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ABSTRACT
Aldama (Heliantheae, Asteraceae) is a diverse genus in the sunflower family. To date,
nearly 200 Asteraceae chloroplast genomes have been sequenced, but the plastomes
of Aldama remain undescribed. Plastomes in Asteraceae usually show little sequence
divergence, consequently, our hypothesis is that species of Aldama will be overall
conserved. In this study, we newly sequenced 36 plastomes of Aldama and of five
species belonging to otherHeliantheae genera selected as outgroups (i.e.,Dimerostemma
asperatum, Helianthus tuberosus, Iostephane heterophylla, Pappobolus lanatus var. lana-
tus, and Tithonia diversifolia). We analyzed the structure and gene content of the
assembled plastomes and performed comparative analyses within Aldama and with
other closely related genera. As expected, Aldama plastomes are very conserved, with
the overall gene content and orientation being similar in all studied species. The length
of the plastome is also consistent and the junction between regions usually contain the
same genes and have similar lengths. A large∼20 kb and a small∼3 kb inversion were
detected in the Large Single Copy (LSC) regions of all assembled plastomes, similarly to
other Asteraceae species. The nucleotide diversity is very low, with only 1,509 variable
sites in 127,466 bp (i.e., 1.18% of the sites in the alignment of 36 Aldama plastomes,
with one of the IRs removed, is variable). Only one gene, rbcL, shows signatures of
positive selection. The plastomes of the selected outgroups feature a similar gene content
and structure compared to Aldama and also present the two inversions in the LSC
region. Deletions of different lengths were observed in the gene ycf2. Multiple SSRs
were identified for the sequenced Aldama and outgroups. The phylogenetic analysis
shows that Aldama is not monophyletic due to the position of the Mexican species A.
dentata. All Brazilian species form a strongly supported clade. Our results bring new
understandings into the evolution and diversity of plastomes at the species level.
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INTRODUCTION
In the last two decades, the rise of next generation sequencing (NGS) methods have
dramatically changed the field of biology. The large amount of affordable genomic data
produced by NGS allows addressing biodiversity questions at a genome-wide scale (Parks,
Cronn & Liston, 2009; Koboldt et al., 2013; Goodwin, McPherson & McCombie, 2016), with
an unprecedented level of detail (Porter & Hajibabei, 2018; Krehenwinkel, Pomerantz &
Prost, 2019). NGS methods have been applied from conservation genetics (Hunter et
al., 2018; Breed et al., 2019) to the sequencing of ancient genomes (Gutaker & Burbano,
2017; Estrada et al., 2018). In plant systematics, NGS offers opportunities to investigate
phylogenomic and phylogeographic processes with unparalleled precision and depth
(Straub et al., 2012; Hörandl & Appelhans, 2015): either at a macroevolutionary level,
mostly through inference of robust, dated phylogenies to investigate species diversification
and other large-scale biodiversity patterns (e.g., Léveillé-Bourret et al., 2018; Pouchon et al.,
2018; Wong et al., 2020), or at a microevolutionary level to study population dynamics
(McCormack et al., 2013;Morris & Shaw, 2018).

Chloroplast genome size varies from 120 to 170 kb across angiosperms, coding for
110–130 genes (∼80 proteins, ∼30 tRNAs and four rRNAs). Chloroplast organization is
especially maintained throughout land plant evolution, with two copies of an inverted
repeat (IR) region that separate two regions of single-copy genes: the large and small
single copy regions (LSC and SSC, respectively). Despite the conserved gene content and
organization shared among plastomes in higher plant lineages, some structural changes
can occur (e.g., gene and intron losses, inversions, deletions, and duplications), as well as
point mutations, especially in the non-protein coding regions that account for ∼50% of
the genome (Raubeson & Jansen, 2005; Ruhlman & Jansen, 2014). Therefore, this level of
variability makes chloroplast sequences suitable for phylogenetic analyses (Gitzendanner et
al., 2018). They have been used as phylogenetic markers due to a series of advantages: small
genome size, high copy number per cell, conserved gene order, uniparental inheritance
(usually maternal, rarely biparental) and lack of recombination (Raubeson & Jansen, 2005).

The inference of evolutionary relationships among land plants has relied mainly on
chloroplast sequences at diverse taxonomic levels (Freitas et al., 2018; Gitzendanner et al.,
2018). NGS has greatly simplified the acquisition of whole chloroplast genome sequences
(Parks, Cronn & Liston, 2009; Stull et al., 2013), with more than 4,500 plastomes sequenced
to date (Genbank: https://www.ncbi.nlm.nih.gov/refseq/, accessed on July 2020), and recent
publication of numerous plastome phylogenies (e.g., Sun et al., 2016; Givnish et al., 2018;
Kuo et al., 2018; Saarela et al., 2018; Li et al., 2019). Structural changes in the chloroplast
genome can also serve as powerful phylogenetic evidence, with one of the most notable
examples found in the family Asteraceae. Jansen & Palmer (1987a) and Jansen & Palmer
(1987b), through comparative restriction site and gene mapping studies, found a 22.8 kb
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inversion in the LSC region shared by all studied members of the family, except for the
early-diverging lineage Barnadesieae, which was later confirmed as the sister-group to the
rest of Asteraceae (Kim, Choi & Jansen, 2005; Funk et al., 2009; Mandel et al., 2019).

Asteraceae is one of the largest families of flowering plants, with 25,000–35,000 species,
occurring in all continents and in nearly all types of vegetations (Mandel et al., 2019). This
high species diversity is presumably linked to a series of whole genome duplications and
paleopolyploidization events (Barker et al., 2008; Barker et al., 2016; Huang et al., 2016).
One of these events was previously identified at the stem leading to the Heliantheae Alliance
clade (Huang et al., 2016), being shortly followed by an acceleration in diversification in
the phytomelanic fruit clade (i.e., all Heliantheae Alliance except the tribe Helenieae),
which resulted in ∼457 genera and ∼5,500 species (Funk et al., 2009; Panero & Crozier,
2016; Mandel et al., 2019).

Aldama is a genus of the Heliantheae Alliance (Heliantheae: Helianthinae) with ∼120
species (Schilling & Panero, 2011; Magenta & Pirani, 2014), occurring in the southwestern
USA and in most of South America, in mountainous regions and open vegetations. They
are perennial herbs, with heads containing neutral ray florets, pappus composed by two
awns and several short, deciduous or persistent squamellae (Magenta, Loeuille & Pirani,
2017). Previously to the phylogenetic analysis by Schilling & Panero (2011), the polyphyletic
genus Viguiera contained most of the species currently placed in Aldama, including the
36 Brazilian species that are now placed in the latter. However, this new circumscription
remains uncertain due to the small sampling of South American taxa in Schilling & Panero’s
(2011) study and the absence of an unambiguous morphological synapomorphy to define
Aldama. The marked incongruences among subtribal level phylogenies, either based on
nuclear regions (Schilling & Panero, 2011) or those based on a chloroplast restriction site
dataset (Schilling & Jansen, 1989; Schilling & Panero, 1996a), indicate that introgression
has played a significant role in the evolutionary history of this group (Schilling & Panero,
1996b). Nonetheless, the low level of DNA sequence divergence, either in ribosomal or
chloroplast data (Schilling et al., 2000; Schilling & Panero, 2011), has been an obstacle to a
clear understanding of evolutionary relationships in Helianthinae.

The chloroplast genome of Asteraceae, except for the Barnadesieae lineage, is
characterized by two inversions: the previously mentioned 22.8 kb inversion in the LSC
region and a second, 3.3 kb inversion, nested within the larger one (Kim, Choi & Jansen,
2005; Timme et al., 2007). The plastome size in the family varies from 149,5 to 153,7 kb
(Choi & Park, 2015; Lu et al., 2016) and the gene content is relatively conserved: from
111 to 115 different genes, including 79 to 83 protein-coding genes, four rRNAs genes,
and 29–30 distinct tRNAs (Wang et al., 2015; Salih et al., 2017; Lin et al., 2019; Wang et al.,
2020). Some variations have been found in the gene structure and tRNA abundance, and
in some regions the nucleotide diversity is higher than 5% (Wang et al., 2015). These more
diverse regions can be used as phylogenetic markers and even to identify cryptic lineages in
some cases (Wang et al., 2015; Salih et al., 2017). Several plastome phylogenies have been
published recently (Pouchon et al., 2018; Cho et al., 2019; Zhang et al., 2019; Knope et al.,
2020), two of them involving lineages of the Heliantheae Alliance (the Espeletia complex,
Pouchon et al., 2018, and the genus Bidens Knope et al., 2020). These recent studies also
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reveal incongruence between plastid and nuclear phylogenies, likely due to the exchange of
plastids between geographically close species, regardless of their morphological similarities
or nuclear phylogenetic distance (Pouchon et al., 2018), or to hybridization events and/or
incomplete lineage sorting (Knope et al., 2020).

With the aim to increase our comprehension of chloroplast genome characteristics,
structural diversity, and evolution at low taxonomic levels in the tribe Heliantheae, we
sequenced the plastome of 33 species of Aldama (Heliantheae, Asteraceae) representing a
wide range of the morphological diversity in the genus. Additionally, the plastome of five
species belonging to other Heliantheae genera, selected as outgroups, were also sequenced
(i.e., Dimerostemma asperatum S.F. Blake, Helianthus tuberosus L., Iostephane heterophylla
(Cav.) Benth., Pappobolus lanatus (Heiser) Panero var. lanatus, and Tithonia diversifolia
(Hemsl.) A. Gray). We analyzed the structure and content of the assembled plastomes,
performed comparative analyses within Aldama and with other closely related genera,
registered selection patterns within Aldama chloroplast genes, identified putative repeated
regions, and reconstructed phylogenetic relationships.

MATERIALS & METHODS
Sampling, DNA preparation, and sequencing
We sampled 36 individuals of Aldama, representing 33 species, and one individual each
of five species belonging to other Heliantheae genera, four of them from subtribe
Helianthinae (Helianthus tuberosus, Iostephane heterophylla, Pappobolus lanatus var.
lanatus, and Tithonia diversifolia) and one from subtribe Ecliptinae (Dimerostemma
asperatum), which were selected as outgroups based on other studies (Panero, 2007;
Schilling & Panero, 2011) (Table 1, Data S1). Total genomic DNA was extracted from
silica-gel-dried leaves collected in the field using the commercial kit E.Z.N.A. R© SQ
Plant DNA Kit (Omega Bio-Tek Inc., Norcross, GA, USA) following the manufacturer’s
instructions except by the addition of ascorbic acid and polyvinylpyrrolidone in the SQ1
buffer. The integrity of genomic DNA was assessed by performing electrophoresis in a
1% agarose gel and DNA concentrations were measured with spectrophotometric analysis
with Epoch Micro-Volume Spectrophotometer System (BioTek). DNA of each sample
was diluted to a final volume of 20 µL at 2.5 ng/µL, quantified with Qubit fluorometer
(Invitrogen) and used to construct Illumina Nextera libraries (Illumina, San Diego,
CA, USA) following the manufacturer’s instructions. Plastome capture was carried out
with a customized SureSelectXT Custom 1kb-499kb library R© (Agilent Technologies)
target enrichment panel, using biotinylated RNA baits developed based on the H. annuus
plastome sequence (Data S2). This customized panel includes both the complete plastome
and several low copy nuclear loci (unpublished data), thus ensuring high sequencing
coverage. DNA library preparation, target enrichment and sequencing were carried out at
LaboratórioMultiusuários Centralizado (ESALQ-USP, Piracicaba - SP, Brazil). Sequencing
was conducted using an Illumina HiSeq platform in paired-end mode, with 300 bp read
lenght.
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Table 1 Taxa, voucher, reference, GenBank accession numbers and summary of the plastomes sequenced in this study.

Species Origin/Voucher/
Herbarium

GenBank
(accession)

Plastome
length
(bp)

LSC
length
(bp)

IR
length
(bp)

SSC
length
(bp)

Inv1 Inv2

Aldama anchusifolia (DC.) E.E.Schill. & Panero Brazil/Filartiga 8/ESA MN337902 151,330 83,717 24,633 18,347 22,360 3,298
A. arenaria 1 (Baker) E.E.Schill. & Panero Brazil/Magenta 275/SPF MN337903 151,346 83,732 24,633 18,349 22,386 3,319
A. arenaria 2 (Baker) E.E.Schill. & Panero Brazil/Magenta 383/SPF MN337904 151,345 83,735 24,632 18,346 22,367 3,309
A. aspilioides (Baker) E.E.Schill. & Panero Brazil/Filartiga 18/ESA MN337905 151,362 83,742 24,633 18,359 22,380 3,313
A. bakeriana (S.F.Blake) E.E.Schill. & Panero Brazil/Loeuille 867/SPF MN337906 151,376 83,757 24,631 18,345 22,396 3,328
A. bracteata (Gardner) E.E.Schill. & Panero Brazil/Filartiga 15/ESA MN337907 151,339 83,714 24,632 18,361 22,378 3,312
A. canescens (B.L. Rob.) E.E.Schill. & Panero Mexico/Schilling 17/TENN MN337908 151,386 83,719 24,666 18,346 22,380 3,311
A. corumbensis (Malme) Magenta & Pirani Brazil/Loeuille 909/SPF MN337909 151,327 83,720 24,632 18,342 22,372 3,309
A. dentata 1 La Llave Mexico/Schilling 331/TENN MN337910 151,303 83,635 24,665 18,353 22,350 3,308
A. dentata 2 La Llave Mexico/Schilling 333/TENN MN356024 151,336 83,680 24,664 18,345 22,355 3,302
A. discolor (Baker) E.E.Schill. & Panero Brazil/Bombo 72/ESA MN356025 151,360 83,766 24,632 18,346 22,380 3,315
A. excelsa (Willd.) E.E.Schill. & Panero Mexico/Schilling H2481/TENN MN356026 151,312 83,684 24,650 18,325 22,376 3,313
A. filifolia (Sch.Bip. ex Baker) E.E.Schill. & Panero Brazil/Loeuille 849/SPF MN337890 151,333 83,711 24,633 18,347 22,370 3,309
A. fusiformis (S.F.Blake) E.E.Schill. & Panero Peru/Siniscalchi 398/SPF MN337891 151,314 83,728 24,620 18,344 22,376 3,309
A. gardneri (Baker) E.E.Schill. & Panero Brazil/Filartiga 16/ESA MN337892 151,312 83,694 24,633 18,343 22,362 3,308
A. goyazii E.E.Schill. & Panero Brazil/Magenta 716/SPF MN337893 151,279 83,687 24,632 18,326 22,366 3,308
A. grandiflora (Gardner) E.E.Schill. & Panero Brazil/Loeuille 750/SPF MN337894 151,353 83,761 24,633 18,326 22,368 3,309
A. kunthiana (Gardner) E.E.Schill. & Panero Brazil/Silva s.n./ESA 122873 MN337895 151,327 83,699 24,633 18,360 22,378 3,315
A. linearis (Cav.) E.E.Schill. & Panero Mexico/Schilling 70/TENN MN337896 151,314 83,665 24,667 18,334 22,379 3,307
A. macrorhiza (Baker) E.E.Schill. & Panero Brazil/Magenta 476/SPF MN337897 151,314 83,701 24,633 18,347 22,372 3,309
A. megapotamica (Malme) Magenta & Pirani Brazil/Magenta 502/SPF MN337898 151,363 83,731 24,642 18,346 22,389 3,327
A. nudibasilaris (S.F. Blake) E.E.Schill. & Panero Brazil/Filartiga 1/ESA MN337899 151,316 83,704 24,633 18,344 22,375 3,310
A. nudicaulis (Baker) E.E.Schill. & Panero Brazil/Loeuille 734/SPF MN337900 151,333 83,731 24,633 18,334 22,376 3,312
A. pilosa (Baker) E.E.Schill. & Panero Brazil/Filartiga 10/ESA MN337901 151,354 83,746 24,633 18,342 22,372 3,309
A. revoluta (Meyen) E.E.Schill. & Panero Chile/Loeuille 799/SPF MN356027 151,376 83,742 24,638 18,353 22,375 3,303

(continued on next page)
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Table 1 (continued)

Species Origin/Voucher/
Herbarium

GenBank
(accession)

Plastome
length
(bp)

LSC
length
(bp)

IR
length
(bp)

SSC
length
(bp)

Inv1 Inv2

A. robusta (Gardner) E.E.Schill. & Panero Brazil/Bringel 985/UB MN356028 151,343 83,734 24,633 18,344 22,373 3,309
A. rubra (Magenta & Pirani) E.E.Schill. & Panero Brazil/Magenta 388/SPF MN356029 151,322 83,708 24,634 18,344 22,375 3,309
A. santacatarinensis (H.Rob. & A.J.Moore) E.E.Schill. &
Panero

Brazil/Magenta 706/SPF MN356030 151,362 83,738 24,635 18,345 22,368 3,307

A. squalida (S.Moore) E.E.Schill. & Panero Brazil/Loeuille 790/SPF MN356031 151,399 83,782 24,631 18,346 22,384 3,317
A. tenuifolia (Gardner) E.E.Schill. & Panero Brazil/Silva s.n./ESA 122870 MN356032 151,372 83,759 24,634 18,344 22,380 3,314
A. trichophylla 1 (Dusén) Magenta Brazil/Magenta 390/SPF MN337911 151,353 83,749 24,633 18,338 22,371 3,308
A. trichophylla 2 (Dusén) Magenta Brazil/Magenta 561/SPF MN311247 151,301 83,690 24,632 18,347 22,369 3,308
A. tuberosa (Griseb.) E.E.Schill. & Panero Brazil/Loeuille 719/SPF MN356033 151,323 83,715 24,634 18,338 22,376 3,309
A. tucumanensis (Hook. & Arn.) E.E.Schill. & Panero Argentina/Heiden 1837/SPF MN356034 151,336 83,724 24,634 18,342 22,375 3,314
A. veredensis (Magenta & Pirani) E.E.Schill. & Panero Brazil/Loeuille 921/SPF MN356035 151,331 83,715 24,632 18,350 22,373 3,308
A. vernonioides (Baker) E.E.Schill. & Panero Brazil/Magenta 460/SPF MN356036 151,221 83,676 24,607 18,329 22,366 3,309
Outgroups
Dimerostemma asperatum S.F.Blake Brazil/Siniscalchi 440/SPF MT700540 151,862 84,107 24,704 18,347 22,472 3,295
Helianthus tuberosus L. Chile/Loeuille 793/SPF MT700541 151,242 83,634 24,632 18,344 22,411 3,312
Iostephane heterophylla (Cav.) Benth. Mexico/Schilling 94/TENN MT700542 151,495 83,812 24,640 18,317 22,396 3,305
Pappobolus lanatus var. lanatus (Heiser) Panero Peru/Siniscalchi 386/SPF MT700543 151,358 83,702 24,647 18,343 22,370 3,312
Tithonia diversifolia (Hemsl.) A.Gray Brazil/Loeuille 678/SPF MT700544 151,356 83,667 24,645 18,372 22,388 3,313
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Plastome assembly and annotation
Sequence quality was initially evaluated with FastQC 0.11.9 (Andrews, 2010) and trimmed
for quality and contaminants with Trimmomatic (Bolger, Lohse & Usadel, 2014), using
the SLIDINGWINDOW mode with a 5-base wide window and quality cut off of 20,
dropping reads shorter than 36 bp. Due to the availability of a published chloroplast
genome from a closely related taxon, Helianthus. annuus (GenBank accession NC_007977;
Timme et al., 2007), we opted for using reference assembly. This strategy also allows the
assembly of off-target reads containing parts of the plastome sequence. The Bowtie2 plugin
in Geneious (Langmead & Salzberg, 2012) was used to index the reference genome and
to match the reads obtained from sequencing back to the reference genome. BAM files
generated by Bowtie2 were used to calculate coverage of the sequencing with Samtools,
using the ‘‘samtools depth’’ tool (Li et al., 2009), which gives the sequencing depth for each
position in the final assembly. Basic statistics were used to summarize the coverage value
for each taxon. Consensus sequences generated by the assembly were used for annotation
and analysis.

Chloroplast genome annotations were carried out using Geneious 9.1.5 (Kearse et al.,
2012), DOGMA (Wyman, Jansen & Boore, 2004), and BLAST (Altschul, Gish & Miller,
1990; Altschul et al., 1997). Open Reading Frames (ORFs) were confirmed by manually
searching start and stop codons. The plastome of Aldama trichophylla was the first to
be annotated, using H. annuus (GenBank accession NC_007977; Timme et al., 2007)
as reference. This Aldama reference was subsequently used to annotate the remaining
plastomes. The graphical illustration of the A. trichophylla annotated plastome was built in
OGDRAW (Lohse et al., 2013). The junction sites between the LSC/IRa/SSC/IRb regions
were manually determined in Geneious, with complete annotations for adjacent genes.
The boundaries between the plastomes of one species representative of each genus
sequenced in this study were plotted in IRscope (Amiryousefi, Hyvönen & Poczai, 2018;
https://irscope.shinyapps.io/irapp/). All 41 newly-sequenced chloroplast genomes were
submitted to GenBank (Table 1).

Comparative analyses of chloroplast genomes
We performed comparative analyses among Aldama species and between Aldama and
the five Heliantheae outgroup taxa. To avoid data duplication, one copy of the IRs of all
chloroplast genomes was manually removed in all analyses.

Synteny and possible rearrangements were determined and identified through the
comparison of the A. trichophylla plastome sequence with those from the five other
Heliantheae genera. This analysis was completed in Mauve 2.4.0 (Darling, Mau & Perna,
2010, http://wolfe.gen.tcd.ie/GenomeVx), using progressiveMauve and MUSCLE 3.6
(Edgar, 2004) as alignment algorithm and internal aligner, respectively, with minimum
locally collinear block (LCB) score and full alignment calculated automatically. We did not
consider the plastomes to be collinear.

We aligned the 36 Aldama plastome sequences using the FFT-NS-2 method (Katoh
et al., 2002) in MAFFT 7 (Katoh & Standley, 2013). This alignment was used to calculate
the intrageneric nucleotide variability values (π) (Nei & Li, 1979). The π values were also
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calculated in a second dataset, using three Aldama species (A. anchusifolia, A. dentata2,
A. trichophylla), the five genera from tribe Heliantheae sequenced in this study and three
extra outgroups obtained from GenBank (Echinacea paradoxa (NC_034320), H. annuus
(NC_007977),H. argophyllus (KU314500)). The sliding window analysis was performed in
DnaSP 6.10 (Rozas et al., 2017) using a step size of 200 bp with window length of 800 bp.
The π values were plotted using R (R Development Core Team, 2017). Percentage and total
number of variable sites were estimated across Aldama plastomes using MEGA 7 (Kumar,
Stecher & Tamura, 2016). 79 protein-coding genes were extracted from the 36 Aldama
plastomes: i.e., accD, atpA, B, E, F, H, I, ccsA, cemA, clpP, infA, matK, ndh A, B, C, D, E, F,
G, H, I, J, K, petA, B, D, G, L, N, psaA, B, C, I, J, psbA, B, C, D, E, F, H, I, J, K, L, M, N, T,
Z, rbcL, rpl2, 14, 16, 20, 22, 23, 32, 33, 36, rpoA, B, C1, C2, rps2, 3, 4, 7, 8, 11, 12, 14, 15, 16,
18, 19, ycf1, 2, 3, and 4. Each gene was separately aligned considering codon positions in
Geneious, with the ClustalW plugin translation alignment tool (Larkin et al., 2007). MEGA
7 was used to estimate the number of variable sites within each of the 79 protein-coding
genes. Based on the sequence alignment with 36 complete Aldama genomes, the ten most
divergent plastomes were selected as representatives of the genus (i.e., A. canescens, A.
dentata 2, A. excelsa, A. filifolia, A. grandiflora, A. linearis, A. macrorhiza, A. trichophylla, A.
rubra and A. veredensis) and realigned in MAFFT as described above. We used mVISTA
(Frazer et al., 2004) in Shuffle-LAGAN mode (Brudno et al., 2003) to identify variable
regions within the genus by comparing these ten selected Aldama plastomes. To facilitate
result visualization, in a second step, the procedure was repeated with three species of
Aldama from different clades, selected according to the phylogeny inferred here (see results
below; A. anchusifolia, A. dentata 2 and A. trichophylla), and the five other Heliantheae
genera sequenced in this study. The annotated plastome of A. trichophylla was used as
reference in both analyses.

Selection on plastid genes
To investigate the presence positive selection signatures on the 79 plastid coding regions,
Selecton 2.2 (Stern et al., 2007; http://selecton.tau.ac.il/index.html) was used to analyze
the ratio of synonymous (Ks; silent) and non-synonymous (Ka; amino-acid altering)
substitutions in the codon alignments for each region described above. We used the M8
(positive selection enabled; Yang et al., 2000) and M8a (null model; Swanson, Nielsen &
Yang, 2003) models and likelihood scores were compared by a chi-square test with one
degree of freedom. Results were considered significant when the probability was lower than
0.01.

Simple sequence repeat analyses
Identification of microsatellites or Simple Sequence Repeats (SSRs; i.e., tandem repeats
of short, 1–6 bp-long DNA motifs) were performed using MISA (Beier et al., 2017) in the
plastomes of the ten most divergent Aldama species (listed above) as representatives of
the genus and of the five other Heliantheae genera sequenced in this study. Search for
SSRs followed the following criteria: motif length between one and six nucleotides, with
a minimum number of repetitions set as ten, five, and four units for mono-, di-, and
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trinucleotide SSRs, respectively, and three units each for tetra-, penta-, and hexanucleotide
SSRs.

Phylogenetic reconstruction
We reconstructed phylogenetic relationships among plastomes of 36 Aldama and using
the five other Heliantheae species assembled here as outgroup. The FFT-NS-2 method
(Katoh et al., 2002) in MAFFT 7 (Katoh & Standley, 2013) was used to align all plastomes
with one of the IRs removed to avoid data duplication. The ML analysis was conducted
in RAxML 8.2.9 (Stamakis, 2014) using the GTR+G model with node support assessed by
fast-bootstrap (-f a) using 1,000 non-parametric bootstrap pseudo-replicates.

RESULTS
Assembly and characteristics of the chloroplast genomes
The average read depth ranged between 1,431×and 5,037×(A. nudicaulis and A. tuberosa,
respectively; Table S1). The 36 Aldama plastomes range in length from 151,221 (A.
vernonioides) to 151,399 bp (A. squalida) (Table 1 and Fig. 1). The assembled plastomes
include some missing data and very few degenerate bases. However, very few of these sites
were found within coding regions, not significantly impacting other analyses performed
here (see Tables S2 and S3). All chloroplast genomes show the typical quadripartite
structure of angiosperms, consisting of a large single copy (LSC) region (83,635–83,782
bp); a small single copy (SSC) region (18,325–18,361 bp); and a pair of inverted repeat
(IRs) regions (24,607–24,667 bp). The length of the plastomes of the five outgroup species
from Heliantheae range from 151,242 bp (H. tuberosus) to 151,862 bp (D. asperatum),
with a LSC between 83,634 bp (H. tuberosus) and 84,107 bp (D. asperatum), SSC ranging
from 18,317 bp (I. heterophylla) to 18,372 bp (T. diversifolia), and a pair of IRs with length
between 24,632 bp (H. tuberosus) and 24,704 bp (D. asperatum). All assembled plastomes
feature a large ∼20 kb and a small, nested, ∼3 kb inversion in the LSC region, shared by
other Asteraceae species (Kim, Choi & Jansen, 2005). The large inversion within theAldama
plastomes ranges from 22,350 to 22,396 bp, including 16 genes from trnS-GCU -trnC-GCA
to trnG-UCC-trnT-GGU. The small inversion, with length between 3,298 and 3,328 bp,
includes six genes located between trnS-GCU-trnC-GCA and trnE-UUC (Table 1 and Fig.
1). The GC content in all assembled plastomes was 37.6%. The 41 sequenced plastomes
encode 113 unique genes, including 79 protein-coding genes (CDS), 30 tRNA genes,
and four rRNA genes (Table 2). The IRs of all plastomes present six CDS, seven tRNA
genes, and four rRNA genes, duplicated. The plastomes assembled in this study include
17 intron-containing genes, of which 14 contain one intron, while three genes contain
two introns (i.e., clpP, rps12, ycf3) (Table 2 and Fig. 1). The rps12 gene is trans-spliced,
with the 5′end located in the LSC region and the duplicated 3′end in the IR regions. The
LSC/IRs/SSC boundaries are very conserved within Aldama species and among other
Heliantheae genera sampled in this study. The LSC/IRb boundary is within rps19, the
IRb/SSC boundary is within ycf1, the SSC/IRa is between ndhF and a partial ycf1 (ψycf1),
and the IRa/LSC is between a truncated rps19 (†rps19) and trnH (Figs. 1 and 2).
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Figure 1 Gene map of the Aldama trichophylla plastome representing the genus Aldama and the plas-
tomes of other five Heliantheae genera, which present the same general structure and gene content.
Genes drawn inside the circle are transcribed clockwise, and those outside are transcribed counterclock-
wise. Genes belonging to different functional groups are colored following the legend. The darker and
lighter gray in the inner circle correspond to GC content and AT content, respectively.

Full-size DOI: 10.7717/peerj.10886/fig-1

Identification of variable regions
A single synteny block was retrieved from the structural analysis performed in Mauve
(Fig. S1). The plastomes of A. trichophylla and five other Heliantheae genera show the same
structure and linear order.

Levels of sequence diversity were investigated through the calculation of nucleotide
variability (π) valueswithin the 36Aldamaplastomes (Fig. 3A), among threeAldama species
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Table 2 Genes encoded by the Aldama species,Dimerostemma asperatum, Iostephane heterophylla, Pappobolus lanatus var. lanatus, and
Tithonia diversifolia plastomes.

Gene function Gene type Gene

Self-replication •Ribosomal RNA genes
(GO:0006364)

rrn4.5c, rrn5 c, rrn16 c, rrn23 c

•Transfer RNA genes
(GO:0061587)

trnA-UGC a,c, trnC-GCA, trnD-GUC, trnE-UUC, trnF-
GAA, trnfM-CAU, trnG-GCC, trnG-UCC a, trnH-GUG, trnI-
CAU c, trnI-GAU a,c, trnK-UUU a, trnL-CAAc, trnL-UAAa,
trnL-UAG, trnM-CAU, trnN-GUU c, trnP-UGG, trnQ-UUG,
trnR-ACG, trnR-UCU c, trnS-GCU, trnS-GGA, trnS-UGA,
trnT-GGU, trnT-UGU, trnV-GAC c, trnV-UAC a, trnW-
CCA, trnY-GUA

•Small ribosomal subunit
(GO:0015935)

rps2, rps3, rps4, rps7 c , rps8, rps11, rps12b,c, rps14, rps15,
rps16 a, rps18, rps19d

•Large ribosomal subunit
(GO:0015934)

rpl2a,c, rpl14, rpl16, rpl20, rpl22, rpl23a,c, rpl32, rpl33, rpl36

•RNA polymerase subunits
(GO:0042793)

rpoA, rpoB, rpoC1a, rpoC2

Photosynthesis •Photosystem I
(GO:0009522)

psaA, psaB, psaC, psaI, psaJ, ycf3b, ycf4

•Photosystem II
(GO:0009523)

psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK,
psbL, psbM, psbN, psbT, psbZ

•NADH-dehydrogenase
(GO:0010258)

ndhAa, ndhBa,c, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH,
ndhI, ndhJ, ndhK

•Cytochrome b6/f complex
(GO:0017004)

petA, petBa, petD a, petG, petL, petN

•ATP synthase
(GO:0009544)

atpA, atpB, atpE, atpF a, atpH, atpI

•Rubisco
(GO:0110102)

rbcL

Other genes •Translational initiator factor
(GO:0006413)

infA

•Maturase
(GO:0006397)

matK

•Protease
(GO:0006508)

clpPb

•Envelope membrane protein
(GO:0009279)

cemA

•Subunit of Acetil-CoA-carboxylase
(GO:0003989)

accD

•c-type cytochrome synthesis
(GO:1903606)

ccsA

Unknown function •Conserved open read frames ycf1d, ycf2c, ycf15c

Notes.
aGene with one intron.
bGene with two introns.
cGene duplicated.
dGene partially duplicated.
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Figure 2 Comparisons of the Large Single Copy, Inverted Repeat a, Small Single Copy, and Inverted
Repeat b boundaries among Aldama trichophylla and the other five Heliantheae representatives. Genes
shown below the lines are transcribed reversely and those shown above are transcribed forward. Minimum
and maximum sizes for the regions and structures of each plastome type that compose the borders are in-
dicated in base pairs (bp).

Full-size DOI: 10.7717/peerj.10886/fig-2

(A. anchusifolia, A. dentata 2 and A. trichophylla) and other Heliantheae sequenced in this
study or obtained from GenBank (D. asperatum, E. paradoxa, H. annuus, H. argophyllus,
H. tuberosus, I. heterophylla, P. lanatus var. lanatus and T. diversifolia) (Fig. 3B). The π
values within 800 bp across the plastomes range from 0 to 0.00754 (mean value of 0.00118)
within Aldama species and from 0 to 0.0305 (mean value of 0.00860) among three Aldama
species and the other genera, indicating that these sequences are very conserved, especially
at the intrageneric level. The most variable sites within Aldama plastomes are within the
petA-psbJ intergenic region (π between 0.00754 and 0.00613) and only three sites present π
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Figure 3 Sliding window analysis of complete plastomes. (A) within the 36 Aldama samples and
(B) among three Aldama species (Aldama anchusifolia, A. dentata, A. trichophylla) plus outgroups
of Heliantheae sequenced in this study and obtained from GenBank: Pappobolus lanatus, Tithonia
diversifolia, Helianthus tuberosus, Iostephane heterophylla, Dimerostemma asperatum, Echinaceae paradoxa
(NC_034320), Helianthus argophyllus (NU314500), and Helianthus annuus (NC_007977) (window length:
800 bp, step size: 200 bp). X-axis, position of the midpoint of each window; Y -axis, nucleotide diversity
(π) of each window. (C–D) Twenty-seven most variable protein-coding genes within the 36 Aldama
plastomes assembled. (C) percentage of variable sites according to gene length. (D) Number of variable
sites per gene.

Full-size DOI: 10.7717/peerj.10886/fig-3

>0.004, which are ndhE-psaC, ycf1, and petN-psbM (Fig. 3A). Themost variable sites among
three Aldama species and the other genera are within the trnL-UAG-rpl32 and rpl32-ndhF
intergenic regions (π between 0.0305 and 0.02936). Further variable sites with π >0.020
are located within the ycf1 gene and in other intergenic regions, such as trnE-UUC-rpoB,
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Table 3 Summary of datasets including only the 36 Aldama plastomes.

Dataset Length (bp) Var. sites Var. sites % Pi sites GC%

Plastomes (LSC/IR/SSC) 127,466 1,509 1.18 814 36.7
79 genes 67,626 497 0.73 285 37.8
Intergenic regions 61,290 1,016 1.66 531 35.2
Introns 11,954 158 1.32 83 34.3

Notes.
Var. sites, number of variable sites; Var. sites%, percentage of variable sites; Pi sites, parsimony informative sites; GC%,
percentage of GC content.

trnT-GGU-psbD, ycf3-trnS-GCU and petA-psbJ (Fig. 3B). In both datasets, the IRs are the
most conserved regions (Fig. 3).

The alignment of the 36 complete Aldama plastomes (with one of the IRs removed)
has 127,466 bp with 1,508 variable sites (i.e., 1.18% of variable sites). In addition, the
noncoding regions are more variable (i.e., 1.66% of the intergenic regions) than the coding
regions (0.73% of the protein-coding genes) (Table 3).

Among the 79 protein-coding genes, the genes with the highest percentage of variable
sites are presented in Fig. 3C and Table S4. Regarding absolute numbers, the genes with
more than 10 variable sites are presented in Fig. 3D and Table S4.

Pairwise comparisons of divergent regions within the 10 selected Aldama plastomes (i.e.,
A. canescens, A. dentata 2, A. excelsa, A. filifolia, A. grandiflora, A. linearis, A. macrorhiza,
A. trichophylla, A. rubra and A. veredensis) and among three species of Aldama (i.e., A.
anchusifolia, A. dentata 2 and A. trichophylla) and five plastomes from other Heliantheae
genera sequenced in this study were performed using mVISTA, with A. trichophylla as a
reference (Fig. 4 and Fig. S2). Overall, the alignments reveal very low intra- and inter-generic
(Fig. 4) sequence divergence across the plastomes, suggesting high degree of conservation.
Noncoding regions and introns are generally more divergent than coding regions (Fig. 4
and Fig. S2).

Selection on plastid genes
The analyses performed in Selecton to explore selection pressure on the 79 protein-coding
genes within Aldama plastomes showed that only one gene, rbcL, has signatures of positive
selection (adaptive selection), with only two sites out of 486 with omega values (ω) lower
than 1, at a significance level of 0.01 for two positions (Data S3).

SSR analyses
Six kinds of repeat patterns were screened and identified using MISA in the plastomes
of the 10 selected Aldama species listed above and the five other Heliantheae genera
sequenced in this study. In Aldama plastomes, the total number of SSRs ranges from 47 to
57 SSRs, while in the other genera it varies from 38 (D. asperatum) to 56 (I. heterophylla)
(Fig. 5A and Table S5). The most frequent SSRs are A or T mononucleotide repeats,
accounting for 68–73.2% of the total SSRs in Aldama plastomes and for 60.5–75.5% in
the other genera; G or C repeats, on the other hand, are rare (Fig. 5C and Table S5). The
total number of SSR motifs in Aldama range between 34–44 (70–77.2%) mononucleotide
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Figure 4 Comparison of three species of Aldama (i.e., A. anchusifolia, A. dentata, and A. trichophylla)
and the five plastomes from other Heliantheae genera sequenced in this study performed in mVISTA.
The plastome of A. trichophylla was used as reference. Dark blue blocks indicate conserved genes (CNS),
light blue blocks indicate conserved introns (UTR), and red blocks indicate conserved noncoding se-
quences (CNS). White blocks represent regions with sequence variation among the plastomes. The vertical
axis indicates sequence alignment similarity of 50–100%.

Full-size DOI: 10.7717/peerj.10886/fig-4

repeats, 5 dinucleotide repeats in all species (8.8–10.6%), 3–5 (6–10%) trinucleotide
repeats, 4–5 (7–10.2%) tetranucleotide repeats, and 0–1 (0–1.9%) hexanucleotide repeats;
no pentanucleotide repeat was found (Fig. 5C and Table S5). Moreover, most (37–45)
of the SSRs in Aldama species are located in the LSC. In Aldama, the IR regions include
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Figure 5 (A–B) Distribution of SSRs in the Aldama and the five plastomes from other Heliantheae
genera sequenced in this study (IRa omitted). (C) Distribution of SSR types. .

Full-size DOI: 10.7717/peerj.10886/fig-5

between 1–3 SSRs, while the SSC region includes between 8–10 (Fig. 5B and Table S5).
In the other genera sequenced here, 28–45 of the SSRs are situated in the LSC, 0–2 in the
IRs, and 8–9 in the SSC region (Figs. 5B–5C and Table S5). The density of SSRs in the LSC
is somewhat similar to that found in the SSC when considering the size of each plastome
region.

Phylogenetic reconstruction
The final alignment with the 41 taxa sequenced here (i.e., 36 Aldama species and 5
Helianthinae representatives as outgroups) is 129,218 bp long, of which 4,544 are variable
sites and 1,089 are parsimony informative sites. In the ML tree (Fig. 6, bootstrap values
(BS) depicted in the tree) Aldama is not monophyletic due to the position of the Mexican
A. dentata as sister-group of T. diversifolia (BS: 98%), while all other Aldama species form
a well-supported clade (BS: 99%). In this latter clade, Mexican and Andean species are the
first to diverge (A. linearis, A. excelsa, A. canescens and A. revoluta). All Brazilian species
form a strongly supported clade (BS: 99%), but internal relationships are poorly resolved
due to the low nucleotide diversity found among Aldama plastomes, resulting in very short
branches.

Loeuille et al. (2021), PeerJ, DOI 10.7717/peerj.10886 16/36



Figure 6 Phylogenetic relationships of 36 Aldama species and five species from other Heliantheae
genera as outgroup based on complete chloroplast genomes, with one of the IRs removed. Branches are
labeled with bootstrap values above 75% from the ML analysis. Vertical bar indicates geographic distribu-
tion, yellow, Mexico, red, Andean region, purple, Brazil and black, widespread.

Full-size DOI: 10.7717/peerj.10886/fig-6

DISCUSSION
Plastome features
In this study, we sequenced and assembled 36 complete plastomes of 33 Aldama species and
the plastome of five other genera from the tribe Heliantheae. Even though the sequences
present a number of gaps and degenerate bases, this did not affect the genetic diversity and
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selection analyses, as they account for a small proportion of sites in relation to the total
length of each genome. In addition, coding regions were less affected by these issues, with
0.006% of missing data and zero ambiguous sites (Tables S2 and S3). The basic features of
these plastomes are highly similar to those found in other Asteraceae species, including the
LSC inversions that are present in nearly all members of the family. Our results show that
the plastomes are highly conserved in size, GC content, number of genes and gene order
(Wang et al., 2015; Salih et al., 2017). Size variation between the smallest (A. vernonioides)
and largest (A. squalida) Aldama plastomes is very low (178 bp) (Table 1). This is similar
to the variation found between the plastomes of different species of Atractylodes (60 bp;
Wang et al., 2020), Echinacea (98 bp; Zhang et al., 2017), Dendrosenecio (59 bp; Gichira
et al., 2019), Dolomiaea (179 bp; Shen et al., 2020) and Senecio (209 bp) (Gichira et al.,
2019), but greatly inferior to the variation found between 20 Saussurea species (1,148 bp;
Zhang et al., 2019). Among genera in Heliantheae, D. asperatum, from subtribe Ecliptinae,
presents the largest genome, exceeding the smallest one (A. vernonioides) by only 641
bp. Among members of subtribe Helianthinae, the size difference is even smaller (274
bp) (Table 1). Higher variation in size was found among members of other tribes, such
as Cardueae (1,138 kb; Zhang et al., 2019) and Senecioneae (865 bp; Gichira et al., 2019).
No significant expansions of the IRs (60 bp) or contractions of the LSC (147 bp) have
been detected among Aldama species, or among the Heliantheae genera (IRs: 97 bp.;
LSC: 472 bp) (Table 1 and Fig. 1). Expansions of the IRs and contractions of the LSC are
frequent in Asterids (e.g., Downie & Jansen, 2015; Firetti et al., 2017; Thode & Lohmann,
2019), but were not observed at the generic level in our results or in other studies in
Asteraceae (Zhang et al., 2017; Cho et al., 2019; Gichira et al., 2019; Shahzadi et al., 2019;
Shen et al., 2020; Wang et al., 2020; Zhang et al., 2019), except for a recent study in the
genus Aster (Tyagi et al., 2020). The IR/SC boundaries are highly conserved in all Aldama
and Heliantheae genera sequenced in this study (Fig. 2). Positions of these boundaries
are very constant in Asteraceae (Wang et al., 2015). Some variation has been found at the
IRb/SSC boundary in the tribe Cardueae and in Aster (within ycf1 or between the genes
ycf1 and ndhF) (Zhang et al., 2019; Tyagi et al., 2020), but we observed conserved borders
within ycf1 in Aldama and the Heliantheae genera.

In all plastomes studied here (33 species of Aldama and five Heliantheae genera), 18
genes are duplicated. Like in nearly all Asteraceae, there are seven tRNA genes and four
rRNA genes located in the IR regions (Wang et al., 2015). Similar to all Angiosperms,
the rps12 gene was found to be trans-spliced (one of its exons located in the LSC region
and the other duplicated in the IRs) (Howe et al., 2003). Duplication of the trnF-GAA
gene has probably occurred several times in the evolutionary history of Asteraceae, in
different subfamilies (Carduoideae, Cichorioideae and Asteroideae) (Salih et al., 2017).
We did not detect the trnF-GAA gene duplication in the Aldama species and Heliantheae
genera assembled here, as previously seen in other taxa of Heliantheae, such as H. annuus
(Timme et al., 2007) and Echinacea (Zhang et al., 2017). Nonetheless, this duplication was
reported for Lasthenia burkeyi (Heliantheae, subtribe Madieae) (Walker, Zanis & Emery,
2014). Three other frequent duplications in Asteraceae (ndhB, rpl2 and rpl23; all located
in the IR regions) (Timme et al., 2007; Salih et al., 2017; Zhang et al., 2017; Cho et al., 2019;
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Tyagi et al., 2020; Wang et al., 2020) were observed in our results. Another frequently
duplicated gene in Asteraceae, ycf15, was detected in Aldama and the Heliantheae genera
sequenced here, as observed in H. annuus (Timme et al., 2007), Echinacea (Zhang et al.,
2017) and Aster (Tyagi et al., 2020), but its complete absence was reported in some species
of Chrysanthemum (tribe Anthemideae) (Wang et al., 2015) and Guizotia abyssinica (tribe
Millerieae) (Dempewolf et al., 2010) (Table 2).

The largest plastid gene in the Angiosperms, ycf2, displays a ∼456 bp deletion in
Helianthus species, which does not seem to affect its functionality (Timme et al., 2007;
Zhang et al., 2019), even though its vital function remains unknown (Drescher et al., 2000).
Such partial deletion in ycf2 has also been observed in Poaceae (Millen et al., 2001; Matsuoka
et al., 2002). We found a slightly smaller deletion in all Aldama species, with size varying
from 441 bp (most species) to 447 bp (in two species), similar to the values found in
species of Helianthus (Zhang et al., 2019). The same 441 bp deletion in ycf2 was found
in the three taxa of subtribe Helianthinae (I. heterophylla, P. lanatus var. lanatus and
T. diversifolia) and in Dimerostemma, from subtribe Ecliptinae, even though this deletion
is absent in the plastome of another member of this subtribe, Eclipta prostata (Park et al.,
2016). The deletion in ycf2 is absent in species of Echinacea, from subtribe Zinniinae (Zhang
et al., 2017). These results indicate that the deletion in ycf2 is not an unique event in the
evolutionary history of Heliantheae, as it is not restricted to the derived taxa of subtribe
Helianthinae (Schilling & Jansen, 1989), also occurring in subtribe Ecliptinae. However, the
current knowledge about phylogenetic relationships among Heliantheae subtribes (Panero,
2007) is insufficient to understand the evolution of ycf2 within the tribe.

The conservation of plastome features has been recorded in several Angiosperm groups
(Cai et al., 2015; Reginato et al., 2016; Sun et al., 2019; Yan et al., 2019) and our results
corroborate that plastomes are highly conserved in Asteraceae, even at the generic or
subtribal level, in size, GC content, number of genes and gene order (Wang et al., 2015;
Salih et al., 2017; Shen et al., 2020).

Variable regions
The plastomes of Aldama and other genera of Heliantheae studied here display very low
intrageneric and intergeneric sequence divergence. Noncoding regions and introns are
slightly more divergent than coding regions and the IRs are the most conserved regions
(Figs. 3 and 4 and Fig. S1–Fig. S2). Among Aldama plastomes, the petA-psbJ intergenic
region is the most variable locus and only three other regions have some significant
variability: ndhE-psaC, petN-psbM and ycf1 (Fig. 4A). The intergenic region petA-psbJ is
rarely used in phylogenetic inferences (e.g., Huang et al., 2004; Techaprasan et al., 2010),
and has never been used in Asteraceae. Shaw et al. (2007) and Shaw et al. (2014) pointed
out this region as one of themost variable within the chloroplast genome across angiosperm
lineages, including among closely related species of Aster (Tyagi et al., 2020). Dong et al.
(2012) suggested it as a potential candidate for DNA barcoding and phylogenies in lower
taxonomic levels. The noncoding region ndhE-psaC has never been used in phylogenetic
inference and has only been cited as a hypervariable region inmonocots (Lu, Li & Qiu, 2017;
Santana Lopes et al., 2018; Cui et al., 2019). The petN-psbM intergenic spacer was reported
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as a variable region in Asteraceae once, in Echinacea, another genus of Heliantheae (Zhang
et al., 2017), and Shaw et al. (2014) described it as a potential variable region in specific
groups (e.g., Fonseca & Lohmann, 2017). In a similar way to other intergenic regions that
evolve rapidly, minute inversions have already been noted in petN-psbM, requiring some
care when aligning it (Kim & Lee, 2005; Dong et al., 2012).

While coding regions normally accumulate genetic differences more slowly than non-
coding regions (Fazekas et al., 2008; Lahaye et al., 2008), one exception is the gene ycf1,
which evolves at a faster pace (Dong et al., 2012; Shaw et al., 2014). This region is frequently
cited as one of the most variable in Asteraceae plastomes (Wang et al., 2015; Zhang et al.,
2017; Cho et al., 2019; Zhang et al., 2019; Shen et al., 2020; Wang et al., 2020) but seems to
have been used as a marker only once, in a phylogenetic study within the tribe Astereae
(Costa, 2014). Nonetheless, ycf1 was successfully used in phylogenetic inferences of other
angiosperm groups, such as Fabaceae (e.g.,Dastpak et al., 2018) and orchids (e.g.,Neubig et
al., 2009).Dong et al. (2015) concluded that ycf1 can serve as a core barcode for land plants.
Regarding the percentage of variable sites (in proportion to sequence length), ycf1 is the
most variable coding region, followed by rpl32 (Fig. 3C and Table S4). When considering
absolute numbers, rpoC2 has the highest number of sites, followed by ycf1 (Fig. 3D and
Table S4). The rpl32 gene is rarely cited in Asteraceae as a variable region (Timme et al.,
2007) and, due to its small size (165 bp), the region has never been used in phylogenetic
inferences. The rpo genes, which code for RNA polymerase subunits, are relatively rapidly
evolving genes (Krawczyk & Sawicki, 2013). Other studies in Asteraceae (Salih et al., 2017;
Cho et al., 2019) also pointed out rpoC2 as a variable region and Wang et al. (2015) found
some species-specific editing sites in Lactuca sativa, suggesting lineage specific evolutionary
features of RNA editing for that region. While rpoC2 has not been used for phylogenetic
inference in Asteraceae, its utility was demonstrated in other Angiosperm families like
Poaceae (Peterson, Romaschenko & Arrieta, 2016) and Verbenaceae (Marx et al., 2010).
In addition, Logacheva et al. (2017) concluded that rpo genes might be very useful for
phylogenetic reconstructions. As a whole, the nucleotide composition among Aldama
species is very conserved, with a percentage of variable sites (1.18%) somewhat lower than
that found in the Espeletia species complex (2.46%; Pouchon et al., 2018), among species
of Saussurea (4.07%; Zhang et al., 2019) and in Hawaiian species of Bidens (4.8%; Knope et
al., 2020), but similar to Echinacea (<1%; Zhang et al., 2017).

When comparing the plastomes of the five genera of Heliantheae with three species of
Aldama, the variability found is a little bit higher. Themost variable regions are the gene ycf1
and two intergenic regions, trnL-UAG-rpl32 and rpl32-ndhF (Fig. 3B). These two intergenic
regions have beenwidely reported as themost divergent regions across Angiosperm lineages
(Shaw et al., 2007; Dong et al., 2012; Shaw et al., 2014), especially rpl32-ndhF in Asteraceae
(Timme et al., 2007; Salih et al., 2017; Zhang et al., 2017; Gichira et al., 2019, Shahzadi et
al., 2019; Zhang et al., 2019; Nie et al., 2020) and less frequently trnL-UAG-rpl32 (Timme et
al., 2007; Cho et al., 2019; Shahzadi et al., 2019; Shen et al., 2020). Numerous phylogenies
in Asteraceae used trnL-UAG-rpl32 as a molecular marker (e.g., Freire et al., 2015;
Loeuille, Keeley & Pirani, 2015; Loeuille et al., 2015; Padin, Calviño & Ezcurra, 2015; Soto-
Trejo et al., 2015; Jara-Arancio, Vidal & Arroyo, 2018; Oberprieler et al., 2019), sometimes
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associated with ndhF-rpl32 (Dillenberg & Kadereit, 2013; Steffen, Dillenberger & Kadereit,
2016; Gutiérrez-Larruscain et al., 2018; Gerschwitz-Eidt & Kadereit, 2019).

Signature of positive selection in plastid genes
The present study indicates that among the 79 protein-coding genes within Aldama, only
the gene rbcL is significantly under positive selection (ω >1). It encodes for the larger
subunit of the enzyme rubisco, which catalyzes the first step in photosynthetic assimilation
of inorganic carbon and photorespiration (Spreitzer & Salvucci, 2002; Feller, Anders & Mae,
2008; Bathellier et al., 2018; Erb & Zarzycki, 2018; Pottier, Gilis & Boutry, 2018). Purifying
selection has been frequently reported in Asteraceae for most of the plastidial protein-
coding genes (Shahzadi et al., 2019; Zhang et al., 2019). The gene ndhF was shown to be
under positive selection in Aster (Tyagi et al., 2020) and in Dolomiaea (Shen et al., 2020),
along with atpA and rbcL in the latter. Zhang et al. (2019) found positive selection for
ycf2 in Helianthus, but contrary to the expectation, we did not detect a positive selection
signature in Aldama. The extremely low nucleotide diversity observed among chloroplast
sequences might compromise our capacity to detect that signal.

Positive selection for rbcL is widespread among land plants (Kapralov & Filatov, 2007;
Yao et al., 2019; Shen et al., 2020) and several studies have demonstrated that positive
selection on specific amino-acids in rubisco is linked to plant adaptation to different
environmental stresses, facilitating adaptive radiation into diverse ecological niches
(Hermida-Carrera et al., 2017). Examples include adaptations to dry or wet climates
(Kapralov & Filatov, 2006; Galmés et al., 2014), to high altitude environments (Hu et al.,
2015) and in transitions from C3 to C4 photosynthesis (Christin et al., 2008; Kapralov,
Smith & Filatov, 2012; Hermida-Carrera et al., 2020), including in Flaveria (Asteraceae,
tribe Tageteae) (Kapralov et al., 2011).

SSRs in Aldama plastomes
Single Sequence Repeats (SSRs) are often observed in chloroplast genomes, being
useful markers for evolutionary studies in lower taxonomic levels, such as population
genetics (Avise, 1994; Ebert & Peakall, 2009; Qi et al., 2016; Yu et al., 2017). The SSRs most
frequently found in chloroplast genomes are poly-A tails, usually also being the ones
showing more variability. As NGS methods became cheaper and more popular, the in
silico mining of microsatellite has become more common, with the advantage of easily
separating organellar repeats from nuclear repeats when mapping against a reference
genome. Recent papers dealing with the development of SSR markers in Asteraceae from
chloroplast genomes have shown very little variability in the tested loci, especially when
excluding mononucleotide repeats (Siniscalchi et al., 2019; Thapa, Bayer & Mandel, 2019).

The SSRs regions presented here can be used as basis for future population genetic
studies involving Aldama, although their variability needs to be validated in different
populations (Figs. 6A–6C). The fact that several repeat regions are present in more than
one species is a good indication that they could be easily transferable across the genus, being
useful for multi-species studies. While several Brazilian species complexes within Aldama
have been the focus of detailed anatomical and phytochemical studies (Bombo et al., 2012;
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Bombo et al., 2014; Silva & Appezzato-da Glória, 2014; Bombo, Filartiga & Appezzato-Da-
Glória, 2016; Filartiga et al., 2016; Filartiga et al., 2017), populational studies based on
these SSRs would greatly improve the understanding of population dynamics and
microevolutionary processes in these species.

Phylogenetic hypothesis
Our phylogenetic analysis indicates that in the current circumscription, Aldama is not
monophyletic, as A. dentata is more closely related to other Mexican and Andean genera
(Pappobolus and Tithonia) than to the rest of the Aldama species (Fig. 6). This result is in
agreement with plastidial restriction site analysis (Schilling & Panero, 1996a) but not with
ribosomal ITS and ETS phylogenetic analyses (Schilling & Panero, 2011). More studies
are necessary to understand if this incongruence between plastome and nuclear data is a
consequence of an evolutionary history of hybridization and chloroplast capture in the
Helianthinae (Schilling & Panero, 1996b) or an artefact of the low taxonomic sampling of
Mexican Helianthinae in our analysis.

The Mexican Aldama species are early diverging lineages, while all South American
members of Aldama form a strongly supported clade. Nonetheless, the relationships
between the Brazilian and Andean species are poorly resolved due to the extremely low
nucleotide diversity (Fig. 6).

CONCLUSIONS
The analyses comparing 36 Aldama plastomes and the plastomes of five other genera
belonging to Heliantheae provided significant new understanding about Asteraceae
plastome evolution and structure. Within Aldama and among the other genera compared
here, plastomes show very similar lengths, number of genes, and boundaries between the
regions. The nucleotide variability was extremely low at the intrageneric level. Our results
show that plastomes may be extremely conserved and not suited for phylogenetic analysis
at the intrageneric level. Our results also shed light on a more complex evolution of the
large deletion in the ycf2 gene in Heliantheae, which was probably gradual and involved
multiple events. Signals of positive selection detected in the rbcL gene in Aldama raise
an interesting question on the adaptative radiation of the genus that instigates further
investigation. Finally, the obtained data bring powerful information for further studies
aiming at a robust phylogenetic circumscription of Aldama, indicating regions that are
more variable and SSR markers useful for population genetics studies.
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