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Preliminary Assessment of Two Simultaneous and Proportional
Myocontrol Methods for 3-DoFs Prostheses using Incremental Learning

Fabio Egle∗,1,†,‡, Dario Di Domenico∗,2,3,‡, Andrea Marinelli2,4,‡, Nicolò Boccardo2,5,
Michele Canepa2,5, Matteo Laffranchi2, Lorenzo De Michieli2, Claudio Castellini1,6,‡

Abstract— Despite progressive developments over the last
decades, current upper limb prostheses still lack a suitable
control able to fully restore the functionalities of the lost
arm. Traditional control approaches for prostheses fail when
simultaneously actuating multiple Degrees of Freedom (DoFs),
thus limiting their usability in daily-life scenarios. Machine
learning, on the one hand, offers a solution to this issue through
a promising approach for decoding user intentions but fails
when input signals change. Incremental learning, on the other
hand, reduces sources of error by quickly updating the model on
new data rather than training the control model from scratch.
In this study, we present an initial evaluation of a position and a
velocity control strategy for simultaneous and proportional con-
trol over 3-DoFs based on incremental learning. The proposed
controls are tested using a virtual Hannes prosthesis on two
healthy participants. The performances are evaluated over eight
sessions by performing the Target Achievement Control test and
administering SUS and NASA-TLX questionnaires. Overall,
this preliminary study demonstrates that both control strategies
are promising approaches for prosthetic control, offering the
potential to improve the usability of prostheses for individuals
with limb loss. Further research extended to a wider population
of both healthy subjects and amputees will be essential to
thoroughly assess these control paradigms.

I. INTRODUCTION

The loss of a body part significantly affects the quality of
life, thus causing physical and psychological consequences.
Despite the progressive developments that upper limb pros-
theses have undergone in the last decades, the rejection rate
of such devices is still drastically high (∼ 44%) [1]. One
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of the main issues related to this low acceptance is the low
intuitiveness of the prosthetic control when multiple Degrees
of Freedom (DoFs) have to be managed simultaneously [2].
These actuated prostheses are usually controlled through
surface electromyographic (sEMG) signals directly gathered
from the skin surface. Therefore, the application of machine
learning (ML) techniques on sEMG for gesture classification
played an important role in the intuitiveness of prosthesis
control but with the lack of proportional and simultaneous
actuation over multiple DoFs [3]. The regression-based ap-
proaches can overcome the aforementioned limits by map-
ping the predictions in a combination of prosthesis move-
ments [4]. The variability of sEMG signals over time (due
to e.g., electrode shift, muscle fatigue, variation in muscle
contraction) is the key aspect influencing the deterioration of
the prosthesis control [5]. These control paradigms based on
supervised ML are characterized by a first phase of training
which usually takes a long time [5]. Therefore, if the users
realize that the control system no longer works properly, they
are forced to retrain from scratch by acquiring a new set of
sEMG signals.

To overcome this limitation, we propose two different con-
trol paradigms (namely, direct and stepwise control) based on
the same incremental learning algorithm allowing to quickly
update the model on a small amount of new data. Moreover,
these updates cope with the changes in the input signals,
thus allowing continual adaptation of the regression model
to the new data distribution [4]. The presented joint control
strategies are intended to simultaneously and proportionally
control a 3-DoFs Hannes prosthesis [6]. Position and velocity
controls have already been used in several previous prosthetic
applications ([4, 7, 8, 9]).

In this pilot study, we present the developed system as well
as the results of two participants controlling a virtual 3-DoFs
Hannes prosthesis in real-time with two different control
paradigms (position-based, i.e. direct control and velocity-
based, i.e. stepwise control) based on incremental learning.
The interaction with the virtual prosthesis is evaluated over
eight sessions per participant by performing the Target
Achievement Control (TAC) test [10].

II. MATERIALS AND METHODS

A. Subjects

Two healthy subjects (age: 29 y and 26 y, weight: 70 kg
and 86 kg, gender: F and M) with no prior experience in
prosthesis control participated in the pilot study. As this is a



case study with two subjects, no statistically supported state-
ments are provided. The participants gave written informed
consent before the experiments were conducted in line with
the Declaration of Helsinki and approved by the institutional
ethical committee of Friedrich-Alexander Universität (No.:
22-275-S).

B. Experimental Setup

Two Myos, developed by Thalmic Labs [11] (sampling
frequency: 200 Hz, channels: 8, resolution: 8 bit) were at-
tached to the participant’s forearm (as depicted in Fig.
1). Both sEMG-devices stream to the same host PC via
Bluetooth Low Energy (BLE). The combined 16-channels
sEMG signals are then directly processed by a C#-based
signal-processing application (Signal Processing in Fig. 1) in
the following steps for each of the channels: (i) amplification
(factor: 5) and rectification; (ii) Butterworth lowpass filter
[12] (2nd order, direct control: 0.3 Hz, stepwise control:
2 Hz); (iii) subsampling at 25 Hz. After processing, the
signals are fed into a Ridge Regression (RR) method, which
was previously trained on the subject’s signals in an initial
training phase (II-E). The RR predictions are clipped to a
range from 0 to 1 for each DoF of the respective control
(II-D).

The process depicted in Fig. 1 includes three main steps,
i.e., the aforementioned sEMG signals processing, the incre-
mental learning predictions (II-C), and the translation into
control signal based on the two different control strategies
(described in II-D). Once the control signal is synthesized,
it is forwarded to the non-immersive Virtual Reality (VR)
model. The VR framework itself was implemented using
the Unity development framework. The VR model embeds
the TAC test (see Fig. 1) used to assess the performance
of the used prosthesis control strategy [10]. Three different
DoFs could be actively and simultaneously controlled in the
Hannes prosthesis [8], namely hand opening/closing (HOC),
wrist pronation/supination (WPS) and wrist flexion/extension
(WFE). Once the experimenter started the task, the user
had 20 s to reach the goal and had to maintain the target
configuration for at least 2 s. These time thresholds were
already used in other studies, including a TAC test for
prosthesis control [10, 13]. The target can assume different
configurations of DoFs, combining four positions for the
HOC, five positions for WFE, and seven positions for WPS,
according to the extent of their range of motion. Additionally,
the target position is centered on a tolerance range specific
to each joint and control strategy. The thresholds were set
to: thHOC = 0.1, thWPS = 0.125 and thWFE = 0.083 for
the stepwise control strategy while for the direct control
the thresholds are multiplied by an enlarging factor of 1.5.
During each trial, multiple data were collected, and the
logging process ran at a mean frequency of 335 Hz. The
following parameters were logged: the 16-channels sEMG
from the two Myos, the target positions, which are the goal
configurations to reach, the target errors, representing the
differences in percentage between the current and the target
positions over time (separately for each DoF).

Fig. 1. Block diagram of the experimental setup. Panel 1: Wearable
setup for EMG acquisition on the forearm consisting of two Myos, which
communicate with the host PC via BLE. Panel 2: The host PC runs two
processes that communicate with each other via User Datagram Protocol
(UDP), one dedicated to the processing and inference while the other runs
the VR application, including the TAC test. The VR screen shows the sliders
representing the current position of each DoF (2.A), the success bar filled up
in case all DoFs are in the respective tolerance ranges for 2 s consecutively
(2.B), the controlled Hannes prosthesis (2.C) and the target configuration to
reach (2.D).

C. Incremental Ridge Regression

To predict the action of each DoF necessary for the re-
spective control paradigm in real-time, the processed sEMG-
signals were fed into a RR method [14]. The prediction
output is y = W T x, where x ∈ R16 is the processed sEMG
signal and W ∈R16×d are the regression weights and d is the
number of predictions necessary for the respective control
paradigm. The closed-form solution for the weights W is
given by:

W =
(
XT X +λ I

)−1
XTY = A−1

β . (1)

The design matrix X ∈RN×16 consists of the processed 16-
channels sEMG signals with N samples. The label matrix Y ∈
RN×C includes the corresponding labels for each DoF of each
processed sEMG sample, and the regularization term λ is set
to λ = 1. This value was already used in comparable studies
on (virtual) prosthesis control [4, 9]. Instead of completely
retraining the predictor after each update by the participant,
an incremental approach described by Gijsberts et al. [4]
was employed. In brief, the solution in Equation 1 can be
decomposed into a product of the inverse matrix A−1 and a
vector β . With the help of the Sherman–Morrison formula,
the update of W by a single added observation x and a label
y can be calculated. The RR and the incremental learning



approach were already used in multiple studies in the area
of upper limb prosthesis control [4, 15].

D. Control Strategies

In this pilot study, we compare two different control
paradigms based on RR, namely the direct control and the
stepwise control. The prediction y of the RR algorithm is ex-
ploited by both algorithms but it is treated in different ways.
The low-level firmware embedded in the prosthesis is based
on position control architecture. However, the synthesis of
the control input is different for the two tested paradigms.
To distinguish the two controls from the low-level control,
the paradigms are denoted as direct and stepwise control
in the following, despite their similarity to position and
velocity control, respectively. Each of the two paradigms is
a clear representation of two crucial aspects of simultaneous
prosthetic control: naturalness and dexterity, respectively.
Both characteristics promote man-machine interaction, thus
favoring the acceptance of the device.
The direct control can be considered as a regressor since the
predictions of the RR are directly mapped to a position in
the range of motion of each joint. This paradigm resembles
position control since the RR prediction outputs are synthe-
sized into reference positions for each DoF. As soon as the
subject relaxed the forearm muscles, the prosthesis returned
to the resting position. Therefore, the subjects needed to
keep the muscle contraction in order to keep the prosthesis
in the desired configuration. This resembles what people
usually do when they want to move their healthy limbs to
manipulate objects. If we want to grasp and lift an object,
we are required to maintain muscle contraction, preventing
the item from falling. In this case, d = 5 control actions
were trained, i.e., hand closing (C), wrist pronation (P),
wrist flexion (F), wrist extension (E) and resting (R). The
opposite movements (i.e., hand opening and wrist supination)
were ensured by forearm muscle relaxation. Initial pilot tests
during development showed that resting (R) could be used
intuitively for hand opening (O) and wrist supination (S).

Before the calculation of the normalized values for the
direct prosthesis control, the predictions for each DoF yi are
clipped to a range from 0 to 1 to obtain the corrected predic-
tions ŷi. The normalized control values for HOC (θHOC,n),
WFE (θWFE,n), and WPS (θWPS,n) are calculated as:

θHOC,n = ŷC,n,

θWFE,n =
ŷE,n − ŷF,n +1

2
,

θWPS,n = 1− ŷP,n

(2)

The stepwise control is also based on the predictions of
the RR algorithm but is mapped to a step-value specific for
each DoF. Such a step is added/subtracted to the current
position of the respective DoF, thus allowing the subjects
to maintain the prosthesis configuration even when there is
no muscle contraction. This paradigm resembles velocity
control, although the low-level motor actuation is always
in position. Therefore, this control paradigm allows holding
certain grips even though the user is not performing such

movement. In this case, d = 7 control actions were trained,
i.e., hand closing (C), hand opening (O), wrist pronation
(P), wrist supination (S), wrist flexion (F), wrist extension
(E), and resting (R). Thus both movements for each of the
three DoFs were taken into account. Overall, the resting state
corresponds to a fixed configuration of all DoFs. Therefore,
once a target position was reached, the subjects could relax
their forearm muscles to maintain the target configuration.

Before the calculation of the normalized values for the
stepwise prosthesis control, the dead band db = 0.3 is de-
ducted from the predictions yi which are then rescaled to
the range 0-1 to obtain the corrected prediction ŷi. The
normalized control values for HOC, WFE, and WPS (θDoF,n)
are calculated as:

θDoF,n =

{
θDoF,n−1 +ds · (ŷk,n − ŷ j,n) if (yk,n ≥ db ∧ y j,n ≥ db)

θDoF,n−1, otherwise
(3)

where k respectively represents C, S, E, and j respectively
represents O, P, F, and with the scaling factor ds = 4. The
scaling factor is set to the aforementioned value to have the
prosthesis in VR moving with a speed comparable to the real
Hannes hand.

E. Experimental Protocol

The experiment included eight sessions on four different
days, of which four consecutive sessions were dedicated
to the direct control and the other four to the stepwise
control (2 sessions/day). Moreover, the order of controls was
randomized across the two subjects. This separation between
days was intended to test the two conditions over time.
The duration of each session was approximately 45 min.
Furthermore, each session (Sx) included three consecutive
rounds (Rx) and each round in turn 21 target positions
(504 target positions per participant). A new RR model was
trained at the first use of each control strategy (S1 and S5).
During this initial training step, the subject performed 3 s
of each control action. Before each round, the participants
had 2 min to familiarize themselves with the control model
by testing it freely. Then, the subject could decide whether
to update the model once (twice in S1 R1 of each control)
by adding additional 3 s of data for each control action
(see II-D). Afterward, the learning model was incrementally
updated on these labeled data points (15 s for direct control
or 21 s for stepwise control) before starting the next round
of the experiment. The model could only be updated at the
beginning of a round after the familiarization phase. During
the study, the subject sat comfortably in front of a monitor,
with their arm slightly flexed and their elbow resting on
the table. The computer monitor was placed approximately
50 cm from the subject displaying the VR model. Within each
round, the subject was asked to control the Hannes hand in
VR to reach the target configuration for 21 runs. The subjects
were asked to accomplish the task within 20 s or maintain a
position as close as possible to the target. The single run was
considered passed in case the subject was able to keep all
the controlled DoFs within the established tolerance ranges



(see II-B) for at least 2 s in a row. If the user went out of the
tolerance ranges even with any DoF, the 2 s-timer was reset.

At the end of every session, the participant was asked to fill
in two questionnaires according to the respective instructions:
the NASA Task Load Index (NASA-TLX) parts 1 and 2 [16]
was administered to measure perceived cognitive workload
during the interaction with the virtual prosthesis as well as
the System Usability Score [17] to evaluate the usability of
the respective prosthetic control in the context of the given
task.

F. Data Analysis
Starting from the retrieved parameters (II-B) logged during

the experiments, four different scores are computed to assess
the performance of the two control paradigms:

1) Error Rate: computed for each DoF as the difference
in percentage between the target position and the last
reached position in both success and failure runs (i.e.,
last value of the target errors per run);

2) Success Rate: the run was counted as a success when
the user was able to keep the prosthesis in the target
interval of each DoF for 2 s simultaneously;

3) Path Efficiency: computed for each DoF as the ratio
between the optimal trajectory (an uninterrupted move-
ment toward the target position) and the performed
trajectory:

tr jact =
N

∑
i=1

|∆xi| ,

tr jopt = xtar − x0.

(4)

where tr jact is the performed trajectory, tr jopt is the
optimal trajectory, xi corresponds to a sample of the
normalized position, xtar is the target position and N
are the samples of each trial;

4) Time Efficiency: computed as the ratio between the
optimal time needed to reach the target position by
the prosthesis in an uninterrupted motion and the time
taken by the subject to perform the task.

The questionnaires SUS and NASA-TLX were adminis-
tered after each session to monitor usability and workload
scores over time. The SUS score indicates the usability per-
formance on a scale from 0-100. The questionnaire consists
of 10 questions that evaluate the System’s usability on a
Likert scale from 1 to 5. For the calculation of the score,
the reverse-coded questions are negated, and all questions
are shifted to a range from 0 to 4. Afterward, the score of
the questions is summed and multiplied by 2.5. Part 1 of
the NASA-TLX is a 6-item questionnaire (Mental Demands,
Physical Demands, Temporal Demands, Performance, Effort
and Frustration) on a scale from low to high. In Part 2 of the
NASA-TLX the participant decides in a pairwise comparison
which factors contributed stronger to the workload. The
results of Part 1 are then weighted by the factors from Part 2
and averaged to calculate the overall NASA-TLX workload
score. In contrast to the original Part 1 of the NASA-TLX,
a visual analog scale was used to describe the workload of
each factor continuously.

III. RESULTS

A. TAC

Due to the number of subjects involved in the study, the
results are all reported separately for the two participants (p1
and p2). As mentioned in II-F, four metrics were computed
from the logged data during the TAC test. The aim was to
assess the performance of two prosthesis control paradigms
based on an incremental learning method. The analysis was
performed on different sessions in order to evaluate the learn-
ing curve of the subject when controlling the prosthesis. To
include the general success information (all DoFs within tol-
erance ranges), we report the success rate computed only in
case of complete success of the task. The p1 scored for direct
control: S1 44.4±15.3 - S4 93.7±2.7, whereas for the step-
wise control: S1 58.7±26.2 - S4 87.3±11.0. The p2 scored for
direct control: S1 30.2±2.7 - S4 47.6.7±12.6, whereas for the
stepwise control: S1 36.5±24.0 - S4 95.2±4.8. Furthermore,
the results are reported independently for each DoF except
for the Time Efficiency since it is computed on the maximum
time of all the controlled joints as they must fall within
the tolerance ranges II-B to consider the task accomplished.
For all calculated scores, the mean was firstly computed
over each round, and then the mean and standard deviation
were computed over the three scores of each session (i.e., 3
rounds).

The Error Rate is represented separately for each of the
two subjects in Fig. 2. Moreover, for each subject, a table
(Tab. I) containing the Success Rate, the Path Efficiency and
the Time Efficiency is presented. Additionally, for the first
two, details regarding the behaviors of each DoF over the
sessions are reported. Overall, the two control paradigms
are denoted by D (i.e., direct control) and S (i.e., stepwise
control).

B. Questionnaires

For the participants in this pilot study, the given answers
to the questionnaires were fairly positive. Particularly inter-
esting was the development of the scores over the 4 sessions
(12 rounds of 21 tasks). The individual scores per session
and participant are presented in Tab. II and Tab. III. The
SUS score can range from 0 to 100, with a higher score
meaning better usability. The mean SUS scores over the
four sessions per participant and algorithm were 79.38±7.18
(p1) and 55.63±8.75 (p2) for the direct control as well
as 68.75±14.79 (p1) and 75.00±4.56 (p2) for the stepwise
control. The SUS scores over sessions are reported in Tab. II,
where the S4 achieved the highest ratings for both controls
and participants.

The NASA-TLX outcomes for the 2 participants were
similarly positive. Same as the SUS, the NASA-TLX can
also range from 0 to 100, although, in this case, a lower
score indicates a lower workload. The mean scores over the
four sessions for the direct control were 37.87±9.16 (p1)
and 58.64±15.20 (p2). The results for the stepwise control
were 57.00±11.22 (p1) and 30.09±5.53 (p2). Similar to the
usability evaluation, the workload score generally indicates



TABLE I
SCORES OF p1 AND p2 FROM TAC TEST

Parameter Control S1 S2 S3 S4
HOC WPS WFE HOC WPS WFE HOC WPS WFE HOC WPS WFE

Success Rate D 60.3±12.0 54.0±15.3 55.6±11.0 82.5±2.7 73.0±11.0 79.4±2.7 95.2±8.2 90.5±8.2 95.2±8.2 96.8±2.7 93.7±2.7 93.7±2.7
S 71.4±21.8 63.5±27.1 82.5±30.2 85.7±4.8 77.8±5.5 96.8±2.7 96.8±2.7 92.1±9.9 93.7±2.7 90.5±8.2 92.1±7.3 96.8±5.5

Path Efficiency D 15.3±8.3 23.6±6.3 11.1±9.9 23.9±6.5 24.2±6.0 20.2±3.0 25.3±1.5 26.7±1.3 22.0±3.8 28.4±3.0 23.5±2.3 18.6±4.3
S 28.9±9.4 23.0±2.1 38.8±17.9 42.0±2.3 31.0±5.2 48.3±2.3 39.3±4.5 27.9±2.6 51.9±10.6 40.8±2.0 31.5±2.1 52.6±4.8

Time Efficiency D 20.5±3.7 25.9±4.6 29.6±2.0 28.0±3.1

p 1

S 12.5±1.3 15.9±1.8 14.7±2.5 14.8±0.4
Success Rate D 44.4±12.0 44.4±5.5 46.0±7.3 39.7±7.3 52.4±9.5 46.0±2.7 57.1±4.8 61.9±4.8 69.8±7.3 54.0±14.5 60.3±11.0 71.4±9.5

S 47.6±26.5 65.1±22.5 44.4±19.2 79.4±15.3 90.5±4.8 85.7±8.2 96.8± 5.5 98.4± 2.7 96.8±5.5 95.2±4.8 98.4± 2.7 95.2±4.8
Path Efficiency D 19.7±6.2 11.6±7.9 11.4±1.7 15.0±1.3 11.7±6.0 10.8±2.7 17.7±3.7 13.1±2.8 9.0±1.9 14.9±2.3 15.3±2.2 5.4±0.7

S 38.6±18.4 39.6±15.7 24.9±7.5 29.9±6.5 38.4±3.1 26.6±3.4 28.2±4.5 46.6±4.6 27.6±3.0 21.7±8.9 43.2±9.0 24.1±4.2
Time Efficiency D 18.6±2.6 20.8±6.2 20.5±2.4 21.6±4.2

p 2

S 14.9±1.9 18.8±3.1 23.8±2.6 20.7±2.4

Fig. 2. A: Error Rate as a function of the Sessions for p1 in the two tested
control modalities. B: Error Rate as a function of the Sessions for p2 in the
two tested control modalities. The mean and standard deviation of the Error
Rate are computed on the percentage of successful runs within each round.
The vertical bars represent a standard deviation. A representation for each
DoF (i.e., HOC: hand opening/closing, WPS: wrist pronation/supination,
WFE: wrist flexion/extension) is reported in both panels (A, B).

a decrease in workload with the time spent controlling the
virtual prosthesis (see Tab. III).

IV. DISCUSSION AND CONCLUSION

Starting from the results depicted in Fig. 2, for both the
two control strategies, the Error Rate showed decreasing
trend when comparing the first and the last session. More-
over, the standard deviation has a similar behavior, thus
supporting the hypothesis that a higher training involvement

TABLE II
SCORES OF THE SYSTEM USABILITY SCALE (SUS)

Participant Control S1 S2 S3 S4
p1 D 70.00 77.50 85.00 85.00

S 55.00 57.50 77.50 85.00
p2 D 45.00 52.50 60.00 65.00

S 72.50 70.00 77.50 80.00

TABLE III
SCORES OF THE NASA - TASK LOAD INDEX (NASA-TLX)

Participant Control S1 S2 S3 S4
p1 D 45.01 45.84 26.90 33.75

S 63.20 68.57 52.99 43.24
p2 D 68.96 73.94 49.27 42.37

S 35.43 33.77 23.46 27.71

of the participant results in a finer control for the proposed
systems. In addition, the overall Success Rate confirms the
learning process over sessions for both participants. For the
two control strategies, the mean of the Success Rate in S4
outperforms S1. The reduction of the standard deviations
computed on Success Rate over sessions demonstrates im-
provement in prosthesis control skills. Concerning the Path
Efficiency, it has a similar trend to the aforementioned scores
when considering the first and last sessions for both the
control strategies. It underlines the training of the participants
and their increasing ability to take shorter routes in the joint
space when reaching the target positions. The results are
reported separately for each DoF to highlight, if present, the
ability to control one joint better than the others. As for the
Time Efficiency, it increased over the sessions meaning that
the participants were able to accomplish the task in a shorter
time. Although the stepwise control has narrower tolerance
ranges than direct control, it achieved more promising re-
sults. The authors hypothesize that stepwise control by design
is more reliable when holding grips for a long time since the
prosthesis stops in the last reached position in case of muscle



relaxation.
The results of TAC test scores are also reflected in the

results of the questionnaires. In S1 medium scores were
given by the naive subjects. For both questionnaires, the
SUS and the NASA-TLX, the scores improved considerably
from the first to the last session. These results indicate that
the usability is estimated to be higher and the workload
to be lower over time. This is another indicator of the
usefulness of the multi-session setup for the evaluation of
prosthesis control. In the future, this pilot study needs to
be extended to a larger population to confirm these initial
results. Furthermore, with more participants, single factors
from the questionnaires can be identified which contribute
most to the change in usability and workload, respectively.

The two proposed control paradigms might be crucial in
prosthesis applications since they allow to simultaneously
control a 3-DoFs prosthesis in real-time. An important aspect
of these control paradigms is the short training time since
just 3 s of sEMG signal are acquired for each control action.
Therefore, the RR model was initially trained on 15s of
sEMG (d = 5) for direct control and 21s of sEMG (d =
7) for the stepwise control. Additionally, the use of 16
sEMG channels (2 Myos) was suitable to simultaneously
and proportionally control the 3-DoFs Hannes system [9].
However, this setup has some limitations in the application to
amputees due to its dimensions. Therefore, we are currently
running experiments on prosthesis users exploiting fewer
sEMG electrodes with smaller shapes. Moreover, it may be
worth studying the role of higher resolution or number of
sEMG sensors on prediction accuracy by exploiting smaller
electrodes.

In future applications, both control strategies might be
embedded in the prosthetic device allowing the user to switch
between algorithms depending on their needs. The results of
this pilot study suggest that direct control could be more
natural and intuitive. This could be due to the replication
of the natural encoding scheme of the hand [7, 18]. In
contrast, the stepwise control could be more dexterous and
robust thanks to its stability in the movements. Overall, these
encouraging results must be confirmed on a larger population
of healthy subjects and subsequently verified on individuals
with amputation, thus assessing such performance for pros-
thesis users.
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