caderno ^{de} farmácia

BOVINE SERUM LIMITATION INCREASES THE ACTIVITY AND EXPRESSION OF ENZYMES INVOLVED ON ATP, ADP AND AMP EXTRACELLULAR HYDROLYSIS IN TRICHOMONAS VAGINALIS

<u>Frasson A.P.</u>^{1*}; Rosemberg D.B.²; Charão M.F.³; De Carli G.A.⁴; Bogo M.R.²; Garcia S.C.³; Tasca T¹.

¹Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, UFRGS; ²Laboratório de Biologia Genômica e Molecular, PUCRS; ³Laboratório de Toxicologia, Faculdade de Farmácia, UFRGS; ⁴Instituto de Geriatria e Gerontologia, PUCRS

*Mestrando - Início: 2009/1

Introduction: The flagellated protozoan *Trichomonas vaginalis* causes trichomonosis, the most common non-viral STD in the world¹. The infection causes serious impact on public health; therefore, it is important to investigate the biochemical aspects of the parasite. Extracellular nucleotides are released by cells under stress, anoxia or injury² and they can be inactivated by hydrolysis via ectonucleotidases. The members of E-NTPDase family hydrolyze nucleoside di- and tri-phosphates and the ecto-5'-nucleotidase is able to hydrolyze nucleoside monophosphate, producing adenosine³. Important, *T. vaginalis* lacks the ability to synthesize purines and pyrimidines *de novo*, and the enzymes act on the salvage pathways generating the nucleosides⁴.

Objective: The aims of this study were to investigate the metabolism of ATP in trophozoites of *T. vaginalis* by enzymatic activities determination and gene expression analysis, under a condition of bovine serum limitation.

Materials and Methods: For the assays, the trophozoites from ATCC 30236 and LACH1 isolates were grown in TYM medium supplemented with 1.0% inactivated bovine serum, while control cultures were maintained with 10% serum. The enzymatic tests were performed in the reaction mixture containing 50mM Tris buffer, 5.0mM CaCl₂ or MgCl₂, trophozoites and substrate (1.0 mM ATP, 1.0mM ADP or 3.0mM AMP), at 37°C. The specific activity was determined by colorimetric method and expressed as nmol Pi released/min/mg protein. The gene expression patterns were carried out by a RT-PCR assay using specific primers for NTPDase A and B; genes responsible for AMP hydrolysis were searched by BLAST function in GenBank Database and primers were designed for SurE (183), SurE(257), SurE(258) and 5°(3°) enzymes. Extracellular adenine nucleotide hydrolysis was estimated by HPLC analysis.

Results: The bovine serum limitation causes an increase on the hydrolysis of the nucleotides tested. In ATCC 30236, there was an increase of 154.4%, 176.1% and 302.5% on the hydrolysis of ATP, ADP and AMP, respectively, when compared with control cultures; in the clinical isolate, LACH1, the increase was to 14.4%, 22.5% and 162.5%. Transcript levels of NTPDase A were significantly increased in both isolates, while NTPDase B and SurE(183) mRNA transcript levels increased only on the LACH1 isolate. Extracellular ATP metabolism is increased in limiting serum, leading to higher ATP hydrolysis and formation of ADP and AMP.

Conclusions: Our data suggest that under serum limitation condition these *T. vaginalis* enzymes play an important role in the provision of adenosine for parasite growth. Moreover, the enzymes may contribute to escape mechanisms of the parasite by breaking down ATP.

References:

Acknowledgements: A.P.F. is recipient of fellowship from CNPq. This study received financial support from CNPq (T.T., grant #477348/2008-4).

¹Weinstock H et al. J Persp Sex Reprod. Health 36: 6-10, 2004

²Robson et al. Purinergic Signal 2: 409-430, 2006

³ Zimmermann H. Drug Develop Res 52: 44-56, 2001

⁴Tasca T et al. Parasitol Res 93: 300-303, 2004