Polynomial Multiplication

Then, the polynomial multiplication is computed as:

c(x) = IDFT (DFT (a(x)) ·DFT (b(x))) (4.10)

The present formulation of the problem does not introduce an improvement since
the Time Complexity is O(n2), due to use of the DFT. The method is known for the
adoption of the Fast Fourier Transform, FFT. This strongly reduces the cost of the
direct and inverse transforms. The equations are:

c(x) = IFFT (FFT (a(x)) ·FFT (b(x))) (4.11)

The Fast Fourier Transform algorithms is a method to compute the Fourier
Transform with Time Complexity O(nlog(n)log(log(n))).

The Schönhage Stressen method involves the use of the Number Theoretic
Transform (NTT), the equivalent of Fourier Transform in finite fields. The use of the
NTT is motivated by the loss of precision when computing the FFT.

4.2 Polynomial Multiplication with QC-MDPC/LDPC
Matrices

The multiplication in Code-based Post Quantum Cryptography is involved in the
Encryption and Decryption primitives, with long binary/integer vector cyclic convo-
lution with dense or sparse binary matrices with the circular structure in (4.4). In
the following, the Time Complexity of the multipliers is evaluated considering the
implementation of the algorithms in Post-Quantum primitives, where the algorithms
are adapted to efficiently compute the variables in Encryption/Decryption.

4.2.1 Large and Binary/Integer Polynomial Multiplication

The cyclic multiplication in LEDAcrypt/BIKE involves a vector and a matrix, their
block size is n×1 and n×n respectively, since n ≈ 10,000 the Schönhage Stressen
algorithm has the lowest time complexity.

4.2 Polynomial Multiplication with QC-MDPC/LDPC Matrices 47

101 102 103 104 105 106
100

102

104

106

108

1010

1012

Schoolbook
Karatsuba
Toom-3
Schonhage Stressen

Fig. 4.1 Time Complexity

In the Encryption in Public Key Cryptography has n0 −1 multiplication between
a vector of length n and a circulant matrix with size n× n, this is performed in
GF(2).

The Encapsulation and the LDPC/MDPC Decoding in Decryption/Encryption
have an additional feature, the multiplication is between a sparse vector (or circulant
matrix) and a dense vector, the result is binary in the Encapsulation and Syndrome
evaluation (in BF-Decoding) and integer in the Unsatisfied Parity Check evaluation
(in BF-Decoding).

The comparison of the Time Complexity in Figure 4.1 clearly shows that the
Schönhage Stressen Algorithm is suggested for the variables size in LEDAcrypt/BIKE,
since the multiplication can have sparse factors, the simplification that it introduces
in Schoolbook multiplier is described in the following.

The Time Complexity and Space Complexity provided for each algorithm do not
include the implementation cost of each algorithm, this is measured in terms of gates
that are required. The discussion on the implementation is provided in the following
sections and it will be more clear that the one with the lowest ’Gate Complexity’ is
the Schoolbook multiplier. For this reason, the Schoolbook algorithm is applied to
the convolution among vectors, with one or more input factor which is very sparse.

48 Fast Polynomial Multiplication

4.2.2 Sparse Polynomial multiplication in Schoolbook Multiplier

The Schoolbook multiplier for cyclic convolution is in Equation (4.3). The equation
can be strongly simplified, less elements to compute, in case very few elements in a
or b are non-zero, say that ah and bh are the number of non-zero elements in a and b
respectively, and the vectors are binary.

The multiplication n = 9 and b sparse. The result with factors

a = [a8, a7, a6, a5, a4, a3, a2, a1, a0] and b = [0, 0, b6, 0, 0, 0, 0, b1, b0]

is:

a8 a7 a6 a5 a4 a3 a2 a1 a0 ×
0 0 b6 0 0 0 0 b1 b0

b0a8 b0a7 b0a6 b0a5 b0a4 b0a3 b0a2 b0a1 b0a0

b1a7 b1a6 b1a5 b1a4 b1a3 b1a2 b1a1 b1a0 b1a8

b6a2 b6a1 b6a0 b6a8 b6a7 b6a6 b6a5 b6a4 b6a3

c8 c7 c6 c5 c4 c3 c2 c1 c0

(4.12)

The number of elements to compute is strongly reduced, since the number of
multiplication and addition becomes: Cmpy/Cadd = n∗bh.

The additional simplification is that the sparse vector is in general a binary vector
for our application, then to compute the result there is no need of the multiplier and
the result c is the sum of cyclic shifts of the input vector a:

a8 a7 a6 a5 a4 a3 a2 a1 a0 ×
0 0 1 0 0 0 0 1 1
a8 a7 a6 a5 a4 a3 a2 a1 a0

a7 a6 a5 a4 a3 a2 a1 a0 a8

a2 a1 a0 a8 a7 a6 a5 a4 a3

c8 c7 c6 c5 c4 c3 c2 c1 c0

(4.13)

4.2 Polynomial Multiplication with QC-MDPC/LDPC Matrices 49

103 104
10-2

100

102

104

106

108

1010

Schoolbook
Karatsuba
Toom-3
Schonhage Stressen
Schoolbook sparse
Schoolbook sparse sparse

Fig. 4.2 Time Complexity with sparse Schoolbook

The reduction applies to the Decoder in LEDAcrypt/BIKE, since the multiplica-
tions involves a very sparse binary cyclic matrix, the result has to be both a binary
vector and a integer vector.

The following condition that has to be handled, has a sparse vector too. Again,
the simplified result assuming that a = [a8, 0, 0, 0, 0, a3, a2, 0, a0], the vector c is:

a8 0 0 0 0 a3 a2 0 a0 ×
0 0 1 0 0 0 0 1 1
a8 0 0 0 0 a3 a2 0 a0

0 0 0 0 a3 a2 0 a0 a8

a2 0 a0 a8 0 0 0 0 a3

c8 c7 c6 c5 c4 c3 c2 c1 c0

(4.14)

The number of sums is proportional to ah ×bh.

The Time Complexity reduction introduced by sparse inputs, is compared to
the previous algorithm. Considering that ’sparse’ means ah and bh << n, in the
comparison ah and bh ≈ n/100.

The Schoolbook complexity reduction with sparse inputs is not detailed for the
Toom-Cook and Karatsuba Algorithms due to their cost to implement them, as it will

50 Fast Polynomial Multiplication

be shown later it can be more convenient to adopt the Schönhage Stressen, despite
its complexity, since it has, overall, the lowest Time Complexity.

Chapter 5

Architectures for Large Polynomial
Multiplication

The Polynomial Multiplication is a fundamental step in Code-based PQC proposal
submitted to NIST competition, the present chapter is dedicated to describe the
architectures that computes and accelerates the large polynomial multiplication
required by BIKE and LEDAcrypt. The peculiar case of QC-MDPC Codes requires
an extensive architectural exploration to find a good balance between total area and
execution time.

The present chapter describes two architectures that implements Schoolbook
and Schönhage Stressen algorithm for binary and large polynomial multiplication.
The Schoolbook algorithm is implemented and compared to designs in charge of
computing the multipliers that implements the same primitives, in addition the
Schönhage Stressen method has been implemented to provide a flexible multiplier
that can be applied in more PQC primitives. The multipliers are tailored for Code-
based PQC. The speed-up introduced exploits the sparsity of the binary vectors that
are present in the MDPC/LDPC matrices. In the end, the gate complexity, presented
in terms of area occupation (ASIC) or resource utilization (FPGA), and execution
time are compared with the state of art of polynomial multipliers and polynomial
multipliers in PQC.

The description provided in the following reports the area and execution time
of Schoolbook and Schönhage Stressen for the parameters in LEDAcrypt[17], up

52 Architectures for Large Polynomial Multiplication

to Round 2, and BIKE[18], up to Round 4, Public Key Encryption (PKE) and Key
Encapsulation Mechanism (KEM) schemes.

Parameters of the multiplier The polynomial multiplication is the equivalent of a
vector by cyclic matrix (or cyclic matrix by vector), it is performed in the Encryp-
tion/Encapsulation and Decryption/Decapsulation primitives of BIKE/LEDAcrypt,
with vectors (polynomials) of length n reported in Table 5.1 for Code-based PQC
with QC-MDPC codes submitted to NIST Competition during Round 2. The vector
(and first row or column of the matrix) is assumed to be dense or sparse, the sparsity
is referred as the number of asserted position over n, this is labelled as dv in the
Table. The last parameters is the number or errors introduced, te, which is the second
measure of ’sparsity’ of the vectors that are multiplied. The first column is referred
to the security category, with NIST parameters, of the lengths provided.

Table 5.1 QC-MDPC Code-based PQC crytopsystems parameters.

LEDAcrypt[17] BIKE[18]
NIST Cat. n dv te N dv te

1 21,701 71 130 12,323 119 134
3 37,813 103 196 24,659 206 199
5 58,171 137 262 40,973 274 264

The multiplier has to handle a series of multiplication, c = a×C(b), these are
the following:

• dense binary vector by sparse cyclic binary matrix with binary result;

• dense binary vector by sparse cyclic binary matrix with integer result

• sparse binary vector by sparse cyclic binary matrix with binary result;

The vector is a, the binary cyclic matrix is C(b) and the result is c.

The result of execution time, area occupation/resource utilization, is reported for
different values of n and the three cases of multipliers.

5.1 Schoolbook architecture 53

5.1 Schoolbook architecture

The Schoolbook multiplier is widely acknowledged as the algorithm with the lowest
gate complexity for binary inputs, owing to its straightforward implementation,
basic control of operation, and minimal hardware requirements (i.e., an accumulator
and a register). The literature on the implementations for large (but not as large
as in BIKE/LEDAcrypt) binary multiplication is limited, but in [58] is is showed
that the lowest complexity is achieved by combining different multipliers with
Schoolbook multiplier, despite that the present architecture considers a specific case
of multiplication (with one term very sparse), thus the Schoolbook approach has
been preferred from the beginning and then compared to the state of art of multipliers
for binary polynomial product.

The Schoolbook algorithm for computing the vector by binary sparse cyclic
multiplication, as described in Chapter 4, is referred to as VectorByCirculant
and SparseVectorByCirculant for sparse binary vectors and binary sparse cyclic
multiplication with binary/integer and binary results.

The design of an efficient architecture for computing c = a ·C(b) requires con-
sideration not only of the cost in terms of area and execution time, but also of the
need for implementation that is immune to side-channel attacks. Such attacks ex-
ploit information on the secret key that may leak from the execution time or power
consumption of the device. Achieving immunity to side-channel attacks requires a
rigorous design exploration to identify and address any potential vulnerabilities in
the architecture.

5.1.1 VectorByCirculant

The VectorByCicrculant (VbC) multiplier computes the product among a large
binary vector of length n and a cyclic sparse matrix with size n×n, with bh asserted
bit is each row with a Schoolbook-like algorithm. The idea is to exploit the cyclic
structure of the matrix, the same approach has been applied in [59] with a Time
Constant software implementation. In the following the algorithm and then the
hardware implementation are going to be described.

The multiplication that is going to be addressed is a ·C(b). The algorithm is
derived considering that C(b) is a sparse binary matrix. The result c for vectors of

54 Architectures for Large Polynomial Multiplication

length n = 5 for generic a and b is:

c0 = b0a0 +b1a4 +b2a3 +b2a3 +b1a4,

c1 = b0a1 +b1a0 +b2a4 +b3a3 +b4a2,

c2 = b0a2 +b1a1 +b2a0 +b3a4 +b4a3,

c3 = b0a3 +b1a3 +b2a4 +b3a0 +b4a1,

c4 = b0a4 +b1a3 +b2a2 +b3a1 +b4a0.

(5.1)

The result is simplified for sparse and binary C(b), with b0 and b4 as asserted element
(they are equal to 0), the vector c is:

c0 = a0 +a4,

c1 = a1 +a2,

c2 = a2 +a3,

c3 = a3 +a1,

c4 = a4 +a0.

(5.2)

It is clear that to compute the result it is enough to sum together shifted versions
of a.

The formal description of VectorByCirculant is in Algorithm 4 and 5, the
result is updated by deriving shifted versions of the input ai by the amount i given by
the asserted positions in C(b).

Algorithm 4 VectorbyCirculant (VbC) (binary)
Input: length-n vector a, weight of C(b) (interpreted as the
Input: weight of each row and column) bh ∈ [0,n−1], first row
Input: of C(b) represented as a list of positions Sb with size bh
Output: length-n binary vector c = aC(b)

1: c = 0 ▷ Initialized as null vector with length n
2: for i = 0 to bh −1 do
3: k = Sb(i)
4: a(i) = [ak,ak+1, · · · ,ap−1,a0,a1, · · · ,ak−1]

5: c = c⊕a(i) ▷ new partial product xored with c
6: end for
7: return c

5.1 Schoolbook architecture 55

Algorithm 5 VectorbyCirculant (VbC) (integer)
Input: length-n vector a, weight of C(b) (interpreted as the
Input: weight of each row and column) bh ∈ [0,n−1], first row
Input: of C(b) represented as a list of positions Sb with size bh
Output: length-n integer vector c = aC(b)

1: c = 0 ▷ Initialized as null vector with length n
2: for i = 0 to bh −1 do
3: k = Sb(i)
4: a(i) = [ak,ak+1, · · · ,ap−1,a0,a1, · · · ,ak−1]

5: c = c+a(i) ▷ new partial product summed with c
6: end for
7: return c

The computation in example (5.2) is then performed by computing a(1) =
[a0, a1, a2, a3, a4] and summing it to c, then the second vector a(4)= [a4, a2, a3, a1, a0]

is derived and summed or xored again to updates c.

The vector, a, is stored as it is, a binary sequence of 1 and 0 or (integers). The
matrix has a specific format, due to the prohibitive sizes of n×n5.1 does not fit the
width of the memories available in commercial FPGAs and for ASIC modules. The
sparsity of the cyclic matrix reduces the memory needs, the bh asserted positions of
the first column C(b), then in b are stored.

Memories The vectors a and c are binary and integer, respectively. They have a
matrix format with a width (in bits) that is power of 2. Depending on the available
memories and the desired execution time the vectors a and c are stored with a matrix
format that matches the size of the selected memory, the size is referred as h×nb,
with nb the width of the memory and h its height that corresponds to h = ⌈n/nb⌉.
The width of the memory is nb for binary vector, for integer vectors represented
on ni bit the total width is nb ∗ni. The memory is addressed as MEMa and MEMc for
vectors a and c respectively. The values of nb, since it is a power of 2, is assumed
equal to [8, 16, 32, 64, 128, 256], while ni is equal to logbh since it is the width of
the integer resulting vector, thus it is assumed that all the 1s over a row of the result
are summed and then it is at most bh.

The memories are asyncronous in reading, while synchronous in writing. These
are modeled as single or dual port SRAMs in the design.

56 Architectures for Large Polynomial Multiplication

MEMa

nb

h

MEMc

nbni

h

MEMb

bw

bh

(a) MEMa

MEMa

nb

h

MEMc

nbni

h

MEMb

bw

bh

(b) MEMc

MEMa

nb

h

MEMc

nbni

h

MEMb

bw

bh

(c) MEMb

Fig. 5.1 Memories format with the sizes specified.

The cyclic matrix C(b), is stored as a list of asserted position in the first column
of the matrix in order to reduce the memory occupation since the matrix is binary and
sparse for LEDAcrypt/BIKE decoder. The memory is referred as MEMb, the positions
stored can be 0 up to n, thus the width of the memory is bw = log2(n) and its height
is bh. The binary values of the i-th position point the first value of vector ai in MEMa:
the row is ⌊bi/nb⌋ and the column is bi%nb (modulo operation: bi mod nb), the two
quantities are referred as ADX and Shift respectively. These are easy to compute
since nb is a power of 2 and bi is a represented as a binary value: the ADX are the first
log2(h) bits (MSBs) and the Shift are the first log2(nb) bits (LSBs) of bi.

The VectorByCirculant implementation is reported in Algorithm 6. The unit
derives from memory MEMa for the i-th position in MEMb the partial product a(i) to
update MEMc row by row, that corresponds to the sum of partial products (c = c+a(i)

in Algorithm 4 and 5).

The new row that updates MEMc are, in general, over two rows of MEMa selected
with ADX, these are saved in the variable row2nb , the vector NewRow is mapped with
Shift. The different hardware implementations that derives from Algorithm 6
depends on how these nb elements are obtained, the best option has to be selected
considering the efficiency and security of each option.

The different options that has been studied to rotate MEMa are described and the
whole architecture for the multiplier is then presented.

5.1 Schoolbook architecture 57

Algorithm 6 VectorbyCirculant Implementation
Input: MEMa with size h×nb, MEMc with size bh ×bw
Output: MEMc with size h×nb

1: for i = 0 to bh −1 do
2: k = bi
3: ADX = ⌊k/nb⌋
4: Shift = k%nb
5: for j = 0 to h−1 do
6: ADX = mod(ADX+ j+1),h)
7: row2nb= [MEMa(ADX−1),MEMa(ADX)]
8: NewRow = row2nb(Shift,Shift+nb)
9: MEMc(j) = MEMc(j)+NewRow

10: end for
11: end for
12: return MEMc

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝑎0 𝑎1 𝑎2 𝑎3

𝑏2

𝑏5

MEMb

𝑏11

𝑐0 𝑐1 𝑐2 𝑐3

𝑐4 𝑐5 𝑐6 𝑐7

𝑐8 𝑐9 𝑐10 𝑐11

𝑐12 𝑐13 𝑐14 𝑐15

MEMc

(a) MEMa

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝑎0 𝑎1 𝑎2 𝑎3

𝑏2

𝑏5

MEMb

𝑏11

𝑐0 𝑐1 𝑐2 𝑐3

𝑐4 𝑐5 𝑐6 𝑐7

𝑐8 𝑐9 𝑐10 𝑐11

𝑐12 𝑐13 𝑐14 𝑐15

MEMc

(b) MEMc

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝑎0 𝑎1 𝑎2 𝑎3𝑏0 = 2

𝑏1 = 5

MEMb

𝑏2 = 11

𝑐0 𝑐1 𝑐2 𝑐3

𝑐4 𝑐5 𝑐6 𝑐7

𝑐8 𝑐9 𝑐10 𝑐11

𝑐12 𝑐13 𝑐14 𝑐15

MEMc

𝑎4 𝑎5 𝑎6 𝑎7

Shift Register

𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

Shift Register

(c) MEMb

Fig. 5.2 Memories in input to VectorByCirculant

The following examples to describe the architectures considers n= 16 and bh = 3,
the dimensions of the memories is nb = 4 h = 4 and bw = log2(n) = 4, then MEMa

and MEMc have size 4×4 and MEMc has size 3×4.

Rotation with Shift Register The first idea is to use shift registers to rotate the
rows in MEMa.

The first row of partial product a(0) is over rows 0 and 1 of MEMa, the value of the
row is given by b0 = 2 in MEMb, which points to row 0 (ADX) and column 2 (Shift)
of MEMa. Two consecutive rows are then read and loaded in a 2nb bit shift register,
with two right shifts (two clock cycles) (the amount of the shift is 2) the first nb bits
are the first row written in MEMc.

58 Architectures for Large Polynomial Multiplication

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝑎0 𝑎1 𝑎2 𝑎3𝑏2

𝑏5

MEMb

𝑏11

𝑐0 𝑐1 𝑐2 𝑐3

𝑐4 𝑐5 𝑐6 𝑐7

𝑐8 𝑐9 𝑐10 𝑐11

𝑐12 𝑐13 𝑐14 𝑐15

MEMc

𝑎4 𝑎5 𝑎6 𝑎7

Shift Register

𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

Shift Register(a) Shift Register with two consecutive
rows of MEMa

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝑎0 𝑎1 𝑎2 𝑎3𝑏2

𝑏5

MEMb

𝑏11

𝑐0 𝑐1 𝑐2 𝑐3

𝑐4 𝑐5 𝑐6 𝑐7

𝑐8 𝑐9 𝑐10 𝑐11

𝑐12 𝑐13 𝑐14 𝑐15

MEMc

𝑎4 𝑎5 𝑎6 𝑎7

Shift Register

𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

Shift Register

(b) Shift Register with the first nb ele-
ments that updates MEMc

Fig. 5.3 Shift Register content to rotate MEMa by b2

The number of clock cycles to derive a single partial product associate to position
bi with Shift si is:

Tclk = h∗ si (5.3)

The option has been discarded since the execution time is proportional to the
asserted position in C(b) (the Secret Key), this makes the architecture not safe for
partial key recovery attacks.

Rotation with multiplexer The rotation of a from MEMa can be computed connect-
ing the 2nb register to a multiplexer that loads shift register element by element.

The rows 0 and 1 (ADX for a(0)) from MEMa are loaded in two regular register with
nb elements, REGA and REGB. The output is connected to a 2nb input multiplexer,
the selection of the multiplexer is a counter and the output is connected to a nb shift
register.

The selection of the multiplexer changes from Shift to Shift+nb (Shift= 2),
thus the shift register is loaded element by element to form the new row for MEMc.

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝑎0 𝑎1 𝑎2 𝑎3

𝑏2

𝑏5

MEMb

𝑏11

𝑐0 𝑐1 𝑐2 𝑐3

𝑐4 𝑐5 𝑐6 𝑐7

𝑐8 𝑐9 𝑐10 𝑐11

𝑐12 𝑐13 𝑐14 𝑐15

MEMc

𝑎4 𝑎5 𝑎6 𝑎7

𝑎2

Out

In

2𝑛𝑏

𝑛𝑏Shift Register

REGB
REGA

2

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

𝑎2

Out

In

2𝑛𝑏

𝑛𝑏Shift Register

REGB

4

𝑎3 𝑎4

(a) Selection of element 2 of the output
from REGA and REGB

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝑎0 𝑎1 𝑎2 𝑎3

𝑏2

𝑏5

MEMb

𝑏11

𝑐0 𝑐1 𝑐2 𝑐3

𝑐4 𝑐5 𝑐6 𝑐7

𝑐8 𝑐9 𝑐10 𝑐11

𝑐12 𝑐13 𝑐14 𝑐15

MEMc

𝑎4 𝑎5 𝑎6 𝑎7

𝑎2

Out

In

2𝑛𝑏

𝑛𝑏Shift Register

REGB
REGA

2

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

𝑎2

Out

In

2𝑛𝑏

𝑛𝑏Shift Register

REGB

4

𝑎3 𝑎4

(b) Selection of element 4 of the output
from REGA and REGB

Fig. 5.4 Shift Register loaded with the complete row with nb reads from REGA and REGB

5.1 Schoolbook architecture 59

The number of cycles to derive the i-th partial product is:

Tclk = h∗nb = n (5.4)

The execution time is not proportional to the the asserted bits of the Secret Key,
this comes at the increased cost of resources.

Rotation with Barrel Shifter The rows of each ai can be obtained in parallel with
the use of a barrel shifter. The first row of a0 is across rows 0 and 1 from MEMa,
these are loaded in REGA and REGB, their output is connected to the barrel shifter that
selects the correct range for the NewRow vector. The barrel shifter is a multiplexer
with nb input vector and a selection bit equal to 2.

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

𝑎5

Out

In

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGB
REGA

2

𝑎4𝑎3𝑎2

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

2 0 1 2 3

𝑎5

𝑛𝑏

𝑎4𝑎3𝑎2

(a) Selection of a complete row with the
barrel shifter

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

𝑎5

Out

In

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGB
REGA

2

𝑎4𝑎3𝑎2

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

2 0 1 2 3

𝑎5

𝑛𝑏

𝑎4𝑎3𝑎2

(b) Detail of the barrel shifter (BS1)

Fig. 5.5 Register with the new row loaded in parallel.

The number of clock cycles to derive a rotated vector is:

Tclk = h (5.5)

The barrel shifter introduces an additional cost in terms of resources, but it has
been preferred due to its reduced number of cycles that is proportional to the selected
parallelism.

The VectorByCirculant complete architecture and execution is described with
the parameters considered in the previous example. The execution firstly loads a0 in
MEMc, and then updates the content with a1 and a3.

The first row (a0) to be loaded in MEMc obtained from MEMa starts with the
following content of the memories:

60 Architectures for Large Polynomial Multiplication

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝐴𝐷𝑋𝑎 = 1
𝑂𝑢𝑡𝑎 = [𝑎4, 𝑎5, 𝑎6, 𝑎7]

𝑏0 = 2

𝑏1 = 5

MEMb

𝑏2 = 11

𝐴𝐷𝑋𝑏 = 0 𝑂𝑢𝑡𝑏 = [0,10]

MEMc

𝐴𝐷𝑋𝑐 = 0 𝐼𝑛𝑐 = [𝑐0, 𝑐1, 𝑐2, 𝑐3]

𝑂𝑢𝑡𝑐 = [X, X, X, X]

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

𝑐3

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 2

𝑐2𝑐1𝑐0

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

0000

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

(a) MEMa with the second row in output

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝐴𝐷𝑋𝑎 = 1
𝑂𝑢𝑡𝑎 = [𝑎4, 𝑎5, 𝑎6, 𝑎7]

𝑏0 = 2

𝑏1 = 5

MEMb

𝑏2 = 11

𝐴𝐷𝑋𝑏 = 0 𝑂𝑢𝑡𝑏 = [0,10]

MEMc

𝐴𝐷𝑋𝑐 = 0 𝐼𝑛𝑐 = [𝑐0, 𝑐1, 𝑐2, 𝑐3]

𝑂𝑢𝑡𝑐 = [X, X, X, X]

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

𝑐3

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 2

𝑐2𝑐1𝑐0

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

0000

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

(b) MEMb with the output position representing
ADX (0) and Shift (10) as binary values.

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝐴𝐷𝑋𝑎 = 1
𝑂𝑢𝑡𝑎 = [𝑎4, 𝑎5, 𝑎6, 𝑎7]

𝑏0 = 2

𝑏1 = 5

MEMb

𝑏2 = 11

𝐴𝐷𝑋𝑏 = 0 𝑂𝑢𝑡𝑏 = [0,10]

MEMc

𝐴𝐷𝑋𝑐 = 0 𝐼𝑛𝑐 = [𝑐0, 𝑐1, 𝑐2, 𝑐3]

𝑂𝑢𝑡𝑐 = [X, X, X, X]

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

𝑐3

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 2

𝑐2𝑐1𝑐0

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

0000

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

(c) MEMc before a0 is written has an undefined
content.

Fig. 5.6 Memories of VectorByCirculant with Input, Output and addressed highlighted.

The values of ADXc, ADXb and ADXa are provided by counters, the latter is loaded
with ADX.

The Data Path is in Figure 5.7, it includes the registers where the rows from
MEMa and MEMc are loaded, barrel shifter and the element wise sum, the counters and
the register with the position in MEMb are not depicted. The loading of a0 does not
involve the content MEMc, thus register REGC is at zero, the register is cleared. The
value from the barrel shifter is then loaded in the output register, the row is written
in MEMc. Then, to update row ADXc = 1, the a new row is read (ADXa = 2), REGA and
REGB are updated, the value shifted and then loaded in the output register.

The next a1 that updates MEMc is obtained in a similarly, the initial content of the
memory is in Figure 5.9. The content of the registers in the Data Path for ADXc = 0
and ADXc = 1 is in Figures 5.16

Rotation of Vectors with Generic Length The execution of the vector rotation
algorithm presents slight changes when the vector length is not a multiple of nb. In
this case, the last row of memory contains values that do not belong to the original
vector a. To address this, an additional step is required, which involves storing two

5.1 Schoolbook architecture 61
𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝐴𝐷𝑋𝑎 = 1
𝑂𝑢𝑡𝑎 = [𝑎4, 𝑎5, 𝑎6, 𝑎7]

𝑏0 = 2

𝑏1 = 5

MEMb

𝑏2 = 11

𝐴𝐷𝑋𝑏 = 0 𝑂𝑢𝑡𝑏 = [0,10]

MEMc

𝐴𝐷𝑋𝑐 = 0 𝐼𝑛𝑐 = [𝑐0, 𝑐1, 𝑐2, 𝑐3]

𝑂𝑢𝑡𝑐 = [X, X, X, X]

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

𝑐3

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 2

𝑐2𝑐1𝑐0

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

0000

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

(a) ADXc = 0 available

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝐴𝐷𝑋𝑎 = 2
𝑂𝑢𝑡𝑎 = [𝑎8, 𝑎9, 𝑎10, 𝑎11]

𝑏0 = 2

𝑏1 = 5

MEMb

𝑏2 = 11

𝐴𝐷𝑋𝑏 = 0 𝑂𝑢𝑡𝑏 = [0,10]

𝑐0 𝑐1 𝑐2 𝑐3

MEMc

𝐴𝐷𝑋𝑐 = 1 𝐼𝑛𝑐 = [𝑐4, 𝑐5, 𝑐6, 𝑐7]

𝑂𝑢𝑡𝑐 = [X, X, X, X]

𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11

𝑐7

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 2

𝑐6𝑐5𝑐4

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

0000

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

𝑎0𝑎0

(b) ADXc = 1 available

Fig. 5.7 VectorByCirculant Data Path with the control signal form MEMb, the consecutive
rows from MEMa stored in REGA and REGB and the first row of MEMc evaluated.

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝐴𝐷𝑋𝑎 = 2
𝑂𝑢𝑡𝑎 = [𝑎8, 𝑎9, 𝑎10, 𝑎11]

𝑐0 𝑐1 𝑐2 𝑐3

MEMc

𝐴𝐷𝑋𝑐 = 1
𝐼𝑛𝑐 = [𝑐4, 𝑐5, 𝑐6, 𝑐7]

𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11

𝑐7

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 2

𝑐6𝑐5𝑐4

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

0000

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

(a) MEMa with the third row in output

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝐴𝐷𝑋𝑎 = 2
𝑂𝑢𝑡𝑎 = [𝑎8, 𝑎9, 𝑎10, 𝑎11]

𝑐0 𝑐1 𝑐2 𝑐3

MEMc

𝐴𝐷𝑋𝑐 = 1
𝐼𝑛𝑐 = [𝑐4, 𝑐5, 𝑐6, 𝑐7]

𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11

𝑐7

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 2

𝑐6𝑐5𝑐4

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

0000

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

(b) MEMc has the first row loaded

Fig. 5.8 Memories of VectorByCirculant with Input, Output and addressed highlighted
for the writing of MEMc at ADXc = 1.

partial rows in MEMc and modifying the values of Shift for the next rows of MEMa.
For example, Figure 5.11 shows the vector a of length n = 13 along with the other
parameters used in the previous examples.

The total number of cycles required to fill MEMc is proportional to the number
of rows in both MEMa and MEMc. The detailed number of cycles can be computed by
starting from the description of the Control Unit, which is depicted in Figure 5.13.
The execution of the algorithm is organized into three phases: the initialization of
ADX and Shift, the first rotation of the vector, and the subsequent rotations of the
vector to obtain the result. The initialization phase loads the first value of the rotation
to be performed, as highlighted by the green box in the Control Unit diagram shown
in Figure 5.13. This phase involves the following state, the name of the state is the
same as the command that is executed:

62 Architectures for Large Polynomial Multiplication

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝐴𝐷𝑋𝑎 = 2
𝑂𝑢𝑡𝑎 = [𝑎8, 𝑎9, 𝑎10, 𝑎11]

𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11

𝑐5

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 1

𝑐2𝑐1𝑐0

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

𝑐3𝑐2𝑐1𝑐0

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

𝑐0 𝑐1 𝑐2 𝑐3

𝑐4 𝑐5 𝑐6 𝑐7

𝑐8 𝑐9 𝑐10 𝑐11

𝑐12 𝑐13 𝑐14 𝑐15

MEMc

𝐴𝐷𝑋𝑐 = 0
𝑂𝑢𝑡𝑐 = [𝑐0, 𝑐1, 𝑐, 𝑐3]

𝐼𝑛𝑐 = [𝑐0, 𝑐1, 𝑐, 𝑐3]

REGC,old

REGC,new

𝑏0 = 2

𝑏1 = 5

MEMb

𝑏2 = 11

𝐴𝐷𝑋𝑏 = 1 𝑂𝑢𝑡𝑏 = [1,01]

[𝑎5, 𝑎7, 𝑎8, 𝑎9]
(a) MEMa with the second row in output

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝐴𝐷𝑋𝑎 = 2
𝑂𝑢𝑡𝑎 = [𝑎8, 𝑎9, 𝑎10, 𝑎11]

𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11

𝑐5

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 1

𝑐2𝑐1𝑐0

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

𝑐3𝑐2𝑐1𝑐0

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

𝑐0 𝑐1 𝑐2 𝑐3

𝑐4 𝑐5 𝑐6 𝑐7

𝑐8 𝑐9 𝑐10 𝑐11

𝑐12 𝑐13 𝑐14 𝑐15

MEMc

𝐴𝐷𝑋𝑐 = 0
𝑂𝑢𝑡𝑐 = [𝑐0, 𝑐1, 𝑐, 𝑐3]

𝐼𝑛𝑐 = [𝑐0, 𝑐1, 𝑐, 𝑐3]

REGC,old

REGC,new

𝑏0 = 2

𝑏1 = 5

MEMb

𝑏2 = 11

𝐴𝐷𝑋𝑏 = 1 𝑂𝑢𝑡𝑏 = [1,01]

[𝑎5, 𝑎7, 𝑎8, 𝑎9]

(b) MEMb with the output position representing
ADX (1) and Shift (01) as binary values.

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝐴𝐷𝑋𝑎 = 2
𝑂𝑢𝑡𝑎 = [𝑎8, 𝑎9, 𝑎10, 𝑎11]

𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11

𝑐5

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 1

𝑐2𝑐1𝑐0

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

𝑐3𝑐2𝑐1𝑐0

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

𝑐0 𝑐1 𝑐2 𝑐3

𝑐4 𝑐5 𝑐6 𝑐7

𝑐8 𝑐9 𝑐10 𝑐11

𝑐12 𝑐13 𝑐14 𝑐15

MEMc

𝐴𝐷𝑋𝑐 = 0
𝑂𝑢𝑡𝑐 = [𝑐0, 𝑐1, 𝑐, 𝑐3]

𝐼𝑛𝑐 = [𝑐0, 𝑐1, 𝑐, 𝑐3]

REGC,old

REGC,new

𝑏0 = 2

𝑏1 = 5

MEMb

𝑏2 = 11

𝐴𝐷𝑋𝑏 = 1 𝑂𝑢𝑡𝑏 = [1,01]

[𝑎5, 𝑎7, 𝑎8, 𝑎9]

(c) MEMc with a0 loaded.

Fig. 5.9 Memories of VectorByCirculant with Input, Output and addressed highlighted
for a1 computation.

• Start, the registers and counters are cleared ;

• Load Rotation, the i-th position from MEMb is loaded in Position Register,
ADX ad Shift, the counter that points MEMb is incremented and the counter for
MEMa is loaded with ADX;

• Load first Row: the ADX row in MEMa is loaded in REGB and the counter of ADXa

is incremented;

The states that compute the first rotation are highlighted in the orange box in
Figure 5.13. This is achieved by iterating h times through the following states:

• Load, the row ADXa is loaded in REGB and its previous values moved to REGA,
the row ADXc is loaded in REGC,old , the counter of ADXa is incremented;

• Compute: the contents of the pair REGA and REGB is shifted and its content
xores/summed up with REGC,old , thus REGC,new is available in the next cycle.

• Store: REGC,new is stored in MEMc and the counter of ADXc is incremented.

5.1 Schoolbook architecture 63
𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝐴𝐷𝑋𝑎 = 2
𝑂𝑢𝑡𝑎 = [𝑎8, 𝑎9, 𝑎10, 𝑎11]

𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11

𝑐5

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 1

𝑐2𝑐1𝑐0

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

𝑐3𝑐2𝑐1𝑐0

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

𝑐0 𝑐1 𝑐2 𝑐3

𝑐4 𝑐5 𝑐6 𝑐7

𝑐8 𝑐9 𝑐10 𝑐11

𝑐12 𝑐13 𝑐14 𝑐15

MEMc

𝐴𝐷𝑋𝑐 = 0
𝑂𝑢𝑡𝑐 = [𝑐0, 𝑐1, 𝑐, 𝑐3]

𝐼𝑛𝑐 = [𝑐0, 𝑐1, 𝑐, 𝑐3]

REGC,old

REGC,new

𝑏0 = 2

𝑏1 = 5

MEMb

𝑏2 = 11

𝐴𝐷𝑋𝑏 = 1 𝑂𝑢𝑡𝑏 = [1,01]

[𝑎5, 𝑎7, 𝑎8, 𝑎9]

(a) ADXc = 0 available

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 𝑎13 𝑎14 𝑎15

MEMa

𝐴𝐷𝑋𝑎 = 3
𝑂𝑢𝑡𝑎 = [𝑎12, 𝑎13, 𝑎14, 𝑎15]

𝑎8 𝑎9 𝑎10 𝑎11 𝑎12 𝑎13 𝑎14 𝑎15

𝑐7

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 1

𝑐6𝑐5𝑐4

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

𝑐7𝑐6𝑐5𝑐4

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

𝑐0 𝑐1 𝑐2 𝑐3

𝑐4 𝑐5 𝑐6 𝑐7

𝑐8 𝑐9 𝑐10 𝑐11

𝑐12 𝑐13 𝑐14 𝑐15

MEMc

𝐴𝐷𝑋𝑐 = 0
𝑂𝑢𝑡𝑐 = [𝑐0, 𝑐1, 𝑐, 𝑐3]

𝐼𝑛𝑐 = [𝑐0, 𝑐1, 𝑐, 𝑐3]

REGC,old

REGC,new

𝑏0 = 2

𝑏1 = 5

MEMb

𝑏2 = 11

𝐴𝐷𝑋𝑏 = 1 𝑂𝑢𝑡𝑏 = [1,01]

[𝑎10, 𝑎11, 𝑎12, 𝑎13]

(b) ADXc = 1 available

Fig. 5.10 VectorByCirculant Data Path with the control signal form MEMb, the consecutive
rows from MEMa stored in REGA and REGB and the first row of MEMc evaluated.

𝑎8 𝑎9 𝑎10 𝑎11 𝑎12 00 0 0

𝑐7

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 1

𝑐6𝑐5𝑐4

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

𝑐7𝑐6𝑐5𝑐4

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

REGC,old

REGC,new

[𝑎10, 𝑎11, 𝑎12, 0]

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 0 0 0

MEMa

𝐴𝐷𝑋𝑎 = 3
𝑂𝑢𝑡𝑎 = [𝑎12, 𝑎13, 𝑎14, 𝑎15]

Fig. 5.11 MEMa with a vector of length n = 13 and padded with zeros

The state Load is dual: the first rotation assumes that the content of MEMc is
uninitialized, thus REGC,old is cleared and the shifted row is REGC,new; in the next
rotations REGC,old is actually loaded.

The rotation with generic n requires two more states to perform the partial read:

• Partial Read, the the pair REGA and REGB is rotated and the content and its
content xores/summed up with REGC,old , thus REGC,new is available in the next
cycle;

• Partial Store, REGC,new is stored in MEMc and the counter of ADXc is not incre-
mented;

The shift of the row is partial since the last row in MEMa is loaded with zeros after
the n values, then REGA and REGB has only part of the new row, moreover the value
of Shift is updated in next Load, Compute and Store states.

64 Architectures for Large Polynomial Multiplication

𝑎8 𝑎9 𝑎10 𝑎11 𝑎12 00 0 0

𝑐7

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 1

𝑐6𝑐5𝑐4

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

𝑐7𝑐6𝑐5𝑐4

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

REGC,old

REGC,new

[𝑎10, 𝑎11, 𝑎12, 0]

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 0 0 0

MEMa

𝐴𝐷𝑋𝑎 = 3
𝑂𝑢𝑡𝑎 = [𝑎12, 𝑎13, 𝑎14, 𝑎15]

(a) Partial write in MEMc, the value c7 is not
updated

0 0 0 0 𝑎0 𝑎1 𝑎2 𝑎3

𝑐7

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 1

𝑐6𝑐5𝑐4

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

𝑐7𝑐6𝑐5𝑐4

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

REGC,old

REGC,new

[0,0,0, 𝑎0]

𝑎0 𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6 𝑎7

𝑎8 𝑎9 𝑎10 𝑎11

𝑎12 0 0 0

MEMa

𝐴𝐷𝑋𝑎 = 3
𝑂𝑢𝑡𝑎 = [𝑎12, 𝑎13, 𝑎14, 𝑎15]

(b) MEMc row is completely updated

Fig. 5.12 VectorByCirculant Data Path with the control signal form MEMb, the consecutive
rows from MEMa stored in REGA and REGb and the first row of MEMc evaluated.

Start

Load
Rotation

Load first
Row

Load

Compute

Store
End

𝑦𝑒𝑠

𝑦𝑒𝑠

𝑛𝑜

𝑛𝑜

𝐴𝐷𝑋𝑐 < ℎ?

𝐴𝐷𝑋𝑏 < 𝑏𝑤?

Fig. 5.13 Control Unit of VectorByCirculant

The addresses are provided by the counters that are incremented after each
read/write of the given memory.

The evolution of the Control Unit when a rotation is computed is in Figure 5.14.

The total number of cycles is easily obtained considering the initial setup of the
registers, load of the position from MEMb and the evolution in Figure 5.14:

NV bC
cycles = 1+bh +3∗ah ∗bh (5.6)

The total execution time depends on the synthesized architecture, since the
scalability of the inner units affect the maximum achievable frequency (fmax, found

5.1 Schoolbook architecture 65

Clock Cycle

1 2 3 4 5 6 7 8 9
row in
MEM𝑐

0

1

2

Load Cmp Store

Load Cmp Store

Load Cmp Store

Fig. 5.14 The time evolution of the Control Unit to compute a single row in MEMb after the
initialization steps.

from the minimum critical path 1/Tclk). Then, the parameter nb affects both the
critical path and the total number of cycles.

The total execution time is:

Tex = NV bC
cycles ∗Tclk (5.7)

The total area, A, and the frequency, f ,are reported in Table 5.2, considering a
multiplication with a binary cyclic matrix and:

• binary input vector and binary result;

• binary input vector and integer result, with integers represented on ni = 4;

• integer input vector (with ni = 4) and integer result (with ni = 4).

The considered length of the vector is ≈ 104.

The results has been obtained with Synopsys Design Compiler and the STM
FDSOI 28nm technology. The frequency f is the maximum frequency of the binary
to integer multiplier.

The value of nb is limited to 64 bit, since it is enough to show the limitations of
the previous approach. The value of nb is increased in the following improvements
of the multiplier.

The total area, A, and frequency, f , with a logarithmic unit are provided in Table
5.3 for the STM FDSOI 28nm technological node.

The multiplier is meant to implement a fundamental step in the QC-LDPC De-
coder for Code-based PQC, the limitations that showed in [3] when implementing the

66 Architectures for Large Polynomial Multiplication

nb
8 16 32 64 128 256

bin to bin 677 925 1440 4802 - -
A (µm2) bin to int 1019 1598 2774 7461 - -

int to int 1932 3467 6551 22033 - -
f (MHz) 250 250 250 250 - -

Table 5.2 The synthesis results of VectorByCirculant with linear unit barrel shifter.

nb
8 16 32 64 128 256

bin to bin 753 1028 1566 2699 4956 9953
A (µm2) bin to int 990 1569 2774 7572 9793 19646

int to int 1714 3358 6350 16175 23918 48457
f (MHz) 330 500 500 400 380 -

Table 5.3 The synthesis results of VectorByCirculant with logarithmic barrel shifter.

multipliers motivated the research on different approaches. The resource utilization
is not provided in the present description, since the limitations are evident only in
the ASIC implementaiton, whith the sythnesis on FPGA the resource usage is linear
with nb. The final results and comparison will be provided for bot ASIC and FPGA
implementation.

Alternative Barrel Shifter: Logarithmic Rotate Unit The increase of the total
area in the ASIC implementation depends on the parameter nb, the effect of the
increase of the parallelism is not bounded by the reduction in the execution time since
the total area increased becomes exponential with nb, as can be clearly seen from
[3], where the architecture scaling is limited to nb = 64. Then a different approach
has been implemented, this is referred as Logarithmic Rotate Unit. The example is
in Figure 5.15 for nb = 4 and Shift= 2, similarly to the examples in Figure 5.5.

The multiplexer is split over log2(4) = 2 levels, with each level containing a two
input multiplexer. The split strongly reduced the area increase, while keeping the
Tclk equivalent to the previous approaches.

The single level of multiplexing applies a rotation by approximating the value
Shift. In the example, the input is a 2nb = 8 vector with a rotation of Shift= 210 =

102, the value of the rotation can be 0, 1, 2, 3, this group of 4 number is in the first

5.1 Schoolbook architecture 67

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

𝑎5

Out

In

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGB
REGA

2

𝑎4𝑎3𝑎2

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

2 0 1 2 3

𝑎5

𝑛𝑏

𝑎4𝑎3𝑎2

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7

1
0

𝑎5

𝑛𝑏

𝑎4𝑎3𝑎2

0 1
[𝑎2 𝑎3 𝑎4 𝑎5 𝑎6]

𝑛𝑏 + 𝑛𝑏/4

0 1

[𝑎0 𝑎1 𝑎2 𝑎3 𝑎4] [𝑎1 𝑎2 𝑎3 𝑎4 𝑎5]

2𝑛𝑏
[𝑎0 𝑎1 𝑎2 𝑎3 𝑎4] [𝑎2 𝑎3 𝑎4 𝑎5 𝑎6]

[𝑎2 𝑎3 𝑎4 𝑎5]

(2)

Fig. 5.15 Logarithmic approach for the Barrel Shifter

layer divided in two option with 4/2 = 2 elements each: selection 0 has a portion
of the complete vector that contains sub-vectors corresponding to Shift [0, 1] and
selection 1 has [2, 3], the choice depends on the binary representation of the Shift,
10, the first bit (1) maps selection 1, then the group is again split in selection 0 [2]
and selection 1 = 3, the last bit, 0, maps g0, then the correct shift is selected. The
layer of multiplexer selects a portion of the complete vector that contains the options
of the group, for example with selection 0 in the first layers both [a0, a1, a2, a3] and
[a1, a2, a3, a4] can be derived.

The same applied to a different nb, the number of level is always log2(nb) and
each multiplier is driven by the binary representation of Shift, with its MSB that
drives the first level of multiplexer.

The logarithmic collapse unit, thanks to its efficiency in the ASIC implementation
and the similar results for FPGA [?] is considered in the next sections as the only
rotate unit adopted.

Alternative VbC The content of MEMc can be obtained in an alternative way.
Instead of reading the each row of MEMa several times, the bw row pair is loaded in
the pair REGA and REGB, the bw shifts are applied completely generate one row of
the result, then only one write per row is required. This idea has been discarded
because the new address of MEMa has to be computed per each iteration resulting in
an increase of the total number of cycles. The benefit of the following option is the

68 Architectures for Large Polynomial Multiplication

reduction of writes to the result memory that becomes read of the input memory,
this may affect the dynamic power of the architecture since the number of writes is
reduced.

MEMa MEMc

MEMa MEMc

(a) The single row of MEMc is completely eval-
uated before writing it in memory.

MEMa MEMc

MEMa MEMc

(b) The content in REGA and REGB is kept con-
stant.

Fig. 5.16 VectorByCirculant alternatives

5.1.2 VectorByCirculant Pipelined

The total execution time is improved increasing the throughput at which the rows
of the result are computed, in VectorByCirculant the throughput is 1/latency.
The parameter is increased by providing a pipelined VectorByCirculant. The
pipelining applied is both coarse and fine grain, thus both the throughput and Tclk

are improved.

The coarse pipelining has complex Control Unit and the MEMc must be a dual port
memory.

Coarse-grained Pipeline The coarse-grained pipelining (c-pipe) has the same
Data Path of VectorByCirculant, the memory include a dual port memory for
MEMc, while the Control Unit execution is modified to have a pipelined execution and
overlap the commands.

The Control Unit execution to provide a rotated a in c-pipe VectorByCirculant
is organized in the following stages:

• Stage 1: the i-th row is loaded from MEMa, the command is Load;

• Stage 2: the (i+1)%h-th row is loaded from MEMa, Load, the output from the
barrel shifted computed, Cmp, that updates the row 0 in MEMc;

5.1 Schoolbook architecture 69

• Stage 3: the (i+2)%h-th row is loaded from MEMa, Load, the output from the
barrel shifted computed, Cmp, that updates the row 1 in MEMc and row 0 is
stored MEMc, Store;

The execution after the first two stages, in each cycle, the Load, Cmp, and Store
from VectorByCirculant are computed, thus updating MEMc at every clock cycle.
The overhead is introduced by the first three stages before the pipelining execution
can start and the last three stages to exit the pipelining execution. The time evolution
is in Figure 5.17.

Clock Cycle

1 2 3 4 5 6
row in
MEM𝑐

0

1

2

Load Cmp Store

Load Cmp Store

Load Cmp Store

Load Cmp Store3

Fig. 5.17 The time evolution of the Control Unit for the coarse grain pipelined architecture
to compute a single row in MEMc after the initialization steps.

The read/write operation from MEMc can cause a potential hazard, but the opera-
tions are performed on different rows, thus the read and write do not overlap on the
same row. The Memory MEMc is a dual port in order to have the read and write of
two different rows in the same cycle, with a single port memory it is not possible to
fully benefit of the pipelined VectorbyCirculant.

The total number of cycles for the coarse pipelined architecture is computed
considering the number of clock cycles to:

• read each position in MEMb, which counts bh cycles;

• read the starting row in MEMa, which counts bh

• the two states to start and end the pipelining execution for each rotation, which
counts 2∗bh;

• the rotations of MEMa, which counts ah ∗bh.

70 Architectures for Large Polynomial Multiplication

The overall number of cycles is:

Nc−pipe
cycles = 4∗bh +ah ∗bh (5.8)

The total execution time is thus improved since with the same DataPath the
number of cycles is reduced and Tclk is kept constant.

Fine-grained Pipeline The fine-grained pipeling aims to reduce the Tclk, it re-
quired to study how the combinatorial paths are distributed over the circuit. In
VectorByCirculant exists two combinatorial path:

• the first one is located between REGA/REGB and REGC,new, it includes the barrel
shifter and the sum block;

• the second one is located between REGC,old and REGC,new, it include the sum
block only.

Clearly, the longest path is the first one and a reduction of Tclk implies the use of
an additional register between the barrel shifted and the sum block.

The final Data Path is in Figures 5.19, the architecture has one additional layer of
registers (REGS) that reduces Tclk, together with the Control Unit the overall execution
time of a complete cyclic multiplication is reduced by a factor of 3.

The execution has an additional command: LoadS that loads REGS. The Control
Unit requires then three stages to enter the pipelining execution.

The Control Unit execution to provide a rotated a, for the fine grained pipelined
VectorByCirculant is organized in the following stages:

• Stage 1: the i-th row is loaded from MEMa, the command is Load;

• Stage 2: the (i+1)%h-th row is loaded from MEMa, Load, the output from the
barrel shifter is loaded, LoadS;

• Stage 3: the (i+2)%h-th row is loaded from MEMa,Load, the output from the
barrel shifter is loaded, LoadS, the shifted vector is summed with the row 0
from MEMc, Cmp;

5.1 Schoolbook architecture 71

• Stage 4: the (i+3)%h-th row is loaded from MEMa,Load, the output from the
barrel shifter is loaded, LoadS, the shifted vector is summed with the row 1
from MEMc, Cmp, row 0 is stored MEMc, Store;

The execution after the first three stages, in each cycle, the Load, Shift, Cmp, and
Store from VectorByCirculant are computed, thus updating MEMc at every clock
cycle. The overhead is introduced by the first three stages before the pipelining
execution can start and the last three stages to exit the pipelining execution. The time
evolution is in Figure 5.18.

Clock Cycle

1 2 3 4 5 6
row in
MEM𝑐

0

1

2

3

7

Load Shift Cmp Store

Load Shift Cmp Store

Load Shift Cmp Store

Load Shift Cmp Store

Fig. 5.18 The time evolution of the Control Unit for the fine grained pipelined architecture to
compute a single row in MEMc after the initialization steps.

The read/write operation from MEMc are performed on different rows, thus the
read and write do not overlap on the same row. The Memory MEMc is a dual port in
order to have the read and write of two different rows in the same cycle, with a single
port memory it is not possible to fully benefit of the pipelined VectorbyCirculant.

The total number of cycles for the coarse pipelined architecture is computed
considering the number of clock cycles to:

• read each position in MEMb, which counts bh cycles;

• read the starting row in MEMa, which counts bh

• the three states to start and end the pipelining execution for each rotation,
which counts 3∗bh;

• the rotations of MEMa, which counts ah ∗bh.

72 Architectures for Large Polynomial Multiplication

The total number of cycles for the coarse pipelined architecture is:

N f−pipe
cycles = 6∗bh +ah ∗bh (5.9)

and the T f−pipe
clk is reduced thanks to the additional registers that can cut the

critical path of the architecture.

The pipelined architecture is in Figure 5.19. The split with a layer of registers
depends on the factors mentioned above since at this point the throughput of the
architecture is improved and the maximum clock frequency increased.

𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11

0

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 1

000

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

𝑐3𝑐2𝑐1𝑐0

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

REGC,old

REGC,new

𝑎8𝑎7𝑎6𝑎5

REGS
𝑛𝑏

𝑎8 𝑎9 𝑎10 𝑎11 𝑎12 𝑎13 𝑎14 𝑎15

𝑐3

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 1

𝑐2𝑐1𝑐0

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

𝑐7𝑐6𝑐5𝑐4

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

REGC,old

REGC,new

𝑎12𝑎11𝑎10𝑎9

REGS
𝑛𝑏

(a) ADXc = 0 computed

𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11

0

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 1

000

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

𝑐3𝑐2𝑐1𝑐0

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

REGC,old

REGC,new

𝑎8𝑎7𝑎6𝑎5

REGS
𝑛𝑏

𝑎8 𝑎9 𝑎10 𝑎11 𝑎12 𝑎13 𝑎14 𝑎15

𝑐3

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 1

𝑐2𝑐1𝑐0

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

𝑐7𝑐6𝑐5𝑐4

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

REGC,old

REGC,new

𝑎12𝑎11𝑎10𝑎9

REGS
𝑛𝑏

(b) ADXc = 0 available, ADXc = 1 computed

𝑎12 𝑎13 𝑎14 𝑎15 𝑎0 𝑎1 𝑎2 𝑎3

𝑐7

Barrel shifter

2𝑛𝑏

𝑛𝑏

REGBREGA

𝑆ℎ𝑖𝑓𝑡 = 1

𝑐6𝑐5𝑐4

𝑂𝑢𝑡𝑎

Sum

𝑛𝑏

𝑛𝑏

𝑐11𝑐10𝑐9𝑐8

𝐼𝑛𝑐

𝑂𝑢𝑡𝑐

REGC,old

REGC,new

𝑎0𝑎15𝑎14𝑎13

REGS
𝑛𝑏

(c) ADXc = 1 available,ADXc = 2 computed

Fig. 5.19 VectorByCirculant Pipelined Data Path with the control signal form MEMb, the
consecutive rows from MEMa stored in REGA and REGB and the first row of MEMc evaluated.

5.1 Schoolbook architecture 73

The final pipelined architecture, at the cost of a new register reduces the through-
put to 1/3 ∗Latency, since once the pipe is filled every clock cycle a new row is
provided. In the first proposal the throughput is equal to 1/Latency.

The two option resulted in two designs with different maximum frequency and
area, since the key aspects to compare are the total area and execution time.

nb
8 16 32 64 128 256

bin to bin 794 1057 1601 2735 4991 9992
A (µm2) bin to int 1032 1509 2774 7572 9728 19673

int to int 1745 3387 6350 16175 23946 48487
f (MHz) 500 500 500 400 380 330

Table 5.4 The synthesis results of VectorByCirculant with logarithmic barrel shifter and
pipelined execution.

nb
8 16 32 64 128 256

bin to bin 811 1134 1766 2699 4956 9953
A (µm2) bin to int 1206 1838 3184 7572 9793 19646

int to int 2180 3733 6823 16175 23918 48457
f (MHz) 735 617 500 400 380 -

Table 5.5 The synthesis results of VectorByCirculant with logarithmic barrel shifter and
fine grain pipelining.

5.1.3 SparseVectorByCirculant

The SparseVectorByCirculant multiplier further improves the previous archi-
tecture for a sparse vector multiplied by a sparse matrix, this is another type of
multiplication required in algorithms such as LEDAcrypt/BIKE.

The idea is to evaluate only the non zero positions of the resulting vector to further
reduce the execution time. The algorithms is straightforward in its implementation
since it is enough to combine the input positions a and b. The algorithm is a further
optimization of the Schoolbook algorithm.

The multiplication has sparse inputs, thus it is more convenient to store them as a
list of asserted position, while the result is in general dense and then it is stored as a

74 Architectures for Large Polynomial Multiplication

conventional vector. The SparseVectorByCirculant implementation is Algorithm
7, the input sparse vectors a and b are stored in memories MEMa and MEMb as a list of
asserted position, the weight of the vectors are ah and bh, the positions has a value
between [0;n−1], thus aw = bw = log2(n) is the width that memories should have
to store each position. The use of an optimized module can reduce the latency of a
sparse vector sparse matrix multiplication when compare to VectorByCirculant.
The use of the architecture improves the total latency of VectorByCirculant up to
nb = 64, since otherwise VectorByCirculant is better as can be seen in Figure ??.

Algorithm 7 SparseVectorbyCirculant Implementation
Input: MEMa with size ah ×aw, MEMc with size bh ×bw
Output: MEMc with size h×nb

1: for i = 0 to bh −1 do
2: for j = 0 to ah −1 do
3: k = (MEMa(j)+MEMb(i))%n
4: ADX = ⌊(k/nb)⌋
5: Shift = k%nb
6: NewRow = 0 ▷ Vector of length nb
7: NewRow(Shift) = 1 ▷ Value 1 in position Shift
8: MEMc(ADX) = MEMc(ADX)+NewRow
9: end for

10: end for
11: return MEMc

The DataPath and Control Unit of SparseVectorByCirculant are quite simple,
the positions from MEMa and MEMb are loaded in registers REGA and REGB. The values
are combined, the modulo sum is performed, and it is stored in REGR, then the ADX
and Shift area easily obtained: the Shift corresponds to the log2(nb) LSBs of the
resulting position while the other MSB bits are the ADX. Then the NewRow is the result
of a decoded Shift, the ADX row in MEMc is loaded in REGC, which accumulates the
output of the decoder and then updates the ADX row of the memory. The Data Path is
in Figure 5.20.

The Control Unit issues the command to load the positions from MEMa and MEMc,
Load,compute the sum, Sum, compute the modulo sum, ModSum, load the row from
MEMc, LoadC, update the row, UpdateC and finally store it in memory, Store. The
modulo sum step is split in two cycles in order to reduce the critical path.

5.1 Schoolbook architecture 75

MEM𝑎(𝑗) MEM𝑏(𝑖)

REGBREGA

𝑂𝑢𝑡𝑏𝑂𝑢𝑡𝑎

> 𝑛

<

−

yes no

ADX Shift

REGC
𝑘

ADX𝑐 Decoder
3 to 8

𝑛𝑏

𝑐3𝑐2𝑐1𝑐0

𝑂𝑢𝑡𝑐

REGC,old

𝑐7𝑐6𝑐5𝑐4

𝑐3𝑐2𝑐1𝑐0

Sum

𝑛𝑏

𝐼𝑛𝑐

REGC,new

𝑐7𝑐6𝑐5𝑐4

+

𝑆𝑢𝑚

REGS

𝑛

Fig. 5.20 The Data Path of SparseVectorByCirculant multiplier. The modular sum is in
the orange box.

The total number of cycles required to compute the result is:

NsV bC
cycles = 6∗ah ∗bh (5.10)

The Time Evolution for the pipelined execution is in Figure 5.22:

Resource sharing The improvement of the unit is to combine both VectorByCirculant
and SparseVectorByCirculant in order to reuse the shift unit. The barel shifter
and sum unit in VectorByCirculant can be employed to derive the value NewRow
by rotating the vector [1, 0, 0, . . . , 0] (with length nb). The Data Path can be shared
between the multipliers, the values of ADXC is connected to MEMc, while in REGA and
REGB (from VectorByCirculant) the vector [1, 0, 0, . . . , 0] (with length 2∗nb) is

76 Architectures for Large Polynomial Multiplication

Clock Cycle

1 2 3 4 5 6
row in
MEM𝑎

0

1

7 8 9 10

Load ModSum LoadC UpdateC StoreSum

11 12

Load ModSum LoadC UpdateC StoreSum

Fig. 5.21 Time evolution of SparseVectorByCirculant

Clock Cycle

1 2 3 4 5 6
row in
MEM𝑎

0

1

2

7 8 9 10

3

11 12 13 14

4

5

Load ModSum LoadC UpdateC StoreSum

Load ModSum LoadC UpdateC StoreSum

Load ModSum LoadC UpdateC StoreSum

Load ModSum LoadC UpdateC StoreSum

Load ModSum LoadC UpdateC StoreSum

Load ModSum LoadC UpdateC StoreSum

Fig. 5.22 Time evolution of Pipelined SparseVectorByCirculant

loaded during the execution and rotated, this the additional cost of a decoder that for
increasing values of nb can be an issue.

SparseVectorByCirculant Pipelining The pipelining can be easily applied to the
present architecture executing commands in parallel. The architectures requires a
Dual Port Memory for MEMc. The final execution time is then:

NsV bC
cycles = 10∗bh +ah ∗bh (5.11)

The Time Evolution for the pipelined execution is in Figure 5.22:

Initial optimization goal The initial goal was to optimize the execution by rear-
ranging the computation such that each row of the result was completely computed
before storing it in memory. The idea can be clearly understood by looking at the
result, this is the sum of bw sparse vectors that ends up not to ’sum’ over each row of
the result memory, but they are distributed over the row are separate elements. This
feature of the result is due to the presence of a sparse vector input and to the low
probability of a sum to occurs.

5.1 Schoolbook architecture 77

The idea is described in Figures 5.23, with MEMa and MEMc described with dots:
the input vector is very sparse, while the result is dense since it is the result of shifted
version of the input (highlighted with a color corresponding to the amount of the
rotation).

The initial idea was to calculate the rows MEMc bit by bit and then write it in
memory, but this approach requires a preliminar study of the positions in MEMa

and MEMb and then to arrange arrange the sVbC calculations such that the result is
evaluated row by row, but this would have required extra time that is not balanced
by the benefit of this approach: it is not possible to use the bit by bit generation of
sVbC and the row by row generation of VbC.

MEMa

𝑏0 = 2

𝑏1 = 5

MEMb

𝑏2 = 9

MEMc

(a) Sparse MEMa

MEMa

𝑏0 = 2

𝑏1 = 5

MEMb

𝑏2 = 9

MEMc

(b) MEMc.

MEMa

𝑏0 = 2

𝑏1 = 5

MEMb

𝑏2 = 9

MEMc

(c) MEMb with asserted bits asso-
ciated to a color.

Fig. 5.23 Memories of SparseVectorByCirculant with sparse Input, and Output with
highlighted position of the asserted bits from the input.

The total area occupation and target frequency, the same as VectorBycirculant,
of the module is provided in Table 5.6 considering a vector of size ≈ 104, results
has been obtained with Synopsys Design Compiler and the STM FDSOI 28nm
technology.

nb
8 16 32 64 128 256

812 952 1226 1757 2832 5131
A (µm2) pipeline 880 1013 1301 1785 2899 5203
f (MHz) 500 500 500 400 380 330

Table 5.6 The synthesis results of SparseVectorByCirculant with and without pipelining.

78 Architectures for Large Polynomial Multiplication

SparseVectorByCirculant and VectorByCirculant

The use of an optimized module can reduce the latency of a sparse vector sparse
matrix multiplication when compare to VectorByCirculant. The use of the
non pipelined architectures improves the total latency of VectorByCirculant vs
SparseVectorByCirculant up to nb = 64, since the total area is considered, the
latency for a n = 12 since otherwise VectorByCirculant is better.

5.2 Schönhage Stressen Architecture

The Schönhage Stressen algorithm has been implemented to compute the multiplica-
tion between a vector and a cyclic matrix, which is considered as a convolution. The
’convolution’ approach is widely used in PQC primitives that involve a polynomial
multiplication, the multiplier is applied to LDPC/MDPC PQC primitives in order to
understand the impact on the area of the most efficient algorithms for large multi-
plication in the domain of Code-based Post Quantum Cryptography. The length of
the polynomials involved in such algorithms (n > 104) suggests that the method is
the best in terms of time complexity, but the architecture is more complex than the
Schoolbook approach.

The Schönhage Stressen algorithm is applied to aB, with B a binary cyclic and
sparse matrix.

5.2.1 Number Theoretic Transform Computation

The transform which is applied is Fast Fourier Transform (FFT/IFFT), the Fourier
Transform posses the property of the convolution in time that becomes a multiplica-
tion in frequency, the computations involves complex and floating point numbers.
The Schönhage Stressen algorithm applied cyclic and polynomial multiplications
applies Number Theoretic Transform, instead of the Fourier Transform: the NTT
and the INTT. The benefit with the use of finite field arithmetic, which is carried on
with integers, while the FFT/IFFT requires floating point arithmetic.

The Number Theoretic Transfom is introduced from the Fourier Transform, the
approach of the FFT is applied to the NTT too. The Discrete Fourier Transform

5.2 Schönhage Stressen Architecture 79

(DFT) is applied to a signal x(n) in time domain, this is transformed to X(k) which is
the expression of the input signal in frequency domain. The result is obtained with:

X(k) =
N−1

∑
n=0

x(n)e−i2πkn/N (5.12)

The NTT equation is:

X(k) =
N−1

∑
i=0

(x(i) ·α ik) mod P, (5.13)

In the NTT the main parameters are the modulus P and radix α , these quantities
are integer numbers thus the operations are fixed point multiplication and additions.

The execution has a complexity O(n2), with the FFT and the Cooley-Tuckey
FFT (CT-FFT) algorithm, the complexity is reduced to O(nlog(2)). The speed up in
the Schönhage Stressen algorithm is due to the use of the FFT algorithm.

The expression in (5.13) with the CT speed up is rewritten as:

X(k) =
N/2−1

∑
j=0

x(2 j)α(2 j)k mod P

+
N/2−1

∑
j=0

x(2 j+1)α(2 j+1)k mod P (5.14)

The values of α and P are parameters of the NTT.

The parameters and adaptation of the NTT to LEDAcrypt/BIKE sizes is described
in the following.

5.2.2 Number Theoretic Transform parameters

The NTT applied to the vectors of LEDAcrypt/BIKE has specific requirements:
the length of the vectors is not a power of 2, in particular their length is a prime
number and the result of the multiplication should be exact, since some uncertainty.
In addition, the addressed multiplication is the vector by sparse cyclic matrix, thus
the transform has to be applied to dense or sparse vectors.

80 Architectures for Large Polynomial Multiplication

The Direct and Inverse Number Theoretic Transform algorithm and implementa-
tion are described in the following, considering that the application is Code-based
PQC the architecture that is described has the same Data Path and by changing the.

The parameters are the modulo, P, and the radix, α of the NTT and the radix
αinv and Ninv for the INTT. These values are selected starting from the length of the
input vector,n, and the maximum integer of the vector, max(a). The input is binary,
thus max(a) = 1.

Modulus P The modulus of the transform for binary vectors is found by selecting a
prime number P > n, where n is the length of the binary vector, with the modulus the
primitive root of unit,r, can be computed. The primitive nth root of unity. The value
of P si selected in the form P = kN +1. The modulus P is computed, in general, by
exhaustive search.

radix α The value of the radix is selected starting from P and r, such that a =

rk mod P and an mod P = 1.

The multiplication by αk (with k = 0, ·, n−1) and mod P are the equivalent of
the multiplication by frequencies e−i2πk/n, in fact the radix condition is present in
the FFT, since the radix is e−i2π/n, then in fact the value (e−i2π/n)n = 1 (from the
Euler’s identity). The property of the frequencies that corresponds to n divisions
of a 2π circle is equivalent to the α i mod P operation, which rotates over the range
0, · P−1 range.

Prime and Zero Padding

The CT-NTT has a constraint on the length of the input vectors, thus must be a power
of 2, the usual sizes of vectors in LEDAcrypt/BIKE has to be properly padded to
apply the transform.

The vector padding is applied to the inputs of the cyclic matrix multiplication,
since the design of Code-based PQC primitive requires that the length is a prime
number.

In literature a series of methods are know to efficiently handle such a condition:
Radar’s [60] and Bluestein’s [61] algorithm can compute the CT-FFT, for length of

5.2 Schönhage Stressen Architecture 81

the signals prime number or generic; the methods can be applied to the NTT. The
padding to be applied is derived starting from the cyclic multiplication in order to
have the same result by multiplying bigger vectors.

The inputs has length n which becomes n′, the result of the cyclic multiplication
is the same if the matrix vector b is extended with a flipped replica of itself an
becomes b′: this way C(b′) (B′) is a cyclic matrix and contains C(b) (B) in the upper
left corner. The vector a becomes a′, this time it is enough to apply the zero padding
to have a correct result. The value of the equation and the correctness of the result is
proved in the following example, with vector length n = 5.

Prime Padding The padding applied to the input b is referred as PrimePadding.
The vector is b =

h
0 0 1 0 1

i
, the corresponding cyclic matrix is:

B =


0 0 1 0 1
1 0 0 1 0
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0

 (5.15)

The vector b is extended to b′ =
h
0 0 1 0 1 0 1 0 1

i
, with length

n′ = 9, the cyclic matrix is then:

B′ =



0 0 1 0 1 0 1 0 1
1 0 0 1 0 1 0 1 0
0 1 0 0 1 0 1 0 1
1 0 1 0 0 1 0 1 0
0 1 0 1 0 0 1 0 1
1 0 1 0 1 0 0 1 0
0 1 0 1 0 0 1 0 1
1 0 1 0 1 0 0 1 0
0 1 0 1 0 1 0 0 1


(5.16)

82 Architectures for Large Polynomial Multiplication

In general, the extension applied to the vector associated to cyclic matrix B′ is in
Equation (5.17).

b′ =
h
b0 . . . bn−1 0 . . . 0 bn−1 . . . b1

i
(5.17)

The value of n′ is 2∗n−1 approximated to next power of 2 value, the n′−2n+1
values wich are not bi are set to 0.

Result The vector a can be padded with the method in Equation (5.17) or with
zeros in Equation (5.18)

a′ =
h
a0 . . . an−1 0 . . . 0 0 . . . 0

i
(5.18)

The multiplication which is performed is a′B′, with result c′, this is reduced to
vector c by removing the last n′−n bits, as showed in Equation (5.19).

c′ =
h
c′0 c′1 . . . c′n−1 c′n . . . c′n′−2 c′n′−1

i
(5.19)

The result is c =
h
c0 c1 . . . cn−1

i
The choice of the padding applied to a does

not affect the correctness of the result, but with the PrimePadding applied the result
would be:

c′ =
h
c0 . . . cn−1 0 . . . 0 cn−1 . . . c1

i
(5.20)

5.2.3 Number Theoretic Transform Architecture

The Number Theoretic Transform with the Cooley-Tuckey speed-up rearranges the
multiplication/summation in a more efficient way, the approach, in hardware, applied
a ’butterfly’ unit to perform such computations, the unit is in Figures 5.24 with the
basic elements of the computation highlighted: in green for the multiplication by a
twiddle factor, in blue the sum and in yellow the subtraction. The unit is referred in
two ways: with the inner elements highlighted, as in Figure 5.24a; with a block BU,
in Figure 5.24b.

5.2 Schönhage Stressen Architecture 83

The example for a input signal x transformed into X with a n = 8 points NTT is
depicted in Figure 5.25, some elements of the BU unit are highlighted to clarify their
location.

x

+

-

𝑎

𝑏

෤𝑎

෨𝑏

x

+

-

𝑎

𝑏

෤𝑎

෨𝑏

x

+

-

𝑎

𝑏

෤𝑎

෨𝑏

x

+

-

𝑎

𝑏

෤𝑎

෨𝑏

x

+

-

𝑎

𝑏

෤𝑎

෨𝑏

x

+

-

𝑎

𝑏

෤𝑎

෨𝑏

x

+

-

𝑎

𝑏

෤𝑎

෨𝑏

x

+

-

𝑎

𝑏

෤𝑎

෨𝑏

x

+

-

𝑎

𝑏

෤𝑎

෨𝑏

(a) Inner structure

x

+

-

𝑎

𝑏

෤𝑎

෨𝑏

BU
𝑎

𝑏

෤𝑎

෨𝑏

(b) Block

Fig. 5.24 Butterfly Unit with one multiplier (MPY), adder (ADD), subtractor (SUB).

The parallelism, in this contest, is referred to the number of BU that has been
implemented.

The algorithm computes the transform of a dense input x stage by stage (s) until
the last stage, m = log2(n). The input of NTT is in bit reverse order, thus for clarity
its elements are renamed into vi(j), where i refers to the stage and j refers to the
element in a stage. The output, X , is in natural order.

The CT-NTT pseudo code is in Algorithm 8.

Algorithm 8 NTT multiplier Implementation (iterative CT)
Input: signal a with length n = 2m

Output: the transform A
1: A = a
2: for s = 1 : m do
3: nop = 2s

4: for i = 1 : s : m do
5: for j = 1 : nop/2 do
6: T =Wj,s ∗A(i+ j+nop/2) mod P ▷ MPY
7: U = A(i+ j)
8: A(i+ j+nop/2) = (U +T) mod P ▷ ADD
9: A(i+ j) = (U −T) mod P ▷ SUB

10: end for
11: end for
12: end for

The implementation in Algorithm 8 computes one T and U pair per iteration,
while the architecture provided parallelize the task by computing nu = 8 elements

84 Architectures for Large Polynomial Multiplication

x(0)

x(4)

x(2)

x(6)

x(1)

x(3)

x(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(5)

Fig. 5.25 NTT structure with n = 8

per iteration. This increases the complexity of the Control Unit, since the correct
addresses of input/output and constant memories has to be provided.

The CT-NTT scheme for a dense input considering 8-points is in Figure 5.26.
The input is vector x, the output is X . The number of stages in the example is 3
(log2(8)), the transform at each stage is addressed with vector vi, with index i that is
referred to the the actual stage.

The transform of a dense vector with the NTT is a straightforward application of
the CT Algorithm, with a progress over a single stage before moving to the next one:
the value of v0 is computed, then v1 and so on. The twiddle factors are not reported
in Figure 5.26, they are located in the following points:

• s = 0, the twiddle factor is W 0
0 and it is multiplied by v0(1), v0(3), v0(5),

v0(7);

• s = 1, the twiddle factors are W 1
0 and W 1

2 multiplied by v1(2) and v1(3) then
v1(6) and v1(7), respectively;

• s = 2, the twiddle factors are W 2
0 , W 2

1 , W 2
2 and W 2

3 multiplied by v2(4), v2(5),
v2(6) and v2(7).

5.2 Schönhage Stressen Architecture 85

v2(3)v1(3)

v0(0)

v0(1)

v0(2)

v0(3)

v0(4)

v0(5)

v0(6)

v0(7)

v1(0)

v1(1)

v1(2)

v1(4)

v1(5)

v1(6)

v1(7)

v2(0)

v2(1)

v2(2)

v2(4)

v2(5)

v2(6)

v2(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

Fig. 5.26 8-points NTT with a dense input

The twiddle factors, despite being labelled in a different way, are actually the
same set of values from s = 2, since W 0

0 ≡W 2
0 ≡W 1

0 and W 2
2 ≡W 2

2 .

The condition with a sparse inputs implements a different strategy in order to
reduce the number of computation and avoid to compute the zeros. The sparse
implementation of the NTT, with the pseudo code in Algorithm 9, schedules the
operations in a different way: the single asserted bits of a, since they are sparse,
will be computed completely up to stage s = slim before moving to the next position.
The transforms of each element are mixed together to have A at stage slim and
moved to the usual NTT algorithm from stage s = slim+1. The algorithm iterates
over the asserted values in a, da, which ares stored as binary values in Posa and
consideres as binary vectors in the algorithm. The, since a sparse value is processed
the computation is a multiplication and subtraction or a copy of the input value into
two outputs, this choice depends on the value assumed by the l bit of Posv (a single
row of Posa), then the execution:

• with Posv(l) = 1, the single input value is multiplied by a twiddle factor and
copied as it is for one output and subtracted by P for the second output;

• with Posv(l) = 0, the input is copied copied in two identical outputs;

86 Architectures for Large Polynomial Multiplication

The example of a 8-point sparse NTT is in Figures 5.27 and 5.28, the execution
is both sparse and dense. The example shows two conditions, with the asserted
bits ’near’ of ’far’, independently of their distance the asserted bits are processed
separately.

The examples in Figure 5.27 has v0(3) and v0(2) asserted. The element v0(2)
is expanded, in stage s = 0 the value is copied into v1(2) and v1(3), in stage s = 1
v1(2) and v1(2) are multiplied by the twiddle factors W 0

1 and W 2
1 , then copied into

v2(2) and v2(3), the subtraction is performed (P− vi(j)) to store the mod P values
into v2(0) and v2(1). The process is similar for v0(3).

The transform at stage slim is not a vector, but a set of transforms of each asserted
position: for the example in Figure 5.27, with 2 asserted bit the transform stores two
rows that contains the value of [v2(0) v2(1) v2(2) v2(3)] for v0(2) and v0(3). The
following step merges the rows in order to obtain the complete vslim for the dense
stages. The merge step is performed by mixing the resulting rows of the dense input:
such rows can be summed up or alternatively concatenated. The merge in Figure
5.27 is performed by summing the [v2(0) v2(1) v2(2) v2(3)] rows of the asserted bits
and then concatenated to a set of zeros. The merge step for the example in Figure
5.28 is a concatenation between vector [v2(0) v2(1) v2(2) v2(3)] that derives from
v0(3) and [v2(4) v2(5) v2(6) v2(7)] that derives from v0(6)

bit-reverse order The input vector x is provided in ’bit-reverse order’, while the
output X is in the linear order. The input vector is stored in natural order, thus an
additional post-processing is need to ’reverse’ its order.

Modular arithmetic

The updated values store in vector A, when computing the multiplication and addi-
tion/subtraction the additional mod P operation is applied to have the result in the
range [0;P−1].

The definition of mod P for integer a is:

aP = a%P (5.21)

5.2 Schönhage Stressen Architecture 87

v0(3)

Sparse Dense
llim

v0(0)=0

v0(1)=0

v0(2)

v0(4)=0

v0(5)=0

v0(6)=0

v0(7)=0

v1(0)=0

v1(1)=0

v1(2)

v1(3)

v1(4)=0

v1(5)=0

v1(6)=0

v1(7)=0

v2(0)

v2(1)

v2(2)

v2(3)

v2(4)

v2(5)

v2(6)

v2(7)

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

Fig. 5.27 8.points NTT with sparse input, asserted elements: v0(3) and v0(2).

Despite the operation requires a division, it is simplified for modular addition/subtraction
between integers that are mod P, in the example the addition c = a+b or c = a−b:

cp = c ||c−P (5.22)

It is enough to compare the result with P and then subtract or not the modulus,
this is due to the fact that c is in the range −2P < c < 2P, thus it is straightforward
to adapt the result to [0;P−1].

The multiplication between two integers, to be scaled in [0;P−1] may involve
divider, since the result is in [0;P2] for modulo P inputs. The idea to issue multiple
times a subtraction is not feasible and the presence of a divider (hardware divider)
increases the gate complexity of the whole architecture. The idea is to use a technique
that reduces c by exploiting other properties of the operations, these are referred as
modular reduction, the most common methods are: Montgomery Reduction[62]
and Barrett Reduction[63].

88 Architectures for Large Polynomial Multiplication

v0(3)

Sparse Dense
llim

v0(0)=0

v0(1)=0

v0(2)=0

v0(4)=0

v0(5)=0

v0(6)

v0(7)=0

v1(0)=0

v1(1)=0

v1(2)

v1(3)

v1(4)=0

v1(5)=0

v1(6)

v1(7)

v2(0)

v2(1)

v2(2)

v2(3)

v2(4)

v2(5)

v2(6)

v2(7)

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

Fig. 5.28 8.points NTT with sparse input, asserted elements: v0(3) and v0(6).

Montgomery reduction The Montgomery reduction evaluates the modular multi-
plication c = ab mod P such that the division by a generic P becomes a division by
Ps, which is selected to be a power of two, making the division just a set of shifts.

The multiplication with the Montgomery Reduction is performed is in Algorithm
10, it include both the multiplication and modulo P reduction.

The modular multiplication evaluated by definition has the additional cost of a
divider, while the Montgomery multiplication introduces an overhead because of
input and output conversion to have the Montgomery form:

am = a ·Ps bm = b ·Ps c = cm/Ps (5.23)

The advantage of the algorithm is the fact that the multiplications and addi-
tions/subtractions in the NTT (INTT) can be performed in Montgomery form, the
distributive property is preserved, and applying the conversions only to the input
and output of the transform, thus saving the cost of the input and output conversions
for every multiplication. The second important advantage is that the result of the

5.2 Schönhage Stressen Architecture 89

Algorithm 9 sparse NTT multiplier Implementation
Input: signal a with length n = 2m, provided by its asserted positions Posa(iv)
Output: the transform A of each Posa(iv) upt to stage slim.

1: for iv = 1 : da do
2: Posv = Posa(iv)
3: for s = 0 : slim do
4: Aold(iv) = A(iv)
5: nop = 2l

6: for k = 1 : nop do
7: if Posv(s) = 1 then
8: A(iv,2k) =Ws Aold(iv,k)
9: A(iv,2k+1) = P−Ws Aold(iv,k)

10: else
11: A(iv,2k) = Aold(iv,k)
12: A(iv,2k+1) = Aold(iv,k)
13: end if
14: end for
15: end for
16: end for

multiplications is always exact, which in the Barrett multiplication the correctness of
the multiplication has to be studied.

In the present work the Montgomery multiplication is applied to compute the
modular multiplication in the NTT/INTT applied to Code-based PQC.

Barrett multiplication The Barrett multiplication is performed by means of a
precomputed values, which is the reciprocal of an integer.

The Barrett Reduction is in Algorithm 11

90 Architectures for Large Polynomial Multiplication

Algorithm 10 Montgomery Reduction
Input: integer factors of the multiplication in Montgomery form, am, bm;
Input: integer ys ∈ [0,Ps −1] s.t. ys =−1 mod Ps;
Output: product in Montgomery form, cm;

1: x = am ·bm ▷ Product
2: xs = x mod Ps ▷ Modular Reduction with Ps
3: s = (xs · ys) mod Ps
4: cs = (x+ s ·P)/Ps ▷ Result modulus Ps
5: if cs < P then
6: cm = cs
7: else
8: cm = cs −P
9: end if

Algorithm 11 Barrett Reduction
Input: result of the multiplication, c = ab;
Input: modulus P, not power of 2;
Input: integer k s.t. 2k > P;
Output: product mod P, cP = c modP;

1: n = ⌊4k/P⌋ ▷ Constant of the method
2: cm = c−⌊c∗ n

4k ⌋P
3: if cm < P then
4: cP = cm

5: else
6: cP = cm −P
7: end if

The correctness of the computation depends on how the constant n is approxi-
mated, thus the Montgomery multiplication is preferred.

5.2.4 NTT-based multiplier for Code-based PQC

The NTT-based multiplier is applied to a cyclic matrix multiplication between
input vector a and cyclic matrix C(b). The result, with the Schönhage Stressen
method, transforms the vectors a and b into ANT T (a) and B = NT T (b) with the
NTT algorithm. Then C = A ∗B, is the element wise multiplication among the

5.2 Schönhage Stressen Architecture 91

transformed vectors, then the final result is c = INT T (C). The vectors are padded,
and bit-reversed before the NTT routine is issued, the result is linear order.

5.2.5 Architecture

The complete architecture computes the NTTs, Element-wise multiplication and
INTT to evaluate the cyclic matrix multiplication. The multiplier has a shared Data-
Path and specific Control Units to perform each step of the Schönhage Stressen
algorithm. The Memory is partially shared to save resources. The Control Unit is the
most complex part of the multiplier due to the shared elements. There is an additional
element to be included: the (Direct/Inverse) Constants Memory Management Unit
which consists in two blocks connected to the main Data-Path that posses their own
Memory and Control Unit.

The Complete RAM D, where the Dense NTT, Element-wise product result and
the Dense INTT are stored and computed.

The Memories includes Starting ROM, Sparse RAM and Complete RAM S,
these are the support memories to compute the Sparse NTT and where the transform
of the sparse vector is finally stored.

The Data-Path has a parallelism of nu, then this numer of multiplier, referred as
MPY, and nu adders and subtractors, referred as ADD and SUB respectively, are imple-
mented to compute at the same time nu elements of the transform. The arithmetic
units are connected to the memories. The operands have a layer of multiplexers in
order to select the correct inputs, these multiplexers are driven by a Control Unit.

The complexity of the Control Unit, with its hierarchi in Figure 5.30, is such that
each step of the NTT-based multiplier has to be analyzed separately: the Sparse-NTT,
the Dense-NTT and Dense-INTT, the Element wise multiplication. The Control
Unit is organized in three levels: the first level controls which step of the multiplier
is issued, thus the start signal is sent to the second level of Control Unit and their
end signals collected; in the second level the inner steps of the multiplier are com-
puted,tThe last level of control unit is in the Constant Management Unit, which
controls the twiddle factors in input to the MPY.

92 Architectures for Large Polynomial Multiplication

Posb(iv)

MPY ADD/SUB

OUT_MPY OUT_ADD/SUB

P

Complete RAM 1 Complete RAM 2Sparse RAM

S_OUT

B
C2_OUT

A, c
C1_OUT

B, C

S_OUT

C2_OUT

C1_OUT
C2_OUT

C1_OUT

S_OUT

C2_OUT

C1_OUT

S_OUT

C2_OUT

Starting ROM

Dense
NTT
CU

Dense
INTT
CU

Sparse
NTT
CU

ADX1

ADX2

ADX3
ADX3

ADX1 ADX2

(B)

Inverse
Constant
Memory

Direct
Constant
Memory

Fig. 5.29 The DataPath shared between the

Multiplier

Dense NTT Sparse NTT Dense INTT Element-wise

Twiddle Factor
management

(Direct)

Twiddle Factor
management

(Inverse)

Fig. 5.30 Control Unit hierarchy. The Multiplier is the master CU, while the sub-CU
communicate independently with the Twiddle Factor Management CUs.

5.2 Schönhage Stressen Architecture 93

Sparse-NTT

The Sparse-NTT Control Unit transforms the sparse of a signal up to a defined stage,
slim. The computation, as reported in Algorithm 9, is carried out by transforming the
single asserted position in the input signal up to slim.

Input Sparse/Output Sparse The input is a set of asserted positions (dv), listed
by their position as a binary value and the output is a set of dv transforms of each
position up to stage slim, where each transform is integer vector of length 2slim . The
transform of the whole signal, with length n, is a merge merge of the dv transforms.

Sparse NTT merged to Dense NTT The merge of the Sparse NTT into the Dense
NTT transforms the dv rows of the transform in a vector of length n, which is the
transform of a signal at stage slim. The rows of Sparse NTT points to a specific
section of the complete vector, these rows are copied on a section or summed to a
preexisting value in that section. The sum is performed thanks to the linearity of the
transform.

Sparse Execution The single asserted positions are firstly loaded from Starting
ROM (input memory of the Data Path in Figure 5.29), depicted in Figure 5.31, which
is a memory with 8 rows and for each of them has the transform of a binary vector
with length 8 and weight 1, where the 1 assumes all the 8 positions of the input. For
example, in row 2 there is the transform up to stage 3 of vector [0, 0, 1, 0, 0, 0, 0, 0].

Multiplier

Dense NTT Sparse NTT Dense INTT Element-wise

Twiddle Factor
management

(Direct)

Twiddle Factor
management

(Inverse)

𝑁𝑇𝑇(10000000 , 𝛼, 𝑃)

𝑁𝑇𝑇(00000001 , 𝛼, 𝑃)

𝑁𝑇𝑇(00000010 , 𝛼, 𝑃)

𝑁𝑇𝑇(00000100 , 𝛼, 𝑃)

𝑁𝑇𝑇(00001000 , 𝛼, 𝑃)

𝑁𝑇𝑇(00010000 , 𝛼, 𝑃)

𝑁𝑇𝑇(00100000 , 𝛼, 𝑃)

𝑁𝑇𝑇(01000000 , 𝛼, 𝑃)

Fig. 5.31 Input memory for the Sparse NTT execution

94 Architectures for Large Polynomial Multiplication

The position of the asserted, Posa, input value is in binary form, thus only one
row is selected from Starting ROM, these are the ’transform input’ to the 8 butterfly
units of the Data Path. The next stage, s = 4, is computed by requesting the constants
to the Direct/Inverse Twiddle Factor Management unit, the multiplications and then
addition subtractions are computed. In the end, the content in Sparse-NTT at a given
position is updated. The expansion from stage 3 to 4 doubles the size of the vector
from 8 to 16, thus from stage 4 to 5 the elements are expanded from 16 to 32, this
requires to perform run the cycles ADD/SUB and MPY two times, the double of the
previous stage.

The operations of the Sparse execution involves:

• evaluate the addressed for the Starting ROM;

• evaluate the correct address of the Sparse RAM to be read and then write;

• request the twiddle factors for a given stage and range over n;

• issue the execution of the multiplication and addition/subtraction;

Dense-NTT

The Dense-NTT computation takes in input a vector and schedules the operations to
compute the transform, which is then stored in Complete RAM 1. The transform is
evaluated from stage s = 0 or a given stage, for example s = slim.

The Complete RAM is updated stage after stage, thus the single asserted elements
are not expanded as in the Sparse-NTT, but the whole signal is transformed for the
next stage s+1. There is only support memory employed to update the transform,
this is updated with a parallelism of nu = 8 by evaluating ’sections’ of the complete
n vector.

The transform of the sparse input is stored in Complete RAM 1, while the
transform of the binary vector is stored in Complete RAM 2.

The computation is carried on with a parallelism equal to nu = 8 (the number of
MPY). The tasks are the following:

• evaluate the addresses of the Complete RAM to be inputs of the DataPah;

5.2 Schönhage Stressen Architecture 95

• request the set of Twiddle Factors to the Twiddle Factors Unit;

• read and then write the Complete RAM;

The transforms of the input vectors is in memories Complete RAM 1 and Com-
plete RAM 2.

Element-wise multiplication

The intermediate step of the element-wise multiplication enables the connection
between MPY inputs and the Complete RAMs with the transform of the inputs, the
result is evaluates with a parallelism of nu = 8 and stored in Complete RAM (1
or 2), the results replaces the input factors in input of the MPY. The result is then
transformed wit the Dense-INTT.

Dense-INTT

The Dense-INTT computes the final transform that evaluates the product between
the two input vectors.

The strategy is the same as the Dense-NTT, the inverse transform is computed
from stage s = 0 up to the end. The memory is the Complete RAM, while the twiddle
factors are computed by the Inverse Twiddle Factor Management Units.

Twiddle Factors Management

The Twiddle Factor Management Unit is organized in a Control Units and a set of
Memories, this block efficiently evaluates the correct set of twiddle factors for the
Dense-NTT, Sparse-NTT and INTT. Their value is precomputed and stored in the
memories, thus the CU is in charge of efficiently accessing them.

The unit is organized such that the latency to provide the twiddle factors is reduce
for the Sparse-NTT and Dense-NTT, since the two algorithms requests the twiddle
factors with a different strategy, it was convenient to introduced both modes.

The main structure of the unit is in Figure 5.32, with the memory block organiza-
tion and connections highlighted. The memory is organized in four blocks, referred
as mod i, where i = 0, . . . ,4. The organizations reduced the latency for the given

96 Architectures for Large Polynomial Multiplication

0 1 2 0 1 20 1 0 1 2 0 1 20 1

Register
file

Buffer

W0
s

i mod 4 = 0 i mod 4 = 1 i mod 4 = 2 i mod 4 = 3

W4
s

W8
s

...

W1
s

W5
s

W9
s

...

W2
s

W6
s

W10
s

...

W3
s

W7
s

W11
s

...

Wmod 4=0

Wmod 4 =1 Wmod 4 =2 Wmod 4 =3

Fig. 5.32 Twiddle Factors Management Units

nu = 8 parallelism. The memories are connected with a layer of multiplexers to
Register File and then to a Buffer. The Control Unit has to execute the following
steps when a twiddle factor request is issued:

• drive the multiplexers to collect the correct set of twiddle factors;

• fill the RF with the twiddle factors required in the next request;

• fill the BF with the content in RF for the current execution and kept until
needed.

The set of twiddle factors present in BF for a NTT evaluation are, in general,
required for more than one butterfly evaluation, thus the RF can be filled with the
next set of factors required by the NTT.

The organization is efficient for nb = 8, the increase of the parallelism requires
to consider a different organization of the twiddle factor memories.

Resource sharing The architecture is meant to implement a NTT-based multiplier
and takes advantage of a resource reuse in order to reduce the total area occupation
and memory requirement. The DataPath is shared among the Sparse-NTT, Dense-
NTT, INTT and the multipliers are shared with the previous tasks and the element
wise multiplication. The Twiddle factors management unit with direct constants is

5.3 Results 97

MPY

ADD/SUB

Complete RAM 1

Direct Twiddle
Factors

Inverse Twiddle
Factors

Sparse
NTT

Dense
NTT

Element
wise

Dense
INTT

Complete RAM 2

Sparse RAM

Fig. 5.33 Shared resources in NTT-based multiplier

shared between the Dense and Sparse NTT. The Complete RAMs are shared by all
the tasks that are performed.

The resource sharing is summarized in Figures 5.33.

5.3 Results

The NTT-based multiplier has been implemented as an ASIC component, using
Synopsys Design Compiler and the UMC 65 nm technology; the same architecture
has also been implemented for an Artix-7 200 FPGA target, using Vivado.

5.3.1 ASIC Results

The ASIC synthesis results are reported in Table 5.7 and include the occupied area A,
when the clock period is set to tck = 5 ns (column 3), the shortest achievable clock
period tck,min before obtaining a negative slack (column 4), and the occupied area A f

when the shortest clock period is set as a constraint (column 5). The critical path,
with the longest combinatorial delay, is found within the element wise multiplier and

98 Architectures for Large Polynomial Multiplication

it depends on the choice of the modulus P, since P affects the size of the arithmetic
units.

The Table also provides the percentage area and delay differences with respect to
the synthesis case with clock period set to 5 ns: for a large N′, the feasible increment
of the clock frequency is higher than the corresponding area penalty.

N′ N A tck,min A f
(µm2) (ns) (µm2)

32,768 12,323 94,315 3.3 (-34%) 128,497 (+36%)
65,536 21,701 95,543 3.5 (-30%) 113,344 (+18%)

24,659
131,072 37,813

40,973 124,639 3.7 (-24%) 139,719 (+7%)
58,171

Table 5.7 ASIC synthesis results for the UMC 65 nm technology. dv = 10. Percentage delay
and area values are given with respect to the reference synthesis with constraint tcp = 5 ns.

It is worth mentioning that the area occupation is referred to a flexible kind of
polynomial multiplier that performs the product of binary vectors and computes the
result either in GF(2) or in the integer field.

5.3.2 FPGA Results

The FPGA synthesis results are reported in Table 5.8 for several choices of the
input vector length (N), while the density of the vector is set dv = 10. The critical
path has been set to 10 ns in order to enable a fair comparison against published
implementations, where the same constraint was imposed. It has been verified that
the effect of the density on the number of required resources is negligible. In the
Table, n′ is the length of the input vector extended with PrimePadding. Columns 2-6
provide the required number of hardware resources, namely Look-Up Tables (LUT),
Flip-Flops (FF), Block RAMs (BRAM), and arithmetic processing units (DSP). It is
worth noting that the number of BRAMs increases almost linearly with n′, whereas
the amount of allocated logic elements (LUTs and FFs) is sub-linear with n′ , leading
to hardware utilization improvement.

5.3 Results 99

n′ n LUT FF BRAM DSP Latency
(ms)

32,768 12,323 5396 3774 52 40 2
65,536 21,701 6259 4053 100 40 4.3

24,659
131,072 37,813

40,973 7062 4358 199 40 9.1
58,171

Table 5.8 FPGA resource utilization with Artix-7 200. The operating frequency is set to
100 MHz and dv = 10.

5.3.3 Latency

The multiplier latency is reported in Table 5.9 in terms of number of clock cycles,
for a few choices of vector length and sparsity. The last two columns also show
the latency value in ms, assuming for each case the corresponding highest clock
frequency in the ASIC and FPGA synthesis. From Table 5.9, it can be noticed that
the latency scales linearly with n′, while it scales logarithmically with the matrix
density.

n′ dv Clock cycles Time (ms)
ASIC FPGA

32,768 10 207k 0.83 2
100 226k 0.90 2.2

1000 244k 0.97 2.4
≈ N′ 261k 1 2.6

65,536 10 437k 1.7 4.4
100 474k 1.9 4.7

1000 512k 2 5.1
≈ N′ 565k 5.6

131,072 10 919k 3.4 9.2
100 996k 3.7 1

1000 1M 3.7 1
≈ N′ 1.2M 4.4 1.2

Table 5.9 The execution time with different length N′ and density (dv). The results are
provided in terms of both number of clock cycles and ms, assuming the largest achievable
clock frequency.

100 Architectures for Large Polynomial Multiplication

5.4 Side-Channel Attack on VectorByCirculant

The VectorByCirculant architecture has been developed in order to achieve a reduced
execution time and area occupation, the execution has been organized such the exe-
cution time does not depend on the secret key, the architecture is safe towards attacks
that analyzed the total execution time of the multiplier to obtain more information
about the matrix the SK. The immunity towards Side-channel attacks has to be
studied by considering leakage of information from the dynamic power consumption
during the execution of a primitive or its electromagnetic radiations of the device.

The present work analyzes the dynamic power consumption of the post-synthesis
design in order to predict possible weaknesses resulting from information leaked by
the architecture during the execution of a primitive that involves the Secret Key in
the computation, which is the case of the LDPC Decoder in LEDAcrypt/BIKE. The
study presents an initial study of the device in charge of evaluating a multiplication,
the approach is similar to the work presented in [64], which has been applied to the
cryptosystem in [59]. The attack is based on the simulated power consumption of
the multiplier, which is later validated considering a real device.

The Side-Channel Attacks based on the power consumption of a device recorded
during the execution of a primitive that involves the secret key in the computation,
the power consumption is recorded, this is referred as power trace, over a time span
and then processed with method in order to retrieved some information. In literature,
there are few types of know attacks suitable:

• the Single Power Analysis (SPA), only one power trace is derived,

• the Differential Power Analysis (DPA), analyzes the difference of a set of
power traces,

The goal of such studies is to identify a behaviour or pattern that is typical of some
secret key. The present research considered an attack which is a further improvement
of DPA and SPA, this is the Correlation Power Analysis (CPA) attack, which has
been extensively described in [65]. The method is applied to the VectorByCirculant
multiplier, the power traces resulting from dynamic power consumption (Pdyn). The
LDPC Decoder employes a multiplier in which an input is the Secret Key, thus both
the Syndrome and the Unsatisfied Parity Check vectors computation can be targeted
to retrieve H.

5.4 Side-Channel Attack on VectorByCirculant 101

The Secret Key is a set of dH positions, the developed algorithm iteratively
selects these position that are correlated to the power traces that has been de-
rived. The complexity of the search is linear with the density of the code, with
BIKE[18]/LEDAcrypt[17] the value of dH is 102.

The method has two main elements to be set-up:

• the first step is to select a target for the attacks, this is referred as intermediate
value, this corresponds to the updated result in the VectorByCirculant architec-
ture ad has been selected since include the information from the input, which
is supposed to be random and the secret key;

• the transitions that occur on the intermediate value are modeled with the
Hamming Distance (HD) [65], which measures the difference between two
consecutive values.

The model is fundamental for the following steps that are issues, but firstly the
power consumption is derived.

The attack is referred as Correlation Power Attacks because the modeled power
consumption (due to transitions) is correlated with the actual power consumption of
the device while a primitive is executed, the set of positions that are correlated to the
power consumption are processed and the Secret Key is derived.

Power Traces Derivation

The power consumption is the power consumed by the device during the execution
of a multiplication, this is referred as power trace, this is obtained by executing a
multiplication with VectorByCirculant between a dense and sparse vector (the
first row of cyclic matrix), these have been obtained with a post-synthesis simulation
of the multiplier netlist. The sparse vector, in Code-based PQC is the Secret Key.

The netlist has been synthesized with Synopsys Design Compiler, the node is the
UMC CMOS 65 nm technology. The netlist, the Standard Delay Format (.sdf) file are
obtained with Synopsys Design Compiler and will feed the developed methodology.

The power trace is derived by running the the VectorByCirculant algorithm
with the secret key vector as a constant input, while the input message is a random
message, the transitions that occurs during the execution of the algorithm in each gate

102 Architectures for Large Polynomial Multiplication

of the netlist, the switching activity, are derived with QuestaSim by Mentor Graphics.
The result is the Value Dump Change (.vcd) file, with contains the information of
the switching activity. This corresponds to a single power trace.

The last step involves with Synopsys PrimeTime with the so called Time Based
Power Analysis, is executed and the single power trace computed. An example of
power trace is shown in Figure 5.34 from [1].

The methodology is organized in various step, since the number of power traces
to be computed can be large, the process has been automatized with a Python script
in order to run the tools required by each step with a random input dense vector. In
particular the Simulation Script derives the switching activity with QuestaSim
and the Power Script derives the simulated power trace of the netlist with Synopsys
PrimeTime.

The visual representation of the method in in Figure 5.35

0 0.5 1 1.5 2 2.5 3 3.5
105

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Fig. 5.34 The Power Trace derived with Synopsys Prime time during the execution of a
complete product [1].

The power prediction is computed as described in [65] with the hamming distance
model. The power prediction is evaluated considering two consecutive values loaded
in REGC,new, the values has been selected since it includes both the information on
the input vector and on the asserted position (the Secret Key), the consecutive values
are organized in two matrices IV1 and IV2 (intermediate values), which contains
over the columns all the possible inputs of the Barrel Shifter, while on the columns
all the possible values that the asserted position can assume. The modeled power
is then matrix PT (predicted power) which corresponds to the hamming distance
between IV1 and IV2.

The correlation combines the predicted power with the simulated power, for each
point of PT, these are referred as correlation traces, CP, have been computed with
the Pearson’s Correlation coefficient described in [65]:

5.4 Side-Channel Attack on VectorByCirculant 103

VbC_tb.v

VbC_netlist.v

VbC.sdc

VbC.vcd

VbC.sdf

Power trace

UMC65.v

QuestaSim PrimeTime

Fig. 5.35 The netlist, .sdf and technological node files are the inputs of both QuestaSim and
Prime Time, the .vdc file, containing the information on the switching activity, is derived
from a random input provided in the test bench.

CPi, j =
∑

N
n=1 (PMn,i −PMi) · (PTn, j)−PTjq

∑
N
n=1(∑

N
n=1 (PMn,i −PMi)2 ·∑N

n=1 (PTn, j −PTj)2
(5.24)

The value PMn,i of the modeled power refers to the point n, i of matrix PM, while
the value PMi is the average over one row i, thus for a single asserted position. The
matrix CP has the rows associated to an asserted position, while the column are
associated to the value the input vector can assume.

The Figure 5.36 shows the format of a single correlation trace, over one row of
matrix CP. The vector shows the presence of a peak, which is referred as the is the
Correlation Peak.

0 0.5 1 1.5 2 2.5 3 3.5
105

-0.5

0

0.5

1

Fig. 5.36 Correlation trace corresponding to asserted value11 in the SK. The dashed box
highlights the correlation peak[1].

The peak is, in general, not unique but associated to a set of position, in order to
select the correct one an algorithm for the key recovery has to be run.

104 Architectures for Large Polynomial Multiplication

Secret Key Recovery

The CPA attack involves one last step with an algorithm that selects the position
among the candidates and then recovers the whole sparse vector (stored in MEMb,
value C(b) in Algorithm 4). In general, the candidate position values coming out
from the CPA algorithm are associated to correlation traces that shows a peak with a
high correlation, thus close to 1. However, more than one positions for each iteration
may be found, this is inherited by the rotational nature of the VectorByCirculant
algorithm.

In particular, the first position in C(b) requires to select the correct position
among various candidates. The correct value has to be computed from the first
peak, over the column, that appears, this corresponds to the first peak in time. The
selection of the second position is simpler, only one trace presents a peak, thus there
is only one possible candidate. On the contrary, the third position is selected among
different candidate positions, as the first one. This time, one can have two possible
scenarios: three or two candidates. In the second case, the candidates are C(b(2)
and C(b(3). The candidates are three if C(b(2)−C(b(1) is a multiple of nb, with
C(b(1)<C(b(2). In this case the candidates are C(b(1), C(b(2) and C(b(3), then
the position is found by exclusion.

the other condition, the i− th (with 4 ≤ i ≤ bH) asserted bit approximated by
the CPA attack corresponds requires to select between C(b(i) and C(b(i−1), and
the correct position is found by exclusion since the other candidates has already
appeared.

In the end, the attack turn out to be successful and the position of the asserted
bits in SK is guessed. This makes the VectorbyCirculant multiplier not safe against
such attacks.

Threshold frequency limit detection

The attack on the architecture is successful for the weaknesses of the implementation
and because the operating frequency at which the power consumption has been
’measured’ is the maximum achievable. The total power is the sum of static and
dynamic power, Pstatic and Pdyn, but for high values of operating frequency this
is driven by the dynamic power, the same attack is implemented by considering

5.4 Side-Channel Attack on VectorByCirculant 105

different operating frequency , this is meant to find the limit of the CPA attack
presented in the previous paragraphs. In particular, the goal is to find the minimum
operating frequency for which there correlation peak is not evident.

The study on this limit is motivated by the fact that the Pdyn of the correlation
traces strongly depends on the operating frequency. If the dynamic power has a
contribution too small, it is not possible to compute a reliable correlation value
because of the limitation in the representation of the measured power.

The results shown in Figure 5.37 from [1] have been obtained guessing the
second value of the key and represent the behaviour of the correlation peak of the
correct key as a function of the operating frequency.

200 300 400 500 600 700 800 900 1000
-0.5

0

0.5

1

C
or

re
la

tio
n/

D
iff

. o
f C

or
re

la
tio

n

Correlation
Difference of Correlation

Fig. 5.37 The plot shows the value for correlation peaks associated to correct key value, in
blue, and the average value that is assume by the correlation associated to wrong keys.

The blue curve is associated the maximum value the correlation assumes and
found in the correct key, this is directly proportional to the frequency, as expected.
The orange curve shows the difference between the correlation peak in the correct
key and the highest correlation value found from all the wrong key values. If
the difference is > 0, the attack is feasible and provided the correct key in SK.
Alternatively, if the difference is < 0 the highest correlation value corresponds to a
incorrect set of positions. In the Figure, the threshold is around 400 kHz but since
the data has been ’measured’ from an ideal device, it is clear that in a real case this
value would be higher.

106 Architectures for Large Polynomial Multiplication

5.4.1 Results validation and conclusions

The Simulated power for the CPA attack can be applied also with measured power,
then to validate the results obtained previously with ’ideal’ measures, the same
approach has been followed has been on a real implementation of the multiplier.

VirtLab board [66][67] has been employed to conduct the study. The board is
equipped with a Cyclone 10 LP 10CL025YE144C8G FPGA and an STM32L496VET6
microcontroller. The multiplier architecture has been synthesized and then imple-
mented on the Cyclone 10 FPGA, while the microcontroller stimulates the circuit
and it can collect the measures of the power consumption of the device, by working
as a Digital Storage Oscilloscope (DSO). The maximum DSO sampling frequency
is limited to 500 kHz, thus the working frequency of the multiplier to 250 kHz in
order to record two samples per clock cycle and to stay below the Shannon limit.
The attack, due to such limitations, turned out to be unsuccessful and the SK has
not been found, since the maximum working frequency is lower than the previously
found threshold. The same study should be carried out with a device that has not
such limitations. In the end, the validation consists in applying the same methodol-
ogy previously explained on samples that are derived from a real device, with the
additional difficulty of adopting ’real measurements’.

The proposed method of analysis is useful to prevent the security issues of an
architecture during the design phase by identifying the effects of a CPA attack on a
PQC multipler. The method can be applied to the whole decoder and for different
types of Side-channel attacks. The future work will be dedicated to make the
architecture immune to this type of attacks. The development of a secure architecture
is at the cost of an increase total area or power consumption or execution: the most
common approach is to mask the computations that involve the SK, this way the
information that leaks is not the secret one.

Chapter 6

Decryption and Encryption in
QC-MDPC Codes for PQC

The multiplier suitable for Code-based Post-Quantum Cryptography with QC-MDPC
or LDPC codes is a fundamental part of the Encoder and Decoder algorithms of
BIKE and LEDAcrypt schemes.

The multiplier which is adopted mostly in the decoder is the Schoolbook mul-
tiplier, while in the Encoder the choice depends on the scheme which is adopted:
with PKE the encryption is a dense multiplication, both the vector and the matrix
are dense, with KEM encapsulation the multiplication is sparse, thus the use of the
Schoolbook multiplier is applied and compared to state-of-art implementations.

The encoder and decoder has additional elements that perform the sum between
two vector and evaluates the approximated error vector, the additional arithmetic
units are described and designed targeting an efficient decoder/encoder.

Moreover, the multipliers previously described in the previous section are applied
to provide an efficient encoder/decoder and a flexible multiplier for a variety of PQC
primitives, by optimizing their use in the QC-MDPC schemes.

The chapter is organizes as follows: the encoder, applied to encryption and en-
capsulation, and the decoder, applied to decryption and decapsulation, are described
and their results in terms of area an execution time are provided for both FPGA and
ASIC implementation, in the end the NTT-multiplies is applied to Code-based PQC
in order to prove its feasibility without a degradation of the overall execution time

108 Decryption and Encryption in QC-MDPC Codes for PQC

and area occupation, when considering the multiplier to be applied to a variaty of
cases.

6.1 Encryption and encapsulation

The McElice cryptosystem in LEDAcrypt suite adopts QC-LDPC Codes for Public
Key Encryption, the computation involves a cyclic multiplication and a sum. The
dense cyclic matrix is Ml , the result of L−1

n0−1L, the density of such a matrix is (dH +

dQ)(dH +dQ) with parameters in Round 2 from Table 3.1 or dHdH with parameters in
Round 3 from table 3.2, in both cases is referred as dM. The VectorByCirculant,
with binary input and output, unit is applied to compute the product mMT

l , the
codeword is then summed to the error vector, e, which has been previously derived
as a sequence of t positions.

The LEDAkem and BIKE schemes, which are meant for Key Encapsulation
Mechanism perform the multiplication by sparse vector e, with weight t, and a
dense cyclic matrix and then the result is summed up with same input sparse vector.
The VectorbyCirculant, with binary input and output, and the sum module are
applied.

The implementation, represented in Figure 6.1, has two elements:

• the binary VectorByCirculant, only one cyclic multiplication is performed;

• the element wise sum unit, t elements expressed as positions are summed up
to the vector.

The total area and resource utilization of the Encryption and Encapsulation is
the same, considering the same parallelism (nb) of the units, since the size of the
modules is not affected by the density of the variables. The differences are in the
memory occupation, a dense variable has to be store and in the total execution time.

6.1.1 Implementation and Comparison

The Implementation result are provided for different parameters of both the architec-
ture, such as the parallelism nb, and the scheme parameters, such as the density dM

or t, the length of the block n.

6.2 Decryption and decapsulation 109

start end

NTT
Mult.

𝑀𝐸𝑀𝒎

𝑮
𝑀𝐸𝑀𝒄

Encode

start end

XOR

Encrypt

𝑀𝐸𝑀𝒄

𝑀𝐸𝑀𝒙𝑀𝐸𝑀𝒆

Fig. 6.1 Implementation of the Encryption

6.2 Decryption and decapsulation

The Decryption and Decapsulation for LEDA and BIKE are very similar despite the
different scope of such schemes the ’DECODE’ step is identical between LEDApkc
and LEDAkem, moreover in BIKE a slightly different algorithm is applied but both
proposals adopts variants of a Bit Flipping Decoder, the algorithms main tasks com-
putes: Initial Syndrome, Unsatisfied Parity Check, Threshold, Error Approximation,
Updated Syndrome.

6.2.1 Decoder analysis

The details of each task and their description in the BGF-Decoder (BIKE) and
Q-Decoder (LEDA) are described in the following.

Initial Syndrome Computation The input of the decoder is the vector Syndrome
s of length (n0 −1)m, which is eH, a sparse vector by a sparse quasi-cyclic matrix,
or cH, a dense vector by a sparse quasi cyclic matrix, with n0 = 2 the equations are:

• KEM
s = e0H0

T + e1H1
T (6.1)

• PKC
s = c0H0

T + c1H1
T (6.2)

The options to compute such a product is the binary VectorByCirculant, the
algorithm is run n0 times.

110 Decryption and Encryption in QC-MDPC Codes for PQC

The Syndrome computation is the initialization step of the decoder or it is an
input, the other task are iteratively computed by the decoders.

Unsatisfied Parity Check The Unsatisfied Parity Check is a vector with length
n0m, referred as upc, is computed in both Q-Decoder, it is referred as Sigma and
Correlation, and BFG Decoder, it is referred with function ctr(H,s, j). The
computations with n0 = 2 are:

• In BIKE it is computed with

upc = [sH0,sH1] (6.3)

• In BIKE it is computed with

upc = [sL0,sL1] (6.4)

In the Q-Decoder submitted to Round 2 the computation has been carried our in
two steps:

• The vector Sigma, σ , of length n0m, is computed:

σ = [sH0,sH1] (6.5)

• The upc of length n0m, is computed:

upc = [σ0Q00+σ1Q10,σ0Q01+σ1Q11] = [upc0,upc1] (6.6)

The computation is carried out with the integer version of VectorByCirculant,
the algorithm computes each cyclic product to finally obtain integer vector upc.
The split into L = HQ reduces the latency in computing upc, the execution time
depends on the overall number of partial products to be computed: the parameters of
LEDAcrypt submitted to Round 2 has the number to understand such an advantage,
the total number of partial product for L is dL = dQ ∗ dH (Tables 3.1), while with
Q-Decoder the number of partial products becomes 2∗dQ +dH .

6.2 Decryption and decapsulation 111

Threshold The Threshold function is implemented in both functions as a LUT,
despite the functions that calculates such a value are different for LEDAcrypt and
BIKE.

In Q-Decoder the threshold function is organized as a LUT, thus a table with
two columns: the Syndrome Weight Threshold and the Threshold of the Decoder.
The Syndrome Weight is computed and compared to the syndrome thresholds, the
corresponding threshold is then provided.

In the BFG-Decoder the threshold is computed with a function that is feed by the
iteration number, i in Algorithm 3, and the syndrome weight, sw, the function has
the form:

max(⌊a∗ sw +b⌋,c) (6.7)

The value of a, b and c depends on the Security Level selected in Table 3.3,
the function is then transformed into a LUT similar to the one provided by the
Q-Decoder, the threshold is easily evaluated.

It is important to mention that in BIKE two threshold exits: the first one is
evaluated with the method proposed above, the second one is b− τ .

Error Approximation The Error Approximation is performed by collecting the
position of upc which are over a threshold, the set of position is referred as the error
vector. The vector can then be applied to correct the ciphertext, for LEDApkc, or is
the approximation of the error vector to be recovered in BIKE or LEDAkem.

Syndrome Update The Syndrome Update is performed in two steps:

• the correction on the Syndrome is computed as: eHT = e0H0
T + e1H1

T

• the correction of the Syndrome is summed to the previous value to update is:
s = sIt−1 + eHT

The product eHT is implemented with

112 Decryption and Encryption in QC-MDPC Codes for PQC

6.2.2 Decoder Architecture

The element described above are implemented in the complete Data Path of the
Decoder, their execution is scheduled by the Control Unit. The first proposed
Decoders has been described in [3] and [2], the evolution of the decoder is described
and the total execution time and area occupation is provided.

The implementation of the Decoder is described by considering its Memory,
DataPath and Control Unit.

Memory

The Memory is organized in memory banks of variable width that is in charge of load-
ing the inputs and outputs of the decoding algorithm and the support variables needed
for the computation. The memories are are divided into two groups: memories that
stores a vector and memories that stores a set of positions.

The vector memories are:

• MEMs stores the Syndrome, a binary vector of length m, the memory has size
h×nb, with h = ⌈m/nb⌉ and nb the parallelism of the design;

• MEMc0 , . . . , MEMcn0−1 store the ciphertext, a binary vector of length m, the
memory has size h×nb, with h = ⌈m/nb⌉ and nb the parallelism of the design;

• MEMupc0 , . . . , MEMupcn0−1 store the unsatisfied parity check, a integer vector
of length m, the memory has size h× nb ∗ dH in Tables 3.2 and 3.3, with
h = ⌈m/nb⌉ and nb the parallelism of the design;

• MEMσ0 , . . . , MEMσn0−1 store the value of σ (in the first two submissions of
LEDAcrypt), a integer vector of length m, the memory has size h×nb ∗dH in
Table 3.1, with h = ⌈m/nb⌉ and nb the parallelism of the design;

The set of positions are a way to efficiently store binary sparse vectors by storing
the asserted elements alone, the position memories are:

• MEMH0 , . . . , MEMHn0−1 store block matrix H, each position assume a value from
0 to m−1, the single block memory has size dh ×nm, with nm = log2m and
nb the parallelism of the design;

6.2 Decryption and decapsulation 113

• MEMe0 , . . . , MEMen0−1 store the block vector e, a binary vector of length m, the
whole memory has size t ×nb, with h = ⌈m/nb⌉ and nb the parallelism of the
design;

DataPath

The Data Path has been modified during with the improvements introduced by the
LEDAcrypt team and by applying resource reuse, this evolution in the top view is
provided in Figures 6.2.

start end

SVbC

Syndrome Update

start end

VbC
binary

Syndrome

𝑀𝐸𝑀𝒄

𝒉

𝒒

𝑀𝐸𝑀𝒔 𝑀𝐸𝑀𝒖𝒑𝒄

start end

VbC
integer

Unsatisfied Parity
Check

𝒉𝑇

𝒒𝑇

𝑀𝐸𝑀𝒔

𝒍

𝑀𝐸𝑀𝒔

𝑀𝐸𝑀𝒆
𝑀𝐸𝑀𝒔

start end

𝒔𝒘 − 𝑏
table

LUT

Threshold

𝑤(𝒔)(𝐼𝑡)

start end

1’s
Counter

Syndrome Weight

Position
Search

Error
Approximation

𝑀𝐸𝑀𝒔

𝑀𝐸𝑀𝒖𝒑𝒄

𝑀𝐸𝑀𝒆

𝒔𝒘 𝑏

Fig. 6.2 Version0:The first version implements LEDAcrypt Decoder submitted to Round
1 of the PQC Competition. the evaluation of Syndrome, Unsatisfied Parity Check and the
Syndrome Update is computed with two distinct modules for binary and integer output, the
additional elements are in charge of computing the threshold and correct the errors.

The elements that can be identified are the blocks that executes the tasks of the
BF-like algorithm:

• binary cyclic multiplication;

• integer cyclic multiplication;

• error position search;

114 Decryption and Encryption in QC-MDPC Codes for PQC

start end

SVbC

Syndrome Update

start end

VbC
binary

Syndrome

𝑀𝐸𝑀𝒄

𝒉 𝑀𝐸𝑀𝒔 𝑀𝐸𝑀𝒖𝒑𝒄

start end

VbC
integer

Unsatisfied Parity
Check

𝒉𝑇

𝑀𝐸𝑀𝒔

𝒍

𝑀𝐸𝑀𝒔

𝑀𝐸𝑀𝒆
𝑀𝐸𝑀𝒔

start end

𝒔𝒘 − 𝑏
table

LUT

Threshold

𝑤(𝒔)(𝐼𝑡)

start end

1’s
Counter

Syndrome Weight

Position
Search

Error
Approximation

𝑀𝐸𝑀𝒔

𝑀𝐸𝑀𝒖𝒑𝒄

𝑀𝐸𝑀𝒆

𝒔𝒘 𝑏

Fig. 6.3 Version1:The Round 3 Decoder computes the Syndrome, Unsatisfied Parity Check
and the Syndrome Update by means of a single matrix, thus the input matrix is H. The
other modules remains unchanged.

• bit filliping;

The multiplication can be carried out in various ways, the total are and execu-
tion time, which has been published in [3] and [2] are reported here with updated
parameters and compared to a pipelined version of the multipliers.

The DataPath is designed with a parallelism of nb, which is the parallelism of the
whole architecture. The length of the vector, the number of blocks and density of the
cyclic matrix affects the total execution time and area of the design.

The VectorByCirculant, binary and integer, and the SparseVectorByCirculant
multiplier are present and connected to a set of multiplexer to select the correct in-
puts from the memories to be multiplied, their output is connected to the memories.
The total number of cycles to compute the initial syndrome and the update of the
syndrome, the unsatisfied parity check are respectively Nsyn, Nsynupt and Nupc.

The additional elements that are present are:

• Syndrome Weight module: is connected to MEMs and each row is read, summed
up and updates the value of the syndrome weight, the process takes 2h cycles
to compute the value, referred as Nsynw;

6.2 Decryption and decapsulation 115

start end

SVbC

Syndrome Update

start end

VbC

Syndrome

𝑀𝐸𝑀𝒄

𝒉 𝑀𝐸𝑀𝒔

Unsatisfied Parity
Check

𝒉

𝑀𝐸𝑀𝒔

𝑀𝐸𝑀𝒆
𝑀𝐸𝑀𝒔

start end

𝒔𝒘 − 𝑏
table

LUT

Threshold

𝑤(𝒔)(𝐼𝑡)

start end

1’s
Counter

Syndrome Weight

Position
Search

Error
Approximation

𝑀𝐸𝑀𝒔

𝑀𝐸𝑀𝒖𝒑𝒄

𝑀𝐸𝑀𝒆

𝒔𝒘 𝑏

𝑀𝐸𝑀𝒔 𝑀𝐸𝑀𝒖𝒑𝒄

𝒉𝑇

Fig. 6.4 Version2:The total area occupation is reduced by implementing the Syndrome,
Unsatisfied Parity Check computation with a single unit, the additional modules are kept
unchanged.

• Threshold module: the syndrome weight is compared to the inputs of a LUT,
depending on its range the threshold is provided in output as b, the execution
is performed in two cycles to access the Table and then provide the threshold
in an output register, referred as Nth.

• Error Approximation module: the memories MEMc0 , . . . , MEMcn0−1 are read row
by row and compared to the threshold b, the asserted bits are then stored as
position with the format ADX, the row, and Shift the over threshold position
in a row, the execution is performed nb ∗ t +2∗h cycles, referred as Nerrapprox.

The total number of cycles of each unit is calculated with the parameters nb and
the values in Tables 3.1, 3.2 and 3.3.

Control Unit

The Control Unit schedules the execution of each module in the orders suggested
by the decoding algorithm. The main task is to provide the starting signal to each
unit and then collect their end signal, in addition the execution of the complete

116 Decryption and Encryption in QC-MDPC Codes for PQC

decoding algorithm is provided once two (or only one) conditions are met: the value
of syndrome weight is 0 or the maximum number or iterations, Itmax, is reached,
with the BGF Decoder this condition alone is enough to stop the execution.

The total number of cycles is the sum of the total number of cycles of each task,
since the decoders are not identical and there two alternative algorithms exists to
compute the syndrome update, eH, these are referred as:

• Version 1 computes the initial syndrome and the unsatisfied parity check with
VectorByCirculant Pipelined, NV bC

syn , while the syndrome update with
SparseVectorByCirculant Pipelined, NsV bC

synupt ;

• Version 2 computes makes an efficient use of VectorByCirculant Pipelined,
NV bC

syn ,and SparseVectorByCirculant Pipelined, NsV bC
synupt , to have a re-

duced execution time given the parallelism.

The total number of cycles is reported for Q-Decoder considering parameters
n0 = 2, m = 10,853, dH = 71, t = 133 and Itmax = 6, that are derive from Table 3.2.

The decoder, in one iteration, counts for the tasks are:

Nit,V 1 = NsV bC
synupt +Nupc +Nsynw +Nth +Nerrapprx (6.8)

Nit,V 2 = NV bC
synupt +Nupc +Nsynw +Nth +Nerrapprx (6.9)

The total number of cycles of the Decoder is then:

• the Decoder Version 1 counts

Ndec,V 1 = NV bC
syn +

Itmax

∑
It=0

Nit (6.10)

• the Decoder Version 2 counts

Ndec,V 2 = NV bC
syn +NsV bC

synupt

Itmax−1

∑
It=0

Nit (6.11)

The distinction between Version 1 and Version 2, as pointed out in [?],in the Q-
Decoder is motivated advantage of SparseVectorByCirculant over VectorByCirculant

6.2 Decryption and decapsulation 117

only under some conditions: the parallelism and the density of the input vector. The
condition to be considered is NV bC > NsV bC, by defining the density of the error
vector at iteration It is dIt

e , it is easy to evaluate that SparseVectorByCirculant is
more efficient than VectorByCirculant if dIt

e is:

h+3dh ∗h > dIt
e +dh +6∗dh ∗dIt

e → dIt
e <

h+3dh ∗h−dh

(1+dH))
(6.12)

The simulation of the Q-Decoder showed that the condition is satisfied with
nb ≥ 64 for It ≥ 3, thus the SparseVectorByCirculant has been used in the
decoder under this conditions.

The total number of cycles that takes a single task (for Itmax iteration) considering
the parameters reported previously, parallelism nb = 8 and Version1 is:

• Nsyn = n0 ∗NV bC = 2∗6∗10,853/8+71∗10,853/8 = 112600

• Nupc = Nsyn ∗ Itmax = 563000

• Nsynw +Nth = 2∗10,853/8+2 = 2715

• Nerrorapprox = 2∗2∗10,853/8+8∗133 = 6490

• Nsynupt = 10∗71∗2+71∗2∗133 = 20306

The breakdown clearly shows the presence of an efficient multiplier for cyclic
product introduces a huge benefit in the overall cycle count. The increase in nb and
the option of have Version 2 further improves the execution time. The reduction of
the execution time depends on the total number of cycles and the critical path of the
architecture, these depends on the actual synthesized architecture. The discussion on
critical path, total area and latency is provided in the following.

The introduction of the pipelined multipliers (the coarse grained ones) can
introduce a reduction in the execution time of the variables, the benefit of the
approach is provided in the results discussion.

6.2.3 Implementation Results

The implementation results are provided for the decoder architecture presented in the
previous subsection, the multiplier selected in each version is specified since there

118 Decryption and Encryption in QC-MDPC Codes for PQC

are three options for VectorByCirculant and two options for SparsevectorByCirculant.
The following tables are provided to understand the evolution of the Decoder in
terms of total are and execution time.

The very first implementation of the decoder has been described in [3], it refers
to Version0 in Figure 6.2 with a non logarithmic VectorByCirculant, thus the results
clearly shows a poor scaling with the parallelism. The increase on the total area is
highlighted with % of overhead with respect to the previous value of nb, despite the
total execution time is linear with nb, doubling the parallelism the latency is halved,
the area between nb = 32 and nb = 64b becomes four times higher.

Table 6.1 ASIC synthesis of the whole decoder with the UMC 65 nm technology, the results
refers to a block length of m = 27,779 (LEDAcrypt parameters submitted to Round 1). The
reference architecture is in [3].

nb
8 16 32 64

tcp (ns) 3.72 3.72 3.72 3.86
Area (µm2) 15,618 25,380 (62%) 44,493 (75%) 129,047 (190%)
Pstatic (mW) 1.11 1.73 2.98 5.52
Latency (ms) 6 3.3 1.9 1.2

The total area for Version0 of the Decoder is reported in Figure 6.5 with a bar
plot to identify the rate of the scaling of the total area for the single units. The total
area with a logarithmic unit in VectorByCirculant scales linearly with the increase of
nb.

The synthesis is carries out with Synopsys Design Compiler with the STM FDSOI
28 nm technological node and referred to parameters of LEDAcrypt submitted to
Round 2

the total execution is not affected by the choice of the logarithmic unit, since
the scaling with nb remains the same. The benefit is introduced by the use of
VectorByCirculant to update the Syndrome when this is more convenient then
SparsevectorByCirculant. The improvement on the latenncy introduced by this
choice is in Figures 6.6: the latency is reduced for 128 and 256 bits of parallelism.

The major degradation in the Total execution time comes from the transition from
Round 2 to Round 3 (with LEDAcrypt parameters), the evaluation of the Syndrome

6.2 Decryption and decapsulation 119

8 16 32 64 128 256
0

0.02

0.04

0.06

0.08

Syndrome
UPC
Syndrome Upt
Error Update

Fig. 6.5 The total area occupation of the Version0 Decoder with the partial area occupation
of the main units[2].

8 16 32 64 128 256
0

1

2

3

4

5
Syndrome
UPC
Syndrome Upt
Error Update

(a) SparseVectorByCirculant for Syndrome
update

8 16 32 64 128 256
0

1

2

3

4

5
Syndrome
UPC
Syndrome Upt
Error Update

(b) VectorByCirculant and SparseVectorBy-
Circulant for Syndrome update

Fig. 6.6 The comparison of latency in Version0 Decoder with and without the the use of
VectorByCirculant to update the Syndrome

and Unsatisfied Parity Check is with matrix H with an increased density, the use
of pipelined multipliers (c-pipe) reduces the total execution time, with a negligible
increase in the total area. The comparison of the total execution time with such
conditions is in Figure 6.7: the blue line corresponds to the latency of the Q-Decoder
submitted to Round 2, the latency strongly increased for the parameters of Round
3 (red line), since the density of the matrices is increased, the total execution time
can be reduced with the use of c-pipe version of the multipliers (VectorByCirculant

120 Decryption and Encryption in QC-MDPC Codes for PQC

8 16 32 64 128 256
0

2

4

6

8

10

12
LEDAcrypt - Round2
LEDAcrypt - Round3
LEDAcrypt - Round3 - Pipelined

Fig. 6.7 Latency of the Q-Decoder comparison.

and SparseVectorByCirculant). The total area has no changes between Version0 and
Version1.

The use of the c-pipe VectorByCirculant is preferred over the f-pipe VectorBy-
Circulant because the complete decoder does not benefit from the reduction of the
critical path, thus the resulting decoder has a bigger area and similar total execution
time.

6.3 Flexible-NTT in Code based Post Quantum Cryp-
tography

The NTT-based multiplier perform the cyclic multiplications of the LEDAcrypt/BIKE
Encoder and Decoder, despite being optimized to perform efficiently sparse compu-
tations, the decoder can be further optimized in order to reduce the latency.

The NTT-based multiplier is not intended to optimize the sparse cyclic multipli-
cation, since the type of vectors involved has more efficient options. The present
study is meant reduce the latency of the NTT in a Code-based PQC Decoder in order
to allows the adoption of the NTT module to multiple PQC primitives. The result

6.3 Flexible-NTT in Code based Post Quantum Cryptography 121

will be provided considering both the sparse and dense multiplication that may arise
in LEDAcrypt/BIKE.

6.3.1 Encoder

The multiplier is applied as it is to the mMT
l .

The difference between PKC and KEM schemes is in the sparsity of vector m,
the NTT-based multiplier execution time similar between a sparse and a dense vector,
as can be seen in Table 5.9.

The NTT-based multiplier shows its efficiency for dense multiplication of LEDAcrypt
PKC, the present approach when compared, in Table 6.2, to the state of the art of
multipliers shows comparable results.

Latency / LUTs utilization
n NTT-mult. [30] [28] [29]

12,323 261k / 5396 1k / 65k 3.5M / 1327 1.1M / 4700
24,659 565k / 6259 3k / 65k 7M / 1327 9.5M / 4400
37,813 1.2M / 7062 5.6k / 65k 11M / 1327 44M / 2800

Table 6.2 QC-MDPC encoding latency in terms of number of cycles vs LUTs utilization.

There is an additional set of results, proposed for BIKE KEM [27], which is not
includes since since it implements a sparse multiplication.

The comparison of the Encoders shows that the approach followed in [30]
outperforms the NTT and Schoolbook approaches [28] [29]. The final comparison,
which includes results presented in this work are provided at the end of the chapter.

6.3.2 Decoder

The NTT-based products in the decoder can be arranged by exploiting the properties
of the convolution, with the purpose of reducing the overall complexity. The decoding
Algorithm 1 includes two multiplications in sequence, the s = xHT (Syndrome) and
upc = sH (Unsatisfied Parity Check). It is clear that to use the NTT-multiplier as
it is the value of x and h are transformed, then multiplied and the transform of S

122 Decryption and Encryption in QC-MDPC Codes for PQC

is obtained and transformed into s and then again into S to calculate upc, thus one
transform can be saved by rearranging the computation of SIt as:

S = NT T (x)⊙NT T (h),

The calculation of upc is then

upc = INT T (S⊙NT T (hT)).

The vectors h and hT are the first row of matrices H and HT , respectively.

The total execution time is reduced by avoiding one inverse and direct transform
computation.

The vector upc has to be transformed in the time domain, since the error position
search is performed by selecting the values over the threshold, there is no efficient
way to perform the same operation in the number (or frequency domain). The value
of the threshold at a given iteration It is computed from the syndrome weight, sw,
since the value is not available this is deirved in the number domain by recallig that
S(0) (this is the first them of the transform), associated to α i·0 from Equation (5.13),
thus it is the sum of all values in s.

The second optimization is to apply the Sparse-NTT Algoritm to error vector,
eIt ,which is transformed into EIt .

The syndrome vector is then updated in the number domain by exploiting the
linearity of the NTT transform, the updated syndrome is, at a given iteration It, is
carried out by transforming only vector eIt :

SIt+1 = SIt +EIt mod P (6.13)

Then, as in the decoder Algorithm 1, after the check on the syndrome weight a
new iteration of the procedure starts.

The optimizations exploits the properties of the NTT to reduce the latency, this is
evident from first iteration due to the rearrangement of the operation, in the following
iterations the execution time is further reduced: the transforms of hT and h, have

6.3 Flexible-NTT in Code based Post Quantum Cryptography 123

been already computed during the first iteration and one Sparse-NTT transform is
enough.

The resulting latency of the decoding, with the computations performed in the
frequency and time domain, is in the third column of Table 6.3, this is referred as
total number of number of cycles. The last columns give the same information of the
state of the art implementation that came up in literature, while the last row shows
provided the resource utilization for LUTs usage.

It Step in nb Total Clock Cycles
Step in BF NTT [28] [29] [27]

8 8 32 128 32 64 128
s0

1st It upc0 524k 346k 32k 2k 325k 100k 38k
e0

s1

It ≥ 2nd upc1 236k 346k 32k 2k 325k 100k 38k
e1

LUT 5396 1327 4480 6k 9k 16k 30k

Table 6.3 The clock cycles required in each iteration of the decoder.

In Table 6.3, the total numbers of clock cycles reported in [28] and [29] have
been scaled to have m = 12,323 and dH = 100, using the formulas provided in the
two works. When comparing the different decoder implementations, one can see that
the proposed solution achieves a similar latency as [28] and [27] (nb = 32), while
it is much slower than [29]. In terms of LUTs, the proposed decoder is better than
[27], very similar to [29] and more expensive than [28].

We now consider the implementation of the cyclic multiplier in the context of
a complete system, able to perform both encoding and decoding, and supporting
both binary and integer formats. To compare the alternative implementations, we
introduce the LC figure of merit, defined as a latency-complexity product, where the
complexity C is given by the global number of LUTs allocated in the synthesis of
both encoder and decoder, while the latency L is the execution time (in s) evaluated
for encoder and decoder, assuming for the case m = 12,323, dH = 100, a clock
frequency of 100 MHz, and Itmax = 6 (when possible the numbers are scaled to

124 Decryption and Encryption in QC-MDPC Codes for PQC

match these requirements). The number of cycles in [29] for the encoder has
been derived by scaling the total execution time of the decoder to match the dense
polynomial multiplication requires, similarly to what has been done in Table 6.2.

m LC
NTT-PQC [28]† [29]† [27]*

12,323 112 786 324 92
24,659 282 1044 1605 N/A
37,813 677 7352 2984 N/A
*Sparse-dense multiplication in the encoder.

† The execution times of the encoder and decoder have been scaled to the nearest N,
while the number of LUTs is kept constant for similar values of N.

Table 6.4 LC figure of merit for combined encoder and decoder: comparison between the
proposed solution and state-of-the-art solutions.

Although the proposed NTT-based multiplier is not the best option when compar-
ing standalone arithmetic units, the results in Table 6.4 show that it is more efficient
than the other implementations proposed in the literature, when the unit is used in
a complete application, where the same component must be exploited for multiple
products in the encoding and decoding stages, which are characterized by different
data formats and computational structures. As seen from Table 6.4, the advantage
in terms of LC product over the alternative approaches grows quickly with the size
of the problem: when N moves from 12,323 to 37,813, LC is 5 times the initial
one. Considering the same N our proposal is almost 7 times more efficient when
compared to [28] and 3 times more efficient than [29]. Moreover, the increase of N
takes advantage of the Schonhage Stressen algorithm and makes out proposal even
more efficient. The reported LC figure for [27] is better than all the other ones in
Table 6.4; however, this comparison is not fair, because the encoding in [27] involves
a product between a sparse vector and a dense vector, which drastically simplifies the
computation with respect to the considered applications. Despite the good LC results
that the NTT based approach reaches, the other works showed that the architecture
fits also in low end FPGA, which has not been proved for our approach.

Chapter 7

Conclusions

The thesis explored the efficient implementation of Code-based Post-Quantum Cryp-
tography primitives for BIKE and LEDAcrypt encoder and decoder. The first archi-
tecture that has been developed considered the Schoolbook algorithm to implement
the Encoder in the Encapsulation/Encryption primitive and the Decoder in the De-
capsulation/Decryption primitive for BIKE and LEDAcrypt. The Decoder developed
for LEDAcrypt submitted to NIST Round 2 is the result of a trade-off between the
area and execution time; the key feature of the proposed approach to improve the
efficiency is the scalability. This makes the architecture able to adapt to different
constrains (of resources) that are required by the application, in the comparison it is
clear that the approach is the most efficient both for low-end FPGA and high-end
ones. The efficiency has been reduced when considering NIST Round 3 submission,
but the pipelined approach allowed to to keep a bounded total area.

The multiplier is the core of the Encoder and Decoder, since it drives the latency
and total area, its implementation is critical for the complete architecture, but it
has been shown that is can also be the target of attacks that tries to retrieve the
secret key. A side-channel attack and methodology has been applied to the power
consumption of the architecture to study its immunity towards such an issue and if
some countermeasures need to be applied.

The last point that has been addressed is the option to use the same multiplier
for multiple Post-Quantum primitives, for example considering it as an accelerator.
The use of the Schönhage-Stressen algorithm in Code-based PQC has been studied,
by proposing an NTT-based multiplier that is tailored to the BIKE and LEDAcrypt

126 Conclusions

specification, with an acceleration for sparse variables. The resulting multiplier
does not improve the area-latency trade off of the decoder that has been found with
Schoolbook, but with few rearrangements in the decoding algorithm the approach
improves the state of the art. In the end, the NTT-based multiplier results suitable
and efficient to be applied to a wide range of PQC-primitives.

The future work can include the study of hybrid architectures, with a combination
of NTT-based and Schoolbook multipliers, to propose a better latency-trade off area.
In addition, the use of a single accelerator associated to a processors for PQC-
primitives has to be extensively studied.

References

[1] Kristjane Koleci, Lorenzo Cecchetti, Guido Masera, Maurizio Martina, and
Massimo Ruo Roch. A side channel attack methodology applied to code-based
post quantum cryptography. In Applications in Electronics Pervading Industry,
Environment and Society: APPLEPIES 2022, pages 90–96. Springer, 2023.

[2] Kristjane Koleci, Paolo Santini, Marco Baldi, Franco Chiaraluce, Maurizio
Martina, and Guido Masera. Efficient hardware implementation of the ledacrypt
decoder. IEEE Access, 9:66223–66240, 2021.

[3] Kristjane Koleci, Marco Baldi, Maurizio Martina, and Guido Masera. A hard-
ware implementation for code-based post-quantum asymmetric cryptography.

[4] Richard P Feynman. Simulating physics with computers. In Feynman and
computation, pages 133–153. CRC Press, 2018.

[5] M. Giles. IBM new 53 qubit quantum computer is the most powerful machine
you can use. MIT, 2018.

[6] J. Hsu. Ces 2018: Intel’s 49-qubit chip shoots for quantum supremacy. IEEE
Spectrum Tech Talk, 2018.

[7] J. Porter. Google confirms ‘quantum supremacy’ breakthrough. VERGE, 2019.

[8] Frank Arute, Kunal Arya, Ryan Babbush, et al. Quantum supremacy using a
programmable superconducting processor. Nature, 574:505–510, 2019.

[9] Peter W Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th annual symposium on foundations of computer
science, pages 124–134. Ieee, 1994.

[10] Daniel J Bernstein. Introduction to post-quantum cryptography. Springer,
2009.

[11] National Institute of Standards and Technology. Post-Quantum Crypto Project.
http://csrc.nist.gov/groups/ST/post-quantum-crypto/. Accessed: 2023-10-16.

[12] Elwyn Berlekamp, Robert McEliece, and Henk Van Tilborg. On the inherent
intractability of certain coding problems (corresp.). IEEE Transactions on
Information Theory, 24(3):384–386, 1978.

128 References

[13] Robert J. McEliece. A public-key cryptosystem based on algebraic coding
theory. DSN Progress Report, 44:114–116, 1978.

[14] Nist post-quantum cryptography round 4 submissions.
https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-4-submissions.

[15] D. J. Bernstein, Academia Sinica C. Cid T. Chou, J. Gilcher, T. Lange,
V. Maram, I. von Maurich, R. Misoczki, R. Niederhagen, E. Persichetti, C. Pe-
ters, N. Sendrier, J. Szefer, C. J. Tjhai, M. Tomlinson, and W. Wang. Classic
Mceliece website. https://classic.mceliece.org/.

[16] Marco Baldi, Franco Chiaraluce, and Marco Bianchi. Security and complexity
of the McEliece cryptosystem based on Quasi-Cyclic Low-Density Parity-
Check codes. IET Information Security, 7(3):212–220, 2013.

[17] M.Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini. Ledacrypt home.

[18] N.Aragon, P. L. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.C. Deneuville,
P. Gaborit, S. Ghosh, S. Gueron, T. Güneysu, C. A. Melchor, R. Misoczki,
E. Persichetti, J. Richter-Brockmann, N. Sendrier, J.P. Tillich, V. Vasseur, and
G. Zémor. BIKE website. https://bikesuite.org/.

[19] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J. Bos, J.C.
Deneuville, A. Dion, P. Gaborit, J. Lacan, E. Persichetti, J.M. Robert, P. Véron,
and G. Zémor. HQC website. http://pqc-hqc.org/.

[20] Robert Gallager. Low-density parity-check codes. IRE Transactions on infor-
mation theory, 8(1):21–28, 1962.

[21] T.J. Richardson and R.L. Urbanke. The capacity of low-density parity-check
codes under message-passing decoding. IEEE_J_IT, 47(2):599–618, 2001.

[22] Daniel Apon, Ray Perlner, Angela Robinson, and Paolo Santini. Cryptanalysis
of LEDAcrypt. In Daniele Micciancio and Thomas Ristenpart, editors, Ad-
vances in Cryptology – CRYPTO 2020, pages 389–418, Cham, 2020. Springer
International Publishing.

[23] Yufei Xing and Shuguo Li. A compact hardware implementation of cca-
secure key exchange mechanism crystals-kyber on fpga. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2021(2):328–356, Feb.
2021.

[24] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé. Crystals-Kyber. https://
pq-crystals.org/kyber/resources.shtml.

[25] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-
digital numbers by automatic computers. In Doklady Akademii Nauk, volume
145, pages 293–294. Russian Academy of Sciences, 1962.

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-4-submissions
https://classic.mceliece.org/
https://bikesuite.org/
http://pqc-hqc.org/
https://pq-crystals.org/kyber/resources.shtml
https://pq-crystals.org/kyber/resources.shtml

References 129

[26] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Com-
puting, 7(3):281–292, September 1971.

[27] Jan Richter-Brockmann, Johannes Mono, and Tim Güneysu. Folding bike: Scal-
able hardware implementation for reconfigurable devices. IEEE Transactions
on Computers, 71(5):1204–1215, 2022.

[28] Kristjane Koleci, Paolo Santini, Marco Baldi, Franco Chiaraluce, Maurizio
Martina, and Guido Masera. Efficient hardware implementation of the ledacrypt
decoder. IEEE Access, 9:66223–66240, 2021.

[29] Davide Zoni, Andrea Galimberti, and William Fornaciari. Efficient and scal-
able fpga-oriented design of qc-ldpc bit-flipping decoders for post-quantum
cryptography. IEEE Access, 8:163419–163433, 2020.

[30] D. Zoni, A. Galimberti, and W. Fornaciari. Flexible and scalable fpga-oriented
design of multipliers for large binary polynomials. IEEE Access, 8:75809–
75821, 2020.

[31] K. Millar, M. Łukowiak, and S. Radziszowski. Design of a flexible schönhage-
strassen fft polynomial multiplier with high- level synthesis to accelerate he in
the cloud. In 2019 International Conference on ReConFigurable Computing
and FPGAs (ReConFig), pages 1–5, 2019.

[32] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[33] Victor S Miller. Use of elliptic curves in cryptography. Springer, 1986.

[34] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[35] Whitfield Diffie and Martin E Hellman. New directions in cryptography. In
Democratizing Cryptography: The Work of Whitfield Diffie and Martin Hellman,
pages 365–390. 2022.

[36] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael. 1999.

[37] Lov K Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219, 1996.

[38] Nist post-quantum cryptography. https://csrc.nist.gov/projects/
post-quantum-cryptography.

[39] Nist post-quantum cryptography round 1 submissions.
https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-1-submissions.

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions

130 References

[40] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé. Crystals-Kyber website. https:
//pq-crystals.org/kyber/index.shtml.

[41] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé. Crystals-dilithium website.

[42] Falcon Team. Falcon website.

[43] J.P. Aumasson, D.J. Bernstein, W. Beullens, C. Dobraunig, M. Eichlseder,
S. Fluhrer, S.L. Gazdag, A. Hülsing, P. Kampanakis, S. Kölbl, M. Kudinov,
T. Lange, M. M. Lauridsen, F. Mendel, R. Niederhagen, C. Rechberger, J. Rijn-
eveld, P. Schwabe, and B. Westerbaan. Sphincs website. https://sphincs.org/.

[44] Nist post-quantum cryptography selected algorithms. https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022.

[45] Call for post-quantum cryptography: Digital signature schemes. https://csrc.
nist.gov/Projects/pqc-dig-sig.

[46] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess,
A. Hutchinson, A. Jalali, K. Karabina, B. Koziel, B. LaMacchia, P. Longa,
M. Naehrig, G. Pereira, J. Renes, V. Soukharev, and D. Urbanik. SIKE website.
https://sike.org/.

[47] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess,
A. Hutchinson, A. Jalali, K. Karabina, B. Koziel, B. LaMacchia, P. Longa,
M. Naehrig, G. Pereira, J. Renes, V. Soukharev, and D. Urbanik. Sike
note. https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/
documents/round-4/submissions/sike-team-note-insecure.pdf.

[48] Jeffery Hoffstein. Ntru: a new high speed public key cryptosystem. presented
at the rump session of Crypto 96, 1996.

[49] Robert J McEliece. A public-key cryptosystem based on algebraic. Coding
Thv, 4244:114–116, 1978.

[50] David Elkouss, Anthony Leverrier, Romain Alléaume, and Joseph J Boutros.
Efficient reconciliation protocol for discrete-variable quantum key distribution.
In 2009 IEEE international symposium on information theory, pages 1879–
1883. IEEE, 2009.

[51] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
Prob. Contr. Inform. Theory, 15(2):157–166, 1986.

[52] Vladimir Michilovich Sidelnikov and Sergey O Shestakov. On insecurity of
cryptosystems based on generalized reed-solomon codes. 1992.

[53] Yuan Xing Li, Robert H Deng, and Xin Mei Wang. On the equivalence of
mceliece’s and niederreiter’s public-key cryptosystems. IEEE Transactions on
Information Theory, 40(1):271–273, 1994.

https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/kyber/index.shtml
https://sphincs.org/
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/pqc-dig-sig
https://csrc.nist.gov/Projects/pqc-dig-sig
https://sike.org/
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/sike-team-note-insecure.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/sike-team-note-insecure.pdf

References 131

[54] Daniel J Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael
Misoczki, Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Pe-
ter Schwabe, Nicolas Sendrier, et al. Classic mceliece: conservative code-based
cryptography. NIST submissions, 2017.

[55] Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

[56] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and
Paolo Santini. LEDAcrypt: QC-LDPC code-based cryptosystems with bounded
decryption failure rate. In Marco Baldi, Edoardo Persichetti, and Paolo San-
tini, editors, Code-Based Cryptography, pages 11–43, Cham, 2019. Springer
International Publishing.

[57] P. Santini, M. Battaglioni, M. Baldi, and F. Chiaraluce. Analysis of the error
correction capability of LDPC and MDPC codes under parallel bit-flipping
decoding and application to cryptography. IEEE Transactions on Commmuni-
cations, 68(8):4648–4660, 2020.

[58] Ciara Rafferty, Máire O’Neill, and Neil Hanley. Evaluation of large inte-
ger multiplication methods on hardware. IEEE Transactions on Computers,
66(8):1369–1382, 2017.

[59] Tung Chou. Qcbits: constant-time small-key code-based cryptography. In
Cryptographic Hardware and Embedded Systems–CHES 2016: 18th Interna-
tional Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings,
pages 280–300. Springer, 2016.

[60] Charles M Rader. Discrete fourier transforms when the number of data samples
is prime. Proceedings of the IEEE, 56(6):1107–1108, 1968.

[61] Leo Bluestein. A linear filtering approach to the computation of discrete fourier
transform. IEEE Transactions on Audio and Electroacoustics, 18(4):451–455,
1970.

[62] Peter L Montgomery. Modular multiplication without trial division. Mathemat-
ics of computation, 44(170):519–521, 1985.

[63] Paul Barrett. Implementing the rivest shamir and adleman public key en-
cryption algorithm on a standard digital signal processor. In Advances in
Cryptology—CRYPTO’86: Proceedings, pages 311–323. Springer, 2000.

[64] Alessandro Barenghi, Guido Bertoni, Fabrizio De Santis, and Filippo Melzani.
On the efficiency of design time evaluation of the resistance to power attacks.
In 2011 14th Euromicro Conference on Digital System Design, pages 777–785,
2011.

[65] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis
with a Leakage Model. In Marc Joye and Jean-Jacques Quisquater, editors,
Cryptographic Hardware and Embedded Systems - CHES 2004, pages 16–29,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

132 References

[66] Massimo Ruo Roch and Maurizio Martina. vrLab: A Virtual and Remote
Low Cost Electronics Lab Platform. In Sergio Saponara and Alessandro
De Gloria, editors, Applications in Electronics Pervading Industry, Environment
and Society, pages 213–220, Cham, 2021. Springer International Publishing.

[67] Massimo Ruo Roch and Maurizio Martina. Virtlab: A low-cost platform for
electronics lab experiments. Sensors, 22(13):4840, Jun 2022.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Cryptography
	2.1 Asymmetric Cryptography
	2.1.1 Modern Cryptography Schemes

	2.2 Symmetric Cryptography
	2.3 Post-Quantum Cryptography
	2.3.1 Lattice-based Schemes

	3 Code-Based Post Quantum Cryptography
	3.1 Notations and definitions
	3.1.1 Constants, vector and matrices
	3.1.2 Polynomials
	3.1.3 Operators

	3.2 McEliece Cyrptosystem
	3.2.1 Scheme algorithms
	3.2.2 Niederreiter Cyrptosystem
	3.2.3 Limitations and attacks

	3.3 Low-Density Parity Check Codes
	3.3.1 Structured Codes: QC-LDPC/MDPC

	3.4 Code-based QC-LDPC schemes
	3.4.1 LEDAcrypt
	3.4.2 BIKE

	3.5 Arithmetic in Code-based PQC
	3.5.1 Polynomial Sum
	3.5.2 Polynomial Inversion
	3.5.3 Polynomial Multiplication

	4 Fast Polynomial Multiplication
	4.1 Polynomial Multiplication Overview
	4.1.1 Schoolbook Multiplication
	4.1.2 Karatsuba Multiplication
	4.1.3 Schönhage Stressen Multiplication

	4.2 Polynomial Multiplication with QC-MDPC/LDPC Matrices
	4.2.1 Large and Binary/Integer Polynomial Multiplication
	4.2.2 Sparse Polynomial multiplication in Schoolbook Multiplier

	5 Architectures for Large Polynomial Multiplication
	5.1 Schoolbook architecture
	5.1.1 VectorByCirculant
	5.1.2 VectorByCirculant Pipelined
	5.1.3 SparseVectorByCirculant

	5.2 Schönhage Stressen Architecture
	5.2.1 Number Theoretic Transform Computation
	5.2.2 Number Theoretic Transform parameters
	5.2.3 Number Theoretic Transform Architecture
	5.2.4 NTT-based multiplier for Code-based PQC
	5.2.5 Architecture

	5.3 Results
	5.3.1 ASIC Results
	5.3.2 FPGA Results
	5.3.3 Latency

	5.4 Side-Channel Attack on VectorByCirculant
	5.4.1 Results validation and conclusions

	6 Decryption and Encryption in QC-MDPC Codes for PQC
	6.1 Encryption and encapsulation
	6.1.1 Implementation and Comparison

	6.2 Decryption and decapsulation
	6.2.1 Decoder analysis
	6.2.2 Decoder Architecture
	6.2.3 Implementation Results

	6.3 Flexible-NTT in Code based Post Quantum Cryptography
	6.3.1 Encoder
	6.3.2 Decoder

	7 Conclusions
	References

