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Abstract

In this paper, we propose a hierarchical statistical model for a single repairable system sub-

ject to several failure modes (competing risks). The paper describes how complex engi-

neered systems may be modelled hierarchically by use of Bayesian methods. It is also

assumed that repairs are minimal and each failure mode has a power-law intensity. Our pro-

posed model generalizes another one already presented in the literature and continues the

study initiated by us in another published paper. Some properties of the new model are dis-

cussed. We conduct statistical inference under an objective Bayesian framework. A simula-

tion study is carried out to investigate the efficiency of the proposed methods. Finally, our

methodology is illustrated by two practical situations currently addressed in a project under

development arising from a partnership between Petrobras and six research institutes.

1 Introduction

The challenges in the production of offshore oil wells have been increasing over time, either

due to the increase in technical difficulties because of the greater complexity of the areas to be

explored, or due to improvements in the rules of the regulatory bodies in order to increase

safety. There are two key pillars that should guide an oil well project: safety and productivity.
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Petroleum industry loses billions of dollars yearly due to profit loss associated with produc-

tion lines obstruction. Current flow assurance solutions are troublesome and cost hundreds of

millions of dollars annually. Petrobras (abbreviation of Petróleo Brasileiro S.A.), which is Bra-

zil’s largest oil and gas producer, has invested in technological innovation projects in order to

minimize these losses and increase oil and gas production. Annelida is one of these Petrobras’

innovation projects, which has been developed in partnership with the main Brazil’s research

centers. It regards an in-pipe robot that will be used at a near future to remove hydrates and

paraffins that form in pipelines and can cause problems in oil and gas flow (see Fig 1). Several

stages of the Annelida project have already been completed and many others are underway,

generating important results for the development and improvement of its bases. Given the

innovative nature of the project, the reliability modeling of the product has been one of the

main objectives of the research centers.

In reliability engineering, it is well known that the reliability of a product can be assessed

from the systems and subsystems that comprise it. Annelida is composed of several systems

and subsystems each with well-defined objectives. Due to the high degree of criticality, in this

work we consider the traction system of Annelida. In particular, we will study (that is, model

the failure times of) the return and forward locomotives subsystem (modules 11 and 25, in Fig

2), as well as the pressure vessel subsystem (modules 1 to 10 and 24, one of which is repre-

sented in module 24, in Fig 2). A schematic of the studied systems is shown in Fig 2.

The locomotive is responsible for conducting the robot inside the pipe, and once hydrate

formation is identified, the robot will work on its safe removal for the oil to flow again. On the

other hand, the pressure vessel set is the basic structural module for all the electrical and elec-

tronic components of Annelida, which contains 11 of these subsystems. The vessels’ purpose

is to withstand the forces, pressure and chemical conditions of the environment, safety

Fig 1. Hydrates and paraffins. The most common duct obstruction causes.

https://doi.org/10.1371/journal.pone.0255944.g001
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containing and isolating the components in their interiors. The module also has the function

to facilitate the heat exchange, allowing for suitable operational temperature of the electronic

components.

2 Background and literature

The repeated occurrence of an event of interest in the same subject is frequent in many areas,

such as manufacturing, software development, medicine, social sciences, risk analysis, among

others. In reliability engineering, when studying a complex system, such as supercomputers,

cars and airplanes, multiple defects or vulnerabilities in the product design, manufacture,

operation, maintenance and handling can cause a number of unexpected failures [1]. Failure

process models, in the context of repairable systems, are often described in terms of competing

risks, or equivalently, a system with many components connected in series, such that the fail-

ure of a single component will result in a whole system failure. However, recently in engineer-

ing, the evaluation of repairable systems with multiple failure modes has drawn attention due

to their potential applicability [2–5].

In a competing risks framework, a system fails due to the first occurrence of possible failure

modes. In this context, we use a model for any individual component, whose failures occur

due to one of the causal mechanisms and which each one acts independently on the system.

A system can be thought as the joint union of different subsystems which, in turn, can also

be thought as unions of other more particular subsystems, to an arbitrary level of hierarchy. In

a well-defined hierarchical structure, the functions and relationships between components of a

system can be better understood, highlighting their importance to the system as a whole. This

makes it possible to clearly define acceptable levels of damage for each part of the structure,

and to delimit its impacts on the system when exposed to different sources of external variation

[6].

In an industrial context, Langseth and Lindqvist [7] recorded the service times of a compo-

nent spanning over 1,600 units of time. Each failure had its respective mode also recorded. In

this case, the causes of failure were categorized into two main groups, each with its respective

subcauses. In health care, for example, Tuli et al. [8] analyzed repeated shunt failures in

Fig 2. Annelida’s schematic diagram. The representation of one of the pressure vessel set (top), the others (modules

01 to 10) are not represented in this schematic, and traction systems (below).

https://doi.org/10.1371/journal.pone.0255944.g002

PLOS ONE Improved objective Bayesian estimator for a PLP model hierarchically represented subject to competing risks

PLOS ONE | https://doi.org/10.1371/journal.pone.0255944 August 12, 2021 3 / 25

https://doi.org/10.1371/journal.pone.0255944.g002
https://doi.org/10.1371/journal.pone.0255944


children diagnosed with hydrocephalus; failures in this context are known to result from a

variety of causes.

In complex systems with several hierarchical levels, redundancy can be implemented in any

of the hierarchical levels. Finding the specific optimal configuration of a specific system is

addressed by the reliability allocation problem. At the lowest level of the hierarchy, a unit can

have different failure modes. Considering the modes separately might be of importance as

either the consequences of the failures might be different or the maintenance actions that each

failure mode triggers might be different. In general, the failure of any single component can be

considered in a competing risks framework where every failure mode is competing against the

others to make the component fail in that mode.

A repairable system is defined as a system which, after failing to perform one or more of its

functions satisfactorily, can be restored to fully satisfactory performance by a method other

than replacement of the entire system. Traditional studies on repairable systems focus on

modeling failure times, using point process theory as the main tool. In the literature, it is com-

monly assumed that failures in a repairable system occur due to a Non-Homogeneous Poisson

Process (NHPP) with the intensity described by a power law. The resulting method is generally

referred to as the Power Law Process (PLP). The PLP is convenient in many ways, especially

for its flexibility, easy implementation, and the interpretability of its parameters [9, 10].

Considering the fault-causing mechanisms known, it is also important to observe how to

repair such failures, including preventive maintenance. In this context, the books of Crowder

[11], Pintilie [12], among others, illustrate with some examples the need for considering the

setting of competing risks in the application of reliability techniques (in industrial statistics) or

survival analysis tools (in health sciences).

Under a Bayesian perspective, the inference of a problem is on the basis of the posterior dis-

tribution of the quantity of interest, which combines the information provided by the data

with the available prior information. The elicitation of an appropriate prior distribution

becomes the main task for Bayesian statisticians in practice. Subjective priors, which always

depend on the experts’ belief, are not easy to derive in a limited time period. Therefore, given

little prior information, we prefer to use objective (non-informative) priors to make inference.

An important objective prior distribution is the reference prior, introduced by Bernardo

[13] and later refined by other authors [14–17]. The reference prior is minimally informative

in a precise theoretical sense about information. The intent is to make information from data

dominate a priori information, reflecting the vague nature of a priori knowledge. To obtain

such prior, the expected Kullback-Leibler divergence between a prior distribution and a poste-

rior distribution was maximized. The posterior distribution obtained using this prior has

interesting properties, such as invariance and consistency in marginalization and sample prop-

erties [18]. Some recent reference priors were obtained for the Pareto [19], Poisson-exponen-

tial [20], extended exponential-geometric [21], inverse Weibull [22], generalized half-normal

[23] and Lomax [24] distributions.

This paper aims to continue the study begun in Louzada et al. [25], which generalized the

Somboonsavatdee and Sen’s model [26]. For this, we describe a statistical model for a repair-

able system hierarchically represented subject to competing risks under minimal repair regime

with PLP intensity function. Working under an objective Bayesian framework, we consider

reference and matching priors for the model parameters. The proposed methodology is

applied to two real problems arising from the development of the robotic unit Annelida, as

described previously. Since the robot is not ready yet, and real experimental data are difficult

to obtain and use at the early stages of a complex technological innovation project like this, the

failure time data analyzed here are synthetic ones generated using the limited but currently

available information provided by the technical team’s FMEA (Failure Mode and Effects
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Analysis) and FTA (Fault Tree Analysis). Despite this, the proposed hierarchical statistical

model and methods prove to be useful in studying the reliability of the several systems and

subsystems that comprise the product.

The next sections of the paper are organized as follows. In Section 3, we introduce the pro-

posed statistical model, which considers, in its basic assumptions, a hierarchically represented

repairable system (with an arbitrary number of hierarchical levels) subject to competing risks

in a minimal repair regime governed by a PLP intensity function. In Section 4, under the per-

spective of an objective Bayesian inference framework, we derive the maximum a posteriori
probability (MAP) estimators for the parameters of the proposed model, correct the biases of

such estimators and expose credibility intervals with closed forms. In Section 5, we evaluate

the properties of the estimators through a simulation study. In Section 6, we use the proposed

model (and methods) to assess the reliability of two subsystems of the robotic unit (pressure

vessels and traction system) that motivated this research, in the light of currently available

information. Finally, in Section 7 we draw some final remarks and suggestions for future

research.

3 Model formulation

In this section, we introduce the proposed statistical modeling for reliability data arising from

a single repairable system subject to both minimal repairs and hierarchical competing risks,

whose successive failures are assumed to be governed by a PLP. Our model can be regarded as

a generalization of the Somboonsavatdee and Sen [26]’s model for the cases where there are

two or more levels of hierarchy, that is, secondary, tertiary, quaternary and so on failure causes

(or subsystems). The model proposed here is also an extension of the work by Louzada et al.
[25]. This situation is illustrated in Fig 3, which depicts a fault tree. The general feature illus-

trated in this figure includes the composition of a system by multiple subsystems, and the com-

position of these subsystems by further subsystems and components.

In order to model these kinds of systems, we first assume that the failure probabilities of

components in distinct branches of the fault tree are conditionally independent and that suc-

cess of the systems requires successful functioning of all components.

Let us suppose a repairable system with p levels of hierarchy. Then, the hierarchical compet-

ing risks model’s data consist of the (p + 1)-tuples (t, δ1(t), δ2(t), . . ., δp(t)), where t> 0 denotes

the failure time, δ1(t) is the indicator of the leading failure cause (system) at the failure time t,
and δj(t) is the indicator of the subcause (subsystem) at hierarchical level j and at the failure

time t, for j = 2, . . ., p (in what follows, we will suppress the explicit dependence of δj on failure

time t for brevity).

Let Np(δp) be the counting process associated with the system failure of type p. To consider

the natural hierarchy of this model, the δ2 indicator, for example, refers to the cause in the sec-

ond hierarchical level, which is nested with a specific cause of the first hierarchical level, repre-

sented by δ1. In this sense, we say that δ1 = 1, . . ., N1, that is, there are N1 primary causes of

system failure. On the other hand, δ2 = 1, . . ., N2(δ1), that is, the number of causes N2(δ1)

(denoted later simply by N2, for simplicity) closely depends on the primary cause δ1. This logic

extends to the p-th cause, indicated by δp = 1, . . ., Np(δ1, . . ., δp−1).

Our proposed model for failure data analysis can be formulated as follows. Let Nd1...dp
ðtÞ be

the hierarchical (at level p) subsystem-specific counting process, which denotes the number of

failures before time t. It is easy to demonstrate that, for the system level, the cumulative failure

counter is NðtÞ ¼
PN1

d1¼1
� � �
PNp

dp¼1 Nd1...dp
ðtÞ. Then, assume that the failures from a hierarchical
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(at level p) subsystem follow a NHPP with the PLP intensity function given by

ld1 ���dp
ðtÞ ¼ lim

Dt!0

Pðd1ðtÞ ¼ d1; . . . ; dpðtÞ ¼ dp;Nðt þ DtÞ � NðtÞ ¼ 1 j NðsÞ; 0 � s � tÞ
Dt

¼
bd1 ���dp

md1 ���dp

 !
t

md1 ���dp

 !bd1 ���dp � 1

;

Fig 3. System composition. Fault tree analysis (FTA) of the general system with hierarchical failure modes (p levels of

nesting).

https://doi.org/10.1371/journal.pone.0255944.g003
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where md1...dp
> 0 and bd1...dp

> 0 are, respectively, the scale and shape parameters. Or equiva-

lently, md1...dp
represents the time for which we expect to observe a single event, and bd1...dp

is the

elasticity of the mean number of events with regard to time [27].

Thus, it follows that the overall intensity function at time t is given by

lðtÞ ¼
XN1

d1¼1

� � �
XNp

dp¼1

ld1 ���dp
ðtÞ

¼
XN1

d1¼1

� � �
XNp

dp¼1

bd1 ���dp

md1 ���dp

 !
t

md1 ���dp

 !bd1 ���dp � 1

;

ð1Þ

where Nj denotes the number of components in the (δ1, . . ., δj)-th hierarchical subsystem, for

j = 1, . . ., p.

Let us assume that n� 1 failures have occurred in the time interval (0, T]. Then, the hierar-

chical (at level p) subsystem-specific cumulative intensity up to time T becomes

Ld1 ���dp
ðTÞ ¼

T
md1 ���dp

 !bd1 ���dp

:

From Eq (3), it follows that

LðTÞ ¼
XN1

d1¼1

� � �
XNp

dp¼1

Ld1���dp
ðTÞ

is the overall cumulative intensity up to time T. Hence, we have that the overall reliability up to

time T is

RðTÞ ¼ expf� LðTÞg

¼ exp �
XN1

d1¼1

� � �
XNp

dp¼1

Ld1 ���dp
ðTÞ

8
<

:

9
=

;

¼ exp �
XN1

d1¼1

� � �
XNp

dp¼1

T
md1 ���dp

 !bd1 ���dp

8
<

:

9
=

;
;

while the hierarchical (at level p) subsystem-specific reliability up to time T is given by

Rd1 ���dp
ðTÞ ¼ expf� Ld1 ���dp

ðTÞg ¼ exp �
T

md1 ���dp

 !bd1 ���dp
( )

:

As suggested by Oliveira et al. [27], we will reparametrize our proposed model in terms of

bd1...dp
and

ad1 ���dp
¼ E½Nd1���dp

ðTÞ� ¼
T

md1 ���dp

 !bd1 ���dp

;

where Nd1...dp
ðTÞ is the hierarchical (at level p) subsystem-specific counting process, which

denotes the number of failures before time T. It follows that bd1...dp
and ad1...dp

are orthogonal

parameters.
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The orthogonal reparametrization of the PLP model enables us to obtain a likelihood func-

tion whose parameters bd1...dp
and ad1...dp

are independent with desirable properties. In this case,

based on the time truncation design, the hierarchical (at level p) subsystem-specific likelihood

function for n� 1 failures observed at times t1 < t2 < � � �< tn< T is given by

Lðbd1 ���dp
; ad1 ���dp

j n; tÞ ¼ cbn
d1���dp

e� nbd1 ���dp =b̂d1 ���dp an
d1 ���dp

e� ad1 ���dp

/ gðbd1 ���dp
j nþ 1; n=b̂d1 ���dp

Þgðad1 ���dp
j nþ 1; 1Þ;

where t = (t1, t2, . . ., tn) denotes the vector of failure times, c ¼
Qn

i¼1
t� 1
i and

gðx j a; bÞ ¼ ba
GðaÞ x

a� 1e� bx, for x, a, b> 0, is the probability density function of a gamma distri-

bution with shape parameter a and scale parameter b. Moreover, b̂d1...dp
is the (biased) maxi-

mum likelihood estimator (MLE) of bd1...dp
, which is given by

b̂d1 ���dp
¼

n
Pn

i¼1
log

T
ti

� � :

It is worth noting that n, ti and t should also carry δ1. . .δp as a subscript (i.e., nd1...dp
, ti; d1...dp

and td1...dp
), but we omit it so as not to clutter the notation.

For a further discussion on the advantages of having orthogonal parameters, see Cox and

Reid [28].

4 Bayesian inference

In this paper, we investigate the repairable system in the presence of hierarchical competing

risks via objective Bayesian approach. A non-informative prior is used to depict lack of prior

knowledge about the quantity of interest. There are different ways to obtain objective priors

for the parameters of our model. Although the Jeffreys prior is the most commonly used, this

prior may not be adequate in multivariate case [18]. Tibshirani [29] proposed an alternative

method to derive a class of objective priors π(θ1, θ2), where θ1 is the parameter of interest and

θ2 is the nuisance parameter, so that the credible interval for θ1 has a coverage error O(n−1) in

the frequentist sense, i.e.,

P½y1 � y
1� x

1
ðp; tÞ j ðy1; y2Þ� ¼ 1 � x � Oðn� 1Þ; ð2Þ

where y
1� x

1
ðp; tÞ j ðy1; y2Þ denotes the (1 − ξ)-th quantile of the posterior distribution of θ1.

The priors that satisfy (2) are known as matching priors.

Let Iy1;y2
ðy1; y2Þ denote the (θ1, θ2) entry of the Fisher information matrix I(θ1, θ2). To

obtain such priors, Tibshirani [29] showed that if θ1 and θ2 are orthogonal parameters in the

sense discussed by Cox and Reid [28], i.e., Iy1 ;y2
ðy1; y2Þ ¼ 0, where θ1 is the parameter of inter-

est and θ2 is the orthogonal nuisance parameter, then the matching priors are all priors of the

form

pðy1; y2Þ ¼ gðy2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iy1 ;y1
ðy1; y2Þ

q
; ð3Þ

where g(θ2)> 0 is an arbitrary function and Iy1 ;y1
ðy1; y2Þ is the θ1 entry of the Fisher informa-

tion matrix. Tibshirani [29] showed that (3) is also a matching prior when θ2 is a vector of nui-

sance parameters.
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Considering the proposed model, and assuming that δ1 = {1, . . ., N1}, . . ., δp = {1, . . ., Np(δ1,

. . ., δp−1)}, the elements of the Fisher information matrix can be expressed as

Ibd1 ���dp ;bd1 ���dp ðbd1 ���dp
; ad1 ���dp

Þ ¼ ad1 ���dp
b
� 2

d1���dp
;

Iad1 ���dp ;ad1 ���dp ðbd1 ���dp
; ad1 ���dp

Þ ¼ a� 1
d1 ���dp

;

Ibd1 ���dp ;ad1 ���dp ðbd1 ���dp
; ad1 ���dp

Þ ¼ 0;

Iad1 ���dp ;bd1 ���dp ðbd1 ���dp
; ad1 ���dp

Þ ¼ 0:

From (3), one of the possible solutions is given by

p β;αð Þ ¼
YN1

d1¼1

� � �
YNp

dp¼1

1

bd1 ���dp

ffiffiffiffiffiffiffiffiffiffiffi
ad1 ���dp

p ; ð4Þ

where β ¼ ðb1...1; . . . ; bN1...Np
Þ and α ¼ ða1...1; . . . ; aN1...Np

Þ.

The prior given above satisfies (3) for all bd1...dp
and ad1...dp

selected as interested parameters.

Hence, the obtained prior is a matching prior for all the parameters, which implies that the

credibility interval for any parameter has a coverage error O(n−1) in the frequentist sense.

Another important objective prior is the reference prior introduced by Bernardo [13] with

further developments by Berger and Bernardo [16, 17]. This prior is defined as the prior that

maximizes the expected Kullback-Leibler distance between the posterior distribution and the

prior distribution based on the experimental data. Bernardo [18] proved that the reference

prior has desirable properties, such as invariance, consistency under marginalization and con-

sistent sampling properties. If the parameters of the model are orthogonal, the following

lemma (see Berger et al. [30]) can be used to easily obtain a one-at-a-time reference prior to

any chosen parameter of interest and any ordering of the nuisance parameters (hereafter

referred to as overall reference prior).

Lemma 4.1 Consider the unknown parameters θ = (θ1, θ2) with associated Fisher information
matrix I(θ1, θ2). If I(θ1, θ2) is of the form

Iðy1; y2Þ ¼ diagðf ðy1Þgðy2Þ; hðy2Þwðy1ÞÞ;

where f, g, h and w are positive functions of θ, then the overall reference prior is given by

pRðy1; y2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðy1Þhðy2Þ

p
: ð5Þ

Assuming that θ 2 Rk
, where k is the number of parameters, the same approach can be

applied to obtain the overall reference prior related to the vector of parameters. Here, we have

that fd1...dp
ðbd1...dp

Þ ¼ b
� 2

d1...dp
and hd1...dp

ðbd1...dp
Þ ¼ a� 1

d1...dp
. Hence, from (5), the overall reference

prior is given by

pR β;αð Þ ¼
YN1

d1¼1

� � �
YNp

dp¼1

1

bd1 ���dp

ffiffiffiffiffiffiffiffiffiffiffi
ad1 ���dp

p :
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Therefore, the prior (4) is an overall reference prior and also a matching prior for all the

parameters. The obtained posterior distribution is given by

pRðβ;α j n; tÞ /

/
YN1

d1¼1

� � �
YNp

dp¼1

g bd1 ���dp
j nd1 ���dp

; nd1 ���dp
=b̂d1 ���dp

� �
g ad1 ���dp

j nd1 ���dp
þ

1

2
; 1

� �

;

where n ¼ ðn1...1; . . . ; nN1...Np
Þ.

Due to the consistent marginalization property of the overall reference prior, the marginal

reference posteriors are given by

pRðbd1 ���dp
j nd1 ���dp

; tÞ / gðbd1 ���dp
j nd1 ���dp

; nd1 ���dp
=b̂d1 ���dp

Þ

and

pRðad1 ���dp
j nd1 ���dp

; tÞ / g ad1 ���dp
j nd1 ���dp

þ
1

2
; 1

� �

:

From the marginal posterior distribution, we can obtain the Bayes estimator assuming

some rule, such as the posterior mean, median or mode. Here, we assume the posterior mode,

also known as MAP estimator, since this approach leads to an unbiased estimator for bd1...dp
in

the frequentist sense. The Bayes (MAP) estimator for bd1...dp
is given by

b̂B
d1 ���dp

¼
nd1 ���dp

� 1

Pn
i¼1

log
T
ti

� �

Id1 ���dp
tið Þ
;

where Id1...dp
ðtiÞ is the indicator function that equals one if the observation ti belongs to the sub-

system δ1� � �δp, and n is the total number of failures that have occurred in the time interval (0,

T] (as already stated in Section 3). From the estimator above, we have that E½b̂B
d1...dp
� ¼ bd1...dp

,

i.e., such a Bayes estimator is unbiased in the frequentist sense. On the other hand, for ad1...dp
,

the Bayes (MAP) estimator is given by

âB
d1 ���dp

¼ nd1 ���dp
�

1

2
:

In this case, we have that

E âB
d1 ���dp

h i
¼ ad1 ���dp

�
1

2
:

Hence, such a Bayes estimator for ad1...dp
has a systematic bias of −0.5. Once we have identi-

fied the bias, we can remove it. In this case, we will not have that MAP estimator, but a bias-

corrected MAP (BMAP) estimator. Hereafter, we will consider the BMAP estimator for the

model parameters, which will be computed by

b̂BC
d1 ���dp

¼
nd1���dp

� 1

Pn
i¼1

log
T
ti

� �

Id1 ���dp
tið Þ
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and

âBC
d1 ���dp

¼ nd1 ���dp
:

Now, since the marginal posterior distributions have closed-form expressions, we have that

the υ = 100(1 − ξ)% credibility intervals for bd1...dp
and ad1...dp

can be obtained directly from the

quantile function of the gamma distribution, that is,

CIðb� ; uÞ ¼ gQ n� ;
n�
b̂�

;
x

2

 !

; gQ n� ;
n�
b̂�

; 1 �
x

2

 !" #

and

CIða� ; uÞ ¼ gQ n� þ
1

2
; 1;

x

2

� �

; gQ n� þ
1

2
; 1; 1 �

x

2

� �� �

;

where ˚ denotes the index δ1 � � � δp and γQ(a, b; υ) is the quantile function of the gamma distri-

bution with shape parameter a and scale parameter b, and 0� υ� 1. This quantile function is

available in most of the standard statistical softwares. For example, in R it can be computed by

using the qgamma function. Therefore, the exact confidence intervals for the model parame-

ters can be obtained without the use of intensive computation.

5 Simulation

In this section, we carry out a simulation study to investigate and compare the performance of

the proposed Bayes estimators. To evaluate the estimators’ behavior, two metrics are used: the

mean relative estimate (MRE) and the root mean squared error (RMSE), which are calculated,

respectively, by

MRE ŷw

� �
¼

1

M

XM

m¼1

ŷðmÞw

yw

and

RMSE ŷw

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

m¼1

ðŷðmÞw � ywÞ
2

s

;

for w = 1, . . ., κ, where M = 100,000 is the number of Monte Carlo simulations and

θ ¼ ðy1; . . . ; ykÞ ¼ ðb1...1; . . . ; bN1...Np
; a1...1; . . . ; aN1...Np

Þ denotes the parameter vector. Besides,

ŷðmÞw represents the estimate of θw obtained from sample m, for m = 1, . . ., M.

Through this approach, it is expected that good estimators return MREs close to one and

RMSEs close to zero. On the other hand, the 90% credibility intervals, which are obtained

directly from the 5% and 95% quantiles of the gamma posterior distributions, are expected to

have coverage probabilities (CPs) near the nominal value of 90%.

By considering the well-known results regarding NHPPs [10], and also from the assump-

tion that the failure modes are independent, we can generate the failure times, for each Monte

Carlo replication, according to the steps described in Algorithm 5. All numerical computations

and simulations were done using the R programming language [31]. Due to space constraints,

the results are reported only for six scenarios. However, similar findings are obtained for other

parameter choices.
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Algorithm 1: Generator of random numbers from the proposed model.
Input:
p, T
N1, N2(δ1), . . ., Np(δ1, . . ., δp−1)
β ¼ ðb1...1; . . . ; bN1...Np

Þ

α ¼ ða1...1; . . . ; aN1...Np
Þ

Output:
fðt;cÞg ¼ fðt1...1;c1...1Þ; . . . ; ðtN1...Np

;cN1...Np
Þg

Procedure:
for δ1 ≔ 1 to N1 do
for δ2 ≔ 1 to N2(δ1) do

..

.

for δp ≔ 1 to Np(δ1, . . ., δp−1) do

nd1 ;...;dp
� Poisson ðad1;...;dp

Þ

for i ≔ 1 to nd1 ;...;dp
do

Ui;d1 ;...;dp
� Uniform ð0; 1Þ

ti;d1 ;...;dp
¼ T U

1=bd1 ;...;dp
i;d1 ;...;dp

ci;d1 ;...;dp
¼ d1; . . . ; dp

end
end

..

.

end
end

In what follows, we present the results for two distinct structures of a single system, both

under the assumption that the components system is observed in the fixed time interval (0, T],

where T = 60. The first is a system subject to 3 failure causes each with 2 subcauses; and the

second is a system subject to 2 main causes each one subject to 2 subcauses which, in turn, are

subject to 2 other causes which, in the end, are also subject to 2 causes, in a 4-level structure.

These structures can be seen in Figs 4 and 5.

The parameters set for each underlying cause is presented in Table 1.

As can be seen in Tables 2 and 3, the MREs are very close to one, with no exception, espe-

cially for the BMAP estimator. On the other hand, the observed values of RMSE are, in general,

less than 0.5 for the MAP/BMAP estimator of β and less than 5 in the case of α. The CPs are

close to the nominal value of 90%, especially in the case of the exact intervals (CB) when com-

pared to the asymptotic ones (B).

6 Applications

In Louzada et al. [25], the Annelida’s traction subsystem was used to illustrate the methodol-

ogy discussed at the time. With the advance in the development of the robotic unit, the appli-

cations exposed here refine the previous one with the inclusion of more details about this

important subsystem (Section 6.2), and also adding the new results obtained in this paper to

another subsystem as well (pressure vessel subsystem in Section 6.1). The information available
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so far comes from their respective FMEA tables, which were reviewed by the technical team to

further deepen the knowledge they have about their idealizations and tests already carried out.

In both subsystems, the parameters of the model proposed here were associated with the

Severity (S), Occurrence (O) and Detectability (D) indices. Thus, it was possible to take ran-

dom realizations (based on Algorithm 1) of the failure times that represent the perspective

provided by the technical team at FMEA, from the perspective of reliability. This approach

ensures the addition of information at this early stage of the project. It was also assumed that

both subsystems are observed in the fixed time interval (0, T], where T = 209 days, which

relates to an operating time close to 5,000 hours.

The current reliability requirements for both subsystems include, among numerous other

factors, that: (i) with high probability, the system must remain in operation (without any fail-

ure) for at least a minimum number of days; (ii) on the other hand, the median lifetime of the

first failure is expected to be around another number of days. These requirements were deter-

mined by considering the expected number of annual missions, the size of the step taken by

the robotic unit inside the oil pipelines, its respective speed and the estimated time for the

hydrate block to melt. Such estimates also allowed to assess the time needed per mission and,

therefore, the minimum desired lifetime.

Fig 4. Proposed failure structure. Simulated failure structure for Scenarios 1, 2 and 3.

https://doi.org/10.1371/journal.pone.0255944.g004

Fig 5. Proposed failure structure. Simulated failure structure for Scenarios 4, 5 and 6.

https://doi.org/10.1371/journal.pone.0255944.g005
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6.1 In-pipe robot—Pressure vessel set

Based on the reliability requirements for the pressure vessel system, we consider that with high

probability (�95%) the first failure should not occur before 68 days. Similarly, the median of

first-failure time should be around 136 days. In this way, we can plot the reliability curve asso-

ciated with the proposed model (Fig 6). This curve is a partial reference for the reliability that

we want to achieve at the end of the development of this system, in the light of the currently

proposed modeling. We will see that all the uncertainty involved in this initial stage of the proj-

ect exposes us to how far we are from this objective. However, it does allow for more targeted

research routes.

The project designed 11 pressure vessels connected by connecting cables, as shown in Fig 2.

Although the whole set of vessels will be exposed to the same environmental characteristics,

their functions have different purposes and importances. However, the individual evaluation

of the vessels will not be considered in this work, so that the same FMEA will represent, here,

all 11 subsystems and the indices used, as well as the FTA, are shown in Table 4.

An illustration of the data set generated can be obtained in full via an individual request for

the authors. Due to the approximately linear behavior in the Duane plots, for each failure

Table 1. Proposed scenarios for simulation.

Scenario 1 Scenario 2 Scenario 3

System β α System β α System β α

1.1 1.5 22 1.1 2.2 30 1.1 0.20 35

1.2 2.3 18 1.2 0.7 25 1.2 0.50 24

2.1 1.2 20 2.1 1.5 27 2.1 0.90 18

2.2 3.5 25 2.2 0.2 32 2.2 1.00 20

3.1 1.0 21 3.1 1.0 23 3.1 0.80 32

3.2 1.1 23 3.2 1.8 20 3.2 0.05 25

Scenario 4 Scenario 5 Scenario 6

System β α System β α System β α

1.1.1.1 1.3 20 1.1.1.1 1.0 20 1.1.1.1 0.10 20

1.1.1.2 1.5 22 1.1.1.2 1.2 25 1.1.1.2 0.10 22

1.1.2.1 2.0 23 1.1.2.1 0.8 26 1.1.2.1 0.50 30

1.1.2.2 1.8 25 1.1.2.2 1.5 23 1.1.2.2 0.30 28

1.2.1.1 1.1 22 1.2.1.1 0.3 18 1.2.1.1 0.90 18

1.2.1.2 2.5 21 1.2.1.2 1.8 17 1.2.1.2 0.80 25

1.2.2.1 1.2 30 1.2.2.1 0.7 23 1.2.2.1 0.05 19

1.2.2.2 1.5 32 1.2.2.2 1.5 22 1.2.2.2 0.40 17

2.1.1.1 1.0 17 2.1.1.1 0.5 20 2.1.1.1 0.20 20

2.1.1.2 1.1 18 2.1.1.2 0.9 17 2.1.1.2 0.01 26

2.1.2.1 1.0 20 2.1.2.1 2.0 28 2.1.2.1 0.30 32

2.1.2.2 2.1 18 2.1.2.2 1.0 22 2.1.2.2 0.70 19

2.2.1.1 1.6 29 2.2.1.1 0.4 19 2.2.1.1 0.40 23

2.2.1.2 1.5 25 2.2.1.2 0.1 23 2.2.1.2 0.90 25

2.2.2.1 2.5 24 2.2.2.1 1.4 20 2.2.2.1 0.10 26

2.2.2.2 3.0 23 2.2.2.2 1.9 18 2.2.2.2 0.20 20

Scenarios for a single system subject to 3 failure causes each one with 2 subcauses (Scenarios 1, 2 and 3); and a single system subject to 2 failure causes each one with 2

subcauses which, in turn, have 2 causes of failure and, finally, also 2 other causes of failure (Scenarios 4, 5 and 6).

https://doi.org/10.1371/journal.pone.0255944.t001
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mode (see S1 Fig), we have indications that the theoretical PLP model may be appropriate to

model a problem like this.

The summary for the parameter estimates (see Fig 7) express that, in a practical situation,

the Cable Conductor subsystem would be undergoing a degradation process; there is statistical

evidence of this in some cases (that is, in 6 out of 11 subsystems), and in others only indica-

tions (that is, in 5 out of 11 subsystems). On the other hand, the same occurs less frequently in

the other subsystems.

Some subsystems did not have an increasing intensity function (which would indicate a

degradation process), however, the failure intensity in the initial times was higher, which

results in the high occurrence of failures in the first moments of activity and, therefore, signifi-

cantly reduces the component’s survival time. This occurred more frequently in the Heatpipe

and Carbon Fiber Protection subsystems. This information cannot be perceived directly on

the parameter estimates (see Fig 7), however, the graphs associated with the first-failure time

reliability and intensity curves, obtained by the adjustment, are shown in Fig 8.

Fig 6. Reliability requirements. Pressure vessel set’s.

https://doi.org/10.1371/journal.pone.0255944.g006

Table 4. FTA (with FMEA indices) for the in-pipe robot’s pressure vessel system.

S O D

All Pressure Vessel Pressure Vessel Setð
there are 11 of
these subsystems Þ

Cable Conductor 7 7 5

Pressure Vessel Rear Vessel Cap 8 5 4

Heatpipe 6 5 3

Carbon Fiber Protection 8 4 7

Vessel Base 8 4 7

Front Vessel Cap 7 4 4

S = Severity, O = Occurrence, D = Detection.

https://doi.org/10.1371/journal.pone.0255944.t004
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From Fig 8, it is possible to notice that the desired reliability requirements are still far away.

The median first-failure time of a pressure vessel is close to one day (depending on the ran-

domization of the simulated data), which is still far from the desired 68 days. The result

obtained by the model does not reflect any time observed in practice, however, it describes,

from the perspective of the reliability analysis, all the uncertainty that still surrounds the devel-

opment of this system component.

The graph of the observed number of failures versus the number of failures estimated over

time can be used to assess the quality of the model’s fit. In S2 Fig, the plots for each component

are presented and, in general, in a practical situation we would understand that the model was

able to describe the observed behavior.

6.2 In-pipe robot—Traction system

In this section, we return to the situation described in Section 1. We obtained a suitable data

set for this problem using a similar approach as proposed in the previous section, i.e., based

on the limited but available information provided by the revised FMEA and FTA tools (see

S3 Fig).

The required reliability for the traction system is graphically exposed in Fig 9, and claims,

with high probability, that the system remains in operation for at least 102 days, without any

failure. Also, the median failure time of the system has to be approximately 170 days.

The Duane plots built for each failure mode (see S4 Fig) have an approximately linear

behavior, which demonstrates the theoretical suitability that a PLP model needs for

adjustment.

Fig 7. Parameters estimatives for the in-pipe robot’s pressure vessel system’s failure data. BMAP estimates and 95% credibility intervals (95% CIs)

for the model parameters.

https://doi.org/10.1371/journal.pone.0255944.g007
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Fig 8. Estimated functions for the in-pipe robotic unit’s pressure vessel set system. First-failure time reliability (in black) and intensity (in red) functions by

components, subsystems and systems.

https://doi.org/10.1371/journal.pone.0255944.g008

Fig 9. Reliability requirements. Traction system’s.

https://doi.org/10.1371/journal.pone.0255944.g009
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In a practical context, if the failure times came from some missions, the BMAP estimates of

the adjusted model for the traction system (see Fig 10) would show that there are evidences of

some components having an increasing failure intensity function (systems 1.3.5.5, 1.3.6.4–5,

1.3.7.4, 1.3.8.4, 1.3.9.4–5, 1.3.10.4–5); for many others, there are some indications; and for

some, evidences of non-deterioration (systems 1.1.1.2–3, 1.1.2.3, 1.1.3.3, 1.2.1, 1.2.5, 1.3.2,

1.3.5.2, 1.3.6.2, 1.3.8.2, 2.1.3.3–5, 2.1.4.3–5, 2.1.5.3–5, 2.3.3.3, 2.3.4.3, 2.3.5.3).

From these results (see Fig 10), we identify that the components responsible for the main

failure causes, which represent the biggest obstacles to reaching the reliability requirements,

are the rubber (1.3.5–10.4) and adhesive (1.3.5–10.5) components. In particular, these units

express an evident degradation behavior, which suggests the need for a preventive mainte-

nance regime dedicated especially to these components, or even the renewal of the design ide-

alized for the process performed by them. Indeed, the latter is what is currently being carried

out, since the preliminary practical tests of the traction system exposed serious failures associ-

ated with the strength of the adhesive and the rubber to withstand the necessary force for the

locomotion.

The estimated reliability and intensity functions for the first-failure times are shown in Fig

11. From this figure, it can be seen that the median first-failure time for some components,

Fig 10. Parameters estimatives for the in-pipe robot’s traction system’s failure data. BMAP estimates and 95% credibility intervals (95% CIs) for the

model parameters.

https://doi.org/10.1371/journal.pone.0255944.g010
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Fig 11. Estimated functions for the in-pipe robotic unit’s traction system. First-failure time reliability (in black) and intensity (in red) functions

by components, subsystems and systems.

https://doi.org/10.1371/journal.pone.0255944.g011
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such as Spring (1.1.1–3.1) and Copling Rod (1.2.2), is high, with approximately 90 days.

Other components, such as rubber (1.1.1–3.4), adhesive (1.1.1–3.5), paw (1.1.1–3.3) and main

hydraulic piston (1.2.1), have a small first-failure median time, around 5 days. However, at the

end of the interaction between all components and subsystems, the median time of the first-

failure is around 0.12543 days for the return locomotive, and 0.21694 days for the forward

locomotive.

The goodness of fit can be seen by the comparison between the observed and estimated

number of failures along the time. These graphs, for each component, can be found in

S5 Fig.

7 Concluding remarks and further research

In this paper, we have continued the study started in [25], presenting the model under consid-

eration of an arbitrary number of hierarchical levels and maintaining the assumptions of

competing risks with independent failure modes, in a minimal repair regime with a reparame-

trized PLP intensity function. In this context, we have obtained Bayesian estimators with cor-

rected biases, as well as we have derived exact credibility intervals for the parameters. The

properties of these estimators were evaluated in a simulation study, which returned good

results.

The model structured in the proposed way allowed to highlight analytically and graphically

the reliability associated with the first-failure times of each one of the subsystems (at any hier-

archical level) of two arbitrary systems that illustrate the use of modeling. Namely, the pressure

vessels set and the traction system of the developing system that has served as a practical moti-

vation for this theoretical development.

As future works, we intend to evaluate the quality of these estimators in a context with outli-

ers, their behavior (in terms of quality loss) when exposed to data from an imperfect repair

regime. In addition, we wish to evaluate the change in reliability based on the increase in

redundancy of some subsystems. We also intend to assume that repairs are either perfect or

imperfect, and model the dependence among the failure modes via shared frailty models.

Supporting information

S1 Fig. Duane plots for the in-pipe robot’s pressure vessel system. For the failure modes.

(TIF)

S2 Fig. Goodness of fit for the in-pipe robot’s pressure vessel system. Number of observed

and estimated failures per component.

(TIF)

S3 Fig. FTA (with FMEA indices) for the in-pipe robot’s traction system. S = Severity,

O = Occurrence, D = Detection.

(TIF)

S4 Fig. Duane plots for the in-pipe robot’s traction system. For the failure modes.

(TIF)

S5 Fig. Goodness of fit for the in-pipe robot’s traction system. Number of observed and esti-

mated failures per component.

(TIF)

S1 Data.
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