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Abstract—Honeybees are essential for the health of people
and the planet. They play a key role in the pollination of most
crops. The high mortality observed in the last decade, caused
by stress factors among which the climate change, have raised
the necessity of remote sensing the beehives to help monitor the
health of honeybees and better understand this phenomenon.
Several solutions have been proposed in the literature, and some
of them include the analysis of in-hive sounds. In this scenario,
we explore the potential of machine learning methods for queen
bee detection using only the audio signal, being a good indicator
of the colony state of health. In particular, we experiment support
vector machines and neural network classifiers. We consider the
effect of varying the audio chunk duration and the adoption of
different hyperparameters.

Index Terms—Beekeeping, agriculture, internet of things, en-
vironmental monitoring, sensor networks, sound analysis

I. INTRODUCTION

Honeybees are of vital importance to global crop produc-
tion. They pollinate 70 of the around 100 crop species that feed
90% of the world. Colony losses have reached historic levels
all over the world during the last decades. The causes of these
phenomena can be found in the so-called “colony collapse
disorder” (CCD) [1]. Climate change, intensive agriculture,
land-use change, pesticides, biodiversity loss, Varroa mites,
and pollution are the leading cause of bees’ death worldwide.
The decline in honeybee health has resulted in beekeepers’
and researchers’ demand for novel mechanisms of monitoring
colony health. In this scenario, intensive beehive monitoring is
necessary to better understand this phenomenon and try to help
these important insects. In the literature, several approaches
have been proposed. Most of them are based on sensing several
hive parameters such as temperature, humidity, carbon dioxide
and weight [2], [3], [4]. Other approaches exploited computer
vision to track bees at the hive entrance [5], [6]. Some
others showed that embedded systems based on Long Range
communication protocols look very promising [3], [7]. Despite
all these approaches showing good results, some of them
require a processing unit with remarkable computational power
and in some cases require modification of the beehive [5], [6],
[2], making the solution impractical for realistic applications.
A real system must be compact, composed of environmental
sensors and microphones, and it should be energy efficient and
able to run AI models in short time. Recent studies showed
that sound analysis appears to be the most promising technique
for this purpose, particularly, as non-invasive solution. Indeed,

bees make many different sounds, they use a combination of
vibroacoustic signal to communicate [8]. Researchers showed
that sound analysis can enable the detection of swarming
[9], the presence of young queen or the presence of absence
of the queen within the colony [10]. The queen presence
is an important indicator of the colony health [8]. Timely
notification of such events are of extremely importance for
beekeepers. In this context, solutions exploiting convolutional
neural networks (CNNs) and support vector machines (SVMs)
have been presented to classify the queen presence from
audio recordings. One example has been reported in [11].
In particular, they explored features based on Mel Frequency
Cepstral Coefficients (MFCCs), short time Fourier Transform
(STFTs) and Hilbert-Huang transform (HHT). In this paper,
we started from the above considerations and we analyzed the
performance of Neural Networks (NNs) and SVM classifiers
varying the complexity of the model with the aim of detecting
the queen presence. The paper is organized as follows: In
section II, we introduce the proposed approach describing
the used dataset, the developed machine learning framework
from feature extraction to the classification. In section III, we
present the results comparing the different models. Finally,
section IV concludes the paper.

II. PROPOSED APPROACH

The proposed approach relies solely on analyzing the audio
captured within the beehive. This non-invasive solution en-
ables continuous monitoring of the beehive, without disturbing
the bees or altering their natural behavior. It can provide
valuable information for beekeepers, researchers, or conser-
vationists, helping them make informed decisions about hive
management, health assessments, or interventions if necessary.

The sound level amplitude and frequency depend on the
colony activity and health state. Flying bees produce a typical
sound with an approximate frequency of 250Hz, worker bees
produce a characteristic frequency that lies between 225Hz
and 285Hz to cool the hive with ventilation, and the frequency
can reach up to 3000Hz as a defensive reaction to potential
outside threats to the colony [12] [13]. However, if the queen
is missing in the beehive the bees produce a sound that
contains harmonics with lower frequencies [14]. The proposed
approach can be divided into five steps: i) analysis of the
dataset; ii) audio chunk extraction; iii) feature extraction; iv)
compute model statistics; v) generate the final model and



vi) test the model evaluating its performance. A detailed
description of each step is reported in the following sections.

A. Dataset

In this work, the ”Smart Bee Colony Monitor: Clips of
Beehive Sounds” [15] is used for training and evaluating
the proposed system. It is a dataset with 7100 audio and
environment data acquisitions of European honey bee hives
in California. Each file is a 60 seconds audio sound, recorded
at 22050Hz with a depth of 32 bits floating point for a single
channel. In addition to audio data, each sample is associated
with internal condition of the beehive and weather conditions
[15]. For the purpose of this study, we only used the recorded
audio (removing saturation artifacts) and the queen presence
label.

B. Audio chunk split

In this study, we implemented a data augmentation tech-
nique to increase the number of input samples by splitting
audio files into smaller chunks. With this approach, it is
possible to increase the number of chunks changing the hop
size that is the space between the start of subsequent chunks
inside the original audio. We then compare the impact on the
results by examining the use of different chunk sizes: 0.5, 1,
3, 5 seconds but with the same number of chunks and no
overlapping. For this purpose we used the hop size equal to 5
and we obtain 78100 samples for each experiment.

C. Feature extraction

Raw audio files contains a large number of time samples
and would be difficult to use them directly as input for the
classification. Therefore, it is necessary to extract a compact
and meaningful representation using a reduced number of
coefficients. For this purpose, we analyzed two of the most
common feature extraction used for audio applications and in
particular bring the best results in the field of bees monitoring.

The first is the MFCC, which is a commonly used audio
feature extraction technique in the field of audio processing.
It aims to capture the relevant characteristics of the human
auditory system by converting the audio signal into a compact
representation with a n selected number of coefficients. In
this work, we compared the results with n ranging from 10 to
50. The MFCC extraction is composed of the following steps
applied to each dataset sample:

1) The audio is divided in windows of 2048 audio samples
partially overlapped using a hop length of 512 samples.

2) The Hann windowing function is used to smoothing the
signal at the edges of the window.

3) Discrete Fourier Transform (DFT) is applied to each
window to convert the signal to the frequency domain.

4) Apply the Mel Filterbank set of triangular filters evenly
spaced on the Mel scale.

5) Discrete Cosine transform (DCT) is applied in order to
obtain the coefficients for each window.

6) The final step computes for each coefficient the mean
value among all the windows. With this operation we ob-
tain the n number of features (indicated with MFCC n)
that are used as input for the classifiers.

The second approach uses the Short Time Fourier Transform
(STFT) that simplify the required steps in order to reduce the
computation complexity that is required:

1) The audio is divided in windows ranging from 256 to
4096 audio samples without overlapping.

2) The Hann windowing function is used to smoothing the
signal at the edges of the window.

3) DFT is applied to each window to convert the signal to
the frequency domain.

4) The magnitude of the spectrogram is computed.
5) The final step computes, for each frequency bin, the

mean value among all the window. With this final step
we obtain a number of inputs for the classifier, which
are function of the window size (fbins = m

2 +1), where
m is the window size (indicated with STFT m).

D. Classifiers

We compared two different classifiers for the task of binary
classification: a neural network implemented using the Keras
library [16] and a support vector machine (SVM) implemented
using the scikit-learn (sklearn) library [17].

1) NN classifier: The neural network is a powerful and
flexible machine learning model that can learn complex pat-
terns in the data. We constructed a multi-layer perceptron
architecture, consisting of multiple fully connected layers,
tuned the layers and the number of neurons. We used the ReLu
activation function for the inner layers and a sigmoid function
for the output layers then converted to a binary value using a
threshold of 0.5. We trained the network using early stopping
with patience of 5 to prevent overfitting and to determine the
optimal number of epochs.

2) SVM classifier: SVM is a widely used and effective
supervised learning algorithm for classification tasks. It works
by finding an optimal hyperplane that maximally separates the
data points belonging to different classes. For the implemen-
tation of SVM, we utilized the scikit-learn (sklearn) library.
We experimented with RBF (Radial Basis Function) kernel
function and tuned the C parameter.

E. Experimental setup

The proposed approach explored different chunk sizes with
different classifiers. The schematic representation of the ex-
perimental setup adopted for every configuration is reported
in Fig. 1. After dividing the dataset into chunks for data
augmentation, we proceeded with the dataset split into a
training set and a test set. The training set comprised 80%
of the data, while the remaining 20% was allocated to the
test set. This division ensured a sufficient amount of data for
training while preserving a separate portion for the final test
of the selected model.
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Fig. 1: Diagram of experimental setup adopted in the proposed
approach for each configuration of the classifier and chunk
configuration.

To assess the generalization performance of the models
and obtain reliable statistics, we applied the 10-fold cross-
validation technique on the training set. This technique in-
volves dividing the training data into 10 equally sized folds.
The models were trained and evaluated 10 times, with each
fold serving as the validation set once while the remaining
nine folds are used for the training. This process allowed us
to estimate how well the models can generalize to unseen
data and mitigate biases introduced by a particular training-
test split. At the end of each experiment, we proceeded to
train the final model using the entire training dataset. This
final model was trained on the combined data from all 10
folds, providing a larger sample for training and potentially
improving the model’s performance.

The performance evaluation of the final model was con-
ducted using the test dataset that was previously set aside. This
separate test dataset allowed us to assess the actual behavior
of the exported model on unseen data, providing an unbiased
estimate of its performance in real-world scenarios.

By employing the 10-fold cross-validation technique during
training and conducting a final test on a separate test dataset,
we aimed to obtain reliable performance metrics for evaluating
the models’ effectiveness in both generalizations and real-
world scenarios.

F. Evaluation metrics

In the experimental phase, we extracted different metrics
for both the training and the final test evaluations. These
metrics were selected to capture various aspects of the model’s
performance and cover a wide range of evaluation criteria. For
the Training Test, we extracted the mean value and standard
deviation of the results obtained by the 10 iterations of the
cross-validation: Accuracy, Precision, Recall, f1-score, Area
Under the Curve (AUC). For the Final Test, the Accuracy,
Precision, Recall, f1-score, and the Confusion Matrix were
considered. However, for the sake of clarity only the f1-score
and Accuracy are reported in the following.

III. RESULTS

The following experiments are performed considering
22050Hz as audio sample rate, window size 5s and hop size
5s. We varied the MFCC coefficients from 10 to 50 and the
STFT window size from 256 to 4096. Table I and Table II
report the scores of the training and test for both classifiers
considering chunk sizes from 0.5 to 5 seconds, hop size = 5s
to have 78100 samples. The configuration of the models are
for NN (hidden layers=16 ReLU, 8 ReLU, epoch=500, batch
size=64, learning rate=0.001, early stopping), for SVM (C=1,
kernel=RBF) and the input features selected are MFCC 20 and
STFT 2048. The metrics show that larger chunk sizes (3s-5s)
perform better with both classifiers. We selected a chunk size
of 5s for the subsequent analysis.

TABLE I: SVM accuracy and f1-score with different chunk
sizes.

chunk size feature accuracy accuracy test f1-score f1-score test
0.5 mfcc20 0.9102 ± 2.93e-03 0.9124 0.9459 ± 1.95e-03 0.9472
1 mfcc20 0.9321 ± 2.41e-03 0.9360 0.9595 ± 1.49e-03 0.9618
3 mfcc20 0.9536 ± 3.18e-03 0.9585 0.9726 ± 1.93e-03 0.9755
5 mfcc20 0.9593 ± 1.89e-03 0.9591 0.9761 ± 1.17e-03 0.9759
0.5 stft2048 0.8760 ± 8.90e-03 0.8833 0.9239 ± 5.79e-03 0.9285
1 stft2048 0.9024 ± 8.20e-03 0.9073 0.9408 ± 5.21e-03 0.9438
3 stft2048 0.9209 ± 9.42e-03 0.9256 0.9524 ± 5.88e-03 0.9552
5 stft2048 0.9210 ± 6.83e-03 0.9218 0.9524 ± 4.16e-03 0.9529

TABLE II: NN accuracy and f1-score with different chunk
sizes.

chunk size feature accuracy accuracy test f1-score f1-score test
0.5 nn mfcc20 0.9437 ± 3.13e-03 0.9467 0.9678 ± 1.92e-03 0.9694
1 nn mfcc20 0.9566 ± 3.32e-04 0.9637 0.9751 ± 1.91e-04 0.9791
3 nn mfcc20 0.9728 ± 1.10e-03 0.9767 0.9844 ± 6.56e-04 0.9865
5 nn mfcc20 0.9743 ± 5.66e-04 0.9821 0.9852 ± 3.33e-04 0.9897
0.5 nn stft2048 0.9500 ± 2.80e-03 0.9575 0.9711 ± 1.63e-03 0.9754
1 nn stft2048 0.9713 ± 1.45e-04 0.9754 0.9835 ± 1.29e-05 0.9858
3 nn stft2048 0.9824 ± 8.71e-04 0.9862 0.9899 ± 4.69e-04 0.9920
5 nn stft2048 0.9904 ± 7.02e-04 0.9930 0.9945 ± 3.88e-04 0.9960

The results of using different input features (MFCC or
STFT) are reported in Fig. 2(c-d) and summarized, numeri-
cally in Table III for the NN and Table IV for SVM classifiers.
Increasing the number of MFCC coefficients and the window
size of STFT give better results. However, this would increase
the amount of the input features to be handled and therefore
the complexity of the model. Our results show a higher f1-
score (> 0.98) when compared with the CNN model with
MFCC 20 adopted in [18] (f1-score = 0.9240), with both NN
and SVM classifiers. In general, by looking at Table III-IV
the NN models performed better than SVM, with the same
configuration adopted for Table I-II. In particular, high f1-
scores are achieved with low STFT window size (256 and
512). This is interesting, because a window size of 2048 is
usually used, a it reduces the number of features at the input
of the classifier. In the following, we analyzed the effect of
different values of the regularization factor C for both MFCC
20 and STFT 2048. The windows size = 2048 is selected to
be coherent the analysis in [18]. In both cases, we obtained
high scores with larger C. Finally, we explored the effect
of different configurations of the NN, with the same input
features. We varied the layers from 1 to 4 and the number
of neurons for each layer from 2 to 8 for the hidden layers.
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Fig. 2: Summary of the results: (a) with different chunk sizes; (b) with different regularization factor for the SVM classifier;
(c) with different MFCC coefficients; (d) with different STFT window size; (e) f1-score, standard deviation and test results
between parenthesis with respect to the number of neurons present in each layer of the neural network considering STFT 2048
as features; (f) same as (e) considering MFCC 20 features.

TABLE III: Accuracy and f1-score with NN and different
features.

feature parameter accuracy accuracy test f1-score f1-score test
mfcc 10 0.9518 ± 3.01e-03 0.9509 0.9723 ± 1.84e-03 0.9718
mfcc 20 0.9790 ± 2.32e-03 0.9819 0.9879 ± 1.33e-03 0.9896
mfcc 30 0.9860 ± 2.18e-03 0.9843 0.9919 ± 1.26e-03 0.9909
mfcc 40 0.9891 ± 2.09e-03 0.9874 0.9937 ± 1.21e-03 0.9927
mfcc 50 0.9888 ± 1.27e-03 0.9886 0.9935 ± 7.14e-04 0.9934
stft 256 0.9878 ± 1.70e-03 0.9889 0.9930 ± 9.83e-04 0.9936
stft 512 0.9895 ± 1.63e-03 0.9912 0.9939 ± 9.47e-04 0.9949
stft 1024 0.9917 ± 9.74e-04 0.9920 0.9952 ± 5.70e-04 0.9954
stft 2048 0.9919 ± 1.23e-03 0.9939 0.9953 ± 7.15e-04 0.9965
stft 4096 0.9906 ± 2.00e-03 0.9934 0.9946 ± 1.16e-03 0.9962

TABLE IV: Accuracy and f1-score with SVM and different
features.

feature param accuracy accuracy test f1-score f1-score test
mfcc 10 0.9097 ± 3.13e-03 0.9098 0.9455 ± 2.18e-03 0.9456
mfcc 20 0.9593 ± 1.89e-03 0.9591 0.9761 ± 1.17e-03 0.9759
mfcc 30 0.9778 ± 2.39e-03 0.9763 0.9870 ± 1.43e-03 0.9862
mfcc 40 0.9837 ± 2.40e-03 0.9833 0.9905 ± 1.40e-03 0.9903
mfcc 50 0.9869 ± 2.16e-03 0.9866 0.9924 ± 1.27e-03 0.9922
stft 256 0.8799 ± 5.42e-03 0.8825 0.9260 ± 3.45e-03 0.9277
stft 512 0.8986 ± 5.30e-03 0.9028 0.9382 ± 3.27e-03 0.9409
stft 1024 0.9117 ± 5.87e-03 0.9147 0.9465 ± 3.58e-03 0.9484
stft 2048 0.9210 ± 6.83e-03 0.9218 0.9524 ± 4.16e-03 0.9529
stft 4096 0.9256 ± 6.18e-03 0.9268 0.9553 ± 3.75e-03 0.9561

The f1-scores with their standard deviation are summarized
in Fig. 2(e) for STFT 2048 and Fig. 2(f) for MFCC 20
features, respectively. The NN performed better, with similar
scores with 6-8 neurons per hidden layer. On the contrary, the
number of layers seems not to impact heavily on the network
performance.

IV. CONCLUSION

This study investigated the detection of queen bee presence
in the colony using SVM and NN varying both input features,
chunk size and classifier parameters. Results indicated that

TABLE V: Accuracy and f1-score of SVM with different
regularization factors.

C feature accuracy accuracy test f1-score f1-score test
0.25 mfcc 0.8489 ± 1.25e-02 0.8587 0.9051 ± 8.22e-03 0.9117
0.5 mfcc 0.8935 ± 7.31e-03 0.8986 0.9348 ± 4.55e-03 0.9381
1 mfcc 0.9210 ± 6.83e-03 0.9218 0.9524 ± 4.16e-03 0.9529
2 mfcc 0.9418 ± 6.32e-03 0.9410 0.9654 ± 3.77e-03 0.9649
4 mfcc 0.9598 ± 4.49e-03 0.9614 0.9763 ± 2.63e-03 0.9773
0.25 stft 0.9413 ± 1.95e-03 0.9417 0.9651 ± 1.25e-03 0.9654
0.5 stft 0.9513 ± 1.62e-03 0.9515 0.9712 ± 1.04e-03 0.9713
1 stft 0.9593 ± 1.89e-03 0.9591 0.9761 ± 1.17e-03 0.9759
2 stft 0.9660 ± 1.51e-03 0.9665 0.9801 ± 9.46e-04 0.9803
4 stft 0.9721 ± 1.89e-03 0.9727 0.9837 ± 1.14e-03 0.9841

both SVM and NN models exhibited promising performance
in accurately identifying the presence of a queen. However,
the performance of these classifiers relies on the selection of
appropriate parameters. Their tuning significantly improved
the classification accuracy of both models. Therefore, the
selection and optimization of classifier parameters are crucial
for achieving optimal results. Overall, this study demonstrated
that the detection of the queen bee can be successfully
achieved using SVM and NN models. Audio chunk ranging
between 3 to 5 seconds appears to be promising. The MFCC
20 features, as reported in [18] is a good trade-off between
model complexity and accuracy. Similarly, the STFT with
low dimensionality (256-512) showed good performance with
the NN model. However, it is clear the parameters’ selection
significantly influenced the classification performance and
larger parameters (chunk sizes, MFCC and STFT coefficients)
could result better models. However, the parameters selection
has been done with the aim of keeping the model simple for
future deployment on a microcontroller.
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