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A B S T R A C T

Cell migration is one of the most studied phenomena in biology since it plays a fundamental role in many
physiological and pathological processes such as morphogenesis, wound healing and tumorigenesis. In recent
years, researchers have performed experiments showing that cells can migrate in response to mechanical
stimuli of the substrate they adhere to. Motion towards regions of the substrate with higher stiffness is called
durotaxis, while motion guided by the stress or the deformation of the substrate itself is called tensotaxis. Unlike
chemotaxis (i.e. the motion in response to a chemical stimulus), these migratory processes are not yet fully
understood from a biological point of view. In this respect, we present a mathematical model of single-cell
migration in response to mechanical stimuli, in order to simulate these two processes. Specifically, the cell
moves by changing its direction of polarization and its motility according to material properties of the substrate
(e.g., stiffness) or in response to proper scalar measures of the substrate strain or stress. The equations of motion
of the cell are non-local integro-differential equations, with the addition of a stochastic term to account for
random Brownian motion. The mechanical stimulus to be integrated in the equations of motion is defined
according to experimental measurements found in literature, in the case of durotaxis. Conversely, in the case
of tensotaxis, substrate strain and stress are given by the solution of the mechanical problem, assuming that
the extracellular matrix behaves as a hyperelastic Yeoh’s solid. In both cases, the proposed model is validated
through numerical simulations that qualitatively reproduce different experimental scenarios.
1. Introduction

Cell migration is a critical phenomenon occurring in several bi-
ological processes, such as morphogenesis, wound healing and tu-
morigenesis [1,2]. Specifically, cell motility deficiency is associated
with the occurrence of anomalies and complications [3,4], such as
neuronal development disorders, immunodeficiency, and neurodegen-
erative diseases, that can compromise short-term or long-term health of
individuals. Understanding cell migration as an integrated and coordi-
nated process, considering both the stimuli and mechanisms involved,
may help in the development of new therapeutic approaches to fight
pathological processes [5].

The initiation of the whole process of cell migration requires the
polarization of the cell in order to discriminate the leading edge from
the trailing edge and implies a loss of symmetry from the stationary
configuration [6–10]. Cell polarization can be either self-regulated,
leading to either an unbiased or a persistent random walk in the
absence of external signals [11], or triggered by various stimuli, in-
cluding diffusible chemical cues (chemotaxis [12,13]), substrate-bound
chemicals or cellular adhesion sites (haptotaxis [12,14]), mechani-
cal substrate compliance (durotaxis [15–19]), mechanical deformation
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of the substrate (tensotaxis [15,20]), geometric features of the sub-
strate (topotaxis [12,21]), electric fields (galvanotaxis [12,22]), light
intensity gradients (phototaxis [23,24]), fluid flows (rheotaxis [25,
26]), acoustic waves (acoustotaxis [27]). The external stimulus is con-
verted into internal gradients of signaling molecules that guide the
cytoskeleton mechanisms performing the motile response [9,28,29].

For the purpose of this work, we will focus on cell movement
driven by mechanical stimuli, i.e. durotaxis and tensotaxis. One of
the first experimental studies in this respect was developed by Lo
et al. [15] who evaluated the influence of the stiffness gradient on
cellular locomotion, and introduced the term durotaxis to denote this
rigidity-guided cell movement. In their experiments, performed on
a collagen-coated polyacrylamide substrate sheet, half soft and half
stiff, fibroblasts either migrated onto the stiffest side when they are
initially placed on the soft side, or stayed on the stiffest side when
they are seeded there. These results showed that fibroblasts are able
to implement an active tactile exploration of their environment and
that they prefer stiffer matrices to softer ones. Similar results have been
obtained more recently in [30] using pancreatic cells. The molecular
mechanisms regulating such cellular response to the stiffness of the
vailable online 10 December 2023
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Table 1
Summary table with the models for cell migration due to mechanical stimuli reviewed in Section 1.
Model Processes Dim. Ref.

Continuum Durotaxis, tensotaxis 2D [20]
Continuum Tensotaxis 2D [5]
Continuum Tensotaxis 2D [41]
CPM Durotaxis 2D [42]
Hybrid CPM and FEM extended
with ODE–based models for FA turnover

Durotaxis, FA evolution 2D [16]

IBM Durotaxis, cell–matrix
interaction

2D [43]

Discrete Durotaxis 2D [44]
Hybrid discrete–continuum Tensotaxis 2D [40]
Level set method Durotaxis, tensotaxis, cell

shape evolution
2D [35]

Stochastic Fokker–Planck equation Durotaxis 1D [45]
Stochastic Fokker–Planck equation Durotaxis 2D [46]
Tensegrity Durotaxis, tensotaxis 1D, 3D [47]
Continuum model of fluid–structure
interaction

Tensotaxis 2D, 3D [37]
extracellular matrix (ECM) are still not completely understood [12,31].
However, a key role is surely played by integrins and focal adhesions
(FAs), which are protein complex consisting of clustered integrins and
other cytoplasmic molecules connecting the F-actin cytoskeleton with
the ECM. At these adhesion sites, integrins transduce mechanical forces
generated by the actin retrograde flow and myosin II to the ECM. They
also recruit cytoplasmic proteins and activate a mechanism that leads
to the alteration of the functions of mechanosensitive proteins within
adhesions to elicit biochemical signals that regulate both rapid and
long-term responses in cellular mechanics (mechanotransduction) [32,
33]. Integrins dynamically assemble and disassemble, at a rate that
is regulated biochemically and mechanically: the disassembly rate is
higher on soft ECMs and is lower on stiffer ECMs, so that FAs stabilize
more easily on stiffer ECMs [16].

For what concerns tensotaxis, it has been shown that cells tend to
move towards tensile stresses and away from compressive stresses [5,
15,20,34–40]. One of the first experimental evidence of this behavior
can be found in [38]. Using clusters of epidermal cells artificially
extended with a micromanipulated needle, the authors observed that
protrusive activity perpendicular to the axis of tension was dramati-
cally suppressed, while cytoskeletal microfilaments aligned themselves
parallel to the tension. Further insights were provided by Belussov
et al. [36]: evaluating the behavior of the cells in a ventral ectodermic
explant under stress, they observed that cells moved to more strained
regions of the substrate. Moreover, Lo et al. [15], manipulating a
substrate with a microneedle, observed that cells migrate towards the
needle when the substrate is pulled away from the cell (tensile stress),
and conversely the cell move away from the needle when the substrate
is pushed towards the cell (compressive stress). In this respect, even
though the mechanotransduction mechanism is not understood yet,
it has been proposed that the process of mechanosensing could be
mediated by the deformation energy associated with the substrate,
rather than stresses and stiffness. In fact, in [34], the authors seeded
cells on substrates of the same stiffness with different levels of pre-
strain, finding out that cell are able to recognize the presence of a
pre-strain, exhibiting a stiffer cytoskeleton on stretched material than
on unstretched substrate.

The study of cell migration in response to external stimuli has
gained attention also from the mathematical and physical communi-
ties. However, the theoretical and computational modeling approaches
proposed in literature to describe cell motion guided by external cues
mainly regard the process of chemotaxis, while only recently some
mathematical models have been proposed to describe durotaxis and
tensotaxis.

Focusing the attention on the mathematical description of cell mo-
tion driven by mechanical stimuli, one of the first continuum
mechanobiological models was developed by Moreo et al. [20] to study
2

the adherent cell migration onto a 2D environment. In this work, the
cell–ECM interaction was characterized as an elastic spring system,
representing the main components of the cell (microtubules of the
cytoskeleton, actin bundles and the actomyosin machinery) and the ma-
trix. In [5], the previous model was generalized to study the migration
of adherent cells inside a porous medium, considering the influence of
the extracellular matrix and of the interstitial fluid on the behavior
of cells. Another continuum model is developed in [41], where the
authors show that cells moving on predeformed thin elastic membrane
follow the direction of increasing strain of the substrate. In [16,42], a
Cellular Potts Model (CPM) was used to simulate single cell migration
over flat substrates with variable stiffness and the numerical results
showed a good qualitative agreement with experimental observations.
However, a quantitative validation of the proposed model would be
impossible, since some of the parameters cannot be associated directly
with physically known quantities.

Agent (or individual) based models have been largely used to
model cell migration driven by mechanical stimuli, as well. Specifically,
in [43] the authors proposed a force-based individual-based modeling
framework that links single-cell migration with matrix fibers and cell–
matrix interactions, highlighting the effect of the cell’s environment
on its migration. A similar model, proposed in [44], consists of a cell,
represented by a polarization vector and a sensing region, generating
contractile forces on a deformable substrate coarse-grained into an
irregular triangulated mesh. A hybrid discrete-continuum description
of cells migrating on a deformed substrate using an agent-based model
has been proposed also in [40], where the cell moving probabilities
are influenced by deformations within the substrate and cells prefer-
entially follow the direction of highest strain. On the other hand, a
very different mathematical technique has been used in [35], where
the authors employed a level set method to study keratocyte cell
shape evolution depending on the substrate stress either generated
by the cells themselves or externally applied. Lastly, regarding other
modeling approaches, stochastic models exploiting the Fokker–Planck
equation [45,46], tensegrity models [47], and multiphysics phase-field
model of fluid–solid interaction [37] have been proposed. In Table 1 we
gather the models for cell migration in response to mechanical stimuli
reviewed in this section.

Bearing in mind the above mentioned biological and mathematical
works on cell motion and drawing inspiration from the model presented
by Colombi et al. [48] for cell motion in response to chemotaxic cues
and ECM density, in this work we present a new non-local integro-
differential mathematical model for the migration of a single-cell onto
a bidimensional substrate in response to mechanical cues, to reproduce
the phenomena of durotaxis and tensotaxis. In its core the model
describes a Brownian motion of a point particle in a two dimensional
space, with a sensing region which is a circle of the dimension of the
protruding cell. The framework is then specialized to phenomenologi-

cally and qualitatively describe the motion of the cell during durotaxis
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and tensotaxis. In the former case, we will deal with different patterns
of substrate stiffness inspired by the experimental literature. In the lat-
ter, substrate deformation (and relative strain/stress) will be computed
numerically by assuming that the material behaves as a hyperelastic
Yeoh’s solid, as tested experimentally [49], and the in-silico cell will
migrate in response to proper scalar measures of the substrate me-
chanical response. It is important to clarify that we will not model the
subcellular mechanisms involved in the migration, but we will give a
purely phenomenological description of their effect at the cellular scale.
Therefore, durotaxis and tensotaxis will be treated separately, within
the same mathematical framework, even though they likely involve
similar subcellular mechanisms, i.e. the mechanotransduction process
in response to either substrate stiffness or substrate strains and stresses
could activate the same intracellular pathways [50–52].

Specifically, in Section 2 we present the mathematical model for
cell migration onto a bidimensional matrix, in response to mechanical
stimuli, describing first the general structure of the non-local integro-
differential mathematical framework (Section 2.1) and then the specific
choices of the functional fields involved in the model (Sections 2.2–2.3)
that allow us to reproduce qualitatively the behavior of cells during
durotaxis and tensotaxis. The existence and uniqueness of the solution
of the proposed model, as well as its continuous dependence on the
initial condition, is discussed in Appendix A. Then, in Section 3, we
give some details on the numerical implementation of the model for
cell dynamics and the mechanical problem for substrate deformation.
Section 4 is devoted to numerical results showing the potentiality of
our model, in the case of both durotaxis (Section 4.1) and tensotaxis
(Section 4.2), by considering different scenarios inspired by the exper-
imental literature and model parameters in the biological range (see
Appendix B for the comprehensive derivation of the parameters). In
Section 5, after a short summary of the main outcomes of our work,
we discuss the limitations of the proposed model and possible future
developments.

2. Mathematical model

2.1. General mathematical framework for cell dynamics in response to
mechanical stimuli

The proposed model is based on an discrete representation of the
single cell coupled with a continuous description of the mechanical
properties and behavior of the substrate. The planar substrate on
which the cell is seeded is modeled as a thin solid with negligible
thickness, whose upper face is represented by an open and connected
set 𝛺. Thus, the representative cell is described as a point-wise particle
characterized, at any instant of time 𝑡 ∈ R+

0 , by the position of its
center 𝐱𝑝(𝑡) ∈ 𝛺 (see Fig. 1). The extreme viscosity of biological
environments leads inertial effects on cell dynamics to be negligible.
Thus the time evolution of cell position can be described through a first-
order differential equation, i.e. cell dynamics is assumed proportional
to cell velocity rather than to cell acceleration. As recalled in Section 1,
in the absence of environmental stimuli or other individuals a cell
performs an unbiased Brownian motion exploring the surrounding en-
vironment, whereas when the cell detects an external cue, it can direct
its movement in response to it. Therefore, the cell overall displacement
can be assumed as resulting from the superposition of a random term
implementing cell Brownian motion and a directional term triggered,
in the case of our interest, by environmental mechanical stimuli. This
leads to the following stochastic differential equation for cell dynamics

d𝐱𝑝(𝑡) =
√

2𝐷 d𝐁(𝑡) + 𝑣(𝑡)𝐰(𝑡)d𝑡. (1)

In the first term in Eq. (1), 𝐁(𝑡) denotes a vector Wiener process [53–
55], while 𝐷 is the diffusion coefficient characterizing cells Brownian
motion on ECM at the macroscopic scale. In fact, according to [53,56],
the term

√

2𝐷 is a good approximation of the magnitude of cell random
3

Fig. 1. System representation. The upper face of the substrate is represented by an
open and connected set 𝛺. The cell is described as a point-wise particle located at
𝐱𝑝(𝑡) ∈ 𝛺. The vector 𝐰 denotes the present direction of polarization of the cell while
𝐖 is the preferred direction of polarization dictated by the environmental mechanical
stimuli 𝑐 and 𝑚 sensed by the cell within the sensing region (𝐱𝑝) through its focal
adhesion (FAs).

motion. The second term in Eq. (1), instead, incorporates the cell
direction of polarization 𝐰 ∈ R2 (see again Fig. 1) and the biased
cell motility 𝑣 ∈ R+, both triggered by the environmental stimuli.
Indeed, when the cell senses an environmental cue, it reorganizes and
reassembles its internal cytoskeletal structure in order to distinguishing
a leading and a rear edge, thus identifying its direction of polarization.
The cell ability to actually migrate in the direction of polarization,
is given by the cell motility, which is related to the rate of assembly
and disassembly (at the leading and at the rear edge, respectively)
of stable FAs that anchor cell cytoskeleton to the ECM, as well as by
polymerization/depolymerization of actin and its retrograde flow (see
Section 1). In our setting, in agreement with Colombi et al. [48], we
explicitly separate the description of the cell direction of polarization
and motility to account for situations in which they are dictated by
potentially different environmental stimuli. For instance, it has been ex-
perimentally observed that cells placed on a substrate undergoing cyclic
stretching can reorient themselves without experiencing an overall
movement in the direction of reorientation [57]. Furthermore, although
in the context of chemotaxis, it has been shown that directional sens-
ing by eukaryotic cells does not necessarily require polarization of
receptors and, at the same time, in cells completely immobilized by
inhibitors of actin polymerization, there could be an undiminished
polarized response [58,59]. In this work, even though cells are able
to simultaneously respond to many different cues, we assume, in a
first approximation, that 𝑣 and 𝐰 are respectively affected by a single
external cue. We hereafter denote by 𝑚 ∶ R+

0 × 𝛺 → [0, 1] the
mechanical cue determining the cell motility 𝑣, and by 𝑐 ∶ R+

0 ×𝛺 → R
the one triggering cell reorientation. These fields will be related to
the mechanical properties and behaviors of the substrate along with
its composition, to represent the proper mechanical cues driving cell
durotaxis and tensotaxis (see Sections 2.2 and 2.3, respectively).

For what concerns cell motility 𝑣 in Eq. (1), following the approach
proposed in [48], we define

𝑣(𝑡) = 𝑉𝑀 𝑓 (𝑀(𝑡, 𝐱𝑝(𝑡),𝐰(𝑡))), (2)

where 𝑉𝑀 > 0 is the maximum cell motility due to mechanosensing
processes and related to the maximum rate of renewal of FAs and
cytoskeletal reorganization. The function 𝑓 ∶ [0, 1] → [0, 1], to
be specified according to the process we are considering, non locally
measures the stimulus 𝑚 through its mean 𝑀 , perceived by the cell
ahead its center 𝐱𝑝 and along its polarization direction 𝐰 at time 𝑡, i.e.

𝑀(𝑡, 𝐱𝑝(𝑡),𝐰(𝑡)) =
1
𝑅 ∫

𝑅

0
𝑚
(

𝑡, 𝐱𝑝(𝑡) + 𝑟
𝐰(𝑡)

‖𝐰(𝑡)‖

)

d𝑟, (3)

where 𝑅 > 0 is the cell maximum protrusion length and ‖⋅‖ denotes the
Euclidean norm in R2. Eqs. (2)–(3) translate in mathematical term the
biological observation that the cell is able to sense the stimulus 𝑚 non-
locally along the direction of polarization, through specific adhesive
receptors (e.g. integrins) and proteins (e.g. small Rho GTPases) that are
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typically located towards the leading edge identified by the polarization
vector 𝐰 (i.e. ahead the cell center up to the protrusion end, located at

distance 𝑅 from 𝐱𝑝).
The reorganization of cytoskeletal filaments to identify or modify

he leading and rear edges of a cell is not an instantaneous process.
herefore, the cell polarization vector 𝐰 evolves in time, to align itself
owards the preferred direction of cell migration 𝐖 ∈ R2 (see Fig. 1),
etermined by the spatial distribution of the mechanical cue 𝑐. In

this respect, as proposed in [48], the cell direction of polarization is
assumed to evolve according to the following first order equation

d𝐰(𝑡)
d𝑡 = 1

𝜏

( 𝐖(𝑡, 𝐱𝑝(𝑡),𝐰(𝑡))
‖𝐖(𝑡, 𝐱𝑝(𝑡),𝐰(𝑡))‖ + 𝜀

− 𝐰(𝑡)
)

, (4)

where 𝜏 is the time needed by the cell to re-orient (persistence time)
and 𝜀 > 0 is a small constant parameter that ensures that the modulus
of the forcing term is smaller than one. It can be proved that Eq. (4)
ensures that ‖𝐰(𝑡)‖ ≤ 1 for any 𝑡 > 0, if initially ‖𝐰(𝑡 = 0)‖ =∶ 𝑤0 ∈ (0, 1]
(see Proposition 1 in [48]).

Accounting that the preferred direction of cell migration 𝐖 ∈
R2 is determined by cell ability to sense the surrounding environ-
ment through proper membrane receptors, we introduce the so-called
sensing region (𝐱𝑝(𝑡)) (see Fig. 1) where the cell may detect local
nvironmental properties and mechanical cues, i.e.

(𝐱𝑝(𝑡)) ∶= {𝐲 ∈ 𝛺 ∶ ‖𝐲 − 𝐱𝑝(𝑡)‖ ≤ 𝑅}. (5)

Even though this region is roughly assumed to be a circle around
the cell center with the radius equal to the maximum membrane
protrusion 𝑅, accordingly to biological observations, we will further
consider that the cell actually senses the mechanical properties of the
substrate only in correspondence of the membrane receptors connecting
the cell to the matrix [32,33,60–63] (as discussed in Section 1). This
phenomenological observation can be mathematically translated in the
following equation for the cell preferred direction

𝐖(𝑡, 𝐱𝑝,𝐰) =
1
𝐴 ∫(𝐱𝑝)

𝐾
(

‖𝐲 − 𝐱𝑝‖,
𝐲 − 𝐱𝑝

‖𝐲 − 𝐱𝑝‖
⋅

𝐰
‖𝐰‖

)

(6)

(𝑐(𝑡, 𝐲) − 𝑐(𝑡, 𝐳̄(𝐱𝑝,𝐰))
)

𝐲 − 𝐱𝑝
‖𝐲 − 𝐱𝑝‖

d𝐲.

n Eq. (6), 𝐳̄(𝐱𝑝,𝐰) = 𝐱𝑝+𝑎𝑅 𝐰
‖𝐰‖ , with 𝑎 ∈ (−1, 1), is a reference location

inside the cell used to evaluate the external stimulus incremental
changes along the direction of polarization of the cell. The kernel 𝐾 ∶
[0, 𝑅] × [−1, 1] → [0, 1] is a weight function that measures the capacity
of the cell to sense the quantity 𝑐, and 𝐴 is a normalization constant
defined as

𝐴 = ∫(𝐱𝑝)
𝐾

(

‖𝐲 − 𝐱𝑝‖,
𝐲 − 𝐱𝑝

‖𝐲 − 𝐱𝑝‖
⋅

𝐰
‖𝐰‖

)

d𝐲, (7)

whose value is independent of both 𝐱𝑝 and 𝐰. Notice that, in the
resent phenomenological model, despite we do not aim to describe the
ubcellular mechanisms occurring within the sensing region, the weight
unction 𝐾 implements the capacity of the cell to perceive a specific
xternal stimulus 𝑐 in a non-local and anisotropic way, depending on
he expression of membrane mechanosensing receptor. Indeed, the first
rgument of 𝐾 is the distance from the cell center 𝐱𝑝 (non-local sensing),

the latter estimates the angle between the vector (𝐲 − 𝐱𝑝) and the
normalized polarization vector 𝐰 (anisotropic sensing). Assuming the
independence of these two variations, we set

𝐾(𝑟, 𝑢) = 𝐾𝑟(𝑟)𝐾𝜃(𝑢), (8)

with 𝐾𝑟 ∶ [0, 𝑅] → [0, 1] and 𝐾𝜃 ∶ [−1, 1] → [0, 1]. It is worth to notice
hat the weight functions 𝐾𝑟 and 𝐾𝜃 can assume, each of them, the same
unctional form in modeling either durotaxis or tensotaxis, since they
epend on how the cell detects the substrate stimuli though integrins
nd FAs. For what concerns 𝐾𝑟, according to the biological observation
hat integrins and FAs primarily assemble and disassemble at the cell
4

rotrusions [16], we assume that the local amount of membrane recep-
ors involved in the mechanotransduction process increases with the
istance from the cell center. On the other hand, to define the explicit
orm of 𝐾𝜃 , we account for the biological observations reported in [60–

63], which suggest that the amount of receptors is higher towards cell’s
front than towards its tail and vanishes perpendicularly to the direction
of polarization of the cell.

In this respect, among all the possible choices of the explicit forms
of the kernels 𝐾𝑟 and 𝐾𝜃 , we hereafter set

𝐾𝑟(𝑟) =

{

𝑟∕𝑅 for 𝑟 ∈ [𝑅0, 𝑅],
0 for 𝑟 ∈ [0, 𝑅0),

(9)

with 0 ≤ 𝑅0 < 𝑅 (see panel A in Fig. 2), and

𝐾𝜃(𝑢) =

⎧

⎪

⎨

⎪

⎩

1
4
𝑢3 + 3

4
𝑢2 for |𝑢| ∈ [𝛼, 1],

0 otherwise,
(10)

with 𝛼 ∈ [0, 1) (see panel B in Fig. 2). Specifically, in Eqs. (9) and
(10) the parameters 𝑅0 and 𝛼 identify the portion of the sensing region
where cell membrane receptors are located. Such region is shown in the
panel C of Fig. 2, where we plot the whole kernel 𝐾 = 𝐾𝑟𝐾𝜃 . Notice
that, unless 𝑅0 = 0 and 𝛼 = 0 (see the red dashed lines in the panels A
and B of Fig. 2), 𝐾 is discontinuous.

Finally, we remark that other kernels could be considered. How-
ever, we have observed that the qualitative results are only slightly
influenced by the specific functional form, provided that the biological
observations on the distribution of transmembrane receptors are taken
into account (see Section 1 of the Supplementary Material, where
numerical results with different kernels are reported).

2.2. Durotaxis: definition of the fields 𝑐 and 𝑚, and of the function 𝑓

As outlined in Section 1, cells can sense the rigidity of the substrate
they are anchored to and move towards stiffer regions [15]. In this
respect, the simplest phenomenological assumption is to consider the
field 𝑐 affecting cell preferred direction of locomotion, see Eq. (6), as
the stiffness of the underlying material. Therefore we set

𝑐(𝑡, 𝐱) ≡ 𝑐(𝐱) = 𝐸(𝐱) ∀ 𝑡 ∈ R+
0 and 𝐱 ∈ 𝛺, (11)

where 𝐸 is the Young’s modulus of the substrate. Eq. (11) entails that
the substrate mechanical properties are fixed in time, since in this
specific application we are assuming that the cell does not degrade nor
produce extracellular material. Furthermore, we observe that in this
case the substrate is undeformed, since possible deformations related
to cell motion are disregarded.

On the other hand, in accordance with the mathematical model
in [48], we assume that the field 𝑚 determining the cell speed, i.e.
Eq. (3), is related to the local fraction of ECM proteins (e.g., Arg-Gly-Asp
(RGD) attachment sites that bind to the cell RGD receptors [64]; the
extracellular matrix proteins collagen and laminin, that are recognized
by the collagen receptors and the laminin receptors, respectively) that
influences the cycles of cell motility structures (e.g., lamellipodia,
filopodia, pseudopodia) [65,66]. In fact, experimental observations
in [67] show that cell migration is slowed down by either low or high
densities of matrix binding proteins: in the former case, the cell is
unable to find sufficient sites to anchor and use for traction; in the
latter, the cell results anchored by stable focal adhesions. Intermedi-
ate amounts of ECM densities, instead, result in optimal attachment-
detachment cycles and maximal cell speed [67]. In this context, the
function 𝑓 in Eq. (2) writes

𝑓 (𝑀) = 4𝑀 (1 −𝑀), (12)

as in [48], being 𝑀 given in Eq. (3) (see the panel A in Fig. 3).
As done for the mechanical properties of the substrate, we assume

that the local fraction of ECM proteins does not depend on time,

i.e. 𝑚(𝑡, 𝐱) ≡ 𝑚(𝐱).
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Fig. 2. Different choices of the kernels 𝐾𝑟 and 𝐾𝜃 appearing in Eq. (8) for the computation of the cell preferred direction 𝐖. (A) Plot of the kernel 𝐾𝑟, defined in Eq. (9), for
𝑅0 = 0 (red dashed line) and 𝑅0 = 4𝑅∕5 (blue line), as set in the numerical simulations. (B) Plot of the kernel 𝐾𝜃 , defined in Eq. (10), for 𝛼 = 0 (red dashed line) and 𝛼 =

√

3∕2
(blue line), as set in the numerical simulations. (C) Plot of the kernel 𝐾 = 𝐾𝑟𝐾𝜃 on the sensing region (𝐱𝑝(𝑡)).
Fig. 3. Representations of function 𝑓 in Eq. (2). (A) In case of durotaxis, 𝑓 is assumed as defined in Eq. (12). (B) In case of tensotaxis, 𝑓 is given by Eq. (20) and here displayed
assuming 𝑑 = 3.
2.3. Tensotaxis: definition of the fields 𝑐 and 𝑚, and of the function 𝑓

The process of tensotaxis, experimentally observed for instance
in [15], consists in cell preference to move towards tensile stresses and
away from compressive stresses induced on the substrate. In order to
include this qualitative observation in our model, the field 𝑐 and 𝑚,
responsible of cell polarization and biased motility, has to be related
to proper measures of the substrate mechanical response that allows
to take into account the correct direction and speed of the tensotaxis
process. Hence, proper balance equations have to be defined in order
to describe the mechanical response of the substrate to an external
mechanical manipulation and derive the spatio-temporal distributions
of the mechanical cues affecting cell migration during tensotaxis.

In this perspective, let ∗ be the reference configuration of the
substrate and denote with 𝐗 the Lagrangian (or material) coordinates
of a material point in this configuration. Then, we identify with 𝑡 the
current configuration of the substrate at time 𝑡 and we denote with 𝐱
the Eulerian (or spatial) coordinates in 𝑡. According to the standard
notation in Continuum Mechanics, we can introduce the displacement
field 𝐮 and define 𝐱(𝑡,𝐗) = 𝐗 + 𝐮(𝑡,𝐗). Then, the deformation gradient
tensor F is defined as F ∶= I + Grad 𝐮, being Grad(⋅) the gradient
with respect to the material coordinates and I the second order identity
tensor.

Recalling that the substrate on which the cell migrates is repre-
sented as a thin solid, we can work in the plane stress approximation.
5

Neglecting inertial terms and assuming a static load condition, the
balance of linear momentum in Lagrangian coordinates thus reads
𝐛𝑠
ℎ

+ DivP = 𝟎, in 𝛺, (13)

where 𝐛𝑠 is the force per unit surface applied on the substrate in the
reference configuration, ℎ denotes the thickness of the substrate, Div(⋅)
is the divergence operator with respect to the material coordinates, and
P is the in-plane first Piola–Kirchhoff stress tensor. Considering a non-
linear hyperelastic behavior of the substrate, the first Piola–Kirchhoff
stress tensor can be derived from the strain energy density function 𝑊 :

P = 2F 𝜕𝑊
𝜕C

, (14)

being C = F⊤F the right Cauchy–Green deformation tensor. The
momentum balance Eq. (13) determines the unknown displacement
field 𝐮, once proper boundary conditions and a functional form for
the external surface load 𝐛𝑠 are defined. For the sake of simplicity, we
will not include in the model possible stresses or deformations of the
substrate generated by the cell itself. Therefore 𝐛𝑠 represents only the
external force used to manipulate the substrate. Specifically, in order to
reproduce the experimental observations in [15], outlined in Section 1,
the pushing or pulling force exerted by the microneedle, localized in a
circle  ⊂ 𝛺 sufficiently far from the boundary, is modeled by

𝐛𝑠 = 𝑓𝑏

(

cos 𝛽
)

1, (15)

sin 𝛽
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being 𝛽 ∈ [0, 2𝜋) the angle identifying the direction of the imposed load,
𝑓𝑏 the magnitude of the force, and 1 the characteristic function of
the subdomain  where the force of the microneedle is applied. Lastly,
since the edges of the substrate in the experiments in [15] are fixed,
we prescribe a null displacement at the boundary of the domain, i.e.

𝐮 = 𝟎 on 𝜕𝛺. (16)

We remark that, since we are neglecting the mechanical stress
exerted by the moving cell on the substrate Eq. (13) is decoupled from
Eqs. (1)–(2). Furthermore, in the case of static deformation we are
considering, the displacement and the other derived mechanical fields
do not depend on time. Therefore, Eq. (13) can be solved a priori, once
and for all, to obtain the spatial evolution of the field 𝑐 and 𝑚 fixed in
time.

In this perspective, in order to take into account the change of
polarization direction experimentally observed in [15] when switching
between tensile and compressive stresses, we here assume the field 𝑐
to be given by the first invariant of the Cauchy stress tensor, that is a
scalar measure of the mean volumetric stress applied to the deformed
substrate, i.e.

𝑐(𝑡, 𝐱)≡ 𝑐(𝐱) =trT(𝐱) = tr
(

𝐽−1PF⊤) (𝐱), ∀ 𝑡 ∈ R+
0 and 𝐱 ∈ 𝛺, (17)

where 𝐽 ∶= detF > 0, and T = 𝐽−1PF⊤ defines the Cauchy stress tensor.
Thus, according to Eq. (6), a positive value of the field 𝑐, corresponding
to a volumetric tensile stress, attracts the cell, whereas a negative value,
corresponding to a compressive volumetric stress, repels it.

For what concerns the biased cell motility, we take into account the
biological observation, mentioned in Section 1, that the mechanosens-
ing process could be also mediated by the elastic energy stored inside
the substrate, that promotes a faster cytoskeleton assembly and FA
dynamics [34]. We therefore assume that cells move faster over regions
with a high elastic energy level, due to the faster breakage of cell–
ECM bonds, regardless of whether the substrate is being pulled or
pushed. In this respect, the field 𝑚 in Eq. (3) is here related to the strain
nergy density of the deformed substrate. Following [49], a Yeoh’s strain
nergy density function can well represent the mechanical behavior of
he extracellular substrate, thus we set

(C) = 𝑊 (𝐼1, 𝐽 ) = 𝜇1(𝐽−2∕3𝐼1−3)+𝜇3(𝐽−2∕3𝐼1−3)3+
2𝜇1(1 + 𝜈)
3(1 − 2𝜈)

(𝐽−1)2,

(18)

here 𝐼1 = trC is the first invariant of the right Cauchy–Green
eformation tensor, 𝜈 is the substrate Poisson ratio, while 𝜇1 and 𝜇3
re material parameters that can be experimentally evaluated and that,
n heterogeneous materials, are functions of the material coordinates
. As already done in Section 2.2, we will always assume that sub-

trate mechanical properties are fixed in time, since no mechanism of
egradation or deposition of the extracellular material is included in
he model. Then, in order to have the field 𝑚 in the range [0, 1], we
onsider the following normalization of the energy:

(𝑡, 𝐱)≡ 𝑚(𝐱) = 𝑊 (𝐱)1∕𝑘2
𝑊 (𝐱)1∕𝑘2 + 𝜀𝑚

, ∀ 𝑡 ∈ R+
0 and 𝐱 ∈ 𝛺, (19)

where the constant parameters 𝑘2 and 𝜀𝑚 are such that 𝑘2 ≥ 1 and
𝑚 > 0. Specifically, the exponent 1∕𝑘2 in Eq. (19) accounts that, for the
echanical force defined in Eq. (15), the energy is extremely localized

n the region  where the load is applied. A proper tuning of this
xponent allows the cell to properly sense the field within a distance
ompatible with the one reported in the biological experiments. In turn,
he function 𝑓 in Eq. (2) has to implement that an increase in the
evel of the elastic energy, stored in the substrate, sensed by the cell
esults in an increase of cell speed, promoted by a faster renewal of
A’s assembly. With this purpose we define

(𝑀) =
(1 + 𝑑2)𝑀2

, (20)
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1 + (𝑑𝑀)2
with 𝑑 > 0 (see panel B in Fig. 3), where 𝑀 is given in Eq. (3). The
normalization in Eq. (20) implements that cell biased motility reaches
its maximum value when the amount of energy perceived by the cell
reaches the maximum stored energy.

3. Numerical implementation

The cell migration model in Eqs. (1)–(2) is solved on a square do-
main 𝛺 = [0, 𝐿] × [0, 𝐿] with a finite difference scheme, i.e. the explicit
uler–Maruyama method [68] for both durotaxis and tensotaxis.

The numerical approximation of the integrals 𝑀 in Eq. (3) and 𝐖
n Eq. (6) requires suitable quadrature formulas able to handle possible
on-regularities of their integrand functions (given by either the fields
and 𝑐, or by the kernels 𝐾𝑟 and 𝐾𝜃). In this perspective, the tailored

pplication of the Gauss–Legendre quadrature formula proposed in [48]
s here adapted to deal with the kernels 𝐾𝑟 and 𝐾𝜃 in Eqs. (9) and

(10) (as well as with those discussed in Section 1 of the Supplementary
Material).

In the case of tensotaxis, Eq. (13) is solved with the Finite Element
Method (FEM) and an interpolation method is used to evaluate the
fields 𝑚 and 𝑐 needed to apply the scheme for Eqs. (1)–(2) defined
above. The FEM used to solve Eq. (13) was implemented using the
Structural Mechanics Module of the software COMSOL Multiphysics® . A
representative case of the unstructured mesh used in the simulations
discussed in Section 4.2 is shown in panel (A) of Fig. 4. The grid is char-
acterized by smaller mesh elements at the center of the domain, where
the load is applied, in order to properly capture substrate deformation,
and relative strain and stress. The mechanical quantities of interest for
the cell migration model (i.e. the fields 𝑚 and 𝑐) are then estimated
over a 𝛬×𝛬 square grid with element size 𝛥𝑥 = 𝐿∕𝛬 in both directions,
as shown in panel (B) of Fig. 4, and then used as an input in the finite
difference scheme for cell motion. In this respect, we remark that when
tensotaxis is concerned, the fields 𝑚 and 𝑐 come from the solution of
he momentum balance Eq. (13) in the reference configuration, so the
alues interpolated over the squared undeformed grid (in panel (b)
f Fig. 4) refers to the Lagrangian coordinates system. Cell motion
onversely occurs on the deformed substrate, sensing the fields in the
urrent configuration, i.e. 𝑐(𝐱) and 𝑚(𝐱). Thus, the quantities of interest
ave to be considered as functions of the Eulerian coordinates. To
ackle this issue it is sufficient to apply the computed deformation field
to the regular grid. Denoting the points of the regular grid by 𝐗𝑖𝑗 ∈ 𝛺,
ith 𝑖, 𝑗 = 1,… , 𝛬, the corresponding deformed ones are identified by

𝑖𝑗 = 𝐗𝑖𝑗 + 𝐮(𝐗𝑖𝑗 ). (21)

hen, the fields 𝑚 and 𝑐 are known on the spatial nodes 𝐱𝑖𝑗 and are
uch that

(𝐱𝑖𝑗 ) = 𝑚(𝐗𝑖𝑗 + 𝐮(𝐗𝑖𝑗 )), 𝑐(𝐱𝑖𝑗 ) = 𝑐(𝐗𝑖𝑗 + 𝐮(𝐗𝑖𝑗 )). (22)

he points of the deformed grid (see panel (C) of Fig. 4) may not
oincide in general with the quadrature nodes needed to evaluate the
ntegral terms in Eqs. (3) and (6). It is then necessary to use a suitable
nterpolation method to approximate the missing data. Similarly to
hat was done in [48], through a proper numerical sensitivity analysis,
e found that a linear interpolation from this irregular grid to the
uadrature nodes and eight nodes of quadrature are enough to preserve
he accuracy of the numerical scheme for the computation of the cell
rajectory. An analogous analysis allowed us to set the time step 𝛥𝑡 =
88 s and the dimension of the regular grid 𝛬 = 70. The same time step
as been used also in the case of durotaxis.

. Numerical results

In order to highlight the potential of the proposed model, in this
ection, we present several numerical simulations reproducing cell
ynamics driven by either durotaxis (see Section 4.1) or tensotaxis (see
ection 4.2). In both cases, the fields 𝑐 and 𝑚, and the function 𝑓 ,
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Fig. 4. Panel (A) shows an example of a triangular mesh for the domain 𝛺 automatically generated by the software COMSOL Multiphysics® to solve the mechanical problem
defined in Section 2. Panel (B) shows an example of a 𝛬×𝛬 grid with 𝛬 = 70 used for the extrapolation of the fields 𝑚 and 𝑐 to be integrated in the cell motion model. Panel (C)
shows the same grid as panel (B) when deformed according to the external manipulation of the substrate, as defined in Eq. (21).
Table 2
Values of the parameters introduced in Section 2 and used in all the numerical simulations, each one with a brief description and references
that justify the choices. The top block contains the parameters characterizing cell dynamics, the central and bottom blocks define substrate
properties in the case of durotaxis and tensotaxis, respectively.
Par. Description Value Ref.

𝐿 Length of the squared domain 𝛺 700 μm [69]
𝑅 Maximum extension of cell protrusions 20 μm [48,70]
𝐷 Diffusion coefficient of fibroblasts on ECM 1.7 × 10−2 μm2∕s [71–73]
𝑉𝑀 Cell characteristic speed 0.009 μm∕s [15,48]
𝜏 Cell re-orientation time 600 s [15]
𝑅0 Radial extension of the portion of the sensing

region where FAs are located
16 μm [61,62]

𝛼 arccos 𝛼 is the amplitude of the portion of the
sensing region where FAs are located

√

3∕2 [61,62]

𝜀 Michaelis–Menten constant 3.18 × 10−5 (estimated)

𝐸 Young’s modulus 10–100 kPa [15,74–76]

𝜈 Poisson ratio of the substrate 0.48 [49]
𝜇1 Material elastic coefficient of the substrate (linear) 1.46–4.66 kPa [49]
𝜇3 Material elastic coefficient of the substrate

(non-linear)
0.25–5.4 kPa [49]

ℎ Substrate thickness 35 μm [49]
are assumed to depend on the mechanical properties of the substrate
according to the phenomenological definitions provided in Sections 2.2
and 2.3, respectively. All the following numerical simulations are per-
formed by setting the values of the model parameter as listed in
Table 2, according to the pertinent literature (more details are reported
in Appendix B). For each case, we will show, only 10 representative
realizations of the cell trajectory. Then, a quantitative analysis of
𝑄 = 50 different realizations of cell trajectories will be performed by
estimating six quantities (defined below): the mean speed 𝑠̄, the mean
motility 𝑣̄, the overall displacement 𝑑TOT, the maximum distance from
the initial position 𝑑max, the persistence P and the forward migration
index FMI.

Denoting by 𝐱𝑞𝑝,𝑛 with 𝑛 = 0, 1,… , 𝑁 the position of cell center at
the time instant 𝑡𝑛 in the 𝑞th realization, and by < ⋅ > the mean over
the 𝑄 realizations, the mean speed 𝑠̄ is computed as

𝑠̄ =

⟨

1
𝑁

𝑁−1
∑

𝑛=0

‖𝐝𝑞𝑛‖
𝛥𝑡

⟩

, (23)

where 𝐝𝑞𝑛 ∶= 𝐱𝑞𝑝,𝑛+1 − 𝐱𝑞𝑝,𝑛, with 𝑛 = 0,… , 𝑁 − 1, is the cell displacement
at the instant time 𝑡𝑛. The mean motility 𝑣̄ is the motility 𝑣 defined in
Eq. (2) mediated over all the 𝑁 time iterations and the 𝑄 realizations,
i.e. denoting by 𝑣𝑞𝑛 the cell motility at the instant time 𝑡𝑛 in the 𝑞th
realization, 𝑣̄ writes

𝑣̄ =

⟨

1
𝑁−1
∑

𝑣𝑞𝑛

⟩

. (24)
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𝑁 𝑛=0
The overall displacement of the cell 𝑑TOT and the maximum cell displace-
ment from the initial position 𝑑max are computed as

𝑑TOT =
⟨

‖𝐱𝑞𝑝,𝑁 − 𝐱𝑞𝑝,0‖
⟩

, 𝑑max =
⟨

max
𝑛

‖𝐱𝑞𝑝,𝑛 − 𝐱𝑞𝑝,0‖
⟩

. (25)

The persistence P, according to [19], is the ratio between the total
cell displacement (determined by the first and last positions) and the
actual path length 𝐿𝑞 , mediated over the 𝑄 realizations, i.e.

P =

⟨

‖𝐱𝑞𝑝,𝑁 − 𝐱𝑞𝑝,0‖

𝐿𝑞

⟩

with 𝐿𝑞 ∶=
𝑁−1
∑

𝑛=0
‖𝐝𝑞𝑛‖. (26)

The forward migration index FMI is computed as

FMI =
⟨

1
𝐿𝑞

𝑁−1
∑

𝑛=0
𝑝𝑞𝑛

⟩

, (27)

where 𝑝𝑞𝑛 is the projection of the actual direction of motion 𝐝𝑞𝑛 in the
direction the gradient ∇𝑐(𝐱𝑞𝑝,𝑛), if ‖∇𝑐(𝐱𝑞𝑝,𝑛)‖ > 0, and it is null otherwise.

Moreover, in more relevant cases, the proposed analysis is enriched
by: the distributions of the angle 𝛿𝑞𝑛 between the actual direction of
motion 𝐝𝑞𝑛 and the 𝑥-axis; the distributions of the angle 𝜔𝑞

𝑛 between the
direction of polarization 𝐰𝑞

𝑛 and the 𝑥-axis; the distributions of the cell
motility 𝑣𝑞 ; and two measures already used for instance in [77], i.e. the
𝑛
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time-averaged mean square displacement MSD

MSD(𝑘𝛥𝑡) =
⟨

1
(𝑁 − 𝑘 + 1)

𝑁−𝑘
∑

𝑛=0
‖𝐱𝑞𝑝,𝑛+𝑘 − 𝐱𝑞𝑝,𝑛‖

2

⟩

, with 𝑘 = 0,… , 𝑁,

(28)

and the temporal angular correlation C

C(𝑘𝛥𝑡) =
⟨

1
(𝑁 − 1 − 𝑘)

𝑁−1−𝑘
∑

𝑛=1
cos(𝜒𝑞

𝑛+𝑘 − 𝜒𝑞
𝑛 )

⟩

, with 𝑘 = 1,… , 𝑁 − 2,

(29)

where 𝜒𝑞
𝑛 with 𝑛 = 1,… , 𝑁−1 is the variation of cell direction of motion

at the instant time 𝑡𝑛, i.e. the angle between 𝐝𝑞𝑛 and 𝐝𝑞𝑛−1.

4.1. Numerical results I - durotaxis

In this Section, we present several numerical simulations repro-
ducing cell migratory behavior driven by the process of durotaxis.
Specifically, we will first consider smoothed piecewise constant distri-
butions of 𝑐 and 𝑚 that implement a high stiffness and an abundance
of ECM proteins, respectively, within a vertical stripe in the middle
of the domain. This in silico scenario is inspired by the experimen-
tal setting used in [15] where the behavior of cells, seeded onto a
polyacrylamide sheet coated with collagen, in response to transitions
in rigidity was studied by introducing in the central region of the
substrate a discontinuity in the concentration of the bis-acrylamide
cross-linker. Cells approaching the transition region from the soft side
could easily migrate towards the stiffer side; in contrast, cells migrating
from the stiff side turned around or retracted as they reached the
discontinuity. Double rigidity hydrogels are used also in the durotaxis
experiments proposed in [30]. Furthermore, in the mathematical liter-
ature, several authors considered a piecewise constant rigidity of the
substrate to test their durotactic models [16,42–44]. Then, inspired by
biological experiments on durotaxis performed on gel with a stiffness
gradient [19,44,66,74,76], we will implement the experimental setup
with a substrate with linearly varying stiffness. In this scenario we
consider a homogeneous density of ECM binding sites, as reported in
the biological tests [74,76,78]. In the Supplementary Material, we also
consider the case where the stiffness gradient is coupled to the local
amount of ECM, although not confirmed by biological experiments.

Piecewise constant rigidity and stiffness of the substrate. In accordance
with the biological setup used in the durotaxis experiments reported
in [15,30] and previous mathematical models [16,42–44], we here
consider independent piecewise constant distributions for 𝑐 and 𝑚, that
respectively implement a higher substrate rigidity and an abundance
of ECM proteins within a vertical stripe in the middle of the domain
𝛺. Specifically, to ensure the regularity of the fields 𝑐 and 𝑚, needed
to guarantee the existence and uniqueness of the solution of Eqs. (1)–
(2) (see Appendix A), a smoothing of both piecewise constant fields is
considered. Specifically, being 𝛿 ≪ 𝑑1 < 𝑑2, we define the substrate
rigidity, that in the durotaxis model corresponds to the field 𝑐(𝐱), as

𝑐(𝐱) = 𝐸(𝐱) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸1 if 𝑥 ∈ [𝑑1 + 𝛿, 𝑑2 − 𝛿],
𝐸2 if 𝑥 ∈ [0, 𝑑1 − 𝛿] ∪ [𝑑2 + 𝛿, 𝐿],
𝑆1(𝑥) if 𝑥 ∈ (𝑑1 − 𝛿, 𝑑1 + 𝛿),
𝑆2(𝑥) if 𝑥 ∈ (𝑑2 − 𝛿, 𝑑2 + 𝛿),

(30)

for any 𝐱 = (𝑥, 𝑦)𝑇 ∈ 𝛺, where 𝑆1 and 𝑆2 are proper third-degree
polynomials that guarantee the differentiability of the field 𝑐 in the
whole domain. The central stripe is defined by 𝑑1 = 300 μm, 𝑑2 =
400 μm and 𝛿 = 20 μm. The mechanical parameters in the homogeneous
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subdomains 𝐸1 and 𝐸2 are assumed equal to 30 kPa and 14 kPa,
respectively, as in [15]. The density of ECM proteins is conversely given
by

𝑚(𝐱) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚1 if 𝑥 ∈ [𝑑1 + 𝛿, 𝑑2 − 𝛿],
𝑚2 if 𝑥 ∈ [0, 𝑑1 − 𝛿] ∪ [𝑑2 + 𝛿, 𝐿],
𝑆3(𝑥) if 𝑥 ∈ (𝑑1 − 𝛿, 𝑑1 + 𝛿),
𝑆4(𝑥) if 𝑥 ∈ (𝑑2 − 𝛿, 𝑑2 + 𝛿),

(31)

with 𝑚1 = 0.75 and 𝑚2 = 0.5, where 𝑆3 and 𝑆4 are proper third-degree
polynomials that guarantee the differentiability of 𝑚.

The numerical outcomes in Fig. 5 show cell trajectory starting from
three different initial positions 𝐱𝑝,0 ∶= (𝑥𝑝,0, 𝑦𝑝,0)𝑇 . The results first
show that, over the period of observation, if the cell initial position is
sufficiently far from the transition zone (see panel A, where the initial
position is about 6 sensing radii away from the strip), it remains on
the soft part of the substrate with constant stiffness 𝐸2 and performs a
random Brownian motion. Instead, if the cell initial position is close
enough to the central strip of stiff substrate (about 2 sensing radii
away), after an initial random motion, the cell is able to sense the
transition zone (characterized by non-uniform stiffness 𝑆1) within its
sensitivity region, and it then rapidly moves towards the stiff strip (see
panel B). Consistently, the cell remains on the central stiff strip of the
substrate, if initially placed there, despite the presence of the stochastic
term (see panel C). We observe that in our setting we have included
the soft region on the right, that is never reached by the cell, to avoid
boundary effects. From a biological point of view, these results show a
qualitative agreement with the experimental observations in [15] and
with the numerical simulations in [42,44,79]. From a mathematical
point of view, these cell behaviors result from the fact that cell pre-
ferred direction 𝐖 in Eq. (6) depends on the differential increments of
the field 𝑐 in Eq. (11) within cell sensing region, i.e. within a small
area around its position. It thus highlights that the integral in Eq. (6)
properly models that cell motion is biased only if the cell senses a
non-uniform field 𝑐 within its sensing region, otherwise it performs a
random Brownian motion.

In Table 3 we report the values of the mean speed 𝑠̄, the mean
motility 𝑣̄, the overall displacement 𝑑TOT, the maximum distance from
the initial position 𝑑max, the persistence P and the forward migration
index FMI defined in Eqs. (23)–(27), observed for each initial condition.
It can be first noticed that the cell mean motility 𝑣̄ is higher in the
first case, when the cell remains in the soft part of the substrate, and
it decreases as the cell spends more time over the stiff part of the
substrate. This behavior, that derives from the definition of the integral
𝑀 in Eq. (3) and the function 𝑓 in Eq. (12), is consistent with the
experimental observation that the cell moves faster on the softer side
of the substrate as reported in [15]. We note that the value of mean
motility predicted by our model is of the same order of magnitude
as the mean speed measured experimentally in [15]. However, the
differences in the ability of cells to move are less evident when the
total speed is considered, and in this case the values reported are
higher than the experimental speed reported in [15]. However, this
discrepancy can be resolved by tuning the parameters of the model.
Moreover, in Table 3, we have that the highest values of the mean
speed 𝑠̄, and thus the displacements 𝑑TOT and 𝑑max, are reached for
𝑥𝑝,0 = 250 μm (see panel B in Fig. 5). In fact, in this case, the cell senses
the transition zone and thus a non-null biased contribution sums to the
stochastic term in Eq. (1). Consistently, also the persistence P and the
forward migration index FMI assume their higher value in the case with
𝑥𝑝,0 = 250 μm, where the cell reaches the transition zone. However,
the very low values assumed by P and FMI (P< 0.15 and FMI< 0.5)
indicate, respectively, that the cell mainly moves along a very tortuous
path, and with a low correlation with the substrate stiffness, i.e. the
field 𝑐. In fact, in this scenario, regardless the initial condition, the cell
spends most of the time over regions with uniform stiffness performing
an unbiased random motion. In particular, notice that in the case with

𝑥𝑝,0 = 180 μm (panel A in Fig. 5), despite the high value of the mean
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Fig. 5. Numerical simulations reproducing cell dynamics due to durotaxis with piecewise constant fields 𝑐 and 𝑚 defined in Eqs. (30) and (31), respectively. Each panel shows
10 different trajectories with the same initial positions, namely (A) 𝐱𝑝,0 = (180, 350)𝑇 μm, (B) 𝐱𝑝,0 = (250, 350)𝑇 μm, and (C) 𝐱𝑝,0 = (320, 350)𝑇 μm (white circles), and with initial
polarization 𝐰0 = (−1, 0)𝑇 (not displayed). We remark that here the initial polarization vector has very little influence on cell behavior: when the cell senses only the homogeneous
field, it initially performs a random motion; conversely, close to the central zone with non-uniform stiffness, the cell reorientation is so fast that the trajectory is slightly affected
by the initial polarization.
𝑠

𝑚

Table 3
Quantitative analysis of the numerical outcomes in Fig. 5, where cell dynamics is driven
by durotaxis, and the substrate is characterized by the piecewise constant fields 𝑐 and
𝑚 given in Eqs. (30) and (31), respectively. For each panel in Fig. 5, we report the
first component of the initial position 𝑥𝑝,0 (since 𝑦𝑝,0 = 350 μm in all simulations), the
mean speed 𝑠̄ in Eq. (23), the mean motility 𝑣̄ in Eq. (24), the overall displacement
𝑑TOT and the maximum displacement 𝑑max in Eq. (25), the persistence P in Eq. (26)
and the forward migration index FMI in Eq. (27).
𝑥𝑝,0 [μm] 𝑠̄ [μm∕s] 𝑣̄ [μm∕s] 𝑑TOT [μm] 𝑑max [μm] P [−] FMI [−]

180 1.375e−02 9.000e−03 64.24 82.15 0.081 0
250 1.407e−02 7.780e−03 104.79 116.25 0.130 0.041
320 1.387e−02 6.759e−03 44.79 64.97 0.056 0.004

motility, the FMI is null as the cell, remaining always over the softer
homogeneous region of the domain, is not affected by the mechanical
cue 𝑐 (i.e. 𝐖 = 𝟎 in Eq. (6)) and performs an unbiased Brownian
motion.

Substrate with linearly varying stiffness and homogeneous ECM density.
We here consider a substrate whose stiffness 𝐸 (corresponding to the 𝑐
field in our model of durotaxis) smoothly increases in the horizontal
direction from the value 𝐸0 to 𝐸𝐿, which are respectively assumed
at the left and right end of the domain. According to [44,66,76], we
assume the linear field

𝑐(𝐱) = 𝐸(𝐱) = 𝐸0 +
𝐸𝐿 − 𝐸0

𝐿
𝑥. (32)

As said at the beginning of this subsection, in accordance with the
biological observations reported in [74,76,78], the ECM density 𝑚 can
be defined independently from the stiffness distribution. In this regard,
we here consider a homogeneous distribution of the local ECM proteins,
i.e.

𝑚(𝐱) = 𝑚̂. (33)

The numerical results in Fig. 6 show cell trajectories obtained by
setting 𝐸0 = 14 kPa and 𝐸𝐿 = 30 kPa in Eq. (32), and by considering
different homogeneous ECM density fields 𝑚̂. Moreover, each panel is
provided by polar histograms showing the distributions of the angles 𝜔𝑞

𝑛
and 𝛿𝑞𝑛 , characterizing the direction of polarization 𝐰𝑞

𝑛 and the actual
direction of motion 𝐝𝑞𝑛, respectively. Dealing with a homogeneous field
𝑚, cell motility 𝑣 is constant in time and thus equal to the mean
motility 𝑣 reported in Table 4. In Table 4 we also present the values
9

of the mean speed 𝑠̄, the overall displacement 𝑑TOT, the maximum
displacement from the initial position 𝑑max, the persistence P and the
forward migration index FMI. Lastly, the time evolution of the mean
square displacement MSD and the correlation angle C are displayed in
Fig. 7.

In contrast to the above striped substrate setup, in this case the mo-
tion is always biased towards the right stiffer side of the domain, since
the cell always senses a non-uniform substrate stiffness characterized
by a constant gradient in the horizontal direction. In this respect, the
histograms of 𝜔𝑞

𝑛 in Fig. 6 show that the cell direction of polarization
𝐰 is always aligned to the horizontal axis according to the sensed
substrate stiffness. However, random effects in cell dynamics introduce
discrepancies between the distributions of 𝜔𝑞

𝑛 and 𝛿𝑞𝑛 , i.e. between
the direction of polarization and the actual direction of motion of
the cell. In particular, in the case of extremely high/low amount of
ECM proteins, there is no a preferred direction of motion indicating
that cell dynamics is mainly driven by the random term. Conversely,
in other cases the cell mainly move towards the right (stiffer) part
of the domain following the field 𝑐. Moreover, it emerges that, the
overall cell displacement from its initial position changes according
to the homogeneous amount of the local fraction of ECM proteins 𝑚̂.
Specifically, the maximum cell displacement is reached when 𝑚̂ = 0.5
(panel C), while either lower or higher values of 𝑚̂ leads to a reduction
of the maximum displacement of the cell. This aspect is even more
evident in Table 4 where, in addition, a large/short cell displacement,
i.e. high/low 𝑑TOT and 𝑑max, is always related to high/low mean speed
̄, and mean motility 𝑣̄. In fact, according to the explicit form of 𝑓 in
Eq. (12), in the case of intermediate ECM density, as 𝑚̂ = 0.5, the high
cell motility prevails on stochastic contributions in cell velocity leading
to a directional motion. This is highlighted by the high values of both
P and FMI in Table 4, and the fact that time-averaged MSD in Fig. 7
(panel A) exhibit quadratic growth with time 𝑘𝛥𝑡, which is typical of
drifted motion [77]. Conversely, in the case of low or high ECM density,
resulting in low cell motility 𝑣̄, cell dynamics is mainly dictated by the
stochastic contribution and thus resembles a Brownian motion rather
than a slower migration towards the right end of the domain (see the
cases with 𝑚̂ = 0.05 and 𝑚̂ = 0.95 in panels A and F in Fig. 6). This
is confirmed by the relative low values of P and FMI in Table 4, and
by the linear growth with time 𝑘𝛥𝑡 of the time-averaged MSD in Fig. 7
which is typical of simple diffusion. In particular, we observed that, as
̂ ↦ 0 or 𝑚̂ ↦ 1, the time-averaged MSD converges to the straight line
4𝐷𝑘𝛥𝑡 (blue solid line in the panel A of Fig. 7) characteristic of the
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Fig. 6. Numerical simulations reproducing cell dynamics due to durotaxis. The substrate is characterized by the linear field 𝑐 defined in Eq. (32), and a homogeneous distribution
local fraction of ECM proteins 𝑚 in Eq. (33) with 𝑚̂ ∈ {0.05, 0.25, 0.5, 0.65, 0.8, 0.95}. Each panel shows 10 different trajectories with the same initial conditions, i.e. 𝐱𝑝,0 = (50, 350)𝑇 μm
(white circle) and 𝐰0 = (0, 1)𝑇 (red arrow). In each panel, the polar histograms show the distributions of the angles 𝜔𝑞

𝑛 (left) and 𝛿𝑞𝑛 (right) related to the direction of polarization
𝐰𝑞

𝑛 and the actual direction of motion 𝐝𝑞𝑛, respectively.
Brownian motion (see [77] for further details). In addition, the plots
of the temporal angular correlation in panel B of Fig. 7 highlight that
no angular correlation is observed with very low or high values of 𝑚̂
(having zero average), i.e. there is no connection between the direction
of motion at consecutive steps nor at distant steps, confirming that
the cell substantially performs a Brownian motion. A low correlation
between consecutive directions of motion conversely occurs in the case
of intermediate values of 𝑚̂ (having non-zero average, e.g., ≈ 0.05
when 𝑚̂ = 0.5, see Fig. 7-B). The low values of the angular correlation
indicates that, due to the random term, cell trajectory is quite tortuous
rather than a straight line along the stiffness gradient.

Interestingly, these results are qualitatively consistent with the ex-
perimental observations reported in [74]. Indeed, they found a per-
sistence index for 3T3 cells on gradient gels of around 0.36 ± 0.23,
with an average speed of 1.13e − 02 ± 0.43e − 02 μm∕s. Despite the
striking agreement between the numerical results and the biological
measurements, a quantitative validation of the model using the data
in [74] is not possible because the experimental stiffness gradient varies
non-linearly between 6 kPa and 60 kPa and the amount of ECM binding
proteins (in this case fibronectin) is not reported, although it is said to
be approximately homogeneous, as observed in previous works [76,78]

4.2. Numerical results II - tensotaxis

In this section, we then turn to discuss different numerical sim-
ulations reproducing cell dynamics when its directional migration is
driven by the process of tensotaxis. Biological experiments on tenso-
taxis are still limited in the literature. Most of them [15,31,36] applied
a concentrated force to the substrate by means of a microneedle placed
10
Table 4
Quantitative analysis of the numerical outcomes in Fig. 6, where cell dynamics is due
to durotaxis. The substrate is characterized by the stiffness 𝑐 in Eq. (32), and by a
uniform local fraction of ECM proteins 𝑚. For each panel in Fig. 5, we report the
value of 𝑚̂ in Eq. (33), the mean speed 𝑠̄ in Eq. (23), the mean motility 𝑣̄ in Eq. (24),
the overall displacement 𝑑TOT and the maximum displacement 𝑑max in Eq. (25), the
persistence P in Eq. (26) and the forward migration index FMI in Eq. (27).
𝑚̂ 𝑠̄ [μm∕s] 𝑣̄ [μm∕s] 𝑑TOT [μm] 𝑑max [μm] P [−] FMI [−]

0.05 1.398e−02 1.710e−03 114.81 121.08 0.143 0.133
0.25 1.493e−02 6.750e−03 397.61 399.29 0.462 0.458
0.5 1.597e−02 9.000e−03 504.03 504.62 0.548 0.541
0.65 1.550e−02 8.190e−03 460.35 460.65 0.515 0.512
0.8 1.435e−02 5.760e−03 320.78 322.53 0.388 0.385
0.95 1.388e−02 1.710e−03 104.46 111.79 0.130 0.113

at a distance of 100−200 μm from the cell [31]. The applied force is
not reported in the references, but in some cases the displacement
of the substrate is recorded [31]. The substrates used to perform
the experiments are polyacrylamide gels with homogeneous stiffness
in [15,31] and rectangular explants of animal ectoderm extirpated from
early gastrula embryos and placed on an adherent agarose substrate
in [36], whose mechanical properties, possibly non-homogeneous, are
not quantified. Taking inspiration from these biological settings, but
without claiming to accurately reproduce any specific experimental
tests (due to the lack of more measurements to accurately set the
model parameters), we will focus on two different scenarios where the
substrate is characterized by either homogeneous or non-homogeneous
material parameters 𝜇1 and 𝜇3 in Eq. (18), respectively, linked to its
linear and non-linear mechanical response to external stimuli.
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Fig. 7. Quantitative analysis of the numerical outcomes in Fig. 6, where cell dynamics is due to durotaxis. (A) Time evolution of the time-averaged mean square displacement
MSD defined in Eq. (28). (B) Time evolution of the temporal angular correlation C defined in Eq. (29). Black horizontal lines denote (starting from the bottom one) the threshold
between the first and second quartiles, the means, and the threshold between the third and fourth quartiles.
Fig. 8. The first principal invariant of the stress, with its contour lines (white dashed lines), standing for the field 𝑐 in our tensotaxis model (panel A) and the normalized strain
energy representing the field 𝑚 (panel B) used in the numerical simulations shown in Fig. 9. Specifically, the mechanical behavior of the substrate is here assumed homogeneous
with 𝜇̂1 = 2.48 kPa and 𝜇̂3 = 2.50 kPa in Eq. (34), while the load in Eq. (15) is applied inside the red circle with magnitude 𝑓𝑏 = 6.1 kPa and directed upwards, i.e. 𝛽 = 𝜋∕2 (black
arrow).
Homogeneous mechanical properties of the substrate. The fields 𝜇1 and 𝜇3
in Eq. (18), respectively linked to the linear and non-linear mechanical
response of the substrate, are first considered homogeneous, i.e.

𝜇1(𝐗) = 𝜇̂1, 𝜇3(𝐗) = 𝜇̂3. (34)

In this context, we first set 𝜇̂1 = 2.48 kPa and 𝜇̂3 = 2.50 kPa,
reproducing a polyacrylamide gel (PAG) made with 10% of acrylamide
and 0.05% of bis-acrylamide [49], and we assume that the load applied
on the substrate has magnitude 𝑓𝑏 = 6.1 kPa and is directed upwards,
i.e. 𝛽 = 𝜋∕2 in Eq. (15). We note that the chosen value of 𝜇̂1, combined
with a Poisson ratio 𝜈 = 0.48, as reported in Table 2, corresponds
to 𝐸 ≈ 14 kPa, which is the Young’s modulus of the soft substrate
used in [15]. However, we note that softer substrates can be found
11
in tensotaxis experiments [31] and in the following we will vary this
parameter. The resulting fields 𝑐 and 𝑚, defined in Eqs. (17) and (19) as
the first principal invariant of stress and the normalized strain energy
density function, respectively, are represented in Fig. 8 in Eulerian
coordinates. Notice that 𝑐 (Fig. 8-A) is almost anti-symmetric with
respect to the horizontal line 𝑦 = 350 μm, with positive values under the
black circle , where the traction is applied, and negative values above
it. On the other hand, the normalized energy 𝑚 (Fig. 8-B) is almost
symmetric with respect to the same horizontal line, with analogous
values either where the substrate is pushed or pulled. In this simulation
setup, we first consider different initial conditions to investigate the
effect of compressive and tensile stresses on cell dynamics (see Fig. 9).
As expected, if the cell is initially placed in the region characterized
by positive/tensile stress (see panels A and D in Fig. 9), it polarizes
according to the sensed field 𝑐 and thus moves towards the positive
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Fig. 9. Numerical simulations reproducing cell dynamics due to tensotaxis in the presence of the fields 𝑐 and 𝑚 shown in Fig. 8. The white dashed lines are the contour lines
of the first principal invariant of the stress, i.e. 𝑐, see Eq. (17). Each panel shows 10 different trajectories starting from different initial locations (white circle) and direction of
polarization (red arrows). The considered initial conditions are: (A) 𝐱𝑝,0 = (150, 150)𝑇 μm and 𝐰0 = (0, 1)𝑇 ; (B) 𝐱𝑝,0 = (450, 450)𝑇 μm and 𝐰0 = (1, 0)𝑇 ; (C) 𝐱𝑝,0 = (350, 400)𝑇 μm and
𝐰0 = (0,−1)𝑇 ; (D) 𝐱𝑝,0 = (150, 150)𝑇 μm and 𝐰0 = (0,−1)𝑇 ; (E) 𝐱𝑝,0 = (450, 450)𝑇 μm and 𝐰0 = (0, 1)𝑇 ; (F) 𝐱𝑝,0 = (350, 400)𝑇 μm and 𝐰0 = (1, 0)𝑇 .
Table 5
Quantitative analysis of the numerical outcomes in Fig. 9. For each case, we report 𝑥𝑝,0 and 𝐰0 characterizing the initial
condition, and the values of the mean speed 𝑠̄ in Eq. (23), the mean motility 𝑣̄ in Eq. (24), the overall displacement 𝑑TOT and
the maximum displacement 𝑑max in Eq. (25), the persistence P in Eq. (26) and the forward migration index FMI in Eq. (27).
𝑥𝑝,0 [μm] 𝐰𝑇

0 𝑠̄ [μm∕s] 𝑣̄ [μm∕s] 𝑑TOT [μm] 𝑑max [μm] P [−] FMI [−]

150 (0, 1) 1.413e−02 3.496–03 183.38 190.39 0.223 0.236
150 (0, −1) 1.404e−02 3.091e−03 156.80 162.74 0.193 0.203

450 (1, 0) 1.396e−02 1.778e−03 106.78 122.70 0.135 0.129
450 (0, 1) 1.372e−02 2.073e−03 129.44 136.02 0.163 0.150

350 (0, −1) 1.406e−02 4.195e−03 215.56 226.62 0.266 0.292
350 (1, 0) 1.403e−02 3.783e−03 194.90 208.08 0.241 0.239
peak of stress at the center of the domain. Conversely, if the cell
is initially placed in a region characterized by negative/compressive
stress (see panels B, C, E and F in Fig. 9), the cell moves away from
the negative peak of 𝑐 at the center of the domain. This means that
the proposed model is able to qualitatively capture the biological ob-
servation in [15,31] that the cell is attracted by tensile stresses (panels
A and D) and repelled by compressive stresses (panels B, C, E and F).
In addition, a comparison between the results in the top and bottom
rows in Fig. 9 highlights how the initial cell direction of polarization
𝐰0 affects cell dynamics. It emerges that the initial polarization can
lead to a bias in cell direction, without affecting the general behavior,
i.e. repulsion from compressive stress and attraction towards tensile
one, as well as the value of the output quantities defined in Eqs. (23)–
(27) (see Table 5). This is particularly evident in the panels C and F in
Fig. 9. In fact, 𝐰0 = (−1, 0)𝑇 results in a quasi symmetric distribution of
cell trajectories (panel C), which is missing if the initial cell polarization
𝐰0 is set to (0, 1)𝑇 (panel F).
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We then turn to investigate if and how changes in the magnitude
of the exerted load 𝑓𝑏 in Eq. (15) and/or the homogeneous mechanical
properties of the substrate, i.e. the values of 𝜇̂1 and 𝜇̂3 in Eq. (34), affect
cell dynamics. In this perspective, the numerical results in Fig. 10 have
been obtained by considering

• different force magnitudes, i.e. 𝑓𝑏 = 3.05 kPa (top row), 𝑓𝑏 =
6.1 kPa (central row) and 𝑓𝑏 = 12.2 kPa (bottom row);

• different substrates characterized by the experimental values re-
ported in [49], i.e. 𝜇̂1 = 1.46 kPa and 𝜇̂3 = 0.25 kPa (left panels),
𝜇̂1 = 2.48 kPa and 𝜇̂3 = 2.50 kPa (central panels), 𝜇̂1 = 4.66 kPa
and 𝜇̂3 = 5.40 kPa (right panels).

As in previous cases, in all panels, we report 10 distinct realizations of
cell trajectory while the relative quantities defined in Eqs. (23)–(27)
are listed in Table 6 for 𝑄 = 50 realizations. Notice that the results in
panel E of Fig. 10 have been obtained with the simulation set-up shown
in Fig. 9. As a remark, in Fig. 10 we have only shown the field 𝑚, since
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Fig. 10. Numerical simulations reproducing cell dynamics due to tensotaxis in the presence of the fields 𝑐 and 𝑚 defined in Eqs. (17) and (19), respectively, with different values
of the load magnitude 𝑓𝑏 (black arrows), and of the homogeneous substrate mechanical parameters 𝜇̂1 and 𝜇̂3. Each panel shows 10 different trajectories starting from the same
initial location 𝐱𝑝,0 = (150, 150)𝑇 (white circle) with the same direction of polarization 𝐰0 = (0,−1)𝑇 (red arrows). From top to bottom, the load 𝑓𝑏 in Eq. (15) increases assuming
the values 3.05 kPa (top row), 6.1 kPa (central row), and 12.2 kPa (bottom row). From left to right the substrate stiffness is increased, by setting: 𝜇̂1 = 1.46 kPa and 𝜇̂3 = 0.25 kPa
(left panels), 𝜇̂1 = 2.48 kPa and 𝜇̂3 = 2.50 kPa (central panels), 𝜇̂1 = 4.66 kPa and 𝜇̂3 = 5.40 kPa (right panels). In each panel, the histograms show the distributions of the angles
𝜔𝑞
𝑛 (top) and 𝛿𝑞𝑛 (bottom) related to the direction of polarization 𝐰𝑞

𝑛 and the actual direction of motion 𝐝𝑞𝑛, respectively.
variations in the field 𝑐 due to increases in the applied load 𝑓𝑏 or in
the values of the mechanical coefficients 𝜇̂1 and 𝜇̂3 do not significantly
affect the local direction of the gradient of 𝑐 (see the contour lines in
Fig. S9 in the Supplementary Material) and, in turn, the direction of
cell trajectories.

These numerical outcomes first highlight that either a decrease in
the applied load or an increase in the mechanical properties 𝜇1 and 𝜇3
of the substrate (see panels B, C and F in Fig. 10) result in a reduction
of cell total displacement (see the values of 𝑑TOT and 𝑑max in Table 6)
and thus a lower amount of cell trajectories reaches the center of the
domain, where the force is applied. Interestingly, this is correlated with
a reduction in the motility (see the histograms in Fig. 11 and the values
of 𝑣̄ in Table 6), and very low values of the persistence P and the
forward migration index FMI, while the mean speed 𝑠̄ presents very
13

small fluctuations (see again Table 6). This clearly indicates that a
decrease in the applied load and/or an increase in the substrate stiffness
consistently result in a reduced cell motility, leading thereby to an
almost unbiased Brownian motion of the cell, as confirmed by the linear
growth in time 𝑘𝛥𝑡 of the time-averaged mean square displacement
MSD in the panel A of Fig. 11 (see the red dashed and dotted lines
and the dotted purple one). Such transition in cell type of motion is
due to the fact that either decreasing the applied load or increasing the
values of the mechanical coefficients, the strain energy stored in the
substrate, and thus 𝑚, decreases.

Conversely, either an increase in the applied load or a decrease in
the mechanical parameters of the substrate 𝜇1 and 𝜇3 (see panels D,
G, H in Fig. 10) lead to a higher number of cell trajectories that reach
the center of the domain in response to the sensed field 𝑚. In fact, as
shown by the histograms in Fig. 11 and the values in Table 6, these

cases are characterized by an increase in cell motility and a higher
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Table 6
Quantitative analysis of the numerical outcomes in Fig. 10. For each case, we report 𝑓𝑏 and 𝜇̂1, characterizing respectively the
load magnitude and the mechanical coefficient related to the substrate stiffness, the values of the mean speed 𝑠̄ in Eq. (23), the
mean motility 𝑣̄ in Eq. (24), the overall displacement 𝑑TOT and the maximum displacement 𝑑max in Eq. (25), the persistence
P in Eq. (26) and the forward migration index FMI in Eq. (27). The values obtained with the reference fields shown in Fig. 8
are written in bold.
𝑓𝑏 [kPa] 𝜇̂1 [kPa] 𝑠̄ [μm∕s] 𝑣̄ [μm∕s] 𝑑TOT [μm] 𝑑max [μm] P [−] FMI [−]

3.05 1.46 1.395e−02 2.071e−03 134.91 141.69 0.167 0.158
3.05 2.48 1.372e−02 9.906e−04 75.79 87.27 0.095 0.093
3.05 4.66 1.350e−02 5.514e−04 54.53 66.32 0.071 0.052

6.10 1.46 1.402e−02 4.915e−03 232.00 240.25 0.287 0.357
6.10 2.48 1.386e−02 3.056e−03 143.51 148.37 0.180 0.186
6.10 4.66 1.359e−02 1.671e−03 86.21 96.35 0.109 0.098

12.20 1.46 1.504e−02 6.526e−03 261.17 264.02 0.301 0.416
12.20 2.48 1.446e−02 5.514e−03 239.21 244.17 0.287 0.328
12.20 4.66 1.429e−02 4.648e−03 208.86 211.87 0.254 0.284
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correlation between cell direction and the stiffness gradient. In other
words, as confirmed by the quadratic growth in time 𝑘𝛥𝑡 of the MSD in
Fig. 11 (panel A), cell dynamics is here mainly driven by the external
cues rather than by the random term.

Lastly, either a reduction or increase of both the applied load 𝑓𝑏 and
the substrate stiffness (see panels A and I in Fig. 10) slightly affect the
amount of trajectories that reach the positive peak of tension, as well as
the type of cell dynamics. In fact, in both cases the time-averaged mean
square displacement MSD in Fig. 11 (panel A) quadratically grows in
time 𝑘𝛥𝑡 as in the reference case (see the solid red line, the dotted
green line and the dashed purple one, respectively). Moreover, in the
case shown in the panel A of Fig. 11, the values of the quantities in
Table 6 are very close to those of the reference case, while some small
differences are observed in the values relative to the case in panel I of
Fig. 11.

In summary, the above observed behaviors are due to the fact
that either increasing the applied load or decreasing the values of
the mechanical coefficients in a force-controlled experiment, the strain
energy stored in the substrate, and thus 𝑚, increases. In turn, according
to Eq. (20), cell motility increases too (see the mean motility 𝑣̄ in
Table 6 and histograms in panel B of Fig. 11), and so the directional
contribution in cell velocity prevails on the Wiener process in Eq. (1).
Consequently, cell dynamics change from an almost random walk (see
panel C in Fig. 10) to a fully biased motion in which the cell reaches
the positive stress peak at the center of the domain (panel G in Fig. 10).
This behavior transition is also consistent with the polar histograms in
Fig. 10. When the stochastic term prevails (see in particular panels B,
C and F), the cell remains in the bottom left part of the domain and so
the direction of polarization 𝐰 is substantially aligned to the 𝑥-axis,
while there is no emergence of a preferred direction of motion due
to the strength of the random term. Conversely, when the directional
contribution in cell velocity prevails (see panels D, G and H), there is a
wider variation in the directions of polarization 𝐰 as the cell leaves the
bottom left part of the domain following the field 𝑐. Again the random
contributions in cell velocity introduce important differences between
the distributions of 𝜔𝑞

𝑛 and 𝛿𝑞𝑛 . However, the 𝛿𝑞𝑛 has an asymmetric
distribution, that highlights the presence of a preferred direction of
motion. Finally, the time evolution of the temporal angular correlation
𝐶(𝑘𝛥𝑡) is not shown here since in all cases its average is approximately
null. This indicates that, in all cases, there is no correlation between
the variations of the direction of motion. This result is related to the
fact that cell direction progressively changes following the field 𝑐, in
ddition to being constantly affected by the random term.

nhomogeneous mechanical properties of the substrate. Lastly, we turn
o assume that the mechanical parameters of the substrate, 𝜇1 and
3, are inhomogeneous in space. This allows us to test our model in
more complex setting, which could be relevant in some biological

pplications (e.g. scar formation, wound healing, bone repair, fibrosis)
14

nd in tissue engineering, although to our knowledge no experiments h
f this type have been performed in the literature. In particular, we
onsider a set-up in which the left side of the undeformed substrate is
haracterized by the mechanical coefficients 𝜇̂𝐿

1 and 𝜇̂𝐿
3 , and the right

ide by 𝜇̂𝑅
1 and 𝜇̂𝑅

3 , by setting in the reference configuration

1(𝐗) =
⎧

⎪

⎨

⎪

⎩

𝜇̂𝐿
1 if 𝑋 ∈ [0, 𝑑3 − 𝛿],

𝑆5(𝑋) if 𝑋 ∈ (𝑑3 − 𝛿, 𝑑3 + 𝛿),
𝜇̂𝑅
1 if 𝑋 ∈ [𝑑3 + 𝛿, 𝐿],

(35)

nd

3(𝐗) =
⎧

⎪

⎨

⎪

⎩

𝜇̂𝐿
3 if 𝑋 ∈ [0, 𝑑3 − 𝛿],

𝑆6(𝑋) if 𝑋 ∈ (𝑑3 − 𝛿, 𝑑3 + 𝛿),
𝜇̂𝑅
3 if 𝑋 ∈ [𝑑3 + 𝛿, 𝐿],

(36)

eing 𝑆5 and 𝑆6 proper third-degree polynomials that guarantee the
ifferentiability of the fields 𝜇1 and 𝜇3. The values of 𝑑3 and 𝛿 used
n the following simulations have been set to 280 μm and 20 μm,
espectively, to avoid that the load, applied in the circle  at the
enter of the substrate, falls in the transition region. In order to prevent
umerical issues due to the smoothing of the fields, we here use a
hicker regular grid 𝛬 × 𝛬 with 𝛬 = 350 (see Section 3).

In this context, we firstly consider a substrate with a stiffer region
n its right side, which is thus characterized by higher mechanical
roperties than the left one. Specifically, referring to the experimental
ange reported in [49] and considering Eqs. (35) and (36), we set
̂𝐿1 = 1.46 kPa and 𝜇̂𝐿

3 = 0.25 kPa for the softer (left) side of the
ubstrate, and 𝜇̂𝑅

1 = 4.66 kPa and 𝜇̂𝑅
3 = 5.4 kPa on the stiffer (right)

ide. In this substrate setup, the numerical outcomes in panels A and C
f Fig. 12 show cell dynamics when a load with magnitude 𝑓𝑏 = 6.1 kPa
nd pulling upwards, i.e. with 𝛽 = 𝜋∕2 in Eq. (15), is applied to the
ubstrate in  (which here falls in the right stiffer side of the ECM),
ith different initial position of the cells. In particular, we notice that
espite the gradient of the volumetric stress, represented by the first
rincipal invariant of the Cauchy stress tensor (see the dashed white
ines), is higher on the stiffer (right) part of the substrate, the results are
ualitatively similar to the homogeneous setup of Fig. 9. The cell tends
n fact to move towards tensile stresses and away from compressive
nes. We remark that in this case, since we have not explicitly included
he motion due to durotaxis, the cell tends to stay on the softer side if
he stiffer region close to the cell is compressed (panel C in Fig. 12).

We then turn to consider a substrate whose left side is much stiffer,
.e. it is characterized by higher mechanical properties than the right
ne. In particular, always referring to the experimental range reported
n [49], we set 𝜇̂𝐿

1 = 4.66 kPa, 𝜇̂𝐿
3 = 5.4 kPa, 𝜇̂𝑅

1 = 1.46 kPa and
𝜇̂𝑅
3 = 0.25 kPa in Eqs. (35) and (36). In this new setting, we still
onsider the same external force and initial conditions as the previous
ase, so that the load is applied on the softer part of the substrate. The
umerical outcomes in panels B and D of Fig. 12 show that, even though
he cell continues to move towards tensile stresses, its trajectory is
ere influenced also by the inhomogeneity of the substrate, specifically
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Fig. 11. Quantitative analysis of the numerical outcomes in Fig. 10. (A) Temporal evolution of the time-averaged mean square displacement MSD defined in Eq. (28). The blue
solid line is the straight line 4𝐷𝑘𝛥𝑡 characteristic of the Brownian motion. (B) Histograms showing the values of cell motility 𝑣.
Fig. 12. Numerical simulations reproducing cell dynamics due to tensotaxis in the case of an inhomogeneous substrate, i.e. by setting 𝜇̂𝐿
1 = 1.46 kPa, 𝜇̂𝐿

3 = 0.25 kPa, 𝜇̂𝑅
1 = 4.66 kPa

and 𝜇̂𝑅
3 = 5.4 kPa in Eqs. (35) and (36) in panels A and C, and 𝜇̂𝐿

1 = 4.66 kPa, 𝜇̂𝐿
3 = 5.4 kPa, 𝜇̂𝑅

1 = 1.46 kPa and 𝜇̂𝑅
3 = 0.25 kPa in panels B and D. The substrate is pulled upwards

in  with 𝑓𝑏 = 6.1 kPa (black arrows). Each panel shows 10 different trajectories starting from different initial conditions (as indicated by the white circles and the red arrows):
(A and B) 𝐱𝑝,0 = (200, 200)𝑇 μm and 𝐰0 = (0,−1)𝑇 , (C and D) 𝐱𝑝,0 = (250, 500)𝑇 μm and 𝐰0 = (1, 0)𝑇 . The white dashed lines are the contour lines of the first principal invariant of
the stress, i.e. of 𝑐. The red dashed lines define the transition zone of the mechanical coefficients 𝜇1 and 𝜇3.
when the cell is initially placed on the stiffer side (panel B in Fig. 12).
15

Indeed, in this case, the cell tends to move alongside the transition

zone, while migrating towards the tensile region. Furthermore, very

few cell trajectories reached the most stretched region in the time lapse
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Fig. 13. Numerical simulations reproducing cell dynamics due to tensotaxis in the case of an inhomogeneous substrate, i.e. by setting 𝜇̂𝐿
1 = 1.46 kPa, 𝜇̂𝐿

3 = 0.25 kPa, 𝜇̂𝑅
1 = 4.66 kPa

and 𝜇̂𝑅
3 = 5.4 kPa in Eqs. (35) and (36) as in panels A and C of Fig. 12. The substrate is pulled horizontally, with 𝛽 = 0, in  with 𝑓𝑏 = 6.1 kPa (black arrows). Each panel shows

10 different trajectories with the following initial conditions (white circles and red arrows): (A) 𝐱𝑝,0 = (170, 170)𝑇 μm and 𝐰0 = (0,−1)𝑇 ; (B) 𝐱𝑝,0 = (420, 450)𝑇 μm and 𝐰0 = (0,−1)𝑇 .
The white dashed lines are the contour lines of the first principal invariant of the stress, i.e. of 𝑐. The red dashed lines define the transition zone of the mechanical coefficients
𝜇1 and 𝜇3.
of the numerical simulations, while in the other realizations the cell
persists to migrate on the stiffer side or on the transition zone.

Lastly, in Fig. 13 we consider the same substrate setup used in the
panels A and C of Fig. 12, but we here assume that the load, applied
on the stiffer right side, is horizontally directed towards the right, by
setting 𝛽 = 0 in Eq. (15). In panel A of Fig. 13, we observe that the cell,
initially placed on the softer left side, tends to stay there driven by the
field 𝑐. In this case, the most tensed region (i.e. where the first principal
invariant of the stress is maximum) located on the stiffer side of the
substrate, is never reached by the cell in any of the ten realizations. On
the other hand, in panel B of Fig. 13 it is possible to see that if the cell
is initially placed on the stiffer (right) side of the substrate, which is
compressed, it is repelled, as expected, by the compressive stresses.

We remark, however, that in all these cases a possible combined
effect between durotaxis and tensotaxis is disregarded and, thus, the
inhomogeneous setting deserves further mathematical modeling efforts
possibly supported by biological experiments.

5. Conclusions and perspectives

We have presented a new phenomenological model for cell mi-
gration on 2D substrates in response to mechanical stimuli, adapted
from the chemotactic model proposed in [48]. In our model, a single
representative cell changes its motility and its direction of polarization
sensing different mechanical cues in a non-local and non-isotropic
way. We specialize our model to describe durotaxis, i.e. the motion
towards stiffer regions of the substrate, and tensotaxis, i.e. the motion
towards tensile stresses and away from compressive stresses of the
substrate itself. After having proved the existence and uniqueness of the
solution, under proper assumptions, the model is numerically solved
by considering different biologically relevant settings. Interestingly, the
numerical outcomes reported in the paper qualitatively agree with the
experimental observations. Specifically, the model is able to reproduce
both cells movements in response to rigidity gradients of the substrate
and cells preference for stiffer matrices with respect to softer ones, as
shown in durotaxis experiments [15,30]. Moreover, when tensotaxis
is concerned, the model is able to qualitatively capture cell motion
towards tensile stresses and away from compressive ones, accordingly
to the biological observations reported in [5,15,34,36,38,39].

However, our study has some simplifications and limitations, which
might be interesting to address in future works. From the modeling
16
point of view, the proposed model is purely phenomenological, and
does not take into account the subcellular mechanisms involved in the
migration process. In this respect, the model should be further refined
to link the macroscopic field 𝑐 and 𝑚 sensed by the cell to subcellular
pathways, by defining a multiscale or nested model able to capture
phenomena occurring at the molecular and cellular scales.

Future works should also focus on the mechanical interaction be-
tween the cell and the substrate, which has been neglected in the
present model. Indeed, it is well know that, while moving, cells exert
traction forces on the substrate they are anchored on [80–82]. This
visco-elastic interaction should be taken into account since it modifies
stresses and strains within both the substrate and the cell itself [83].
This could be possibly captured by our model by including the de-
scription of the mechanical forces exchanged between the cell and the
substrate, within the sensing region. The inclusion of this mechanical
feedback can also allow to describe the changes in cell shape, as well
as in the distribution of FAs. We remark that in this case, we should
also address time dependent forces and mechanical cues, too. The cell
migration model already accounts for possible time dependence of the
fields 𝑐 and 𝑚. Even though the mechanical problem for the substrate
manipulation can, in principle, involve a load that varies over time, this
will lead to a time-dependent deformation of the substrate. This aspect
should be addressed within the numerical implementation of the model,
since the grid would deform at each different time step. Therefore, the
time step for the cell dynamics and the mechanical manipulation of
the substrate problems should be carefully set. Furthermore, the spatial
interpolation of the evolving fields 𝑐 and 𝑚 should also be taken into
account, and the quadrature formulas used to compute the integrals
𝑀 in Eq. (3) and 𝐖 in Eq. (6) should be specialized for the case of an
evolving grid. The modification of the numerical scheme to handle also
time dependent cues will be fundamental also to describe cell migration
in response to mechanical stimuli occurring during embryogenesis and
morphogenesis, for instance [84].

Moreover, the simulations we have performed aimed to reproduce
the processes of durotaxis and tensotaxis, treating them separately.
However, they likely involve similar or analogous subcellular mecha-
nisms and they should be treated congruently and perhaps simulated
simultaneously. In general, since cells migrating in vivo are exposed
to an environment characterized by a combination of biochemical,
biophysical, and topological cues, it is likely that cells migrate by
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performing a sort of ‘‘mixotaxis’’ [85], and it would be interesting to
consider more signals in our model, changing properly the fields 𝑐 and

, or considering different choices of the function 𝑓 .
Finally, the present work should be regarded as a proof of concept

f a simple phenomenological model for cell motion in response to
echanical cues and it needs to be tested with experimental tests per-

ormed ad hoc using engineered substrates with prescribed mechanical
roperties [76,86].
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Appendix A. Analytical results

In this section, the existence and uniqueness of the solution of
the model proposed in Section 2.1, and its dependence on the initial
condition under a minimal set of assumptions (satisfied by the functions
considered in Section 4) are proved. In particular, we will first recall
two preliminary results regarding Eq. (4), that will be fundamental for
the subsequent proof. The proofs of these results can be found in [48],
where the same equation for the evolution of the polarization vector
has been used. Then we will state details on the notation, and we will
list the considered set of assumptions that allows to prove the existence
and uniqueness of the solution of the model proposed in this work, that
substantially differs from [48] due to the introduction of the stochastic
term in Eq. (1), the definition of the cell preferred axis given by Eq. (6),
and the choice of the functional form of the kernels 𝐾𝑟 and 𝐾𝜃 , which
requires special attention in the proof.

A.1. Preliminary results

Proposition 1. If the initial polarization vector 𝐰(0) is such that
‖𝐰(0)‖ =∶ 𝑤0 ∈ (0, 1], Eq. (4) ensures that cell polarization 𝐰(𝑡) has
‖𝐰(𝑡)‖ ≤ 1 for any 𝑡 > 0.

Proposition 2. For any 𝐰1,𝐰2 ∈ R2 such that ‖𝐰1‖, ‖𝐰2‖ ≥ 𝑤0, with
𝑤0 ∈ (0, 1], there exists a constant 𝐶𝑤0

> 0 such that

‖

‖

𝐰1 −
𝐰2 ‖

‖ ≤ 𝐶𝑤 ‖𝐰1 − 𝐰2‖. (A.1)
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‖
‖𝐰1‖ ‖𝐰2‖‖

0
|

.2. Notation

The substrate on which the cell migrates is identified with an open
nd connected set 𝛺 ⊆ R2, while the set of possible cell positions is
efined as  ∶= {𝐱𝑝 ∈ R2

|(𝐱𝑝) ⊆ 𝛺}, being (𝐱𝑝) the circle centered
t 𝐱𝑝 and with radius 𝑅 > 0. According to [48], we define the time
nterval  ∶= [0, 𝑇 ] such that, given the initial condition 𝐰(0) with
𝐰(0)‖ = 𝑤0 ∈ (0, 1], the cell direction of motion satisfies ‖𝐰(𝑡)‖ ≥ 𝑤0
nd 𝐱𝑝 ∈  for any 𝑡 ∈ . Moreover, referring to Proposition 2, we
enote by  the set of possible cell polarization vectors, i.e.  ∶= {𝐰 ∈
2 such that ‖𝐰‖ ∈ [𝑤0, 1]} ⊂ R2. Cell speed 𝑣(𝑡) is hereafter denoted
y 𝑣(𝑡, 𝐱𝑝,𝐰) in order to remark that it depends on the present position
𝑝(𝑡) and the polarization vector 𝐰(𝑡) of the cell, see Eqs. (2). Lastly, we
ntroduce 𝐳(𝑡) ∶= (𝐱𝑝(𝑡), 𝐰(𝑡))𝑇 ∈  × and denote by ‖ ⋅ ‖2×2 the norm
n R2 × R2 defined by ‖𝐳‖2×2 ∶= ‖𝐱𝑝‖ + ‖𝐰‖.

The proposed model constituted by Eqs. (1)–(2), enriched by proper
xplicit functional forms of the function 𝑓 , the kernels 𝐾𝑟 and 𝐾𝜃 , and
he fields 𝑚 and 𝑐, is rewritten in the following canonical form

⎧

⎪

⎨

⎪

⎩

d𝐳(𝑡) = 𝐅(𝑡, 𝐳(𝑡))d𝑡 +
(√

2𝐷 d𝐁(𝑡)
𝟎

)

, for 𝑡 ∈ (0, 𝑇 ],

𝐳(0) = 𝐳0,
(A.2)

here 𝐳0 ∶= (𝐱𝑝(0),𝐰(0))𝑇 ∈  × R2 is an initial condition such that
𝐰(0)‖ ≤ 1; while

(𝑡, 𝐳(𝑡)) ∶= (𝐠𝐱(𝑡, 𝐱𝑝(𝑡), 𝐰(𝑡)), 𝐠𝐰(𝑡, 𝐱𝑝(𝑡), 𝐰(𝑡)))𝑇 , (A.3)

eing 𝐠𝐱(𝑡, 𝐱𝑝(𝑡), 𝐰(𝑡)) ∶= 𝑣(𝑡)𝐰(𝑡) and 𝐠𝐰(𝑡, 𝐱𝑝(𝑡), 𝐰(𝑡)) the right hand
ide of Eq. (4). Then 𝐙(𝑡) ∈  ×  is hereafter said solution for any
∈  of Eq. (A.2) in the sense of the following Definition.

efinition 1. Let {𝐁(𝑡)}𝑡∈ be a two dimensional vector Wiener process
n a probability space (𝛺, , 𝑃 ) with an admissible filtration F =
}𝑡≥0. A solution of the stochastic differential equation (A.2) with
nitial condition 𝐳0 = (𝐱𝑝(0),𝐰(0))𝑇 ∈  × R2 with 𝑤0 ∶= ‖𝐰(0)‖ ≤ 1
s an adapted process 𝐙(𝑡) with continuous paths such that for all 𝑡 ∈ 

(𝑡) = 𝐳0 + ∫

𝑡

0
𝐅(𝑠,𝐙(𝑠))d𝑠 +

⎛

⎜

⎜

⎝

∫

𝑡

0

√

2𝐷 d𝐁(𝑠)

𝟎

⎞

⎟

⎟

⎠

, (A.4)

eing ∫ 𝑡
0

√

2𝐷d𝐁(𝑠) an Ito’s stochastic integral [53].

.3. Assumptions

ssumption 1. Let 𝑚 ∶  × 𝛺 ↦ [0, 1] in Eq. (3) be a Lipschitz
ontinuous function on 𝛺, i.e. there exists a constant 𝐿𝑖𝑝(𝑚) > 0 such
hat

𝑚(𝑡, 𝐱1) − 𝑚(𝑡, 𝐱2)| ≤ 𝐿𝑖𝑝(𝑚) ‖𝐱1 − 𝐱2‖,

or every 𝐱1, 𝐱2 ∈ 𝛺 and 𝑡 ∈ .

ssumption 2. Let 𝑐 ∶  × 𝛺 ↦ R in Eq. (6) be a function bounded
nd Lipschitz continuous on 𝛺, i.e. there exist two constants 𝑐0 > 0 and
𝑖𝑝(𝑐) > 0 such that |𝑐(𝑡, 𝐲)| ≤ 𝑐0 and

𝑐(𝑡, 𝐱1) − 𝑐(𝑡, 𝐱2)| ≤ 𝐿𝑖𝑝(𝑐) ‖𝐱1 − 𝐱2‖,

or every 𝐱1, 𝐱2 ∈ 𝛺 and 𝑡 ∈ .

ssumption 3. Let 𝐾𝜃 ∶ [−1, 1] ↦ [0, 1] in Eq. (8) write as

𝜃(𝑢) =

⎧

⎪

⎨

⎪

⎩

𝐾+
𝜃 (𝑢), if 𝑢 ∈ [𝛼, 1],

0, if 𝑢 ∈ (−𝛼, 𝛼),
𝐾−

𝜃 (𝑢), if 𝑢 ∈ [−1,−𝛼],

ith 𝛼 ∈ [0, 1). In particular, 𝐾+
𝜃 ∶ [𝛼, 1] ↦ [0, 1] has compact support

nd is Lipschitz continuous over [𝛼, 1], i.e. there exists a constant
𝑖𝑝(𝐾+

𝜃 ) > 0 such that
+ + +
𝐾𝜃 (𝑢1) −𝐾𝜃 (𝑢2)| ≤ 𝐿𝑖𝑝(𝐾𝜃 )|𝑢1 − 𝑢2|,
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for every 𝑢1, 𝑢2 ∈ [𝛼, 1]. Moreover, 𝐾−
𝜃 ∶ [−1,−𝛼] ↦ [0, 1] has compact

support and is Lipschitz continuous over it, i.e. there exists a constant
𝐿𝑖𝑝(𝐾−

𝜃 ) > 0 such that

|𝐾−
𝜃 (𝑢1) −𝐾−

𝜃 (𝑢2)| ≤ 𝐿𝑖𝑝(𝐾−
𝜃 )|𝑢1 − 𝑢2|,

for every 𝑢1, 𝑢2 ∈ [−1,−𝛼].

Assumption 4. Let 𝐳0 ∶= (𝐱𝑝(0),𝐰(0))𝑇 in Eq. (A.2) be such that
‖𝐰(0)‖ =∶ 𝑤0 ∈ (0, 1] and 𝐱𝑝(0) ∈  .

Assumption 5. Let 𝑓 ∶ [0, 1] ↦ [0, 1] in Eq. (2) be a Lipschitz
continuous function on [0, 1], i.e. there exists a constant 𝐿𝑖𝑝(𝑓 ) > 0
such that

|𝑓 (𝑢1) − 𝑓 (𝑢2)| ≤ 𝐿𝑖𝑝(𝑓 )|𝑢1 − 𝑢2|,

for every 𝑢1, 𝑢2 ∈ [0, 1].

Remark 1. We remark that the kernel 𝐾𝑟 ∶ [0, 𝑅] ↦ [0, 1] in Eq. (8)
is assumed to be properly defined to result in a Riemann integrable
function.

Remark 2. We remark that the random term in Eq. (1) is given by
the constant parameter

√

2𝐷 ∈ R and the vector Wiener process 𝐁(𝑡).

.4. Main analytical result

heorem 1. If the system defined in Eq. (A.2) (and specified in Eqs. (1)–
(8)) satisfies Assumptions 1–5, the following statements hold true:

1. (Lipschitz continuity of 𝐅) 𝐅 ∶  ×  ×  ↦ R2 × R2 is Lipschitz
continuous on  × for any 𝑡 ∈ ;

2. (existence and uniqueness) Eq. (A.2) admits unique stochastic pro-
cess Z(𝑡) ∈  × solution on  in the sense of Definition 1;

3. (dependence on the initial condition) let 𝐙1(𝑡) = (𝐱𝑝1(𝑡),𝐰1(𝑡))𝑇 ∶
 ↦  ×  and 𝐙2(𝑡) = (𝐱𝑝2(𝑡),𝐰2(𝑡))𝑇 ∶  ↦  ×  denote two
cell trajectory–polarization pairs obtained when the initial condition
is set equal to 𝐳0,1 ∶= (𝐱𝑝1(0),𝐰1(0))𝑇 ∈  ×  and 𝐳0,2 ∶=
(𝐱𝑝2(0),𝐰2(0))𝑇 ∈  ×, respectively, it then results that

‖𝐙1(𝑡) − 𝐙2(𝑡)‖2×2 ≤ exp(Lip(𝐅) 𝑡) ‖𝐳0,1 − 𝐳0,2‖2×2, (A.5)

for any 𝑡 ∈ .

Proof. We first recall that Ito’s existence and uniqueness theorem
(see [53]) and the Grönwall’s Lemma ensure that the Lipschitz con-
tinuity of 𝐅 implies Statement 2, since the random term in Eq. (1) is
an additive noise (see the Remark 2). In this respect, we will prove
Statements 1 and 3, only.

Proof of Statement 1. The proof of Statement 1 consists in three
different steps.

Step 1. Lipschitz continuity of 𝐅. First, we remark that 𝐅 ∶  ×  ×
 ↦ R2 ×R2 is Lipschitz continuous on  × for any 𝑡 ∈ , if its
components 𝐠𝐱 ∶ ×× ↦ R2 and 𝐠𝐰 ∶ ×× ↦ R2 (defined
in Eqs. (1) and (4), respectively) are both Lipschitz continuous
on  ×  for any 𝑡 ∈ . We therefore focus on each component,
separately.
Step 2. Lipschitz continuity of 𝐠𝐱. For any 𝑡 ∈ , 𝐱𝑝1, 𝐱𝑝2 ∈  and
𝐰1,𝐰2 ∈ , we have that

‖𝐠𝐱(𝑡, 𝐱𝑝1,𝐰1) − 𝐠𝐱(𝑡, 𝐱𝑝2,𝐰2)‖ = ‖𝑣(𝑡, 𝐱𝑝1,𝐰1)𝐰1 − 𝑣(𝑡, 𝐱𝑝2,𝐰2)𝐰2‖

≤ |𝑣(𝑡, 𝐱𝑝1,𝐰1)| ‖𝐰1 − 𝐰2‖ + |𝑣(𝑡, 𝐱𝑝1,𝐰1) − 𝑣(𝑡, 𝐱𝑝2,𝐰2)| ‖𝐰2‖.

(A.6)

Recalling the definition of cell speed 𝑣 in Eq. (2) and that 𝑓 ∶
[0, 1] ↦ [0, 1], it results that |𝑣(𝑡, 𝐱 ,𝐰)| ≤ 𝑉 for any (𝑡, 𝐱 ,𝐰) ∈
18
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 ×  ×. Moreover, we have

|𝑣(𝑡, 𝐱𝑝1,𝐰1) − 𝑣(𝑡, 𝐱𝑝2,𝐰2)| ≤ 𝑉M Lip(𝑓 ) |𝑀(𝑡, 𝐱𝑝1,𝐰1) −𝑀(𝑡, 𝐱𝑝2,𝐰2)|

≤ 𝑉M Lip(𝑓 ) Lip(𝑀)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶ Lip(𝑣)

(

‖𝐱𝑝1 − 𝐱𝑝2‖ + ‖𝐰1 − 𝐰2‖
)

,

(A.7)

where the first inequality results from the Lipschitz continuity of
𝑓 (see Assumption 5); while the latter follows from the Lipschitz
continuity of 𝑚 (see Assumption 1), as it implies the Lipschitz con-
tinuity of 𝑀 (see Eq. (A.7) in [48] for further details). Eq. (A.6)
therefore reads as

‖𝐠𝐱(𝑡, 𝐱𝑝1,𝐰1) − 𝐠𝐱(𝑡, 𝐱𝑝2,𝐰2)‖

≤ 𝑉𝑀 (1 + Lip(𝑓 ) Lip(𝑀))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Lip(𝐠𝐱 )

(

‖𝐱𝑝1 − 𝐱𝑝2‖ + ‖𝐰1 − 𝐰2‖
)

. (A.8)

Step 3. Lipschitz continuity of 𝐠𝐰. For any 𝑡 ∈ , 𝐱𝑝1, 𝐱𝑝2 ∈  and
𝐰1,𝐰2 ∈ , it results

‖

‖

‖

𝐠𝐰(𝑡, 𝐱𝑝1,𝐰1) − 𝐠𝐰(𝑡, 𝐱𝑝2,𝐰2)
‖

‖

‖

≤ 1
𝜏

(2‖𝐖(𝑡, 𝐱𝑝2,𝐰2)‖ + 𝜀

𝜀2
∥𝐖(𝑡, 𝐱𝑝1,𝐰1) −𝐖(𝑡, 𝐱𝑝2,𝐰2)∥

+ ‖𝐰1 − 𝐰2‖
)

,

(A.9)

being 𝜀 > 0 (see Eqs. (A.10) and (A.11) in [48] for further details).
It is then straightforward to verify that the boundedness of 𝑐, 𝐾𝜃

and 𝐾𝑟 implies the boundedness of 𝐖, i.e. it results ‖𝐖(𝑡, 𝐱𝑝,𝐰)‖ ≤
2𝑐0𝜋𝑅2 for any (𝑡, 𝐱𝑝,𝐰) ∈  ×  ×.
Concerning instead the second norm in Eq. (A.9), the Lipschitz
continuity of 𝐖 follows from the boundedness and Lipschitz
continuity of 𝑐 (Assumption 2), the boundedness and Lipschitz
continuity of 𝐾+

𝜃 and 𝐾−
𝜃 (Assumption 3), and the boundedness

of 𝐾𝑟 (Remark 1). Specifically, it can be shown by first setting

‖𝐖(𝑡, 𝐱𝑝1,𝐰1) −𝐖(𝑡, 𝐱𝑝2,𝐰2)‖

≤ ‖

‖

‖

𝐖(𝑡, 𝐱𝑝1,𝐰1) −𝐖(𝑡, 𝐱𝑝2,𝐰1)
‖

‖

‖

+ ‖

‖

‖

𝐖(𝑡, 𝐱𝑝2,𝐰1) −𝐖(𝑡, 𝐱𝑝2,𝐰2)
‖

‖

‖

.

(A.10)

Recalling the definitions of 𝐖(𝑡, 𝐱𝑝,𝐰) and 𝐴 in Eqs. (6) and (7),
respectively, we have that 𝐴 > 0 (since the kernels 𝐾𝑟 and 𝐾𝜃
assume positive values) and thus the first term in Eq. (A.10) reads

‖𝐖(𝑡, 𝐱𝑝1,𝐰1) −𝐖(𝑡, 𝐱𝑝2,𝐰1)‖

= 1
𝐴
‖

‖

‖∫(𝐱𝑝1)
𝐾𝑟

(

‖𝐲 − 𝐱𝑝1‖
)

𝐾𝜃

( 𝐲 − 𝐱𝑝1
‖𝐲 − 𝐱𝑝1‖

⋅
𝐰1

‖𝐰1‖

)

(

𝑐(𝑡, 𝐲) − 𝑐(𝑡, 𝐳̄(𝐱𝑝1,𝐰1))
)

𝐲 − 𝐱𝑝1
‖𝐲 − 𝐱𝑝1‖

d𝐲 − ∫(𝐱𝑝2)
𝐾𝑟

(

‖𝐲 − 𝐱𝑝2‖
)

𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰1

‖𝐰1‖

)

(𝑐(𝑡, 𝐲)

− 𝑐(𝑡, 𝐳̄(𝐱𝑝2,𝐰1)))
𝐲 − 𝐱𝑝2

‖𝐲 − 𝐱𝑝2‖
d𝐲‖‖

‖

.

(A.11)

As in [48], exploiting that the direction of polarization 𝐰1 is
fixed, proper changes of variables (i.e. 𝐲 = 𝐱𝑝1 + 𝝃 in the first
integral and 𝐲 = 𝐱𝑝2 + 𝝃 in the second one) allow us to write
both integrals on the circular area (𝟎) centered at the origin and
with radius 𝑅. Hence, the boundedness of kernels 𝐾𝜃 and 𝐾𝑟 (see
Assumption 3 and Remark 1), and the Lipschitz continuity of 𝑐
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(see Assumption 2), imply the following estimate

(A.11) = 1
𝐴
‖

‖

‖∫(𝟎)
𝐾𝑟 (‖𝝃‖)𝐾𝜃

(

𝝃
‖𝝃‖

⋅
𝐰1

‖𝐰1‖

)

(𝑐(𝑡, 𝐱𝑝1 + 𝝃)

− 𝑐(𝑡, 𝐳̄(𝐱𝑝1,𝐰1))

− 𝑐(𝑡, 𝐱𝑝2 + 𝝃) + 𝑐(𝑡, 𝐳̄(𝐱𝑝2,𝐰1)))
𝝃

‖𝝃‖
d𝝃‖‖

‖

≤ 1
𝐴 ∫(𝟎)

|

|

|

𝑐(𝑡, 𝐱𝑝1 + 𝝃) − 𝑐(𝑡, 𝐱𝑝2 + 𝝃)||
|

+ |

|

|

𝑐(𝑡, 𝐳̄(𝐱𝑝1,𝐰1)) − 𝑐(𝑡, 𝐳̄(𝐱𝑝2,𝐰1))
|

|

|

d𝝃

≤
𝜋𝑅2Lip(𝑐)

𝐴

(

‖𝐱𝑝1 − 𝐱𝑝2‖ + ‖𝐳̄(𝐱𝑝1,𝐰1) − 𝐳̄(𝐱𝑝2,𝐰1)‖
)

=
2𝜋𝑅2Lip(𝑐)

𝐴
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Lip(𝐖𝐱 )

‖𝐱𝑝1 − 𝐱𝑝2‖,

(A.12)

where the last equality follows from the definition of 𝐳̄(𝐱𝑝,𝐰),
i.e. 𝐳̄(𝐱𝑝,𝐰) = 𝐱𝑝 + 𝑎𝐰∕‖𝐰‖𝑅. Conversely, recalling Eqs. (6), (8),
and the boundedness of 𝐾𝑟 (see Remark 1), the second term in
Eq. (A.10), where cell position 𝐱𝑝2 is fixed, reads as follows

‖

‖

‖

𝐖(𝑡, 𝐱𝑝2,𝐰1) −𝐖(𝑡, 𝐱𝑝2,𝐰2)
‖

‖

‖

= 1
𝐴
‖

‖

‖∫(𝐱𝑝2)
𝐾𝑟(‖𝐲 − 𝐱𝑝2‖)𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰1

‖𝐰1‖

)

(𝑐(𝑡, 𝐲) − 𝑐(𝑡, 𝐳̄(𝐱𝑝2,𝐰1)))

𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

d𝐲 − ∫(𝐱𝑝2)
𝐾𝑟(‖𝐲 − 𝐱𝑝2‖)𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰2

‖𝐰2‖

)

(𝑐(𝑡, 𝐲)

− 𝑐(𝑡, 𝐳̄(𝐱𝑝2,𝐰2)))
𝐲 − 𝐱𝑝2

‖𝐲 − 𝐱𝑝2‖
d𝐲‖‖

‖

≤ 1
𝐴 ∫(𝐱𝑝2)

|

|

|

𝐾𝑟(‖𝐲 − 𝐱𝑝2‖)
|

|

|

‖

𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

‖

|

|

|

𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰1

‖𝐰1‖

)

(𝑐(𝑡, 𝐲)

− 𝑐(𝑡, 𝐳̄(𝐱𝑝2,𝐰1))) −𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰2

‖𝐰2‖

)

(

𝑐(𝑡, 𝐲) − 𝑐(𝑡, 𝐳̄(𝐱𝑝2,𝐰2))
)

|

|

|

d𝐲,

≤ 1
𝐴 ∫(𝐱𝑝2)

|

|

|

𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰1

‖𝐰1‖

)

(

𝑐(𝑡, 𝐲) − 𝑐(𝑡, 𝐳̄(𝐱𝑝2,𝐰1))
)

−𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰2

‖𝐰2‖

)

(

𝑐(𝑡, 𝐲) − 𝑐(𝑡, 𝐳̄(𝐱𝑝2,𝐰2))
)

|

|

|

d𝐲

≤ 1
𝐴

[

∫(𝐱𝑝2)
|𝑐(𝑡, 𝐲)|||

|

𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰1

‖𝐰1‖

)

−𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰2

‖𝐰2‖

)

|

|

|

d𝐲

+ ∫(𝐱𝑝2)
|𝑐(𝑡, 𝐳̄(𝐱𝑝2,𝐰1))|

|

|

|

𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰1

‖𝐰1‖

)

−𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰2

‖𝐰2‖

)

|

|

|

d𝐲

+ ∫(𝐱𝑝2)

|

|

|

𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰2

‖𝐰2‖

)

|

|

|

|𝑐(𝑡, 𝐳̄(𝐱𝑝2,𝐰1)) − 𝑐(𝑡, 𝐳̄(𝐱𝑝2,𝐰2))|d𝐲
]

.

(A.13)

Thus the boundedness and the Lipschitz continuity of 𝑐 (see
Assumption 2), and the boundedness of 𝐾𝜃 (see Assumption 3)
imply that

(A.13) ≤
2𝑐0
𝐴 ∫(𝐱𝑝2)

|

|

|

𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱2‖

⋅
𝐰1

‖𝐰1‖

)

−𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰2

‖𝐰2‖

)

|

|

|

d𝐲

+
𝜋𝑅2Lip(𝑐)

𝐴
‖𝐳̄(𝐱𝑝2,𝐰1) − 𝐳̄(𝐱𝑝2,𝐰2)‖

≤
2𝑐0
𝐴 ∫(𝐱𝑝2)

|

|

|

𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰1

‖𝐰1‖

)

−𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰2

‖𝐰2‖

)

|

|

|

d𝐲

+
𝜋𝑅3

|𝑎|Lip(𝑐)𝐶𝑤0

𝐴
‖𝐰1 − 𝐰2‖,

(A.14)

where the last inequality follows from the definition of 𝐳̄(𝐱𝑝,𝐰)
and Proposition 1. Focusing on the last integral in Eq. (A.14), we
denote by 𝑈𝐱 ,𝐰 the subset of (𝐱𝑝) where 𝐾𝜃

(

𝐲−𝐱𝑝 ⋅ 𝐰
)

> 0
19

𝑝 ‖𝐲−𝐱𝑝‖ ‖𝐰‖
and we define three subsets of (𝐱𝑝2): 1,2 ∶= 𝑈𝐱𝑝2 ,𝐰1
∩ 𝑈𝐱𝑝2 ,𝐰2

,
1 ∶= 𝑈𝐱𝑝2 ,𝐰1

⧵ 1,2 and 2 ∶= 𝑈𝐱𝑝2 ,𝐰2
⧵ 1,2 (see the sketch in

Fig. A.14 for all possible configurations of 1,2, 1 and 2).

The integral in Eq. (A.14) therefore splits as

∫(𝐱𝑝2)
|

|

|

𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱2‖

⋅
𝐰1

‖𝐰1‖

)

−𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰2

‖𝐰2‖

)

|

|

|

d𝐲

= ∫1,2

|

|

|

𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰1

‖𝐰1‖

)

−𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰2

‖𝐰2‖

)

|

|

|

d𝐲

+ ∫1

|

|

|

𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰1

‖𝐰1‖

)

|

|

|

d𝐲 + ∫2

|

|

|

𝐾𝜃

( 𝐲 − 𝐱𝑝2
‖𝐲 − 𝐱𝑝2‖

⋅
𝐰2

‖𝐰2‖

)

|

|

|

d𝐲.

(A.15)

It can be then proved that the integrals in the right end term of
Eq. (A.15) are bounded by a multiple of ‖𝐰1 − 𝐰2‖, by using the
boundedness of 𝐾𝜃 and (where possible) the Lipschitz continuity of 𝐾+

𝜃
and 𝐾−

𝜃 , in addition to geometric considerations about the center angle
f the circular sectors constituting 1,2, 1 and 2. The same result can

be proved using instruments of Measure Theory (see for instance [87]).
Following the first approach, we can first notice that when the center
angle of a circular sector is equal to or lower than the angle between
𝐰1 and 𝐰2, we may take into account that the area of a circular sector
spanning between 𝐰1 and 𝐰2 is bounded by 𝑅2

‖

𝐰1
‖𝐰1‖

− 𝐰2
‖𝐰2‖

‖ (see panel
(F) in Fig. A.14), and then use Proposition 2. In particular, in the cases
shown in panel (A) in Fig. A.14, the Lipschitz continuity of 𝐾+

𝜃 and 𝐾−
𝜃

allows to estimate the integral on 1,2. Dealing with the integrals on 1
and 2, we conversely account for the boundedness of 𝐾𝜃 and observe
that the center angles of 1 and 2 are equal to the angle between 𝐰1
and 𝐰2. This gives

(A.15) ≤ (4𝐶𝑤0
+ 𝐶𝜃 acos 𝛼)𝑅2

‖𝐰1 − 𝐰2‖, (A.16)

where 𝐶𝜃 ∶= Lip(𝐾+
𝜃 ) + Lip(𝐾−

𝜃 ).
In the case represented in panel (B) in Fig. A.14, we can use the

Lipschitz continuity of 𝐾+
𝜃 and 𝐾−

𝜃 to estimate only the integral on ′′
1,2.

For other integrals, we apply the boundedness of 𝐾𝜃 and notice that the
angle between 𝐰1 and 𝐰2 is larger than the center angles of 1, 2 and
′

1,2. This way we get

(A.15) ≤ (6𝐶𝑤0
+ 𝐶𝜃 acos 𝛼)𝑅2

‖𝐰1 − 𝐰2‖. (A.17)

Conversely, in the cases shown in panel (C) in Fig. A.14, we cannot
apply the Lipschitz continuity of 𝐾+

𝜃 and 𝐾−
𝜃 . However, the angle

between 𝐰1 and 𝐰2 is larger than the center angles of 1, 2 and ′
1,2,

and so the boundedness of 𝐾𝜃 leads to

(A.15) ≤ 6𝐶𝑤0
𝑅2

‖𝐰1 − 𝐰2‖. (A.18)

If 1,2 is empty (see panel (D) in Fig. A.14), the angle between 𝐰1
and 𝐰2 is larger than both the center angles of 1 and 2. Thus the
boundedness of 𝐾𝜃 allows us to state that

(A.15) ≤ 4𝐶𝑤0
𝑅2

‖𝐰1 − 𝐰2‖. (A.19)

Lastly, if 1 and 2 are empty, i.e. if 𝑈𝐱𝑝2 ,𝐰1
= 𝑈𝐱𝑝2 ,𝐰2

, we have that
Eq. (A.15) vanishes if 𝐰1 = 𝐰2, otherwise (see panel (E) in Fig. A.14)
the boundedness of 𝐾𝜃 results in

(A.15) ≤ 2𝐶𝑤0
𝑅2

‖𝐰1 − 𝐰2‖, (A.20)

as the center angle of 1,2 is lower than the angle between 𝐰1 and 𝐰2.
Summing up, Eqs. (A.15)–(A.18) give that

(A.15) ≤ (6𝐶𝑤0
+ 𝐶𝜃 acos 𝛼)𝑅2

‖𝐰1 − 𝐰2‖, (A.21)

so that Eq. (A.13) reads

‖𝐖(𝑡, 𝐱𝑝2,𝐰1) −𝐖(𝑡, 𝐱𝑝2,𝐰2)‖

≤
2𝑐0𝐶𝑤0

𝑅2

𝐴

(

6 +
𝐶𝜃
𝐶𝑤0

acos 𝛼 +
2|𝑎|𝑅
2𝑐0

Lip(𝑐)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

‖𝐰1 − 𝐰2‖, (A.22)
Lip(𝐖𝐰)
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Fig. A.14. Panels (A)-(E): Representation of the circular sectors that form 𝑈𝐱𝑝2 ,𝐰1
and 𝑈𝐱𝑝2 ,𝐰2

and their intersection 1,2 ∶= 𝑈𝐱𝑝2 ,𝐰1
∩𝑈𝐱𝑝1 ,𝐰2

(purple area) for different configurations
of 𝐰1 (red arrow) and 𝐰2 (blue arrow) and for different values of 𝛼 (see Assumption 3). The other circular sectors are 1 ∶= 𝑈𝐱𝑝2 ,𝐰1

⧵1,2 (red area) and 2 ∶= 𝑈𝐱𝑝2 ,𝐰2
⧵1,2 (blue

area). Panel (F): The area of the circular sector spanning from 𝐰1 to 𝐰2 is bounded by the area of the yellow rectangle.
and thus 𝐖 results Lipschitz continuous on  × for any 𝑡 ∈ , since

‖𝐖(𝑡, 𝐱𝑝1,𝐰1)−𝐖(𝑡, 𝐱𝑝2,𝐰2)‖ ≤ max(Lip(𝐖𝐱), Lip(𝐖𝐰))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Lip(𝐖)

‖𝐰1−𝐰2‖. (A.23)

Finally, Eq. (A.9) results in
‖

‖

‖

𝐠𝐰(𝑡, 𝐱𝑝1,𝐰1) − 𝐠𝐰(𝑡, 𝐱𝑝2,𝐰2)
‖

‖

‖

≤ 1
𝜏
max

{

1,
4𝑐0𝜋𝑅2 + 𝜖

𝜖2
Lip(𝐖)

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Lip(𝐠𝐰)

(

‖𝐱𝑝1 − 𝐱𝑝2‖ + ‖𝐰1 − 𝐰2‖
)

. (A.24)

Eqs. (A.8) and (A.24) then imply the Lipschitz continuity of 𝐅 on
 × for any 𝑡 ∈  and, as already said, Statement 2. □

Proof of Statement 3.

Proof. At last, Statement 3 can be proved recalling the formal defi-
nition of the solution of the stochastic differential equation (A.2) (see
Definition 1), i.e.

𝐙1(𝑡) = 𝐳0,1 + ∫

𝑡

0
𝐅(𝑠,𝐙1(𝑠))d𝑠 +

(

∫ 𝑡
0

√

2𝐷d𝐁(𝑠)
𝟎

)

, (A.25)

𝐙2(𝑡) = 𝐳0,2 + ∫

𝑡
𝐅(𝑠,𝐙2(𝑠))d𝑠 +

(

∫ 𝑡
0

√

2𝐷d𝐁(𝑠)
)

, (A.26)
20

0 𝟎
and exploiting the Lipschitz continuity of 𝐅 and Gronwall’s lemma one
can compute for every 𝑡 ∈ 

‖𝐙1(𝑡) − 𝐙2(𝑡)‖2×2 ≤ ‖𝐳0,1 − 𝐳0,2‖2×2

+ ∫

𝑡

0
‖𝐅(𝑠,𝐙1(𝑠)) − 𝐅(𝑠,𝐙2(𝑠))‖2×2 d𝑠

≤ ‖𝐳0,1 − 𝐳0,2‖ + Lip(𝐅)∫
𝑡

0
‖𝐙1(𝑠) − 𝐙2(𝑠)‖2×2 d𝑠

≤ exp(Lip(𝐅) 𝑡) ‖𝐳0,1 − 𝐳0,2‖2×2.

□ (A.27)

Appendix B. Parameters estimation

This Section is devoted to the estimation of the model parameters
listed in Table 2. All these values have been used for all the numerical
simulations presented in this work. The values of the other parameters
are conversely defined in Sections 4.1 and 4.2.

Cell dynamics parameters. The length 𝐿 of the bidimensional square
domain 𝛺 is set equal to 700 μm to reproduce a portion of the substrate
used in the biological experiments in [69]. The final time 𝑇 = 16 h has
been set to avoid that the cell and its sensing region reach the domain
boundaries.

The parameters related to the cell have been set to reproduce the
motion of a fibroblast migrating in response to mechanical stimuli,
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as for example in [15]. The maximal extension of cell protrusions 𝑅
haracterizing the sensing region (𝐱𝑝) in Eq. (5) is assumed equal to
20 μm in agreement with [48], and with the different values one can
find in the biological literature [70].

For what concerns the magnitude of the random motion in Eq. (1),
we consider the value of the diffusion coefficient 𝐷 reported in [71–73]
for fibroblasts, i.e. 1.7 × 10−2 μm2∕s.

Referring to Eq. (4), the cell re-orientation time 𝜏 is interpreted as
the time over which the location of cell lamellipodia changes and, in
turn, cell polarization direction varies. Therefore, we set 𝜏 = 600 s as
reported in [15].

For what concerns the parameter 𝑎 defining 𝐳̄(𝐱𝑝,𝐰) in Eq. (6),
in all simulations we assume 𝑎 = 0, noting that the results are not
significantly affected by this choice.

The Michaelis–Menten constant 𝜀 in Eq. (4) has to be set so that
0 < 𝜀𝐴 ≪ 1, considering that 𝐴 is defined in Eq. (7) and it depends on
the kernels 𝐾𝑟 and 𝐾𝜃 .

For the functional form of the kernels defined in Eqs. (9) and (10),
the parameters 𝑅0 and 𝛼 are respectively set equal to 16 μm and

√

3∕2
n order to have that the support of kernel 𝐾 covers 12% of the sensing

region, which approximatively corresponds to the area covered by the
focal adhesions, as reported in [61,62]. In this case, we obtain 𝐴 ≈ 314,
nd we set 𝜀 = 0.01∕𝐴 ≈ 3.18 × 10−5.

In agreement with [48], the value of 𝑉𝑀 in Eq. (2) is set to
.009 μm∕s within the range 0.002−0.012 μm∕s estimated in [15] for
fibroblast migrating due to durotaxis. However, we will use the same
alue also in the case of tensotaxis.

ubstrate parameters. When durotaxis is considered, no external loads
re applied to the substrate and possible deformations, due to cell–
ubstrate interaction, are assumed so small that the material can be
reated as linear elastic whose response is fully characterized by two
ndependent elastic constants, for instance the Poisson ratio, 𝜈, and the
oung’s modulus, 𝐸. In particular, in the present work, we use the
oung’s modulus, 𝐸(𝐱), to quantify stiffness gradients driving cell mo-
ion during durotaxis. Specifically, in most of the numerical settings, we
ill consider Young’s modulus varying between 14 and 30 kPa account-

ng for the measurements reported in [15] regarding a collagen-coated
olyacrylamide sheets. In some simulations, the range is increased up
o 100 kPa, always staying inside a physiological range [74–76].

Conversely, when tensotaxis is considered, the deformations in-
uced inside the substrate by the external manipulation are not small
n general, so that the substrate can be better described by a Yeoh
yperelastic material [49], as discussed in Section 1. About the me-
hanical properties, the values of the Poisson ratio 𝜈 and of the material
oefficients 𝜇1 and 𝜇3 (that in general can be functions of space) in
q. (18) are taken from [49], where the substrate is modeled as a
olyacrylamide gel (PAG) with different concentrations of acrylamide
nd bis-acrylamide. Specifically, we set 𝜈 = 0.48 due to the quasi-

incompressibility of the substrate, whereas the coefficients 𝜇1 and 𝜇3
will be defined in Section 4.2, always referring to the ranges reported
in [49] (i.e. 1.46–4.66 kPa and 0.25–5.4 kPa, respectively), for the
different setups considered in the numerical simulations. We observe
that, in the limit of small deformations, the relation 𝐸 ≈ 4(1+𝜈)𝜇1 holds
and the mechanical parameters reported in [49] are in agreement with
the ones used in the linear setting by [15].

For what concerns the other parameters defining the mechanical
problem given by Eq. (13), the substrate thickness is set as ℎ = 35 μm
within the range 5–200 μm found in [49].

The constant parameters in Eq. (19) defining the normalization of
the energy 𝑘2 and 𝜀𝑚 are respectively set equal to 2 and 5 (J∕m3)1∕k2 .

Finally, to qualitatively test our model, we consider the surface load
given by Eq. (15) defined over a circle  of radius 23.33 μm placed
at the center of the domain 𝛺 then, in Section 4.1, we will consider
different values of both the magnitude 𝑓𝑏 and direction 𝛽 of the exerted
21

load.
Appendix C. Supplementary data

Supplementary Materials investigate different functional forms of
the kernels and the coupling between ECM density and stiffness.

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.mbs.2023.109124.
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