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The Hopfield model is a paradigmatic model of neural networks that has been analyzed for many
decades in the statistical physics, neuroscience, and machine learning communities. Inspired by the
manifold hypothesis in machine learning, we propose and investigate a generalization of the standard
setting that we name random-features Hopfield model. Here, P binary patterns of length N are generated by
applying to Gaussian vectors sampled in a latent space of dimension D a random projection followed by a
nonlinearity. Using the replica method from statistical physics, we derive the phase diagram of the model in
the limit P;N;D → ∞ with fixed ratios α ¼ P=N and αD ¼ D=N. Besides the usual retrieval phase, where
the patterns can be dynamically recovered from some initial corruption, we uncover a new phase where the
features characterizing the projection can be recovered instead. We call this phenomena the learning phase
transition, as the features are not explicitly given to the model but rather are inferred from the patterns in an
unsupervised fashion.

DOI: 10.1103/PhysRevLett.131.257301

The Hopfield model (HM) [1] is a paradigmatic con-
nectionist model of associative memory with biological
plausibility that allows the dynamical retrieval of stored
patterns from corrupted observations. In the case of
uncorrelated patterns, retrieval is possible for a number
of patterns that scales linearly with the system size N, and
the critical prefeature can be computed to high precision
using spin-glass theory techniques [2].
Following Hopfield’s seminal work, several generaliza-

tions have been investigated. A recent surge of interest
involves generalizations that go beyond pairwise inter-
actions and yield polynomial [3,4] or even exponential
capacity [5–7]. Notably, the modern Hopfield network
proposed in [6] is closely related to the attention mecha-
nism that has revolutionized deep learning in the past
years [8]. Other research lines preserve the pairwise
structure of the standard Hopfield model (SHM) while
proposing different (non-Hebb) rules for the couplings in
order to address the problem of correlation among
patterns decreasing the capacity [9–13]. Many sensible
models of correlation in and among patterns have been
proposed. For example, in [14] the authors study a biased
distribution of binary patterns, that can even be general-
ized to a hierarchical structure of correlation as it was
discussed in [15,16]. Another approach is to consider
correlations in the form of Markov chains [13], which can
be used to produce a correlation length both between
different spins of a given pattern and between the same
spin in different patterns.

Most theoretical studies of (generalized) HMs assume
simple distributions for the patterns [2,3], while in practical
applications the patterns are linearly or nonlinearly encoded
from and decoded to a different space [17].
In this work, we addressed this limitation by proposing a

generative model for the patterns where each pattern is
produced by the linear combinations of a fixed vocabulary
of what we call features weighted by pattern-specific
coefficients, followed by an elementwise nonlinearity.
We analyze the model in the high-dimensional regime
using the replica method for the statistical physics of
disordered systems.
This data-generating process generalizes the structure of

linear superposition proposed in [18], where it was dis-
cussed in relation to the mapping between a Hopfield
network and a restricted Boltzmann machine. A similar
linear (but dense) mapping has been discussed in [19,20].
Our model is also deeply related to the so-called hidden-
manifold model [21], which has been used as an analyti-
cally solvable model of feed-forward neural networks
fitting data points that live on a low-dimensional submani-
fold of their embedding space. In fact, this low-dimensional
latent structure is typical of many real-world datasets, e.g.,
the ones made of natural images. Here, we do not modify
the Hebb rule, as we will see that it is enough to produce a
new behavior of the model, in conjunction with the
structure of correlation that we choose. In fact, we observe
that if the correlations in the data are strong enough, the
model switches from a storage phase to a learning phase, in
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the sense that attractors appear corresponding to the
features in the data. We argue that this behavior opens
up a new paradigm for this model and shows that it may
have some phenomenology in common with neural
networks.
Model definition.—The Hopfield model [1] can be

defined as a statistical physics model with N binary spins
si ¼ �1, i ¼ 1;…; N, and an energy function with all-to-
all pairwise interactions

HðsÞ ¼ −
1

2

X
i≠j

Jijsisj: ð1Þ

The coupling matrix J is defined through a set of P patterns
fξνgPν¼1 via the Hebbian rule

Jij ¼
1

N

XP
ν¼1

ξνiξνj: ð2Þ

In the standard statistical physics setting [2], ξνi are
independently and uniformly distributed binary spins. In
this work, instead, we consider structured patterns given by
a linear projection and a latent vector composed with a
nonlinearity:

ξνi ¼ σ

�
1ffiffiffiffi
D

p
XD
k¼1

cνkfki

�
; ð3Þ

where σð·Þ is a generic nonlinear function, fki is called the
matrix of features, and cνk is the matrix of coefficients; we
call this the random-features Hopfield model (RFHM). A
linear version of this structure is analyzed in Ref. [18]. The
specific case we consider through the paper is the one of
i.i.d. uniform binary features fki ¼ �1, i.i.d. standard
Gaussian coefficients cνk, and σ equal to the sgn function.
By tuningDwe can switch between weakly and strongly

correlated examples. In fact, in the αD → ∞ we expect to
recover the SHM as the examples become uncorrelated.
In this work, the numerical results and most of the

analytical ones are obtained in the limit T → 0. In this limit,
the update rule of each spin at time t reads

sðtþ1Þ
i ¼ sgn

�XN
jð≠iÞ

Jijs
ðtÞ
j

�
: ð4Þ

We use this update rule in an asynchronous way, meaning
that we update one spin at the time in random order
(see Sec. D1 in Supplemental Material [22] for a pseudo-
code). If a spin configuration s̃i satisfies the relation
s̃i ¼ sgnðPN

jð≠iÞ Jijs̃iÞ, then we say that s̃i is a fixed point

of the dynamics. If the dynamics converges to s̃i even when
a fraction of spins has been flipped, then s̃i is an attractor.
The original task of the Hopfield model is to store P

examples as attractors. This can also be seen as a denoising
operation, since the model is capable of retrieving the
stored patterns starting from noisy versions of them. In [2]
the authors computed the maximum number i.i.d. patterns
that can be retrieved, allowing for a small fraction of errors,
in the scaling regime where P ¼ αN as N grows to infinity
with α fixed. They obtain a critical value αc ≃ 0.138 such
that the model is able to retrieve all patterns if α < αc, while
above αc the model shows a first-order phase transition
referred as catastrophic forgetting and no storage is
possible: The fixed point of the dynamics is completely
uncorrelated with the patterns.
In our RFHM, the basic question that we are interested

in is whether the features fk can be attractors themselves,
and what happens to the attractors corresponding to the
patterns.
Replica analysis.—Since we are interested in the thermo-

dynamic limit N → ∞, we choose a regime where both P
and D are proportional to N. At the same time, we keep the
following ratios fixed:

α ¼ P
N
; αD ¼ D

N
: ð5Þ

These will be the control parameters for our model. They
are related via the relation α ¼ αTαD, where αT ¼ P=D.
In order to identify the phase transitions of the RFHM,

we want to compute the averaged free energy

ϕ ¼ lim
N→∞

−
1

βN
hlnZic;f; ð6Þ

where we specified that we have two sources of disorder that
must be averaged: the coefficients c and the features f. In
other words, we consider the quenched average hlnZiξwhere
the patterns have a structured distribution. Z ¼ P

s e
−βHðsÞ is

thepartition function,where the sum is takenover the possible
values of the spins si ¼ �1 for i ¼ 1;…; N.
In order to compute the average of lnZ in Eq. (6), we use

the replica method [23] that consists in writing the average
of logarithm as hlnZi ¼ limn→0ðhZni − 1Þ=n.
The replicated partition function averaged over the

disordered reads

hZni¼e−ðβ=2ÞPn
X
fsai g

Z Y
νa

dma
νffiffiffiffiffiffi

2π
p eðβ=2Þ

P
P
ν¼1

P
n
a¼1

ðma
νÞ2

×

�Y
νa
δ

�
ma

ν −
1ffiffiffiffi
N

p
XN
i¼1

σ

�
1ffiffiffiffi
D

p
XD
k¼1

cνkfki

�
sai

��
c;f

;

ð7Þ
where we introduced the set of auxiliary variables

ma
ν ¼

1

N

X
i

ξνisai ; a∈ ½n�; ν∈ ½P�: ð8Þ

We call these pattern magnetizations to distinguish them
from another set of order parameters, whose definition we
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anticipate here:

μak ¼
1

N

X
i

fkisai ; a∈ ½n�; k∈ ½D�: ð9Þ

We call these the feature magnetizations. We want to see if
there is a region of the αD vs α phase diagram where μk > 0
for some k. We also want to see what happens to the pattern
magnetizations in the same phase diagram.
Similarly to [2], we make some ansatz on the structure of

the solution for both these order parameters. We study two
cases: the case where the model retrieves only one of the
features and the case where the model retrieves only one of
the examples.
Feature retrieval.—In order to analyze the retrieval of

one feature only, we impose that μ1 ¼ Oð1Þ and μk ¼
Oð1= ffiffiffiffi

N
p Þ for k > 1. At the same time, we impose

mν ¼ Oð1= ffiffiffiffi
N

p Þ; ∀ ν. In the thermodynamic limit, this
means that we look for a solution of the form

μ ¼ ðμ; 0;…; 0Þ; m ¼ ð0;…; 0Þ: ð10Þ

In this regime, in order to compute the average over the
coefficients c we must pay particular attention to the term
k ¼ 1 in Eq. (7), since it by itself can give a finite
contribution:

1ffiffiffiffi
N

p
XN
i¼1

σ

�
1ffiffiffiffi
D

p
XD
k¼2

cνkfki þ
1ffiffiffiffi
D

p cν1f1i

�
sai : ð11Þ

We show in Sec. A in Supplemental Material [22] that the
resulting distribution of ma

ν is a Gaussian N ðma
ν ; m̄; QÞ

with mean

m̄a
ν ¼

cν1ffiffiffiffiffiffi
αD

p μ1κ1 ð12Þ

and covariance matrix

Qab ¼ κ2�qab þ κ21p
ab; ð13Þ

where we defined the following quantities:

qab ¼ 1

N

X
i

sai s
b
i ; ð14Þ

pab ¼ 1

D

X
k>1

μakμ
b
k; ð15Þ

and coefficients κ0 ¼
R
DzσðzÞ, κ1 ¼

R
Dz zσðzÞ, κ2 ¼R

Dzσ2ðzÞ, and κ2� ¼ κ2 − κ21 − κ20. This calculation goes
under the name of Gaussian equivalence theorem (GET),
and it has been developed in [21,24–28] and applied in
cases with zero mean. The replicated partition function

now reads

hZni ¼ e−ðβ=2ÞPn
X
fsai g

Z Y
νa

dma
νffiffiffiffiffiffi

2π
p

× exp

�
β

2

XP
ν¼1

Xn
a¼1

ðma
νÞ2

��Y
ν
N ðmν; m̄;QÞ

�
c1;f

;

ð16Þ

where h� � �i represents the average over the remaining
quenched disorder f and c1 ¼ fcν1gPν¼1.
We solve this model in the replica-symmetric (RS)

ansatz. For the complete derivation, see Sec. B in
Supplemental Material [22]. At the end of the long but
straightforward calculation, we end up with a free energy
fRS that depends on eight order parameters: the feature
magnetization μ, the overlap between different replicas q,
the diagonal and off-diagonal parts of pab, and their four
conjugate parameters μ̂, q̂, p̂d, and p̂. Given the control
parameters β, α, and αD, we obtain the physical value of the
order parameters by extremizing the free energy:

fRSopt ¼ extr
μ;μ̂;q;q̂;pd;p̂d;p;p̂

fRSðμ; μ̂; q; q̂; pd; p̂d; p; p̂Þ: ð17Þ

Deriving fRS with respect to the order parameters, we
obtain a set of eight equations that must be solved together
(the so-called saddle-point equations). We write here only
two of them, leaving the rest to Supplemental Material [22]
[see Eq. (B31)]:

q ¼ Ez;f tanh2
	
β


z

ffiffiffiffiffiffi
αq̂

p
þ μ̂f

��
; ð18Þ

μ ¼ Ez;ff tanh
	
β


z

ffiffiffiffiffiffi
αq̂

p
þ μ̂f

��
; ð19Þ

where z ∼N ð0; 1Þ and f ∼ Unifðf−1;þ1gÞ. We can
observe that these equations resemble closely the ones
for q andm in the SHM (see [2]): Now f has the role of the
retrieved pattern and μ has the role of the magnetization.
The major difference is that in our case the equation for the
conjugate q̂, reported in Supplemental Material [22]
[Eq. (B31)], is more complicated and depends on the rest
of the order parameters. A minor difference is that, inside
the integrals of the first two equations, μ̂ appears instead
of μ.
The solution to these equations in the limit β → ∞ is

shown in Fig. 1: For α > αcritðαDÞ, the feature magnetiza-
tion becomes finite with a discontinuous jump, showing
that the model is actually capable of storing the features f
as attractors. This jump is a first-order phase transition
similarly to the catastrophic forgetting but with the impor-
tant difference that the magnetization becomes finite when
α is larger rather than smaller than a critical value. The

PHYSICAL REVIEW LETTERS 131, 257301 (2023)

257301-3



critical point αcritðαDÞ rapidly increases when αD increases,
up to the point where it diverges for αD ≃ 0.138. This
critical value is numerically identical to the critical capacity
of the SHM, and it is not a coincidence. In fact, in the limit
P ≫ N, D, we have that the coupling matrix becomes (up
to a feature that can be reabsorbed in the temperature) that
of a SHM where the patterns are replaced by features:

1

P

XP
ν¼1

ξνiξνj ≃P→∞
κ21

1

D

XD
k¼1

fikfjk: ð20Þ

See Sec. B5 in Supplemental Material [22] for the deriva-
tion. Therefore, the saddle-point equations of the RFHM
must become identical to those of the SHM with μ playing
the role of the magnetization and f that of the retrieved
patterns (the correct scalings for this limit and the explicit
calculation are shown in Sec. B4d in Supplemental
Material [22]). One way to look at this behavior is to fix
a value of α and to increase αD, thus moving horizontally in
the phase diagram in Fig. 1(a): When αD is low enough, the
model is able to retrieve the features; then, when they
become too many, the equivalent of a catastrophic forget-
ting happens. This transition happens at the Hopfield
critical capacity only if α ¼ ∞, where the matching
between the two models is perfect.
The comparison between this analytical solution and

numerical simulations is shown in Fig. 1(b), where we find
a very good agreement for αD ¼ 0.03. We test other ranges
of α and αD in Supplemental Material [22] (see Fig. D.3),
and we find again good agreement.
Pattern retrieval.—For the second case, we say that

m1 ¼ Oð1Þ and mν ¼ Oð1= ffiffiffiffi
N

p Þ for ν > 1. At the same

time, we impose that μk ¼ Oð1= ffiffiffiffi
N

p Þ; ∀ k. In the thermo-
dynamic limit, this means that we look for a solution of the
form

μ ¼ ð0;…; 0Þ; m ¼ ðm; 0;…; 0Þ: ð21Þ

In this setting, we must be careful to apply the GET only
to the vanishing pattern magnetizations, leaving the terms
involving m1 as they are. The resulting expression of the
average replicated partition function reads

hZni¼ e−ðβ=2ÞPn
X
fsai g

Z Y
νa

dma
νffiffiffiffiffiffi

2π
p

�Y
ν

N ðmν;0;QÞ

×exp

�
β

2

Xn
a¼1

ðma
1Þ2þ

β

2

XP
ν>1

Xn
a¼1

ðma
νÞ2

�

×
Y

a
δ

�
ma

1 −
1ffiffiffiffi
N

p
XN
i¼1

σ

�
1ffiffiffiffi
D

p
XD
k¼1

c1kfki

�
sai

��
c̃1;f

;

ð22Þ

where h� � �i represents the average over the remaining
quenched disorder f and c̃1 ¼ fc1kgDk¼1.
As we did for the feature retrieval case, we solve the

model within the RS ansatz and we report the complete
calculation in Supplemental Material [22] (Sec. C). This
time set the order parameters do not include μ and μ̂, but it
does include m (without the need for a conjugate variable
m̂). The order parameters also include the auxiliary
variables t and t̂ that are needed to linearize a term in

(a) (b)

FIG. 1. Storage and learning transitions. (a) The phase diagram of the RFHM shows three regions: the storage phase (below the orange
line), where patterns ξν are attractors; the learning phase (above blue line), where the features fk are attractors; and the spin-glass phase
(between the lines), where the attractors are uncorrelated with either ξν or fk. The two asymptotes are at α ≃ 0.138 and αD ≃ 0.138.
(b) The plot shows the feature magnetization μ along a vertical cut of the phase diagram: Increasing α, the feature magnetization μ
becomes different from zero with a first-order phase transition. The dashed line is the analytical prediction of the RS theory, while the
markers are numerical experiments averaged over many samples for each value of α. The simulations are performed initializing the
model to a feature fk, running the update rule (4), and then measuring μk at convergence. We used 100, 50, 20, and ten samples for
increasing values of N.
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an intermediate integral. The definition of t is t ¼
ð1=NÞPN

i v̂isi=, where v̂i are the conjugate variables of
the auxiliary variables vi ¼ ð1= ffiffiffiffi

D
p ÞPD

k cνkfki. The aux-
iliary variables vi and v̂i do not appear in the free energy,
because they can be integrated right away. In summary, the
set of nine order parameters is m; q; q̂; pd; p̂d; p; p̂; t; t̂.
Again, we show here only how the equation for m and q

changes from the standard case in [2], and we write the rest
of them in Supplemental Material [22] [Eq. (C23)].

q ¼ Ex;v tanh2½β ðvt̂þ σðvÞmþ xÞ� ð23Þ

m ¼ Ex;vσðvÞ tanh ½βðvt̂þ σðvÞmþ xÞ� ð24Þ

where v ∼N ð0; 1Þ and x ∼N ð0; αq̂ − t̂2Þ. We solve the
full set of saddle point equations in the limit β → ∞ and we
show the results in Fig. 1(a). A useful limit to consider is
αD → ∞: in this limit the equations converge to the SHM
ones (see Sec. C8 in the SM), which was expected since the
examples become uncorrelated. This produces an horizon-
tal asymptote at α ≃ 0.138 for the spinodal line of m.
Decreasing αD the example patterns become more corre-
lated and the catastrophic forgetting happens at a lower
value of α, until it happens at α ¼ 0 for αD → 0.
The comparison between this analytical solution and

numerical simulations is shown in Fig. 2: we find that, as
we move from the αD ≫ 1 regime (where we know that the
simulations must match the SHM theory), the catastrophic
forgetting happens at a value of α lower than the predicted
one; furthermore, the mismatch increases for lower values
of αD (see also Fig. D.4 in the SM). This last fact suggests
that strong correlations might be responsible of a failure of
the RS ansatz. In fact, in [2], the authors found that the

correct ansatz at zero temperature is indeed the full-replica-
symmetry-breaking one, but the corrections to the RS
calculations are small in their model. To support this
hypothesis, we checked the entropy of our solution and
we found that it becomes more negative the smaller the
value of αD (see Fig. D.5a in the SM). We also ruled out a
possible inconsistency of the ansatz (21): in Fig. D.5b in the
SM we show that both the average and the maximum of
fmνgν>1 go to zero as N → ∞, consistently with Eq. (21).
Learning transition.—Summing up the results, we have

a phase diagram with two transition lines demarking three
regions [see Fig. 1(a)]: the feature retrieval region, for
which we obtain a nonzero feature magnetization solution
to saddle point (10); the pattern retrieval region, for which
we have nonzero pattern magnetization solutions for
Eq. (21); and a spin-glass region between the two. The
behavior that we call learning transition can be observed
following a vertical line in the phase diagram, namely,
fixing a value of αD and increasing α. Starting from small α,
we obtain a model of storage of correlated patterns: The
capacity is smaller than the uncorrelated case, but the
phenomenology is similar, since there is a maximum
number of patterns that can be stored, and attempting to
store a larger number results in catastrophic forgetting. The
surprising result is that, when we have αD ≤ 0.138 (i.e.,
when the correlations are strong enough), if we keep
increasing the number of patterns, we find another phase
beyond the spin-glass one. In this new phase, attractors
corresponding to the features fk appear. If we interpret the
patterns ξμ as an unsupervised training dataset, we see that,
if the dataset is big enough, the model is capable of
inferring the features hidden in the data. This behavior
resembles the feature extraction that deep neural networks
and some shallow generative models perform [4,29–31].
Our model represents an extension to the classical Hopfield
settings that, while being amenable to theoretical analysis,
can potentially capture the phenomenology of much more
complex architectures, similarly to what the hidden-mani-
fold model does for the supervised learning phenomenol-
ogy [21]. An additional step in this direction would be to
consider the features fk as part of the machine instead of the
data and the external stimuli as entirely provided by c. In
this setting, one could think of a learning rule beyond the
Hebb one, where the features are chosen to maximize the
likelihood of a training set. It could be also interesting to
extend the analysis proposed in this work to modern
versions of the Hopfield model, such as the superlinear
capacity ones analyzed in Refs. [4,6,7].

The code used in this work is available [32].

We thank Marc Mézard for many useful comments and
discussions. M. N. acknowledges the support of
LazioInnova—Regione Lazio under the program Gruppi
di ricerca 2020—POR FESR Lazio 2014–2020, Project
NanoProbe (Application Code No. A0375-2020-36761),
and PNRR MUR Project No. PE0000013-FAIR.

FIG. 2. Comparison with numerical results for the retrieval of
one pattern. Each pixel represents the mean pattern magnetization
for given values of α and αD, averaged over 25 samples of size
N ¼ 2000. The simulations are performed initializing the model
to a pattern ξν, running the update rule (4), then measuring mν at
convergence.
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