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Abstract—In the era of Big Data, effective data reduction
through feature selection is of paramount importance for machine
learning. This paper presents GLEm-Net (Grouped Lasso with
Embeddings Network), a novel neural framework that seamlessly
processes both categorical and numerical features to reduce
the dimensionality of data while retaining as much informa-
tion as possible. By integrating embedding layers, GLEm-Net
effectively manages categorical features with high cardinality
and compresses their information in a less dimensional space.
By using a grouped Lasso penalty function in its architecture,
GLEm-Net simultaneously processes categorical and numerical
data, efficiently reducing high-dimensional data while preserving
the essential information. We test GLEm-Net with a real-world
application in an industrial environment where 6 million records
exist and each is described by a mixture of 19 numerical and 7
categorical features with a strong class imbalance. A comparative
analysis using state-of-the-art methods shows that despite the
difficulty of building a high-performance model, GLEm-Net
outperforms the other methods in both feature selection and
classification, with a better balance in the selection of both
numerical and categorical features.

Index Terms—data reduction, feature selection, neural net-
work, categorical features, embeddings

I. INTRODUCTION

In the era of big data, the transformative potential of ma-
chine learning techniques to extract actionable insights from
large datasets is evident. However, the larger and more com-
plex the datasets become, the more urgent the need for efficient
data pre-processing methods that can handle mixed feature
types. Categorical and numerical features are ubiquitous in
real-world data, and the seamless integration of both types
of features in data reduction and feature selection is crucial
for the development of effective and interpretable machine
learning models.

Data reduction techniques have long been recognized as es-
sential tools for unlocking the potential of small and big data.
By reducing high-dimensional data into more manageable and
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CN00000013 (approvato nell’ambito del Bando M42C – Investimento 1.4
– Avviso “Centri Nazionali” – D.D. n. 3138 del 16.12.2021, ammesso a
finanziamento con Decreto del MUR n. 1031 del 17.06.2022).

informative subsets, these methods not only improve computa-
tional efficiency but also contribute to the interpretability and
generalizability of machine learning models. In this context,
the selection of features is of central importance. It enables
the identification and retention of only the essential features.
So far, the focus has been on data reduction and feature
selection for either numerical or categorical data, with only
a few methods being able to process both types of features
together. The fusion of these two feature types is crucial as it
reflects the multidimensionality of data in the real-world.

In this paper, we introduce GLEm-Net (Grouped Lasso
with Embeddings Network), a neural comprehensive feature
subset selection framework that reduces the data by processing
categorical and numerical features together and classifying the
data simultaneously. GLEm-Net takes advantage of embedding
layers to effectively manage high cardinality categorical fea-
tures and compress their information in a less dimensional
space. It directly integrates into the architecture of a neural
network a feature selection technique to select the most
important features. To this end, we take as a starting point the
authors’ work in [1], where they present the use of a grouped
Lasso penalty function in a neural network. Here, we integrate
a novel implementation of the grouped Lasso penalty function
into the neural network’s loss function so that the network gets
rid of the less informative input features. After training, the
neural network performs the classification task as usual.

We perform a comparative analysis of the performance of
GLEm-Net versus different state-of-the-art methods (SOTA)
for feature selection.

Our goal is threefold:
• We show the potential of the GLEm-Net framework for

encoding, data reduction and classification of mixed data
types.

• We compare our framework with SOTA approaches and
identify best practices for handling mixed data types.

• We evaluate the performance of our framework and SOTA
approaches in a real-world scenario.

To experiment with GLEm-Net we use data collected in a
real industrial plant of BITRON SPA, a leading company in
the development and manufacturing of mechatronic devices.
In the manufacturing of electronic devices, production lines
consist of multiple machines that collect large amounts of979-8-3503-2445-7/23/$31.00 ©2013 IEEE



mixed data. Our dataset describes the defectiveness monitored
at the end of the first part of the production line. The dataset
consists of more than 6 million records, each described by
19 numerical and 7 categorical features. The problem shows
a strong class imbalance as there are only 0.58% defective
records. In this scenario, reducing the dimensionality of the
data is of paramount importance as collecting large amounts of
data slows down the manufacturing process and helps domain
experts to understand it.

Despite the difficulty of building a high-performance model,
our results show that GLEm-Net outperforms the other SOTA
methods both in selecting the most important features and in
classification. Moreover, retraining the neural network after
feature elimination improves performance by up to 3%. In
contrast to the SOTA methods, which tend to select mainly
numerical features, GLEm-Net is more balanced in selecting
both numerical and categorical features.

To allow other researchers to experiment with GLEm-Net
we release the code as open source 1.

The rest of the paper is organized as follows. Sec. II gives
an overview of related work, while Sec. III dissects the GLEm-
Net methodology. In Sec. IV we present the dataset, while in
Sec. V we describe the experimental setup and our results.
Finally, Sec. VI concludes the paper and presents possible
future directions.

II. RELATED WORK

Data reduction techniques such as sample reduction and
feature selection are crucial for managing big datasets. Sample
reduction helps reduce the size of the dataset by removing
entire samples, while feature selection focuses on identifying
the most informative features and retaining all samples. In
both scenarios, the goal is to reduce the size of the dataset
while preserving the information it contains [2]. In this paper,
we focus on feature selection as it improves interpretability
by focusing on the most relevant features while mitigating the
risk of overfitting [3].

Feature selection methods can be divided into three main
categories: filter, wrapper and embedded approaches [4]. Filter
methods rank the features based on their correlation with
the target variable. The authors of [5] present the mRMR
method. mRMR is a method for selecting a subset of features
that maximizes their relevance to the prediction of the target
variable while minimizing their redundancy. This method has
proven successful for both continuous [6] and categorical
features [7]. For wrapper approaches, the performance of the
classifier guides the selection of the best subset of features [8].
For mixed features, BORUTA [9] and RFE-SVM [10] are
two valuable solutions. BORUTA uses a two-step approach
in which the dataset is first duplicated and the values of the
individual features are randomly shuffled. Then, an iterative
process is applied in which a random forest model is fitted
to compare the importance of the original feature and its
shuffled version. The second method, RFE-SVM, focuses on

1https://github.com/francescoTheSantis/GLEm-Net

identifying the features that significantly maximize the margin
of an SVM classifier for class separation. This method uses
a systematic sequential backward selection process in which
one feature is progressively removed in each iteration until a
certain number of features remain. Another notable study is
presented by the authors in [11], in which they use a recursive
backward feature elimination approach in conjunction with
three different models: Catboost, Random Forest and Logistic
Regressor. Their method starts with the full feature set and
eliminates the least informative features in each iteration based
on the feature importance scores obtained from these three
models. For embedding solutions, the best subset of features is
given as a by-product of the classification/regression process.
The authors in [12] propose Elastic Net, a regression model
that reconciles Lasso feature selection and ridge capability to
handle multicollinearity.

With the increasing use of neural network methods, feature
selection tailored to them becomes more and more important.
In this direction, the authors in [13] propose LassoNet, a
method for integrating feature selection mechanisms into a
multi-layer perceptron (MLP). LassoNet forces the MLP to
eliminate irrelevant features by introducing a residual layer
that connects the input layer directly to the loss function.
The authors in [14] propose an approach to feature selec-
tion that combines the use of an MLP with the concept of
“prominence” to identify a subset of relevant, non-redundant
features for supervised pattern classification. The authors in [1]
present another approach to integrate feature selection in this
context. They use an MLP with a single hidden layer for
feature selection by incorporating a loss function that contains
a regularization term based on the grouped Lasso penalty
function. However, all these methods work either only with
categorical features or only with numerical features and have
limited applicability with mixed data types. In [15], the authors
provide an overview of possible strategies for dealing with
mixed data types: transforming categorical features, treating
features individually, and applying a unified principle-based
metric customized for each data type. However, each of these
methods also has its drawbacks. The first approach may result
in the original variable having no inherent ordering or spacing.
The second strategy uses different metrics for different data
types, making it difficult to compare results. The third strategy
uses a uniform metric but adjusts its calculation for different
data types, which creates similar difficulties when comparing
features. Therefore, the development of methods to directly
use mixed data remains an active challenge for the feature
selection research community.

In contrast to them, here we develop a unified feature
selection framework to handle mixed data types. We propose to
integrate embedding layers [16] to encode categorical features
and enable their analysis together with numerical features.
This reduces the need for custom encoding. We then extend
the use of the grouped Lasso penalty function to include
categorical features. Finally, we validate it with a challenging
dataset collected from a real-world scenario and characterized
by categorical features with high cardinality, which typically

https://github.com/francescoTheSantis/GLEm-Net


pose a challenge for neural networks, deep neural networks
and tree-based models [17].

III. METHODOLOGY

Grouped Lasso is a regularization technique used in ma-
chine learning and statistics to select groups of features [1].
It effectively handles features that can be organized into
smaller groups. Its application to neural networks enables
the creation of predictive models while reducing feature di-
mensionality, thereby improving interpretability. Although this
approach is promising, it cannot handle categorical features
that are common in real-world tabular datasets. To overcome
this limitation, we propose here GLEm-Net, a methodology
that enables the effective processing of mixed-type features
and adapts the Grouped Lasso regularization technique to
categorical features.

A. Background

The Least Absolute Shrinkage and Selection Operator
(Lasso) is a regularization technique used in linear regression
and related models. It adds a penalty term to the loss function
based on the absolute values of the model’s coefficients. This
promotes sparsity and automatic feature selection and prevents
overfitting of the model by preventing an excessive increase in
model coefficients and reducing the coefficients of variables
with low significance. Thus, if a coefficient of the model
assumes a value close to zero, the feature described by this
coefficient is considered useless for prediction.

Consider a simple neural network with p neurons in the
input layer and 3 neurons in the hidden layer. Each neuron xi

in the input layer is connected to the first hidden layer through
a series of weighted connections wi,j . In this architecture,
using the Lasso regularization term is not feasible because
each input variable (i.e., each neuron) is described by mul-
tiple parameters, i.e., weights. To overcome this limitation,
the grouped Lasso extends the Lasso regularization term by
considering the grouped sets of coefficients as a penalty.

Consider an input neuron x1 connected to the three neurons
in the first hidden layer. The input variable becomes useless
for prediction if the group of weights described by the vector
w1 = (w11 w12 w13)

T has all components close to zero.
Using the grouped Lasso regolarization term, we can modify
the Loss function L used in training the neural network as
follows to consider the input weights of the model as a group
for each variable:

L = Lstd + λ

p∑
i=1

||wi||2︸ ︷︷ ︸
regularization term

L = Lstd + λ

p∑
i=1

h(Ei[w])

The first term Lstd represents a standard loss, such as the
Cross-Entropy in the case of classification, which is used
to reduce the error of the model for the task. The second

term instead represents the penalty of the grouped Lasso,
regularization term which is used to reduce the number of
features [18]. We introduce a parameter λ ≥ 0 that weights
the importance of feature selection with respect to model
performance. If λ = 0, no feature selection is performed. The
higher λ is, the more the model reduces the number of features
regardless of the performance of the model. To consider all
weights of a feature as one group, we calculate for each input
neuron xi i ∈ {1..p} the norm ||wi||2 of its weight vector wi.
Then we perform the sum of all norms and multiply them by
the term λ to calculate the regularization term. If a feature
xi does not contribute to performance improvement during
model training, the norm of its vector wi is lowered to a value
close to zero and this input neuron can be removed from the
network. Unfortunately, using the norm as a regularization
term resulted in a non-differentiable function at the origin
due to a discontinuity. This discontinuity leads to possible
numerical oscillations when ||wi||2 is close to zero. Therefore,
the smoothed Group Lasso introduces a function h that makes
the regularization term differentiable at the origin and thus
facilitates the convergence of the input vector norms [1].

L = Lstd + λ

p∑
i=1

h(||wi||2)︸ ︷︷ ︸
regularization term

B. Smoothing function h

The authors of [1] propose smoothing functions that are
characterized by the property of being differentiable at the
origin. This property is fundamental to accelerate the conver-
gence of the norms of the input vectors and to reduce the
oscillations around the origin. Here we use this function to
refine the feature selection process. The norm of a variable
that is not notably beneficial to the neural network must be
as close to zero as possible. This ensures that the feature is
effectively eliminated without affecting performance when the
same neural network is used for prediction tasks. To this end,
we propose here a function that boosts the gradient of the
regularization term as the norm approaches zero by using the
following equation:

h(||wi||2) = 1− e
−||wi||

2
2

β + γx

0.00 0.02 0.04
||wi||2

0

1

h

ε

Fig. 1. h function with β = 10−4, γ = 1 and ϵ = 10−3.

Fig. 1 shows the h function with β = 10−4 and γ = 1.
The function initially shows exponential behaviour, with β
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Fig. 2. Generic MLP with an embedding layer, having a categorical and a
numerical variable in the input layer.

adjusting the size of this exponential segment. The function
then switches to a linear phase in which the slope is equal to
γ. The parameter γ provides an additional degree of freedom
by allowing us to penalize the norms of those variables that
the network considers less important. This function has the
disadvantage that it is again not differentiable at the origin.
Therefore, we freeze the weight vector wi if its norm is smaller
than a certain threshold ϵ. All in all, ϵ must be kept small
enough to ensure that only the norms of a weight vector
considered negligible are frozen during training. β and γ, on
the other hand, cannot be fixed in advance and should be
tuned during the grid search to find the optimal values. For
β, it is important to consider the initialization of the neural
network weights to ensure that all weights fall within the linear
range after initialization. This allows all features to start from
a neutral region characterized by a limited penalty gradient.
According to our analysis, β could be in the range of 10−2 to
10−4, while λ is in the range of 0.1 to 1.

C. Embedding Layers

An embedding layer consists of an additional set of fully
connected neurons inserted between the input and the first
hidden layer. Its goal is to transform categorical data into
continuous vector representations [19], which enables efficient
processing and improved generalization for neural network
tasks. In the case of a categorical variable with a large number
of possible values, it helps to represent the possible values in
a lower dimensional space and compresses the information
better than is possible with a one-hot encoding method. Fig. 2
shows an example of a neural network architecture with
two input features: f1 numeric and f2 categorical. While f1
serves as input for x1, which is directly connected to the
first hidden layer, for f2 we first assign each of its values to
an input neuron xi i ∈ [2, 5] by using a one-hot encoding
representation (4 neurons in this case). Then each of the
categorical neurons is connected to the embedding layer e2 of
f2, which has |e2| = 2 neurons compressing the categorical

feature information by 2. Then the embedding layer e2 is fully
connected to the first hidden layer of the network. For each
categorical feature fi, we have a different embedding layer
ei with a different number of neurons. In Sec. III-D we will
describe how to set the number of neurons in this layer. To
conclude, the neural network architecture on the right contains
all the hidden layers of our classifier and the output neuron
used for prediction.

For each categorical feature fi, each neuron of the embed-
ding layer ei has n input connections with n = |fi|, each with
a different weight. The embedding neurons are used to initially
map the categorical variable into coordinates in latent space.
These coordinates are then used as input for the connections
between the embedding and the hidden layer. Since they are
part of the neural network, these weights can be learned during
training along with all other weights in the network.

Consider the neural network in Fig. 2. The weight matrix
W of the input neurons of the first hidden layer is:

W =

w(1,1) w(2,1) w(3,1)

w(1,2) w(2,2) w(3,2)

w(1,3) w(2,3) w(3,3)


The first column w(1,∗) represents the numerical feature f1.

The last two columns w(2,∗) and w(3,∗) refer to the embedding
layer e2 of the categorical feature f2. Our goal is to reduce
the weights of these connections as much as possible by
applying the grouped Lasso penalty function. On the one
hand, for the numerical feature, we can directly apply the
L2 norm of the vector w1,∗ to compute the grouped Lasso
penalty function. On the other hand, we cannot do this for the
categorical feature since it is described by two vectors: w(2,∗)
and w(3,∗). For a preliminary approach, one could use the
Frobenius norm [20] on the submatrix W2 = [w(∗,2), w(∗,3)].
However, it is important to note that the resulting value will
not be directly comparable to the L2 norm calculated for the
numeric variable. Therefore, we consider the expected value
of the norms of the weight vectors of the embedding layer.
In this way, we can balance the importance of numerical and
categorical features within the regularization term.

In general, consider P features that contain both numerical
and categorical features. Each feature i is first associated
with a set l(i) of columns in the weight matrix W . For a
numerical feature i, |l(i)| = 1, while for a categorical feature i,
|l(i)| corresponds to the number of neurons in the embedding
layer ei. As a result, the following equation represents the
generalized version of the loss function, that introduces the
concept of grouped Lasso penalty into a network that can
handle both numeric and categorical variables.

L = Lstd + λ

P∑
i=1

h

 1

|l(i)|
∑
j∈l(i)

||wj ||2



L = Lstd + λ

P∑
i=1

 1

|l(i)|
∑
j∈l(i)

||wj ||2





This equation is also applicable when the embedding layers
are excluded and the regularization is applied directly to
the connections between the one-hot-encoded variables and
the first hidden layer. Note, however, that in the case of a
categorical feature with high cardinality and low information,
this approach could result in the neural network using an
excessively large number of parameters.

D. Embedding size

We need to determine the number of neurons in the
embedding layer. Recall that here we use embeddings for
dimensionality reduction and compress the information in the
case of high cardinality categorical features. In such scenarios,
we expect the embeddings to significantly reduce the size
of the vector used to represent these features without losing
the amount of information available. It also simplifies the
architecture of the neural network by reducing the number
of weights required. Suppose we have a categorical feature
with a cardinality of C, an embedding layer with a dimension
of E neurons, and the first hidden layer of the neural network
with H neurons. If we use one-hot encoding, the total number
of weights is C ·H . However, if we introduce the embedding
layer, this total number of weights becomes C ·E+E ·H . So
to reduce the total number of weights, we need to satisfy the
inequality:

E ≤ C ·H
C +H

Thus, to compress the information of all categorical features
in a less dimensional space, we introduce a linear compression
factor R, such as:

E =
C ·H

(C +H) ·R R ∈ R with R > 1

With this approach, we compress the information of each
categorical feature and thus reduce the number of required
weights from C ·H to C·H

R .

IV. DATASET

To evaluate the results of our methodology, we use a
dataset collected in a real industrial environment. It describes
a production line for manufacturing electronic devices where
printed circuit boards (PCBAs) are assembled. We use the term
board to refer to a device. The dataset contains data from
both the machines involved in the assembly processes and the
environmental data within the facility. In our production line,
the PCBAs are organised in panels, with each panel consisting
of 8 boards. Each board consists of 43 components that are
mounted and soldered to the board with multiple pins, for a
total of 313 pins.

Fig. 3 shows our assembly line, where we collect environ-
mental data and data from the manufacturing machines:

• Printing Machine: the laser prints a unique serial number
on each board for identification, followed by the applica-
tion of solder paste.

Fig. 3. Assembly line example.
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Fig. 4. Percentage of defectiveness per component for the top 15 components.
The green line reports the threshold at 1%.

• Solder Paste Inspection (SPI) Station: inspects the solder
paste applied by the printing machine.

• Pick and Place Station: places the electronic components
on the boards.

• Reflow Oven: heats the solder paste until it is melted and
forms permanent solder joints.

• Automatic Optical Inspection (AOI) Station: automati-
cally inspects boards for defects, including missing com-
ponents, fillet size/shape issues, component misalignment
and more.

If the AOI detects a potential defect, the board is stopped
and awaits visual inspection by the operator. The operator
determines if it is a real defect, so the board undergoes a
thorough inspection and possibly be reworked, or if it is a
false defect the board can go back to the production line. If a
defect is detected, the time to assemble the board and panel
will be extended due to the operator’s inspection. In addition,
the machines slow down in collecting all this data because they
collect a large amount of data for each board. Identifying the
subset of data that contributes to defect detection can speed
up the process by reducing the number of false defects and
the amount of data to be captured by each machine, making
the data collection process feasible during real production.

The dataset consists of 6, 494, 186 rows representing one
week of production totaling 2.5GB. During this week, all
machines were set to collect all data, slowing down the
production line. Each row contains information about one pin
in one board. For each pin, we collect information such as
the area, height and volume of the solder paste, the position
of the pin, the result of the Solder Paste Inspection, the
component identifier, etc. Each row is labelled with the result
of the Automatic Optical Inspection (AOI), which indicates



whether a pin has been classified as defective or not. Given
the size of the dataset, we use our big data cluster and Apache
Spark to analyse it.2 As expected in real production lines,
the dataset is very unbalanced with only 0.58% defective
pins. In detail, Fig. IV shows the percentage of defective
pins per component in descending order. Given the strong
skewness of the distribution, with hundreds of components
having no defectivity, we focus on the top components that
have a defectivity of at least 1.00%.

As a result, we are left with 2,964,178 rows, each described
by 7 categorical features and 19 numerical features, both from
the machines involved in the assembly and from data sources
in the environment.

V. EXPERIMENTS

In this section, we present the pipelines we use as the base-
line for feature selection and classification, and the GLEm-Net
results.

A. Experimental Setup

We start by splitting our dataset into two parts: the training
set with 80% of the samples and the remaining 20% intended
for testing purposes. Given the significant class imbalance
in the dataset and the different performance observed when
choosing different classification thresholds, we use the Area
Under Curve (AUC) metric to evaluate the classification per-
formance.

First, we identify the architecture of the neural network
used for the classification task. To do this, we use GLEm-
Net without performing feature selection, i.e., we set the
parameter λ = 0. Given the size of the dataset and the
time required to train multiple models, we opt for a hold-
out validation technique where we split the available training
dataset into two parts; 85% is used to build the model, while
the remaining 15% serves as the validation set to determine the
best hyperparameters. Since the dataset is highly imbalanced,
we use a batch size of 512 to ensure that there is at least
one defective sample in each batch. To further counteract the
problem of unbalanced data, we also assign a weight to each
sample. Specifically, we assign a lower weight to working
samples than samples with defective pins. We determine the
weight of each class as follows: αj = S/(2 · Sj). Where S is
the total number of samples in the training set and Sj is the
number of samples belonging to class j within the training
set.

TABLE I
GRID SEARCH SPACE.

Hyperparameters Values
First layer size [16, 24, 32]

Second layer size [0, 8, 16]
Hidden activation function [ReLU, Tanh]
Output activation function [Sigmoid]

R [0 (No embeddings), 2, 3]

2https://smartdata.polito.it/computing-facilities/

To find the best architecture, we perform a grid search
(Tab. I reports the grid space) using the Stochastic Gradient
Descent optimization algorithm.

We use a Multi-layer Perceptron (MLP) consisting of two
hidden layers. The architecture with the best performance in
the validation set has 16 neurons in the first hidden layer, 8
neurons in the second hidden layer, Tanh as the activation
function, and an embedding layer with a compression factor
R = 2. This choice of R gives the same performance as using
no embedding layer, i.e., a one-hot encoding approach. Once
we have found the best MLP architecture for classification, we
use it for all subsequent experiments.

B. GLEm-Net Framework

For GLEm-Net, we run the entire pipeline, enter all features
and change the λ value to select different subsets of features.
Note that when λ is set, the network automatically identifies
the best subset of features without having to specify the
number of desired features. We then calculate the performance
on the test set. Note that after selecting the features, GLEm-
Net already returns an MLP model trained with only the
most important features. However, we consider the possibility
of training the model from scratch using the only selected
features as input. This is essential as highly informative
features may be penalized by the regularization term, resulting
in poorer performance of the model. Following the Lottery
Ticket Hypothesis [21] we train the model with only the
selected subset of features and set λ = 0.

C. Feature selection baselines

To compare the performance of GLEm-Net with different
feature selection methods, we choose two state-of-the-art
(SOTA) filtering methods and a wrapper method. For the filter
methods we use:

• mRMR: ranks features based on Mutual Information Dif-
ference, a metric that combines the importance of each
feature (measured as correlation with the target class)
with the redundancy that the feature [5] would introduce;

• Feature importance for Catboost: is a method within the
Gradient Boosted Trees family specifically designed to
manage categorical features. Specifically, we perform a
grid search to find the model with the best performance on
a 10-fold cross-validation. Then we use the Loss Function
Change (LFC) to evaluate the features [22].

After deriving the ranked lists, we iteratively create different
subsets of features SRi(j), where each subset is composed of
the top j features of the ranked list Ri:

SRi(j) =

j⋃
k=1

Ri(k) j ∈ (1, .., |Ri|)

Finally, we use a wrapping approach where the best subset
is identified as follows:

• Catboost based backward feature elimination [23]: is a
wrapper approach that uses Catboost to identify the best
subset of features. In contrast to the previous case where

https://smartdata.polito.it/computing-facilities/
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Fig. 5. Area Under Curve for the different feature selection methods.

we used a single ranking, here we compute multiple rank-
ings by iteratively removing features by fitting multiple
models for each iteration. Specifically, we start with all
features and perform a grid search to determine the best
Catboost [22] model using a 5-fold cross-validation of
the training set. From this model, we use LFC to rank
the features and remove the least a important features.
We store the remaining features as a possible subset
of features and then repeat the grid search with these
features to identify the new a least important features.
We continue this process until no feature is left.

After this process, we have a new subset of features SRi(j).
Once we have all feature subsets, we evaluate the perfor-

mance of each feature subset SRi(j) using the MLP archi-
tecture described in Sec. V-A. For categorical features, we
integrate embedding layers and train them together with the
MLP architecture. This approach is important to enable a fair
comparison among the different subsets. Specifically, we train
the neural network with SRi

(j) as input features and evaluate
the performance of each model on the test set.

Finally, we use a learning curve [24] to evaluate for each
ranking Ri how the performance changes with increasing
information, i.e., for each SRi(j) j ∈ (1, ..., |Ri|).
D. Results

Here we present the results of our experiments. Fig. 5 shows
the classification performance for different subsets of features.
To ease the representation we align the head and tail of the
number of features selected by the SOTA methods with the
feature selection results for GLEm-Net. For GLEm-Net, the
red dashed line shows the performance on the test set without
retraining the MLP network, while the green dashed line shows
the performance after retraining the MLP network. Starting
from the right, the performance without feature selection is
equal to 0.87 for all methods since they use all features.
When we start to reduce the features, we find that all feature
selection methods perform similarly well. The GLEm-Net
method shows lower performance without retraining. This is
because the MLP network was trained with a regularization
term that also penalizes highly informative features. This
result underlines the need for retraining. The results become
more promising when the number of features is significantly

reduced. In the left part of the figure, we see that the retrained
GLEm-Net delivers the best performance among all methods.
For all SOTA methods, the performance is similar with an
AUC of about 0.85. Only GLEm-Net achieves 0.87 when 8
out of 26 features are selected. Such a selection allows the
production line to reduce the amount of data to be collected
by a factor of 3, potentially allowing data collection during
normal production.

mRMR

Wrapper

Filter (LFC)

GLEm-Net

Categorical Numerical

Fig. 6. Comparison of feature subset with 9 features. The green line separates
categorical and numerical features.

Next, we examine the subset of features selected by the
different methods. For this purpose, we analyze the different
subsets consisting of 9 features. Fig. 6 shows with a blue
square the features selected by the different methods. The
green line separates categorical and numerical features. Note
that no feature is selected by all methods. Interestingly, both
Catboost-based methods select almost only numerical features,
which are the same for both solutions. mRMR, on the other
hand, is more balanced in the use of categorical and numerical
features. Similarly, GLEm-Net shows a balanced selection of
categorical and numerical features along with the best AUC
performance.
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Fig. 7. Loss functions and norms evolution during training for λ = 0.002
(right column) and λ = 0.005 (left column).



To analyse how GLEm-Net works internally, we show in
Fig. 7 the evolution of the loss function (bottom) during
training and validation and the norms of the input features
(top) during training for two values of λ. The solid lines
indicate the norm of the numerical features, while the dashed
lines indicate the norm of the categorical features. Focus on
the left figures when λ = 0.005, where 9 features are selected
at the end. Looking at the loss function, both training and
validation converge after about 10 epochs. Looking at the
evolution of the norms, most norms converge quickly to a
stable value, with only 9 features having a non-negligible
value, with the norms of the categorical features having the
highest values. Note, however, that these norms cannot be
used as a value for the importance of a feature. In fact, the
norm value can only provide information on whether a feature
should be included (higher than 0) or not. On the right, we
show the case where λ = 0.002. Here 23 features are selected.
Here, the low λ value leads to the model eliminating fewer
features.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented GLEm-Net a novel neural
framework to reduce the dimensionality of data when mixed
data consisting of both categorical and numerical features are
available. GLEm-Net uses embedding layers to compress the
amount of information of categorical features without losing
information. By incorporating a revised version of the grouped
Lasso penalty function, GLEm-Net efficiently reduces high-
dimensional data consisting of mixed data types.

For this study, we use data collected in a real-world industry
scenario with millions of records and both categorical and
numerical features. We compare the performance of GLEm-
Net with the performance of various state-of-the-art methods.
Our results show that GLEm-Net has better classification
performance than other state-of-the-art methods and selects
a mixture of categorical and numerical features. Our results
highlight the potential of the GLEm-Net framework for data
reduction by applying feature selection to a mixture of data
types, which ultimately improves model performance and the
interpretability of neural networks.

Although the initial results of this study are promising, it
is important to recognise that these are preliminary results.
In the future, we plan to extend the evaluation of GLEm-
Net to more open datasets. Expanding the experimental scope
will strengthen the effectiveness of the framework in different
data domains. In addition, we aim to integrate rule extraction
methods into this framework to improve its interpretability.
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